当前位置: 仪器信息网 > 行业主题 > >

离子色谱系列课程之六离子色谱检测

仪器信息网离子色谱系列课程之六离子色谱检测专题为您提供2024年最新离子色谱系列课程之六离子色谱检测价格报价、厂家品牌的相关信息, 包括离子色谱系列课程之六离子色谱检测参数、型号等,不管是国产,还是进口品牌的离子色谱系列课程之六离子色谱检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合离子色谱系列课程之六离子色谱检测相关的耗材配件、试剂标物,还有离子色谱系列课程之六离子色谱检测相关的最新资讯、资料,以及离子色谱系列课程之六离子色谱检测相关的解决方案。

离子色谱系列课程之六离子色谱检测相关的论坛

  • 精盐水中氯酸根和硫酸根的离子色谱仪检测方案

    氯碱工业属于基本化工原料行业,在国民经济中占据重要的地位。盐水中氯酸根和硫酸根的存在对隔膜、离子膜生产有极大的危害,过高的硫酸根含量很容易与碱土金属形成沉淀引起膜的堵塞而受损,因此必须要监控氯酸根和硫酸根的浓度。   硫酸根的经典测定方法主要有重量法和容量法,其中重量法分析时间长,操作繁琐,且对操作者实验技能要求较高。而容量法同样操作复杂,且滴定终点时显色剂的颜色变化难以判断,从而影响测定的准确度。国内氯碱行业发展迅猛,但是其生产过程中原料、过程产物及产品中氯酸根和硫酸根的测定还多限于上述方法测定。鲁创仪器公司的精盐水中氯酸根和硫酸根的检测方案着重研究了简便的离子色谱法在此领域的使用,方便快捷地测定了精盐水中的氯酸根和硫酸根的含量。 http://www.1718china.com/UpLoad/admin_img/image/20151204/20151204110620_0640.jpg   本方法主要使用鲁创系列IC-8618 基本集成式离子色谱仪,建立了一套测定氯碱行业中精盐水中氯酸根和硫酸根的离子色谱方法,利用高容量阴离子交换色谱柱分离并经抑制器抑制后使用电导检测器检测,盐水中高浓度氯离子基体不影响这两种待测离子的分析。本法操作简便,具有很好的选择性和更高的灵敏度,13分钟内可以完成一次分析,从而实现氯碱行业中原料卤水、过程精盐水及最终产品中氯酸根和硫酸根的实时监测,保障了氯碱生产的正常运转。

  • 液相色谱与离子色谱共用输液泵的问题

    各位老师大家好。小弟最近遇到了一个烦心的事情,关于液相色谱泵与离子色谱系统共用输液泵的问题。理论上,离子色谱属于液相色谱的一个分支,主要是检测器的不同而已。 我想组合一个仪器,液相和离子色谱合并在一起的,共用一个输液泵,液相部分主要走反相流动相,离子色谱做阴离子分析,问题就在这里: 我看过戴安900的离子色谱资料,说是离子色谱系统严禁有机溶剂进入,那么,我共用色谱泵的话,即使结果充分的冲洗、置换,还是有可能因为管路和泵的残留将甲醇/乙腈等有机试剂带入离子色谱系统,这样话,是不是不可以? 离子色谱的抑制器、Ionpac的阴离子柱子和电导监测器接触有机溶剂会有什么坏的结果吗?有没有哪位前辈用过液相色谱、离子色谱共用泵的?谢谢!

  • 离子色谱仪检测牛奶中硫氰酸根

    目前,违法添加非食用物质和滥用食品添加剂事件常有发生,为保证牛奶的食用安全,采用离子色谱仪检测牛奶中硫氰酸根。 1、检测原理:液态奶样品沉淀蛋白、去除脂肪后,用离子色谱分析,电导检测器检测,外标法定量。 2、实验部分 2.1试剂与材料 2.1.1试验用水均为超纯水 2.1.2乙腈(色谱纯) 2.1.3固相萃取小柱:OnGuardRP柱(2.5cc),或相当者(如C18),使用前依次用5ml甲醇和10ml水活化。 2.1.4硫氰酸标准品:北京化工厂 2.1.5硫氰酸标准储备液将硫氰酸标准品于80度烘箱内烘干2小时。准确称取干燥后的硫氰化钾1.6732g于1000ml容量瓶中,定容,混匀。即得1000ppm硫氰根标准储备液。 2.1.6硫氰酸标准中间液取硫氰酸标准储备溶液1mL,置于100mL容量瓶中,加水至刻度。此溶液含硫氰酸10mg/L。 2.1.7硫氰酸标准使用液移取0.1、0.2、0.5、1.0、2.0mL硫氰酸标准中间液,用水定容于10mL容量瓶中,浓度分别为0.1、0.2、0.5、1.0、2.0mg/L。 2.2仪器 2.2.1离子色谱仪:配备淋洗液发生器和电导检测器; 2.2.2离心机:冷冻离心机。 2.3样品处理取4mL液体奶样品,加入5mL乙腈沉淀蛋白,取上清液稀释10倍,过RP柱(或经冷冻离心机)去除脂肪后上机。 2.4离子色谱参考条件色谱柱:强亲水性阴离子交换柱。IonPacAS16,4.0×250mm分析柱;IonPacAG16,4.0×50mm保护柱;或其他相当者。 采用离子色谱仪检测,操作简便,检测结果准确。

  • 离子色谱检测硝酸盐氮的实效性

    请教一下:我们想用离子色谱同时检测硝酸盐氮、氯化物、硫酸盐和氟化物,但是我们一次一般采样有14到20份水样,这样的话,进一针大概需要20分钟,样品加系列全部做完需要3到4天,这样的话保证不了硝酸盐氮在24小时内检测完,大家都是怎么做的呢?

  • 【分享】离子色谱的检测方法

    随着离子色谱的广泛应用离子色谱的检测技术已由单一的化学抑制型电导法发展为包括电化学光化学和与其他多种分析仪器联用的方法    一抑制电导检测法    抑制型电导技术由最初的抑制柱技术又经历了可连续再生式的纤维管微膜抑制器阶段最新的抑制技术采用电解抑制法使抑制电导检测可以自动进行而不必采用传统的再生液通过电导抑制可以使背景电导值很低而检测灵敏度可以达到很高水平    因此目前大多数离子色谱基本上还是采用抑制电导法检测无论是痕量测定的电场还是半导体工业抑制电导检测始终是最理想的方法    二直接电导检测法    目前单柱法已发展为可补偿高达6000S背景电导的电导检测器五极式电导仪可消除极化和电解效应以降低噪音水平提高单柱法检测的灵敏度和稳定性    阳离子单柱法检测信号是离子电导与淋洗液电导之差一般情况下为负值只要淋洗条件得当单柱法同样可达到很高的灵敏度    三紫外吸收光度法    在195220nm具强紫外吸收的阴离子可用弱紫外吸收的淋洗液直接进行紫外吸收其选择性和灵敏度都很高它使硝酸根亚硝酸根等离子可检测至gL间接紫外检测用于本身不具紫外吸收离子的分析淋洗液具强紫外吸收检测信号为负值阴离子淋洗液多用芳香有机酸和邻苯二甲酸盐磺基苯甲酸盐等阳离子则以具紫外吸收的Cu2 或Ce3 溶液为淋洗液四柱后衍生光度法    包括重金属碱土金属碱金属稀有金属等40余种金属离子可用吡啶偶氮间苯二胺(PAR)柱后衍生光度法检测方法既灵敏又实用重金属和碱土金属的检出限达gL级偶氮胂亦为稀土金属离子的高灵敏柱后衍生剂铬天青S十六烷基三甲胺TritonX100对痕量铝离子和铁离子水溶性卟啉衍生物对痕量Cd2 Hg2 Zn2 的检测均是高选择性和高灵敏度衍生试剂柱后衍生荧光法主要用于氨基酸和胺类化合物的检测也可能发展为稀土测定的选择性衍生方法    五电化学法    安培法用于选择性检测某些能在电极表面发生氧化还原反应的离子如亚硝酸根氰根硫酸根卤素离子硫氰根等无机离子以及一些胺类酚类等易氧化还原的有机离子亦用于重金属离子的检测卤素和氰根亦可用库仑法检测或应用银电极的电位检测还可用铜离子电极电位法检测阳离子和阴离子库仑法还用于As3 As5 和Mo6 Cr3 的检测    六与元素选择性检测器联用法    将离子色谱的分离优势与元素选择性检测方法联用可以结合分离及高选择性和高灵敏度的优势并可用于某些元素的形态分析如用原子吸收检测亚硒酸硒酸亚砷酸砷酸等等离子体发射光谱用于Cr3 Cr6 和砷硒的检测http://www.spectrocn.com/

  • 【原创大赛】离子色谱系统材料大分解

    【原创大赛】离子色谱系统材料大分解

    离子色谱系统材料大分解 用过离子色谱的朋友都知道,离子色谱所用的淋洗液(液相色谱叫流动相)一般都是酸性或碱性溶液,是具有腐蚀性甚至强腐蚀性的,所以液路里像液相色谱里的不锈钢等金属部件用的就不多了。下面就简单介绍下。 离子色谱液路中的接头、密封件(卡环、密封垫等)绝大多数都是由聚四氟、增强四氟、橡胶、PEEK材料制成的。 先从吸液部分说起。液相用的吸滤头大多都是不锈钢粉末压制而成的,离子色谱用的是一些塑料材料如聚四氟、PEEK等粉末通过某种方式加工而成的。吸液管路一般都是透明的聚四氟管,由于是吸液管,阻力还是小一点的好,这个管路一般要短一些,内径大一些,长度一般都在1.0-1.5m,管外径一般都是3.2mm,内径一般都是2.0mm,这个和液相色谱一样。 单向阀阀球、阀座和液相色谱一样,都是人造宝石或陶瓷材料。阀体和阀座(也有人叫单向阀接头)液相色谱大多都是不锈钢材料,离子色谱大多都是PEEK材料。 泵头也是一样,液相色谱一般都是不锈钢材料,离子色谱一般都是PEEK材料。也有的为了增加外观的美观程度或增加耐压强度,而把液路用的PEEK材料镶嵌到了不锈钢件内。 柱塞杆和液相用的一样,人造宝石或陶瓷的,高压密封圈和液相色谱有些区别。端面密封为PEEK、聚四氟、增强四氟等材料件,这个和液相一样。中心孔液相有的是不锈钢材料件,离子色谱用的一般是更能耐腐蚀的纯钛材料件。 柱后清洗由于不在系统液路内,不涉及强腐蚀液体(既使是有部分淋洗液渗透出来,也会被大量的清洗液稀释掉),不用承受高压,所以液路部件及管路、接头等件用什么材料也就无所谓了,一般也就和液相色谱的一样了。 阻尼器、进样阀液路系统也都是PEEK、聚四氟等材料部件。 下面就说说色谱系统的核心部件色谱柱吧。阴离子系统色谱柱柱管和接头等件大多都是不锈钢的,填料大多都是阴离子树脂的。阳离子系统色谱柱柱管大多都是PEEK或钢化玻璃的,填料为阴离子树脂。 抑制器是离子色谱的又一核心部件,它一般都采用膜结构和柱结构。膜结构的一般由PEEK等塑料部件、树脂填料、树脂膜组成,也有的会用到些纯钛等部件。柱结构,柱管及接头等大多都是PEEK等耐腐蚀材料,填料大多都是抑制树脂或抑制胶等。 下面就剩检测池了。离子色谱的检测池以PEEK、聚四氟等塑料材料为主,像电导检测器电极可能会采用耐腐蚀较强的316不锈钢,镀银部件,镀铂部件等导电材料。 至于废液管,一般都是内径较细,一般为0.25mm、0.5mm或0.75mm,较长的聚四氟管了,一般为1.5-2.0m。 液路中的高压管路和连接抑制器、检测池的管路,那就不用说了,都是PEEK管。为了降低背压的,管路内径可以适当粗一点,比如0.5mm、0.75mm,为了减小死体积的内径适当细一点,比如0.25mm、0.18mm、0.13mm等。外径绝大多数都是1.6mm的。 离子色谱的液路系统大致就是这样。主要是采用耐腐蚀的材料部件,当然有些也得能耐一定得压力。这个和液相色谱既有相同的,也有类似的,也有不同的,用过离子色谱仪的朋友们应该都知道这些,我就不多废话了。下面就简单的看看图片吧。http://ng1.17img.cn/bbsfiles/images/2013/12/201312211159_483694_2621067_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312211200_483696_2621067_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/12/201312211200_483695_2621067_3.png http://ng1.17img.cn/bbsfiles/images/2013/12/201312211200_483697_2621067_3.png http://ng1.17img.cn/bbsfiles/images/2013/12/201312211201_483698_2621067_3.jpg http://ng1.17img.cn/bbsfiles/images/2013/12/201312211201_483699_2621067_3.png 希望我们能够相互学习,共同进步。所说如有不当之处,敬请指点。

  • 离子色谱入门课程—分离原理

    [align=center][font=&][color=#333333][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]的定义是什么?[/color][/font][/align][font=&][color=#333333][/color][/font][font=&][size=14px]利用色谱技术(用于分析的一种分离技术)测定离子型物质(在水溶液中电离,具有正/负电荷的元素)的方法。IC主要分离极性和部分弱极性的化合物。[/size][/font][font=&][size=14px][font=宋体]阴离子:[/font]Cl[sup]-[/sup],NO[sup]2[/sup][sup]-[/sup],SO[sub]4[/sub][sup]2-[/sup],CrO[sub]4[/sub][sup]2-[/sup][font=宋体][/font][/size][/font][font=&][size=14px]阳离子:[/size][/font][font=&][size=14px]Na[sup]+[/sup],NH[sub]4[/sub][sup]+[/sup],Ca[sup]2+[/sup],Fe[sup]3+[/sup][/size][/font][align=center]构成[/align][color=#333333][font=&][color=#333333][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]系统主要由:进样部分(样品环)、分离部分(离子交换分离)和检测部分(电导检测)构成。[/color][/font][/color][align=center][color=#333333][font=&][color=#333333]分离原理[/color][/font][/color][/align][color=#333333][font=&][color=#333333][/color][/font][/color][font=&][size=14px][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的分离机理主要是离子交换,有3种分离方式,它们是高效离子交换色谱(HPIC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)。3种分离方式各基于不同分离机理。HPIC的分离机理主要是离子交换,HPIEC主要为离子排斥,而MPIC则是主要基于吸附和离子对的形成。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]1、离子交换色谱[/size][/font][font=&][size=14px]高效离子交换色谱,应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,这在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构,以便于快速达到交换平衡,离子交换树脂耐酸碱可在任何pH范围内使用,易再生处理、使用寿命长,缺点是机械强度差、易溶易胀、受有机物污染。[/size][/font][font=&][size=14px]硅质键合离子交换剂以硅胶为载体,将有离子交换基的有机硅烷与基表面的硅醇基反应,形成化学键合型离子交换剂,其特点是柱效高、交换平衡快、机械强度高,缺点是不耐酸碱、只宜在pH2-8范围内使用。[/size][/font]离子交换色谱是最常用的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]。[font=&][size=14px]2、离子排斥色谱[/size][/font][font=&][size=14px]它主要根据Donnon膜排斥效应,电离组分受排斥不被保留,而弱酸则有一定保留的原理,制成离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。它主要采用高交换容量的磺化H型阳离子交换树脂为填料以稀盐酸为淋洗液。[/size][/font][font=&][size=14px][/size][/font][font=&][size=14px]3、反相离子对色谱[/size][/font][font=&][size=14px]目前离子对色谱的保留机理还未完全弄清楚,仅处于理论假设阶段。现在提出的能够阐述离子对色谱保留机理的理论(或模式)主要有离子对形成理论、离子相互作用理论和动态离子交换理论。[/size][/font](1)生成离子对-待测离子与离子对试剂生成中性““离子对”分布于固定相与流动相之间,其分离类似传统的反相分离。[font=&][size=14px](2)动态离子交换-离子对试剂的疏水部分吸附于固定相形成动态的离子交换表面,其分离机理类似于离子交换。[/size][/font][font=&][size=14px](3)离子间相互作用-除包括以上两种分离机理和固定相表面双电层结构的分离机理。[/size][/font][align=center][font=&][size=14px][font=PingFangSC-Semibold, &][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]使用的注意事项[/font][/size][/font][/align][font=&][size=14px][font=PingFangSC-Semibold, &]1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9?m,表面有季铵基团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm 过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。分离柱的再生:(1)低价亲水性离子的污染:a)用超纯水进行冲洗(在0.5ml/min流速下冲洗15分钟)b)用10倍浓的淋洗液进行冲洗(在0.5ml/min流速下冲洗60分钟) c)用超纯水进行冲洗(在0.5ml/min流速下冲洗15分钟)d)用淋洗液进行冲洗(在0.5ml/min流速下冲洗60分钟)(2)高价亲水性离子的污染:a)用超纯水进行冲洗(在0.5ml/min流速下冲洗15分钟)b)用5%的乙腈进行冲洗(在0.5ml/min流速下冲洗10分钟)c)用100%的乙腈进行冲洗(在0.5ml/min流速下冲洗60分钟)d)用50%的乙腈进行冲洗(在0.5ml/min流速下冲洗10分钟)e)用超纯水进行冲洗(在0.5ml/min流速下冲洗30分钟)f)用淋洗液进行冲洗(在0.5ml/min流速下冲洗60分钟)3、高压泵高压泵是[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]的动力源,其作用是将流动相输入到分离系统,使样品在分离柱中完成分离过程。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]用的高压泵应具备下述性能:流量稳定、耐腐蚀、压力波动小、更换溶剂方便、死体积小、易于清洗和更换溶剂。高压泵工作正常的情况下,系统压力和流量稳定,噪音很小,色谱峰形正常。4、抑制器抑制器由3个抑制元件组成,这些元件应用于循环回路中的抑制作用,可利用硫酸进行再生及用纯净水进行冲洗,分析流路外再生, 可彻底去除有害物质。采用微填充床抑制器,其优为点:平稳提供H+,基线噪音低,适合各种浓度分析,耐高压、耐有机溶剂、耐重金属,耐腐蚀,噪音低,只有0.2-0.5nS。抑制器要避免在未通液体时空转。淋洗液或再生液流路堵塞、抑制器饱和均会造成系统压力突然上升、背景电导率过高等问题。若经过较长时间后,抑制元件受到污染,平常使用的再生溶液无法再将其彻底清除干净,将导致基线大幅上升。5、检测器所有的离子化合物(有机离子、无机离子、强酸和强碱)以及可被解离的化合物(弱酸和弱碱)的水溶液都能够导电。电导检测器是以[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]流动相中电导的变化作为定量依据的。电导检测器测量双铂电极两端间的电导,离子在该双铂电极两端间迁移:阴离子向阳极迁移,阳离子向阴极迁移,从而测量溶液的电阻。电导与电阻成反比。电导检测器具有极好的温度稳定性,这样便可保证测量条件的重现性。[/font][/size][/font][color=#333333][font=&][color=#333333][/color][/font][/color][color=#333333][font=&][color=#333333][/color][/font][/color]

  • 离子色谱对阴离子的检测效果为啥比阳离子检测效果好呢?

    离子色谱主要用于环境样品的分析,包括地面水、饮用水、雨水、生活污水、工业废水、酸沉降物和大气颗粒物等样品中的阴离子和阳离子,与微电子工业有关的水和试剂中痕量杂质的分析。 对离子色谱还不是特别熟悉。只是从网上看到了一句话,说是离子色谱仪分离测定常见的阴离子是它的专长,一针样品打进去,约在20分钟以内就可得到7个常见离子的测定结果,这是其他分析手段所无法达到的。但是关于阳离子的测定中,离子色谱法与AAS和ICP法相比则未显示出优越性。 为什么离子色谱对阴离子的检测效果要比对阳离子的检测效果好呢?按理说,应该是一样的呀!

  • 离子色谱课程-入门到进阶 一年半的仪课通讲课经历

    2019[font=宋体]年[/font]4[font=宋体]月,仪器信息网找到我,希望我承担专家系列课程[/font]-[font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的主讲教师,虽然我以前也承担过类似的授课,但都是线下的,往往是几人分工,课时也比较短,一口气讲完,讲课也比较随意。而这次仪器信息网[/font][font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]课程[/font]-[font=宋体]是整个系列,比较规范,级别也比较高,是全国性的公开课,一开始我担心难以承担这样的重任,着实犹豫了几天,最后下定决心承担了这门课,迎接这个挑战。[/font][font=宋体]虽然我以前有类似的自己写的一些课件,但由于是合讲,写的内容不全,另外,这次课程的对象是专业用户,难度和层次要高,即使是原有的课件也已经有好几年了没修改了,整个工作量还是比较大的。[/font][font=宋体]作为一个系列课程,我认为并不能按照传统的教科书式的方式,必须把握时代的脉搏和风格,必须引用最新的科技信息,同时针对专业的用户,必须实用,能解决实际问题,通过这门课程,掌握[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的基本知识,以及基本的操作技能,而不是教科书式的课件。因此我在这些课程中,有几章内容例如管路和连接以及仪器的检定和评定,从没在各种课件上出现过,算是自己真实的[/font]100%[font=宋体]原创,因为没有可参考的课件。关于仪器的维护维修和故障分析,更多的是自己[/font]20[font=宋体]年来的经验积累。[/font][font=宋体]在课件的撰写过程中,也参考了很多的课件,仔细阅读了牟世芬、朱岩和丁明玉的[/font]ppt[font=宋体],以及[/font]Dionex[font=宋体]和[/font]Mertohm[font=宋体]的相关的各种[/font]ppt[font=宋体]。当然也引用了我多年来的一些研究成果和实战心得,一年半的时间,虽然完成了上千张[/font]ppt[font=宋体],但回过头看,总有点不满意的地方。[/font][font=宋体]我累计录了[/font]14[font=宋体]次,最后大约分成[/font]21[font=宋体]讲,累计总时间[/font]685[font=宋体]分钟,长达[/font]11.5[font=宋体]小时。[/font][font=宋体]下面就各个章节谈谈自己的体会以及各自的特点。[/font]1 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]发展简史[/font][font=宋体]了解历史为了更好展望未来,在教科书中关于国内[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的发展历程鲜有介绍,国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url][/font]30[font=宋体]周年纪念活动有幸参加了,在会上第一次见到了刘开禄老先生,聆听了国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的艰辛的创立过程,因此在课件中介绍了相关的一些历史大事件,同时参考了《我国[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]发展[/font]30[font=宋体]周年回顾》一书,另外介绍了[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]专业委员会情况以及相关的学术会议。这些希望给国内用户全面了解国内的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]现状。[/font]2 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]原理[/font][font=宋体]这一章内容大多数课件都会涉及,首先定义[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],狭义和广义。然后[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的分离模式以及各种检测类型。除了完整一些,并没有很新的内容。[/font]3 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器结构[/font][font=宋体]这章回过头来看,如果换一种写法可能更好一些,先简单介绍一下[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]大致的结构情况,然后按照泵、检测器、自动进样器等模块来布局,这样结构会更清晰一些,虽然我这样写法也可以。但如果要更专业的描述,以后重写的话,我考虑换一种课件架构。[/font][font=宋体]这章内容较多,我分二次录,实际分成三段播出。[/font] [font=宋体]上分为输液系统、进样系统、分离系统、抑制系统、其中分离系统和抑制系统后面单独详细讲解。[/font] [font=宋体]下分为控温系统、检测系统、淋洗液发生系统、阀切换系统、柱后衍生系统,因架构关系,相关内容并没有更多的展开。以后有机会,就具体某些章节讲述更细一些内容,例如安培检测器和柱后衍生系统。[/font]4 [font=宋体]抑制器[/font][font=宋体]抑制器是[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]重要的部件,本章节主要来自《[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器》一书我写的内容,大部分的图片来自这本书的原稿。本章的特点是比较详细介绍了各种抑制器,以及对抑制器的维护保养提出了自己的一些观点和看法。[/font]5 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱[/font][font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中起到非常重要的作用,但其不像液相色谱柱,有很多厂家加入竞争,竞争性相对较小。目前国内大多采用进口柱,国产来源很多人不太知道,在本[/font]ppt[font=宋体]中有介绍。[/font][font=宋体]本章节分二次录,实际分四次播出。[/font][font=宋体]上部分介绍,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱的材质规格、类型、填料种类,淋洗液类型以及评价方式。[/font][font=宋体]下部分介绍,比较详细介绍了各个厂家的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱,以及相关的各种在线前处理柱,尤其汇总了[/font]dionex[font=宋体]的各种产品。然后是色谱柱的使用及维护。二个色谱柱大全是本节最大的特色。[/font]6 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]前处理[/font][font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]做的好坏前处理很关键,本章主要参考了丁明玉老师的课件,但有大幅度的扩充,尤其是阀切换部分。本章详细介绍了气、液、固的三类样品的处理方式,其中气体样品在丁明玉老师课件中并没有涉及,是自己多年科研和实际检测的总结。[/font][font=宋体]阀切换和柱切换是[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]特有的一类技术,原来想单独成为一章,但后来还是并入了前处理这一章。因此,内容上虽然不少,但与单独一章还是有所删减。在结构上,对阀切换和柱切换的分类提出了自己的观点,并用很多实例来说明,大部分的实例来自我研究生的硕士论文和发表的论文以及一些设计方案。也有部分实例来自其他老师。[/font][font=宋体]原来本章还想把前处理小柱的内容放进去,但感觉太多了,下次有机会单独成一章,另外讲。[/font] [font=宋体]本章分二次录入。[/font]7 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]的检定和评定[/font][font=宋体]对于一般用户,仪器的检定并不是自己的事,但是对于一个使用者,如果判断仪器是否正常,也是非常重要的。目前各种[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的课件并没有相关的内容,本课件主要参考相关的国家标准和行业标准,并根据多年的经验,针对原有标准没有涉及的内容,提出了自己新的评定方法。由于本章全部新写,花费了不少的时间。[/font]8 [font=宋体]管路与连接[/font][font=宋体]由于原装的管路和配件比较昂贵,因此寻找替代品成了我的一个爱好,在实际使用中,我根据不同来源的配件,结合国产情况,设计了一些新的方式,为了验证我设计的新的连接方式,从淘宝网上购买了各种配件,进行组合,前后购买了几千元的各种配件,感叹淘宝上所有的东西基本都能买到,但如何查找合适的配件并不是一件很容易的事,关键词的选择非常有技巧。这章花了我二个多月的时间才写完,[/font]100%[font=宋体]的原创。此类课件还是第一次出现在大家面前,但非常实用。[/font]9 [font=宋体]维修维护[/font][font=宋体]对于仪器的维修维护,是保证仪器良好运行的关键,仪器出现故障,不可能全部让厂家来修和维护,使用者应该有基本的维护维修能力。本章比较详细介绍了各个部件的一些基本维护维修经验,有很多图片实例。最后《戴安不同代产品之间的组合问题》参考自《分析仪器》[/font]2017[font=宋体]年第三期的《用不同代[/font]dionex[font=宋体]产品组成一套完整复杂的多功能[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]系统》一文,是我自己[/font]20[font=宋体]年使用各种戴安[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的总结。[/font]10 [font=宋体]故障排除[/font][font=宋体]本章针对实验过程中出现的各种现象,将其归纳为压力篇、色谱峰篇、保留时间篇、抑制器篇、基线篇、数据篇,采用图表的格式,对各种故障,提出了可能出现的地方,以及解决方案。本章是参考本人液相色谱的故障排除[/font]ppt[font=宋体]类似的方式。本章也是首次出现在大家面前。[/font][font=宋体]对上面的十个章节,[/font]2[font=宋体],[/font]3[font=宋体],[/font]4[font=宋体],[/font]5[font=宋体]以及[/font]9[font=宋体],原有部分[/font]ppt[font=宋体]进行修改补充,其余[/font]1[font=宋体],[/font]6[font=宋体],[/font]7[font=宋体],[/font]8[font=宋体],[/font]10[font=宋体]是首次撰写。因此在长达一年半的时间里,前后整个框架写法有点出入。整体上自己还算满意,完成了一个巨大的工程。希望本课件能给[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]专业工作者一点帮助。如果用户能有些收获提高,这种对我最大的欣慰。[/font][font=宋体][/font][font=宋体][/font][font=宋体][img]https://www.instrument.com.cn/webinar2018/index/index/GetMeetingQRImg?url=https://www.instrument.com.cn/ykt/video/1580_0.html[/img][/font]

  • 如何选购离子色谱系列之一—— 动态量程电导检测器

    如何选购离子色谱系列之一—— 动态量程电导检测器

    动态量程电导检测器的命名,是相对于传统的固定量程电导检测器而言,特别是以模拟电路为基础的检测器。动态量程电导检测器是一种新型数字信号电导检测器,其主要特征在于不预先设定量程,而是在分析过程中根据电导信号的变化自动选择和切换合适的量程,样品分析期间量程不是固定的,当检测小信号(低浓度样品)时,自动切换高灵敏度量程,当检测大信号(高浓度样品)时,自动切换低灵敏度量程,不同量程检测到的电导信号通过软件无缝接合,形成一张完整的高低信号共存的谱图。[align=center][color=#00b0f0][b][/b][/color][/align][hr/][align=center][color=#00b0f0][b]动态量程电导检测器解决的问题[/b][/color][/align][align=center][color=#00b0f0]一次进样可同时分析样品中的高低浓度离子(在色谱柱允许的前提下,浓度过高色谱柱将饱合)[/color][/align][hr/] 众所周知,很多仪器(不限于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url])都有量程,每一个量程限制了一个最大的检测范围,分析之前预先设定好量程,在样品分析过程中量程保持不变,直到样品分析结束。如果样品超出此量程范围则无法定量,需要切换量程后重新进样。这样在分析陌生样品时,我们无法准确判断样品浓度会在哪个量程范围,即无法确定设定哪个量程是合适的。以往的解决办法有两个,一是稀释样品后选择灵敏度较高的量程试测;二是样品不稀释或小倍数稀释用低灵敏度量程试测。根据试测的情况来确定稀释倍数和量程,如此过程试测是不可省略的,且当样品中离子浓度差别比较大时,不能一次进样同时分析,在正常的样品分析过程以外,增加了工作量。动态量程电导检测器以全新的方式解决了以上问题。[hr/][align=center][b][color=#00b0f0]传统固定量程电导检测器存在的问题[/color][/b][/align][hr/]什么是固定量程电导检测器? 由于检测器检测到的电导信号在一定的范围内呈线性,超过这个范围将不呈线性,所以要将大信号衰减到可以检测的范围内,量程就是用来控制信号衰减倍数的工具,电导检测器的每一个量程实际就是规定了信号的放大倍数,比如:1档、2档、3档.......10档等,1档最灵敏,10档最不灵敏而检测信号范围最宽。 通常量程有一定的规律,比方说同一个离子用不同的量程检测,1档检测的峰高是10,那么2档检测的信号是1档的几分之一(每个厂家的规定不一样),比较多见的是2档是1档信号的1/2,即2档峰高是5,依此类推3档是2.5、4档是1.25、5档是0.625、6档是0.3125、7档是0.1563、8档是0.0781、9档是0.0391、10档是0.01953。1档信号是10档的512倍,换言之10档的检测限是1档的512倍。当我们用1档检测低浓度离子时,样品中的高浓度离子有可能会超出这一档的最大值而出现平头峰。如图1所示。[align=center][img=[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]出现平头峰,1000,531]http://dwbsemail.gotoip4.com/upload/201808/1533769205408865.png[/img][/align][align=center]图1.固定量程电导检测器出现平头峰[/align]对于用于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分析的传统固定量程电导检测器而言,量程在进样前预先设定好,如果进样后灵敏度不合适再重新切换量程或稀释样品进样分析一次,有时一个样品需要进样几次才能得出准确结果,其特征如下:●控制面板:有明显的量程选择功能,如档位选择(1-10档任选1档),或30μS、100μS、1000μS等范围选择●信号单位:mV(毫伏)●量程设定:进样前预先设定(不同厂家产品供设定的量程数量不同,如10档,8档,2档,共同的特征是需要进样前预先设定)●电导检测范围:小信号的量程与检测大信号的量程是分开的,不能同时检测,所以即使检测范围最宽的一个量程可以达到35000μS也是没有意义的,因为低浓度的离子还是要切换高灵敏度量程再次进样(不能在一个量程下同时分析高浓度离子与低浓度离子)●线性范围:相对较小。通常在100mg/L以内。●灵敏度:灵敏度差。通常安装50-100微升定量环●标准曲线:每一个量程都需要建立标准曲线。如10档则需要建立10组标准曲线,只有这样做,在切换量程时才能准确定量,进样工作量巨大。●样品稀释:需要稀释样品。由于每一量程做标准曲线的工作量较大,所以通常选择某一常用的量程固定下来,做一组标准曲线,当样品中某离子浓度超出量程时(平头峰或变形峰),采取稀释样品使样品浓度降至量程范围内。●输出信号:模拟信号,需要外置信号采集器;●抗干扰能力:弱●平头峰:超出量程时出现平头峰。比较常见的情况是,信号超过1300mV时就会出现平头峰,信号超过800mV时峰开始变形。如图1所示:[align=center][/align][hr/][align=center][color=#00b0f0]动态量程电导检测器介绍[/color][/align][hr/]全新的基于数字电路的动态量程电导检测器,彻底解决了传统固定量程电导检测器量程限制的问题,可一次进样同时分析样品中的高低浓度离子,其特征如下:●控制面板:无任何量程选择项●信号单位:μS(微西门子)●量程设定:无需设定量程●电导检测范围:0-15000μS全覆盖●线性范围:0.001-200mg/L(以氯离子计,10μL进样量);●灵敏度:灵敏度高;●标准曲线:一组或两组标准曲线(出于定量准确度要求,建议高低浓度分开做);●样品稀释:样品可以不稀释直接进样;●输出信号:数字信号,无外置信号采集器;●抗干扰能力:强●平头峰:在色谱柱容量范围内,不会出现平头峰;[hr/][align=center][color=#00b0f0][b]动态量程电导检测器与传统固定量程电导检测器对比[/b][/color][/align][hr/] 在同一台仪器上,将固定量程电导检测器与动态量程电导检测器串联,以同一样品进样,分别采集的谱图叠加在一起。如下图所示:[align=center][color=#00b0f0]两张谱图以NO[sub]3[/sub][sup]-[/sup]峰高为基准对齐[/color][/align][align=center][img=,690,506]https://ng1.17img.cn/bbsfiles/images/2018/08/201808311622215642_2498_1608336_3.png!w690x506.jpg[/img][/align][align=center]图2. 动态量程电导检测器与固定量程电导检测器谱图叠加对比[/align]由图得到如下信息:1.两图中低浓度的F[sup]-[/sup]、NO[sub]3[/sub][sup]-[/sup]重合,说明两种检测器在检测小信号方面性能一致。2.红色的传统固定量程电导检测器信号,在图中红色虚线标注的区域信号呈非线性响应,峰形变形,最终在最高点出现平头峰,氯离子浓度超过了这个量程的最高点。3.蓝色的动态量程检测器信号,不受量程限制,没有出现平头峰,且信号线性响应,氯离子出峰完整。[align=center][color=#00b0f0][/color][/align][hr/][align=center][color=#00b0f0]动态量程电导检测器与固定量程电导检测器对比表[/color][/align][align=center][color=#00b0f0][/color][/align][hr/][table=1880][tr][td=1,1,397] [/td][td=1,1,716][b]传统固定量程电导检测器[/b][/td][td=1,1,767][b]全新动态量程电导检测器[/b][/td][/tr][tr][td][b]控制面板[/b][/td][td]有量程设定项,如1档到10档,或30μS、100μS、1000μS等范围选择[/td][td]无量程设定项[/td][/tr][tr][td][b]信号单位[/b][/td][td]mV(毫伏)[/td][td]μS(微西门子)[/td][/tr][tr][td=1,1,397][b]量程设定[/b][/td][td=1,1,716]预先设定固定的量程,进样分析过程保持不变[/td][td=1,1,767]无需设定量程,根据样品中离子浓度大小自动切换量程,进样分析过程中使用多个量程[/td][/tr][tr][td=1,1,397][b]电导检测范围[/b][/td][td=1,1,716]每个量程有不同的范围,高灵敏度量程检测范围小,低灵敏度量程检测范围宽,但灵敏度极低[/td][td=1,1,767]0-150000μS全覆盖[/td][/tr][tr][td=1,1,397][b]高低浓度同时检测[/b][/td][td=1,1,716]不可以[/td][td=1,1,767]可以[/td][/tr][tr][td=1,1,397][b]灵敏度[/b][/td][td=1,1,716][b]低[/b][/td][td=1,1,767][b]高[/b][/td][/tr][tr][td=1,1,397][b]标准曲线[/b][/td][td=1,1,716]每个量程分开标定(因为每个量程对信号的放大倍数不一样,所以切换量程后必须有对应的曲线)[/td][td=1,1,767]单曲线标定[/td][/tr][tr][td=1,1,397][b]样品稀释[/b][/td][td=1,1,716]需要稀释[/td][td=1,1,767]可以不稀释(有的样品出于保护色谱柱的考虑可以适当稀释,但在不稀释的情况下,也可以检测高浓度离子)[/td][/tr][tr][td=1,1,397][b]平头峰[/b][/td][td=1,1,716]当离子浓度超过量程检测范围时会出现平头峰[/td][td=1,1,767]不会出现平头峰[/td][/tr][tr][td=1,1,397][b]输出信号[/b][/td][td=1,1,716]模拟信号,外置信号采集器[/td][td=1,1,767]数字信号,无外置信号采集器[/td][/tr][/table]

  • 离子色谱能测六价铬吗

    最近公司需要测六价铬和卤素,需要购买离子色谱,但是我对离子色谱不熟,不知各位有没有好推荐的,再请问一下离子色谱能够测试六价铬吗?http://simg.instrument.com.cn/bbs/images/default/em09511.gif

  • 【分享】离子色谱的检测方法

    随着离子色谱的广泛应用离子色谱的检测技术已由单一的化学抑制型电导法发展为包括电化学光化学和与其他多种分析仪器联用的方法    http://www.spectrocn.com/

  • 离子色谱中安培检测器测糖的阴离子色谱柱和常规阴离子色谱柱有什么不同?

    一直有一个疑问困扰很久了,希望在此能够找到答案,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中,常规阴离子使用阴离子交换色谱柱+电导检测器测定,糖类用阴离子交换色谱柱+安培检测器测定,那么这两种阴[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱有什么不同呢?从官方资料来看,基质都是聚合物基质,功能基也都是季铵基,pH耐受也基本都是0-14,那为什么还要分成两种不同的色谱柱呢?能不能用常规的阴离子柱,使用糖类检测的色谱条件进行检测?

  • 【原创大赛】离子色谱仪与水质检测

    【原创大赛】离子色谱仪与水质检测

    离子色谱仪与水质检测 离子色谱仪是近些年发展起来的一种新型色谱仪(是液相色谱的一个分支),它具有高灵敏度、高检测效率、高分离度、选择性强等优良特点,而被广泛应用。 离子色谱分阴阳两个分离分析系统,分离、分析阴阳离子效果特别好,尤其是对水质的检测,像自来水、河水、湖水、海水、雨水、地下水、雪水、矿泉水工农业、生活、服务业等污水等检测。阴离子系统主要检测F–、Cl–、Br–、NO2–、NO3–、PO43–、SO42–七种阴离子,另外I–、HPO42–、H2PO4–、SO32-、S2–、烷基硫酸根离子、络合离子等也是常检测的阴离子。阳离子系统主要检测Li+、Na+、NH4+、K+、Mg2+、Ca2+六种阳离子,另外Fe3+、Fe2+、Zn2+、Al3+、Cu2+、Cr3+、Cr6+等也是常检测的阳离子。 七大阳离子检测色谱图:http://ng1.17img.cn/bbsfiles/images/2013/12/201312291545_485356_2621067_3.png 六大阳离子检测色谱图:http://ng1.17img.cn/bbsfiles/images/2013/12/201312291542_485355_2621067_3.png 水是我们生活、生产等重要资源,也是必不可少的资源,水质检测前处理是比较简单的,一般只要把水过滤好就可以,所以水质检测的就多,力度也大。 大家可能有的会说,阴阳离子检测为什么没有对H+、HO-的检测呢,其实像电导检测器检测灵敏度是靠被检测离子的极限摩尔电导值决定的,所有阴离子里HO-的极限摩尔电导值是最大的,有198个单位,所有阳离子里H+[size=12pt

  • 浅谈离子色谱电导检测器的构造与应用

    摘 要:电导检测器在离子色谱中占有主导地位,其构造直接影响它的一些性能和应用。笔者对两种不同构造的电导检测器在某些弱酸阴离子、碱金属和碱土金属阳离子、过渡金属阳离子以及某些两性物质的检测方面进行比较,并简单的探讨了构造与应用之间的关系。关键词:离子色谱;电导检测器;构造;应用;噪声离子色谱常用的检测器有电导检测器、紫外检测器和安培检测器,其中电导检测器因通用性好、灵敏度高、价格相对低廉等优点占据主导地位。虞雄华在2008年曾经就国产离子色谱的现状进行过综述并对国产离子色谱与进口离子色谱的性能进行比较,认为在电导检测器的性能指标方面,国产的五电极电导检测器与进口仪器的双电极脉冲电导检测器相当。笔者认为,在抑制电导检测方面,国产的五电极电导检测器(碳酸盐淋洗液)与进口的双电极脉冲电导检测器(氢氧根淋洗液)性能相当;但在某些非抑制电导检测方面,国产的五电极电导检测器与进口仪器的双电极脉冲电导检测器在高背景电导情况下出现一些差异,具体表现在某些弱酸阴离子、碱金属和碱土金属阳离子、过渡金属阳离子以及某些两性离子的检测,下面将逐一进行介绍。(一) 弱酸阴离子对于pKa7的阴离子来说(如CO32-、SiO32-、S2-、酚类等),抑制电导检测亦会将待测离子转化为相应的弱酸,其在电导检测器中响应值较弱或几乎不响应。为提高弱酸阴离子的响应值,一种方法是用强酸的阴离子为淋洗液,间接抑制电导检测;另外一种方法是用氢氧根淋洗液,非抑制间接电导检测。这两种方法均具有高的背景电导,此时进口的双电极脉冲电导检测器将出现很大的噪声,待测离子的线性范围仅为101;而国产的五电极电导检测器具有背景电导调零功能,可适当选择放大倍数,避免了高背景电导带来的噪声同时提高了待测离子的响应值和线性范围(102)。(二) 碱金属和碱土金属阳离子根据H+、OH-和碱金属、碱土金属的极限摩尔电导值计算,碱金属和碱土金属使用抑制电导检测和非抑制电导检测在灵敏度方面基本一致,而且进口的双电极脉冲电导器(淋洗液抑制产物为水)和国产的五电极电导检测器(非抑制电导检测,适当调节放大倍数)均可获得较低的噪声。但在实际情况中,样品中除了含有碱金属、碱土金属,还可能含有过渡金属阳离子,此类阳离子经过抑制后会形成氢氧化物沉淀,长期使用可能堵塞抑制器。国产的五电极电导检测器检测碱金属和碱土金属很少有采用抑制电导检测的报导,既避免了堵塞抑制器的风险,又降低了用户的使用成本。此外,NH4OH在较高浓度时部分以分子形式存在,使用抑制电导检测NH4+将呈现非线性;使用非抑制电导检测则线性关系良好。(三) 过渡金属阳离子某些过渡金属和重金属阳离子,如Zn2+、Cd2+、Pb2+、Cu2+、Ni2+、Co2+、Mn2+、Cr3+等带有较多的电荷数,对阳离子交换树脂亲和力较强。因此分离这类阳离子通常选用配位羧酸(如酒石酸、柠檬酸、草酸和吡啶-2,6-二羧酸等)为淋洗液,在阳离子交换平衡之外建立一个配位-解离的二级平衡。进口的双电极脉冲电导器在高背景电导条件下噪声比较大,因此该公司开发的方法是柱后衍生-紫外可见光检测,该方法选择性与灵敏度俱佳但紫外检测器比电导检测器价格昂贵。(四) 两性离子 两性离子如氨基酸、甜菜碱等在电导检测时只能使用非抑制电导检测方式。进口仪器厂家开发的检测氨基酸方法为氢氧根梯度淋洗,积分脉冲安培方式检测;国家标准方法中甜菜碱的检测使用阳离子交换色谱非抑制电导检测,因此国产的五电极电导检测器非常适合而进口的双电极脉冲电导检测器在这一方面就笔者所知,尚未有已面世的文献报道。(五) 结语国产的五电极电导检测器与进口的双电极脉冲电导检测器在抑制电导检测方面性能相当。但由于二者构造不同,在高背景电导情况下表现出一些不同。参考文献虞雄华,费栋.国产离子色谱仪的现状.第十二届全国离子色谱学术报告会,(2008):20-21.福建,厦门牟世芬,刘克纳,丁晓静.离子色谱方法及应用.第二版.化学工业出版社,第六章:离子色谱常用的检测器:134朱岩.离子色谱原理及其应用.浙江大学出版社,第二篇:离子色谱的应用;第五章:离子色谱在环境监测中的应用:134 James S. Fritz, DouglasT. Gjerde. Ion Chromatography Forth,Completely Revised and Enlarged Edition. Section 6: Anion Chromatography: 152 James S. Fritz, DouglasT. Gjerde. Ion Chromatography Forth,Completely Revised and Enlarged Edition. Section 7: Cation Chromatography: 187牟世芬,刘克纳,丁晓静.离子色谱方法及应用.第二版.[f

  • 【求助】离子色谱检测磷系产品

    各位老师,我想用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]检测三聚磷酸钠等磷系列中的正磷酸钠,焦磷酸钠,聚磷酸钠和偏磷酸钠,网络上好多都是讲述磷酸根的,没有具体这方面的研究,希望各位大虾给我宝贵意见(最好告诉我一下[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]和交换柱的类型) 谢谢!!![em61] [em61]

  • 国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物郎 蕾1,刘格林1,2,施超欧3*(华东理工大学化学与分子工程学院 分析测试中心,上海 200237)摘要:使用国产离子色谱系统检测饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖,并进行方法学验证。结果表明,5种糖类化合物在各自线性范围内R2不小于0.9990,对葡萄糖、果糖、乳糖、蔗糖和麦芽糖的检出限(RSN=3)分别为3.42 μgL-1、11.4 μgL-1;6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。5种糖类化合物的相对标准偏差均小于2.47%,样品的加标回收率范围在94.13% ~ 114.2%之间,均符合相关检测标准要求,能应用于日常实验室的常规糖分析。为考察国产仪器分析的准确性和评价主要模块的性能,与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000-液相色谱示差检测器系统进行比较,对比结果表明,三者的分析结果一致性良好,其中国产脉冲安培离子色谱系统的检出限和定量限比Thermo仪器高3~4倍,除此之外,国产离子色谱仪器各个模块性能稳定,可满足常规糖类化合物含量的测定,填补国产离子色谱在糖类化合物检测领域的空白。关键词:国产离子色谱仪;国产脉冲安培检测器;饮料;糖类化合物中文分类号:O657.7+5 文献标志码:A Determination of Common Carbohydrate Compounds in Beverages by Ion Chromatography with Pulsed Amperometric Detector Made by MyselfLANG Lei1,LIU Gelin1,2,SHI Chaoou3*(Analysis and Research Center,East China University of Science and Technology,Shanghai 200237)Abstract: Using the self-developed pulse amperometric detector, it is assembled with other domestic instrument components to form a complete set of domestic ion chromatography instruments, and applied to the analysis of glucose, fructose, lactose, sucrose and maltose commonly found in beverages, and methodological verification. The results showed that the R2 of the five carbohydrate compounds was not less than 0.9990 in their respective linear ranges, and the detection limits (RSN=3) for glucose, fructose, lactose, sucrose and maltose were 3.42 μgL-1 and 11.4 μgL-1, respectively. 6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。 The relative standard deviation of the five carbohydrates was less than 2.47%, and the spiked recovery of the samples ranged from 94.13% to 114.2%. All meet the requirements of relevant testing standards and can be applied to daily laboratory testing. And in the full import Thermo ICS-5000+ ion chromatography system and Dionex Ultimate 3000 liquid chromatography difference detector repeated the same experimental process, the comparison results show that the analysis results are consistent, but the domestic amperometer detection limit and quantitative limit is 3 to 4 times higher than the imported instrument, the reason for the exploration is that there is a certain gap between the domestic pump and the inlet pump in the stable output mobile phase. The performance of each module and machine of domestic ion chromatography instrument is stable.Keywords:Domestic ion chromatography Domestic pulse amperometric detector Soft drinks Carbohydrate compounds 糖类是植物和动物的主要能量来源,对生理活动等有着极大影响。食品中常见中的糖主要包括葡萄糖、果糖、乳糖、蔗糖和麦芽糖。目前检测食品中糖的测定方法主要有化学法、酶比色法、酶电极法、高效液相色谱法、气相色谱法,毛细管电泳法和高效阴离子交换色谱法等。其中高效液相色谱法测糖主要包括高效液相色谱-示差折光法、高效液相-蒸发光散射法和高效液相质谱法等。高效液相色谱-示差折光检测法只适用于等度洗脱的测试,且只适用于高浓度含量糖样品的分析,在进行多组分分析时效果不好。高效液相色谱-蒸发光散射法对不挥发的溶质具有较高的检测灵敏度,蒸发发光法不受溶剂成分及温度的影响,能够进行梯度洗脱的测试,适于低聚糖的分析。近年来,该方法主要应用于中药材、烟草、食品中糖含量的测定。高效阴离子交换色谱-脉冲安培(high performance anion exchange chromatography with pulsed amperometric detection,HPAEC-PAD)法采用NaOH为流动相,并添加NaAc。能实现糖醇、单糖、双糖、寡糖、低聚糖、多糖以及糖衍生物的分析。其在检测糖时主要使用金电极的脉冲安培检测器,可检测ugL-1级的糖,不需要进行衍生反应和复杂的样品纯化处理,基体干扰少,有着较好的方法重复性和稳定性。但是,目前国内所有文献安培法测糖的报道都使用进口检测器,未见国产安培检测器的应用报道。目前带脉冲安培检测器的进口离子色谱仪器价格昂贵,维护费用高。因此,开发国产带脉冲安培检测器的离子色谱仪十分必要。本实验使用GI5000离子色谱系统包含脉冲安培检测器,对饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖的分析,进行了相关的方法学实验,并选取了三种市面上常见的含糖饮料进行了检测。与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000液相色谱示差检测器系统进行比较,以此来验证GI5000离子色谱系统在检测糖类化合物方面的性能,从而填补了国产离子色谱仪器对糖类化合物检测的空白,同时考察了国产自研安培检测器和国产泵与进口仪器的性能差距。 1 试验部分 1.1 仪器与试剂GI5000离子色谱系统:包括GI3000软件、四元梯度泵、自动进样器和GI5250安培检测器(包括自研安培检测池、自研参比电极和自研Au工作电极); Thermo ICS 5000+离子色谱系统,包括变色龙7.2软件、SP-DP单元四元梯度泵、AS-AP自动进样器、DC模块(带安培检测器)。Dionex Ultimate 3000液相色谱系统,包括变色龙6.8软件、四元梯度泵、自动进样器、柱温箱和RI-101型示差折光检测器Millipore-Q A10超纯水系统,AL204电子分析天平。5种糖混合标准储备溶液:1.000 gL-1,称取葡萄糖51.0 mg、果糖50.5 mg、乳糖50.5 mg、蔗糖51.0 mg、麦芽糖51.0 mg于50 mL容量瓶中,加入超纯水充分溶解后定容至刻度,储存于于4 ℃冰箱中冷藏保存,可放置半个月。使用时用超纯水稀释到所需质量浓度。可口可乐溶液:先将可口可乐溶液进行超声处理,用0.22 μm的滤膜进行过滤,称取可乐样品126 mg,加入超纯水稀释50倍。样品溶液:将样品1(脉动饮料)和2(茶π饮料)用0.22μm的滤膜进行过滤,再分别称取496 mg和507 mg于50 ml容量瓶中,加入超纯水定容至刻度,得到浓度为9920 mgL-1和10140mgL-1的两份实际样品溶液。使用时用超纯水稀释到所需质量浓度。50% NaOH(W/W)(电子级) 德国Merck公司;D-无水葡萄糖( D-Glucose anhydrous,≥98%) 上海笛柏化学品有限公司;D-果糖(D-Fructose,≥99%)、蔗糖(sucrose,≥99.5%)、麦芽糖(maltose,≥98%) 上海阿拉丁生化科技股份有限公司;无水乳糖(lactose,≥98%) 上海麦克林生化科技有限公司;可口可乐、实际样品1(脉动)和实际样品2(茶π),均为超市购买;实验用水均采用电阻率不低于18.2 MΩcm的超纯水。所有试剂使用前均使用0.22 μm的滤膜过滤。1.2 色谱条件GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统:Dionex CarboPac PA1色谱柱(250 mm×4 mm),Dionex CarboPac PA1保护柱(50 mm×4 mm);柱温为30℃;流量为1 mlmin-1;进样量为25 μL;流动相为200 mmolNaOH溶液;安培检测器电位波形为糖标准四电位。图1为5 mgL-1 5种糖类化合物混合标准溶液在GI5000离子色谱系统中的色谱图。Dionex Ultimate 3000液相色谱系统:Shodex-SP0810色谱柱(8.0 mm×300 mm);柱温70 ℃;流量为1mlmin-1;进样量为25μL;流动相为超纯水。 https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708218665_5415_3389662_3.jpg!w310x240.jpg 图1 5种糖类混合标准溶液色谱图Fig.1 Chromatogram of mixed solution of 5 sugar standards 2 结果与讨论2.1 GI5000离子色谱系统与Thermo ICS-5000+离子色谱系统灵敏度对比实验显示GI5000离子色谱仪器的噪音稳定在0.12 nC,而Thermo ICS-5000+离子色谱仪器的噪音稳定在0.02 nC,探索了造成这种现象的原因,首先将与检测器相连接的安培池体部件进行了拆卸,对自研Au工作电极进行打磨维护,冲洗了自研参比电极,重新组装后安装在Thermo安培检测器上,用Thermo DP泵进行测试,观察Au工作电极噪音的变化,结果发现噪音值稳定在0.02 nC,与进口安培池体噪音一致,排除了自研安培池体部件对噪音的影响。又将自研安培池体转移至GI5250安培检测器上并与Thermo DP泵串联起来进行测试,噪音值稳定在0.06 nC,说明GI5250安培检测器自身和国产泵较进口仪器存在一定差距,但已符合日常的检测灵敏度的要求。2.2 方法学验证1)标准曲线分别配置质量浓度为0.2、0.5、1.0、2.0、5.0 mgL-1的5种糖类化合物混合标准溶液,以质量浓度(x,mgL-1)为横坐标,以峰面积(y)为纵坐标,绘制标准曲线。各组分的线性范围、线性方程、相关系数、检出限(RSN=3)和定量限(RSN=10)见表1,5种糖类化合物在各自线性范围内线性关系R2不小于0.9990,满足分析方法的要求。Thermo ICS-5000+离子色谱系统对葡萄糖、果糖、乳糖蔗糖和麦芽糖的检出限和定量限分别为1.200 μgL-1、4.010 μgL-1;1.830 μgL-1、6.100 μgL-1;2.960 μgL-1、9.860 μgL-1;6.230 μgL-1、20.78 μgL-1;10.15 μgL-1、33.82 μgL-1。 表1 GI5000离子色谱仪测定5种糖类化合物的线性数据和检出限Table 1 The GI5000 ion chromatograph determines linear data and detection limits for five carbohydrate compounds糖类化合物线性范围/(mgL-1)线性方程相关系数检出限/(μgL-1)定量限/(μgL-1)葡萄糖0.2~5y = 621.5x + 24.910.99983.42011.40果糖0.2~5y = 366.7x + 23.920.99966.75922.53乳糖0.2~5y = 328.0x + 39.460.999010.1233.72蔗糖0.2~5y = 218.1x + 21.340.999320.4368.09麦芽糖0.2~5y = 272.5x + 14.950.999031.37104.6 2)进样重复性取适量的浓度为5 mgL-1的5种糖类化合物混合标准溶液于进样瓶中,分两批分别在GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统上重复进样8次,记录所测得的峰高和峰面积,计算RSD实验结果如表2所示,表明葡萄糖、果糖、乳糖、蔗糖和麦芽糖的峰高和峰面积RSD≤2.47%,结果稳定,与Thermo ICS-5000+离子色谱系统检测结果的RSD几乎一致,说明了GI5000离子色谱系统在重复性方面与进口仪器保持一致,性能良好,实验结果稳定可靠。 表2 5种糖类化合物进样重复性考察结果Table 2 Results of repeated sampling of five sugars糖类化合物GI5000Thermo ICS-5000+峰高RSD/(%)峰面积RSD/(%)峰高RSD/(%)峰面积RSD/(%)葡萄糖0.570.481.411.56果糖0.560.481.982.19果糖0.720.912.172.54蔗糖0.932.471.251.40麦芽糖0.841.780.460.51 3)5种糖类化合物加标回收率测定对可口可乐样品进行加标回收率实验,对于样品中含有的糖类化合物,以其质量分数的80%、100%和120%进行加标,重复进样5次,计算峰面积的RSD,检测结果如表3所示,样品的加标回收率范围在94.13%~114.2%之间,相对标准偏差在0.22%~4.14%。经计算得,可口可乐中葡萄糖质量浓度为41.6 gL-1,果糖质量浓度为54.4 gL-1、乳糖质量浓度为1.5 gL-1、蔗糖质量浓度为4.1 gL-1、麦芽糖质量浓度为1.8 gL-1,总含糖量为103.4 gL-1,可口可乐厂家标注碳水化合物总量为104.6 gL-1,误差1.14%,说明检测结果可靠。图2为可口可乐样品色谱图。 表3 5种糖类化合物加标回收率测定结果Table 3 Determination of the recovery rate of five sugars糖类化合物本底/(mgL-1)加标量/(mgL-1)测得量/(mgL-1)回收率/%相对标准偏差/%葡萄糖1.9551.6003.55399.881.802.0003.89997.200.382.4004.21494.130.22果糖2.1401.6003.69397.803.832.0004.07396.650.252.4004.629103.74.14乳糖1.010.8001.885109.40.191.0002.151114.20.231.2002.353111.90.8蔗糖0.7740.8001.54496.250.971.0001.847107.40.171.2002.043105.80.15麦芽糖0.8920.8001.755107.92.721.0001.915102.30.451.2002.128103.00.75https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708335940_9325_3389662_3.png!w424x327.jpg 图2 可口可乐样品色谱图Fig.2 Coca-Cola sample chromatography 2.3 三种仪器检测结果对比离子色谱法中两种实际样品稀释100倍,液相色谱法中两种实际样品稀释10倍。分别在全进口仪器Thermo ICS 5000+离子色谱系统、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪器上重复进样5针,测试结果如表4所示。 表4 实际样品1和样品2中含糖量测定结果Table 4 Measurement results of sugar content in actual sample 1 and sample 2糖类化合物离子色谱法-Thermo安培离子色谱法-GI5000安培液相色谱法-Dionex示差样品1样品2样品1样品2样品1样品2含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)葡萄糖15.8723.1016.6222.1816.3322.08果糖19.7131.1919.9029.5021.5730.86乳糖------------蔗糖12.8523.5512.2823.0911.7223.72麦芽糖------------总含糖量/g/L48.4377.8448.8074.7749.6276.66样品1和样品2厂家标注的总含糖量分别为49 gL-1和75 gL-1。如表4所示,全进口仪器Thermo ICS 5000+测得两种样品的总含糖量分别为48.43 gL-1和77.84 gL-1,GI5000离子色谱系统测得两种样品的总含糖量分别为48.80 gL-1和74.77 gL-1。Dionex Ultimate-3000液相色谱示差法测得两种样品的总含糖量分别为49.62 gL-1和76.66 gL-1。三种仪器的所测得的两种实际样品中糖类化合物总量相差5%以内,结果均较为准确,同时也证明了国产离子色谱仪器性能稳定可靠。三台仪器对两种实际样品的分离色谱图如图3和4所示。https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708443314_437_3389662_3.png!w273x210.jpghttps://ng1.17img.cn/bbsfiles/images/2022/12/202212151708496041_6974_3389662_3.png!w273x210.jpg 图3 样品1和样品2中糖分离色谱图Thermo离子色谱仪(左)、国产离子色谱仪(右)Fig.3 Separation chromatograms of sugars in samples 1 and 2 Thermo ion chromatograph (left), domestic ion chromatograph (right)https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708552407_2039_3389662_3.png!w273x210.jpg 图4 液相-示差法测得样品1和样品2中糖分离色谱图Fig.4 Separation chromatogram of sugar in sample 1 and sample 2 by liquid-differential method 3 讨论与结论 通过将GI5250安培检测器和进口仪器相互串联等实验得到GI5000离子色谱系统的检出限和定量限约为全进口仪器的3~4倍,其原因是GI5250安培检测器自身性能与进口检测器存在差距,并且进口泵在稳定输出流动相上优于国产泵。后续需要针对国产安培检测器和泵性能进一步优化。使用GI5000离子色谱系统检测饮料中糖类化合物,进行了方法学测试,对比了全进口Thermo ICS 5000+仪器的检测结果,验证了GI5000离子色谱系统在检测糖类化合物方面的性能。结果显示,5种糖类化合物在0.2~5 mgL-1范围内线性关系良好,检测的线性相关系数均在0.9990以上,重复性RSD≤2.47%,除麦芽糖外,其余四种糖检出限均在0.1 mg L-1以内,麦芽糖检出限为0.105 mgL-1。NY/T 3902-2021标准中葡萄糖的检出限为0.4 mg L-1、果糖和麦芽糖的检出限为1.2 mgL-1、蔗糖的检出限为0.6 mgL-1,表明GI5000离子色谱系统所测得的结果,均能够满足上述相关标准的要求,可满足日常实验室检测需求。以市面上售卖的可口可乐为样品,对5种糖类化合物进行加标回收实验,5种糖类化合物的加标回收率范围为94.13%~114.2%。相对标准偏差在0.22%~4.14%。测得可口可乐中的5种糖类化合物总量为10.34 g/100 g。分别使用全进口仪器Thermo ICS-5000+、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪检测了脉动和茶π饮料中糖类化合物的含量,三种方法检测的结果几乎一致,证明了GI5000离子色谱系统性能的可靠。 参考文献 佚名. 碳水化合物—化学结构. 淀粉与淀粉糖, 2010(2): 36-44. ZHANG Z, KHAN N M, NUNEZ K M, et al. Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Chemistry, 2012, 84(9): 4104-4110.DOI:10.1021/ac300176z. 岳虹, 赵贞, 刘丽君, 李翠枝, 邵建波.高效液相色谱法测定发酵乳饮料中果糖、葡萄糖、蔗糖、麦芽糖及乳糖含量.乳业科学与技术, 2017, 040(002): 23-26. 樊宏, 陈强. 乳制品中乳糖直接比色测定方法探讨. 中国卫生检验杂志, 2006, 16(3): 296-297. 钟宁, 侯彩云. 三种乳糖检测方法的比较. 食品科技, 2011, 36(7): 263-265. 中华人民共和国卫生部. GB/T 5009.7—2003 食品中还原糖的测定. 北京: 中国标准出版社, 2003. Zhang J L, Dai X, Song Z L, Han R, Ma L Z, Fan G C, Luo X L,One-pot enzyme- and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer, Sensors and Actuators B: Chemical, 2020, 304. ZIELINSKI A A F, BRAGA C M, DEMIATE M I, et al. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stag. Food Science and Technology, 2013, 34(1): 38-43. DOI:10.1590/S0101-20612014005000003. SHANMUGAVELAN P, KIM S Y, KIM J B, et al. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydrate Research, 2013, 380(20): 112-117. DOI:10.1016/j.carres.2013.06.024. MA C M, SUN Z, CHEN C B, et al. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chemistry, 2014, 145: 784-788. DOI:10.1016/j.foodchem.2013.08.135. WU X D, JIANG W, LU J J, et al. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry. Food Chemistry, 2014, 145: 976-983. DOI:10.1016/j.foodchem.2013.09.019. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. DANIEL D, LOPES F S, SANTOS V B D, et al. Detection of coffee adulteration with soybean and corn by capillary electrophoresistandem mass spectrometry. Food Chemistry, 2018, 243: 305-310. DOI:10.1016/j.foodchem.2017.09.140. 张欢欢, 李疆, 赵珊, 等. 毛细管区带电泳-间接紫外检测法快速测定食品中乳糖、蔗糖、葡萄糖和果糖. 色谱, 2015, 33(8): 816-821. 马海宁, 华玉娟, 屠春燕, 等. 毛细管电泳法分析藏红花植物细胞多糖中单糖组成. 色谱, 2012, 30(3): 304-308. DOI:10.3724/SP.J.1123.2011.11015. LV X Y, GUO Y X, ZHUANG Y P, et al. Optimization and validation of an extraction method and HPAEC-PAD for determination of residual sugar composition in L-lactic acid industrial fermentation broth with a high salt content. Analytical Methods, 2015, 7: 9076-9083. DOI:10.1039/c5ay01703c. WANG X, XU Y, LIAN Z N, et al. A one-step method for the simultaneous determination of five wood monosaccharides and the corresponding aldonic acids in fermentation broth using highperformance anion-exchange chromatography coupled with a pulsed amperometric detector. Journal of Wood Chemistry and Technology, 2013, 34(1): 67-76. DOI:10.1080/02773813.2013.838268. ZHANG Y, WU J R, NI Q H, et al. Multicomponent quantification of astragalus residue fermentation liquor using ion chromatographyintegrated pulsed amperometric detection. Experimental and Therapeutic Medicine, 2017, 14: 1526-1530. DOI:10.3892/.2017.4673. Young C S . Evaporative light scattering detection methodology for carbohydrate analysis by HPLC.. Cereal Foods World, 2002, 47(1):14-16. 梁亚丽, 张彦玲, 何颖娜. 糖类化合物分离分析方法进展. 河北化工, 2006, (06): 42-44. 梁智安, 王成龙, 龙飞. 液相色谱示差折光法测定酒中的总糖和还原糖.食品安全质量检测学报, 2018, 9(09): 2188-2194. 陈琴呜, 刘文英. HPLC—ELSD在中药糖类分析中的应用. 中草药, 2008, 39(6): 955-957. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. INDORF C, BODé S, BOECKX P, et al. Comparison of HPLC methods for the determination of amino sugars in soil hydrolysates. Analytical Letters, 2013, 46: 2145-2164. DOI:10.1080/00032719.2013.796558. 水果、蔬菜及其制品中阿拉伯糖、半乳糖、葡萄糖、果糖、麦芽糖和蔗糖的测定 离子色谱法:NY/T 3902-2021. 2021.

  • 离子色谱仪检测硫酸铜电镀液中氯离子的含量

    以硫酸铜电镀液中氯离子的含量检测为切入点,介绍离子色谱样品在上机检测前,需要进行必要的前处理操作。以硫酸铜电镀液为例,首先需要用高纯碱液除去铜等重金属离子,同时调节样品溶液至合适的PH,但需控制待测溶液

  • 离子色谱 检测范围

    刚接手离子色谱,请教些问题:GB/T 5750.5-2006中离子色谱法测定F-和Cl-时,给出的检出范围是进样50微升,电导检测器量程为10时适宜的检测范围为:0.1mg/L-1.5mg/L(以F-计),15mg/L-2.5mg/L(以Cl-计),我用的进样量是20微升,那F-和Cl-的检测范围该怎么算啊?还有我是用标准曲线做的,F-(1-5mg/kg),Cl-(2-10mg/kg)这范围合适不,大家一般是怎么做的呢。谢谢各位。

  • 离子色谱检测氨基酸

    [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]检测氨基酸,用阴离子还是阳离子模式?有检测的友友分享一下方法吧,谢谢

  • 不同系列离子色谱模块组合的展示-2016.7.4 再次更新

    如果按照高端多模块机来区分,可以分为ICS5000+,ICS5000,ICS3000,ICS2500, Dionex 600, Dionex 500,再早的就不提了,太老了。前后六代产品,时间跨度15年以上(从大约1998-现在,5000+2013年出现)。现在购买离子色谱的用户一般都是整套系列,很少将不同代之间的仪器整合在一起使用。本人将从Dionex 500系列到ICS5000+系列的不同模块组合在一起,组成多系统多模块,多功能的离子色谱仪,从中发现了很多有趣的组合,以及一些禁忌。在接下的一段时间里,将展示六代离子色谱不同模块组合成不同功能的了离子色谱仪。

  • 【求助】离子色谱安培检测器

    代人问个问题,安培检测器和电导检测器不同吧?有没有版友的离子色谱配的是安培检测器?离子色谱的检测器有几种类型啊?

  • 离子色谱分离方式和检测方式的选择浅谈

    分析者对待测离子应有一些一般信息,首先应了解待测化合物的分子结构和性质以及样品的基体情况,如无机还是有机离子,离子的电荷数,是酸还是碱,亲水还是疏水,是否为表面活性化合物等。待测离子的疏水性和水合能是决定选用何种分离方式的主要因素。水合能高和疏水性弱的离子,如Cl-或K,最好用HPIC分离。水合能低和疏水性强的离子,如高氯酸(ClO4-)或四丁基铵,最好用亲水性强的离子交换分离柱或MPIC分离。有一定疏水性也有明显水合能的pKa值在1与7之间的离子,如乙酸盐或丙酸盐,最好用HPICE分离。有些离子,既可用阴离子交换分离,也可用阳离子交换分离,如氨基酸,生物碱和过渡金属等。  很多离子可用多种检测方式。例如测定过渡金属时,可用单柱法直接用电导或脉冲安培检测器,也可用柱后衍生反应,使金属离子与PAR或其它显色剂作用,再用UV/VIS检测。一般的规律是:对无紫外或可见吸收以及强离解的酸和碱,最好用电导检测器;具有电化学活性和弱离解的离子,最好用安培检测器;对离子本身或通过柱后反应后生成的络合物在紫外可见有吸收或能产生荧光的离子和化合物,最好用UV/VIS或荧光检测器。若对所要解决的问题有几种方案可选择,分析方案的确定主要由基体的类型、选择性、过程的复杂程度以及是否经济来决定。表1和2总结了对各种类型离子可选用的分离方式和检测方式。  离子色谱柱填料的发展推动了离子色谱应用的快速发展,对多种离子分析方法的开发提供了多种可能性。特别应提出的是在pH0-14的水溶液和100%有机溶剂(反相高效液相色谱用有机溶剂)中稳定的亲水性高效高容量柱填料的商品化,使得离子交换分离的应用范围更加扩大。常见的在水溶液中以离子形态存在的离子,包括无机和有机离子,以弱酸的盐(Na2CO3/NaHCO3,KOH、NaOH)或强酸(H2SO4、甲基磺酸、HNO3、HCl)为流动相,阴离子交换或阳离子交换分离,电导检测,已是成熟的方法,有成熟的色谱条件可参照。对近中性的水可溶的有机“大”分子(相对常见的小分子而言),若待测化合物为弱酸,则由于弱酸在强碱性溶液中会以阴离子形态存在,因此选用较强的碱为流动相,阴离子交换分离;若待测化合物为弱碱,则由于在强酸性溶液中会以阳离子形态存在,选用较强的酸作流动相,阳离子交换分离;若待测离子的疏水性较强,由于与固定相之间的吸附作用而使保留时间较长或峰拖尾,则可在流动相中加入适量有机溶剂,减弱吸附,缩短保留时间、改善峰形和选择性。对该类化合物的分离也可选用离子对色谱分离,但流动相中一般含有较复杂的离子对试剂。此外,对弱保留离子可选用高容量柱和弱淋洗液以增强保留,对强保留离子则反之。离子色谱中常用的两种主要检测器:电化学检测器(包括电导和安培)和光学检测器。在水溶液中以离子形态存在的离子,即较强的酸或碱,应选用电导检测。具有对紫外或可见光有吸收基团或经柱后衍生反应后(IC中较少用柱前衍生)生成有吸光基团的化合物,选用光学检测器。具有在外加电压下可发生氧化或还原反应基团的化合物,可选用直流安培或脉冲安培检测。对一些复杂样品,为了一次进样得到较多的信息,可将两种或三种检测器串联使用。(中国分析仪器网)

  • 【推荐讲座】:10月21日 2015新版药典离子色谱检测技术应用及详解

    【推荐讲座】:10月21日 2015新版药典离子色谱检测技术应用及详解

    讲座名称:2015新版药典离子色谱检测技术应用及详解主讲老师:李涛(中国科学院博士,瑞士万通中国区离子色谱资深产品经理,拥有超过10年的离子色谱相关的理论和实践经验。对离子色谱的应用有独到见解。)主要内容:新版药典中有哪几类药品需要使用离子色谱进行分析?离子色谱技术在药物分析方面的优势在哪里?如何解决药物分析中遇到的应用难题?针对以上疑问,瑞士万通将于2016年10月21日举办“玩转药物分析——制药行业的离子和电化学分析”网络培训课程,欢迎报名参加。通过本次网络研讨会,您将了解到:离子色谱基本原理 2015版药典中离子色谱检测项目 离子色谱技术在药典项目分析中的应用 离子色谱技术在USP中的应用 使用离子色谱进行药物分析过程中应用难题的解决 瑞士万通离子色谱产品应用于药品分析过程,可以对药品主成分及所含杂质进行定性和定量分析,从而保证药品安全。瑞士万通为您提供完全符合新版中国药典和USP规定的分析仪器和应用方案,帮助您应对药品质量控制以及改善药物生产过程。 举行时间:2016-10-21 10:00    报名链接:  http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/2123http://ng1.17img.cn/bbsfiles/images/2016/09/201609011717_607899_2507958_3.png 手机扫描二维码,报名参会http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668890_2507958_3.gif

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制