当前位置: 仪器信息网 > 行业主题 > >

渣化高炉矿渣粉细度和比表面积标准

仪器信息网渣化高炉矿渣粉细度和比表面积标准专题为您提供2024年最新渣化高炉矿渣粉细度和比表面积标准价格报价、厂家品牌的相关信息, 包括渣化高炉矿渣粉细度和比表面积标准参数、型号等,不管是国产,还是进口品牌的渣化高炉矿渣粉细度和比表面积标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合渣化高炉矿渣粉细度和比表面积标准相关的耗材配件、试剂标物,还有渣化高炉矿渣粉细度和比表面积标准相关的最新资讯、资料,以及渣化高炉矿渣粉细度和比表面积标准相关的解决方案。

渣化高炉矿渣粉细度和比表面积标准相关的论坛

  • 【分享】国内外比表面积的测试标准

    国内外比表面积的测试标准1.气体吸附BET法测定固态物质比表面积(中华人民共和国国家标准 GB/T 19587-2004)[~177140~]2.炭黑总表面积和外表面积的测定氮吸附法(中华人民共和国国家标准GB/T 10722-2003)[~177141~]3.二氧化铀粉末比表面积测定-多点BET法 (中华人民共和国国家标准GB11847-1989)[~177142~]4.煤质颗粒活性炭试验方法比表面积的测定 (中华人民共和国国家标准B_T7702.21-1997)[~177146~]5.中华人民共和国国家标准金属粉末比表面积的测定-氮吸收法(中华人民共和国国家标准GB_T13390-92)[~177143~]6.中华人民共和国国家标准水泥比表面积测定方法(中华人民共和国国家标准GB_T 8074-1987)[~177144~]7.中华人民共和国国家标准温石棉比表面积测定方法(中华人民共和国国家标准GBT 6646.4-1986)[~177145~]

  • 比表面积测试篇-流动法

    比表面积测试篇-流动法

    [b]一、定义:[/b]比表面积是指单位质量物料所具有的总面积。单位是m2/g.通常指的是固体材料的比表面积,例如粉末,纤维,颗粒,片状,块状等材料。比表面积还有另一种定义:面积/体积。[b]释文:[/b]比表面积是指单位质量物料所具有的总面积。分外表面积、内表面积两类。国标单位m2/g。理想的非孔性物料只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)棉、硅藻土等。测定方法有容积吸附法、重量吸附法、流动吸附法、透气法、气体附着法等。比表面积是评价催化剂、吸附剂及其他多孔物质如石棉、矿棉、硅藻土及粘土类矿物工业利用的重要指标之一。石棉比表面积的大小,对它的热学性质、吸附能力、化学稳定性、开棉程度等均有明显的影响。[b]测量:[/b]固体有一定的几何外形,借通常的仪器和计算可求得其表面积。但粉末或多孔性物质表面积的测定较困难,它们不仅具有不规则的外表面,还有复杂的内表面。通常称1g固体所占有的总表面积为该物质的比表面积S (specific surface area,m2/g)。多孔物比表面积的测量,无论在科研还是工业生产中都具有十分重要的意义。一般比表面积大、活性大的多孔物,吸附能力强。测定比表面积方法有气体吸附法和溶液吸附法两类。粉尘粒子愈细,比表面积愈大。细粒子常常表现出显著的物理和化学活动性,如氧化、溶解、蒸发、吸附、催化以及生理效应等都能因细粒子比表面大而被加速。有些粉尘的爆炸危险性和毒性随粒度的减小而增加,原因即在于此。粉尘的润湿性和粘附性也与其比表面积相关联。[font=&][color=#333333]方法提要:[/color][/font][font=&][color=#333333]比表面积测试方法主要分连续流动法[/color][/font][font=&][color=#333333](即动态法)和[/color][/font][font=&][color=#333333]静态容量法[/color][/font][font=&][color=#333333]。[/color][/font][font=&][color=#333333]动态法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量。[/color][/font]主要参考标准有以下:1、GB/T 13390-2008 金属粉末比表面积的测定 氮吸附法;2、GB/T 19587-2017 气体吸附BET法测定固态物质比表面积。涉及仪器大概照片:[img=,311,367]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311917592208_2413_1614854_3.png!w311x367.jpg[/img][align=center]=======================================================================[/align]二、测试步骤: ①打开仪器,预热,让仪器处于稳定状态。②称量样品:先称取洁净的U形管,然后装取一定量的样品,记录样品质量M。[img=,434,388]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311920230803_2337_1614854_3.png!w434x388.jpg[/img]③安装U形管:安装前确保样品平铺于U形管底部,确认插紧即可。④放置液氮罐:使用专用的杜瓦瓶盛装液氮至距离瓶口1-2cm处,并将其置于升降托盘上。[img=,505,483]https://ng1.17img.cn/bbsfiles/images/2023/10/202310311924498658_8845_1614854_3.jpg!w505x483.jpg[/img]⑤输入信息:打开测试软件,设置信息主要包括标准样品的信息和待测样品的信息,多个样品是依次输入对应的名称、重量等。⑥开始测试:确认信息无误后,点击开始测试,仪器自动测试,自动生成测试结果。⑦记录结果。⑧将液氮回收至大的液氮罐中,拆下U形管,用空的U形管替换样品罐,关闭仪器,关闭气体。[align=center]=======================================================================[/align][b]三、注意事项:[/b] 1、测试比表会使用到氮气、氦气或者是混合气,不管是什么气体,气体的分压设置好之后,后期建议分压阀不要随意动,每次只开总压阀,确认分压有无异常即可;2、因U形管比较长,称量时建议用一个烧杯放在天平中央,去皮开始称重;3、粉末样品盛装完毕后,检查U形管的管壁是否有粉末挂壁的现象,有的话,需要清理;4、盛装的质量要合适,即质量与样品比表面积的乘积在仪器最佳检出区间;5、有些设备不是卡扣式,安装U形管时需要拧紧螺帽,需要平衡U形管的位置,以免造成密封不良或者损坏U形管;6、盛装液氮时需戴上防冻手套,防护眼镜,液氮温度极低,溅到皮肤上会带来较大伤害;7、因气体流动法是一种对比法,标准物质的准确性直接影响了样品的测试结果的准确性,需要定期确认标物的可靠性,建议每天质控;8、环境温度对设备的热敏元件有影响,因此,确保环境温度处于20-28℃,并处于相对稳定的状态。[table=100%][tr][td]GB/T 13390-2008[/td][/tr][/table]

  • 【原创大赛】变废为宝——高炉矿渣的可持续利用

    变废为宝——高炉矿渣的可持续利用 高炉矿渣是冶炼生铁时从高炉中排出的一种废渣。在高炉冶炼生铁时,从高炉加入的原料,除了铁矿石和燃料(焦炭)外,还要加入助熔剂。当炉温达到1400一1600℃时,助熔剂与铁矿石发生高温反应生成生铁和矿渣。高炉矿渣是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质组成的,是一种易熔混合物。从化学成分来看,高炉矿渣是属于硅酸盐质材料。每生产1t生铁,大约产生高炉矿渣0.3 吨~1.0 吨。下面谈谈高炉矿渣的再生利用途径1 加工炼钢生铁 水钢高炉矿渣进入渣场,经过第一道磁选加工,产生的磁选粉、磁选铁、人工选铁含铁品位高,一般在58%以上,可直接送入水钢炼铁厂使用。近年来随着国际市场上铁矿石价格的大幅攀升,水钢与专业公司合作,对高炉矿渣进行了第二道磁选,主要方法是对经过第一道磁选后的高炉矿渣进一步破碎,加大设备的磁场强度,每月通过第二道磁选工序加工出含铁物质约5000吨,品位在30%~52%,不能直接供给水钢炼铁厂使用,因此必须对第二道磁选工序加工出品位低的含铁物质进一步深加工,成为高品位的磁选粉、铁精粉或铸件,深加工的主要工艺有水洗球磨和热风炉冶炼。传统的水洗球磨工艺存在废渣球磨水洗选矿工艺对渣浆液进行回收处理采用的沉淀池分级自然沉淀方法,占用较大场地,沉于池底的渣浆处理困难等技术问题。现在湘潭钢铁集团有限公司拥有的实用新型专利,用于钢铁废渣球磨水洗选矿工艺的渣浆液处理装置。其技术方案要点是:主室的上部固联有沉淀器,主室的上部一侧设有隔离室,沉淀器的上部设有溢流槽,溢流槽连清水槽,下水管连清水槽,主室的下部设有排液管阀和人孔,主室的底部设有输浆机,输浆机上设有电/手控渣浆阀;隔离室的上部设有接渣浆液进入管的分配器。本实用新型设计合理,体积少,较其它方法投资省,处理渣浆液效果好,可广泛应用于钢铁行业的钢铁废渣球磨水洗选矿工艺中的渣浆液处理。水钢高炉矿渣存量大,在综合利用方面考虑产品的多样性和市场的适应性,因此采用新型热风炉冶炼,其技术特点是采用集燃烧与换热为一体、炉体高温部位进行换热的最新间接加热技术。烟气和空气各走道,加热绝对无污染,热效率高达65-80%。升温快、体积小、安装方便、使用可靠,且价格低(与1吨锅炉相比,该加热系统只相当于锅炉加热系统价格的一半)。热风炉原理采用了耐高温措施,从而使其寿命比列管式热风炉大大提高,输出热风温度可达300度。热风炉采用特殊设计使得输出热风温度可达500-800度,同时采用了烟气纵向冲刷散热片和负压吸式排烟方式,换热部位不积灰尘,无须清理,热性能稳定。可使用各种煤或柴作燃料,并配有二次进风装置,燃烧完全。2 生产新型建材产品(1) 生产矿渣微粉 将炼铁高炉排出的水淬矿渣外加少量助磨剂经超细粉磨后得到矿渣粉的比表面积达到400m2/ kg 以上时,颗粒较细,则其活性可以得到充分发挥,这种颗粒细小的粉磨矿渣就是矿渣微粉。它是一种建材高新科技产品,不仅可等量取代水泥,降低混凝土成本,又充分利用了高炉矿渣,因而是新型绿色环保产品,至上世纪60 年代以来,随着预拌混凝土工业的兴起和发展,矿粉作为混凝土的独立组分得到了广泛应用,目前国外一些发达国家已将掺有矿粉的混凝土普遍用于各类建筑工程。矿渣微粉代替水泥的用量是实现可持续发展路线的很好的途经。以水钢为例,2008年生产生铁约274万吨,每冶炼一吨生铁,大约产生矿渣0.3 吨~1.0 吨。因此,[color=#00

  • 【求助】寻北京哪里可以测定比表面积和孔隙率?

    我这里有一批塑料热解后的固体残渣,需要测定一下热解残渣的比表面积和孔隙率,估计比表面积会在100m2/g,空隙应该属于中孔或微孔。请问北京哪里可以测这些东西,知道的短一下电话或单位。这里先谢谢了!

  • 【原创】提供国家一级比表面积标准物质

    刚刚申请通过了国家一级标准物质,是国内首批纳米级比表面积标准物质,成分为纳米级氧化铝,比表面积标准值为445.4 m2/g。在指定条件下保存,可多次重复使用。价格相对国外比表面积标准物质便宜很多,而且购买方便。有需要比表面积标准物质校准仪器的单位请与我联系,呵呵支持国货![em09511]

  • 求教,比表面积测定

    大家好,我最近在做比表面积和粒度分析。我知道根据激光粒度分析测出来的粒径计算得到的比表面积没有实际的意义。而后又用勃氏自动比表面积仪测(硅酸盐类粉体)。我知道也可用氮吸附的BET方法做。两者测量的量程和要求可能不一样。但是通常一个磨过的粉体,我也并不清楚他的孔径分布,是小于2nm还是大于50nm,或者介于其中,因此选择仪器是个难题。你有什么好办法么?你知道勃氏仪和N2吸附测出的数据差别有多大么(当两种方法对材料都有效时)?谢谢你

  • 比表面积测定仪特点

    比表面积测定仪以表面物理吸附相关理论为基础,采用连续流动法作为测定方法,用氦氮混合气(氦:氮=4:1,氦气为载气,氮气为吸附气体)流过被测样品,并利用氮气在液氮温度下的吸附及脱液氮环境下的脱附,精确测量氮气前后的比例变化的标准化仪器。利用固体标样参比法作为测试软件分析模型,计算出样品的比表面积。 1 比表面测定仪具有双工作站,测试效率提高一倍,多点BET比表面测定,每样平均15min 2 比表面测定仪具有国内唯一通过国家级技术鉴定的产品,控制和测试精度达到国际先进水平; 3 比表面测定仪具有独有的抽气与充气速度精密控制技术,超微粉样品也不会被抽飞; 4 比表面测定仪具有独特的多途径液氮面控制与校正技术,连续测试10小时也不需添加液氮; 5 比表面测定仪具有完善的标准等温线数据库和规范的分析方法,微孔常规测试技术国内领先; 6 比表面测定仪具有专用软件功能齐全、界面友好、操作方便、实时显示样品的吸、脱附压力变化及平衡过程; 7 比表面测定仪具有实验全程自动化、智能化控制,长时间运行

  • 【分享】比表面积测试方法主要分动态色谱法和静态容量法

    动态色谱法  动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量;静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量;    动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。    由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫BET比表面。统计吸附层厚度法主要用于计算外比表面;   动态色谱法仪器中有种常用的原理有固体标样参比法和BET多点法;动态色谱法之固体标样参比法  固体标样参比法也叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因;动态色谱法之BET多点法  BET多点法为国标比表面测试方法,其原理是求出不同分压下待测样品对氮气的绝对吸附量,通过BET理论计算出单层吸附量,从而求出比表面积;其理论认可度相对固体标样参比法高,但实际使用中,由于测试过程相对复杂,耗时长,使得测试结果重复性、稳定性、测试效率相对固体标样参比法都不具有优势,这是也是固体标样参比法的重复性标称值比BET多点法高的原因;   动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动,态色谱法比较适合测试快速比表面积测试和中小吸附量的小比表面积样品(对于中大吸附量样品,静态法和动态法都可以定量的很准确),静态容量法比较适合孔径及比表面测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等,使得测试效率相对动态色谱法的快速直读法低,对小比表面积样品测试结果稳定性也较动态色谱低,所以静态法在比表面测试的分辨率、稳定性方面,相对动态色谱并没有优势;在BET多点法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时;静态法相对于动态色谱法由于氮气分压可以很容易的控制到接近1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。静态容量法  在低温(液氮浴)条件下,向样品管内通入一定量的吸附质气体(N2),通过控制样品管中的平衡压力直接测得吸附分压,通过气体状态方程得到该分压点的吸附量;   通过逐渐投入吸附质气体增大吸附平衡压力,得到吸附等温线;通过逐渐抽出吸附质气体降低吸附平衡压力,得到脱附等温线;相对动态法,无需载气(He),无需液氮杯反复升降;   由于待测样品是在固定容积的样品管中,吸附质相对动态色谱法不流动,故叫静态容量法; 比表面积测试相关仪器简介  动态法比表面积仪测试比表面积精度影响因素   对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其相对不具有该装置的动态法比表面仪,其精度得到明显提高;动态法比表面仪,与其它分析仪器类似,其精度和灵敏度大小主要取决于信噪比;也就是要提高精度和灵敏度,就需要从提高信号强度、抑制背景噪声、消除外界干扰三方面来控制。增加信号强度的方法一般有增加称样量、增加检测器电流,但增加检测器电流一般噪声也会同时增大,所以检测器电流会有个最佳范围;所以在抑制噪声、消除外界干扰方面可做的工作就比较多了;其源于仪器自身的误差来源主要有:检测器温漂,信号锐度;以检测器恒温装置来抑制温漂,风热助脱装置可以提高信号锐度,其对于比表面1m2/g的样品0.5g对氮气的吸附量在分压0.2左右时脱附峰面积与背景可以保证在2%以内的误差;   所以对于小比表面样品,对具有风热助脱、检测器恒温、低温冷阱的动态法仪器,其灵敏度和分辨率的优势就体现出来了;但对中大比表面样品,由于信号强,普通动态法比表面积仪和静态法比表面积仪都可以保证精度;这点就像万分之一分析天平和千分之一天平的区别;   静态法比表面积仪测试小比表面积样品精度分析   以比表面积1m2/g的样品为例,该样品0.5g对氮气的吸附量在BET分压范围内在标况下约0.1ml,在测试过程中的吸附环境液氮温度下的体积约0.03ml;样品管装样部分的剩余体积(也就是背景体积)约在3-5ml左右,要在3-5ml的样品管体积中准确定量出0.03ml的总吸附量且保证精度达到3%以内,可以算出要求压力传感器的精度要达到0.03%以上;但目前进口最好的压力传感器的精度只有0.1%,而且通常比表面及孔径分析仪用的压力传感器精度为0.15%,也就是说目前最高精度的压力传感器,即使温度场理想测定,液氮面理想恒定,环境温度理想准确条件下,对吸附量确定量的不确定度也只能达到0.003ml,即不确定度达到10%;若对于比表面再小或堆积密度小也就是装样量也难以很大的样品,其准确度就可想而知了。 但对于中大比表面样品,一般吸附量不会那么微小,静态法的精度很容易保证在2%甚至1%以内便不是问题;   所以在小比表面样品的测试方面,静态法仪器测试的误差相对高精度的动态法仪器的误差大;静态法只能通过增加装样量来降低误差,常见的是静态一般都会为小比表面积样品配备大容量样品管,但由于背景体积(吸附腔体积)也随之增大,所以准确度提高也是有限的;这点是采用静态法仪器测试比表面积应考虑的因素。   比表面积计算公式    参考国标GB/T24533-2009    放到气体体系的样品,其物质表面在低温下将发生物理吸附。当吸附达到平衡时,测量平衡吸附压力和吸附的气体流量,根据BET方程式(1)求出试样单分子层吸附量,从而计算出试样的比表面积。   (P/P0 )/ V(1-P/P0) = (C-1 )/( VmC ) × P/P0 + 1/( VmC )

  • 【原创】比表面积测量

    比表面积及孔径分布测试仪F-Sorb 3400是目前国内唯一完全自动化,智能化的比表面积及孔径分布测量仪器,2008年国内市场销量第一,众多著名科研院所及500强企业应用案例,由金埃谱科技与兵器系统合作研发,秉承兵器行业高标准,严要求的技术宗旨,依据国际经典孔径分布测试理论和原理,采用国内外通用孔径分布测试方法,符合国际孔径分布测试标准,显著提高产品稳定性和使用寿命,测试结果更准确,操作简单快捷,大大降低测试人员工作量. 金埃谱科技是国内最早参与比表面积标准物质标定的机构,测试结果与国外数据可比性平行性最好,并唯一获取上海计量院检测证书,同时金埃谱科技也是国内同行业中唯一一家注册资本超百万的生产企业,让您选购的产品无后顾之忧! 比表面积和孔径分析测试其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的孔径测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间.F-Sorb 3400比表面积及孔径分布测试仪是目前国内同类产品中唯一能够完全实现测试过程自动化、智能化的产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,提高了工作效率.符合国际上现代化仪器制造标准和潮流,实现了从测试标准、理论计算到制造规范上和国际化产品完全接轨,致力于为我国科研单位及生产企业提供高性价比精密检测仪器.

  • 【分享】目前对比表面积测试方法分类的2种说法

    比表面测试方法简介与分类[color=#00008B][size=4][font=楷体_GB2312]比表面测试方法简介与分类1[/font][/size][/color] 比表面测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积测试方法有粒度估算法、 显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高; 吸附法的思路就是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面大小。根据吸附质的不同,吸附法分为低温氮吸附法、吸碘法、吸汞法和吸附其它分子方法;较早使用的是后面吸碘法、吸汞法等几种方法,这几种方法在不同行业内被使用了较长时间;但由于吸碘法中使用的碘分子直径很大,不能进入许多小孔,测得的比表面积不完全,另外碘分子活性较高,对不少粉体不能适用,局限较大;吸汞法又叫压汞法,使用的吸附质--汞有毒,很少使用了,在此不详述了。吸附其它气体分子的方法使用也极少。使用最广的为以氮分子作为吸附质的氮吸附法;氮吸附法由于需要在液氮温度下进行吸附,又叫低温氮吸附法,这种方法中使用的吸附质--氮分子性质稳定、分子直径小、安全无毒、来源广泛,是理想的且是目前主要的吸附法比表面测试吸附质。 氮吸附法根据吸附过程和吸附质确定方式的不同又分为动态色谱法和静态法。 动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子(N2)的吸附量; 静态法根据确定吸附吸附量方法的不同分为重量法和容量法;重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子(N2)的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用;容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量; 动态色谱法和静态法的目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。 由吸附量来计算比表面的理论很多,如朗格缪尔吸附理论、BET吸附理论、统计吸附层厚度法吸附理论等。其中BET理论在比表面计算方面在大多数情况下与实际值吻合较好,被比较广泛的应用于比表面测试,通过BET理论计算得到的比表面又叫 BET比表面。统计吸附层厚度法主要用于计算外比表面; 动态色谱法仪器中有种常用的比表面测试方法,叫固体标样参比法或叫直接对比法,国外此种方法的仪器叫做直读比表面仪。该方法测试的原理是用已知比表面的标准样品作为参照,来确定未知待测样品相对标准样品的吸附量,从而通过比例运算求得待测样品比表面积。以使用氮吸附BET比表面标准样品为例,该方法的依据是有2个:一、BET理论的假设之一在吸附一层之后的吸附过程中的能量变化相当于吸附质分子液化热,也就是和粉体本身无关;二、在相同氮气分压(5%-30%)、相同液氮温度条件下,吸附层厚度一致;这就是以此种简单的方法所得出的比表面值与BET多点法得到的值一致性较好的原因; 动态色谱法和静态容量法是目前常用的主要的比表面测试方法。两种方法比较而言动态色谱法比较适合测试比表面积,静态容量法比较适合孔径测试。虽然静态法具有比表面测试和孔径测试的功能,但静态法由于样品真空处理耗时较长,吸附平衡过程较慢、易受外界环境影响等使得测试效率相对动态色谱法低,测试结果稳定性也较动态色谱低,所以在比表面测试的效率、分辨率、稳定性方面,相对动态色谱没有优势;但静态法相对于动态色谱法由于氮气分压可以很容易的控制到1,所以比较适合做孔径分析。而动态色谱法由于是通过浓度变化来测试吸附量,当浓度为1时的情况下吸附前后将没有浓度变化,使得孔径测试受限。

  • 【求助】超细银粉的比表面积测试结果为何为负值?

    再次请教各位xdjm!这几天对银粉颗粒(用sem观察,粒径均一,大部分为100-200纳米,最大粒径约为300-400纳米)做了BET表面吸附测试,想测试其比表面积,结果得到的值竟然为负值!同学说是因为测试样品的量太少,0.185克。下面是部分测试结果:多点BET比表面积:------------- -1.483 m2/g BJH吸附累积比表面积: ----------- 2.400 m2/g BJH脱附累积比表面积: ----------- 0.000 m2/g 我第一次做这个测试,所以向各位请教一下,出现这种结果的原因有哪些啊?

  • 全自动比表面积及孔隙度分析仪行业应用

    全自动比表面积及孔隙度分析仪行业应用

    [font=S?hne, ui-sans-serif, system-ui, -apple-system, &][size=16px][color=#343541]  全自动比表面积及孔隙度分析仪行业应用  全自动比表面积及孔隙度分析仪是一种用于测量材料的比表面积和孔隙度的仪器,它在多个行业中具有广泛的应用。以下是一些行业应用领域:  材料科学与研发:全自动比表面积及孔隙度分析仪在材料研究和开发中发挥关键作用。研究人员可以使用这种仪器来评估新材料的比表面积和孔隙度,以了解它们的性能和适用性。  化学工业:在化学工业中,比表面积和孔隙度的分析对于催化剂、吸附剂、分离膜和其他化学制品的设计和优化非常重要。全自动分析仪可以帮助工程师调整产品性能,提高生产效率。  石油和天然气开采:在油田开采中,比表面积及孔隙度分析仪可用于评估沉积岩样本的孔隙度和渗透性,以确定油气资源的可采储量和提取方法。  制药业:在制药领域,这种仪器可用于评估药物载体的孔隙度和吸附性能,以改善药物制备和控制释放速度。  食品和饮料工业:在食品和饮料生产中,比表面积及孔隙度分析仪可以用于评估颗粒、粉末和颗粒材料的特性,如流动性和储存稳定性。  环境监测:在环境领域,这种仪器可用于评估土壤、沉积物和环境样本的孔隙度,以了解污染情况和土壤质量。  建筑材料:在建筑行业,全自动比表面积及孔隙度分析仪可用于评估混凝土、砖块和其他建筑材料的孔隙度和渗透性,以确保建筑结构的质量和耐久性。  总之,全自动比表面积及孔隙度分析仪在多个行业中都具有广泛的应用,可用于评估材料的特性,优化产品设计和生产过程,以及解决各种工程和研究问题。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311031009229821_4652_6098850_3.jpg!w690x690.jpg[/img][/color][/size][/font]

  • 比表面积测试仪常见的测试方法有哪些

    比表面积测试仪有许多的方式供我们选用,通常我们选用的就是动态法、直接对比法、  多点BET法、静态容量法等多种方式,而今天我们所要学习的就是关于动态法的一些常见方式解决方案。  我们选用的动态法其实过程也不是那么复杂,只是需要我们更多的细心和解决方式。  比表面积测试仪首先就是将待测粉体样品装在U型的样品管内,使富含必定份额吸附质的混合气体流过样品,这样形成一种特地的测试效果,我们可以依据吸附前后气体浓度改变来断定被测样品对吸附质分子的吸附量来达到我们所要测试的成果。  比表面积测试仪静态法主要依据断定吸附吸附量办法的不一样分为分量法和容量法; 分量法是依据吸附前后样品分量改变来断定被测样品对吸附质分子的吸附量,来判断其测试的成分内容,更多的是因为分辨率低、准确度差、对设备需求很高级缺点已很少运用。所以很好的办法就是我们解决其弊端,然后达到我们所要用的要求,才能达到我们比表面的测试效果。  比表面积测试仪容量法是将待测粉体样品装在必定体积的一段关闭的试管状样品管内,然后通过向样品管内写入必定压力的吸附质气体,能给我们依据吸附前后的压力或分量改变来断定被测样品对吸附质分子的吸附量来达到我们所要进行的有效措施。  介绍了这么多关于比表面积测试仪的一些常见测试方法,更多的是要我们有效的改善我们的测试方式,达到我们更加仔细的能力,还有就是方面我们正常的工作和测试内容。www.chinazhongqi.net/93.html

  • 【原创】比表面积测定仪在以下行业中得到应用

    电池行业 随着工业技术的发展,能源问题越来越成为社会关注的焦点,不可再生能源枯竭和造成的环境污染迫使人类寻找新的替代能源。电能,特别是储能型电池,由于其低污染,可再生等特性被人们普遍看好,最有可能成为未来替代型能源,有着广阔的发展前景。储能电池中的关键部分-储能材料,由于其储能的特殊要求,对材料的比表面积性能要求非常严格,过大或过小都对电池的性能不利,因此比表面积成为电极材料最重要的物理性能指标。 化工行业 化工行业中很多的产品生产过程都需用到催化剂,催化剂发展也因此由来已久。随着材料技术的发展,催化剂的性能也越来越强大。材料的催化性能除其化学成分外,最主要的决定因素是其比表面积和孔容积的大小及其表面形貌结构。催化材料一般比表面积都很大,且为多孔物质,两者皆能增加催化剂与反应物质的接触面积,因此大大提高催化效能。比表面积和孔容积的大小是衡量催化剂性能好坏的重要性能指标。 橡胶行业 在橡胶行业中,炭黑补强已经是一项非常成熟的技术,被广泛采用。目前已经发展成非传统上的单一碳黑补强,近年来出来了很多的普通碳黑的替代物,如白炭黑。研究表明,再炭黑补强工艺上,补强剂的除微孔外的外比表面积对补强性能有非常重要的影响。因此在炭黑行业,通常需要测定补强剂的外比表面积来衡量其性能的好坏。 随着材料技术的不断发展,比表面积测定仪还在其它许许多多的行业中都有着广泛的应用,如电磁材料、荧光材料、陶瓷、粉末冶金、吸附剂、化妆品、食品活性炭、二氧化硅、活性碳、分子筛、活性氧化铝,颜填料、无机颜料、碳酸钙、氧化锌、氧化硅、矿物粉、陶瓷材料、氧化铝、氧化锆、氧化釔、氮化硅、碳化硅、炭黑、金属氧化物、碳黑、白碳黑、白炭黑、纳米碳酸钙、电池材料(钴酸锂、三元素、三元素材料、聚合物、聚合物材料、聚合物电池材料、石英、碱锰材料、锂离子材料、锂锰材料、碱性材料、锌锰材料、石英粉、镁锰材料、碳性材料、锌空材料、锌汞材料、乙炔黑、镍氢材料、镍镉材料、隔膜、镍钴酸锂、氧化钴、磷酸铁锂、活性物资、添加剂、导电剂、缓蚀剂、锰粉、电解二氧化锰、锌材、石墨粉、氢氧化亚镍、泡沫镍、储氢合金、改性石墨材料、正极活性物质、负极活性物质、锌粉、锰酸锂、石墨)、发光稀土粉末材料、粉体材料、粉末材料、磁性粉末材料、四氧化三铁、铁氧体,纳米粉体材料、纳米陶瓷材料、纳米材料、纳米金属材料、纳米银粉、铁粉、铜粉、钨粉、镍粉、铝粉、钴粉、超细纤维、多孔织物、复合材料、沉积物、悬浮物等粉体和颗粒材料等。对颗粒材料来讲,比表面积逐渐成为重要的物理性能。

  • 【广告】国际和国内比表面积标样的领用

    我们这里现在有国内和国际的比表面积标样四种,可用于校准比表面积吸附仪,用于仪器的维护使用,每种标样可重复使用很多次。有意申请领用的单位可以联系我,你只需要把你们对标样测试的比表面积提供给我就可以了。要知道购买国际标样可是很昂贵的哦,而且有的标样现在是买不到的。

  • 麦克仪器:药物粉体比表面积测定——why and how?

    [font=Arial, Verdana, sans-serif] [/font][b][size=16px]引言[/size][/b][size=16px]药物粉体是70-80%固体制剂以及部分液体制剂的基础单元,药物粉体加工成型的工艺性及产品质量都极大的受到药物粉体性质的影响和制约,无论在分散、填充、混合等过程中,还是在配方、过程设计与量产中,药物粉体性质都与产品质量、性能和工艺等息息相关,直接决定药物的最终疗效。[/size][align=center][img=,500,177]http://img5.app17.com/EditImg/20200731/637318034178160209.png[/img][/align][size=16px]药物粉体的比表面积就是备受关注的颗粒性质之一。药物粉体的比表面积直接影响其颗粒粒径、溶解度和溶出度等性质,在一定条件下,同等重量药物粉体的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快,通过对药物粉体比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。Radha R. Vippagunta等人曾进行了三种原料药API无定形含量、比表面积、流动性与辊压成型的相关性研究 [1]。实验均采用相同组分但不同批次的API进行无定形含量、比表面积、流动性和辊压测试,实验结果表明:随着API无定形含量增大,其比表面积增大,而药物粉体的流动性和辊压成型的片剂质量却相应变差;当无定形含量增大到一定比例后,药物粉体的比表面积会随无定形含量的增大而减小;纯无定形API的比表面积最小,且很难辊压成型。Smirnova I等人则是对药物载体二氧化硅气凝胶在提高难溶药物溶出速率方面进行了一系列研究[2]。研究表明二氧化硅气凝胶的比表面积越大则药物担载量越大,药物经过气凝胶的担载后溶出速率显著提高。综上所述,药物粉体的比表面积对控制药物性能非常重要,因此在美国药典USP ,日本药典JP 3.02、欧洲药典Ph. Eur. 2.9.26和2020年版《中国药典》通用技术0991中,都明确规定了药物粉体比表面积的测定方法。[/size][b][size=16px]比表面积是什么?[/size][/b][size=16px]通常被广泛使用的概念是表面积或外表面积,指物质暴露在外所有表面的面积之和,单位是平方米(㎡)。而比表面积指的是单位质量物质的表面积,单位是平方米/克(㎡/g),即物质的外表面积除以该物质的质量。[/size][b][size=16px]药物粉体的比表面积测试[/size][/b][size=16px]药物粉体比表面积的分析测试方法有很多种,其中气体物理吸附法是最成熟和通用的方法。其基本原理是测算出某种气体分子在药物粉体表面形成完整单分子吸附层的吸附量,乘以每个分子的覆盖面积即得到药物粉体的总表面积,再除以药物粉体的质量得到比表面积。[/size][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]在药物粉体的气体物理吸附测试中,药物粉体被称为吸附剂,被药物粉体吸附的气体称为吸附质。原则上只要和药物粉体不发生化学反应的气体均可用作吸附气体,目前使用最为广泛的吸附气体是氮气。气体分子在药物粉体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出,在各国药典中都明确指出吸附等温线的测定方法分为动态流动法和静态体积法,其中静态体积法是通用的测定比表面积的方法。比如麦克仪器公司的TriStar系列[b]比表面积测试仪[/b](如图1所示)和Gemini VII系列[/color][/size][/font][b]比表面积测试仪[/b][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333](如图2所示)两款静态体积法[/color][/size][/font][b]气体物理吸附仪[/b][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]就能够为各类药物粉体提供高精度、高效率和高标准的比表面积测试。由于药物粉体在生产和贮存过程中表面可吸附其它气体或蒸汽,因此在测定前一般需要采用真空或流动脱气法在脱气站(如图3所示)上选择合适的温度和时间对药物粉体进行脱气预处理,以确保比表面积结果的精密度和准确度。另外,TriStar[/color][/size][/font][font=-apple-system-font, BlinkMacSystemFont, Helvetica Neue, PingFang SC, Hiragino Sans GB, Microsoft YaHei UI, Microsoft YaHei, Arial, sans-serif][color=#333333][size=16px] II Plus[/size][/color][/font][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]系列和Gemini VII系列[/color][/size][/font][b]比表面积测试仪[/b][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]还可配置满足21 CFR Part 11要求的confirm版本软件,其验证、安全、审计追踪、报告等功能可有效确保数据的安全性、真实性和完整性。[/color][/size][/font][size=16px] [/size][align=center][img=,200,279]http://img5.app17.com/EditImg/20200731/637318034457868701.png[/img][size=16px] [/size][/align][size=14px]图1 TriStar II Plus系列[b]气体物理吸附仪[/b]示意图[/size][align=center][img=,218,282]http://img5.app17.com/EditImg/20200731/637318034792645289.png[/img][/align][size=14px]图2 Gemini VII系列[b]气体物理吸附仪[/b]示意图[/size][size=16px] [/size][align=center][img=,300,195]http://img5.app17.com/EditImg/20200731/637318035077189788.png[/img][/align][size=14px]图3 脱气站示意图:左为流动法脱气站,右为真空法脱气站[/size][b][size=16px]实验部分:[/size][/b][size=16px]1. 原料药API的比表面积测定[/size][size=16px]原料药是用于药品制造中的一种物质或物质的混合物,在疾病的诊断、治疗、症状缓解、处理或疾病的预防中有药理活性或其他直接作用,或者能影响机体的功能或结构。为了表征某种原料药的比表面积,使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行了77K(液氮温度)下的氮气吸附等温线测试。该原料药在相对压力0.994时的平衡吸附量仅8.7205 cm3/g STP;使用B.E.T方程处理该吸附等温线,通过计算可得到该原料药的比表面积为4.9453 m2/g,线性相关系数为0.9999(如图4所示)。[/size][align=center][img=,300,105]http://img5.app17.com/EditImg/20200731/637318035401046357.png[/img][/align][size=16px] [/size][size=16px]2. 药物辅料硬脂酸镁的比表面积测定[/size][size=16px]硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器公司的Tristar II Plus系列[b]比表面积测试仪[/b]对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该硬脂酸镁的比表面积为1.1251m2/g,线性相关系数为0.9999(如图5所示)。[/size][size=16px] [/size][align=center][img=,300,105]http://img5.app17.com/EditImg/20200731/637318035693390871.png[/img][/align][size=14px]图5:硬脂酸镁的B.E.T比表面积计算结果[/size][size=16px]3. 药物制剂缬沙坦的比表面积测定[/size][size=16px]缬沙坦是一款血管紧张素II受体拮抗剂抗高血压类药物,同样使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该缬沙坦的比表面积为4.6611m2/g,线性相关系数为0.9999(如图6所示)。[/size][size=16px] [/size][align=center][img=,300,102]http://img5.app17.com/EditImg/20200731/637318035864835172.png[/img][/align][size=14px]图6:缬沙坦的B.E.T比表面积计算结果[/size][b][size=16px]结论[/size][/b][size=16px]药物粉体的比表面积是需要关注的重要参数之一,直接影响药物粉体的均匀性、流动性、溶解度和溶出度等性能,进而影响药物在体内的崩解、溶解和吸收。研究和掌握药物粉体的比表面积对制备出高性能的药物具有十分重要的意义。根据药典中的明确规定,可以通过气体物理吸附的静态体积法测试出药物粉体在液氮温度下的氮气吸附等温线,再结合B.E.T方程即可精确计算出其比表面积,便于对药物粉体/颗粒的性能进行初步预测,提高整体效率,优化产品质量。麦克仪器公司的Gemini VII系列和TriStar系列气体物理吸附仪采用静态体积法为各类药物提供高精度、高效率和高标准的比表面积测定,还可配置满足21 CFR Part 11要求的confirm版本软件,其验证、安全、审计追踪、报告等功能可有效确保测试数据的安全性、真实性和完整性。[/size][size=16px] [/size][size=14px][b]参考文献:[/b][/size][size=14px]【1】 Radha R. Vippagunta, Changkang Pan, et. al., Application of surface area measurement for identifying the source of batch-to-batch variation in processability, Pharmaceutical Development and Technology, 2009 14(5): 492–498[/size][size=14px]【2】 Smirnova I , Suttiruengwong S , Seiler M , et al. Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels[J]. Pharmaceutical Development and Technology, 2005, 9(4):443-452.[/size][size=16px][color=#021eaa]关于麦克仪器公司[/color][/size][size=16px]麦克仪器公司可以为制药工业提供分析解决方案的全球领导厂商,在密度、比表面积及孔隙度、粒度及粒形、催化剂表征及工艺开发、粉体表征尤其是粉体流动性等五个核心领域拥有仪器和应用技术。这些仪器提供精确和可靠的测量以密切控制各种药品的关键质量属性。公司的实验室(Particle Testing Authority ,PTA)可提供全面的商业测试服务,PTA是一家获得DEA许可、FDA注册、cGMP/GLP合规的实验室。[/size][size=16px]麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和内部生产制造,公司提供的高性能产品可支持从颗粒结构到散装粉体行为的强大工程配方的发展。近期的几次战略收购,包括粉体表征技术领先的富瑞曼科技有限公司(Freeman Technology Ltd),进一步证明了公司以客户为中心的全盘理念。[/size][size=16px]麦克仪器公司拥有强大的全球网络,在美洲、亚洲和欧洲均设有子公司,并在其他地区设有专门的经销商团队。[/size]

  • 比表面积测试方法之多点BET法

    比表面积测试仪方法有很多种,但是我们常采用的就是多点BET法,这种方法是国标比表面测验办法,其原理是求出不同分压下待测样品对氮气的肯定吸附量,然后就是经过BET理论计算出单层吸附量,然后求出比表面积的这个过程。  这种理论认可度相对较高,比表面积测试仪在实际使用中会面临这习惯对的困难,因为测试进程相对杂乱、耗时长的情况下,使得测验成果重复性、稳定性、测验功率相对直接比照法都不具有优势,相对的情况下是直接比照法的重复性标称值比多点BET法高的缘由;。  动态法和静态容量法是当前常用的首要的比表面积测试仪测验办法,那么这两种方法都有哪些特点和缺点呢?  我们通常使用的两种办法对比而言,动态法对比合适测验疾速比表面积测验和中小吸附量的小比表面积样品,静态容量法对比合适孔径及比表面测验。  比表面积分析仪在多点BET法比表面剖析方面,静态法无需液氮杯升降来吸附脱附,所以相对动态法省时,静态法相关于动态法因为氮气分压能够很简单的操控到挨近,所以说直接使用还是BET方法是我们最为有效的测试方式。www.chinazhongqi.net/84.html

  • 【求助】900度煅烧过的土壤比表面积?

    【求助】900度煅烧过的土壤比表面积?

    各位朋友,我是个新手。最近帮别人做实验时,出现了点小情况,特来求助。样品是经过900度煅烧过的普通土壤(具体成分我也不太清楚),脱气温度300度,时间3个小时,测比表面积时老是出现BET曲线斜率为负的情况。今天上午在论坛注册后,发现有朋友就这个问题进行了专门的探讨,我怀疑可能是样品比表面积太小了,超过了分析仪的测定范围。我用的仪器是康塔NOVA 4000e。请问大家有没有做过900度煅烧后的土壤比表面积?脱气温度和时间?结果大概是多少?用什么仪器测的啊? 附上几张BET曲线图。第一张仪器显示比表面积为0,第二张1.76,第三张0.34[img]http://simg.instrument.com.cn/bbs/images/brow/em09501.gif[/img][img=left]http://ng1.17img.cn/bbsfiles/images/2010/08/201008051649_234447_2122496_3.jpg[/img]

  • 粒度、比表面积检测

    请问下,杭州、上海有没提供测粉末粒度分布和比表面积的第三方检测机构或单位?要求盖公章的。

  • 麦克仪器:药物粉体比表面积测定——why and how?

    [b][size=16px]引言[/size][/b][size=16px]药物粉体是70-80%固体制剂以及部分液体制剂的基础单元,药物粉体加工成型的工艺性及产品质量都极大的受到药物粉体性质的影响和制约,无论在分散、填充、混合等过程中,还是在配方、过程设计与量产中,药物粉体性质都与产品质量、性能和工艺等息息相关,直接决定药物的最终疗效。[/size][align=center][img=,500,177]http://img5.app17.com/EditImg/20200731/637318034178160209.png[/img][/align][size=16px]药物粉体的比表面积就是备受关注的颗粒性质之一。药物粉体的比表面积直接影响其颗粒粒径、溶解度和溶出度等性质,在一定条件下,同等重量药物粉体的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快,通过对药物粉体比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。Radha R. Vippagunta等人曾进行了三种原料药API无定形含量、比表面积、流动性与辊压成型的相关性研究 [1]。实验均采用相同组分但不同批次的API进行无定形含量、比表面积、流动性和辊压测试,实验结果表明:随着API无定形含量增大,其比表面积增大,而药物粉体的流动性和辊压成型的片剂质量却相应变差;当无定形含量增大到一定比例后,药物粉体的比表面积会随无定形含量的增大而减小;纯无定形API的比表面积最小,且很难辊压成型。Smirnova I等人则是对药物载体二氧化硅气凝胶在提高难溶药物溶出速率方面进行了一系列研究[2]。研究表明二氧化硅气凝胶的比表面积越大则药物担载量越大,药物经过气凝胶的担载后溶出速率显著提高。综上所述,药物粉体的比表面积对控制药物性能非常重要,因此在美国药典USP ,日本药典JP 3.02、欧洲药典Ph. Eur. 2.9.26和2020年版《中国药典》通用技术0991中,都明确规定了药物粉体比表面积的测定方法。[/size][b][size=16px]比表面积是什么?[/size][/b][size=16px]通常被广泛使用的概念是表面积或外表面积,指物质暴露在外所有表面的面积之和,单位是平方米(㎡)。而比表面积指的是单位质量物质的表面积,单位是平方米/克(㎡/g),即物质的外表面积除以该物质的质量。[/size][b][size=16px]药物粉体的比表面积测试[/size][/b][size=16px]药物粉体比表面积的分析测试方法有很多种,其中气体物理吸附法是最成熟和通用的方法。其基本原理是测算出某种气体分子在药物粉体表面形成完整单分子吸附层的吸附量,乘以每个分子的覆盖面积即得到药物粉体的总表面积,再除以药物粉体的质量得到比表面积。[/size][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]在药物粉体的气体物理吸附测试中,药物粉体被称为吸附剂,被药物粉体吸附的气体称为吸附质。原则上只要和药物粉体不发生化学反应的气体均可用作吸附气体,目前使用最为广泛的吸附气体是氮气。气体分子在药物粉体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出,在各国药典中都明确指出吸附等温线的测定方法分为动态流动法和静态体积法,其中静态体积法是通用的测定比表面积的方法。比如麦克仪器公司的TriStar系列[b]比表面积测试仪[/b](如图1所示)和Gemini VII系列[/color][/size][/font][b]比表面积测试仪[/b][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333](如图2所示)两款静态体积法[/color][/size][/font][b]气体物理吸附仪[/b][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]就能够为各类药物粉体提供高精度、高效率和高标准的比表面积测试。由于药物粉体在生产和贮存过程中表面可吸附其它气体或蒸汽,因此在测定前一般需要采用真空或流动脱气法在脱气站(如图3所示)上选择合适的温度和时间对药物粉体进行脱气预处理,以确保比表面积结果的精密度和准确度。另外,TriStar[/color][/size][/font][font=-apple-system-font, BlinkMacSystemFont, Helvetica Neue, PingFang SC, Hiragino Sans GB, Microsoft YaHei UI, Microsoft YaHei, Arial, sans-serif][color=#333333][size=16px] II Plus[/size][/color][/font][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]系列和Gemini VII系列[/color][/size][/font][b]比表面积测试仪[/b][font=-apple-system-font, BlinkMacSystemFont, &][size=16px][color=#333333]还可配置满足21 CFR Part 11要求的confirm版本软件,其验证、安全、审计追踪、报告等功能可有效确保数据的安全性、真实性和完整性。[/color][/size][/font][size=16px] [/size][align=center][img=,200,279]http://img5.app17.com/EditImg/20200731/637318034457868701.png[/img][size=16px] [/size][/align][size=14px]图1 TriStar II Plus系列[b]气体物理吸附仪[/b]示意图[/size][align=center][img=,218,282]http://img5.app17.com/EditImg/20200731/637318034792645289.png[/img][/align][size=14px]图2 Gemini VII系列[b]气体物理吸附仪[/b]示意图[/size][align=center][img=,300,195]http://img5.app17.com/EditImg/20200731/637318035077189788.png[/img][/align][size=14px]图3 脱气站示意图:左为流动法脱气站,右为真空法脱气站[/size][b][size=16px]实验部分:[/size][/b][size=16px]1. 原料药API的比表面积测定[/size][size=16px]原料药是用于药品制造中的一种物质或物质的混合物,在疾病的诊断、治疗、症状缓解、处理或疾病的预防中有药理活性或其他直接作用,或者能影响机体的功能或结构。为了表征某种原料药的比表面积,使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行了77K(液氮温度)下的氮气吸附等温线测试。该原料药在相对压力0.994时的平衡吸附量仅8.7205 cm3/g STP;使用B.E.T方程处理该吸附等温线,通过计算可得到该原料药的比表面积为4.9453 m2/g,线性相关系数为0.9999(如图4所示)。[/size][align=center][img=,300,105]http://img5.app17.com/EditImg/20200731/637318035401046357.png[/img][/align][size=16px] [/size][size=16px]2. 药物辅料硬脂酸镁的比表面积测定[/size][size=16px]硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器公司的Tristar II Plus系列[b]比表面积测试仪[/b]对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该硬脂酸镁的比表面积为1.1251m2/g,线性相关系数为0.9999(如图5所示)。[/size][size=16px] [/size][align=center][img=,300,105]http://img5.app17.com/EditImg/20200731/637318035693390871.png[/img][/align][size=14px]图5:硬脂酸镁的B.E.T比表面积计算结果[/size][size=16px]3. 药物制剂缬沙坦的比表面积测定[/size][size=16px]缬沙坦是一款血管紧张素II受体拮抗剂抗高血压类药物,同样使用麦克仪器公司的Tristar系列气体物理吸附仪对其进行77K(液氮温度)下的氮气吸附等温线测试,在相对压力0.05-0.3区间内线性测试了11个点,选择其中3个点,使用B.E.T方程计算出该缬沙坦的比表面积为4.6611m2/g,线性相关系数为0.9999(如图6所示)。[/size][size=16px] [/size][align=center][img=,300,102]http://img5.app17.com/EditImg/20200731/637318035864835172.png[/img][/align][size=14px]图6:缬沙坦的B.E.T比表面积计算结果[/size][b][size=16px]结论[/size][/b][size=16px]药物粉体的比表面积是需要关注的重要参数之一,直接影响药物粉体的均匀性、流动性、溶解度和溶出度等性能,进而影响药物在体内的崩解、溶解和吸收。研究和掌握药物粉体的比表面积对制备出高性能的药物具有十分重要的意义。根据药典中的明确规定,可以通过气体物理吸附的静态体积法测试出药物粉体在液氮温度下的氮气吸附等温线,再结合B.E.T方程即可精确计算出其比表面积,便于对药物粉体/颗粒的性能进行初步预测,提高整体效率,优化产品质量。麦克仪器公司的Gemini VII系列和TriStar系列气体物理吸附仪采用静态体积法为各类药物提供高精度、高效率和高标准的比表面积测定,还可配置满足21 CFR Part 11要求的confirm版本软件,其验证、安全、审计追踪、报告等功能可有效确保测试数据的安全性、真实性和完整性。[/size][size=14px][b]参考文献:[/b][/size][size=14px]【1】 Radha R. Vippagunta, Changkang Pan, et. al., Application of surface area measurement for identifying the source of batch-to-batch variation in processability, Pharmaceutical Development and Technology, 2009 14(5): 492–498[/size][size=14px]【2】 Smirnova I , Suttiruengwong S , Seiler M , et al. Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels[J]. Pharmaceutical Development and Technology, 2005, 9(4):443-452.[/size][size=16px][color=#021eaa]关于麦克仪器公司[/color][/size][font=arial, helvetica, sans-serif][size=16px]麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将Micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问: [/size][/font][url=http://www.micromeritics.com.cn/][color=#0000ff][font=arial, helvetica, sans-serif][size=16px]www.micromeritics.com.cn [/size][/font][/color][/url]

  • 【求助】每次测比表面积都不准

    为什么每次测比表面积都不准所测样品为[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]白炭黑,用比表面积测每次测出来的结果都不一样,用的是纯氮气和氦气,套上液氮保存脱附峰利用仪器软件得到样品比表面积的,我们用同一个样品来测测出来的结果都不一样,有时差距很大,不知道什么原因,请高人指点迷津,在下不胜感激!!!!!

  • 【原创】智能型全自动氮吸附比表面积测定仪选型指南

    智能型全自动氮吸附比表面积测定仪选型指南高精度比表面积测定仪应具有如下十项特征:1、比表面积测定仪是否具有程控风热助脱系统 当样品在液氮温度-195.8℃下吸附饱和后要升温脱附时,需要使温度迅速升高,使吸附在粉体表面的氮气迅速脱附出来进入检测器;高速脱附可以使信号集中,得到尖而锐的脱附峰,有利于提高比表面积测定仪仪器的灵敏度和分辨率,另外尖而锐的脱附峰可以降低背景噪声影响,提高比表面积测定仪仪器测试准确度,尖锐的脱附峰是色谱工作者追求的理想峰形。在之前的半自动化比表面积测定仪仪器中通常使用人为将液氮杯更换为水杯,利用水大比热的特性使样品温度迅速升高到常温;但在全自动化比表面积测定仪仪器中,如果为便自动化而放弃辅助加热脱附,进行空气中自然升温脱附,由于玻璃的导热系数很低,升温缓慢,将使脱附峰矮而宽, 使背景噪声影响增大,降低灵敏度和分辨率,损失测试精度。程控风热助脱装置,全自动程控启停,风热时间可根据样品脱附快慢设定,保证得到尖锐快速的脱附峰,使出峰时间缩短,脱附峰尖而锐,减少背景误差。--比表面积测定仪2、比表面积测定仪氮气分压检测控制是通过流量传感器法还是浓度色谱检测器法 BET多点法比表面积测定仪测试中,按BET理论要求氮气浓度需要从5%调整到30%,氮气浓度检测是比表面积测定仪测试结果准确度的关键环节。在氮气浓度测试方面,流量传感器法是分别测量氮气和载气流量的方式来求氮气浓度。所采用的进口霍林威尔流量传感器的标称极限精度是0.1ml/min,对于5ml/min的氮气流速的比表面积测定仪测试最高精度只能达到2%。色谱浓度传感器测试氮气浓度,精度可达到0.1%以上,且不受流速范围影响;--比表面积测定仪3、比表面积测定仪是否具有程控六通阀标定系统;定量管体积是否可程控切换;六通阀是色谱仪定量的主要标定装置,有手动六通阀和电动六通阀之分;程控电动六通阀标定系统,标定过程软件全自动控制;定量管体积程控可选功能;对于不同样品,比表面从相差可能数千倍,其吸附氮气量也就相差悬殊,不能一个体积的定量管来标定所有样品吸附量。所以对于标定系统应接入不同体积的定量管,可达到更高的精确度。人工更换不同体积的定量管比较复杂,甚至打开机壳更换。程控定量管切换只需要在软件中设置接入号,电动切换。--比表面积测定仪4、比表面积测定仪是否具有一体式原位吹扫装置 分体吹扫炉形式的吹扫方式,样品吹扫处理时需要安装在与主机分置的吹扫炉上,处理完毕后拆卸下来再重新安装在比表面积测定仪仪器主机上进行测试。一体化吹扫处理系统相对分体吹扫炉具有两个优势:一是操作方便,只需一次安装;二是处理效果更好,避免了拆装样品管时样品再次与空气接触;(对于部分有机和生物粉体材料,其水份的质量百分含量可能比较大,若超过1%则需要吹扫处理前先进行烘箱干燥后再进行,否则需要吹扫处理后重新称重;)--比表面积测定仪5、比表面积测定仪是否具有吹扫定时功能吹扫程序定时,到时停止加热,声音提示,此功能使比表面积测定仪吹扫处理条件统一一致,也使操作者更安心于其他工作,而不必担心吹扫超时造成处理条件不一致;--比表面积测定仪6、比表面积测定仪是否具有气体净化冷阱装置 比表面测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面积测定仪测试中气体是连续流过待测样品,所以样品表面的水份等气体杂质会逐渐积累;具体影响见《水份对吸附过程的影响》。冷阱是消除高沸点气体杂质的有效方式,一般在高要求设备中会配备此装置;比表面仪配备的冷阱,使本会被样品吸附的水份等高沸点杂质提前被冷阱捕获,使得经过净化后的高纯氮和高纯氦气体中的水分含量低于10-17Pa,达到超高纯气体状态;7、比表面积测定仪是否具有检测器恒温系统 色谱法比表面积测定仪采用热导池做检测器;温飘是热导池检测器的主要误差成因,一般高精度色谱仪的检测器都具有复杂的恒温系统和温飘抑制消除系统,但同时使比表面积测定仪仪器成本增加;检测器恒温装置前后,可以使零点漂移由1%降低到0.1%,该装置对测试小比表面积样品(10m2/g)效果尤为明显;--比表面积测定仪 8、比表面积测定仪是否具有液氮温度实时监测功能; 比表面测试使用的液氮都是使用单位就近采购,一般都是气体厂制氧的副产品,其纯度不稳定性相差较大,使得液氮温度有±1℃左右的变化;氮气吸附量对液氮温度的变化很敏感;另外液氮杜瓦杯内液氮面的高低也对吸附量有影响;液氮温度监测传感器,可监测液氮温度和杜瓦杯中的液氮量是否充足。--比表面积测定仪9、比表面积测定仪是否具有气源开关指示与保护装置; 色谱仪一般都要求操作者在没有开气的时候不要打开电源,即“先开气后开电,先关电后关气”,否则可能发生检测器在没有通气的情况下通电而烧坏的危险;而气源指示与保护装置则使此危险去除。10、仪器参数是否软硬件同时显示; 比表面积测定仪器的主要参数包括主检测器电压、电流、浓度检测器电压、电流、主检测器输出电压信号、浓度检测器输出信号、信号放大倍数、液氮温度等。若比表面积测定仪仪器具有不但在软件上检测显示外,还在比表面积测定仪仪器的LCD液晶显示屏上硬件显示的功能,即使在电脑没打开或通讯异常时仍能明确掌握比表面积测定仪仪器状态,使得比表面积测定仪仪器可靠度更高;另外比表面积测定仪仪器的机械部分,如电机、脱附风扇、吹扫定时、气源开关状态等都具有硬件指示灯指示工作状态,复杂设备的各个部分工作正常与否的状态,在通过软件显示的同时,再使硬件指示是必要的; 气体流量的显示在有电子传感器之外,再通过机械转子流量计显示,将使流量有无、大小一目了然,更稳定可靠可靠的现代分析仪器可以只有一个控制按钮,但显示屏、指示灯等各部分运行状态指示不可省;

  • 比表面积测试时装样量的选择

    BET比表面积测试时,您是否遇到过:氮气脱附进行了很长时间也不结束?比表面积测试结果与经验值或理论值差距很大?吸附脱附等温线不闭合?等等实验情况,这都与样品装样量有很大关系,所以选择适当的装样量对于实验快速、准确的进行起着决定性的作用。因此在测试前应对样品的比表面积范围(超小、小、大或超大比表面积等)有个大概估计,以便确定所需样品质量范围。一般来讲,装样量遵循以下原则:http://img1.17img.cn/17img/images/201402/uepic/f950cc77-6a59-4bc8-a045-e8024cc679b4.jpg具体来讲,实验前确定装样量有什么影响呢?http://www.bjbuilder.com/zcuploadfile/20140115165040811.jpg 1、满足压力传感器的探测精度:比表面积及孔径分析仪要求氮气吸附时所测样品应能提供20-40M2的总表面积。彼奥德选用的进口高精度的压力传感器配合独有的“压力平衡点B-ST探测技术”(可参考SSA-7000系列、MFA-100系列科研型比表面积及孔径分析仪)保证压力探测时形成的吸附-脱附等温线很平滑,减小测试结果相对误差。 2、保证样品称量准确度:一般样品管的长度要大于万分之一天平的高度,称量时,天平上盖不能关闭。为了保证称量准确度,避免称量不受静电、空气干扰的影响,样品质量建议大于100mg。 3、节省实验时间:装样量过大样品提供的总表面积会过大,会增加不必要的测试时间。例如:脱附一直不结束;杜瓦瓶中的液氮没有了,但实验未完成。

  • 请问比表面积标准品的值做不进去

    最近部门买了一台美国麦克的TriStarII3020比表面积分析仪,有附了一瓶glass玻璃粉的标准品,比面积的值是5.2±0.3m2/g,里面有一张说明书,写说预处理的温度跟时间分别是300度跟30分钟,重量要用1g~1.5g,工程师来做都可以落入范围,可是为什么我们自己照着工程师说的方法做都偏低?想请问在进行比面积的测定有哪些地方需要特别注意?是tube的干燥度?预处理后的冷却时间?还是有哪些地方是很重要但是是我没注意到的?谢谢

  • 【第二届原创大赛作品】气体吸附BET法对石墨比表面积测量不确定度的评定

    气体吸附BET法对石墨比表面积测量不确定度的评定1.目的依据《GB/T 19587-2004气体吸附BET法测定固态物质比表面积》的标准,对石墨材料比表面积进行测定。对测定的不确定度进行分析,找出影响测定结果不确定度的因素对不确定度进行评估,如实反映测量的置信度和准确性。2.测定程序和仪器2.1测定程序 2.2测量仪器:NOVA 2000e 比表面与孔隙率分析仪建立数学模型根据BET方程可得数学模型为: BET方程: 式中:S---比表面积(m2/g) ---单层饱和气体吸附量(g) P---平衡吸附压力(mm汞柱) P0---液氮饱和蒸汽压力(mm汞柱) ---阿弗加德罗常数(6.023*1023个分子/mol); ---吸附质(N2)的分子量(g/mol); ---脱气后样品的重量(g); ---吸附质(N2)的截面积(Å 2); ---分别为BET方程中的斜率和截距; , ,所以可以求出 ---样品带来的不确定度。因实验室自己不取样,主要由IQC自己取样,且取样严格按照GB13732来取样因此 近似为1。从而可以将数学模型简化为: 将 看成是一个复合常数B则数学模型变成: 3.分析确定不确定度来源3.1测量重现性根据以上可以得到 由于BET方程在P/Po小于等于0.3时是一条直线方程,而实际测试的仅是小于等于0.3的吸附平衡点,并通过这些点来拟和得到一条直线方程,并用拟和后的直线方程来计算斜率s和截距i。所以用A类评定方法分别对s和i评定得到测量重现性的不确定度。3.2由常数带来的不确定度3.2.1 ---阿弗加德罗常数的不确定度;3.2.2 ---吸附质(N2)的分子量的不确定度;3.2.3 ---吸附质(N2)的截面积的不确定度。所有常数的不确定度的均可按照B类方法来评定。3.3脱气后样品质量 带来的不确定度3.3.1天平的不确定度;3.3.2天平重复性称样引起的不确定度。3.3.3脱气时间和温度对样品脱气的重量的影响。天平的不确定度可以通过校准证书上得到,天平重复性和脱气对样品的重量引起的不确定度可以通过A类方法来评定。基于以上分析,气体吸附BET法测定固态物质比表面积法测定石墨材料的比表面积不确定度来源因果图如下:

  • 在测试比表面积之前,为什么需要脱气处理

    一、比表面积测试为什么要对样品脱气预处理?目的是除去样品表面吸附的杂质,如水、油等,一般是将样品在真空下加热处理。由于比表面积和孔隙度的测定与颗粒的外表面密切相关,且气体吸附法测定的关键是吸附质气体分子“有效地”吸附在被测颗粒的表面或填充在孔隙中,因此样品颗粒表面的是否“洁净”至关重要。样品处理的目的主要是让被非吸附质分子占据的表面尽可能地被释放出来,以便测试过程中有利于吸附质分子的表面吸附,一般的样品测定前都需进行预处理,处理的方法依测定的样品特性进行选择。一般情况下,大多数样品需要去除的是其表面吸附的水分子,因此高于100℃(一般取105℃-120℃)常压下的烘干即可达到此目的,这样有利于简化操作流程。对于含微孔类的或吸附特性很强的样品,常温常压下就很容易吸附杂质分子,或是在制造过程中导致其表面吸附很多其它分子,通常情况下有必要在真空条件下进行脱气处理,有时还必须在预处理过程中通入惰性保护气体,以利于样品表面杂质的脱附。总之,样品预处理的目的是使样品表面变得洁净,以确保比表面积及孔径(孔隙度)测量结果的准确有效。二、如何选择样品的脱气温度?系统温度越高,分子扩散运动越快,因此脱气效果越好。通常仪器配备的脱气站加热温度可达400℃,但是选择脱气温度的首要原则是不破坏样品结构。一般来说,氧化铝、二氧化硅这一类氧化物的安全脱气温度可达350 ℃;大部分碳材料和碳酸钙的安全脱气温度在300℃左右;而水合物则需要低得多的脱气温度。对于有机化合物,也可以通过脱气站进行预处理,但是大部分有机化合物的软化温度和玻璃化温度较低,因此必须提前加以确认。例如在医药领域常用的硬脂酸镁,美国药典(USP)规定的脱气温度为40℃。如果脱气温度设置过高,会导致样品结构的不可逆变化,例如烧结会降低样品的比表面积,分解会提高样品的比表面积。但是如果为了保险,脱气温度设置过低,就可能使样品表面处理不完全,导致分析结果偏小。因此在不确定脱气温度的情况下,建议使用化学手册,如the Handbook ofChemistry andPhysics(CRC,BocaRaton,Florida),以及各标准组织发布的标准方法,如ASTM,作为相关参考。脱气温度的选择不能高于固体的熔点或玻璃的相变点,建议不要超过熔点温度的一半。当然,如果条件许可,使用热分析仪能够最精确地得到适合的脱气温度。一般而言,脱气温度应当是热重曲线上平台段的温度。三、如何确定样品的脱气时间?与脱气温度对应的是脱气时间。脱气时间越长,样品预处理效果越好。脱气时间的选择与样品孔道的复杂程度有关。一般来说,孔道越复杂,微孔含量越高,脱气时间越长;选择的脱气温度越低,样品所需要的脱气时间也就越长。可以通过在相同脱气温度下,分析样品的BET 结果变化来确定脱气时间。如果在不同的脱气时间(2小时,4小时和6小时)得到的BET 结果相同,肯定选择脱气时间最短的;如果变化不大,则需要选择折衷的方案;如果BET 结果随脱气时间延长不断变大,说明孔道复杂,深层次有因氢键结合的吸附水分子,暴露了被堵塞的孔道及面积。对于一般样品,IUPAC 推荐脱气时间不少于6小时,而那些需要低温脱气的样品则需要长得多的脱气时间。对一些微孔样品,脱气时间甚至需要在12小时以上。但是作为特例,美国药典(USP)规定硬脂酸镁的脱气时间就仅为2小时。由于脱气温度、脱气时间以及脱气真空度都与比表面积值有关,所以BET 结果存在误差是不可避免的。所以,测样时需要固定样品处理条件进行相对比较。与文献值比较时,也要注意文献上的样品预处理和分析条件。样品脱气时,应该选择真空脱气还是流动脱气?两种方法各有什么特点?流动脱气一般是用于比表面快速分析的,它对于除去表面大量弱结合的吸附水非常好,但对在孔道中吸附的水,只有经长时间吹扫使之扩散至表面,才能被带出。真空脱气对于除去表面大量弱结合的吸附水是不好的, 因为水会在泵中扩散,导致泵的抽力下降。 但对孔中吸附的水,不需要经很长时间就能扩散至表面,继而被带出。所以,对于含水量较高的样品,应先在烘箱中烘烤过夜,再上真空脱气站,以保护真空泵。对于真空脱气来说,其对样品清洁能力明显优于流动脱气,但同时需要考虑的是真空度不同,脱气效率是明显不同的。对于含有超微孔样品,深层次的吸附水分子因氢键结合可以堵塞孔道,它们必须经过分子泵脱气才能清除,即脱气站真空度必须达到与分析站同样的真空度。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制