当前位置: 仪器信息网 > 行业主题 > >

同位素稀释法应用于定量分析的原理

仪器信息网同位素稀释法应用于定量分析的原理专题为您提供2024年最新同位素稀释法应用于定量分析的原理价格报价、厂家品牌的相关信息, 包括同位素稀释法应用于定量分析的原理参数、型号等,不管是国产,还是进口品牌的同位素稀释法应用于定量分析的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合同位素稀释法应用于定量分析的原理相关的耗材配件、试剂标物,还有同位素稀释法应用于定量分析的原理相关的最新资讯、资料,以及同位素稀释法应用于定量分析的原理相关的解决方案。

同位素稀释法应用于定量分析的原理相关的方案

  • 采用 Agilent 1290 Infinity II 液相色谱仪与 6495B 三重四极杆液质联用系统定量分析宿主细胞蛋白质杂质
    本应用介绍了用于宿主细胞蛋白质高灵敏度定量分析的工作流程,包括用于样品自动前处理的 AssayMAP Bravo 平台、用于样品分离的 Agilent 1290 Infinity II 液相色谱系统、用于数据采集的 Agilent 6495B 三重四极杆系统、用于 MRM 方法开发的 Skyline 软件中的安捷伦自动化工具、用于数据分析的 Skyline 和 Agilent MassHunter 定量分析软件的结合。使用基于多反应监测 (MRM) 的同位素稀释方法,结果显示可准确定量低至亚 ppm(ng/mg) 浓度的 HCP。
  • 同位素稀释-顶空气相色谱质谱法测定食品中烷基呋喃类化合物
    本文使用同位素稀释-顶空-气相色谱质谱法建立了一种测定食品中6种烷基呋喃类化合物的方法。取适量样品,加入氘代同位素内标溶液,顶空50℃恒温20 min后,经Rtx-624色谱柱分离后,采用SIM模式进行采集,内标法进行定量。在2.5~100 ng的浓度范围内,6种烷基呋喃类化合物标准曲线性相关系数均大于0.999,6种烷基呋喃类化合物最低检出限在0.005 ~0.064 ng之间;在50 ng的加标浓度下平行处理6次,6种烷基呋喃类化合物的平均回收率在86.2~103.1%之间,其重复性RSD%结果在2%以下。本方法方便简单且灵敏度高,可用于食品中6种烷基呋喃类物质的检测。
  • 同位素稀释-碱水解-GCMSMS法测定食品中氯丙醇酯及缩水甘油酯含量
    本文参考GB 5009.191-2024 《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》标准修订中的第二章第一法,建立了同位素稀释-碱水解-气相色谱三重四极杆串联质谱仪测定食品中氯丙醇酯及缩水甘油酯含量的检测方法。食品试样中加入13C取代同位素和氘代同位素,经碱水解后以酸化溴化钠中和,并经液-液萃取脱脂后,用苯基硼酸衍生,衍生液以GCMSMS检测,内标法进行定量。在3~500 ng的浓度范围内,三种脂肪酸酯相关系数均大于0.9995;加标量在0.01mg/kg~2.5mg/kg水平下平行处理6次,其目标物的平均回收率在90.4~108.0%之间,其6次平行的RSD在1.39~18.8%之间,该方法简便、快速、灵敏度高,可用于食品中氯丙醇酯及缩水甘油酯含量的测定。
  • 同位素质谱法测定缴获的海洛因来源
    摘要作为最广泛使用的毒品—— 海洛因, 它的非法生产和交易的主要信息可以通过收缴的海洛因来源测定而获得。至今,在质谱分析的范畴内有三种来源测定方法。(1)用GC/MS法分析海洛因中的杂质,即对收缴的海洛因中的少量的组分进行鉴定和定量分析,如鸦片生物碱及其衍生物,掺杂物,稀释剂,残留溶剂等;(2)用ICP/MS分析收缴海洛因中的痕量元素;(3)用GC—C—IRMS对纯化的海洛因及其脱乙酰基的吗啡进行同位素比值测定。综合上述三种方法, 司法部门可以确认是否这些缴获的海洛因具有“同来源”和,或“同批号”,并将检材归属于海洛因地域来源的国家和地区,甚至推测可能的制造过程。上述的某些方法已经成功地应用于北京地区1998至2002年期间500起缴获海洛因的案例分析。影响实验精密度的诸因素在文中作了叙述,并对“同来源”和“同批次”样品比对的预测结果作了讨论
  • 同位素稀释-气相色谱质谱法测定食品中4种氯丙醇含量
    本文参考GB 5009.191-2024《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》标准中第一章,建立了同位素稀释-气相色谱质谱测定食品中4种氯丙醇含量的检测方法。食品样品中加入氘代内标,以氯化钠溶液提取,采用硅藻土固相萃取柱净化,经正己烷淋洗后,乙酸乙酯洗脱,洗脱液经七氟丁酰基咪唑衍生,衍生液以GCMS检测,内标法进行定量。在10~800 ng的浓度范围内,4种氯丙醇组分相关系数均大于0.998;加标量在10 μg/kg~100 μg/kg水平下平行处理6次,其目标物的平均回收率在82.4~110.4%之间,其6次平行的RSD在0.9~8.6%之间,本方法简便快捷、准确可靠,可用于食品中氯丙醇含量的测定。
  • 同位素稀释气相色谱质谱法测定血清甘油三酯含量
    本文参照《血清甘油三酯测定参考方法同位素稀释气相色谱质谱法》进行实验,线性和重复性良好,加标回收率高。
  • 使用 Agilent 7000B 三重四极杆 GC/MS 在 EI 模式下通过同位素稀释 GC/MS 方法对水中 N-亚硝胺类化合物进行可靠而高灵敏度的分析
    主要优势 • 采用同位素稀释法进行准确定量 • 自来水中 NDMA 的最低检出限为 0.81 ng/L • 在经处理的废水中,日内和日间的变异系数 (CV) 不高于 9% • 一种不需要 CI 气体的电子电离 (EI) 方法 • 分析时间仅为 14 分钟且无需样品衍生化处理
  • 同位素稀释-GCMSMS法测定食品中氯丙醇酯及缩水甘油酯含量
    本文参考GB 5009.191《食品安全国家标准 食品中氯丙醇及其脂肪酸酯含量的测定》标准修订中的第一法,建立了同位素稀释法-气相色谱三重四极杆串联质谱仪测定食品中氯丙醇酯及缩水甘油酯含量的检测方法。食品试样中加入13C取代同位素和氘代同位素,经碱水解后以酸化溴化钠中和,并经液-液萃取脱脂后,用苯基硼酸衍生,衍生液以GCMSMS检测,内标法进行定量。在3~500 ng的浓度范围内,三种脂肪酸酯相关系数均大于0.9995;加标量在0.01mg/kg~2.5mg/kg水平下平行处理6次,其目标物的平均回收率在90.4~108.0%之间,其6次平行的RSD在1.39~18.8%之间,该方法简便、快速、灵敏度高,可用于食品中氯丙醇酯及缩水甘油酯含量的测定。
  • 微量采样方法及锶、铷同位素的高精密分析,在岩石学地质学上的应用
    单晶体的微研磨可产生微克级的固体样品,可用于之后的同位素分析,并得出重要的岩石成因信息。从样品所在位置的上下组织结构在研磨前便可充分评估,因此可得特殊的细节。而这种细节,在大块岩石分析时,不容易被发现。这里,我们提供一种综合方法,可精细分析由微克固体样品精炼得到的ng-量级的Rb、Sr。物理取样技术,是基于电脑数控微钻机器(Micromill),专门用于晶体材料的复杂堆积和生长结构的取样。分离Sr、Rb并用于TIMS和MC-ICPMS分析的化学过程,将分别呈现。这些分析技术也会被评估。虽然耗时久,机械取样、方便溶解、化学分离并TIMS分析,仍是高精密度分析Sr同位素组成的*方法,针对大部分的地质材料,很大范围的Sr浓度、Rb\Sr比及基体类型。应用这些技术,可以得到外部浓度2.S.D,精度为50ppm的负载,3ng的Sr。我们用2个样品,验证了此技术的有效性。*个样品来自智利Panacota火山的<50ka单长石晶体,得出87Sr/86Sr同位素比小至0.00006,在放射性Sr向内生长可被忽略的条件下,可被溶解。第二个样品来自28.4Ma的凝灰岩(Colorado),表明Rb、Sr的同位素稀释测量方法的有效性,并计算87Rb/86Sr,并用于年代校正,以便建立单晶和地带的87Rb/86Sr不同的比率。我们证明,凝灰岩中的黑云母晶体表现出Sr同位素变化超出分析误差范围,因此其晶体的同位素并不平衡,也无法建立等时线年龄。另一方面,我们的同位素稀释测试方法的准确度也被验证,可用于获取Rb-Sr地质学信息,并提供结晶时的87Sr/86Sr的同质性。
  • 固废与危废毒性元素快速定量分析
    《GB 5085危险废物鉴别标准 毒性物质含量鉴别》规定了二十几项毒性元素物质限量值,由于固体废物种类多,样品基体复杂、元素种类多、含量范围宽,实验室方法存在样品处理、稀释、分析元素种类、仪器污染等挑战,难以快速定量分析各类固废毒性元素含量。传统的XRF需要标准样品进行定量分析,而固废的多样性使得依赖标准样品建立标准曲线几乎不可能。北京安科慧生推出完整应用方案:高灵敏度XRF重金属分析仪与快速基本参数法应对固废危废中有毒元素含量检测,样品处理简单,适用于各类固废样品,可以快速完成各类固废样品中毒性元素含量检测。
  • 同位素稀释-GC-MS/MS法测定土壤中多氯萘含量
    本文使用岛津GCMS-TQ8050 NX结合SmartDatabase_多氯萘_MRM数据库建立了土壤中13种多氯萘的检测方法。土壤样品经过过筛,加入13C同位素提取内标,经提取和净化后加入13C同位素进样内标上机进行分析,内标法进行定量。实验结果显示:在0.4~100 µg/L浓度范围内校准曲线线性良好,平均相对响应因子的RSD%
  • 激光剥蚀-稳定同位素比质谱在树轮碳同位素分析中的应用
    树轮常用于研究气候变化与环境演变,通过对其稳定同位素的分析,可揭示生态系统碳—水—氮变化特征及相互作用。树木在生长发育中响应环境变化,将环境信息通过水/空气/土壤中的碳、氢、氧转化为树木年轮的同位素比值变化,从而为重建环境变化提供了一份可靠的“档案”。古气候变化研究载体有树轮、石笋、海洋/湖泊沉积物和冰芯等。其中树轮样本具有两大优势:1)定年精确,分辨率可以到年;2)树轮年表的每一部分都可以和其它树木(年表)重叠搭接,能够获取平均值。稳定碳同位素:气孔导度、光合速率氧氢同位素:温度、叶片蒸腾作用
  • 采用三价钛还原法分析硝酸盐氮氧同位素-德国元素elementar
    溶解态硝酸盐的同位素分析是环境科学的一个重要应用,与目前的细菌反硝化法和叠氮化镉法相比,新型的三价钛还原法用于硝酸盐同位素分析大大降低了样品预处理的技术门槛。
  • 同位素稀释-气相色谱质谱法测定乳及乳制品中16种邻苯二甲酸酯含量
    本文使用气质联用仪建立了一种同位素稀释法测定牛奶及牛奶制品中16种邻苯二甲酸酯含量的方法,该方法操作简单方便,可以很好的满足乳及乳制品中邻苯二甲酸酯含量的检测要求。
  • 用于岩石学和地质年代学的单晶尺度锶和铷同位素的微采样和高精度分析方法(英文原文)
    在岩浆岩中,将单晶微晶化以得到微量的固体样品进行同位素分析,可以从晶体(尤其是长石)中获得重要的成岩信息。由于可以在钻前充分评估样品区域的纹理背景,因此可以获得特殊的细节。在大块岩石尺度上进行分析时,这些信息是未知的或丢失的。在此,我们提出了一种综合的方法来*分析从矿物中提取的微量固体样品中纯化的铷和锶的钠含量。物理采样技术是基于计算机数控(CNC)钻样机(Micromill?),新设计的专门针对复杂增生的采样和增长结构。物理采样技术是基于计算机数控(CNC)钻样机(Micromill分别介绍了用于TIMS和MC-ICPMS分析的Sr和Rb分离的化学方法,并在微钻产生的样品尺寸较小的情况下评估了这些分析技术的性能。物理采样技术是基于计算机数控(CNC)钻样机Micromill机械取样、常规溶出和化学分离,再经TIMS分析,虽然费时,但仍是测定大多数地质材料中Sr同位素组成的最准确和最*的方法,其范围广泛,包括Sr浓度、Rb/Sr比值和基体类型。使用这些技术,可以实现长期的2 S.D.外部精度50ppm的负载尺寸小至3ng Sr。物理采样技术是基于计算机数控(CNC)钻样机Micromill我们用两个例子证明了这些技术的有效性。首先从 50 ka单一长石晶体Parinacota火山(智利)显示,87 Sr / 86锶同位素范围可达0.00006,微量的放射锶可以忽略不计。第二种是来自科罗拉多28.4Ma鱼峡谷凝灰岩,用于演示同位素稀释测量Rb和Sr含量计算87Rb/86Sr的效用,从而对87Sr/86Sr比值进行定年校正,以建立单晶或区域之间87Sr/86Sr的变化。我们证明了鱼峡谷凝灰岩中的黑云母晶体的sr同位素变化远远超过了分析误差,因此所涉及的晶体并不处于同位素平衡状态,不能用来建立等时年份。另一方面,我们同位素稀释测量的精度可以用来测量铷、锶。
  • 稳定同位素比质谱在食品溯源中的应用
    同位素溯源技术是国际上目前应用于追溯不同来源食品和实施产地保护的有效工具之一,在食品溯源领域有着广阔的应用前景,在国际上纷纷开展此领域的研究。本文着重阐述了稳定同位素比质谱在食品溯源中的应用。
  • 对采用 UHPLC/MS/MS 准确定量玉米中毒枝菌素的稳定同位素稀释分析方法进行验证
    本文介绍了一个快速、操作简单且经济有效的分析方法,用于定量分析谷类食品中所有 11 种受欧洲严格管制的毒枝菌素。基于Varga 等人发表的方法,本文提供了更多实用信息,以帮助其他实验室快速建立本方法。本方法包含两步溶剂提取程序,采用Agilent 1290 Infinity 液相色谱系统进行UHPLC 分离,以及采用高灵敏度Agilent 6490 iFunnel 三重四极杆液质联用系统进行串联质谱检测。分别采用13C 均匀标记的各毒枝菌素作为 11 种目标化合物的内标,以此来补偿电喷雾离子化的基质效应。与其他方法不同,本方法的提取净化成本低、耗时短。此外,也无需繁琐地去制备基质匹配的标样。采用玉米基质的方法验证实验表明,所推荐的两步提取程序基本能够提取完全(回收率 97 - 111%),因此,我们可以在提取后加入内标,并且仅需很少的量。针对加标玉米提取物的进一步实验表明,内标的使用可以使方法具有良好的准确度,表观回收率在88 - 105% 之间。我们通过对具有明确浓度的一些基质参考物质进行测定,证实了方法的准确度。所有毒枝菌素的定量限(LOQ) 均低于欧洲法规针对谷类食品,甚至是谷类婴儿食品要求的浓度。本方法可实现玉米中所有受管制毒枝菌素的准确定量。分析其他谷类食品也能获得相似的提取回收率和准确度。本方法适用于多种分析物,除具有高准确度以外,最大的优势就是它的简便性,因此它对日常检验任务繁忙的实验室具有很大的吸引力。
  • 同位素稀释-酸水解-GCMSMS法测定食品中氯丙醇酯及缩水甘油酯含量
    本文参考GB 5009.191-2024《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》标准修订中的第二章第二法,建立了同位素稀释-酸水解-三重四极杆气质联用仪测定食品中氯丙醇酯及缩水甘油酯含量的检测方法。食品试样中加入氘代内标,以酸性溴化钠将缩水甘油酯(GE)转变成3-溴-1,2-丙二醇酯(3-MBPDE);经酸水解后得到游离态的氯丙醇和3-溴-1,2-丙二醇(3-MBPD);试液用基质分散固相萃取柱净化,洗脱液经七氟丁酰基咪唑衍生后,经GC-MS/MS测定,内标法定量。在3~1000 ng的浓度范围内,三种脂肪酸酯相关系数均大于0.999;加标量在0.01 mg/kg~1.0 mg/kg水平下平行处理6次,其目标物的平均回收率在81.2~106.4%之间,其6次平行的RSD在3.8~18%之间,该方法简便、快速、灵敏度高,可用于食品中氯丙醇酯及缩水甘油酯含量的测定。
  • 同位素溯源技术在食品安全中的应用
    疯牛病、口蹄疫、禽流感疫病等对食品安全管理带来新的压力,对人类健康构成了极大的威胁,给 疫病发生国造成了严重的经济损失,并带来社会恐慌。同位素溯源技术是国际上目前用于追溯不同来 源食品和实施产地保护的有效工具之一,在食品安全污染物溯源领域有着广阔的应用前景,一些发达国 家纷纷开展此领域的研究。本文阐述了同位素溯源技术的基本原理,比较了同位素溯源技术与其他溯 源技术的区别与联系,综述了国内外研究进展,提出了我国在同位素溯源技术方面应开展的研究工作, 旨在推动我国食品安全追溯制度的建立与完善,保障食品安全,保证消费者身体健康。
  • 同位素稀释-碱水解-GCMS测定动植物油脂中氯丙醇酯及缩水甘油酯含量
    本文参考GB 5009.191-2024《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》标准中第二章第三法,建立了同位素稀释-碱水解-气相色谱质谱测定动植物油脂中氯丙醇酯及缩水甘油酯含量的检测方法。动植物油脂样品分为两份,加入氘代内标后碱性碱水解,并加入试剂终止水解反应,试液经液-液萃取脱脂后,用苯基硼酸衍生,衍生液以GCMS检测,内标法进行定量。在5~1000 ng的浓度范围内,三种脂肪酸酯相关系数均大于0.999;加标量在0.01 mg/kg~2.5 mg/kg水平下平行处理6次,其目标物的平均回收率在82.3~108.4%之间,其6次平行的RSD在0.8~6.6%之间,本方法经济实用,可用于动植物油脂中氯丙醇酯及缩水甘油酯含量的测定。
  • 赛默飞全新 AEI 源三重四极杆气质联用仪 TSQ 9000 结合同位素稀释法分析土壤和沉积物中的二噁英类化合物
    本文采用配备全新 AEI 源的 TSQ 9000 GC-MS/MS 系统,结合同位素稀释分析法分析土壤中和沉积物中的二噁英类化合物。赛默飞全新 AEI 源在极低浓度的样品(20 fg 2,3,7,8-TCDD)测试中展现出无与伦比的灵敏度和稳定性(峰面积 RSD%=3.42%,;离子比率 RSD%=2.83%)。实验数据采用 TargetQuan 3.2 进行处理,EPA 1613 系列标准品实测响应因子为 0.88-2.13,相对标准偏差小于 10%。实际样品测试结果展示出方法具有良好的稳定性和回收率,测试结果与 GC-HRMS(磁质谱)的结果的偏差小于 5%,具有良好的一致性。
  • 赛默飞全新 AEI 源三重四极杆气质联用仪 TSQ 9000 结合同位素稀释法分析土壤和沉积物中的二噁英类化合物
    本文采用配备全新 AEI 源的 TSQ 9000 GC-MS/MS 系统,结合同位素稀释分析法分析土壤中和沉积物中的二噁英类化合物。赛默飞全新 AEI 源在极低浓度的样品(20 fg 2,3,7,8-TCDD)测试中展现出无与伦比的灵敏度和稳定性(峰面积 RSD%=3.42%,;离子比率 RSD%=2.83%)。实验数据采用 TargetQuan 3.2 进行处理,EPA 1613 系列标准品实测响应因子为 0.88-2.13,相对标准偏差小于 10%。实际样品测试结果展示出方法具有良好的稳定性和回收率,测试结果与 GC-HRMS(磁质谱)的结果的偏差小于 5%,具有良好的一致性。
  • 元素无标定量分析-快速基本参数法
    某些样品元素分析中,极难找到标准样品,或者分析方法开发困难、耗时,元素定量分析是一个挑战。快速基本参数法结合高灵敏度XRF不依赖标准样品,为各类未知样品元素快速定量分析提供有效手段
  • 同位素技术在环境和生态上的应用
    由robert Michener 和 Kate Lajtha编辑 自从第一版之后,同位素的领域又已经非常扩大了。从开始的应用,地理学家和海洋学家已经更深入的发展了同位素在的理论和实际应用,过去的水土状况,热系统,追踪岩石来源等。相似的,植物生物学家,地理学家,和环境化学家也已经发展了新的理论框架,经验数据库,为了研究植物和动物的同位素应用。自然丰度的同位素记号可以被用来发现单个有机体的类型和机理就像追踪食物的网络一样, 理解营养,和追踪整个生态的营养循环不论是陆地生物还是海洋系统。因此,同位素分析已经越来越作为生物学家,生态学家和所有研究元素和物质一个标准化的手段。 从历史视角的方法 每一个不同的元素,制备样品的方法都不一样。稳定同位素分析的目标是使得样品定量的转变成合适的纯气体(比如CO2,N2或者H2等)使得质谱能够分析。硫可以以SO2或者SF6的方法分析。通常,有机样品首先被干燥(或者在60℃的烘箱中或者冷冻干燥),并且被碾压成粉末。样品可以被保存在一个密闭容器中,使得他们保持干燥。如果对样品的碳元素感兴趣,但是样品中含有无机碳的话,样品需要首先被酸化(通常使用1NHCL,即便有很多用户使用稀释的磷酸) 有机样品中的C和N 早起的同位素测定中,大多数研究者使用氧化反应要不就是“离线”或者“在线”,将有机样品燃烧成气体。 现在均转变成在线的方式,通过元素分析仪连接同位素质谱的装置。1-20mg(或者更多)的样品被称量后,用锡纸包好,放在样品盘上。样品会在氧气流中,在高温下燃烧,然后燃烧的气体被氦气流带到吸附阱上进行分离成H2O,N2,CO2等。感兴趣的气体然后被导入到质谱中进行分析。这就是目前所知的连续流分析模式。 碳酸盐和溶解无机碳 无机碳样品与100%磷酸反应在真空下反应,使其完全转化为纯CO2。这使得可以同时分析C13和O18,条件是磷酸是纯的,并且不能有水。 水样中的溶解无机碳,通过酸化水样并且搅拌水样,在部分真空下产生CO2样品,然后分离纯化该气体。该样品制备原则可以被用来制备血液中的生物碳酸盐。 关于上诉样品的最新方法使用了自动的连续流系统。不需要估计瓶子中的碳酸盐,氦气在酸化之前已经代替了瓶子中的所有气体。在一个反应时间之后,CO2气体被转移到样品环中,然后使用氦气做载气导入到质谱中。一个相似的方法使用在水中DIC的测定中。 氨和水中的硝酸盐δ 15N 早期的溶解无机氮分析中,水样中的氨被分离,使用各种蒸汽蒸馏技术或者使用扩散技术等。所有的步骤使得水中的pH变化,然后将氨气被一个酸trap捕获。蒸馏技术比较适合于大量水中含有痕量氨气的情况,可以使用盐水溶液,大概每个样品需要30分钟。一旦氨气被收集在酸阱中,沸石将会用来从溶液中转移出氨气。在所有的方法中,需要小心NH3在每个阶段的收集也纺织分馏。硝态-N可以使用同样的技术蒸馏在使用还原剂将水中的硝酸根还原为氨气。 水中氧 水中氧的分析主要有两种:水平衡法和元素分析仪-同位素质谱法。 水平衡法: 氘: 水平衡法和EA-IRMS方法。 硫: 测定硫的办法,取决于样品的初始状态,核心是将硫转变成SO2还是SF6。 SF6的优势是F只有一个同位素原子,但是技术上转化有点复杂,所以大部分的实验室使用SO2气体。 大部分的方法都是将硫分离出来然后采用氧化硫成溶液中的硫酸盐。硫酸盐可以使用10%的氯化钡转变成BaSO4沉淀。在这里,样品可以氧化为SO2气体并且导入到质谱中进行检测。 连续流的方法:在元素分析仪中,高温下燃烧S,然后进入柱子分离。之后SO2被导入到质谱中进行分析。
  • 德国elementar:同位素溯源技术在食品安全中的应用
    疯牛病、口蹄疫、禽流感疫病等对食品安全管理带来新的压力,对人类健康构成了极大的威胁,给疫病发生国造成了严重的经济损失,并带来社会恐慌。同位素溯源技术是国际上目前用于追溯不同来源食品和实施产地保护的有效工具之一,在食品安全污染物溯源领域有着广阔的应用前景,一些发达国家纷纷开展此领域的研究。本文阐述了同位素溯源技术的基本原理,比较了同位素溯源技术与其他溯源技术的区别与联系,综述了国内外研究进展,提出了我国在同位素溯源技术方面应开展的研究工作,旨在推动我国食品安全追溯制度的建立与完善,保障食品安全,保证消费者身体健康。
  • 伯东 Pfeiffer 真空泵用于同位素测试仪器
    同位素比质谱分析原理为首先将样品转化为气态, 在离子源中将气体分子离子化, 接着将离子化气体打入飞行管中. 在飞行管末端通过法拉第收集器来测试不同带电粒子从而测量出来.同位素比质谱分析原理为首先将样品转化为气态, 在离子源中将气体分子离子化, 接着将离子化气体打入飞行管中. 在飞行管末端通过法拉第收集器来测试不同带电粒子从而测量出来.赛默飞同位素比质谱分析上含有多种伯东 Pfeiffer 真空泵, 如前级泵为3台旋片泵 DUO系列油泵, 分子泵为 Hipace 系列两个.
  • 采用 LC/MS/MS 法同时定量分析人血清中 20 种抗癫痫药物
    由于抗癫痫药物种类繁多,而且这些药物在人血清中的浓度可能差异很大,导致监测抗癫痫药物非常具有挑战性。因此,用于这些药物的高品质分析必须能够在多个数量级内同步监测多种化合物。液相色谱-质谱 (LC/MS/MS)法就特别适用于这种分析。为了定量分析人血清中 20 种抗癫痫药物,开发了一种灵敏度高、特异性好的方法。该方法通过一种简单的蛋白质沉淀/稀释方案配制样品。可在较宽的动态范围内定量分析物,精确度、重现性以及 R2 值都非常出色。
  • 同位素稀释自动固相萃取-电感耦合等离子体质谱法测定海水中的Fe、Ni、Cu、Zn、Cd和Pb
    在这项研究中,报告了一种分析方法,使用 seaFAST 自动固相萃取装置预浓缩和分离海水中的六种微量金属,铁、镍、铜、锌、镉和铅,通过三重四极杆碰撞/反应技术与电感耦合等离子体质谱(ICP-MS)进行分析,并通过同位素稀释技术进行定量。小体积(10毫升)的海水样品与多元素同位素示踪剂混合,并进行了seaFAST 程序。然后使用ICP-MS的优化碰撞/反应池模式对预浓缩溶液进行分析,用NH3气体检测Fe和Cd,流速为0.22 mL/min,用He检测Ni、Cu、Zn和Pb,流速为4.0 mL/min。Fe、Ni、Cu、Zn、Cd和Pb的程序空白分别为130 pmol/L、3.0 pmol/L、6.8 pmol/L、37 pmol/L、0.29 pmol/L和0.42 pmol/L。该方法使用五种参考材料(SLRs-6、SLEW-3、CASS-6、NASS-7和GEOTRACE-GSC)进行了验证,结果与共识值相一致。通过测量西北太平洋亚热带地区的全水柱海水样品进一步验证了该方法,结果显示了良好的海洋一致性。
  • 高盐水的稳定同位素分析
    该系列文章由三部分组成,本文为第二篇,探讨了 Picarro 分析仪、系统和配件如何确保对具有挑战性的海水和高盐水样品实现准确测量。第一篇文章海水的水稳定同位素测量介绍了多实验室间的研究结果,该研究旨在评估与同位素比质谱 (IRMS) 测量相比,在结果一致性和测量值上,光腔衰荡光谱 (CRDS) 所得测量结果的质量。本篇文章报道了对 CRDS 用于高盐水分析的评估。
  • 近红外光谱技术应用于煤炭热值、灰分、挥发分和固定碳定量分析
    随着国家对节能减排的要求越来越严格,热值、灰分、挥发分和固定碳等煤炭的质量指标不仅是热量指标的要求,也是环保的要求;煤炭分析的速度也是用煤单位多年探索的一项重要技术,传统煤炭热量分析主要采用量热仪,灰分、挥发分和固定碳测定采用马弗炉,分析周期长,耗能大,分析步骤需要严格控制,很多燃煤企业多年来一直在探索利用激光、中子法等技术进行煤炭快速分析,但激光和中子法对仪器安全防护要求高,使用成本也很高,而采用傅里叶近红外技术对煤炭的热值、灰分、挥发分、固定碳的进行快速分析研究近几年取得了一定进展。近红外光谱分析技术具有以下优点:1、分析速度快:任何样品的近红外光谱测试时间都可以再1分钟内完成;2、样品处理简单:样品最多可能进行简单的物理处理,如磨粉等;无需进行化学处理;3、操作简单:样品无需称重等复杂的计量测试和化学处理;只需对样品进行简单的光谱扫描;4、人为操作误差小:无称重、稀释、定容等操作,避免了操作流程上带来的偶然误差;5、绿色环保:近红外测试过程无需化学试剂,无化学反应过程,无污染;6、能实现现场在线实时测试:采用在线近红外分析技术,可以实现实时在线分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制