当前位置: 仪器信息网 > 行业主题 > >

四元低压梯度比例阀的工作原理

仪器信息网四元低压梯度比例阀的工作原理专题为您提供2024年最新四元低压梯度比例阀的工作原理价格报价、厂家品牌的相关信息, 包括四元低压梯度比例阀的工作原理参数、型号等,不管是国产,还是进口品牌的四元低压梯度比例阀的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合四元低压梯度比例阀的工作原理相关的耗材配件、试剂标物,还有四元低压梯度比例阀的工作原理相关的最新资讯、资料,以及四元低压梯度比例阀的工作原理相关的解决方案。

四元低压梯度比例阀的工作原理相关的资讯

  • 岛津推出LC-20AP制备用四元低压梯度比例阀FCV-200AL
    岛津公司现推出适用于LC-20AP制备液相系统的四元低压比例阀FCV-200AL。 结合LC-20AP与FCV-200AL,可组成用于制备的低压梯度系统(LC-20AP Quaternary),该系统最多可以选择使用四种流动相。LC-20AP Quaternary最高流速可达50mL/min,可涵盖普遍用于实验室半制备所采用的内径为2厘米至3厘米的色谱柱,并适合于半制备级梯度分析。LC-20AP 在高速输液时同样表现卓越,并且可以使用高分离度以及高性能色谱柱。从合成化合物的综合检查与纯化、到天然产物的净化与杂质分析,LC-20AP Quaternary 为更广范围的应用提供了强有力的工具。 LC-20AP Quaternary 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312· 浦西分公司 (021) 2201-3888· 广州分公司 (020) 8710-8661· 四川分公司 (028) 8619-8421· 沈阳分公司(024) 2341-4778· 西安分公司(029) 8838-6350· 乌鲁木齐分公司(0991) 230-6271· 昆明分公司(0871) 315-2986· 南京分公司(025) 8689-0258· 重庆分公司(023) 6380-6068· 深圳分公司(0755) 8287-7677· 武汉分公司(027) 8555-7910· 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 低压比例阀高盐升级组件
    方案索引对于LC-20A、LC-30A、LC-16系列低压梯度系统,高盐流动相可能导致四元低压梯度比例阀中走有机相的电磁阀损坏或闭合不严,增加了仪器故障率,高盐升级组件HSK解决了这一问题。低压比例阀高盐升级组件LPGE Update Kit for High Salt Mobile phase(P/N HSK-00020-01)01四元低压比例阀被广泛使用对于高效液相色谱来说,四元低压比例阀因其有四种溶剂,既可两两组合组成二元梯度洗脱,也可以选择三种溶剂或四种溶剂组成三元或四元梯度系统,还可以选择其中的某一种或多种溶剂来用于分析后自动冲洗色谱柱,因此深受广大用户喜爱。同时,四元低压比例阀可以在单个液相泵上升级加装,成本优势明显。02高盐流动相时有机相比例阀易损坏缓冲盐水溶液、甲醇、乙腈等等都是常见的液相色谱流动相。对于老型号四元低压梯度的液相系统,当使用高浓度缓冲盐和有机相作为流动相分析时,因有机相和高盐流动相交界的位置会有盐结晶析出,该盐晶体如不能及时复溶则会导致盐粒析出、阀闭合不严、流动相比例不准,压力波动、基线波动、分析结果异常等现象,而且也会影响低压比例阀的寿命,影响仪器单向阀、柱塞杆、柱塞密封垫等消耗品的寿命,影响色谱柱的使用寿命。03解决方法:高盐升级组件岛津低压比例阀高盐升级组件采用新型材料阀组件,改变之前四个电磁阀水平放置在同一个水平面的方式,而是把阀A&D放在底层,阀B&C放在上层,利用有机相、水相及盐晶的密度差,使盐晶体下沉并尽快复溶,从而解决上述问题。工作原理低压比例阀的4个电磁阀两个位于不同的水平高度,A&D 用于水相(高密度)在低水平位置,其中D推荐纯水;B&C 用于有机相(低密度)在高水平位置,流路中缓冲盐如果析出,由于重力下沉,被D路和A路中的水溶解。从而解决缓冲盐晶体进入流路的问题。产品优势1 ► 耐高盐:对于之前因高盐导致比例阀过早损毁的用户,可选择该组件直接升级。2 ► 升级方便:对于单泵用户,也可以通过追加该组件、控制电路板、混合器、脱气机升级成四元低压梯度洗脱。适用范围用于岛津LC-20A,LC-30A,LC-16系列低压比例阀的升级。订货说明
  • 第15期线上讲座:泵与比例阀的结构原理与常见故障
    答疑解惑时间:2009年7月8日---7月24日热烈欢迎pandora98先生光临仪器论坛进行讲座!  在4月份我们刚在液相色谱与液质联用版面联合举办第12期的线上讲座---剖析液相色谱仪和液质联用仪,而今液相色谱版面又迎来了新一期在线讲座。  本期讲座我们邀请了pandora98先生就泵与比例阀的结构和工作原理以及常见故障展开一期专题讲座。本期讲座共分两章,第一章是对泵的单向阀、泵的比例阀、泵的梯度系统等的结构及工作原理进行详细阐述 第二章就对泵的单向阀漏液、泵的比例阀漏液、二元泵的问题等常见故障进行详细的解剖,并介绍自己的维修的经验及心得体会。  本次的线上讲座将开展16天(2009年7月8日---24日)。这次讲座以某一款仪器为例,主要讲解泵、泵的单向阀、比例阀的知识,重点介绍泵与比例阀的常见故障及pandora98老师的维修经验、心得。希望大家珍惜此次交流机会,共同参与探索液相色谱泵的奥妙之处,有利于提高液相色谱的操作能力。  再次感谢pandora98先生提供的丰富的讲座,也感谢pandora98先生与大家一起交流心得和经验。pandora98先生从事色谱分析工作多年,有丰富的实践经验,欢迎大家就液相色谱仪器泵的单向阀、比例阀的的问题前来提问,也欢迎液相色谱方面的高手前来与pandora98先生一起交流切磋。第15期线上讲座泵与比例阀的结构原理与常见故障 线上导览论坛线上活动导览
  • 液相色谱多元高压泵与低压泵的区别与比较
    液相色谱多元高压泵与低压泵的区别与比较 我们在使用高效液相色谱仪做分析时通常会接触到多元泵。所谓几元,指的是能同时控制流路的多少。多元泵又分为高压混合与低压混合。高压混合又叫泵后混合,多元高压泵由多个泵构成,有几元则有几个泵,例如LabAlliance的PC2001型二元高压梯度泵、Series 4000系列的四元高压梯度泵等。低压混合又称泵前混合,其实就是一个泵,几元就是安装几路电磁阀,例如Agilent 1200型四元低压梯度泵等。为方便理解,附图如下(以四元泵为例):如图所示,四元高压梯度:配置有四个可独立工作的泵+在线混合器。工作方式为四个泵并联,可同时有四个流动相,按照预先设定的配比进入,分别送液到泵后的混合室内,在高压下进行混合,混合配比更准确,不易产生气泡,不用为了转换流动相而反复清洗,不仅节省溶剂,也提高了工作效率。无需增加真空脱气机,降低了混合死体积(泵前混合时、混合管、泵头等体积,脱气机内死体积)。同时,可以做梯度洗脱:当待测样品成分复杂,用一个固定的流动相配比无法将样品中成分完全分开时,就需要用到梯度洗脱,在同一个分析过程中由仪器自动改变流动相配比,将样品中前期无法分离的物质进行洗脱,在同一谱图中得到分开的峰的效果。有助于提高分析准确性,避免了遗漏重要物质或对其进行错误定性定量。 然而,四元低压梯度:配置比较繁琐:由单泵+低压混合比例阀(电磁阀)+在线脱气机+混合器构成,它的工作方式也与高压梯度泵有很大区别:最多可同时有四个流动相进入流路,按照预先设定的配比进行混合,是依靠电磁阀的切换使泵分段输送不同流动相,由于在常压下混合,气泡很容易从溶剂中析出,较易产生气泡,因此必须配备在线脱气机,可消除气泡影响。可以做梯度洗脱,在仪器上进行设定之后,在同一样品分析工程中,相隔一段时间后,按照用户的设定自行改变流动相配比,将样品中组分分离开来。目前HPLC仪器制造厂家大都推出四元低压梯度(带在线脱气)系统,而在数年前大都是二元高压梯度,以往四元低压系统通常是进口仪器的专属产品,国内大多采取高压混合的方式,并没有涉及到低压系统的应用开发,在国内有些招标项目中也有明确提出选用四元低压的案例,广大客户可能会误以为四元低压是进口仪器的先进技术,实则不然,四元低压实际上是对二元高压的补充,也就是说当比例发生改变的流动相数量较多,二元高压不能满足分析的时候,四元低压弥补了这一不足。但如果比例发生改变的流动相数量在2个以内,包括2个,应该来说二元高压梯度系统在作高精度分析时优势明显。从目前的售价看,四元低压的泵比二元高压的并低不了太多,但他们节约的成本是不少的。四元低压梯度系统采用单泵加梯度比例阀来实现,因为比例阀是在泵前的,并且各流路的溶剂在比例阀里就混合在一起了,所以是泵前、低压混合。一般地,对于常规分析来说,四元低压梯度也可以满足需要;如果分析样品成份复杂、对重现性要求较高,或者需要在低流量下进行梯度分析,还是选择高压梯度好一些。当然,现在美国SSI(LabAlliance)公司推出的四元高压梯度泵,在保证高精度分析的同时,也解决了流动相数量受限制问题。液相色谱从性能上比较,四元高压肯定优于四元低压。四元高压的混合比例是通过改变泵的流速来获得的,通常泵的流速都是很准的,所以混合的精度也是很高的。四元低压梯度的混合比例是通过控制不同流路的电磁阀的开闭时间长短来控制的,理论上混合的比例也是准确的,但是实际上电磁阀的开闭会有一个延迟,无论它动作多么快,总还是需要一点时间的。比如A路和B路各50%混合,在单位时间内,A路和B路的电磁阀各开通50%的时间,这时问题不大,电磁阀的延迟影响可以通过调整补偿系数来尽量弥补。但是如果极端一点的情况,A路99%,B路1%,这种情况下单位时间内,A路的电磁阀开通99%的时间,B路只占 1%,时间是很短的,这时B路电磁阀的延迟就影响很大了,甚至可能延迟的时间比工作的时间还要长。这是两个管路的情况,假如四个管路同时工作,其结果可想而知。高压梯度就不会存在这种问题了。此外,低压还应注意清洗,尤其使用缓冲盐时,电磁阀送液管路很容易堵住。
  • 浙江福立FL2200-2四元低压梯度液相色谱仪获BCEIA2009金奖
    我公司FL2200-2四元低压梯度液相色谱仪获得由中国分析测试协会主办,中华人民共和国科学技术部批准的第十三届北京分析测试学术报告会及展览会(BCEIA2009) 金奖。 本届大会主席由中华人民共和国科学技术部副部长刘燕华博士担任,学术报告会主席由中科院汪尔康院士担任。
  • 瑞士Labomatic公司发布最新一代制备级HPLC的梯度泵HD-5000
    世界知名制备液相色谱和自动液体处理系统制造厂家---瑞士Labomatic仪器公司推出了最新的创新成果LABOMATIC HD-5000 用于制备级HPLC的最新一代含内置系统控制器的三柱塞梯度泵LABOMATIC HD-5000 NEW triple piston gradient pump with an integrated system controller for preparative HPLCLABOMATIC最新一代 制备级HPLC梯度泵LABOMATIC HD-5000是在LABOMATIC HD-3000 HPLC泵的基础上进一步创新产品。与其前代型号一样,HD-5000包括一个系统控制器和一个实现无脉冲液体输送的泵体。并且,正如现有用户所知道的一样,这个最新的系统的设计依然保证了极度耐用、低维护要求、以及能够满足各种制备级HPLC的要求所必须具备的高度灵活性和全面的功能性。重要特点NEW:流速范围2-4920ml/minNEW:可控制12个以上的泵NEW: 可控制20个以上的静止阀或脉冲阀NEW: 6种不同的泵头可选,并彼此可组合NEW: 常规的流量模式或恒压模式NEW: 可程序设定流量梯度NEW: 主动式低压梯度混合系统NEW: 7&rsquo &rsquo 彩色触摸屏和直观菜单NEW: USB/LAN 端口进样精度可达µ L最高压力达600 bar (8700 psi)含一级柱塞和二级柱塞的三柱塞系统柱塞后清洗功能确保了含缓冲液的洗脱液的使用方法编辑和控制整个HPLC系统二元、三元和四元高压或低压梯度洗脱特殊的泵体设计可耐压达600 bar (8700 psi):特殊的泵身设计可以满足低压或高压HPLC梯度,根据要求可以最高施加压力达600 bar (8700 psi)流速范围2-4920 ml/min:由于采用了平行多泵单元设计,LABOMATIC HD-5000可以实现最高流速答4920ml/min。有6种不同流速的泵头供选择。不同泵头可以彼此组合。无需人工手动预混合:如果LABOMATIC SP-3000模块被集成到HPLC系统中,进样进度可以控制到µ L范围,例如DEA或TFA。无需人工制备预混合液体。常规流量模式或恒压模式:除了常规的流量控制模式外,HD-5000还能以恒压模式运行。在恒压模式下,整个运行过程中系统保持在预先设定的工作压力下并不断调节流量。这个性能对于装柱、玻璃柱或对平衡非常有用。由于流量和压力模式可以自动进行切换,比如在上样时,这种在流量和恒压模式之间的改变就非常有用。主动式低压梯度混合系统:参见LABOMATIC HD-5000 低压梯度模块 可编程流量梯度:流量和压力梯度可以进行设定并保存在方法中。流量梯度可以同时应用于高压或低压梯度程序中,尽管对低压梯度的要求特别苛刻。流量梯度适合于,比如,最佳的上样过程。操作和控制非常方便:全新的更大的触摸屏,以及全新的直观菜单设计使操作更加方便。所有的方法都可以进行编程并存储在控制器中。比较新颖的是几个方法可以依次运行。当然也可以用LABOCHROM5软件通过电脑控制HD-5000。和所有5000系列LABOMATIC设备一样,HD-5000也配置有USB和LAN端口。 LABOMATIC HD-5000低压梯度模块独特的主动式低压梯度混合模式全新的独特混合模式是专门为显著降低液体的气体释放而专门设计的。特殊阀门根据梯度曲线和流量进行自动控制。低压梯度可以设定到更宽的范围从2% 到98%,而不是常规的仅限于5% 到 95% 重要特点低压梯度可以设定到更宽的范围从2% 到98%在泵头位置直接连接主动混合系统,降低了液体中气体的释放独特阀门可根据梯度曲线和流量进行自动控制 更多信息请关注!Beijing AnWeiAn Lab Equipments Co.,Ltd北京安唯安实验设备有限公司Add: Rm.4029, Yunhang Building, No.9 Kunminghu Nanlu, Haidian, Beijing, PR.China地址:北京市海淀区昆明湖南路4029室Post code:100195Tel: +86 10 88132032Fax:+86 10 82386759Web: www.al-tt.com NetShow: www.instrument.com.cn/netshow/SH102845/
  • 上海同田Grad50型中压二元梯度泵/色谱泵/液相泵/柱塞泵 研制成功
    Grad系列中压二元梯度泵由两个高性能的可单独工作的泵组成, 任一泵均可独立操控,避免了低压梯度系统中泵一旦出现故障则系统完全瘫痪的缺点, 中压梯度形成于泵出口,大大降低了低压梯度形式下的混合死体积,使梯度更易于控制,中压梯度混合方式消除了低压梯度混合经常出现的气泡问题,重现性好。 耐腐蚀 高精度 低脉冲 主要特点 采用双柱塞结构,压力脉动小,宝石球寿命长; 采用进口宝石柱塞和宝石球,确保流量精确; 接触介质材料耐有机溶剂腐蚀; 内建过压保护和流量校正系统 ; 大屏幕液晶显示; 精心设计的排气装置有效除去输送液体中的气泡。 流量与压力设定可记忆www.tautobiotech.com/Products_03_03_Grad50.htm
  • 莱伯泰科推出四元低压色谱系统
    莱伯泰科公司从2008年4月1日起正式上市销售四元低压梯度色谱,本系统采用高精度电磁阀、内置式的脱气机和独立的梯度控制混合器为主体,可以进行2-4种溶剂的混合和脱气,配置高精度高压恒流泵及紫外检测器,全电脑自动化控制构成的四元低压梯度色谱系统。该系统在中草药有效成分的分离和提纯,药品生产过程的质量控制以及新药的研究与开发,生命科学的研究,食品卫生的控制与检验等等领域有着广发的应用,望关注莱伯泰科公司产品的广大用户广为利用,同时莱伯泰科将继续开发新的系列和高质量的产品,以满足市场和销售的需要。 更多信息,请与LabTech联系!
  • Tiya梯度稀释仪——梯度稀释小能手,快速、准确、实用
    梯度稀释是微生物实验中的常规操作,在食品安全、生化医药,环境监测,卫生防疫,农业研究等领域都有广泛的应用需求。 微生物实验操作中最繁琐的步骤就是样品的稀释,需要实验人员的反复的加液振荡混合直到标准所需,人为的操作循环重复,也容易带来比较大的样品误差,给微生物工作者带来了太多的烦恼。您辛苦了! 不过,现在有Tiya梯度稀释仪来帮您解围了!工作原理 参照传统人工稀释操作过程,遵循国家标准,恒奥科技以专业无菌操作理念打造出了自动化梯度稀释设备。 加注稀释液--加样--原位混匀--取换枪头--连续稀释,整个过程“一键搞定”。自动识别管位,操作简捷,上样连续可选,扩展功能丰富。特点 ※ 机型体积小巧,方便安装于层流超净工作台或局部百级净化区,也可自带FFU百级净化单元,动作幅度小,减少操作中空气扰动,避免污染。 ※开机自动校准注稀释液量(9mL、4.5mL),注液准确度有保证。高精密度注射泵样品移液,取液量1mL或0.5mL可选,确保一致性。 ※自动替换枪头,液体接触管路及部件均可灭菌消毒,保证稀释过程安全无菌,符合国家标准。 ※高效率样品稀释,无样品限量,每梯度稀释平均参考时间为15s,有效缩短实验时间。专利的原位混匀技术和专利防溅出试管设计,保证混匀过程一致有效,实现混匀样品的同时也防止交叉污染。 ※信息溯源:可储存5种稀释方案,人机交换操作方便明确,自动留存样品及操作人信息,可通过USB接口导出,方便追溯。配套专利试管 玻璃材质,可重复使用;按需提供,保证实验速度。也可选配经济型一次性试管(PP),免去清洗步骤,实验准备更快捷。应用实例1. 疾控系统及三方检测用于消毒剂杀菌实验中的梯度稀释。(消毒技术规范-2002版)2. 食品微生物检测中对样品液的稀释(平皿法和MPN法)。也可应用在益生菌生产过程中的相关检测。(GB 4789.2-2016 GB 4789.3-2016 等)3. 国家药典2020版四部通则中《1108中药饮片微生物梯度检查法》规定的样品稀释过程。4. 对于较高粘样品的样品梯度稀释,有专用的多次混合和清洗枪头程序可选择。(GB/T16347-1996)5. 环境卫生检测用于各种水质的微生物污染环境实验中。(GB 5750-2006)6. 该装置亦可根据用户需求定制扩展功能,用于样品转移,配比,稀释等。
  • 通用仪器发布深圳通用血药浓度分析仪的功能参数与优势新品
    GI-3000XY血药浓度分析仪的功能参数与优势 一、产品简介GI-3000XY是基于二维高效液相色谱技术上研发的血药浓度分析仪。配备了丰富的临床治疗用药的血药浓度检测方法和专业色谱工作站软件,使其成为一套具有功能强大的在线前处理功能、药检方法丰富的全智能化操作的血药浓度监测专用设备。能够使血药浓度监测从原来的实验室研究可以走向临床用药监测和指导。填补了该项目空白,具有划时代意义,为国家对某些药物治疗必须要进行血药浓度监测强制性要求提供了必要设备和手段。 二、产品五大优势:(1)产品技术优势:采用第三代液相色谱仪技术, 恒流泵采用高精度伺服电机驱动精密滚珠丝杠的丝杠传动技术、100MPa超高耐压技术,自动进样器采用电脑全自动控制高压进样、流动相过针技术,检测器采用高频采样技术(频率80HZ)(2)产品方案优势:采用全自动二维液相色谱技术方案,是先进、具有发展前途的血药浓度检测仪技术方案,也是目前较适应临床监测的方法。其它传统方案均不适应临床监测。(3)药检方法多优势:配有丰富的临床药物检查方法,可满足医院各科临床药物检测。比如:精神病、癫痫病、免疫抑制、维生素、抗肿瘤、抗菌素、心脏药物等等。(4)专用仪器优势:产品针对血药浓度检测目的研发,检测系统整体统一设计、生产,系统整体性强,配合度高,重复检测精度高、系统稳定性、耐用性好。(5)厂家售后服务优势:厂家销售,厂家售后服务、后续软件免费升级、功能定制、产品维护服务都有保障。 三、主要功能与技术参数:1、检测系统综合功能参数(1)检测分析方法:采用高效液相色谱法★(2)仪器系统采用技术:二维液相色谱技术,具备二维系统直观引导、操作界面。(3)仪器软硬件各个部分都保持统一由一个原厂设计制造,确保仪器系统整体一致性好,稳定性强★(4)每例样品检测时长:5-10分钟★(5)加标回收率:必须在90%-110%范围(6)系统重复性RSD6(定性):≤0.05%(7)系统重复性RSD6(定量):≤0.2%★(8)机载配备临床治疗药物浓度检测方法30种以上。(9) 样品处理仅采用稀释去蛋白处理(10)工作曲线最少保持30个工作日内稳定 2、自动进样器:★(1)样品瓶位数量:不小于144个(2)样品残留:小于0.005%★(3)自动进样器,要采用高压进样,流动相过针技术,无需清洗进样针内壁,外壁自动清洗,可减少样品残留。 (4)采用高压计量泵量自动抽取,通过电脑随时改变进样量大小,无需更换定量环。 (5)进样前可自动清洗进样针外壁,减少样品交叉污染 (6)电源功率220v±10%,50hz 150w 3、四元超高耐压恒流泵:★(1)采用双步进电机,分别独立驱动二根精密滚珠丝杆的恒流泵输液系统,柱塞冲程20uL-140uL可调,可用电脑方便地设置调节。(2) 恒流泵耐压:80-100MPa(3)压力脉动:≤±0.02MPa。 (4)内置四元梯度比例阀,比例阀寿命 1000万次 ★(5) 具有5寸16:9的TFT高分辨率触控彩屏(800*480点阵)。并具有大屏幕直接操控与电脑软件反控二种功能(6)输液泵系统,不需要独立梯度混合器,梯度混合在泵内完成,以减小死体积,提高系统重复检测精度。 (7)内置在线脱气机,脱气机采用高效Teflon AF管,脱气机死体积300uL (8) 流量范围:0.001-9.999ml/min;设定步长:0.001mL/min(9) 流量精度:±1%; (10)精密滚珠丝杆驱动双柱塞往复泵,具有压力实时检测显示、高压限、低压限报警、随系统压力变化流速自动补偿 (11) 泵的压力可精确显示到0.01MPa,便于进一步观察掌握压力波动的细微变化。 4、综合分离分析单元: (1) 温度控制范围:5℃~80℃(室温<25℃);(2) 温度控制精度:≤±0.1℃;(3)高柱效分析柱 4.6*100(mm) 粒径3uL(4)在线SPE柱 4.6*10 (mm) (5) 综合单元的参数可由色谱数据处理工作站进行设定和控制 (6) 温度可双方向控温:可制冷和制热,智能温控。(7) 温度设定分辨率:0.1℃(8) 综合单元具有电脑软件反控功能 5、紫外检测器:(1) 波长范围:190nm-700nm;(2) 基线噪声:≤±1×10-5 AU(甲醇、1ml/min、254nm、20℃); (3) 基线漂移:≤±3×10-4 AU/h(甲醇、1ml/min、254nm、20℃);(4) 检测浓度:≤2×10-9g/ml(萘);(5) 光谱带宽:5nm;(6) 波长示值误差:≤±1nm;(7) 波长扫描:多波长时间编程(10波段);(8) 检测器具有电脑软件反控功能(9) 检测器采用双通道数据、高精度24位AD转换、信号采样频率高达80hz/s高速数据采集器,确保检测器的高速度、低噪声、低漂移、超高灵敏度检测。 (10) 采用新型H型流通池,双方向对流,保证基线的波动小(11) 池体积:8μL; 6、高压稀释泵:(1) 泵压力:0-45mpa(2) 流量范围:0.001-9.999ml/min;设定步长:0.001mL/min(3) 流量精度:±1%;(4)电脑控制,具有在线自动稀释功能。无论进样量大小,不需氮吹操作,全自动处理,免除人工干预麻烦。 7、色谱工作站:★(1)软件由原厂统一设计、具有独立的公有和私有的仪器方法,分析方法,报告方法的设置,修改私有方法时不改变公有方法,方便样品表方法的建立和管理。仪器方法、分析方法与报告方法的建立、修改、删除都具有权限管理和审计追踪功能,数据库更安全高效。(2)软件具有满足GMP要求的用户权限管理,审计追踪功能(3)软件带有有MySQL数据库管理功能,所有关键数据均存入数据库,具有数据的导入导出功能。(4)机载四十种临床药物检测方法,方便用户临床检测使用。软件方便用户进行药检方法开发并保存。 ★(5) 控制方式:具有电脑反控功能。(6)主界面可以可以完成大部分操作,不要多个界面中来回切换。(7)具有样品表批处理功能,即样品表建立后,可一键完成全部的样品测试。样品完成后可设置自动冲柱,智能关机,实现无人值守。 (8)软件要高度集成,数据设置、采集、分析和查看一个软件完成,操作方便。 数据分析以实际采集的数据为依据,确保数据真实性。 (9)软件采用纯面向对象的JAVA语言编写,软件具有高扩展性,和跨平台运行功能。(10) 软件能对系统进行全反控操作控制、自动数据采集、谱图处理等。 (11) 使用的方法文件能对色谱仪的分析参数、谱图数据、分析报告进行存储与统一管理; (12) 全中文操作菜单, 直观方便的人性化操作界面; (13) 工作站具有多形式的谱图比较功能,有利于色谱研究; (14) 工作方式:前后台实现数据采集、计算、整理、储存和打印 ★8、验收试验设备验收时,必须做加标回收率实验,加标回收率是判定仪器检测分析结果准确度的量化指标,加标回收率:必须在90%-110%范围, 四、仪器配置1、四元超高耐压恒流泵系统 (内置四元比例阀、在线脱气机、含在线柱塞杆清洗装置) 二套,2、四单元在线脱气机(内置) 二套,3、UV紫外检测器系统 一套,4、综合分离分析系统 一套,5、自动进样器系统 一套,6、高压稀释泵 一台7、色谱控制软件系统 一套,8、高柱效分析柱 一根9、SPE固相萃取柱 五、产品适用范围仪器检测药物种类多、品种广泛,并可不断开发新的药检方法。(1)精神科药物:氯氮平、奥氮平、文拉法辛、利培酮、西酞普兰、舒必利、阿立哌唑、米氮平、阿米替林、氯丙嗪、喹硫平、氯米帕明、齐拉西酮、帕利哌酮、三氟拉嗪、氟西汀等等。(2)抗癫痫药物:卡马西平、丙戊酸钠、苯巴比妥、苯妥英钠、奥卡西平、左乙拉西坦、拉莫三嗪等等。 (3)催眠镇静类:阿普唑仑、氯硝安定、硝基安定、咪达唑仑、安定、舒乐安定、劳拉西泮等等。 (4)抗肿瘤药物类:顺铂、卡铂、紫杉醇、甲氨蝶呤、5-氟尿嘧啶、阿糖胞苷、阿霉素、表阿霉素、足叶乙苷、卡莫司汀、呋喃氟尿嘧啶、环磷酰胺、异环磷酰胺 等等(5)维生素类:维生素A、D、E 等等。(6)免疫制剂类:霉酚酸、特异性环孢霉素、FK-506 等等。(7)其它类别:单胺类 、镇痛类药物、激素类药物、心血管类、抗结核类药物、 循环系统、 胃肠道药物 、其他药物等等。 创新点:采用丝杠传动技术,用二个伺服电机分别驱动主泵与辅泵的二根滚珠丝杠,进而驱动柱塞杆运动,二者独立控制,无齿轮传动联动,因此主辅二个泵的冲程独立任意可调,为液相色谱仪流动相的梯度混合、在泵内完成提供前提条件,从而可以去掉泵外的独立梯度混合器,减小死体积,提高仪器的重复检测精度。深圳通用血药浓度分析仪的功能参数与优势
  • 深圳先进院提出梯度光场编码的双光子快速三维成像技术
    近日,中国科学院深圳先进技术研究院研究员郑炜团队提出一种基于激发光梯度编码的快速三维成像技术,可使双光子体成像速度比传统技术提升5至10倍。  双光子显微镜具有亚微米级的成像分辨率和毫米级的成像深度,被广泛应用在神经结构和功能成像以及其他活体成像研究中。传统的双光子三维成像是将双光子激发的焦点在样品中进行逐层的二维扫描来实现的,这种三维成像方法不仅速度受限且增加了样品暴露在高能激光中的时间,对生物组织造成光损伤和光漂白,不利于活体组织的长时间成像。  该研究提出的新型梯度光场双光子显微成像技术只需要进行两次二维扫描即可获得样品的三维信息,极大降低了激光对样品的损害。  在生活中,可利用编码来确定位置。与此类似,梯度光场技术设计了一对轴向拉长并且强度梯度变化的焦点,利用这对焦点的强度变化来编码并解析出物体的位置:横向扫描第一个梯度焦点得到的图像中,位置较浅处的样品荧光强度强,位置较深处的样品荧光强度弱,第二个焦点对应的图像则正好相反。两幅图像的和反映了样品的真实三维荧光强度,图像的比值则反映了荧光的深度信息。该方法可一次分辨深度12微米内三维信息,荧光点轴向定位精度为0.63微米。梯度光场双光子显微镜非常适合活体细胞的三维成像,在观测巨噬细胞吞噬荧光小球的实验中,能够快速捕捉荧光小球在巨噬细胞内外的三维运动轨迹,并精确定量出巨噬细胞运载小球的速度。  相关成果以Axial gradient excitation accelerates volumetric imaging of two-photon microscopy为题,发表在Photonics Research上。研究得到国家自然科学基金重大科研仪器研制项目、重大研究计划以及广东省重点实验室等支持。   论文链接 (a):梯度光场双光子显微成像原理、(b):巨噬细胞吞噬小球过程、(c):小球的运动轨迹、(d):小球运动轨迹的量化与评估
  • 开发用于分离和纯化的聚焦梯度
    Jo-Ann M. Jablonski、Thomas E. Wheat and Diane M. Diehl;Waters Corporation, Milford, MA, U.S.引言用于进行分离和纯化的色谱分离方法与分析型分离方法受到相同物理和化学原理的制约。然而,在制备型试验中,科学家通常在大型柱上和高质量负载下分离化合物,并需要更高的分离度以提高所收集组分的纯度和回收率。虽然设计更缓的梯度是提高分离度的一种较好的首选方法,但改变整个分离过程的梯度斜率可导致峰宽加大和总运行时间增加。可替代普通更缓梯度的聚焦梯度仅对需要增加分离度的色谱图部分减小梯度斜率,从而可在不增加总运行时间的情况下提高对洗脱时间接近的色谱峰的分离度。聚焦梯度可根据搜索运行或者直接从第一次制备运行进行定义。试验方法梯度开发步骤■ 确定制备规模的系统体积■ 运行搜索梯度■ 设计聚焦梯度■ 在制备柱上运行聚焦梯度试验条件仪器液相色谱系统: 沃特世 2525型二元梯度模块、2767型样品管理系统、系统流路组织器、2996型光电二极管阵列检测器、AutoPurification&trade 流通池色谱柱: XBridge&trade 制备型OBD&trade C18柱19 x 50 mm、5&mu m(货号186002977)流速: 25mL/分钟流动相A: 0.1%的甲酸水溶液流动相B: 0.1%甲酸-乙腈溶液波长: 260 nm样品混合物磺胺: 10 mg/mL磺胺噻唑: 10 mg/mL磺胺二甲嘧啶: 20 mg/mL*磺胺甲二唑: 10 mg/mL磺胺甲唑: 10 mg/mL磺胺二甲异唑: 4 mg/mL总浓度: 64 mg/mL(溶于二甲基亚砜)*选定用于聚焦梯度的色谱峰结果和讨论确定制备规模的系统体积■ 取下色谱柱并更换成两通。■ 流动相A使用乙腈,流动相B使用包含0.05 mg/mL尿嘧啶的乙腈(解决了非加成性混合和粘滞问题)。■ 在254 nm下进行监测。■ 采集100% A的基线数据5分钟。■ 在5.01分钟时,将梯度设置为100% B并再采集5分钟数据。■ 测定100% A和100% B之间的吸光度差异。■ 计算存在50%吸光度差异时的时间。■ 计算步骤开始时(5.01分钟)和50%时间点之间的时间差异。■ 将时间差异乘以流速。 系统体积被定义为从梯度形成点到色谱柱前端的体积。系统体积用于聚焦梯度的设计。如图1所示,本试验所用仪器配置下的系统体积是3.0 mL。设计聚焦梯度第1步在2.47分钟洗脱3号色谱峰的溶剂浓度在较早的时间点上形成。如图3所示,检测器和梯度形成点之间的偏移量等于系统体积加上柱体积。用于这台特定系统的偏移量等于早期确定的3 mL系统体积再加上19 x 50 mm制备柱的体积(11.9 mL),即14.9 mL。在25 mL/分钟的流速下,溶剂浓度到达检测器需要0.59分钟。2.47分钟的洗脱时间减去0.59分钟的偏移时间等于1.88分钟。由于初始大规模梯度有0.39分钟的保留时间,因此形成洗脱色谱峰的乙腈百分比的时间是1.88分钟减去0.39分钟,即1.49分钟。 第2步计算在2.47分钟洗脱色谱峰的乙腈百分比。原始大规模梯度在5分钟内洗脱 5-50% B,最初梯度的驻留时间为0.39分钟。根据在2.47分钟洗脱出色谱峰的梯度计算得到的乙腈百分比是13.4%,但由于梯度开始于5%乙腈,因此洗脱该峰的乙腈实际浓度是13.4% + 5%,或者说18.4%乙腈。第3步旨在分离梯度中部洗脱时间接近的色谱峰的聚焦梯度应开始于原始小规模试验条件,通常为0-5% B。进样开始后立即将梯度快速增加至比能洗脱目标峰的预期乙腈百分比浓度低5%的乙腈百分比。在搜索梯度中所用的1/5斜率下继续进行缓的聚焦梯度部分。预计一个五倍的更缓梯度可为洗脱时间接近的色谱峰提供更高的分离度。终止高出可洗脱目标峰的预期乙腈百分比浓度5%的聚焦梯度部分。原始梯度在5分钟内洗脱5-50% B,或者说在5分钟内梯度变化45%。这样,乙腈浓度每分钟变化9%(从9%-10%左右简化得到)。然后,新的梯度斜率应为10%的1/5,或者说每分钟变化2%。10%的乙腈浓度改变通过每分钟变化2%而达到,说明用于分离3号和4号峰的聚焦梯度时间片段应持续5分钟。一旦梯度的聚焦部分完成,乙腈百分比快速增加至95% B,以清洗色谱柱。平衡色谱柱后,终止初始条件下的梯度。5-45% B = 每分钟9%(舍入至每分钟10%)梯度斜率每分钟变化2%。 聚焦梯度可明显提高图4所示色谱图中3号峰和4号峰的分离度。5号峰和6号峰因受到梯度聚焦部分的影响而出现移位,梯度部分继续在较缓的斜率下洗脱化合物,直至设定用于进行柱清洗的较高百分比的乙腈进入色谱柱。较缓的聚焦梯度能在不增加运行时间的情况下对天然混合组分提供更高的分离度,因而使色谱分析师能够获得更纯的产物和更好的回收率。结论当科学家为后续试验进行产物纯化时,需要在高质量负载下分离化合物。聚焦梯度可在不增加运行时间的情况下提高对洗脱时间接近色谱峰的分离度,从而改善分离效果。系统体积信息可以对制备型梯度进行直接优化。使用聚焦梯度可提高产物产率和纯度,同时不会增加溶剂消耗量和废液生成量。聚焦梯度方法可实现分离,因而有助于控制纯化成本。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(四)
    &mdash &mdash 在线柱后衍生和反梯度补偿技术 衍生化是指被测物质与相应的试剂发生化学反应,改变被测物质的化学和物理性质,提高被测物质的检测灵敏度,改善被测物质混合物的分离度,从而达到利于分析的目的。衍生化在HPLC分析中应用广泛,其中在线柱后衍生使用居多。传统的在线柱后衍生需要一个独立的泵来输送衍生试剂以实现衍生的目的,但这些额外的独立装置有时由于与液相色谱系统本身不能进行很好的联用,往往导致运行不甚理想。赛默飞双三元液相色谱系统由于具有两个独立的泵和流路,一个泵进行分析,另外一个泵可以完成如输送衍生试剂等的辅助功能,可以很好地实现在线柱后衍生应用,而且这些功能很多情况只需要一个简单的柱后三通或反应管的连接就可以实现。此外,在HPLC和MS联用时,为了增强离子化效率,需要另外的流路泵入甲酸或乙腈,使用赛默飞双三元液相色谱系统也可以简单方便地实现这样的功能。 反梯度补偿技术是指在色谱柱后进入检测器前加入另一与分析时溶剂组成相同但比例相反的溶剂,使进入检测器的溶剂浓度保持不变,从而使检测条件更加稳定,提高检测效果。当使用基于雾化机理的检测器(如电雾式检测器CAD或蒸发光散射检测器ELSD)进行梯度分析时,由于被测物质的响应值与雾化效率密切相关,而流动相的组成是影响雾化效率的重要因素,但由于梯度分析时流动相的组成在不断改变,样品中各组分的雾化效率也随着在不断变化,这将直接影响待测物质响应的一致性。使用双泵设计的赛默飞双三元液相色谱系统,通过应用反梯度补偿技术可以避免该因素对检测的影响,从而实现对目标物的准确分析。在线柱后衍生改善被测物质的检测灵敏度黄曲霉毒素(AF)是黄曲霉和寄生曲霉的代谢产物,具有极强的毒性和致癌性,可引发动物的肝癌、肾癌、胃癌等,其中B1的毒性最强。我国规定在玉米、花生、花生油、坚果和干果等食品中的最高允许含量为20&mu g/kg。1995年,世界卫生组织制定的食品黄曲霉毒素最高允许浓度为15&mu g/kg。要准确测定黄曲霉毒素的含量,需将其衍生化以提高检测灵敏度。采用双三元液相色谱系统,使用双三元液相色谱的右泵作为分析泵,左泵做衍生泵,以0.05%碘溶液作为衍生反应试剂,一套系统即可方便自动化地实现在线柱后衍生,提高黄曲霉毒素的检测灵敏度,以满足法规的检测要求。图1 黄曲霉毒素标准品测定谱图(黄曲霉毒素M1:2.5ppb;黄曲霉毒素G1、G2、B1、B2:0.75ppb)图2样品及其加标测定谱图通过系统的方法学验证表明该方法完全满足法规的测定要求,检测灵敏度较高,检出限分别为M1 0.1ppb、G1 0.04 ppb、G2 0.03 ppb、B1 0.03 ppb和B2 0.018ppb,方法准确度和重现性较好。针对雾化机理检测器的反梯度补偿技术所有基于雾化原理的检测器(如CAD,ELSD),其响应值均会随流动相中有机相比例的变化而变化,通过双三元液相色谱系统的反梯度补偿技术,可以使流动相组成保持不变,从而使相同含量的组分具有更加趋于一致的响应。电雾式检测器(Charged Aerosol Detector, CAD)为赛默飞独有的一种新型质量通用型检测器,可用于分析无(或弱)紫外吸收的不(半)挥发性成分。可对分析物提供独立于化学结构的一致的响应,无需复杂的优化即可得到可预见的结果。在药物杂质分析和天然药物多组分定量分析中,经常无法获得所有物质的对照品,却需要对所有物质进行定量或半定量分析,CAD检测器则可以解决这个难题,它可以在只有其中一种对照品的情况下实现对其他组分的定量或半定量分析。如果您配备了双三元液相色谱系统,在梯度分析过程中就可以进行反梯度程序进行柱后梯度补偿,从而可在整个梯度范围内获得一致的响应,使分析结果更加准确。仪器连接示意图见图4. 图3 双三元液相色谱系统反梯度补偿技术示意图 分析柱(Active column,紫色)按照常规使用,与右泵、自动进样器和检测器连接(本图为DAD与CAD串联分析待测化合物),并安装在柱温箱中;柱后补偿柱(Delay column,绿色)也安装在柱温箱中,且规格尺寸与分析柱一样,利用三通连接管将分析柱和补偿柱连接在入口处一端,检测器则连接在出口处一端。所有连接管线耐压且具有良好密封性。通过反梯度补偿技术使得进入CAD检测器的流动相组分比例保持恒定从而产生一致的响应信号,如图4所示。 A.未使用反梯度补偿技术 B. 使用反梯度补偿技术图4 反梯度补偿技术对响应信号的影响通过以上的介绍可知,赛默飞UltiMate 3000双三元液相色谱(DGLC)系统,采用独特的双泵设计,每个泵作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,可实现如在线柱后衍生和反梯度补偿等的辅助功能应用,极大地满足您对一些特殊应用的需求。参考文献1. 柱后碘衍生法测定芝麻中的黄曲霉毒素2. 双三元液相色谱应用文集赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 文章推荐 | 使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量
    荷兰应用科学院(TNO, the Netherlands Organisation for Applied Scientific Research)和荷兰国家公共卫生与环境研究所(RIVM, National Institute for Public Health and the Environment)的联合研究团队发表了一篇题为“ Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods "的研究论文,已发表于《Atmospheric Measurement Techniques》。实验项目:使用梯度法、涡动相关法和两种新型开路仪器的氨沉降测量项目地点:荷兰 Ruisdael 观测站合作伙伴:荷兰应用科学院和荷兰国家公共卫生与环境研究所的联合研究团队部署仪器:HT8700大气氨激光开路分析仪项目简介:氨的干燥沉积(NH3)是荷兰大气向土壤和植被的氮沉积的最大因素,导致富营养化和生物多样性的损失。然而,学术界对于氨通量测量的数据十分有限,而且通常最多只有月度分辨率。造成这种情况的一个重要原因是在干燥条件下测量氨通量非常困难。过去,没有一种技术可以被认为是氨通量测量的黄金标准,这使得新技术的测试和判断其质量变得复杂。 这项研究展示了两种新型测量装置的相互比较结果,旨在以半小时分辨率测量氨的干沉降。在为期五周的比较期内,研究人员在荷兰 Cabauw 的 Ruisdael 观测站并排运行了两种光学开路的通量观测技术:其一是使用梯度法通量技术新型 RIVM-miniDOAS 2.2D 仪器,其二是宁波海尔欣光电科技有限公司推出的使用涡度协方差技术的HT8700大气氨激光开路分析仪。HT8700大气氨激光开路分析仪部署于荷兰的观测站RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪均为开路式光学仪器,在测量过程中直接测量氨在大气中的含量。除此之外,它们在测量原理和从测量浓度得出沉积值的方法上存在很大差异。在迎风地形均匀又没有附近障碍物时,两种不同的技术显示出非常相似的结果(r = 0.87)。观察到的通量从约80 ng NH3 m-2 s-1 的沉降到约140 ng NH3 m-2 s-1 的排放不等。无论是在绝对通量值还是实时的通量和浓度变化,两种截然不同的技术中获得了相似的结果,这证实了两种仪器都能够在至少几周的连续时间内以高时间分辨率测量氨通量。不过这个相关性也会受到其他因素影响,例如当风向受到附近障碍物干扰时。HT8700与定制化RIVM-miniDOAS 2.2D 仪器所测量的氨通量变化显示高度的一致性此外,论文中还讨论了两个系统的技术性能(例如,正常运行时间、精度)和实际局限性。miniDOAS 系统的正常运行时间达到了 100%,但在这次活动中对两台仪器进行了定期校准(占7周正常运行时间的35%)。而HT8700在下雨期间和下雨后不久数据有效性较低,并且其早期产品使用的光学镜面涂层可能会退化,导致约21%的数据缺失(针对此问题的升级版光学镜面已经交付客户使用)。虽然HT8700在恶劣天气条件下的独立运行时间有限,在适当的情况下,该系统仍然可以提供良好的结果,为未来的升级迭代版本打开了良好的前景,将能适用于业务化的实时氨通量监控应用。这些仪器所提供的崭新的高时间分辨率数据将促进对氨干沉降过程的研究,从而更好地理解氨沉降过程,并更好地对化学传输模型进行参数化。HT8700大气氨激光开路分析仪产品升级自动清洁自动清洁系统使用清洗和喷气功能来清除下镜面的灰尘,免除常规的手动清理。并采用了一种全新的镜面涂层技术,增强耐腐蚀性,以保证实地的长期观测。降雨传感如遇降雨天气,系统收集的数据为无效数据。增设降雨识别芯片,通过传感装置实时反馈至系统。并将降雨期间收集的数据特殊标注,便于使用者筛选有效数据。镜片加热在野外工作过程中会遇到低温条件,普通镜片易积水雾,影响镜片反射效率。开发加热系统,增设加热组件,可将镜片温度提至高于环境温度。确保反射能力不受低温、冷凝、降雨影响,使仪器分析结果更精准、更可靠。HT8700搭载升级版光学镜面,进行全新一轮野外测试通过这次研究,我们可以看到,RIVM-miniDOAS 2.2D和HT8700大气氨激光开路分析仪在测量氨沉降方面具有很高的潜力和应用价值。尽管这两种仪器在测量原理和数据处理方法上存在差异,但在一定条件下,它们都能提供准确可靠的测量结果。此外,通过不断的技术升级和改进,HT8700大气氨激光开路分析仪的性能和稳定性得到了进一步提高,为未来的氨沉降测量提供了更好的工具和手段。总之,这项研究提供了有关氨沉降测量的新思路和新方法,为未来的环境保护和生态学研究提供了新的工具和手段。我们相信,随着技术的不断进步和研究的深入,我们将能够更好地了解氨沉降过程,为保护环境、维护生态平衡和促进可持续发展做出更大的贡献。
  • 珂睿科技获数千万A1轮融资,推进高效液相色谱仪自主研发
    近日,高端液相色谱供应商珂睿科技完成数千万人民币A1轮融资,本轮融资由为来资本投资,远星资本担任本轮融资独家财务顾问,融资资金将主要用于推进国产自主研发超高效液相色谱仪发展。  珂睿科技成立于2016年,是一家专注于高端液相色谱仪的科学仪器设备企业。公司拥有自主研发的UHPLC(超高效液相色谱仪),且已经实现商业化,突破我国液相色谱领域的限制。  液相色谱作为重要的分离和分析设备,在药企、临床都有大量应用。受制于技术积累不够,国产液相色谱仪长期处于海外垄断状态,Waters、安捷伦、岛津、赛默飞四家跨国公司占据了高端液相色谱仪大部分市场份额 国产设备仅占据食品、环境监测等低端市场,产品附加值极低。  经过近十年底层技术研发,珂睿科技已经逐步实现了压力传感器、梯度比例阀、压力传感器、六通阀、自动进样器、柱温箱等核心零部件的自研,多项技术打破了行业多年国外技术垄断,整机国产化率超90%。其四元梯度泵在国内是首款耐压可达16000psi,流速精度优于0.1%RSD的产品 GPV梯度比例阀梯度分辨率可达0.1%梯度 压力传感器压力脉动分辨率1psi (国产15-30psi),具有高精度、耐压、高分辨率的优势。  珂睿科技CMO吕辉提到:“经过多家下游客户验证,珂睿科技的产品性能优异,无论是保留时间重现性、泵的输液压力指标及脉动、自动进样器进样精度等指标都与全球一流品牌性能相当,且设备稳定性高,扭转了国产设备多年来指标虚高、稳定性差等问题。”  珂睿科技已经建立了临床LC-MS/MS、TDM(血药浓度)等多种产品线,已实现规模商业化。在临床液质联用方面,珂睿科技已与国内多家头部质谱品牌建立稳定的战略合作,部分产品已开始规模销售,预计明年多家产品可完成取证,大规模进入院端。针对血药浓度的二维液相设备已完成取证,即将大规模放量。目前,珂睿的客户已经覆盖到质谱研发、科研高校、临床检测、药物研发、水质监测、农业食品、毒品毒物等行业的上百家客户。  未来,珂睿科技将主要集中在两个方面,一是开发合规性更强的软件系统,帮助国产液相色谱更快速地打入制药及更广阔的市场 二是开发更加适合应用场景的自动化前处理设备,并与液相色谱、质谱甚至其他类型分析仪器联合使用,打造实验室流水线式分析系统,实现样品前处理-分析全过程的自动化,该系统未来有望应用于临床、食品、环境、制药等多个领域。  在创始团队上,公司创始人兼CEO刘枫是有着12年的分析仪器销售经历的资深销售工程师,曾先后供职于迪马、美国瓦里安、德国耶拿和美国Waters公司 公司CMO吕辉则曾就职于安捷伦、AB Sciex,主要负责销售领域。珂睿科技目前已有超过70名员工,其中研发人员占比超过40%,拥有具有多年产业经验的机械、软件、电子专家,及全球顶尖的分析设备市场团队,  投资人说:  为来资本管理合伙人赵阳:液相色谱仪是制药、临床领域的核心设备,中国企业过往一直未能实现对底层技术的突破。生物医药的技术竞争是未来国际竞争的重要阵地,只有把核心技术掌握在中国企业手中,才能真正掌握竞争和发展的主动权。液相色谱仪作为基础研发工具,其底层技术属于最紧迫、最急需突破的卡脖子技术,不仅涉及对基础理论,也涉及对技术原理和核心零部件的突破,难度巨大。过去十年,我们有幸见证了珂睿科技由小及大,逐步打破海外巨头技术壁垒的过程,不仅研发出中国首台超高效液相色谱仪,也实现了对六通阀等核心零部件的自研。为来资本将继续支持珂睿科技在创新药和临床领域的商业化进程,助力珂睿成为具备全球竞争力的设备研发企业。
  • HALT/HASS试验箱原理概述
    p style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong0 引言/strong/span/pp style="text-align: justify text-indent: 2em "随着科技的发展,电子设备的集成度越来越高,升级换代的速度越来越快,随之而来的可靠性问题也越来越突出。传统的可靠性试验已经很难满足发展的要求,因此近些年越来越多机构开始引进高加速寿命试验(HALT:Highly Accelerated Life Testing)/高加速应力筛选(HASS:Highly Accelerated Stress Screening)试验方法,用于克服传统的可靠性试验存在的周期长、成本高和效率低等问题。/pp style="text-align: justify text-indent: 2em "a)HALTHALT主要应用于产品的研制阶段,是为了得出产品的设计裕度和极限承载能力(破坏或损伤极限)而设计的一种试验,主要试验步骤有:/pp style="text-align: justify text-indent: 2em "1)低温步进应力试验(以5℃或10℃为步长);/pp style="text-align: justify text-indent: 2em "2)高温步进应力试验(以5℃或10℃为步长);/pp style="text-align: justify text-indent: 2em "3)温度循环试验(温度变化速率为60℃/min,5个循环);/pp style="text-align: justify text-indent: 2em "4)振动步进应力试验(以5 Grms为步长);/pp style="text-align: justify text-indent: 2em "5)综合应力试验(第3)和第4)步综合试验)。/pp style="text-align: justify text-indent: 2em "b)HASS/pp style="text-align: justify text-indent: 2em "HASS应用于产品量产阶段,目的是在极短的时间内发现批量生产的成品是否存在生产质量上的隐患。HASS试验剖面的选择主要是依据HALT的结果、产品性能测试所需要的时间、 产品试验过程中所施加的应力和产品产量等,其一般试验如下所述。 /pp style="text-align: justify text-indent: 2em "1)温度循环/pp style="text-align: justify text-indent: 2em "试验温度一般取工作极限温度范围的80%,试验温度保持时间一般取决于样品温度到达平衡所需要的时间和测试样品工作状态所需要的时间,温度变化速率为40~60℃/min。/pp style="text-align: justify text-indent: 2em "2)振动应力/pp style="text-align: justify text-indent: 2em "振动量级一般取破坏极限的50%,如果超过工作极限,则取工作极限的80%。以上是开展HALT/HASS的基本要求,能满足HALT/HASS试验要求的试验设备要求如下:温度范围为-100~+200℃,温度变化速率为40~60℃/min,气动式三轴六自由度振动台(可产生多轴连续的超高斯宽带伪随机振动信号)的振动频率为5 Hz~10 kHz,振动方向包括X、Y、Z轴向的线加速度和转动加速度。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong1 设备介绍 /strong/span/pp style="text-align: justify text-indent: 2em "基于上述试验要求,需要有一套试验设备才能满足HALT/HASS试验的开展。现以广五所研制的HALT/HASS试验箱来阐述其实现原理。本试验箱可用于电子、电工和军工产品按国标、国军标和行业标准进行上述单项环境应力或多环境综合应力组合的可靠性与模拟环境试验。/pp style="text-align: justify text-indent: 2em "strong1.1 技术指标和性能/strong /pp style="text-align: justify text-indent: 2em "a)标称内容积:1.0 msup3/sup。/pp style="text-align: justify text-indent: 2em "b)温度范围:-100~+200℃。/pp style="text-align: justify text-indent: 2em "c)温度波动度:≤2 ℃。/pp style="text-align: justify text-indent: 2em "d)温度最大变化速率:/pp style="text-align: justify text-indent: 2em "1)≥70℃/min(标准负载下,-80~+150℃,全程平均,试验空间入风区控制点测量);/pp style="text-align: justify text-indent: 2em "2)≥60℃/min(标准负载下,-100~+200℃,全程平均,试验空间入风区控制点测量)。/pp style="text-align: justify text-indent: 2em "e)标准负载:10kg铝锭。/pp style="text-align: justify text-indent: 2em "f)气锤振动台:采用三轴6个自由度的随机振动,频率范围为5~10 kHz。/pp style="text-align: justify text-indent: 2em "g)振动能量:100 Grms,90%的振动能量集中在5 Hz~4 kHz低频范围内。/pp style="text-align: justify text-indent: 2em "h)振动稳定度:± 1 Grms(达到稳定设定值1 min内)。/pp style="text-align: justify text-indent: 2em "i)控制精度:± 1 Grms(稳定1 min后),最小1 Grms起振,步进1 Grms。/pp style="text-align: justify text-indent: 2em "j)台面振动均匀度:振动台面振动均匀度在30%以内。/pp style="text-align: justify text-indent: 2em "strong1.2 主要特点/strong /pp style="text-align: justify text-indent: 2em "a)适用于温度、振动应力综合试验。/pp style="text-align: justify text-indent: 2em "b)控制方式:液氮比例控制阀控制冷量,可实现温度变化速率无级可调,高效节能,控制精度高。/pp style="text-align: justify text-indent: 2em "c)结构紧凑,占地面积少。/pp style="text-align: justify text-indent: 2em "d)噪声低。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong2 试验箱结构及控制原理/strong/span /pp style="text-align: justify text-indent: 2em "试验箱主要由试验箱体、振动机构、液氮机构和电气控制系统组成。其剖面结构图如图1所示,图中主要功能部件名称为:1. 试验箱体保温层,2. 液氮系统,3. 电机及叶轮,4. 气压平衡口(排气口),5. 加热器,6. 出风口,7. 指示灯,8. 人机界面,9. 控制端子,10. 电控部分,11. 气动部分,12. 气锤振动台,13. 安装座,14. 气锤。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9afcefb0-fa4e-4345-8b8a-156eb0bfd143.jpg" title="图1.jpg" alt="图1.jpg"//pp style="text-align: center "strong图1 试验箱总体结构/strong/pp style="text-align: justify text-indent: 2em "strong2.1 试验箱体/strong /pp style="text-align: justify text-indent: 2em "试验箱体由外箱、内箱和保温层组成。外箱为双面镀锌钢板,表面喷塑处理,外箱内侧辅以钣金结构件或型材作为骨架加强。各个零件间采用COsub2/sub气体保护电弧焊、点焊和压铆等工艺进行连接,整体结构牢固美观。内箱材料选用需考虑到满足温度范围、防止生锈、振动和可焊接性等因素,板材方面使用SUS304不锈钢板,具有高的耐蚀性,较好的冷作成型和焊接性,很好的机械性能。在低温、室温和高温下均有较高的塑性和韧性。试验箱体保温层由硬质聚氨脂发泡层和玻璃纤维材料进行绝热保温,硬质聚氨脂板是一种具有保温与防水功能的新型合成材料,其导热系数仅0.022~0.033 W/(m.K)。硬质聚氨脂发泡层通过多异氰酸酯、组合聚醚(多元醇)、阻燃剂、催化剂和发泡剂等其他助剂混合而成,覆盖在外箱内表面。玻璃纤维是一种无机质纤维,具有成型好、体积密度小、热导率低、保温绝热、吸音性能好、耐腐蚀和化学性能稳定等特点。/pp style="text-align: justify text-indent: 2em "strong2.2 电气控制/strong /pp style="text-align: justify text-indent: 2em "本试验箱的电控部分所使用的测量系统、IO模块、HMI和CPU模块都是由广五所研发,使用RS485通讯方式,电控系统的总体框图如图2所示。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/77b077ac-921a-4a77-81e7-40557824311d.jpg" title="图2.jpg" alt="图2.jpg"//pp style="text-align: center "strong图2 试验箱电控总体框图/strong/pp style="text-align: justify text-indent: 2em "strong2.3 温度调节机构及控制/strong /pp style="text-align: justify text-indent: 2em "温度调节结构是温度控制的关键部分,包括加热器、液氮系统和搅拌风机。其中,加热器、液氮雾化喷嘴和搅拌风机按顺序(如图1所示)设置在箱体的气体调节通道内。其工作原理为:采用强制空气对流的方法来进行热量的传递, 以保证试验空间的温度均匀性。 试验箱气体由离心风机叶轮从回风口吸入, 通过导流装置后吹出, 可以使调节通道内的加热器和雾化后的液氮进行充分的热量交换,经过搅拌均匀后的风经导风口吹出进入试验区域, 导风口还可以安装导风管,可以通过导风管使大件样品和散热口不在风流方向的样品内部能以最快的速率实现温度变化。出风口设置有温度测量元件,连接至测量板,测量数据通过通讯电缆传送给CPU单元,算法运算后输出控制量。/pp style="text-align: justify text-indent: 2em "本试验箱要求温度变化速率要超过60℃/min,这是温度控制的关键,升温功能由镍铬丝通电发热实现。镍铬丝具有较高的电阻率,表面抗氧化性好,温度级别高,并且在高温下有较高的强度,有良好的加工性能和可焊性,是现有高效的加热材料,应用时设计为三相平衡。由于机械制冷很难实现这样的降温速率,因此本试验箱采用的是液氮制冷方式。液氮的沸点低,价格相对便宜,常压下液氮的温度为-196℃,1 m3的液氮可以膨胀至696m3、21℃的纯气态氮。虽然液氮汽化后变为氮气,氮气是惰性气体,在大气中重量比75.5%,但是在实验室内,如果试验时氮气不能及时排到室外,可能会造成室内人员缺氧,因此试验箱配有气压平衡装置把氮气排到室外,由于气化过程中压强升高,气体能从试验区顺利排出,避免箱体受压变形,这也是气压平衡装置名称的由来。/pp style="text-align: justify text-indent: 2em "液氮系统是温度调节结构的核心,其结构示意图如图3所示,各个功能部分的名称如下:1.空气压力报警,2.空气调压阀,3.空气电气比例阀,4.液氮比例控制阀,5.液氮管路排气电磁阀,6.液氮压力安全泄压阀,7.液氮压力报警,8.液氮主管路电磁阀,9.保温层,10.液氮雾化喷嘴。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/75049ce4-c225-4da0-8243-899fea2e5ab3.jpg" title="图3.jpg" alt="图3.jpg"//pp style="text-align: center "strong图3 液氮系统图/strong/pp style="text-align: justify text-indent: 2em "液氮由氮气罐接口接入,通过液氮电磁阀控制通断,液氮电磁阀在运行时打开,设备故障或停止时关闭。排气阀的作用是试验前对液氮管路进行排空,保证试验时管路里面都是液态氮,以确保试验的可靠性、稳定性和可重复性。液氮比例控制阀属于节流元件,是控制执行器的关键器件,开度在0~100范围接近线性的输出,以利于大范围的调整,能保证降温时的大流量要求,也可以满足恒定时小流量的需要,具有明显的节能效果。由于液氮在常压下span style="text-indent: 2em "的蒸发温度为-196℃,与试验设定温度相差很大,因而需要精确控制流量才不会造成温度过冲或大幅回升。为了保证对温度的精确控制,就要考虑响应时间的问题,传统的电动执行装置响应时间过长,明显不能满足这个需要。因此本试验箱采用的是气动驱动以保证快速响应。 为了使液氮比例控制阀的响应速率满足要求,我们使用了一个称为电气比例阀的驱动器来控制供气的压强, 它可以把控制输出的模拟电信号转化为压强输出,电气比例阀的输入信号 类型及范围需要和控制输出一致,输出压强范围要和液氮比例控制阀一致,这样才能保证控制精度。为了防止快速升温、降温过程中过冲量过大,还需要做控制算法上的处理,如果不能及时预判当前温差、温度变化的速率,就会造成过冲量大,震荡次数多,或者过早减少输出保证不了速率。针对长距离快速温度变化,对设定曲线增加一些非线性的降温处理,并在降温转恒温阶段由PID控制切换到PI控制。针对短距离步进,使用模糊控制加PID的控制方式,并对输出的范围加以约束。经过液氮比例控制阀的液化氮送到雾化组件进行雾化,雾化组件的核心部件是液氮喷嘴,其作用就是把液氮雾化,喷到通道后快速汽化,雾化后颗粒的大小、喷射角度和流量的多少都要与降温的需要相一致,这样才能保证控制精度。流量决定了降温速率的达成可能性,喷射角度和雾化后颗粒直径决定了换热的效率,颗粒越小越好,喷射角度越大越好。/span/pp style="text-align: justify text-indent: 2em "strong2.3 振动系统及控制/strong /pp style="text-align: justify text-indent: 2em "振动台系统由振动台、供气系统和控制系统组成。/pp style="text-align: justify text-indent: 2em "振动台有两层结构面板,由结构螺丝连接,上层固定待测物,下层锁紧气锤,其特点是台面质量轻,同时增加台面刚性,刚性加强后可以有更好的振动传导特性,低频振动能量较高。频率范围更宽,扩展到5~1 000 Hz,并且90%的能量都集中在5~4 000 Hz范围内,因为大部分电子产品的失效频率都集中在这一频段内,可以有效地快速激发产品故障。/pp style="text-align: justify text-indent: 2em "振动台上表面采用衬垫式的安装螺孔,并有凸起部分,采用此结构的设计理念,一是可以改善振动的传导特性,把更多的振动激励传导到样品上;第二是凸起结构可以使得样品或夹具和台体表面具有一定的空余间隙,风流可以顺利通过样品或夹具底部从而保证样品的上下表面温度更加均匀。/pp style="text-align: justify text-indent: 2em "振动台面增加陶瓷涂层的结构设计,可以抗腐蚀,耐高低温,更好地保护振动平台和气锤,延长使用寿命;还可以保证设备长时间在高低温环境下运行,延长设备的使用寿命。/pp style="text-align: justify text-indent: 2em "气锤分大中小3种不同的型号,多种气锤的组合更有利于台面激励的均匀性,采用高压油雾器对气锤进行润滑,可以降低气锤的故障率,延长气锤的使用寿命。排气时气体统一由消声器排出,降低振动噪音。/pp style="text-align: justify text-indent: 2em "振动台安装在箱内弹簧隔离座上,可起到减震作用,不影响气锤工作时的激励作用。在密封连接处理上,振动台面与试验箱底板采用软连接,需要时可以拆装。/pp style="text-align: justify text-indent: 2em "对振动台的控制其实就是对气锤的控制,也就是对进入气锤的气体压强的控制,有点类似于液氮的控制方法,既需要振动的快速性又需要稳定性,这里也用到了电气比例阀。由于加速度的测量不像温度测量那样稳定,需要用到振动信号的转换板,将其转化为模拟信号或者通过通讯反馈到CPU单元,进行算法运算,输出模拟信号给电气比例阀,控制进入气锤的气体压强,从而控制气锤产生的激励。只要气源压力和供气管路保证流量,正常的负反馈控制都可以实现。这里有两个难点,都属于硬件的固有特性方面的问题。一个是加速度传感器的信号微弱,测量值不够精确稳定,需要在测量时做滤波处理,转换为数字量后还可能需要再次做滤波处理,这两次滤波效果会直接影响控制精度和控制品质;另一个就是气锤在较小能量级时整个台面不太稳定,会造成加速度传感器测量跳动比较大,也会影响控制品质,这时候需要更慢的输出变化。/pp style="text-align: justify text-indent: 2em "strong3 结束语/strong /pp style="text-align: justify text-indent: 2em "本文对HALT/HASS试验箱的结构和工作原理进行了阐述,以上系统经多个客户的使用证明完全满足HALT/HASS的要求。通过该试验箱进行HALT/HASS能切实提高电子设备的可靠性, 大大地降低试验成本。此结构简单紧凑,运行噪声小,能耗适中,可靠性高。此类试验设备在国内的产品化对HALT/HASS试验的推进起到了积极作用,可大大地提高电子行业及其他相关行业产品整体的可靠性。/ppbr//p
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵高压泵是离子色谱仪的动力源,其作用是将流动相输入到分离系统,使样品在分离柱中完成分离过程。离子色谱用的高压泵应具备下述性能:流量稳定、耐腐蚀、压力波动小、更换溶剂方便、死体积小、易于清洗和更换溶剂。高压泵工作正常的情况下,系统压力和流量稳定,噪音很小,色谱峰形正常。4、抑制器抑制器由3个抑制元件组成,这些元件应用于循环回路中的抑制作用,可利用硫酸进行再生及用纯净水进行冲洗,分析流路外再生, 可彻底去除有害物质。采用微填充床抑制器,其优为点:平稳提供H+,基线噪音低,适合各种浓度分析,耐高压、耐有机溶剂、耐重金属,耐腐蚀,噪音低,只有0.2-0.5nS。抑制器要避免在未通液体时空转。淋洗液或再生液流路堵塞、抑制器饱和均会造成系统压力突然上升、背景电导率过高等问题。若经过较长时间后,抑制元件受到污染,平常使用的再生溶液无法再将其彻底清除干净,将导致基线大幅上升。5、检测器所有的离子化合物(有机离子、无机离子、强酸和强碱)以及可被解离的化合物(弱酸和弱碱)的水溶液都能够导电。电导检测器是以离子色谱流动相中电导的变化作为定量依据的。电导检测器测量双铂电极两端间的电导,离子在该双铂电极两端间迁移:阴离子向阳极迁移,阳离子向阴极迁移,从而测量溶液的电阻。电导与电阻成反比。电导检测器具有极好的温度稳定性,这样便可保证测量条件的重现性。由于离子色谱仪是精密仪器,其日常维护与保养对于仪器的使用寿命及监测精度都有着重要的影响,因此离子色谱仪要经常用淋洗液冲洗色谱柱,防止分离柱堵塞、流动相有气泡的产生,在进行分析前要确保样品已经进行前处理,以保障仪器安全。离子色谱法具有选择性好、灵敏、快速、简便,可同时测定多组分,基于上述优点,离子色谱法已在环境监测领域得到广泛应用。因此了解一些关于仪器日常维护的知识,遇有故障时能够正确地判断并及时排除是十分重要的。06离子色谱常见故障及解决方案1、电导检测器常见故障有哪些?电导检测器常见故障是检测池被污染。故障原因:污染物主要来源于没有经过适当前处理的样品,如浓度过高、复杂的样品基体等。故障现象:基线噪声变大,灵敏度降低。处理方法:(1)用3 mol/LHNO3溶液清洗电导池,再用去离子水清洗电导池至pH值达中性 (2)用0. 001 mol/L KCI溶液校正电导池,使电导值显示为147μS。2、系统压力增高该咋办?压力增高一般都是因仪器部件发生堵塞引起的,当发现系统压力增高时应从流路的检测器端开始,逐一排查,以找到引起压力增高的具体单元。(1)在线过滤器发生堵塞时,直接更换滤芯;(2)色谱柱入口处滤膜堵塞时,应反接色谱柱用去离子水反复冲洗;(3)单向阀和滤头堵塞后需将其卸下先用无水乙醇超声清洗15 min ~30min,以清除部件上粘附的有机物,再用去离子水清洗干净后放入1:1的硝酸溶液中超声清洗15min,最后用去离子水反复清洗干净后按原方位安装好后使用。高压系统中常出现堵塞问题的部件有单向阀、滤头、在线过滤器、分离柱、保护柱等;(4)检查管路中peek头是否拧得过紧,否则也会导致压力增高。3、分析泵常见故障咋处理?分析泵常见故障是泵内产生气泡和漏液故障现象:基线的噪声加大,色谱峰形变差(出现乱峰)。处理方法:为分析泵提供充足的淋洗液,并且给淋洗液施加一定的压力(通常小于35 kPa)。对于容易产生气体的溶液可以先用真空脱气,然后用惰性气体在线脱气的处理方法 若泵漏液,可更换泵密封圈。4、抑制器使用中的常见故障怎么排除?抑制器在离子色谱仪中具有举足轻重的作用。抑制器工作性能的好坏对分析结果有很大的影响。抑制器最常见的故障是漏液,使峰面积减小(灵敏度下降)和背景电导升高。(1)峰面积减小造成峰面积减小的主要原因有:微膜脱水、抑制器漏液、溶液流路不畅和微膜被玷污。抑制器长期不用,会发生微膜脱水现象,为激活抑制器,可用注射器向阴离子抑制器内以淋洗液流路相反的方向注入少许0.2mol/L的硫酸溶液。同时向再生液进口注入少许纯净水,并将抑制器放置半小时以上。抑制器内玷污的金属离子可以用草酸钠清洗。(2)背景电导值高在化学抑制型电导检测分析过程中,若背景电导高,说明抑制器部分存在一定的问题。大多数是操作不当引起的。例如淋洗液或再生液流路堵塞,系统中无溶液流动造成背景电导偏高或使用的电抑制器电流设置的太小等。膜被污染后交换容量下降亦会使背景电导升高。而失效的抑制器在使用时会出现背景电导持续升高的现象,此时应更换一支新的抑制器。(3)漏液抑制器漏液的主要原因是抑制器内的微膜没有充分水化。因此,长时间未使用的抑制器在使用前应让微膜水溶胀后再使用。另外要保证再生液出口顺畅,因此反压较大时也会造成抑制器漏液。另外抑制器保管不当造成抑制器内的微膜收缩、破裂也会发生漏液现象。5、离子色谱柱该如何维护、保存?色谱柱的保存色谱柱填充料的不同,其保存方法也各异。一般而言,大多数阴离子分离柱在碱性条件下保存,阳离子分离柱在酸性条件下保存。需长时间保存时(30天以上),先按要求向柱内泵入保存液,然后将柱子从仪器上取下,用无孔接头将柱子两端堵死后放在低温处保存。短时间不用,每周应至少开机一次,让仪器运行1-2h。 色谱柱的清洗清洗色谱柱注意事项:清洗前,应将分离柱与系统分离,让废液直接排出。另外,每次清洗后应用去离子水冲洗10min以上,再用淋洗液平衡系统。清洗时的流速不宜过快,在1ml/min以下。无机离子的玷污离子半径较大的无机离子与交换基团结合,影响正常的交换分离。首先应考虑用组分相同且浓10倍的淋洗液清洗色谱柱。清洗阴离子分离柱上的金属离子(如Fe3+)使用0.1mol/L草酸。清洗阳离子分离柱上的某些金属(如Al3+)可使用1-3mol/L HCl。有机物玷污清洗色谱柱内的有机物常用甲醇或乙腈,但对带有羧基的阳离子分离柱需要避免使用甲醇。低交联度的离子交换树脂填充的色谱柱(交联度小于5%)清洗液中有机溶剂的浓度不宜超过5%。色谱柱的清洗清洗色谱柱注意事项:清洗前,应将分离柱与系统分离,让废液直接排出。另外,每次清洗后应用去离子水冲洗10min以上,再用淋洗液平衡系统。清洗时的流速不宜过快,在1ml/min以下。无机离子的玷污离子半径较大的无机离子与交换基团结合,影响正常的交换分离。首先应考虑用组分相同且浓10倍的淋洗液清洗色谱柱。清洗阴离子分离柱上的金属离子(如Fe3+)使用0.1mol/L草酸。清洗阳离子分离柱上的某些金属(如Al3+)可使用1-3mol/L HCl。有机物玷污清洗色谱柱内的有机物常用甲醇或乙腈,但对带有羧基的阳离子分离柱需要避免使用甲醇。低交联度的离子交换树脂填充的色谱柱(交联度小于5%)清洗液中有机溶剂的浓度不宜超过5%。07离子色谱的常见品牌到了这里,相信各位已经对离子色谱仪有很深的了解。那么在这个知识纵横,科技飞跃发展的今天,关于离子色谱仪的常见品牌都有哪些呢?最受关注的又是哪些呢?(以下品牌不分先后哦~)A. 埃仑通用青岛埃仑通用科技有限公司是国内较早生产离子色谱仪的厂家之一,是以研发、制造、销售和售后服务为一体的高新技术企业,是国产离子色谱仪知名品牌。 青岛埃仑通用科技有限公司设计开发了基于积木式结构的高效离子色谱仪系列产品。YC系列离子色谱仪是我公司在传统离子色谱仪基础上,吸收国际先进技术成果,研发出的高精度、高灵敏度和高稳定的新型系列离子色谱仪,同时实现了自动化进样。YC9000型更是国内开始采用功能模块化设计,全面集成智能MT技术,是国内现阶段集成度和智能化极高的一款智能型离子色谱仪,其广泛应用于包括军事军工、核工业、科研院所,石油化工、水文地质、环境保护、质量检验、卫生防疫、电力电子等行业。产品: 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津岛津企业管理(中国)有限公司成立于1999年8月11日,是岛津制作所的海外子公司。岛津制作所是著名的测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来始终坚持“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。并以实现“为了人类和地球的健康”这一愿望作为公司的经营思想,以光技术、X射线技术、图像处理技术这三大核心为基础,不断革新,不断挑战,一如既往地对科学技术发展做出贡献。特别是在2002年岛津制作所的田中耕一荣获诺贝尔化学奖,开创了公司研究人员获奖的先河。产品: 岛津离子色谱仪HIC-ESP岛津离子色谱仪Essentia IC-16 等▲ 岛津离子色谱仪HIC-ESPC. 东曹 东曹(上海)生物科技有限公司,是日本东曹株式会社生命科学事业部(Tosoh Bioscience)在中国设立的全资子公司,负责东曹生命科学事业部产品在中国的销售业务。 东曹(上海)生物科技有限公司的产品包括:提供所有常见分离模式的TSKgel® 高效液相色谱柱、TOYOPEARL® 中低压层析分离纯化填料、SkillPak 层析工艺方法筛选用预装柱;还包括EcoSEC® 高效一体化GPC仪器、IC离子色谱仪、多角度光散射检测器。产品: 东曹高通量离子色谱仪IC-8100东曹IC-2010离子色谱仪 等▲ 东曹高通量离子色谱仪IC-8100D. 历元 北京历元公司成立于1993年,公司创建初始就以强劲的技术开发能力,研制生产硅酸根检测仪,磷酸根检测仪,分析型高效液相色谱仪,制备型液相色谱仪,系列离子色谱仪。为配合离子色谱仪的应用,并于1997年研发国内首台实验室用超纯水器,此项产品填补了该产品的国内空白。 产品: 北京历元EP-600 便携式离子色谱仪北京历元EP-2000离子色谱仪 等▲ 北京历元EP-600 便携式离子色谱仪E. 普仁青岛普仁仪器有限公司是通过ISO-9001认证的专业从事离子色谱仪及相关配件研发、生产、销售和技术服务的高科技股份制企业,为中国仪器仪表分析仪器分会会员单位。 公司产品全部拥有自主知识产权,荣获国家科技创新基金及青岛科技培育计划专项,被国家工信部认定为“国家食品企业质量安全检测技术示范中心共建单位”,荣获“2012最具竞争力百强中小企业”称号,为央视网离子色谱仪战略合作伙伴。产品: 双系统全自动PIC-10型离子色谱仪PIC-10A型离子色谱仪 等▲ 双系统全自动PIC-10型离子色谱仪F. 瑞士万通 瑞士万通中国有限公司 作为当今一家全面涉足各类不同离子分析技术的品牌,产品包括自动电位滴定仪、离子色谱仪、卡尔费休水分仪、伏安极谱仪、电化学工作站、手持式/便携式拉曼光谱仪和近红外光谱仪等。瑞士万通旗下拥有以下品牌:“Metrohm”、“Metrohm Autolab”、“Metrohm Process Analytics”、“Metrohm NIRSystems”、“Metrohm Raman”、“Metrohm DropSens”,以其自动电位滴定仪、卡尔费休微量水分滴定仪、离子色谱仪、伏安极谱仪、便携式拉曼和手持式拉曼光谱仪以及近红外光谱仪、在线化学成分分析仪著称,技术先世界。您可以从瑞士万通获得大量有关离子分析和近红外分析的方法和技术。产品: 瑞士万通ECO IC离子色谱仪瑞士万通940 系列谱峰思维TM离子色谱系统 等▲ 瑞士万通ECO IC离子色谱仪G. 赛默飞赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。产品: Thermo Scientific Integrion高压离子色谱赛默飞Aquion RFIC离子色谱等▲ Thermo Scientific Integrion高压离子色谱H. 盛瀚青岛盛瀚色谱技术有限公司成立于2002年,专业从事离子色谱仪及其核心部件的研发、生产、销售和技术服务,是一家通过ISO 9001质量管理体系认证、ISO 24001环境管理体系认证、ISO 45001职业健康管理体系认证、知识产权管理体系认证的高新技术企业。全部产品拥有自主知识产权,专利、软件著作权等超过百项。 公司现有实验室台式、便携式、在线式、定制化离子色谱仪和离子色谱联用五大产品系列,广泛应用于环保、食品药品、水文地质、石油化工、卫生防疫、电子电气及科学研究等众多行业,基本满足了对阴阳离子、氰根、碘离子、糖、小分子有机酸等常规和痕量检测。目前已为7000+不同行业的用户提供了完善的解决方案,出口到韩国、印度等70多个国家和地区。此外,盛瀚还是全球极少数可实现批量化生产离子色谱柱的企业,打破了国外垄断,填补了国内空白。产品: 盛瀚离子色谱仪CIC-D180离子色谱仪(内置淋洗液发生器)CIC-D160型 等▲ 盛瀚离子色谱仪CIC-D180I. 皖仪安徽皖仪科技股份有限公司是一家以国际化视野、按国际化标准运营的全球分析仪器专业供应商,主导产品涵盖色谱、光谱、质谱类及医用分析仪器。产品: 皖仪IC6600系列多功能离子色谱仪皖仪IC6200系列一体式离子色谱仪 等▲ 皖仪IC6600系列多功能离子色谱仪08小彩蛋找靠谱的离子色谱仪器可长按识别下方二维码进入“离子色谱仪”导购专场- END
  • 北大彭海琳团队:通过梯度表面能调制集成晶圆级超平面石墨烯
    石墨烯等二维材料的载流子迁移率高、光-物质相互作用强、物性调控能力优,在高带宽光电子器件领域具有重要的科学价值和广阔的应用前景。当前,发展与主流半导体硅工艺兼容的二维材料集成技术受到业内广泛关注,其中首要的挑战是将二维材料从其生长基底高效转移到目标晶圆衬底上。然而,传统的高分子辅助转移技术通常会在二维材料表面引入破损、皱褶、污染及掺杂,严重影响了二维材料的光电性质和器件性能。因此,实现晶圆级二维材料的无损、平整、洁净、少掺杂转移是二维材料面向集成光电子器件应用亟待解决的关键问题。  针对这一难题,北京大学化学与分子工程学院彭海琳课题组与国防科技大学秦石乔、朱梦剑课题组合作,设计了一种梯度表面能调控(gradient surface energy modulation)的复合型转移媒介,可控调节转移过程中的表界面能,保证了晶圆级超平整石墨烯向目标衬底(SiO2/Si、蓝宝石)的干法贴合与无损释放,得到了晶圆级无损、洁净、少掺杂均匀的超平整石墨烯薄膜,展示了均匀的高迁移率器件输运性质,观测到室温量子霍尔效应及分数量子霍尔效应,并构筑了4英寸晶圆级石墨烯热电子发光阵列器件,在近红外波段表现出显著的辐射热效应。该转移方法具有普适性,也适用于其它晶圆级二维材料(如氮化硼)的转移。研究成果以“Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation”为题,于9月15日在线发表在《自然-通讯》(Nature Communications 2022, 13, 5410)。  文章指出,二维薄膜材料从一表面到另一表面的转移行为主要由不同表界面间的能量差异决定。衬底的表面能越大,对二维薄膜有更好的浸润性及更强的附着能,更适合作为薄膜转移时的“接受体”;反之,衬底的表面能越小,其更适合作为薄膜转移时的“释放体”。因此,作者设计制备了表面能梯度分布的转移媒介【如图1,聚二甲基硅氧烷(PDMS)/PMMA/冰片】,其中冰片小分子层吸附在石墨烯表面,有效降低了石墨烯的表面能,保证石墨烯向目标衬底贴合过程中,衬底的表面能远大于石墨烯的表面能,进而实现良好的干法贴合;另一方面,转移媒介上层的PDMS高分子膜具备最小的表面能,能够实现石墨烯的无损释放。此外,该转移方法还有以下特点:PDMS作为支撑层可以实现石墨烯向目标衬底的干法贴合,减少界面水氧掺杂;容易挥发的冰片作为小分子缓冲层能有效避免上层PMMA高分子膜对石墨烯的直接接触和残留物污染,得到洁净的石墨烯表面;高分子PMMA层的刚性使得石墨烯转移后依旧保持超平整的特性。图1 晶圆级二维材料的梯度表面能调控转移方法  基于梯度表面能调控转移的石墨烯薄膜具备无损、洁净、少掺杂、超平整等特性,展现出非常优异的物理化学性质(如图2)。转移后4英寸石墨烯晶圆的完整度高达99.8%,电学均匀性较好,4英寸范围内面电阻的标准偏差仅为6%(655 ± 39 Ω/sq)。转移到SiO2/Si衬底上石墨烯的室温载流子迁移率能够达到10000 cm2/Vs,并且能够观测到室温量子霍尔效应以及分数量子霍尔效应(经氮化硼封装,1.7K)。基于SiO2/Si衬底上4英寸石墨烯晶圆,成功构筑了热电子发光阵列器件,在较低的电功率密度下(P = 7.7 kW/cm2)能够达到较高的石墨烯晶格温度(750K),并在近红外波段表现出显著的辐射热效应(如图3)。  图2 梯度表面能调控转移的石墨烯晶圆。(a)无损转移到SiO2/Si衬底上高完整度4英寸石墨烯晶圆;(b)超平整石墨烯与粗糙石墨烯褶皱数目的对比(5×5 μm2范围内)及典型的原子力显微镜图片对比(内嵌图);(c)转移后4英寸石墨烯晶圆的面电阻;(d)梯度表面能调控与传统湿法转移的石墨烯的电学转移曲线对比;(e)转移到SiO2/Si上的石墨烯在不同温度下的霍尔曲线及室温量子霍尔效应;(f)转移后石墨烯(氮化硼封装,1.7 K)的朗道扇形图,表现出分数量子霍尔效应。  图3 晶圆级石墨烯热电子发光阵列器件。(a)石墨烯热电子发光示意图;(b)基于4英寸晶圆石墨烯的热电子发光阵列;(c)石墨烯热电子发光阵列的光学显微镜照片;(d)器件在电功率密度为3.0 kW/cm2时的红外照片;(e)器件在不同电功率密度下的辐射光谱;(f)石墨烯晶格温度随电功率密度的变化。  此外,梯度表面能调控转移方法可作为晶圆级二维材料(石墨烯、氮化硼、二硫化钼等)向工业晶圆转移的通用方法,有望为高性能光电子器件的集成奠定技术基础。  该论文的共同通讯作者为北京大学彭海琳教授和国防科技大学秦石乔教授、朱梦剑副研究员。共同第一作者是北京大学前沿交叉学科研究院博士研究生高欣、北京大学化学学院博士毕业生郑黎明、国防科技大学前沿交叉学科学院罗芳博士、北京大学化学学院博雅博士后钱君。其他主要合作者还包括北京大学化学学院刘忠范教授、北京大学材料学院林立特聘研究员、北京石墨烯研究院尹建波研究员和孙禄钊研究员、及长春工业大学高光辉教授等。  该研究工作得到了国家自然科学基金委、科技部、北京分子科学国家研究中心、腾讯基金会等项目资助,并得到了北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台的支持。  原文链接:https://doi.org/10.1038/s41467-022-33135-w
  • 拼搏进取19载,初心始终不改。核心科技深耕,目标进口替代。 ——皖仪科技色谱发展历程
    拼搏进取19载,初心始终不改。核心科技深耕,目标进口替代。——皖仪科技色谱发展历程引言色谱技术的出现,使人们可以随时随地进行物质分离和分析,大大地提高了生产效率,这一学科时至今日还在不断进步,国产色谱仪器领域也在不断推陈出新。很多仪器公司为中国色谱事业的发展篇章写上了一笔一画。皖仪科技就是其中那最用心的一笔之一,其色谱事业的发展历程伴随着整个公司自身的成长过程。皖仪科技是一家有着科技创新基因的公司,2003年创立于有着四大科教基地、综合性国家科学中心称号的合肥市,公司汇集了一批来自清华、中科大等高校的高级研发人才,硬件、软件、结构等方面都具有很强的设计开发能力。早在成立之初,皖仪科技就坚持核心技术自主研发,致力于打造服务大众的分析仪器产品。延续传统 继往开来皖仪科技色谱事业的发展历程要从二十世纪初的2000年左右说起。当时国内色谱仪器还处于方兴未艾的时期,部分厂家推出了国产气相色谱等仪器,但是在液相色谱仪方面,总体上跟进口仪器相比还有较大差距。皖仪科技决心首先攻克液相色谱仪的核心技术,并应用在离子色谱仪上,实现在这一领域的技术领先,并打造中国人自己的色谱品牌。经过潜心研发,皖仪科技首先攻克了高压柱塞泵技术,申请了“两级悬浮传动技术”的发明专利,解决了色谱泵输液不稳定,高压密封圈容易磨损的问题。2008年推出了第一代LC3000系列等度系统。克服了高压下的梯度混合和小比例组分精度问题,于2010年推出了第二代LC3000二元高压系统(图1);2011年推出了AS3000自动进样器,耐压42MPa,三种进样模式;2012年推出了Cactus色谱工作站2.0版,能够通过一款软件控制整套仪器,界面直观,操作方便;2013年推出了经过整体设计的第三代LC3100系统(图2),外形美观大方,流路经过了优化,操作更加方便。攻克了高精度四元梯度比例阀的算法和FPGA控制逻辑;2016年推出了高精度四元低压梯度系统。攻克了低杂散光路、流通池设计、三维数据处理及显示,推出了采用全息平场凹面光栅具有1024像素的二极管阵列检测器;2017年推出了网络版色谱工作站SmartLab色谱工作站;2018年推出了可变波长荧光检测器,水的拉曼峰信噪比大于1200;2019年推出了国内首台真正商业化的超高效液相色谱仪(图3),配置有:国内首创耐压150MPa的独立柱塞驱动直线电机泵,授权发明专利一项;国内首创耐压150MPa的针在流路自动进样器,实现纳升级样品的无损进样;液芯波导流通池超高效二极管阵列检测器、低温蒸发型蒸发光散射检测器,授权国际发明专利一项,获得世界制造业大会创新产品金奖。与禄亘公司合作推出了国内首台全自动在线溶出度-液相色谱联用仪,利用SmartLab的强大功能,实现从药品放置、溶出取样、数据处理到报告打印的全流程的自动化。2020年推出了带计量泵针在流路进样器的LC3300高效液相色谱仪(图4)。目前皖仪科技能够提供高效液相色谱和超高效液相色谱产品,并具有全系列的检测器和配套的色谱工作站软件。如果说皖仪科技高效液相色谱的发展历程像是从曲折蜿蜒的小溪汇成了波澜壮阔的大河,生生不息,不断开拓进取。那么皖仪科技离子色谱的发展就像是凝聚了江河势能的壶口瀑布,创新引领,不断推陈出新。初露锋芒时期2008年,国内很多离子色谱厂家无法解决PEEK泵的高压密封问题,为了满足耐压,只能采用不锈钢材质制作离子色谱泵,由于不锈钢在离子色谱淋洗液的酸碱条件下会有金属离子溶出,会影响痕量离子的检测,因此无法实现高性能离子色谱仪。而皖仪科技经过攻关,成功解决了全PEEK泵的设计加工,耐压达到35MPa以上,并且能够在高压下长寿命的工作,成为国内最早拥有自主全PEEK泵技术的离子色谱厂家之一。并推出了第一代离子色谱仪(图5),分体式结构,包括等度泵、柱温箱、抑制器和电导检测器。快速发展时期皖仪科技是国内最早开发离子色谱专用自动进样器的厂家之一。为了实现实验室自动化、节省人力成本,皖仪科技自动进样器不断升级,先后开发AS2800自动进样器(可以实现高精度的满环进样)、AS3100自动进样器(可以实现任意体积的样品进样)。从此正式迈入自动化的时代。在此基础上,皖仪科技于2012年推出了第二代离子色谱仪(图6):集成式的一体机离子色谱仪包括全PEEK等度泵、电动PEEK进样阀、高精度柱温箱、自动进样器,最大限度地缩短了管路,获得优异的基线稳定性及极低的检出限。抑制器和电导检测器,能够实现等度淋洗。同时,皖仪科技首次采用全触摸屏控制,用户不用打开电脑即可在触摸屏上维护仪器、观察基线、平衡系统、监视谱图,大大提高了客户使用体验。突破进取时期检测溶液电导率的电导检测器技术是离子色谱的核心技术之一,当时离子色谱电导检测器主要采用二电极和四电极电导池进行检测,电极电流检测采用模拟方法,经单片机控制AD 转换器输出电导信号。这一处理方法电路复杂、耗时、精度不高、漂移大;而且只能在离子中间浓度范围内使用。此外,随着离子色谱应用越来越广泛,对离子色谱灵敏度、检测范围、噪声和漂移的要求也是越来越高。皖仪科技意识到传统检测方法和装置已成为离子色谱发展的瓶颈,因此开发出了宽检测范围、高精灵敏度的基于DSP的离子色谱数字电导检测装置,从测量电路方法和装置上解决目前离子色谱存在的出峰延时、线性范围低、噪声和漂移大等问题,能够直接输出真正的电导率值,全面提升了离子色谱检测器性能。集成了这一技术的第三代离子色谱于2013年正式面市(图7)。在这套系统上,皖仪科技首次创新地提出了一键冲洗、一键维护的概念,使用户能够通过触摸屏上的一个按键就可以完成做样完成后机器的冲洗及自动维护,避免了抑制器活化、系统冲洗等繁琐的人工操作,使用户真正体验到仪器自动化的方便性,节省时间和成本,提高使用寿命。这款离子色谱一经问世就成为用户喜爱的产品。战略升级时期皖仪科技并未止步不前,再次踏上征程。开启了离子色谱柱、脉冲积分安培检测器,氢氧根、甲烷磺酸和碳酸根淋洗液发生器的研发。于2015年开发出了氢氧根、甲烷磺酸和碳酸根淋洗液发生器。于2018年实现了第四代离子色谱仪(图8),从仪器到耗材以及新一代SmartLab4.0色谱工作站的离子色谱产品线全覆盖。于2019年开发成功了积分脉冲安培检测器,通过施加电位波形的改变,使电极达到清洗和活化的目的,扩大了可检测物质的范围。在这些技术的基础上,于2020年成功开发出了第五代离子色谱仪(图9):是真正意义上国内研发的多功能离子色谱仪。在一台机器中有机集成了双泵:四元梯度泵+等度泵,双检测器:电导+电导,电导+安培,阀切换和柱后衍生等功能。为了发挥多功能离子色谱的优势,皖仪科技还专门配套开发了阴阳离子同时进样的自动进样器,并在SmartLab软件中专门开发了新的交互界面和灵活强大的脚本编辑器,利用这些功能可灵活地进行分析流程的编排和方法的开发。聚焦行业 创新开发有了以上配置,多功能离子色谱仪真正为用户提供了“超出想象”的分析能力,之前很多难以完成的或者费时费力的多步操作可以在一台机器上自动完成。能够组合出在线前处理、在线浓缩、在线富集、柱后衍生和二维色谱等功能。在目前比较热点的半导体和新材料领域的高纯水和高纯试剂中的痕量阴阳离子的分析能够体现出他的优点。随着半导体集成电路集成度的不断提高,对产品洁净程度的标准也越来越高,痕量的污染都会使产品成为废品,所以水质的重要性不言而喻。在半导体和电子工业中,超纯水中离子污染的浓度通常在万亿分之一(ppt,ng/L)到十亿分子之一(ppb,ug/L)量级。对于超痕量阴离子的分析必须采用富集检测。离线的富集浓缩会引入严重的交叉污染,无法满足重复性的要求。皖仪科技多功能离子色谱给出的解决方案是采用浓缩柱代替定量环,大体积(10 mL)进样,进行在线样品预富集,该方法检出限可达10ng/L,灵敏度和准确度很高。因为ng/L级别的未知样和标准样手工配置难度很大,极易污染。在富集检测时采用ppb级的标准样浓度来确定ppt级的未知样浓度。多功能离子色谱将标样和未知样通过一个10通阀进行切换,可以减小环境的污染以及手动稀释导致的重复性和线性变差。以此方法可实现对ppt级样品的测定。半导体晶片生产中经常需要用到浓磷酸、氢氟酸和过氧化氢等高纯试剂,这些高纯试剂基体干扰离子浓度太高,测定其中的痕量组分有较大的困难,采用稀释的方法虽然可以减少干扰,但会使待测离子浓度低于仪器检出限而无法检出。皖仪科技采用多功能离子色谱仪开发了在线基体消除的整套解决方案(图10),通过自主开发的排斥柱消除基底,并进行痕量离子的富集检测(图11)。目前六价铬的检测方法主要有二苯碳酰二肼(二苯卡巴肼)分光光度法、离子色谱紫外柱后衍生法、原子吸收光谱法、原子荧光光谱法以及电感耦合等离子光谱法等,其中GB 5750.6-2006《生活饮用水标准检验方法 金属指标》采用二苯碳酰二肼分光光度法检测六价铬,但该方法容易受到样品浊度、色度、干扰离子的影响,尤其是带有颜色的样品,容易出现假阳性或假阴性结果,重复性不佳。环境保护部科技标准司组织制订了HJ779-2015《环境空气 六价铬的测定 柱后衍生离子色谱法》,该方法采用离子色谱法,不仅可以检测环境空气中六价铬,还可用于土壤、水质、纺织物、皮革、金属加工件、玩具、电子电器等中六价铬的测定。皖仪科技针对以上检测开发了基于多功能离子色谱仪的含有复杂基质的六价铬样品测试方法,操作简单,灵敏度高。该方法利用离子色谱柱切换技术,实现样品在线前处理,能够有效去除样品中的水溶性有机基质,省去复杂的样品前处理过程的同时也减少了人力消耗。另外,在前处理过程中增加了对样品中的柱后衍生,生成具有强吸收的基团,洗脱后由紫外可见分光光度计进行检测。六价铬最小检出浓度为0.00177ng/mL,小于标准要求检出限的56倍,远远低于标准要求,灵敏度高(图12)。图12 六价铬的检测在液相色谱应用方面,皖仪科技也开发很多有特色的应用方案。最新的一个典型应用是基于超高效液相色谱仪中针在流路进样器微量、快速的特点开发出来的自动在线柱前衍生应用。典型的检测就是手性氨基酸自动在线柱前衍生分析方法。采用邻苯二甲醛/N-异丁酰基-L-半胱氨酸(OPA/IBLC)为手性衍生化试剂,仅需要0.5微升样品,在6分钟以内完成在线柱前衍生,并采用荧光检测器检测。色谱分析时间45分钟,实现16种L型,14种D型氨基酸的分离和检测(图13)。图13 自动在线柱前衍生方法分离检测30氨基酸为了方便用户,皖仪科技也已经将以上这些典型应用进行收集整理,放在公众号上供用户查阅。民族智造 替代进口厚积而薄发,目前国内色谱技术日新月异,已经能够同国外产品同台竞技,下一步就要打造品牌,做好应用开发。我们在应用和解决方案上同国外品牌还有较大差距,其实也是体量的一个反映,应用和解决方案的开发需要投入大量的人力和资金。我们国产色谱厂商应该抓住国内市场大的优势,同重点用户和科研院所建立良好的合作关系,聚焦于某一两个重点行业,共同去开发应用和解决方案。至于品牌,则是建立在用户日积月累的信任上的,我们一方面要加强市场推广和宣传、积极打造国产色谱品牌;另一方面应该拿出自己的“撒手锏”级别的应用,真正解决客户痛点,建立国产色谱的口碑。随着国产替代的大势所趋,中国在半导体、新能源上的加大科技创新的力度,目前处在百年未有之大变局中,时不我待,在最近五到十年,国产色谱必将登上历史舞台,为中国建设科技强国贡献自己的一份力量。打铁还需自身硬,皖仪科技将继续深耕技术,做好服务,努力打造中国色谱标杆品牌,为这一历史进程画上浓墨重彩的一笔。
  • 发布:液相色谱脱气创新技术
    发布:液相色谱脱气创新技术新一代技术让HPLC脱气可控CarlSims,首席科学家,IDEXHealth&Science600ParkCourt,RohnertPark,CA94928 csims@idexcorp.com近年来,围绕着分析领域的技术和仪器优化的基本研究之外,分析实验的每个领域都需要采用现代管理和生产流程。基于QbD(质量源于设计)理念的方法越来越多,并且需要进行主动生命周期管理;实验室中的大多数仪器-例如从高端液质联用(HPLC-MS)系统到较简单的离心机、天平和泵,都集成至控制软件和实验室管理工具中。目标都集中在:可重复/可验证的性能,效率最大化,经济的运营方式,以及越来越被重视的环保意识。这种变化的结果是,随着分析仪和实验室设备的更新,可以引入支持这一转变的分析领域的技术创新的新模型。在本文中,我们将研究HPLC装置的重要组成部分,即脱气机,该装置迄今仍未满足当今的趋势。我们呈上多年开发过程的研究成果,以重新评估此关键部件的设计,性能和可控性,并重点介绍新型通用型平面薄膜脱气机的数据。这项新技术通过允许用户为任何HPLC系统或方法选择和控制固定的脱气效率,从而将重点从“恒定真空”转移到“恒定性能”。脱气技术的背景减少HPLC流动相中的溶解空气量会对系统流速和流动相组成的稳定性产生重大影响。低压混合HPLC泵仅依靠溶剂进入泵,在从比例阀转移到入口单向阀的过程中,发生的任何气体析出都会导致多种类型的错误。首先,会发生组分错误,因为传输线中的体积包含了空气,并不完全是流动相。随着传输线中气泡的伸展扩张,混合物的精度会继续下降。最后,进入泵的气泡可能会干扰入口单向阀,从而使泵无法将全部体积的流动相输送到色谱柱,而是将一部分移回比例阀。此外,在将流动相输送到色谱柱之前,泵也会将所有气泡压缩到系统压力。在高压混合HPLC系统中,溶解的气体会影响入口单向阀的操作,它会由于气蚀而形成微气泡。与低压混合HPLC泵一样,气泡会导致流量不正确,从而影响保留时间。根据检测器的类型和对流量的敏感性,这种波动的流量还会增加检测器中的系统噪音。因此,溶解的空气影响分离的准确性和分离度,以及可靠地鉴定色谱柱上已分离化合物的能力。所以,长期以来,基本上所有的HPLC系统都包括某种形式的脱气,从真空脱气,氦气鼓泡,超声处理到采用膜技术(包括PTFE膜和Teflon™ AF)的在线方法。当今的HPLC系统具有两种流动相混合装置之一:要么在溶剂进入泵之前就对其进行混合(低压混合);或者,流动相混合发生在泵之后但进样阀之前(高压混合)。在这两种情况下,对流动相混合物及其组分进行有效的在线真空脱气有助于避免色谱问题。1975年,Tokunaga发表了数据集,该数据集为HPLC溶剂混合物的脱气奠定了基础[1]。他确定了氧气在各种醇-水混合物中的溶解度的奥斯特瓦尔德系数,并演示了为防止气泡形成混合物需要脱气的程度。这篇开创性的论文为当今大多数实验室日常使用的基于管式的脱气系统的开发奠定了基础。图1绘制了Tokunaga的数据,并以HPLC系统将流动相混合为体积百分比的方式重新计算。上方的实心红色线和奥斯特瓦尔德系数的线之间的差值的代表混合物中溶解的空气过饱和度。还展示了通过脱气减少空气量的三条示例曲线。图1.Tokunaga1975年论文的数据,以体积%重新计算,显示了脱气对混合物中溶解空气过饱和度的影响。根据该数据,在大气条件下,不会析出气体的混合物中空气的实际浓度为38%,这是大多数脱气机设计要达到的目标(在特定仪表设计要求的流量和应用真空条件下)。挑战当前的做法今天,通常使用的在线脱气机使用管状Teflon™ AF或聚四氟乙烯(PTFE)膜。根据亨利定律,道尔顿定律和拉乌尔定律,它们允许空气通过膜脱离流动相。在恒定真空度下运行时,它们在低流速下更有效地从流动相中除去空气,而在高流速下则较少。这与在管子内的驻留时间相关。溶剂分子也可能从流动相移动到膜的真空侧。这种现象被称为渗透蒸发,在某些情况下以及某些HPLC方法学中,这可以明显改变流动相的浓度。这是因为当真空固定在低于溶剂蒸气压的压力下时,泵将持续除去溶解的空气和溶剂蒸气。只要泵处于活动状态,溶剂供应瓶就会补充系统,并将溶剂蒸气泵入大气。因此,期望使用脱气机的真空侧来控制渗透蒸发,将压力设置为尽可能高而不会达到在HPLC系统中将发生气体析出的点。这会影响泵和入口单向阀的效率,并可能导致流动相组成和泵系统流速不准确,由于定量和鉴定问题,可能导致方法失败。新一代脱气技术任何新的脱气方法的理想设计特点应包括:流量限制比基于管式的脱气机低外形小巧,没有内部管件泄漏最低真空体积以限制挥发物的初始渗透蒸发恒定流阻,与施加的真空无关在可能的最高压力下对流动相进行脱气,而不会使流动相变得过饱和。在此称为“高压脱气”,该技术减少或消除了溶剂蒸气向实验室空气的排放。脱气机已集成到HPLC系统控制软件中,可实现真空的智能控制,以确保提高脱气效率。此外,该脱气机的普适性(视HPLC系统的类型而定,流速范围高达10mL/min并兼容所有常见溶剂,包括六氟异丙醇)将是一个显著的优势。现在,平面薄膜以及专用的真空泵控制算法可以实现这些目标。图2显示了新型平面薄膜脱气机的示意图。这是一个简单的设计,可直接在低压和高压混合HPLC系统中应用(图3)。该设计使产品具有最少的配件和连接。其高效膜具有足够的表面积,可用于分析型的HPLC系统中的溶剂脱气(最高10mL/min流速)。独特的流道布局在泵的入口单向阀之前提供了较低的流体阻力。与之配套的真空控制算法可将其集成到分离方法控制协议中,并允许为任何HPLC系统选择给定的脱气效率。真空压力可以调高或调低,以达到准确的HPLC方法规范的需求。简化的界面依据HPLC分离方法的流速和所需脱气效率,并将真空调节到高效脱气的尽可能的最高压力。该方法可防止溶解的空气过饱和,同时抑制渗透蒸发和流动相浓度变化。流阻是恒定的,与施加的真空无关。图2.新颖的流道设计,薄液膜流过脱气膜。图3.集成到通用低压(左)和高压(右)HPLC系统中的新型脱气机在实践中对新脱气机/控制算法的初步评估已产生了一些令人鼓舞的数据,并就可用性提出了积极的报告。为了表征脱气机,通过运行高效液相色谱分离得到了性能与应用真空度的数学模型,并将其存储在脱气机控制器或HPLC控制系统中。第一步,是使用210纳米(nm)或215nm下的甲醇-氧气电荷转移络合物来测定不同流速和应用真空下的脱气腔的效率。图4显示了在四个不同真空压力下效率与流速的关系。请注意,在50mmHg下有30%的残留空气(效率为70%)时的最大流速约为2.5mL/min。这足以对高达5mL/min的梯度或任何等度流动相进行脱气,并且由于需要62%的效率(38%的残留空气,图1)来防止气体析出,因此配备此脱气器的HPLC系统在50mmHg的压力下,可以预期使用高达7mL/min流速的方法而不会出现气泡。图4.特征曲线显示了在四个不同真空度下薄膜脱气机的效率与流速的关系后续步骤绘制了每种流速的效率与真空度的关系曲线,并使用所需的效率和流速来求解效率-真空曲线方程式。每条曲线的公式将流速与输出真空水平联系起来,这样,一旦对脱气腔进行了表征,施加到脱气机上的真空水平就是该方法所需效率和流速的函数。然后可以使用真空控制来调节脱气性能,以覆盖HPLC系统的整个性能范围。因此,可以在任何流速下维持流动相最小的浓度变化(或渗透蒸发)始终确保目标脱气效率。图5显示了比较平面薄膜和管式系统的脱气效率的实验数据。值得注意的是,真空水平明显不同,但是新型薄膜脱气机的性能在所需的流速(1mL/min)和效率(70%)上与管式脱气机相匹配。这说明任何脱气器都可以被表征,然后可以将所得数据集用于根据效率和方法流速的输入来控制真空脱气系统。图5.在50mmHg真空下,与标准的18英寸管式脱气机相比,在1mL/min时的预计真空水平效率为70%。1mL/min流速下70%的效率时的预测真空度与标准18英寸管式脱气机在50毫米汞柱真空下的对比。展望未来总而言之,与在恒定真空下进行脱气相比,此处描述的平面薄膜脱气机及其配套控制算法的发展为色谱工作者提供了更高的脱气性能。这些好处不仅将提高脱气效率,而且最重要的是,将提高方法的可重复性,实验室熟练度和生产率。您可以点击https://www.instrument.com.cn/netshow/SH101586/,获取相关产品信息。或者给我们400-860-5168转1586留言,了解更多最新的技术。参考文献:TokanugaJ(1975)solubilitiesofoxygen,nitrogenandcarbondioxideinaqueousalcoholsolutions,JChemEngData,20(1):41-46关于作者CarlSims是IDEXHealth&Science的首席科学家,专注于HPLC系统的膜脱气,流体光学和UPLC阀门的研究。在仪器领域拥有47年的化学经验,他已获得52项美国专利,以及150项外国专利,主要集中在HPLC,离子色谱,TeflonAF光学以及早期职业生涯的DNA合成领域。Carl是名海军退伍军人,拥有科罗拉多州杜兰戈市FortLewis学院的化学学士学位和亚利桑那州弗拉格斯塔夫的北亚利桑那大学的化学硕士学位。关于IDEXHealth&Science,LLCIDEXHealth&Science是在生命科学领域里流控和光学方面的权威专家。我们赋予客户三重优势,即借助我们的产品、人员和工程专业知识为您的光学和流路系统带来新的活力。IDEXHealth&Science提供完整的生命科学仪器研发的革新技术,用于分析仪器、临床诊断以及生物技术的应用。凭借行业内全面且先进的产品系列和工程能力,IDEXHealth&Science参与到客户的需求中,提供最具生命力的解决方案,逐步成为光学及流控专家。可提供的产品有:连接件、阀门、泵、脱气机、空柱管、多岐管板、耗材、集成的流控组件、滤镜、镜头、快门,激光源,光引擎以及集成的光学组件。
  • 工信部印发《绿色工厂梯度培育及管理暂行办法》
    绿色工厂梯度培育及管理暂行办法第一章 总则第一条 为加快构建绿色制造和服务体系,发挥绿色工厂在制造业绿色低碳转型中的基础性和导向性作用,加快形成规范化、长效化培育机制,打造绿色制造领军力量,根据《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《“十四五”工业绿色发展规划》《工业领域碳达峰实施方案》,制定本办法。第二条 本办法所称绿色工厂是指实现用地集约化、原料无害化、生产洁净化、废物资源化、能源低碳化的企业,是绿色制造核心实施单元。绿色工厂梯度培育是指从以下两个维度建立培育机制:纵向形成国家、省、市三级联动的绿色工厂培育机制;横向形成绿色工业园区、绿色供应链管理企业带动园区内、供应链上下游企业创建绿色工厂的培育机制。绿色工业园区是指将绿色低碳发展理念贯穿于园区规划、空间布局、产业链设计、能源利用、资源利用、基础设施、生态环境、运行管理等过程,全方位实现绿色低碳和循环可持续发展的工业园区,是绿色工厂和绿色基础设施集聚的平台。绿色供应链管理企业是指将绿色低碳发展理念贯穿于企业产品设计、原材料采购、生产、运输、储存、销售、使用和报废处理等全过程,实现供应链全链条绿色化水平协同提升的主导企业,是带动供应链上下游工厂实施绿色制造的关键。第三条 绿色工厂梯度培育及管理遵循企业主体、政府引导、标准引领和全面覆盖的原则,以绿色工厂培育为基础,以绿色工业园区、绿色供应链管理企业培育为支撑,优化政策环境,引导第三方机构提供专业化服务,激发企业绿色制造的内生动力,发挥绿色制造标杆示范带动作用,推动行业、区域绿色低碳转型升级。第四条 工业和信息化部负责全国绿色工厂梯度培育工作的宏观指导、统筹协调和监督管理,组织制定评价标准,遴选发布国家层面的绿色工厂、绿色工业园区、绿色供应链管理企业名单(以下简称绿色制造名单),推动出台相关配套政策。各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门(以下简称省级工业和信息化主管部门)根据本办法制定本地区的绿色工厂梯度培育管理实施细则报工业和信息化部备案,并依据本办法和实施细则负责本地区的培育、管理和推荐工作。第五条 工业和信息化部负责工业节能与绿色发展管理平台(https://green.miit.gov.cn/,以下简称管理平台)的建设和运维,将其作为开展绿色工厂梯度培育及管理的统一平台。第二章 培育要求第六条 省级工业和信息化主管部门应将本地区具备培育条件且有提升潜力的企业、工业园区列为培育对象,制定培育计划,引导和支持培育对象对照绿色工厂、绿色工业园区和绿色供应链管理企业相关标准要求,实施绿色化改造升级,持续完善绿色发展各项工作。第七条 绿色工厂培育对象应当符合下列条件:1.依法设立并具有独立法人资格或者视同法人的独立核算单位,且从事实际生产的制造型企业;2.符合本办法第十四条第一款相关标准要求。第八条 绿色工业园区培育对象应当符合下列条件:1.具有法定边界和范围、具备统一管理机构的工业园区,且以产品制造和能源供给为主要功能,工业增加值占比超过50%;2.发布园区绿色工厂培育计划,组织园区内企业开展绿色工厂创建;3.符合本办法第十四条第二款相关标准要求。第九条 绿色供应链管理企业培育对象应当符合下列条件:1.依法设立并具有独立法人资格或者视同法人的独立核算单位,是行业影响力大、经营实力雄厚、产业链完整、绿色供应链管理基础好、在产业链发挥主导作用的企业,积极创建绿色工厂;2.制定供应商绿色工厂培育计划,推动供应商开展绿色工厂创建;3.符合本办法第十四条第三款相关标准要求。第三章 创建程序第十条 企业、园区可采取自评价或委托具备评价能力的第三方机构开展评价的方式,编写评价报告后通过管理平台提交。采取第三方评价方式的,第三方机构要按照《绿色制造第三方评价工作要求》(附件1)开展工作,对所出具评价报告的真实性和准确性负责。采取自评价方式的,工作流程和报告模板可参考《绿色制造第三方评价工作要求》。第十一条 省级工业和信息化主管部门依据管理平台收到的申报材料,按照本办法和本地区绿色工厂梯度培育管理实施细则组织本地区省市层面绿色工厂创建,发布省层面绿色工厂名单。省层面绿色工厂原则上应先纳入市层面绿色工厂名单。第十二条 省级工业和信息化主管部门在充分征求当地生态环境、应急管理、市场监管等主管部门意见后,于每年7月31日前将本地区具有代表性和引领性的省层面绿色工厂通过管理平台推荐至工业和信息化部。各省绿色工厂的推荐数量将按照规模以上工业企业数量和梯度培育体系建设情况等因素综合确定。工业和信息化部组织专家对各省推荐的工厂进行评审,择优确定年度公示名单,公示时间为15日,经公示无异议的纳入国家层面绿色工厂名单并予以公告。第十三条 国家层面绿色工业园区、供应链管理企业创建流程和时间要求与国家层面绿色工厂相同。省级工业和信息化主管部门可根据实际工作需要自行组织省层面绿色工业园区、供应链管理企业创建,自行确定推荐单位是否需纳入省层面绿色工业园区、供应链管理企业名单。第十四条 工业和信息化部定期发布用于国家层面绿色工厂创建的标准清单(详见节能与综合利用司网站)。已纳入清单的行业按照相应标准进行评价,不在清单范围的行业依据《绿色工厂评价通则》(GB/T 36132)进行评价。工业重点领域优先推荐能效水平达到国家有关部门发布的标杆水平的工厂,其他行业优先推荐达到相应国家能源消耗限额标准先进值或1级水平的工厂。国家层面绿色工业园区创建依据《绿色工业园区评价要求》(附件2,后续根据实际随时修订)。推荐的园区应为省级以上且绿色工厂数量多、占比高的工业园区。工业和信息化部定期发布用于国家层面绿色供应链管理企业创建的行业指标体系(详见节能与综合利用司网站)。已发布行业指标体系的按照指标体系进行评价,未发布的行业依据《绿色供应链管理企业评价要求》(附件3,后续根据实际随时修订)进行评价。推荐的企业原则上应为国家层面绿色工厂,优先推荐汽车、机械、电子、纺织、通信制造等行业以及供应商中绿色工厂数量众多的龙头企业和汽车产品生产者责任延伸试点企业。省级工业和信息化主管部门可参考上述标准,结合本地区实际适当调整要求,确定创建省市层面所使用的标准。第十五条 近三年有下列情况的企业或园区(含园区内企业),不得申请、推荐和列入绿色制造名单:(一)未正常经营生产的(工商注销、连续停产12个月以上、被市场监督管理部门列入经营异常名单且未被移出等);(二)发生安全(含网络安全、数据安全)、质量、环境污染等事故以及偷漏税等违法违规行为的(参照“信用中国”和“国家企业信用信息公示系统”);(三)被动态调整出绿色制造名单的;(四)在国务院及有关部委相关督查工作中被发现存在严重问题的;(五)被列入工业节能监察整改名单且未按要求完成整改的;(六)企业被列为失信被执行人。第四章 动态管理第十六条 对绿色制造名单实施动态跟踪。国家、省、市层面绿色制造名单应在每年4月15日前通过管理平台填报动态管理表(附件4),上报年度绿色制造关键指标情况。第十七条 省级工业和信息化主管部门对纳入绿色制造名单的企业或园区应加强指导、监督、检查,不定期进行现场抽查复核,持续跟踪和分析创建成效,如有重大及以上生产安全和质量事故、Ⅱ级(重大)及以上突发环境污染事件的实时上报工业和信息化部。第十八条 绿色制造名单中的企业或园区存在以下情形的,在发布年度名单时予以移出并进行公告:(一)第十五条中所提到情况;(二)拒不按时填报动态管理表;(三)所提交材料或数据存在造假等问题。发生重大及以上生产安全和质量事故、Ⅱ级(重大)及以上突发环境污染事件的,及时从各层面名单移出并进行公告。第十九条 绿色制造名单中的企业或园区,如发生名称变更或因投资、并购等原因造成实际生产经营范围、生产地址、组织边界与列入时发生重大变更的,应在填报动态管理表时予以说明。所在地方工业和信息化主管部门对企业或园区提交的变更说明进行复核确认,变更后不再符合相关标准的从本层面名单中移出。对涉及到上一层面绿色制造名单的,地方工业和信息化主管部门于每年推荐名单时,将调整意见统一上报,在发布年度名单时予以公告和变更。第二十条 地方工业和信息化主管部门要对在本地区开展业务的第三方机构进行监督管理,发现问题及时上报。经查实在评价过程中存在弄虚作假或故意隐瞒评价对象问题的第三方机构在管理平台中进行通报,三年内不予采信其所出具的评价结果。工业和信息化部适时公布第三方机构开展评价工作的有关情况,引导第三方机构提升服务水平和工作质量。同一法定代表人的第三方机构每年度开展的国家层面绿色制造评价项目(包括绿色工厂、绿色工业园区、绿色供应链管理企业)总计不得超过15项。第二十一条 任何组织或个人可针对绿色制造名单单位和第三方机构相关信息真实性、准确性等方面存在的问题,向相关工业和信息化主管部门实名举报,并提供佐证材料和联系方式。对受理的举报内容,相关工业和信息化主管部门应及时进行核实,经核实确认存在所举报事项的,视情节轻重要求进行整改或按本办法第十八条要求从绿色制造名单移出,第三方机构存在所举报事项的按本办法第二十条第一款规定处理。第五章 配套机制第二十二条 工业和信息化部负责制定绿色制造相关政策,统筹推动分行业绿色工厂评价标准的制定,开发推广反映绿色工厂绿色发展水平的“企业绿码”,联合有关部门依法依规在规划布局、技术改造、专项资金申请、政府采购、试点示范、金融服务、品牌宣传等方面对绿色制造名单单位提供支持,发挥国家产融合作平台作用,引导金融资源为工业绿色发展提供精准支撑,实施绿色制造宣传推广行动,开展绿色制造培训。第二十三条 地方工业和信息化主管部门负责制定出台本地区对绿色制造的扶持和指导政策,把绿色工厂梯度培育作为推动区域制造业绿色高质量发展的主要抓手,对本地区绿色工厂梯度培育过程中遇到的问题制定针对性政策,联合有关部门依法依规积极运用财政、产业、土地、规划、金融、税收、用能等政策,持续提升绿色制造水平。第二十四条 参与绿色工厂梯度培育的第三方机构应加强自身能力建设和专业人员培养,主动向培育对象宣贯绿色制造相关理念和要求,推广先进成熟经验,深入挖掘绿色发展工作亮点和潜在改进空间,提出合理化提升建议,跟踪培育对象绿色发展过程的需求,提供绿色制造系统解决方案和持续性技术服务。第二十五条 绿色工厂、绿色工业园区、绿色供应链管理企业应积极通过公开渠道展示宣传绿色制造先进技术和典型做法,按照生态环境主管部门相关规定要求披露环境信息,发挥先进示范引领带动作用。鼓励绿色工厂编制绿色低碳发展报告,绿色工业园区制定绿色工厂支持政策,绿色供应链管理企业加大对绿色工厂的产品采购力度。第六章 附则第二十六条 本办法由工业和信息化部负责解释。第二十七条 本办法自发布之日起实施。附件:1.绿色制造第三方评价工作要求   2.绿色工业园区评价要求   3.绿色供应链管理企业评价要求   4.绿色制造名单动态管理表附件:《绿色工厂梯度培育及管理暂行办法》.pdf仪器信息网自2010年发起“科学仪器行业绿色仪器”奖项评选,旨在将中国市场上推出的,在绿色、低碳、环保以及保护人身体健康和安全等方面有突出设计的国内外仪器产品全面、公正、客观地展现给广大用户,促进科学仪器行业健康、快速发展。2024年1月3日起,仪器信息网启动“2023年度科学仪器行业绿色仪器”评选(申报通知),欢迎各仪器厂商积极申报!【申报通道】点击上方【申报通道】,登录【仪信通】,点击左侧菜单【奖项】→【绿色仪器】,即可进行申报。
  • CEPC 650 MHz超导腔加速梯度再创新高
    6月22日和7月12日,中科院高能所加速器中心沙鹏等人在先进光源技术研发与测试平台(PAPS)分别对环形正负电子对撞机(CEPC)的两只650 MHz single-cell超导腔(1#腔和2#腔)进行了低温下的垂直测试(@ 2.0 K):两只超导腔的最大加速梯度分别达到了41.0MV/m和41.6MV/m;在40MV/m的加速梯度下,两只超导腔的品质因数(Q)分别达到了1.7E10和2.5E10;此外,在测试过程中,1#腔全程没有出现场致发射现象,2#腔则在37MV/m以上的高加速梯度下发生了轻微的场致发射。测试结果表明,这两只超导腔的后处理和测试过程非常成功。 由于体积和表面积大、频率较低,国内大尺寸(频率小于1GHz)超导腔的加速梯度一直没有超过40MV/m,而国际上超过40MV/m的大尺寸超导腔也是屈指可数。因此,在高能所射频超导与低温研究中心的部署下,加速器中心高频组开展了CEPC高性能650 MHz single-cell超导腔的研发,希望可以达到CEPC的远期目标(3E10@40MV/m)。两只650 MHz single-cell超导腔的加速梯度均超过了40MV/m,这为下一步继续提高超导腔的Q值奠定了基础。 本项研究得到了先进光源研发与测试平台、国家重点研发计划、国家自然科学基金委、 王贻芳科学家工作室和高能所创新项目的资助和支持。 650 MHz single-cell超导腔垂直测试结果(1#腔,20220622;2#腔,20220712)
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 浙江大学罗忠奎研究团队揭示青藏高原不同气候梯度下土壤碳矿化与微生物群落组成之间的解耦
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达26篇。 今天与大家分享的是浙江大学环境与资源学院罗忠奎研究团队在研究土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间关系方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤CO2排放速率,为研究结果提供了有力的数据支撑。 土壤微生物驱动着有机碳的矿化,由于不同微生物群落在代谢效率以及对不同温度变化的响应存在差异,因此土壤有机碳矿化及其温度敏感性(Q10)与微生物群落多样性和组成之间应该存在密切的关系。然而,这些关系很少被检验。 基于此,浙江大学环境与资源学院罗忠奎研究团队通过室内培养实验,评估了藏东南地区不同海拔(气候)梯度中土壤微生物α多样性对温度的响应以及r-和k-策略微生物的相对丰度。图.培养第128天的土壤有机碳矿化速率及其Q10与门水平微生物群落丰度的相关性。灰色表示相关性不显著(即P 0.05),彩色网格表示相关性显著(P 0.05),颜色梯度表示相关性的大小和强度。R5°C-128和R25°C-128分别为5°C和25°C培养温度下第128天的有机碳矿化速率。Q10-128为土壤有机碳在128天培养期间的温度敏感性。F:新鲜土壤样品;5、25分别为在5°C和25°C培养的土壤样品。 在土壤培养实验设计及有机碳矿化测定的过程中,研究团队采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统测定土壤CO2排放速率(μg CO2-C g&minus 1 SOC day&minus 1),每个土壤样品测定时间设置为3分钟,此数据的获取为该项研究提供了有力的数据支撑。基于不同温度下测定的土壤CO2排放速率,计算了有机碳矿化的温度敏感性(Q10)。 研究结果表明:培养128后测定的α多样性以及r-和k-策略微生物的相对丰度受温度的显著影响(P 0.05),但是这些微生物变量并不能很好地预测同步测定的土壤有机碳矿化速率。相反,新鲜土壤的微生物群落多样性以及r-和k-策略微生物的相对丰度对不同培养阶段的土壤有机碳矿化速率及其Q10的影响是一致且显著的(P 0.05)。与此同时,路径分析表明,当考虑到气候、土壤有机碳化学、物理保护和土壤性质的变化时,微生物α多样性以及r-和k-策略微生物对土壤有机碳矿化速率及其Q10的影响并不是独立的。本研究结果表明,虽然土壤微生物群落的多样性和组成是土壤有机碳质量和有效性的重要指标,但它们并不是土壤有机碳矿化速率及其Q10的根本的决定因素。 相关研究成果以“Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau”为题发表在国际SCI期刊Geoderma(IF2022=6.1,中科院一区)。Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.https://doi.org/10.1016/j.geoderma.2023.116736 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.
  • 中环电炉发布1600℃双温区梯度管式电炉新品
    一、操作便捷性:1、气路连接方式采用了快速连接法兰结构。2、使取放物料过程简化,只需一支卡箍便可完成气路连接,方便操作。3、取消了复杂的法兰安装过程,减少了炉管因安装造成损坏的可能。 二、结构实用性:1、炉膛材料采用优质的多晶莫来纤维真空吸附制成,节能50%,温场均匀。电热元件采用表面温度1500度的优质硅碳棒及表面温度1700度的优质硅钼棒。2、密封法兰采用双环密封技术,有效的提高了炉管两端的气密性。气路具有进出气微量可调功能。3、两端气路支架,支撑着气路装置。有效消除了气路总成自身的应力,杜绝了因自身应力而造成的炉管损坏。4、先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。 三、使用安全性:1、超温保护功能,当温度超过允许设定值后,自动断电及报警。2、漏电保护功能,当炉体漏电时自动断电。以上功能确保了使用的安全性。 四、控制智能化:1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产程序控温系统可编辑50段程序控温,进口程序控温系统可编程40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接。完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。 五、周边拓展性:1、真空控制系统。通过各种真空控制系统,可以实现样品在低、中、高真空环境下进行试验。2、气体流量控制系统。通过浮子或质量流量控制器调节进气量,以满足用户在不同反应气氛或保护气氛条件下的实验要求。 六、设计独特性:该设备为专利产品,具有多项独立自主的知识产权专利。外观美观,结构合理,使用方便。选配:彩色触摸屏;显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。产品用途:该系列电炉系周期作业,供企业实验室、大专院校、科研院所等单位选用。设备为用户提供具有真空、可控气氛及高温的实验环境,应用在半导体,纳米技术、碳纤维等新型材料新工艺领域。创新点:该设备为专利产品,具有多项独立自主的知识产权专利。外观美观,结构合理,使用方便。选配:彩色触摸屏;显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。1600℃双温区梯度管式电炉
  • 梯度PCR仪一次性成交2台!
    近日,兰州大学一次性采购2台梯度PCR仪,PCR仪适用于分子生物学、医学、食品工业、司法科学、生物技术、环境科学、微生物学、临床诊断、流行病学、遗传学、基因芯片、基因检测、基因克隆、基因表达等领域以聚合酶链式反应为特征的、以检测DNA/RNA为目的的各种病原体检测及基因分析。托摩根梯度PCR仪G2000仪具有Tm值自动计算,触屏,宽范围,温度梯度,程序暂停,温度监控,屏幕指示,个人账户,曲线加载和保存,手动模式,工作曲线展示,断电保护等功能。拥有超宽梯度功能,可实现不同退火温度的精确控制,仅一次实验就能确定特定体系相应的最优退火温度,从而可在短时间内对PCR实验进行优化,提高PCR科研效率;高效可靠的热循环系统可提高升降温速率;采用低热质合金模块可降低不同区域温度差别,大大延长了元件的使用寿命。 Thmorgan咨询热线:4000-688-151。市场部2018年1月3日
  • 研究者设计梯度表面能调控的复合型转移媒介
    石墨烯等二维材料的载流子迁移率高、光-物质相互作用强、物性调控能力优,在高带宽光电子器件领域具有重要的科学价值和广阔的应用前景。当前,发展与主流半导体硅工艺兼容的二维材料集成技术受到业内广泛关注,其中首要的挑战是将二维材料从其生长基底高效转移到目标晶圆衬底上。然而,传统的高分子辅助转移技术通常会在二维材料表面引入破损、皱褶、污染及掺杂,严重影响了二维材料的光电性质和器件性能。因此,实现晶圆级二维材料的无损、平整、洁净、少掺杂转移是二维材料面向集成光电子器件应用亟待解决的关键问题。针对这一难题,国防科技大学前沿交叉学科学院副研究员朱梦剑-教授秦石乔课题组与北京大学化学与分子工程学院教授彭海琳课题组合作,设计了一种梯度表面能调控(gradient surface energy modulation)的复合型转移媒介,可控制调节转移过程中的表界面能,保证了晶圆级超平整石墨烯向目标衬底(硅片、蓝宝石等)的干法贴合与无损释放,得到了晶圆级无损、洁净、少掺杂均匀的超平整石墨烯薄膜,展示了均匀的高迁移率器件输运性质,观测到室温量子霍尔效应及分数量子霍尔效应,并构筑了4英寸晶圆级石墨烯热电子发光阵列器件,在近红外波段表现出显著的辐射热效应。该转移方法具有普适性,也适用于其它晶圆级二维材料(如氮化硼)的转移。9月15日,上述成果在线发表于《自然—通讯》(Nature Communications)上,共同通讯作者为朱梦剑、秦石乔和彭海琳,共同第一作者包括北京大学前沿交叉学科研究院博士研究生高欣、国防科技大学前沿交叉学科学院罗芳讲师等,其他主要合作者还包括中国科学院院士、北京大学化学学院教授刘忠范,北京大学材料学院研究员林立,北京石墨烯研究院研究员尹建波和孙禄钊,长春工业大学教授高光辉等。该文章提出,二维薄膜材料从一表面到另一表面的转移行为主要由不同表界面间的能量差异决定。衬底的表面能越大,对二维薄膜有更好的浸润性及更强的附着能,更适合作为薄膜转移时的“接受体”;反之,衬底的表面能越小,其更适合作为薄膜转移时的“释放体”。因此,作者设计制备了表面能梯度分布的转移媒介,其中冰片小分子层吸附在石墨烯表面,有效降低了石墨烯的表面能,保证石墨烯向目标衬底贴合过程中,衬底的表面能远大于石墨烯的表面能,进而实现良好的干法贴合;另一方面,转移媒介上层的PDMS高分子膜具备最小的表面能,能够实现石墨烯的无损释放。该转移方法还具有其他特点,比如,PDMS作为支撑层可以实现石墨烯向目标衬底的干法贴合,减少界面水氧掺杂;容易挥发的冰片作为小分子缓冲层能有效避免上层PMMA高分子膜对石墨烯的直接接触和残留物污染,得到洁净的石墨烯表面;高分子PMMA层的刚性使得石墨烯转移后依旧保持超平整的特性。晶圆级二维材料的梯度表面能调控转移方法。受访者 供图基于梯度表面能调控转移的石墨烯薄膜具备无损、洁净、少掺杂、超平整等特性,展现出非常优异的物理化学性质。转移后4英寸石墨烯晶圆的完整度高达99.8%,电学均匀性较好,4英寸范围内面电阻的标准偏差仅为6%(655 ± 39 &Omega /sq)。转移到SiO2/Si衬底上石墨烯的室温载流子迁移率能够达到10000 cm2/Vs,并且能够观测到室温量子霍尔效应以及分数量子霍尔效应(经氮化硼封装,1.7 K)。基于SiO2/Si衬底上4英寸石墨烯晶圆,成功构筑了热电子发光阵列器件,在较低的电功率密度下(P = 7.7 kW/cm2)能够达到较高的石墨烯晶格温度(750 K),并在近红外波段表现出显著的辐射热效应。此外,梯度表面能调控转移方法可作为晶圆级二维材料(石墨烯、氮化硼、二硫化钼等)向工业晶圆转移的通用方法,有望为高性能光电子器件的集成奠定技术基础。该论文审稿人表示:“研究成果提供了一种用于大规模生长和转移晶圆级石墨烯薄膜,制备了高载流子迁移率石墨烯微纳电子器件的先进技术,对石墨烯以及二维材料的学术界和产业界非常重要和及时,这是将石墨烯从实验室推向工业应用所必需的关键环节。”该研究工作得到了国家自然科学基金委、科技部、北京分子科学国家研究中心、腾讯基金会、湖南优青、湖湘青年英才等项目资助,并得到了北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台和国防科技大学高层次创新人才工程的支持。
  • Biocomp密度梯度产品再传捷报
    2010年12月17号,北京五洲东方科技发展有限公司广州分公司在中山大学仪器招标项目中喜中加拿大Biocomp密度梯度制备和分离系统!  这次中标是继清华大学、上海交通大学、中科院生物物理所、中科院植物所之后,Biocomp产品再添佳绩,实现了华南地区Biocomp产品销售零突破,为Biocomp产品打开华南地区市场揭开了崭新的一页!  加拿大Biocomp公司成立于1985年,由生物医学博士David创建。Biocomp长期致力于生命科学一起的研发和生产,如全自动密度梯度设备等。Biocomp全自动密度梯度设备自David博士80年代发明依赖,即成为密度梯度准备的金标准,并申请专利。经过20年不断改进和发展,Biocomp密度梯度产品已经遍布全球,为广大科学研究提供了巨大帮助。
  • 深度学习助力增材制造梯度力学超材料逆向设计
    由于其特异的宏微观基元拓扑构型,力学超材料在刚度、韧性、减隔振和热膨胀等性能方面显著优于传统均质材料,受到了航空航天、生物医学、电子电路和土木工程等领域的广泛关注。生物体经过长期进化形成的各类器官,与超材料的概念相契合,即通过多层级微结构实现超常物理力学特性,同时生物器官的微结构基元还呈现出梯度渐变、长程无序等特征。目前,针对力学超材料发展的拓扑优化方法和机器学习设计方法,主要面向周期性结构,对于仿生梯度超材料的逆向设计和优化,缺乏高效率、高保真的计算分析方法。 图1深度神经多网络系统实现多属性胞元的定制总体思路框图近期,来自北京理工大学的研究者们提出了一种加速梯度力学超材料逆向设计的深度学习方法。发展了一种由对抗神经网络(GAN)、性能预测网络(PPN)和结构生成网络(SGN)组成的多重网络深度学习框架,如图1所示,可实现力学性能参数和拓扑构型的快速双向映射。基于此深度学习框架,将各向异性材料杨氏模量、剪切模量和泊松比组成的属性空间,类比于R-G-B色彩空间,进而将梯度力学超材料逆向设计转换为色彩匹配问题。利用HTL树脂3D打印(NanoArch S140,摩方精密)制备了超材料结构样件,采用数字图像相关(DIC)方法验证了逆向设计的有效性。相关成果以“A Deep Learning Approach for Reverse Design of Gradient Mechanical Metamaterials”为题发表在《International Journal of Mechanical Sciences》期刊。图2 周期性超材料的应力应变曲线和泊松比应变曲线,其中左侧插图为3D打印试件,右侧插图为有限元分析模型。(a) 正泊松比结构。(b)零泊松比结构。(c)负泊松比结构;该研究中,首先基于拓扑优化方法得到了不同杨氏模量E、泊松比υ和剪切模量G的超材料胞元,并建立对应的属性空间作为数据样本。随后,基于Keras平台搭建了具备三个卷积解码/编码网络的深度神经网络系统,用于实现结构性能评估、结构补充与结构生成。基于拓扑优化样本实现PPN网络的离线训练,同时结合随机结构训练GAN网络以补充胞元属性空间。最后,基于属性空间扩充后的样本进一步训练SGN网络,对于任意的力学参数目标,均可在0.01秒内给出胞元构型,实现了多属性胞元的快速逆向设计。针对优化设计和网络预测得到的特定属性结构进行3D打印(如图2所示),并开展DIC压缩试验表征了其模量与泊松比,验证了算法的准确性和有效性。 图3 相邻胞元结构连通性的实现:(a)单元边界的定义和连接的分类(具有不同颜色的结构表示不同的属性);(b)SGN网络调整初始设计;(c)经过网络匹配得到的最终结构。在超材料胞元快速逆向设计的基础上,创新提出了一种结构像素化方法,通过结构的E-υ-G属性与R-G-B通道一一映射,将结构属性数据库转化为像素数据库。首先基于像素匹配的方式生成满足宏观属性需求的初始设计,随后网络系统根据结构的连通性要求进一步优化胞元结构,保证宏观结构的可制造性,如图3所示。研究者们以髋关节假体为例,开展了梯度超材料结构的快速设计。如图4所示,髋关节假体在人体中主要承受非轴向载荷,如果嵌入骨骼中的部分发生弯曲,受到弯曲拉应力作用的一侧,将牵引其上附着的骨组织,诱发组织损伤。模仿实际骨骼的力学属性分布特征,采用神经网络系统在不同位置自动排列模量与泊松比梯度变化的超材料胞元(图5),从而调整了宏观结构的变形模式,使髋关节植入结构的两侧,均保持在压应力状态,解决了假体界面失效的问题。计算模型基于围绕假体的凹槽,用于模拟假体插入骨骼,固定凹槽的底端并在假体的顶部施加非对称压缩载荷。同时他们还建立了一个多材料模型,每个晶胞区域代表一种材料,材料性质与超材料模型中相同位置的晶胞的E-G-υ一致。两种模型的水平位移计算结果如图5f所示,槽左侧的位移为负,而右侧的位移为正,这表明假体两侧的界面被均匀挤压。假体与骨牢固结合,有效防止界面破坏,梯度结构具有完美的连接状态,类似于超材料模型的设计目标。超材料模型和多材料模型的计算结果高度一致,证实了他们提出的超材料设计方法的准确性,这种有效的连接策略在满足增材制造要求的同时实现了与多材料设计相同的性能。图4 人体髋关节假体的受力状态。(从外到内为皮肤、髋骨和假体。假体受到不对称轴向压缩力作用,中间的粉红色区域被选为目标设计区域。) 图5 深度神经网络系统实现梯度模量/泊松比髋关节结构设计:(a)具有生物相似结构的梯度模量分布;(b)受变形模式启发的泊松比分布;(c)叠加后的最终力学性能分布;(d)GSN网络在像素匹配后调整结构;(e)满足目标模量和泊松比设计要求的超材料髋关节结构。(f)模拟假体受载的位移云图,等效多材料模型(上)和超材料模型(下)。
  • 《分析化学》正刊推出“赛默飞Ultimate 3000 DGLC 双三元液相色谱专刊”
    为加强学术交流与合作,充分分享经验与科研成果,推动我国相关科研领域的发展,《分析化学》杂志2014年第12期以正刊形式推出“赛默飞Ultimate 3000DGLC双三元液相色谱专刊”。 本期专刊收纳了如环境、食品、制药、化工等领域专家利用Ultimate 3000 DGLC 双三元液相色谱获得的研究成果20余篇,以研究报告、研究简报、评述与进展、仪器装置与试验技术等形式与读者进行学术交流和经验分享。赛默飞Ultimate 3000 DGLC 双三元液相色谱《分析化学》专刊下载链接:www.thermo.com.cn/survey826.html 随着科技的进步和研究的深入,我们遇到的问题越来越复杂,一些简单的系统和方法已经不能满足需求,赛默飞UltiMate 3000 DGLC双三元液相色谱凭借其独特的技术可迎刃而解这些复杂的问题,由此获得了很多专家学者的青睐。双三元液相色谱于2006年获得匹兹堡金奖,独特的设计开创了液相色谱新篇章。该系统采用双泵设计,每个泵作为一个单独的体系,有各自独立的比例阀和流动相体系,同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,一套系统即可以轻松实现在线固相萃取、二维及全二维液相色谱分离、流动相在线除盐、在线柱后衍生和反梯度补偿、并联/串联色谱等高级应用。赛默飞Ultimate 3000 DGLC 双三元液相色谱产品详情:www.thermo.com.cn/Product6510.html 《分析化学》杂志秉承积极报道我国分析化学创新性研究成果,反映国内外分析化学学科的前沿和进展,为广大读者提供最新的分析化学理论、方法和研究进展,为分析化学工作者提供国内外最新分析仪器信息,促进学术交流和科技进步的宗旨。现特推出“赛默飞Ultimate 3000 DGLC 双三元液相色谱专刊”,旨在将先进的仪器和独特的方法与读者分享,将前沿的理念带给读者,希望借此能给读者启发,从而起到积极的作用。 详情请登陆: www.analchem.cn/index.php 专刊下载链接:www.thermo.com.cn/survey826.html 更多关于赛默飞UltiMate 3000 DGLC双三元液相色谱的详情:www.thermo.com.cn/Product6510.html ------------------------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于《分析化学》《分析化学》目前是我国自然科学核心期刊及全国优秀科技期刊。由中国科学院长春应用化学研究所和中国化学会共同主办, 国内外公开发行的专业性学术期刊。1999年被SCI收录至今,2012年影响因子为0.769。地址:长春市人民大街5625号《分析化学》编辑部?邮编:130022电话:0431-85262017/85262018 传真:0431-85262018
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制