当前位置: 仪器信息网 > 行业主题 > >

同位素稀释法应用于定量分析的原理

仪器信息网同位素稀释法应用于定量分析的原理专题为您提供2024年最新同位素稀释法应用于定量分析的原理价格报价、厂家品牌的相关信息, 包括同位素稀释法应用于定量分析的原理参数、型号等,不管是国产,还是进口品牌的同位素稀释法应用于定量分析的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合同位素稀释法应用于定量分析的原理相关的耗材配件、试剂标物,还有同位素稀释法应用于定量分析的原理相关的最新资讯、资料,以及同位素稀释法应用于定量分析的原理相关的解决方案。

同位素稀释法应用于定量分析的原理相关的论坛

  • 同位素稀释质谱法分析痕量钚以及另外的应用

    同位素稀释质谱法分析痕量钚建立了同位素稀释质谱法分析测定痕量钚的分析技术。应用该技术分析了239Pu丰度为94%的同位素标准样品,当样品量为100pg时,样品中的240Pu/239Pu分析值的不确定度为20%(1s),与传统的钚同位素分析方法相比较,使钚的分析测试能力提高了两个数量级。该分析技术包括以下三个部分: 239Pu丰度标准样品的浓度,采用a绝对测量的方法来测定。结果为:7.227(1±0.015)ng 239Pu/mg溶液;242Pu稀释剂的浓度,用已知浓度和丰度的239Pu来标定,标定结果为:0.1815ng 242Pu /mg溶液;痕量钚的分析测定,用242Pu作稀释剂(10~20ng),加入100,500,1000pg的239Pu丰度为94%的同位素标准样品进行痕量钚的分析,测定标准样品中的240Pu/239Pu比值,并与标称值0.05814进行比较,测定结果见表1。表 1 痕量钚同位素分析结果 样品 239Pu/pg RM92* RM02 RM12 R09 偏差 1 92.4 0.020261(1±0.015) 0.018319(1±0.046) 0.001620(1±0.098) 0.0674(1±0.20) +16% 2 460.4 0.053100(1±0.0027) 0.020448(1±0.035) 0.001517(1±0.011) 0.0659(1±0.27) +13% 3 930.8 0.085967(1±0.0040) 0.02168(1±0.0038) 0.001602(1±0.026) 0.0598(1±0.026) +2.8% 注*:RM92为240Pu与239Pu混合样品中的240Pu/239Pu比值。 从表中数据可以看出:R09不确定度的主要贡献是稀释剂中240Pu与242Pu比值测量的不确定度,准确测量它们的比值是降低痕量钚同位素分析的不确定度的关键。

  • 【资料】-同位素稀释法的原理

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15259]同位素稀释法的原理[/url]主要是介绍了同位素质谱稀释法的原理,好不容易找到的啊!希望对大家有用。[em09]

  • 大家来谈谈同位素内标法和同位素稀释法

    同位素内标法用在有机分析比较多,而同位素稀释法用在无机分析或无机元素的形态分析(如有机锡,有机汞等)比较多。同位素内标法是一种非常有效的校正实验中基质干扰,回收率差的手段,但它和和同位素稀释法是不同的。传统意义的内标法中选择和待测化合物性质相近并且样品中不含有的化合物作为内标,大家的经验是内标物可以校正仪器分析如气相色谱的偏差,比如进样量等,质谱检测器的基质效应等,但毕竟是不同的物质,在提取,净化等方面和待测物还会有很大区别,而且这样的物质宁不好找。同位素内标法会选用同位素标记了的化合物,即化合物的某个元素部分或全部由其同位素取代,比如C由C13取代,氢由氘取代,由于用于标记的同位素的自然丰度很低,所以样品中不会存在相同的同位素标记的化合物(或者说检测不出来),并且在一般情况下,同位素标记的内标物和待测化合物的色谱保留(出峰时间)十分接近或者一致,所以同位素内标法在质谱检测器中使用非常广泛。更重要的是,事实上他们的化学性质完全一样,所以在测试过程中的提取效率,净化过程的损失,基质影响等完全一致,可以用来校正这些带来的测试偏差。只是同位素标记内标物的价格十分昂贵。大家来分享下各自的经验,我的感觉还是同位素标记物难买,除非找人合成,那就得花大价钱了。

  • 关于同位素稀释法在气质液质的应用及定量方式的困惑

    [font=system-ui, -apple-system, BlinkMacSystemFont, &][color=rgba(0, 0, 0, 0.9)]同位素稀释质谱法(IDMS)是一种测量液体、固体或气体中化合物X含量的方法。该方法利用稳定同位素这一非放射性元素,将化合物X与含有稳定同位素的标准进行比较。由于稳定同位素标准量已知,我们可以计算出化合物X的存在量。[/color][/font]question1:是不是所有的加同位素内标的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]质谱法都可以称为同位素内标法?无论氘代还是碳13代(参考图片)question2:“HJ1290-2023土壤毒杀芬的测定[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]质法”中“提取内标”和“进样内标”的概念,目标化合物的最终定量还是用提取内标定量的(平均RRF),而进样内标仅仅是计算提取内标的回收率,并没参与目标化合物的最终定量,是不是这样?question3:续question2,提取内标和进样内标与[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]中常用的替代物和内标有啥区别?替代物是前处理前加入,最终是算回收率,不参与目标化合物的定量,定量由内标,这个内标又有点像[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]质的提取内标,但又不完全一样,为何[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]不用提取内标呢?(参考HJ1184-2021)question4:“HJ1242-2022水质6种邻苯二甲酸酯化合物的测定 [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]质法”用的是标准曲线法定量,而“HJ1184-2021土壤和沉积物6种邻苯二甲酸酯化合物的测定 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]法”用平均相对响应因子法,两个方法的浓度水平基本差不多,为何会有这种区别? question5:关于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]和[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]的内标加入时机,提取内标、进样内标、替代物、内标等等,感觉很乱,有没有相应的规律?那种方式更好?以上问题求大神解惑!附件有上述问题的标准,谢谢!

  • 【资料】QuantBasic软件用于红外光谱定量分析

    QuantBasic软件用于红外光谱定量分析   化学计量学原理引入到红外光谱学后 ,使得红外光谱定量分析有了突破性进展。利用 MB15 4S型FTIR光谱仪专配的 Quant Basic定量软件 ,对红外光谱定量分析中基线取法进行了研究 ,并得出最优方法。通过对己二酸进行定量分析 ,验证了此软件对混合物中单组分定量不仅操作简便 ,快速可行 ,而且简化了训练集的建立和样品前处理【关键词】:红外光谱 定量分析 FTIR光谱仪【正文快照】:  1 引言自 2 0世纪 40年代中期 ,第一台红外光谱仪问世后即开始了定量分析的应用和研究工作。红外光谱法具有适用性强 ,气、固、液的样品都可以测试而不破坏原样的特点。但在早期 ,相对于紫外 -可见光光谱 ,红外光谱的定量分析应用范围是有限的。 2 0世纪 70年代以后 ,计算机技

  • 【资料】同位素指纹分析技术在食品产地溯源中的应用进展

    食品的产地溯源有利于保护原产地,保护地区名牌,保护特色产品,确保公平竞争,增强消费者对食品安全的信心,并能有效防止食源性病源菌的扩散。同位素分析是用于食品产地溯源的有效技术之一,而且对食品原料如酒、饮料、乳品、肉品、谷物等普遍适用。本文重点介绍了同位素溯源技术的基本原理,几种常用同位素在自然界中的变化机理,以及它们在不同食品溯源中的研究现状,推动同位素溯源技术在食品安全领域的研究与应用,促进食品追溯制度的建立与完善。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=99207]同位素指纹分析技术在食品产地溯源中的应用进展[/url]

  • 同位素稀释法

    大家有用过同位素稀释法吗?能不能给解释下,看不懂呀,R=(Nx·A+Ny·As ) / (Nx·B +Ny·Bs ) (1); Nx = Ny·(As-Bs·R)/(B·R-A) (2) 各量是什么意思?参比同位素是啥?能具体讲讲吗?

  • 【求助】同位素稀释法是否就不需要空白基质?

    同位素稀释法的基质效应问题?想问一下,在做内源性物质分析时,找不着合适的空白基质,查阅文献,有用同位素稀释法做,具体操作有用内标一点法,包括法,和标准曲线法;有些疑惑的地方是:同位素稀释法是否就不需要空白基质?那它的基质效应如何消除和评价?谢谢

  • 【讨论】除了定量分析还做别的吗?

    从原理上讲,原子发射光谱可以进行定性分析、半定量分析和定量分析。过去因为电弧光源和火花光源在性能上存在缺陷,使发射光谱在定性和半定量分析方面应用非常广泛,但其定量分析受到很大限制。ICP光源的出现彻底改变了这种状况,使发射光谱定量分析的应用越来越多,现已基本上成为元素分析的常规手段。但大家在用ICP进行定量分析的同时,还经常去做定性和半定量分析吗?

  • 【原创大赛】电感耦合等离子体质谱仪半定量方法在盲样液元素分析中的应用

    【原创大赛】电感耦合等离子体质谱仪半定量方法在盲样液元素分析中的应用

    电感耦合等离子体质谱仪半定量方法在盲样液元素分析中的应用摘要 采用电感耦合等离子体质谱法(ICP-MS),建立了一种盲样元素分析的半定量检测方法,对合成样品的半定量分析以及对实际样品的加标回收试验结果显示,该方法能够有效消除干扰,实现对多种元素的一次性快速测定,测定结果的偏差为(-29.0~+17.0)%,加标回收率为(-29.0~+17.0)%,该方法能快速确定样品中存在的元素及浓度范围,可以应用于盲样元素含量扫描分析,为快速了解盲样元素信息提供科学根据。 关键词 半定量分析方法;元素; 盲样检测;电感耦合等离子体质谱法摘要 采用电感耦合等离子体质谱法(ICP-MS),建立了一种盲样元素分析的半定量检测方法,对合成样品的半定量分析以及对实际样品的加标回收试验结果显示,该方法能够有效消除干扰,实现对多种元素的一次性快速测定,测定结果的偏差为(-29.0~+17.0)%,加标回收率为(-29.0~+17.0)%,该方法能快速确定样品中存在的元素及浓度范围,可以应用于盲样元素含量扫描分析,为快速了解盲样元素信息提供科学根据。 关键词 半定量分析方法;元素; 盲样检测;电感耦合等离子体质谱法中图分类号: 文献标识码: 文章编号: 随着经济的发展,突发性污染事件的发生越来越频繁,污染物种类也越来越繁多。近几年来,电感耦合等离子体质谱技术具有检出限低、动态范围宽、基体效应小、准确度和精密度高、可同时进行多元素分析等的特点,除能进行常规定量分析外,还因与质谱联用而拓展了许多功能,其中半定量分析(Semi-quantitative Analysis)为ICP-MS所特有的一项实用功能,不需要外部标准,即可对盲样液进行测定。因此,ICP-MS半定量分析能为盲样的金属元素分析提供更快更多的分析数据。本文着重研究了ICP-MS半定量方法在检测盲样元素中的应用。常规的定量分析中,对于需进行分析检测的每一种元素都必须提供标准溶液,在完成标准曲线后才能进行分析测定;而ICP-MS半定量分析则不需要对每一个元素都提供相应的标准物质,它只需几种已知浓度(最好能涵盖整个质量轴从6Li到239U)的元素作为标准溶液,以此为基础对ICP-MS所能分析的元素或被选定测量的元素进行测量,从而获得盲样液中有何种元素及元素浓度的相关信息,为进一步快速准确测定相关元素提供依据。1 试验部分1.1 主要仪器Agilent 7700 x ICP-MS (美国安捷伦科技有限公司产)。1.2 主要试剂超纯水;默克产进口硝酸;标准溶液(1000μg·mL-1):锂、钪、钇、铟、铈、铋(由国家钢铁材料测试中心提供);由各单标标准混合成混标溶液,并用硝酸逐级稀释成10ng·mL-1使用液。1.3 仪器条件ICP-MS仪器操作条件见表1。http://ng1.17img.cn/bbsfiles/images/2011/12/201112120701_337301_1601435_3.jpg1.4 试验方法选定以锂、钪、钇、铟、铈、铋为标准(浓度为10ng·mL-1使用液),绘制半定量灵敏度曲线,以此曲线为基础,将盲样液用2%硝酸稀释100倍,对其他的能检测的元素进行半定量分析。2 结果与讨论2.1 干扰的消除与常规定量分析一样, ICP-MS半定量分析质谱干扰主要有同质异位数、多原子离子、氧化物、双电荷等, 可以通过调谐仪器参数和编辑干扰校正方程来消除,本试验通过选择干扰较少的同位素以及采用推荐的干扰校正公式消除干[

  • 为什么红外定量分析在中药定量分析中应用较少?

    我们都知道,中药定量分析中中药用的是高效液相色谱法和紫外分光光度法,以前还常用薄层色谱法。而专属性、特征性比较强的红外分光光度法却主要用于中药的定性鉴别中,在含量测定中很少应用,为什么呢?

  • 【百科全书1】:稳定性同位素稀释法

    食品安全问题是百姓关注度比较高的话题。作为检测分析工作,为了达到更好的检测准确度,会使用到内标。其中,占不小比例的是同位素内标。我们常常看到文章中是这样描述该方法:稳定性同位素稀释液质联用法测定***,英文文献中一般会有isotope dilution liquid chromatography with tandem mass spectrometry,其中dilution是稀释的意思,当然也有同位素内标法的用法,请问,该名词中“稳定”和“稀释”是什么意思?你是怎么理解稳定性同位素稀释法的?链接:【百科全书(汇总贴)】:液质基础知识问答!http://bbs.instrument.com.cn/shtml/20130225/4584606/

  • 影响原子吸收光谱定量分析的因素

    影响原子吸收光谱定量分析的因素

    影响原子吸收光谱定量分析的因素原子吸收光谱定量分析涉及两个基本过程:①试样中被测元素转化为自由原子的化学过程;②蒸气相中自由原子对辐射吸收的物理过程。化学过程比物理过程更复杂,影响化学过程的因素比影响物理过程的因素更多。1 原子化过程的影响在推到原子吸收光谱定量分析的关系式A=Kc时,假定了一个基本条件:在确定的实验条件下,蒸气相中的原子数N与试样中被测元素的含量c成正比,N=βc,为此要求被测元素的原子化效率在确定的实验条件下是一定的。准所周知,在实际分析工作中所遇到的试样类型千变万化,即使是同一元素,在不同的试样内,由于基体特性各异和其他共存元素的相互影响,其原子化效率各有不同,有时甚至差别很大。原子化效率对实验条件非常敏感,在原子吸收这类高温动态测量中,实验条件的变动性导致原子化效率的改变,几乎是不可避免的。这是影响原子吸收光谱分析的准确度和精密度的主要因素。由此可以得出这样的结论,测定一种试样中某一元素的最佳条件,未必适用于另一种试样中同一元素的测定,必须针对具体分析对象,寻求某一元素测定的最佳条件。现在商品原子吸收光谱仪器中,厂家为用户所提供的预先储存在数据库内各元素的分析条件,多半都是用纯溶液样品得到的,只能作为选择实际分析样品分析条件的参考。计算机的广泛使用、原子吸收仪器自动控制系统的日益完善以及横向加热石墨炉和STPF技术的应用等,为获得稳定的原子化条件提供了可能性。化学过程是一个复杂的过程,有关影响化学过程的因素。2 辐射吸收过程的影响从光源的发射线考虑,在原子发射线中心频率V0的很窄的△V频率范围内,kv随频率的变化很小,可以近似地认为kv→k0,。当空心阴极灯光源的发射线远小于原子吸收线的宽度时,如下图所示,测得的吸光度可以近似地认为是峰值吸光度。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161143_573671_2352694_3.png随着空心阴极灯的灯电流增大,由于自吸和多普勒变宽效应增强,使光源发射变宽,对于低熔点金属Cd,Zn和Pb等元素空心阴极灯,光源发射线和原子吸收线宽度几乎达到同一数量级,使测得的峰值吸光度明显地降低,导致校正曲线严重弯曲。下图使用不同灯电流时所得到的镉校正曲线。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161144_573672_2352694_3.png在入射辐射中,若含有非吸收辐射,如连续背景辐射、空心阴极灯内稀有填充气体与支持材料以及其他杂质发射的辐射等,它们都可能出现在光谱通带内。当不存在非吸收辐射时,吸光度A=lgI0/I,当存在非吸收辐射i0时,吸光度A’=lg(I0+i0)/(I+i0),A’小于A0。i0在整个入射辐射中所占比例越大,A’比A小的越多。i0和I0比例一定时,I值越小,即吸收介质内分析原子浓度越高,i0的影响越大。非吸收辐射i0的存在,使测得的吸光度减小,校正曲线弯曲。从吸收谱线轮廓考虑,在通常的原子吸收光谱分析条件下,分析原子浓度都很低,共振变宽效应可以忽略不计。但是,当吸收介质的分析原子浓度高时,同种分析原子相互碰撞引起谱线共振变宽,使峰值吸光度减小。随着分析原子浓度增大,对峰值吸光度的影响增大,因此,造成校正曲线在高浓度区弯向浓度轴。这是导致校正曲线非线性化的重要因素。在建立峰值吸收的定量关系式http://ng1.17img.cn/bbsfiles/images/2015/11/201511161141_573669_2352694_3.png时,假定吸收谱线轮廓主要由多普勒变宽效应决定。事实上,吸收谱线轮廓不仅受多普勒变宽效应的影响,还与碰撞变宽,特别是洛伦茨变宽有关。在有些情况下,多普勒变宽与洛伦茨变宽是同一数量级,不能忽略其影响。洛伦茨变宽还引起吸收谱线轮廓的频移与非对称化,使得测定的吸光度不能代表峰值吸收,而是中心波长两侧的吸光度,其值低于峰值吸光度,导致校正曲线的非线性化。谱线的精细结构是影响吸光度测量的又一可能的因素。这些相差很小的谱线精细结构常常是简并的。对于很重和很轻的元素,其波长差超过了线宽,在这种情况下,测定的吸光度是精细结构内各组分的混合吸光度,而非单一纯组分的吸光度,故导致校正曲线的弯曲。当用锐线光源进行峰值吸收测量时,谱线的精细结构对吸光度测定的影响可以忽略不计。下表列出了某些元素共振线的同位素移值。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161145_573673_2352694_3.png从吸收介质内原子浓度考虑,在推到吸收关系式http://ng1.17img.cn/bbsfiles/images/2015/11/201511161142_573670_2352694_3.png时,认为入射辐射密度pv是不变的。很显然,只有在吸收层很薄或分析原子浓度很低时才是这样,这说明原子吸收光谱法主要用于痕量和超痕量元素分析。当被测元素的浓度高时,引起吸光度下降,校正曲线弯向浓度轴。由此可知,原子吸收光谱分析的校正曲线线性范围不会很宽,一般是1-2个数量级。在通常的原子吸收条件下,可以忽略激发态原子和元素电离的影响,但对于低电离电位元素,特别是在高温下,不能忽略电离对基态原子的影响。电离度随温度升高而增大,在一定温度下,随元素浓度增加而减小。元素电离的影响如下图所示,电离效应导致校正曲线弯向纵轴。http://ng1.17img.cn/bbsfiles/images/2015/11/201511161145_573674_2352694_3.png

  • 【求助】请教同位素稀释法问题

    请教同位素稀释法 如何实行? 需要准备哪些试样?要测哪些数据?公式是怎样的?看了一些文献,感觉好烦索,没明白,有没有通俗的?多谢!

  • 【求助】EDS定量分析原理及误差及影响因素

    各位大侠,帮忙解决我的问题吧,EDS定量分析原理及误差及影响因素,有没有这方面的资料啊?可否分享一下,对于这方面我不是很了解,经常回答不出别人的问题,此次想系统的学习一下,麻烦高人指点!感激不尽!

  • ICPMS的定量与定性分析

    一、定性分析 ( Qualitative analysis) ICP - MS 是一个非常有用、快速而且比较可靠的定性手段。采用扫描方式能在很短时间内获得全质量范围或所选择质量范围内的质谱信息。依据谱图上出现的峰可以判断存在的元素和可能的干扰。当分析前对样品基体缺乏了解时, 可以在定量分析前先进行快速的定性检查。商品仪器提供的定性分析软件比较方便。一些软件可同时显示几个谱图, 并可进行谱图间的差减以消除背景。纵坐标 ( 强度) 通常可被扩展, 也可选择性地显示不同的质量段, 以便详细地观察每个谱图。二、半定量分析 ( Semi - quantitative analysis) 许多 ICP - MS 仪器都有半定量分析软件。依据元素的电离度和同位素丰度, 建立一条较为平滑的质量 - 灵敏度曲线。该响应曲线通常用适当分布在整个质量范围内的 6 ~8个元素来确定。对于每个元素的响应要进行同位素丰度、浓度和电离度的校正。从校正数据上可得到拟合的二次曲线。未知样品中所有元素的半定量结果都可以根据此响应曲线求出, 其准确度为 ( - 59% ) ~ ( + 112% ) , 精密度 RSD 为 5% ~50% 。和定量分析一样,每次分析前必须重新确定校准曲线。因为响应曲线的形状与仪器的最佳化方式关系很大。除了曲线的形状外, 曲线位置的偏移 ( 灵敏度) 也可能随仪器每次的设置而不同。偏移的大小可通过测量质量居中的一个元素, 如In 或Rh 的灵敏度加以确定。这一步骤在8 h 内可能要进行多次。一旦响应曲线建立, 未知样品中所有元素的浓度都可根据响应曲线求出。用此方法获得的数据准确度变动较大, 主要取决于被测的元素和样品基体。三、定量分析 ( Quantitative analysis) 定量分析常用的校准方法有外标法、标准加入法和同位素稀释法。其中外标法应用最为广泛。1. 外标法 ( External calibration) 测定未知样品元素浓度大多采用外标法。对于溶液样品的校准来讲, 外标法需要配制一组能覆盖被测物浓度范围的标准溶液。一般采用和样品溶液同样酸度的水溶液标准即可。对于固体样品直接分析, 比如激光烧蚀法, 标准的基体必须与未知样品匹配。在溶液分析或固体分析中, 也有人以标准参考物质为标准进行校准。与人工合成多元素标准溶液相比, 采用同类型天然标准参考物质制备标准溶液虽然具有制备简单、流程相同、可扣除同一本底、有效减少系统偏差等优点, 但其不足之处是元素的推荐值与真值之间的偏差将被未知样品继承。实际上, 有些标准物质的不确定度变化较大, 有些结果在使用过程中又依赖后来积累的数据来修改参考值。所以, 一般来讲, 不推荐用标准参考物质进行原始校准。 标准数据通常采用最小二乘法拟合校准曲线。可通过校准曲线的相关系数判断曲线对于测得的数据的拟合性。校准曲线最好采用多点标准拟合。校准曲线可以储存, 但在每次分析前必须重新确定校准曲线。因为响应曲线的形状以及灵敏度与仪器的最佳化方式关系很大, 会随每次的参数设置而不同。2. 内标法 ( Internal standardisation) 内标法是在样品和校准标准系列中加入一种或几种元素, 主要用来监测和校正信号的短期漂移和长期漂移以及校正一般的基体效应。不过, 采用内标法可以补偿基体抑制效应, 但并没有解决根本问题。受基体空间电荷抑制的影响依然存在, 只是对得到的信号采取了数学方法校正而已。对于初学者来讲, 需要将“内标法”与定量化校准的“ 外标法”区别。 内标元素的选择: 样品中不含的元素; 不受样品基体或分析物的干扰; 不会对分析元素产生干扰; 不能是环境污染元素; 最好是与分析元素的质量接近, 比如对轻中重不同质量段采取接近的内标元素; 内标元素的电离电位最好与分析元素接近。 常用的内标元素有Be,Sc,Co,Ge,Y,Rh,In,Tm,Lu,Re,Th。这些元素中有许多都是经常要分析的, 所以实际应用中, 最常用的内标元素一般是 In, Rh 和Re。内标元素的选择可根据具体分析元素和要求来确定。 分析溶液形式的样品时, 内标元素可以在样品处理过程中加入, 也可在测定时单独采用内标管引入, 通过三通接头和样品溶液混合后引入雾化系统。3. 标准加入校准法 ( Standard additions calibration) 当试样组成比较复杂, 基体效应、杂质干扰比较严重而又无法配制与试样成分相似的标准溶液, 标准加入法就成为首选。标准加入法是将一份样品溶液均分为几份, 然后在每份溶液中分别加入不同浓度的被测元素的溶液。由这些加入了标准溶液的样品和一份未加标的原始样品溶液组成校准系列, 分析这组校准系列。用被测同位素的积分数据对加入的被测元素的浓度作图, 校准曲线在 X 轴上的截距 ( 一个负值) 即为未加标的待测样品中的浓度。现在的仪器分析软件一般都有标准加入法程序。所以测定和计算比较方便简单。 标准加入法中加入的被分析元素的浓度一定要合适, 其增量最好接近或稍大于样品中预计浓度。由于所有测定样品都具有几乎相同的基体, 所以结果的准确度比较好。但采用这种方法前必须知道被测元素的大致含量, 而且该方法的前提是待测元素在加入浓度范围内的校准曲线必须为线性, 因此当对样品的浓度一无所知或当待测元素含量较高时, 这种方法的使用会受到一些限制。由于样品制备麻烦, 使用起来很费时, 而且只适用于少数元素的测定, 一般只用于少数情况。4. 同位素稀释法 ( Isotope dilution) 同位素稀释法 ( ID) 是准确度非常高的一种校准方法。同位素稀释法和 ICP - MS 技术相结合 非 常 适 合于 痕 量 和 超 痕量 元 素 分 析。与 外 标 校 准 的 ICP - MS 方 法 相 比,ID - ICPMS具有许多优点, 比如分析结果很少受到有关信号漂移或基体效应的影响, 样品制备期间元素的部分损失也不会影响结果的可靠性。ID - ICP - MS 在各种标准物质定值分析中用得最多。

  • 【讨论】ICP-MS应用之半定量分析方法

    [size=3][color=black][font=宋体]在分析工作中,[/font][/color][font=宋体][color=black][url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url][/color][font=宋体]提供了一种非常快速的半定量分析模式。该模式用于快速了解待分析样品的物质组成基体情况,以便确定目标元素的存在以及可能出现的干扰。用这项技术,不需要标准物质的校准,可以测量一个未知样品中大约[/font][color=black]80[/color][font=宋体]种元素的浓度。对于绝大多数元素,其测定误差小于[/font][color=black]20%[/color][font=宋体]。实际工作中,大家如何应用、得到的准确度怎样呢?[/font][/font][/size][color=black]1)[size=3][font=宋体]半定量分析模式,你做标准物质的校准吗?2)你认为,半定量分析方法的准确度为多少?[/font][/size][/color]

  • 原油中稀有气体同位素分析方法

    [font=Encryption][color=#898989]摘要: [/color][/font][font=Encryption][color=#666666]稀有气体同位素被广泛应用于油气成因、气源追索、壳幔物质相互作用、大地构造和大地热流等研究中.原油和天然气在形成、运移和成藏等方面联系紧密,因此推测原油稀有气体中也应蕴含着丰富的油气地质信息.稀有气体在原油中的溶解度要大于水(KharakaandSpecht,1988),因此油-水的相互作用包含稀有气体向原油中的优先溶解作用.原油相对于油田水中稀有气体浓度可以反应油水反应的程度,更重要的是它是示踪油气二次运移和成藏的重要约束条件(Dahlberg,1995).本项研究旨在寻找一种既可以免除空气污染又能减少对仪器伤害的分析方法。从而可以打开原油稀有气体同位素研究的窗户,为油气运移、油源对比、气-源对比提供更加详实可靠地数据支持。为了达到提高数据精度,纯化样品,保护仪器目的,研究设计了原油样品采集器及原油预纯化系统。原油采集器通过泄压原理有效防止空气气泡残留,从而排除了空气对样品的污染。纯化系统分为两部分:原油脱气部分由易拆卸的高真空玻璃部件组成。这部分可拆卸、易清洗,可有效防止样品残留对下一个样品的污染 高真空纯化部分由可烘烤的超高真空不锈钢管线组成。能够将脱出气体中的活性组分去除。采样装置及纯化系统保证了样品的纯净。高精度、高稳定性的静态真空稀有气体同位素质谱仪Noblesse进行同位素分析。因此,本研究建立了从样品采集、样品前处理到最终的分析测试的整套原油稀有气体同位素分析测试方法。系统调试正常。可以有效避免静态质谱仪的污染问题,数据更加稳定可靠。[/color][/font]

  • 影响定量分析结果准确性的因素

    色谱定量分析中,每个操作步骤和每个色谱条件的选择都会对色谱定量分析结果的准确性产生影响,稍有不慎,就会使定量分析结果产生较大的误差,甚至会得到完全错误的结果。下面就影响色谱定量分析结果准确性的几个主要因素进行详细讨论。  一、样品制备  被分析的样品确定后,首先要把其中的欲测组分转化成能用色谱进行分析的实验用样品,这一过程称为样品制备。在样品的制备过程中,欲测组分不能发生任何损失。如要将欲测组分转变成另一便于色谱分析或检测的形态时,可将不能气化的欲测组分通过衍生化转变成可以气化的形态,以便于气相色谱的分析;也可将没有紫外吸收的欲侧组分通过衍生化转变成有紫外吸收的形态,以便于液相色谱的紫外检测器检侧等.这些转变一定要是定量的,最好转化率达到l00%(转化率达不到l00%时,一定要知道准确的转化率,以便最后计算欲测组分的含量).在选择提取或溶解欲侧组分的溶剂时,对于气相色潜分析要考虑这一溶剂应能气化,气化温度要低于欲测组分的分解温度,气化后的气体不与色潜柱中的固定相发生化学反应;对于液相色谱分析要考虑这一溶剂应与液相色谱的洗脱液互溶,而且不与洗脱液和色谱住中的面定相发生化学反应。在用液相色谱分析时,最好选用所选择的洗脱液作为溶剂来溶解或提取被分析样品中的欲测组分,这样可以避免溶剂峰的于扰。  在样品制备过程中,要同时考虑将被分析的样品中,可能下扰欲测组分定量的物质尽可能的分离出去。当欲测组分含量很低时,还要考虑通过样品制备使欲测组分在试验样品中的含量得以提高(即通过样品制备,将欲测组分加以富集)。以便于最后的色潜分析。  样品制备过程中,影响色谱定量分析结果准确性的七要因素是被分析样品中的欲测组分是否能100%定量地转入到制备好的,可用于色谱分析的实验用样品中去,这可用回收率试验来检验,即可用已知量的欲测组分,用样品制备的同样方法处理,将这一欲测组分制备成可用于色谱分析的实验用样品,再定量测定欲测组分的量。将这一侧定结果与原来取的已知量相比,即可得到这一样品制备方法的回收率。当祥品制备方法的回收率较低时,宜用标准加入法定量,这样可以补偿欲侧组分在祥品制备过程中的损失,使色谱定量分析结果更加准确、可靠。  实验用样品制备好后的贮存是否妥当,也是影响色潜定量分析结果准确性的又一个因素。贮存条件选择不好,可能会使欲测组分的浓度由于溶剂的挥发而发生变化;也可能由于欲测组分的分解、氧化或其他化学反应而使欲测组分的浓度发生变化口这些变化都能够使色谱定量分析结果产生错误。  样品制备过程和贮存过程中产生外界物质的沾污,也可能影响欲测组分的测定.特别是周围环境中存在着大量欲测组分时,沾污将严重影响定量分析结果的准确性,这点在侧定痕量组分时需要特别注意。  实验用样品制备好后应该尽可能立即进行色谱定量分析,减少实验用样品的贮存时间。在必须贮存时,一定要注意贮存的条件,低温、干燥、避光等条件是贮存样品的必要条件。用标准加入法定量时,也可补偿贮存时样品发生的一些变化,使定量分析的结果更加准确,可靠。  样品制备常涉及的操作有:溶解(或提取)、浓缩、萃取、预分离、衍生化等,这些操作都有可能使欲侧组分含量和形态发生变化。因此要进行样品制备的条件实验,研究这些操作对欲测组分含量和形态的影响,以便选择最佳的样品处理条件,尽可能减小欲测组分含量和形态的变化(当然衍生化就是要使欲侧组分形态发生变化,但这一变化一定是要定量的)口同时要研究样品制备过程中欲测组分含量和形态变化的规律及变化大小,以便在最后数据处理时对这一系统误差一样品制备误差加以定量校正,对祥品制备的详细讨论可参见本丛书《色谱分析样品处理》一书。  二、进样技术  当色谱定量分析采用归一化法、内标法和标堆加入法时,进样的误差可以被这些方法本身所具有的特性所消除,即进样产生的误差不会影响最后的定量分析结果。但是,采用标准曲线法(即外标法)作定量分析时,进样的误差(即进样的准确性和重复性)将直接影响定量分析结果的误差(即定量分析结果的准确性和重复性)。  进样对标准曲线法定量分析误差的影响主要有以下两个因素:一个是进样装置的准确度和精度;另一个是色谱分析人员对进样技术掌握的熟练程度。  在气相色谱定量分析中,对于气体样品进样,大都采用定量进样阀定体积进样,准确性和重复性较好,进样精度优于0.5%。若采用医用注射器定体积进样,准确性和重复性都较差,进样精度约为5.0%,对于液体和固体样品,一般用溶剂溶解和稀释后,用微量注射器定体积进样,其准确性和重复性决定于所用注射器的质量,刻度读数的准确度和进样量大小,进样精度一般约为2.0%。在用注射器进样时,插针的快慢、进针的位置、深度和操作人员的熟练程度都将影响进样的准确性和重复性。对于沸程宽的液体徉品.取样、进样要快,但拔针要慢,以防止难挥发的组分在拔针时还没完全进入柱子而随拔针时跑出,引起进样的误差。气化室的温度要足够高(一般比柱温高50~100℃),以保证所有组分瞬间气化,但要注意在高温时样品可能在气化室内裂解或发生化学反应引起误差。  在使用注射器进样时要经常注意进样品的橡胶垫在多次注射后的漏气问题,由于漏气也会造成样品的损失,所以要经常检查。  在高压液相色谱定量分析中,多采用六通阀进样。这是因为高压液相色谱进样一般是在高压下进行,进祥量大小由定量进样管决定。准确性和重复性都较好,进样精度也优于0.5%。当高压液相色谱采用微量注射器通过隔膜进样时,往往要停流进样,否则由于柱压太高,针内样品很难完全进入柱子,时有泄漏,这时的进样准确性和重复性都较差。高压液相色谱的进样还可以使用微量注射器通过六通阀进行,这时可避免隔膜进样的缺点。如只有5μL进样管而要进1μL样品时。可用微量注射器通过六通阀进行。此时进样量的准确性和重复性取决于微量注射器的质量和刻度读数的精度,进详精度约为2.0%。  在平板色谱中。标准曲线法定量分析的长要误差来自于点祥。平板色谱点样器有手动点样器和自动点样器。手动点样器有微量注射器、定容毛细管点样器等,点样量的准确性和重复性约在 2.0~4.0%。自动点样器可由微处理器控制,点样量的准确性和重复性都很好,点样量的精度优于1.0%。

  • 请教:什么是稳定性同位素稀释质谱技术?

    本网主页中有一则消息:“十五”食品安全重大科技专项“二噁英、多氯联苯、氯丙醇痕量和超痕量检测技术的研究”通过专家验收 (2005-4-25 18:30:25),其中提到:将稳定性同位素稀释质谱技术应用到我国食品安全分析领域,针对不同目标化合物分别建立了高分辨磁质谱、四极杆低分辨质谱和离子阱串联质谱的标准化检测技术。利用双稳定性同位素进行酱油中单氯取代和双氯取代氯丙醇的同时测定属于原创性工作。在国际协同性验证实验中取得优秀成绩。

  • 《分析化学与定量分析》中英文介绍

    《分析化学与定量分析》中英文介绍

    《分析化学与定量分析上册》英文版基础上翻译修订而成。全书包括十四章:分析化学概论、分析化学实验操作、质量与体积测量、分析化学数据分析、分析方法的选择、化学活性与化学平衡、化学溶解性与沉淀、酸碱反应、配位反应、氧化还原反应、重量分析、酸碱滴定、配位与沉淀滴定、氧化还原滴定。每章末附有思考题和习题及参考答案。本书可作为高等理工院校和师范院校化学、应用化学等专业的分析化学教材,也可供其他有关专业如,化工、食品、生物、医药等专业师生及分析测试工作者和自学者参考使用。《分析化学与定量分析下册中文改编版》是在英文版基础上翻译修订而成。全书包括十一章:电分析化学概论、库伦,伏安及相关电分析化学方法、光谱法导论、分子光谱法、原子光谱法、化学分离方法导论、气相色谱分析、液相色谱分析、电泳法、核磁共振波谱分析、质谱分析。每章末附有思考题和习题及参考答案。本书可作为高等理工院校和师范院校化学、应用化学等专业的仪器分析教材,也可供其他有关专业如,化工、食品、生物、医药等专业师生及分析测试工作者和自学者参考使用。英文版原版 教材层次分明,条理清楚,阐述了定量分析化学、分析实验室及分析研究的科学理论的概念,理论与实际相结合,符合人才培养目标及课程教学的要求。书中对各部分知识归纳总结得很好,分类明确,由浅入深,适合于各个层次的读者。对于教师来说,这本书也可以当做很好的教材,编写灵活,适合多种教学方式。  这本教材的编写比较有特色,它采用了先提出问题的方式,学生带着问题去学习基础理论,让学生认识到每种分析方法的价值和用途。在讲解过程中穿插习题,让学生很快地将理论知识用于为解决实际问题所设计的“挑战性问题”和“讨论与报告”部分,进一步提高了学生的创新能力和开放性研究能力,对于学生综合素质的提高比较有帮助。  教材内容主要包括实验玻璃器具、实验记录本和对实验数据进行评价和对比,综述了化学平衡中的基础问题,并用基础知识来说明经典分析方法,如重量分析法、滴定法的原理和适当的应用,同时也引导学生学习一些常见的仪器分析技术,像光谱学、色谱学和电化学方法。  本教材的每一章都安排有几个小组,每个小组有常见的问题。这种设计可以使读者用多种方式从一个主题浏览到另一个主题,比如,一个学生需要化学平衡和相关计算的训练,他可以在第6章第3节中学习这部分知识。然而,那些对这部分知识已经有很好基础的同学可以跳到后面的章节来学习其他分析技术,比如重量分析法和滴定法。如果教师想在讲经典分析方法前先介绍一些仪器分析方法的话,可以利用前几章介绍一下化学分析的大体背景,然后再介绍电化学、光谱学或者色谱学。我们认为这个版本给了教师在运用这本书时最大的灵活性,不管他是用一学期来讲解分析化学,还是用传统的两学期中的一部分以先讲定量分析,后讲仪器分析的顺序来讲授。

  • 【原创】同位素质谱的学科应用与发展

    [size=4][font=[color=#DC143C]黑体]同位素质谱的学科应用与发展[/color][/font][/size]同位素质谱在我国农业、医学、环境 学、海洋学、石油、化工、冶金等方面的应用也日益广泛。近年来,同位素质谱学在高分辨率、高准确度、高灵敏度研究方面上了新的台阶,而且在同位素精确质量测定、化学溯源与世界水平接近。学科应用与发展包括:  (1)同位素地质学方面  同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。  (2)核科学与核工业方面  同位素质谱最初是伴随着核科学与核工业的发展而发展起来的。主要研究领域:  1)超低丰度同位素杂质的分析:核工业的迅速发展和我国核产品不断进入国际市场,对超低丰度同位素杂质分析提出了很高的要求;  2)燃耗及核燃料纯度分析:采用同位素稀释质谱法(IDMS)分析核燃料UO2、 UO3、U3O8中的B、Pb、Sm、Y、Eu、Th等;  3)U、Li等同位素标准参考物质的研制。  (3)核物理研究方面  包括原子质量的精确测测定;测定原子核的结合能和敛集曲线;测定放射性同位素的半衰期;同位素丰度和原子量的精确测量;发现天然反应堆;在高能核物理研究中的应用同位素质谱测量在高能核物理研究工作中主要有以下几项应用:   研究能量在100兆电子伏以上的个子与靶子作用所发生的核反应机理;   研究发生在星球表面和大陆空间及陨石上的宇宙线照射形成的核反应机理;   探讨核反生成的短寿命粒子与质量关系;   测定高能粒子与靶子作用的核反应截面和碎片粒子产额;   高能质谱测定常集中在对稀有氧化和碱金属的分析工作上。  (4)标准参考物质的研制发明方面  标准参考物质的研制是衡量一个国家分析工作水平的重要标志。同位素稀释质谱(IDMS)是唯一微量、痕量和超痕量元素权威测量法。因为IDMS可以通过天平称重和同位素丰度比的质谱测量,将化学成分分析转化为同位素丰度的质谱测量。IDMS具有绝对测量性质;灵敏度高;方法准确;测量的动态范围宽;样品制备不需要严格定量分离;测量值能够直接溯源到国际基本单位制的物质量基本单位——摩尔。  (5)在临床医学方面  进行营养学、药理学和临床医学方面的研究;利用IDMS法测定人体血、尿、发中的微量元素,进行病情诊断和病理研究工作。如医用同位素质谱分析方法主要有CO2呼气检查、4He和重水示踪原子等方法。利用He示踪原子方法,检验肺功能障碍性病变患者,已获得明显效果。应用重水作示踪剂,检测人体肺水肿患者,给出与正常人不同变化曲线。  (6)在生物学和化学研究工作中的应用  稳定性同素示踪原子方法,正在越来越多的领域里代替了放射性示踪原子方法,从而扩大了示踪原子的应用范畴。如应用稳定性同位素示踪原子方法,采用含有18O的重氧水H218O作示踪原子,进行质谱分析,最后证明绿色植物放出的氧气,主要来源于根部吸入的水分,而不是光合作用放出的氧气。  用18C方法证明了光合作用不仅能在光照条件下进行,耐用也能在黑暗条件下以缓慢的速度进行。   用征水和重氧水浇灌植物,然后定时采集植物各部位的水进行分析,发现些树木运送水分的速度高达每小时14 m。   用重水作标记,探测人体水的循环,发现吸入少量重水以后,经两个小时即在人体所有各器官达到平衡,即重水成分已均匀分布。两个星期以后完全排出体外。为此,在某些从事放射性物质研究的机构里,给工作人员发放茶叶,以加速体内水分流通,有利于排出少量放射性物质。   在化学领域中,早在30年以前,就已经应用D 、18O和18N等同位素作示踪原子,研究有机化合物的结构和成分变化情况。  (7)环境科学中的应用  近年来同位素质谱在环境科学的应用日益受到重视,尤其在大气、土壤、水质及生态环境研究均发挥重要作用。 应用稳定性同位素丰度变化,研究和指示环境污染源和污染程度,在环保工作中的重要意义。如利用测定铅同位素比的方法,很容易判明汽油生产厂家及其对大气的污染程度;在环保工作中,还使用同位素稀释方法测定各种水抽中有害的微量元素含量,用以监测水质质量。  (8)在农业增产方面的应用  现在,有许多农业研究机构和大学,购买高精度同位素质谱计,以从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响等多方面的研究工作。而且随着世界人口的增加,提高粮食单产的问题越发显得重要,所以农业研究工作有着极为广阔的前途。  ⑴合理使用肥料;  ⑵农药毒性的研究;  ⑶用轻水灌溉;  ⑷研究气候对作物的影响。如用18O作示踪原子,研究温度和农作物生长和成分的影响表明,灌溉水只供给植物组织中15%的氧,其余85%的氧只能从空气中的CO2取得;  (5)固氮酶的研究。如用15N作示踪原子研究固氮作用,发现各种固氮酶能够将土壤中的氮固定下来,有效地克服了氮的蒸发和流失作用,然后再把它固定下来的氮当中的20%排给水稻利用。还发现了水稻根际粪产碱菌和阴沟肠细菌的固氮作用,并能将氮转移给水稻。这些均为我国农业研究工作者发现的廉价固氮酶,有一定的经济价值。质谱分析为固氮研究提供了可靠的数据。  与原子能和地质研究工作相比较,农业上应用同位素方法从事科研工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产和改善果实质量的工作前途无限广阔。  (9)其他应用  如石油、冶金、电子等方面。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制