当前位置: 仪器信息网 > 行业主题 > >

检测量热仪发量热正确度的标准

仪器信息网检测量热仪发量热正确度的标准专题为您提供2024年最新检测量热仪发量热正确度的标准价格报价、厂家品牌的相关信息, 包括检测量热仪发量热正确度的标准参数、型号等,不管是国产,还是进口品牌的检测量热仪发量热正确度的标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合检测量热仪发量热正确度的标准相关的耗材配件、试剂标物,还有检测量热仪发量热正确度的标准相关的最新资讯、资料,以及检测量热仪发量热正确度的标准相关的解决方案。

检测量热仪发量热正确度的标准相关的资讯

  • “测量方法标准制修订中精密度试 验设计与统计方法”培训班12.14开课啦
    目前,测量方法标准在制修订中通常涉及精密度的内容,国家标准、行业标准主要有“允许差”和“重复性限、再现性限”两类精密度的表述方法。为科学、合理地给出测量方法精密度,国际标准化组织发布了ISO 5725《测量方法与结果的准确度(正确度和精密度)》系列标准,我国等同采用ISO 标准,颁布了GB/T 6379系列标准。该系列标准的第2 部分GB/T 6379.2-2004《测量方法与结果的准确度(正确度与精密度) 第2 部分:确定标准测量方法重复性与再现性的基本方法》,系统介绍了测量方法正确度与精密度的基本概念,给出了一些通过协同实验室间试验获得测量方法精密度的数值估计的试验设计中应遵循的原则,提供了组织和进行测量方法精密度的试验的程序,测量方法精密度试验的数学模型和统计方法等。  为帮助测量方法标准制修订及使用人员更加深入理解GB/T 6379.2-2004《测量方法与结果的准确度(正确度和精密度)第2 部分:确定标准测量方法重复性与再现性基本方法》标准,在测量方法标准制修订过程中,运用GB/T 6379.2-2004,确定测量方法精密度的重复性限和再现性限参数或函数关系,提升制修订测量方法标准的水平,CSTM 科学试验领域标准委员会秘书处与全国分析检测人员能力培训委员会秘书处拟定于2021 年12 月14 日举办“测量方法标准制修订中精密度试验设计与统计方法”培训班。参加本次培训班学习并通过考核的学员,可取得CSTM“测量方法标准制修订中精密度试验设计与统计方法”培训证书。  本次培训班具体安排如下:  一、组织机构  CSTM 科学试验领域标准委员会秘书处  全国分析检测人员能力培训委员会秘书处  二、培训对象  各相关单位的测量方法标准制修订人员及标准使用人员。  三、培训及研讨内容  1、GB/T 6379.2-2004《测量方法与结果的准确度(正确度和精密度)第2部分:确定标准测量方法重复性与再现性基本方法》标准解读   2、测量方法标准制修订中精密度试验设计与统计案例解析及经验分享   3、互动答疑。  四、授课时间及形式  1、培训时间:2021 年12 月14 日9:00-17:00  2、培训方式:腾讯会议(在线)  五、培训专家  罗倩华,女,工学博士。1990 年毕业于吉林大学环境科学系环境化学专业,现为钢研纳克检测技术股份有限公司正高级工程师,一直从事冶金材料分析方法研究和标准制修订等工作。现为全国钢标准化技术委员会钢铁及合金化学成分测定分技术委员会秘书长,组织和承担国际标准、国家标准、冶金行业标准和团体标准的制修订100 余项,曾获得冶金科学技术奖一等奖和二等奖。  六、收费标准及付款方式  1、培训费:1500 元/人  2、付款方式:  汇款至下列帐号:  单位名称:中关村材料试验技术联盟  开户行:中国工商银行北京新街口支行  银行帐号:0200002909200227889  微信及支付宝支付二维码:  注: 请在提交培训回执表后及时付款, 付款后将转账凭证发送至邮箱(training@analysis.org.cn)。  七、报名方式  1、参加人员请将《培训报名回执》填写完毕发送至邮箱:  training@analysis.org.cn,收到邮件“您的邮件已收到,稍后答复”视为秘书处收到了  报名申请 工作日24 小时内未收到回复,请联系工作人员,联系电话:010-62182851。  2、《培训报名回执表》(附件一)请于12 月10 日之前发送至上述邮箱。  3、秘书处收到贵方所付本次培训的培训费,视为报名成功。  八、联系方式  联系电话:  王爽:010-62182851 13381073503  许康:010-62182851 18601075050  邮箱:training@analysis.org.cn  CSTM 科学试验领域标准委员会秘书处  全国分析检测人员能力培训委员会秘书处附件1:培训报名回执.docx
  • 热宝无强制检测标准 “高烧”之后毁物又伤人
    产品使用低档元件 出厂时无约束标准 屡屡造成毁物伤人事故 本报调查发现其中隐患  无强制“体检”劣质热宝易“高烧”  寒冬时节,热宝成了很多市民的小装备——随身携带可以焐手,坐下工作可以暖膝,晚上睡前可以暖被窝。不过,近来本报多次接到读者的来电——热宝事故频发。  随后记者探访发现,买个让人放心的热宝,其实真挺难的。  读者实例  “高烧”热宝毁物又伤人  11月中旬,家住丰台区南苑北里四区的王瑛在淘宝网上买了一个饼状热宝,直径约20厘米。第一次使用时,她按说明书充好电。套上红色灯芯绒的套子后塞到了被窝里。  不到10分钟,她突然闻到一股煳味,掀开被子一看,床单被热宝烫出了焦黄色的煳印。  在CBD某写字楼工作的梁谦更郁闷,他在某大型超市购买了一个防爆型贮水式热宝。由于单位暖气不热,某天他在单位连续用了一上午热宝。临近中午时,他又一次把热宝放在桌边充电,其连接电源线的部分突然爆炸,液体差点泄漏,袖子都被熏黑了。  不过和另一位市民彭丽相比,梁谦还不算最倒霉的。几天前,彭晓华看电视时把热宝放在膝头,起身时稍一挤压,液体就流了出来,渗透了两层裤子,灼伤了她的腿部。  市场调查  在超市和小市场均热卖  记者走访时发现,目前市民购买热宝主要有三个途径:正规超市、小商品市场和网店。  在多家超市卖场,在货架上偏安一隅的热宝如今已占据了显著位置,几乎每家超市都有好几种款式、近十种品牌。  有的超市甚至还专门为热宝腾出一个柜台,工作人员李先生称,今年此类商品的销售情况与往年相比至少翻了一倍,为此店里还专门进了好几种新货。  李先生的话在记者走访的十多家超市里均得到证实。一家超市甚至表示,如今货架上卖的已是今年的第三批货了。  而在天意、西单明珠等小商品市场,售卖的热宝图案相对更花哨,有店主称,一天“走货”近百个都不成问题,还有网店老板一下子来批发走了80个。  记者试验  “烧”得高凉得也快  那么,哪些热宝的质量更可靠一些呢?  从各大超市到小商品市场,记者发现主流的热宝产品共有三种,分别是“饼状”、充液(化学液体)式和可换水式。  记者随后随机选取了三种6个品牌进行质量试验,发现在瞬间高温、持续散热时间和使用效率上,这三种热宝都存在质量问题。  ●发现一:最高温度达到80℃以上  记者发现,几款热宝在自动断电时,其温度都已达到62℃到66℃,但随后其温度都开始急剧上升。  其中,“饼状”热宝达到的最高温度要比充液式和可换水式热宝高,最高可以达到85℃。  即便裹了两层毛巾,半小时后,记者家的床单、床垫都烫出了黄印。  如果手拿这种热宝,即便配上产品配套的薄绒套,也一样可以将人烫伤。  ●发现二:散热时间多数低于标称值  记者将六个热宝接通电源后,发现它们的充电时间普遍少于标称值。  加热快,那散热的时间是否合乎标准呢?  记者发现,试验的6款产品均在两个小时左右就从高温状态回到与人体体温相同的状态。其中,时间相差最大的是可换水式热宝,它的标称散热时间为3到10个小时,可是实际散热时间只有1小时54分。  而在整个试验过程中,散热时间最长的是充液式热宝,但其散热时间也刚刚达到产品说明的最低限。  产品种类 标称散热时间 实际散热时间“饼状”热宝 2到2.5小时 1小时48分充液式热宝 2到10小时 2小时17分可换水式热宝 3到10小时 1小时54分  (注:数据为每类热宝各两个样品的平均值)  ●发现三:使用一周后就“不好用了”  断断续续使用一周后,记者发现,这几个热宝的充电时间和散热时间都出现不同程度的缩短。  平均而言,与购买后的第一次使用相比,散热时间平均缩短约20分钟。其中,“饼状”热宝的散热时间相对缩短得最多,比首次使用缩短了约30分钟。  技术分析  天津天磁有限公司的热宝已经生产了十多年,在电磁类热宝方兴未艾时,这个品牌是市场上比较响的牌子。但目前,其价格却比市面上热销的多数产品高出一倍,其销量也受到这些低档品的冲击。  “天磁”的工程师魏先生告诉记者,这些竞争对手的低价缘于低成本。  用劣质材料成本可省近10元  比如热宝中的温控器,好的产品可以重复使用3万次到7万次,但是有的劣质品,可能使用几千次就会失灵。  据介绍,正规产品的批发价约每个3元,但有的厂家为了节省成本,使用的产品每个成本不足1元,这样加上熔丝等元件,一个暖宝在温控断电环节,成本就可以省下近10元,这样的产品出现使用寿命短、控温不准的情况就“顺理成章”了。  设计不合理易致温度失控或爆炸  魏先生和该公司维修部的孙女士则介绍说,劣质热宝除了在元件上偷工减料,内部设计也有问题。  比如“饼状”热宝,不但配有温控器,另外还有断电保险。  劣质热宝有的根本就没有这么复杂的保险设计,有的因为设计不当,导致产品磕碰后元件轻易移位失灵。这就会造成温度过高、不能及时断电等情况,甚至有爆炸的隐患。  而充液式热宝的安全隐患在于控温不当或内部存气,从而造成“胀袋”爆炸,不但可能烫伤消费者,还有可能导致漏电。  魏先生坦言,公司前几年确实生产过充液式热宝,但是在膨胀漏液方面没能完成技术攻关,因此目前他们根本不做这类产品了。  深层原因  目前没有专门的强制检测标准  既然市场上如此多的产品都存在安全隐患,那国家有关部门对此类产品又是如何规定的呢?  记者在走访中发现,几十种品牌的热宝中,彩虹牌“饼状”热宝是唯一具有“CQC”(即中国质量认证中心自愿产品认证标志)标识的。  “天磁”的产品则拥有质检部门的检测报告。  在市场上,拥有认证或检测报告的产品不到十分之一。  对于此类产品,中国质量认证中心、中国家用电器研究院小家电事业部产品性能实验室的工作人员说,目前国家并未出台专门对于热宝的强制检测标准,只有推荐标准供企业自愿认证时使用。  多数产品连合格证都懒得印  “天磁”的魏先生说,即便像该品牌这样正规的产品,在出厂时会接受质检部门的检测,但检测并不专门针对温控器、断电装置等,而是将产品作为一个整体,检测其是否能达到说明书中承诺的标准。  而市场上多数的产品连本厂的合格证都懒得印,更甭提质检报告和行业认证了。  中国家用电器研究院小家电事业部产品性能实验室的王主任说,目前,热宝产品的质量问题越来越突出,质检部门和行业科研单位正着手起草热宝的强制检测标准。  相关服务  充电后晾上三五分钟再使用  那么,消费者应该如何正确使用热宝,并规避风险呢?  综合“天磁”技术人员和北京大地律师事务所马广宇律师的意见,您需要做到以下几点:  1.尽量购买出厂合格证、质检报告齐全的产品,小商品市场上连包装都没有的热宝不要购买。要保留相关收据或发票。  2.无论用的是哪种热宝,在充电过程中不要将其放在被褥、衣服上,更不要抱在怀中或拿在手上。充电的过程中应随时观察指示灯,一旦熄灭马上拔掉插头。如在充电过程中散发出异味则应及时拔掉插头,待其冷却后再检查。  3.如果是暖手用,需要经常移动热宝,尤其是刚充完电时,要不停变换其位置,以免某一处受热过高爆炸或烫伤人。  4.充电后将热宝“晾”上三至五分钟再使用,不要直接接触皮肤,有条件的再给其裹一条厚毛巾。  5.出现质量问题(比如爆炸)的热宝不要随意丢弃,可通过拍照等方法留证,通过消协索赔。  注:本报道中选取的试验品牌为随机抽取,分别在超市和小商品市场购买,价格为十多元到六十多元。
  • 摄影测量+高速扫描,FreeScan UE Pro大幅提升中大型精密模具检测效率和质控标准
    模具生产是制造业的上游环节,模具的精度直接影响后续产品的生产及装配。由于模具形状各异,且大部分存在异形曲面,使用人工测量误差大,使用三坐标检测门槛高、效率低。目前,一些精密模具生产厂商,特别是在生产中大型精密模具的过程中,由于缺少良好的检测手段,工件精度全靠机床精度和工人经验,无法量化把控产品的品质。高精度三维扫描技术的出现打破了这一困境。天远FreeScan UE Pro创造了一种高效、准确、便携、直观的精密模具三维检测方式,为中大型精密模具的检测提供了一种可行性方案,大幅提升了精密模具的检测效率和质控标准。高效0.5小时完成精密模具(长1米)三维检测以高精度三维扫描的方式进行精密模具的尺寸检测,整体检测过程(包括预处理、摄影测量、三维扫描、三维检测等流程),只需耗时半小时。1)摄影测量——2分钟因该模具为中大型模具,且对精度要求较高,故采用FreeScan UE Pro集成的新一代双目摄影测量系统进行摄影测量,以获取工件的空间框架位置,为后续扫描数据的拼接提供一个参照系,实现全局尺寸精度控制。-摄影测量过程-2)高速扫描——5分钟使用FreeScan UE Pro高速扫描模具,26条交叉蓝色激光线能够快速获取模具的完整三维数据,反光材质也可轻松应对。-三维扫描数据-3)数据处理,三维检测——10分钟FreeScan UE Pro的三维扫描控制软件设计人性化,数据后续处理高效便捷。同时,扫描控制软件无缝对接检测软件,一键导入,快速进行模具的全尺寸三维检测。-三维检测色谱图-准确结合摄影测量精度可达0.02+0.015mm/mFreeScan UE Pro的新一代双目摄影测量系统采用连续全角度拍摄的方式,获取的照片角度更加全面,能够确保全局精度的控制。同时,通过算法优化,FreeScan UE Pro三维扫描的重复性精度稳定:多次扫描同一工件,结果偏差很小。通过多个环节的精度控制,FreeScan UE Pro结合摄影测量精度可达0.02+0.015mm/m,保证了检测结果的可信度。-点击图片查看更多-FreeScan UE Pro结合摄影测量三维扫描精度报告便携设备环境适应性强、通用性强相比传统三坐标检测方式,需要将模具搬运至专用测量室,静置后方可检测。FreeScan UE Pro环境适应性强,使用灵活,在产线上即可完成三维检测。高精度三维扫描检测的方式,符合高效生产节奏的需求,实现了即产即检。同时,使用FreeScan UE Pro进行模具的三维检测时,不同模具均可使用同一台三维扫描设备进行检测,通用性强,不受模具的形状限制。直观色谱图直观显示,检测结果一目了然通过色谱图可直观显示检测结果。颜色偏红则表示工件过厚,颜色偏蓝则表示工件偏薄,对比复杂的数字报表,结果一目了然。-对企业内部工作人员而言,可直观看到加工偏差,进行快速调整;-对企业客户而言,可以快速掌握精密模具的整体尺寸偏差情况,进行产品的验收。❖FreeScan UE Pro为中大型精密模具制造商提供了一种高效、准确、便携、直观的检测方式,并可提供完整的三维检测报告,与模具共同交付,从而规范交付流程。高精度三维扫描技术的普及,为中大型精密模具的高效质量检测提供了可靠的途径,大幅提升了精密模具的检测效率和质控标准。
  • 这项流式标准,9月1日实施!增加流式细胞仪性能验证,流式细胞术检测外周血淋巴细胞亚群指南发布
    2024年4月1日,卫健委发布WS/T360-2014《流式细胞术检测外周血淋巴细胞亚群指南》,本标准于2011年首次发布,本次为首次修订。与WS/T360-2011相比除结构调整和编辑性改动外,主要技术内容变化如下:【1】增加了流式细胞仪性能验证内容(见5.1);5.1流式细胞仪的性能验证5.1.1 验证时机当新仪器启用前、搬移后、仪器发生重大维修(如更换激光、光纤、光电倍增管或流动室等)后、仪器软件系统更新后、仪器性能出现问题或环境严重失控时,需对流式细胞仪进行性能验证,所用流式细胞仪应符合医疗器械注册要求。荧光通道线性应在流式细胞仪常规使用过程中每年至少进行1次验证。5.1.2 验证参数验证参数应包括灵敏度、分辨率、荧光通道线性、仪器稳定性和携带污染率等。5.1.2.1 灵敏度5.1.2.1.1 散射光灵敏度采用己知大小的校准微球检测仪器的FSC和SSC。在散射光FSC/SSC散点图上,应检测出直径0.5μm或更小的微球,或满足制造商声明的要求。5.1.2.1.2 荧光灵敏度即流式细胞仪能检测到标准荧光微球上的最少荧光分子数,可用等量可溶性荧光分子(MoleculesfEquivalent Soluble Fluorochrome,MESF)表示。可采用2~4种不同荧光素校准微球针对所用激发光源进行检测,其中FITC、PE及APC等通道的平均荧光强度(x)与其荧光分子数(y)分别进行双对数线性回归,得公式y=a+bx,其截距a的反对数值即为流式细胞仪的荧光灵敏度。FITC的荧光灵敏度应≤200MESF、PE的荧光灵敏度应≤100MESF、APC≤200MESF,或满足制造商声明的要求。5.1.2.2 分辨率5.1.2.2.1 散射光分辨率采用EDTA盐或肝素抗凝全血,取适量样品稀释后直接上机测定,标本在FSC/SSC散点图可将红细胞和血小板清晰地区分开 取适量样品裂解红细胞后上机测定,标本在FSC/SSC散点图可将淋巴细胞、单核细胞、粒细胞清晰地区分开,即认为散射光分辨率符合要求。示意图参见附录A。5.1.2.2.2 荧光通道分辨率采用校准微球上机测定,各荧光通道的分辨率CV值应符合制造商声明的要求。5.1.2.3 荧光通道线性可采用含有不同荧光强度的校准微球(已知其相应荧光素的可溶性荧光分子数)进行检测,计算每-种荧光微球的MFI,MFI与己知理论值的相关系数r应≥0.98,此方法适用于校准微球上的荧光素可被定量检测的荧光通道。亦可同时使用两种荧光强度不同的微球,在待测荧光通道下,通过改变光电检测器的电压,使两种荧光微球的实际MFI检测值由低到高分布,两种荧光微球的荧光强度比值应保持不变。此方法适用于流式细胞仪所有荧光通道。5.1.2.4 仪器稳定性连续开机条件下,采用荧光微球在开机稳定后0h和8h各检测一次FSC及各荧光通道的IFI,以第一次检测时间点测定的各通道MFI值作为基线值,荧光微球8h上机测定的每一通道的MFI变化范围均应在基线值土10%范围内。5.1.2.5 携带污染率使用浓度为5000个/HL~10000个/HL的校准微球上机进行测定,获取至少100000个颗粒,连续测定3次,计算检测通道内设定区域的颗粒数,分别记为H1、H2、H3:再使用空白溶液上机测定,获取颗粒303,连续测试3次,计算该检测通道内设定区域的颗粒数,分别记为L1、L.2、L3。按照此步骤重复循环3次。按携带污染率公式[(L1-L3)/(H3-L3)]X100%进行计算,取最大值。携带污染率应≤0.5%。【2】完善了仪器质量控制和项目性能验证内容(见5.2、7.2.2);5.2外周血淋巴细胞亚群检测系统的性能验证5.2.1 验证时机及验证内容淋巴细胞亚群检测项目临床开展初期、更换试剂品牌、更换检测系统或仪器的重大部件维修后,应对检测项目的精密度、稳定性、线性范围、可比性和正确度等参数进行验证。5.2.2 验证方法建议使用配套试剂盒时开展性能验证,使用自选试剂时实施性能确认:需要分别描述性能验证和性能确认的方法和评价标准。5.2.2.1 精密度5.2.2.1.1 批内精密度选取至少5个新鲜全血样品,样品的淋巴细胞亚群细胞计数应覆盖低中高水平。每个标品从荧光染色到上机检测重复3次,并确保所有测试都在同一台仪器的同一批内测定,整个操作过程由同一个操作人员完成。先计算每个样品重复3次后检测结果的CV,然后计算所有样品的平均CV,所有样品的平均C宜10%,最大不超过20%。实验室可根据不同水平的淋巴细胞亚群细胞计数设定不同程度的可接受Q标准。5.2.2.1.2 日间精密度宜使用正常和异常两个浓度水平的全血质控品,每天从荧光染色到上机测定重复操作3次,至少市复4天,整个操作过程可由不同操作人员完成。先计算每天每个全血质控品重复3次检测结果的CV值,然后据此计算每个全血质控品4天的平均CV,最后得出两个全血质控品检测结果的平均CV。结果判定同本标准第5.2.2.1.1条。5.2.2.2 稳定性5.2.2.2.1 样品稳定性验证样品在确定的抗凝及处置条件下的稳定性。采集健康人或患者的样品至少5份,即刻染色-裂晖-固定并上机测定,以此结果作为基线参考水平,按照实验室的具体环境温度控制条件和预期的样品待检时间,在抗凝剂保存时间内,设置不同的时间点对上述样品进行重复处理和上机测定,获取检测结果,并与基线水平结果进行比较以相对偏差或绝对偏差表示,检测结果应符合实验室制定的验证要求。险证要求的制定应考虑不同水平的淋巴细胞亚群计数设定不同程度的偏差值,淋巴细胞亚群计数过低者,宜以绝对偏差进行验证:亦可对试剂说明书声明的稳定性条件进行验证。5.2.2.2.2 处理后标本稳定性旨在明确处理后标本的最长待检时间。采集健康人或患者的样品至少5份,对完成染色-裂解-固定后的标本即刻上机检测结果作为基线水平。按实验室获得检测结果的最长可接受时间为期限,设置不回的时间点对固定后标本进行上机检测。结果判定同本标准第5.2.2.2.1条。亦可对试剂说明书声明的稳定性条件进行验证。5.2.2.3 线性范围适用于淋巴细胞亚群绝对细胞计数。根据试剂说明书声明的线性范围,取一份淋巴细胞计数或亚群计数接近线性范围上限的临床样品,采用样品稀释液按照比例制备5~9个不同浓度的标本(如0、25%、50%、75%、100%等),浓度范围应覆盖临床医学决定水平:通过染色-裂解-固定后,上机测定,每个标本重复测定4次,取均值。分析实际测定的亚群细胞数量均值与理论值之间的相关性,相关系数应≥0.975。5.2.2.4 可比性5.2.2.4.1 不同检测系统间的可比性验证宜使用至少5份新鲜全血样品(样品的淋巴细胞亚群细胞计数应覆盖低中高水平)和2份不同浓度水平的全血质控品,完成染色-裂解-固定后,分别采用待评价检测系统和比对检测系统进行检测。比对检测系统应为仪器性能良好、规范开展室内质量控制、室间质量评价成绩合格的淋巴细胞亚群常规检测系统,以比对检测系统的测定结果为参考,计算相对偏差或绝对偏差。检测结果应符合实验室制定的验征要求。验证要求的制定应考虑不同水平的淋巴细胞亚群计数设定不同程度的偏差值,淋巴细胞亚群计敬过低者,宜以绝对偏差进行验证。5.2.2.4.2 抗体试剂批次变更前后的可比性验证宜使用至少3份健康人的新鲜全血样品和2份不同浓度质控品采用新批号抗体试剂和当前批号抗体试剂进行荧光染色、上机检测,以当前批号试剂检测结果为参考,计算相对偏差或绝对偏差。检测结果立符合实验室制定的验证要求,验证要求的制定应考虑不同水平的淋巴细胞亚群计数设定不同程度的偏叁值,淋巴细胞亚群计数过低者,宜以绝对偏差进行验证。5.2.2.4.3 不同检测人员间的可比性验证宜使用至少5份新鲜全血样品和2份不同浓度水平的全血质控品分别由实验室内淋巴细胞亚群检测培训合格的不同检测人员完成染色-裂解-固定、上机检测和数据分析,计算不同检测人员间检测结果的相对偏差或绝对偏差。验证结果应符合实验室制定的验证要求。5.2.2.5 其他可使用室间质评回报结果验证淋巴细胞亚群项目的准确度亦可采用包含正常和异常浓度水平的具有溯源链的定值样品验证正确度,每一样品重复测定3次,每次测量值均在给定范围内且3次测量值的均值与标准值的偏倚在允许范围内为通过。选择至少20份表观健康人样品按照常规方法进行淋巴细胞亚群参考区间验证。7.2.2 仪器稳定性验证7.2.2.1 光路/液路稳定性验证检测当天宜使用校准微球进行光路/液路稳定性验证。记录每个检测通道的分辨率的变异系数(CV),CV值应满足本标准第5.1.2.2.2条荧光通道分辨率要求。7.2.2.2 检测通道电压稳定性验证和调整应使用标准微球进行各检测通道电压验证检测通道电压的浮动应在标准微球的说明书允许范围或者实验室自建的可接受范围内。自建方法如下:在相同的电压设置下,10~20个工作日内检测标准微球20次,使用Levy-Jennings图建立每个参数的可接受范围(均值士2SD和均值士3SD)。【3】梳理和保留了检验前、检验中、检验后过程的内容及要求(见第6、7、8章);【4】删减了标本采集和处理及临床意义内容(见2011年版的第4、10章);【5】增加了淋巴细胞亚群六色分析方案(见4.1.3、附录C)。以下为完整内容:本标准由国家卫生健康标准委员会临床检验标准专业委员会负责技术审查和技术咨询,由国家卫生健康委医疗管理服务指导中心负责协调性和格式审查,由国家卫生健康委员会医政司负责业务管理、法规司负责统筹管理。本标准起草单位:中国医学科学院肿瘤医院、北京医院/国家卫生健康委临床检验中心、北京大学第一医院、中国医学科学院北京协和医院、上海市交通大学医学院附属第一人民医院、上海交通大学医学院附属新华医院、上海长征医院、苏州大学附属第一医院/江苏省血液研究所。本标准主要起草人:崔巍、彭明婷、屈晨雪、黄春梅、李莉、沈立松、周琳、朱明清、崔婵娟、李臣宾。
  • 重磅压轴 | 第十二届中国第三方检测实验室发展论坛-标准物质&国际&实验室评审分论坛完美收官
    为进一步加强第三方检测实验室之间的相互了解和沟通,推广先进检测技术、产品和管理经验,推动检测水平的提高和发展,由中国检验检疫科学研究院主办的第十二届中国第三方检测实验室发展论坛,已于2022年9月8-9日,以线上线下相结合的方式举办。9月9日下午,中国认证认可协会承办、天津阿尔塔科技有限公司独家冠名的标准物质&国际&实验室评审分论坛,由中国认证认可协会周琦副秘书长主持,国家地质实验测试中心教授级高工王苏明、中国海关科学技术研究中心张朝晖研究员、天津阿尔塔科技有限公司首席科学家张磊博士、深圳职业技术学院食品质量与安全专业岳振峰主任和中国农业科学院蔬菜花卉研究所刘肃研究员带来精彩报告,线上总观看人数近5000人次,观众互动热烈。以下为专家报告的部分内容。主持人:周 琦 中国认证认可协会副秘书长报告人:国家地质实验测试中心教授级高工王苏明报告题目:标准物质的使用与验收国家地质实验测试中心教授级高工王苏明老师报告了标准物质的定义、使用和验收等内容。我国有证标准物质(GBW)/标准样品(GSB)是依据《计量法》和《标准化法》,按照《行政许可法》规定的程序开展的行政许可项目。选择和使用RM,需关注RM特性值的含量 、形态、基体、最小取样量、不确定度、有效期、计划数量等,应尽量与实际样品一致。王老师还详细介绍了RM和CRM在计量溯源、方法确认、质量控制、给未知物赋值等多方面的用途,给出了使用RM对精密度和正确度结果的多种评价方法。实验室应建立RM管理制度,优先选择满足ISO17034机构生产的CRM和RM,采用技术手段和与日常使用相结合的方法验收、核查RM。用于校准、方法确认和量值传递与溯源时,应尽可能使用有证标准物质/标准样品。报告人:中国海关科学技术研究中心研究员 张朝晖报告题目:标准物质在国家及地方标准评审中的一些考量因素张朝晖研究员就不同阶段现行有效和即将实施的国家检测标准和其他类型检测标准中就标准物质章节部分的陈述变化,结合国际标准在我国转化和实施的历史背景,从标准起草,审核和使用等多个角度,对商品化标准物质的选购,生产商的资质评估,产品证书或说明书识别,检测结果计量溯源等方面,利用实例结合相应的依据标准、规范等与参会人员进行了探讨和分析。报告人:天津阿尔塔科技有限公司首席科学家 张磊博士报告题目:标准物质和化学试剂的区别与应用张磊博士总结了标准物质/标准样品与化学试剂在生产企业的规模、生产资质、产品规格、标准体系、质量指标和应用领域的区别进行了总结。从检测实验室标准要求说明了化学试剂不能够代替标准物质/标准样品(RMs),更不能代替有证标准物质/标准样品(CRMs)。在实际工作中,优先选择国家标准物质/标准样品(NCRMs、CNRMs),当没有NCRMs时,选择具有ISO17034标准物质/标准样品生产者资质的企业生产的有证标准物质/标准样品CRMs;当没有CRMs时,可使用ISO17034体系下生产的RMs或本单位内部研制的QCMs;当没有RMs时,可使用市售化学试剂、自己合成或分离纯化的对照品,或者使用其他来源的参照物,但是要做许多实验来证明其适合自己的用途、满足检测要求,不是简单的拿来就用。报告人:深圳职业技术学院食品质量与安全专业主任、研究员 岳振峰报告题目:检测实验室耗材质量问题分享岳振峰研究员讲解了实验室认证认可对易耗品管理的要求。首先检验检测机构应建立和保持标准物质管理程序;标准物质应尽可能溯源到国际单位制(SI)单位或有证标准物质。检验检测机构应根据程序对标准物质进行期间核查。在采购上,检验检测机构应建立和保持选择和购买对检验检测质量有影响的服务和供应品的程序,明确服务、供应品、试剂、消耗耗材等购买、验收、存储的要求,并保存对供应商的评价记录。随后,岳振峰研究员分享了与易耗品相关的常见检测质量问题。报告人:中国农业科学院蔬菜花卉研究所研究员 刘肃报告题目:食品检测实验室评审常见问题汇总刘肃研究员围绕第三方检验检测机构中常见的原始记录不规范问题进行分析:记录是管理体系运行结果和记载检测/校准数据、结果的证实性文件,表明检测过程和质量管理体系的符合性及质量管理体系的有效性,是确保过程可追溯的重要依据。检测原始记录应包含足够的信息,能反映出检测过程中的各个环节,能再现和追溯。检测原始记录常见问题,如:检测结果报告关于“未检出”的正确表达方式,关于国家法定计量单位的表达方式和有效数字保留位数问题等。另外,天津阿尔塔科技有限公司在9日上午化妆品分论坛中也带来了精彩报告。报告人:天津阿尔塔科技有限公司标物中心总监 徐银报告题目:质控样在化妆品检测中的应用阿尔塔科技有限公司标物中心总监徐银介绍了质控样品相关概念、研制技术和在化妆品中的应用时,提到化妆品具有安全性、稳定性、使用性和功效性等基本属性。从《化妆品安全技术规范》、化妆品检测标准,以及防腐剂类、防晒剂类和禁用添加剂类化妆品质控样实例讲解了质控样、标准物质的质量控制和应用范例。
  • LGC:标准品的定义、分类、正确使用及杂质标准品的合规标定
    p  药物杂质是活性药物成分或药物制剂中不希望存在的化学成分。药品在临床使用中产生的不良反应除了与药品本身的药理活性有关外,有时与药品中存在的杂质也有很大关系。规范地进行杂质的研究,并将其控制在一个安全、合理的限度范围之内,将直接关系到上市药品的质量及安全性。/pp  因此,杂质的研究是药品研发的一项重要内容,它包括选择合适的分析方法,准确地分辨与测定杂质的含量并综合药学、毒理及临床研究的结果确定杂质的合理限度,这一研究贯穿于药品研发的整个过程。/pp  2017年7月19日,仪器信息网将组织举办“化学药物杂质研究及检测技术”网络主题研讨会, 会议中,LGC医药标准品资深专员杨学林将介绍《标准品的定义、分类、正确使用及杂质标准品的合规标定》。/pp strong 报告摘要/strong/pp 概括介绍2015版药典中对标准品的定义及杂质标准品的新要求;深入解析标准品的定义、特性及生产体系;着重对医药产品生产及研发过程中使用的一级标准品、二级标准品、药典标准品及杂质标准品进行介绍,并指导如何正确使用;由于一致性评价的深入开展及国家对杂质研究的逐渐重视,对于一些合成工艺复杂,购买困难的杂质如何合规的标定同样是在工作中急需解决的问题。对于以上提到的热点问题,我们会在本次报告中一一为您解答。/pp strong 报告人简介/strong/pp 杨学林,LGC医药标准品资深专员,主要负责医药标准品的市场推广及售前售后的技术支持工作,曾受邀2015版《中国药典》进行关于标准品知识方面的讲座,同时在国内多家百强企业如扬子江、罗欣药业、鲁南制药等做过关于标准品使用方面的专场介绍。2009年获得沈阳药科大学药物化学博士学位,在BMCL、LDDD等学术期刊以第一作者发表多篇研究论文及多篇授权专利;曾参与863、973、国家自然科学基金等重点项目的研究工作,拥有5年以上药物研发相关经验。曾先后就职于Bioduro、神威药业研究院,担任组长、室主任等职务。/pp  欲了解本次会议的详细日程请点击:/pp  a title="" href="http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target="_self"http://www.instrument.com.cn/webinar/meetings/ChemicalDrug//a/pp style="text-align: center "a title="" href="http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target="_self"img title="点击参会.gif" src="http://img1.17img.cn/17img/images/201707/noimg/f3ddf4d4-6b54-41b5-a520-8d1a1ef40f63.jpg"//a/p
  • 深度︱光伏电站热成像检测解决方案
    从2004年的0.063GW到2014年的26.84GW,10年400多倍的增长速率让全球见证了光伏发电的中国速度。截至2015年底,我国光伏发电累计装机容量4318万千瓦,成为全球光伏发电装机容量最大的国家。然而,“前景向好、难题不断”。看似有强势吸引力的光伏电站建设企业,一面怀揣着坐拥高收益甚至完成平价上网终极使命的美好愿景,一面在动辄上百亿的投资资金面前备受折磨。这些问题的症结都指向同一个核心词汇——质量。案例一:2015年5月26日,位于美国亚利桑那州的苹果公司Mesa数据中心发生火灾,这让科技巨人最看中的“绿色面子工程”却被烧得满目疮痍。初步调查发现,起火点可能是苹果工厂屋顶大楼上的光伏组件。这些安装在苹果公司Mesa工厂屋顶上的光伏组件可向当地1.4万户家庭供应电力。不幸的是,这场大火让美国最为知名的光伏巨头FirstSolar公司“躺枪”,引起火灾的太阳能电池板,正是占据全球薄膜太阳能产销第一的FirstSolar公司。案例二:2015年6月26日,中山长虹项目一名施工人员在连接组件阵列时被直流电电死,据了解,是组串的端子没接汇流箱就放屋顶上了,广东这几天暴雨,端子进水,施工人员碰到后发生了该事故。这是一些令人触目惊心的事故,以上列举的只是光伏事故的冰山一角,近年来,仅国内电站产生问题的例子就达116个,而且,这个数字依然高企不下。哪些因素导致安全问题?光伏电站质量和安全问题依然层出不穷。那么,到底有哪些因素导致了“问题”的出现?我们的研究团队走访了大量的光伏电站,发现光伏电站主要面临的安全问题分为组件和逆变器两大部分。第一,组件的安全问题主要来自接线盒和热斑效应。不起眼的接线盒是引起很多组件自燃的“元凶”,接线盒市场较为混乱和无序。劣质连接器由于内部粗糙不平,接触点较少,使电阻过高引燃接线盒,进而烧毁组件背板引起组件碎裂。在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。这种效应能严重的破坏太阳电池。第二,逆变器和运维漏洞百出。传统集中式方案,每个逆变器100多组串正负极并联在一起,当任意的组串正极和负极漏电,1000V的直流高压,触电将无可避免。传统电站采用熔丝设计增加了直流节点,电站即使使用熔丝,也不能有效地保护组件;而且在过载电流情况下,熔丝还会因熔断慢,发热高,引发着火风险。逆变器厂家很多、质量参差不齐,导致逆变器监测数据不准确,逆变器或者直流汇流箱数据采样精度不够,造成故障信息判断不准确、不及时,故障恢复时间长、损失大。国家发改委能源研究所研究员王斯成说:“电站在运行一段时间后存在着大量问题,而电站质量直接影响到电站的收益,这也是为什么目前银行对投资电站有顾虑的重要原因。然而目前电站开发商对这一问题却没有足够重视,这对行业来说是伤害。”FLIR的解决方案——红外热像仪质量保证流程对于太阳能电池板极具重要。电池板的正常运行是高效发电、长期使用寿命和高投资回报率的必要条件。为了确保正常运行,在生产过程中和电池板安装后,都需要一种快速、简易又可靠的太阳能电池板性能检查方法。FLIR 工程师说,使用热像仪进行太阳能电池板检查有着若干优势。异常现象能够清楚地显示在清晰的热图像上,并且与其他大部分方法不同的是,热像仪能够用于对已经安装好的太阳能电池板在运行期间进行检查,最后,热像仪还可在短时间内检查大片区域。在研发领域,热像仪已经是用于太阳能电池和电池板检查的成熟工具。对于这些复杂的测量,配备制冷式探测器的高性能热像仪通常用于受控实验室条件下。但热像仪的太阳能电池板检查用途并不仅限于研究领域。非制冷式热像仪目前正越来越多地应用于太阳能电池板安装前的质量管理,以及安装后的常规预测性维护检查。使用热像仪可以探测到潜在问题区域,并在问题或故障真正出现前予以修复。但并非每一种热像仪都适合太阳能电池检查,需要遵循一些规则和指导方针,以便实施有效检查,确保得出正确的结论。热像仪检查太阳能电池板规程在研制和生产阶段,太阳能电池是靠通电或使用闪光灯来激活。这确保了充分的热对比度,用于精确热成像测量。但这种方法不能用于实地检查太阳能电池板,因此操作员必须确保有足够的太阳能。为了在实地检查太阳能电池时获得充分的热对比度,需要500 W/m2以上的太阳辐照度。要获得最大值结果,建议准备好700 W/m2太阳辐照度。太阳辐照度以kW/m2为单位,描述了一个表面的瞬间入射能量,该能量可用日射强度计(用于测量全球太阳辐照度)或太阳热量计(用于测量直接太阳辐照度)进行测量。太阳辐照度主要取决于位置和局部天气。较低的室外温度也可提高热对比度。您需要哪一种类型的热像仪?用于预测性维护检查的便携式热像仪通常搭载有灵敏度为8–14μm波段的非制冷微量热型探测器。但在这个波段内是无法穿透玻璃的。从电池板正面检查太阳能电池时,热像仪探测到的是玻璃表面的热量分布,但只能间接探测玻璃下方电池的热量分布。因此太阳能电池板玻璃表面的可测量和可视温差比较微弱。为了使这些温差可见,用于检查的热像仪需要具备≤0.08K的热灵敏度。为了清晰显现热图像中的微弱温差,热像仪还应能够手动调节电平和跨度。自动模式(左图)和手动模式(右图)下带电平和跨度值的热图像。光伏组件一般安装在具有高度反射性的铝制框架上,这种框架在热图像上会显示为冷区,因为它能反射天空中散发的热辐射。在实践中,这意味着热像仪记录到的框架温度远低于0°C。由于热像仪的直方图均衡自动适配最大和最小测温值,许多细微的热异常不会立即显现。为了获得高对比度热图像,需要不断对电平和跨度进行手动调节。未经DDE处理的热图像(左图)和经过DDE处理的热图像(右图)。所谓的DDE(数字细节增强)功能提供了解决方式。DDE能够自动优化高动态范围场景下的图像对比度,热图像不再需要进行手动调节。因此具备DDE功能的热像仪非常适用于快速精确的太阳能电池板检查。实用功能热像仪的另一个实用功能是为热图像添加GPS数据标记。这可以帮助在大片区域,如太阳能电厂中轻松定位有问题的模块,并将热图像与设备进行关联,例如在报告中。 热像仪应该配备内置数码相机镜头,以便将相关可见光图像(数码照片)与相应的热图像一起保存。所谓的叠加模式可将热图像与可见光图像相互叠加,也颇为实用。声音和文本注释可连同热图像一起保存在热像仪中,有利于报告编写。热像仪放置:考虑热反射和辐射系数虽然玻璃在8–14μm波段的辐射系数为0.85–0.90,但玻璃表面的测温并不容易。玻璃热反射如同镜面反射,这意味着不同温度的周边物体在热图像上能够清晰呈现。在最糟糕的情形中,这会导致成像失实(假“热点”)和测量误差。热像检查中的建议视场角(绿色)和应避免的视场角(红色)。为了避免热像仪和操作员的玻璃热反射,热像仪不应垂直对准被检查的模块。但辐射系数在热像仪垂直时达到最大,热像检查中的建议视场角(绿色)和应避免的视场角(红色)。并随着热像仪角度的增加而减小。5–60°的视场角是一个较好的平衡点(0°为垂直)。为避免得出错误结论,检查太阳能电池板时,您需要以正确角度握持热像仪。使用KLIR P660红外热像仪从空中拍摄太阳能电厂获得的热图像。远距离检查测量期间并非总能轻易获得合适的视场角。在多数情况下,使用三脚架能够解决问题。在较为不利的条件下,可能需要使用移动作业平台或者甚至乘坐直升机飞到太阳能电池上方。在这种情况下,距离目标较远可能是一个优势,因为可以一次性检查一大片区域。为了保证热图像的质量,用于远距离检查的热像仪至少应具备320×240像素、最好是640×480像素的图像分辨率。热像仪还应配备有互换镜头,以便操作员能够更换长焦镜头,进行远距离检查,比如从直升机上。但是建议长焦镜头仅用于图像分辨率高的热像仪。使用长焦镜头进行远距离测量的低分辨率热像仪无法探测到指示太阳能电池板故障的细微热量细节。从不同视角进行检查使用FLIR P660红外热像仪拍摄的太阳能电池板背面热图像,它的对应可见图像如右图所示。在多数情况下,已安装的光伏组件也可用热像仪从组件后方进行检查。这种方式可以将太阳和云朵的干扰性热反射减至最小。此外,从组件后部获得的温度可能比较高,因为是直接测量电池,而不是透过玻璃表面进行测量。周围环境和测量条件应选择晴朗天气进行热像检查,因为云朵会降低太阳辐照度,并产生热反射干扰。但只要所用的热像仪足够灵敏,即便是在阴天也可以获得有用的图像。安静的环境也比较有利,因为太阳能电池板表面的任何气流都会造成传递性冷却,从而降低热梯度。空气温度越低,潜在热对比度就越高。建议在清晨进行热像检查。这幅热图像展示了大片高温区域。由于缺乏更多信息,无法看清这是热异常还是遮蔽/热反射。另一种提高热对比度的方法是断开电池负载,以断开电流,使热量仅仅依靠太阳辐照度产生。然后接上负载,在电池的发热阶段进行检查。 但在正常情况下,系统检查应在标准运行条件下,即负载状态下进行。取决于电池和问题或故障的类型,在无负载或短路条件下的测量结果可提供额外的信息。测量误差产生测量误差的主要原因是热像仪放置不当和周围环境与测量条件欠佳。典型的测量误差原因有:视场角过窄太阳辐照度随着时间推移而改变(例如由于云层变化所致)热反射(如太阳、云朵、周围更高的建筑、测量装备等)局部遮蔽(如周围建筑或其他构筑物的遮蔽)热图像提供的信息热图像提供的信息如果太阳能电池板的某些部位温度高于其他部位,温暖区域会清晰显现在热图像上。取决于形状和位置,这些热点和热区域能够指示出不同的故障。如果整个组件的温度都高于往常,这可能表明存在互连问题。如果单个电池或电池组显示为一个热点或温度较高的“拼接图案”,通常是旁路二极管故障、内部短路或电池错配所致。这些红点显示温度一直高于其他组件的组件,表明存在连接故障。在一个太阳能电池内的这个热点表明该电池内部存在物理损伤。遮蔽和电池裂缝在热图像上显示为热点或多边形斑块。电池或电池局部温度升高表明电池发生故障或存在遮蔽。应比较负载、无负载和短路条件下获得的热图像。将从模块正面和背面拍摄的热图像进行比较,也可以得到有价值的信息。常见模块故障列表当然,为了准确识别故障,出现异常的模块还应进行电学测试和目视检查。结论光伏系统热像检查可迅速定位电池和模块的潜在缺陷,并迅速探测出电气互连问题。检查是在正常运行条件下进行,不需要关闭系统。为了获得信息量较大的准确热图像,必须遵循某些条件和测量程序:应使用合适的热像仪和配件;需要充足的太阳辐照度(至少500W/m2,最好是700W/m2以上);视场角应在安全范围(5°至60°之间)避免遮蔽和热反射热像仪主要用于查找故障。对检测到的异常现象进行分类和评估需要对太阳能技术、被检查系统和附加的电气测量值有透彻的了解。适当的文件材料当然也必不可少,并应包含所有检查条件、附加测量值和其他相关信息。使用热像仪进行检测(先是用于安装期间的质量控制,紧接着是常规检查)可促进全面、简单地监控系统状态。这将有助于保持太阳能电池板的功能及延长其使用寿命。因此,使用热像仪检测太阳能电池板将显著提升运营公司的投资回报率。近日,菲力尔与北极星太阳能光伏网联合推出有关光伏电站热成像检测解决方案的专题,您可以点击“阅读原文”提前知晓更多信息,另外下期文章小编会为你带来国外光伏电站是如何应用红外热像仪的案例,敬请关注。
  • 连日雾霾催"热"空气净化器 无统一检测标准
    最近雾霾天气成为影响市民生活的重要因素,怎样合理的防范与预防成为新的话题。自22日山东省解除雾霾黄色预警后,雾霾天气的影响却促使空气净化器成为最近市场上的销售新星。而记者了解到,这些空气净化器的价格从几千元到几万元不等,并且宣称99%去除甲醛、pm2.5等污染物。经记者了解,目前空气净化器行业还没有统一的强制性质量检测标准,空气净化器厂家所宣传的功能多被夸大。  雾霾频袭,空气净化器成“香饽饽”  22日,记者来到滕州市几家大型商厦发现,空气净化器一时成为了市民热捧的对象。记者在其中一家商厦中看到,某知名品牌的空气净化器摆在显眼位置,在该品牌空气净化器专柜前的宣传栏上写着“可清除雾霾”的醒目字样,虽然已时近中午,但也有不少市民前来咨询。其中一位市民咨询销售人员空气净化器有何作用时,销售人员介绍道,对室内的甲醛、花粉、tvoc异味等都能起到良好的空气清洁净化作用。当记者询问是否能够净化飘入室内的“雾霾”时,该销售人员讲道,其实也是有一定效果的,但具体是否能彻底净化,她还得咨询一下厂家才能知道。  同时,该销售人员告诉记者,今年的空气净化器比往年要卖得好。往年空气净化器属于“冷淡”型产品。而最近雾霾天气频繁,家中有孩子的市民都前来咨询,并有意向购买。“有些家庭一下就买两三个,客厅、卧室各一个。”销售人员说道。在展示台,记者观察到空气净化器的价格从几千元到万元不等,特别是一些价格不高而且功能较全的空气净化器倍受市民推崇。  不仅实体店空气净化器的人气很高,而在网上空气净化器的销量也成直线上涨。一家网店已经挂出致歉信:“因受雾霾天气影响,店铺订单暴增,此期间我店如未提供周到贴心服务,请见谅。”翻看网页时,记者注意到,其中一款价格为1599元的空气净化器卖得最好,月销量2571件。还有的店铺挂有“微量现货”的字样。  净化有没有效,多数商家“空口无凭”  记者了解到,许多空气净化器产品,都标称对pm2.5、甲醛等有害物质具有净化功能,其中很多空气净化器的产品都打出了“pm2.5去除率达99%”、“甲醛净化率99%”的口号。但究竟效果如何,能否给出书面证明材料,多数代理商家都表示不清楚,也拿不出相关检查证书。  在其中一大型商厦,恰逢一位空气净化器的代理商家在现场,许多市民都比较关心甲醛、苯、pm2.5等污染物的去除效果,在这些方面,商家表示可以保证。“去除率都能达到99%,什么空气污染物都能除,一般一小时可以循环2至6次,有的净化器内安装电子眼,如果室内污染程度比较高,那电子眼就会显示红色,一般十几分钟后就会变成绿色,这就说明室内已经完成了一次净化。”但当记者问是否能够看一下检测报告时,商家却以各种理由不肯拿出检测证书。  专家说法  没有明确界定标准 容易被过度宣传  记者从相关部门获悉,目前,空气净化器的界定标准很难。没有统一标准,不同的净化器产品所谓的净化效能也基本不具有可比性。比如同样是声称甲醛净化效果能达到98%,有的净化器只需要一两个小时就能达到,而有的净化器却需要十几个小时。所以有些空气净化器产品执行的是推荐性的国家标准,而有的产品执行的是自己的企业标准。如果没有强制性国标,空气净化器市场就很容易出现过度宣传、混淆概念等现象。  专家指出,目前空气净化器标准只是在安全和性能上有部分规定,但对于综合适用面积等因素净化效能的规定还不够细致,基本都是推荐标准,对企业没有强制执行力,也很难判定这些净化器产品不合格。一位业内人士告诉记者:“在选购空气净化器时,还是要根据自身实际情况,不能片面的听从导购的推荐和介绍,要注意一下净化器参数、适用面积等,要在购买前做到心里有数,不要盲目认为贵的就是好的。”
  • 差示扫描量热仪温度如何校准呢?
    dì一篇 简要描述   差示扫描量热仪的差热分析法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域,是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要仪器。第二篇 标定物的选择   不定期的进行温度校正,以保证测试准确度。根据样品的实际测试温度,选择标定物。标定物选择的原则:标定物的外推温度与样品待测项目的温度要比较接近,以保证测试的准确性。  下表为常用标定物的熔点及理论热焓数值。标准物质理论熔点℃理论熔融热焓J/g铟In156.628.6锡Xi231.960.5锌Zn419.5107.5一、测试仪器:久滨仪器2020年升级款JB-DSC-600差示扫描量热仪第三篇 温度校准操作步骤1、打开电脑,将仪器数据线与电脑连接,插上仪器电源,打开仪器背面的开关打开软件,点击菜单栏中设备信息—管理员通道—456进入—输入理论和测量值—保存2、关机重启、重新打开软件、仪器,连接成功后再次测量锡的熔点值,若实际测量的温度若不在231.9±1℃范围内,重复上述操作,直到锡的熔点值在231.9±1℃范围内为止。第四篇 技术参数温度范围室温~600℃温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min任意可选控温方式升温、恒温、降温(PID温度调节)DSC量程0~±600mW自动切换DSC灵敏度0.01mg恒温时间建议<24h气体控制氮气、氧气(仪器自动切换)气体流量0~300ml/min显示方式24bit色,7寸大屏幕液晶显示参数标准配有标准校准物(锡),带一键校准功能,用户可自行对温度进行校准电源AC 220V 50HZ或定制软件软件可以设置数据采集频率,适应各分辨率电脑屏幕;支持笔记本,台式机,支持WIN2000、XP、WIN7、WIN8、WIN10等操作系统,可以导出EXECL数据包、PDF报告
  • “GB 23200.121等系列农药多残留检测方法标准技术培训班”第三站南京圆满落幕
    2021年4月22-23日,为期两天的“GB 23200.121等系列农药多残留检测方法标准技术培训班”在南京圆满落幕。岛津作为优秀的分析仪器供应商全程参加此次培训班,并发表《岛津针对多农残新国标GB 23200.121的应对方案》报告。 背景 2021年3月5日,国家卫健委、农业农村部、国家市监总局联合正式发布GB 23200.121-2021《植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》,该标准将于今年9月份正式实施。 为解读标准体系技术内容,提升相关机构检测与质量控制能力,农业农村部环境保护科研监测所决定举办“GB 23200.121等系列农药多残留检测方法标准技术”系列培训班。 农业农村部环境质量监督检验测试中心(天津)检测室主任王璐农业农村部农产品质量安全组专家刘肃研究员 本次培训班由农业农村部环境质量监督检验测试中心(天津)检测室主任王璐主持,农业农村部农产品质量安全组专家刘肃研究员致辞。刘肃研究员表示:自食品安全法颁布后,农药检测标准发生了很大变化,在GB 23200.121等系列新标准发布后,大家可能会遇到很多问题,希望通过培训班传授制定标准中的经验,前处理方法及注意事项,帮助大家尽快掌握熟悉新标准。 农业农村部环境质量监督检验测试中心(天津)检测室贺泽英博士 贺泽英博士发表了《GB 23200.121与113标准解读与关键控制点的解析》,内容包括对121 & 113两项标准的解析(背景介绍+项目情况),技术内容介绍(前处理方法+仪器方法优化),结果分析介绍(方法正确度,方法精密度,方法定量限,基质效应评价等),方法验证情况介绍。 农业农村部农产品质量安全组专家 刘肃 研究员 刘肃研究员主要讲解了农产品样品制样要求,包括蔬菜、水果、谷物、禽、畜等十余种,强调了制样细节。如柑、柚需要带皮;制好的样品只允许解冻一次;所有农、兽药残留相关检测样品都应放在-16°C~-20°C冷冻保存等等。 农残标委会秘书处专家 李富根 李富根老师发表了《GB 2763-2021标准解读》,重点介绍了食品安全国家标准的制定程序和评估方法,我国农药残留限量标准现状,2021版GB 2763主要内容及变化等内容。 岛津分析计测事业部市场部液质联用产品负责人吕辰 岛津分析计测事业部市场部液质联用产品负责人吕辰分享了岛津针对GB 23200.121-2021《植物源性食品中331种农药及其代谢物残留量的测定》的解决方案。岛津作为仪器厂商深度参与制标和验标工作,本次发表内容包括:标准解读,QuEChERS前处理方法注意细节,岛津LC-MS/MS仪器特点,岛津LC-MS/MS应用数据展示,最后重点介绍了岛津针对农药残留整体解决方案,包括 GB 23200.113-2018和《中国药典》中药禁用农残33项等相关内容。 岛津展台后续培训班时间安排如上表格,敬请关注!
  • 石家庄市实验仪器行业协会发布《建筑围护结构热工性能现场检测设备校准方法》、《低温柔度试验仪校准方法》、《初期干燥抗裂性试验机校准方法》等团体标准征求意见稿
    各有关单位:按照石家庄市实验仪器行业协会团体标准制修订项目工作安排,经河北棕都科技有限公司申请,对《建筑围护结构热工性能现场检测设备校准方法》、《低温柔度试验仪校准方法》、《初期干燥抗裂性试验机校准方法》、3项团体标准的制定工作现已完成征求意见稿的编制。为进一步提高标准质量,现将该标准征求意见稿呈送给各有关单位。欢迎社会各界提出宝贵修改意见和建议,如有修改或完善的意见和建议,请填写《团体标准征求意见反馈表》,并于2023年06月19日之前将反馈至石家庄市实验仪器行业协会。联系人:杜娟联系电话:17769019597邮箱:love53155966@qq.com地址:河北省石家庄市长安区丰收路118号泽润大厦2413附件:附件 1:《建筑围护结构热工性能现场检测设备校准方法》团体标准(征求意见稿)附件 2:《建筑围护结构热工性能现场检测设备校准方法》团体标准编制说明附件 3:《低温柔度试验仪校准方法》团体标准(征求意见稿)附件 4:《低温柔度试验仪校准方法》团体标准编制说明附件 5:《初期干燥抗裂性试验机校准方法》团体标准(征求意见稿)附件 6:《初期干燥抗裂性试验机校准方法》团体标准编制说明附件 7:《团体标准征求意见反馈表》附件:公开征求意见的函.pdf初期干燥抗裂性试验机校准方法征求意见稿.doc低温柔度测定仪征求意见稿.docx初期干燥抗裂性试验机校准方法编制说明.doc低温柔度测定仪编制说明.doc建筑围护结构热工性能现场检测设备编制说明.doc建筑围护结构热工性能现场检测设备征求意见稿.docx征求意见表.docx
  • 《地质实验测试标准方法研制技术导则》正式实施
    近日,由自然资源部中国地质调查局国家地质实验测试中心牵头研制的DZ/T 0451-2023《地质实验测试标准方法研制技术导则》(以下简称《导则》)正式实施。《导则》依据ISO5725《测量方法和结果的准确度(正确度和精密度)》和GB/T20001.4《标准编写规则 第4部分:试验方法标准》编制,规定了地质矿产实验测试行业分析方法制定的基本要求、要素构成和统计技术要求,使地矿行业实验测试标准方法制订有了统一的、规范化的技术准则和依据,以确保分析方法的重复性、再现性、准确性、可比性。《导则》是指导和规范地矿行业制订实验测试分析方法的基础标准之一,其发布与实施不仅有助于提升地矿行业分析方法制定的质量和技术水平,推动地质矿产实验测试工作的不断进步,也为自然资源标准化工作高质量发展提供坚实的技术支撑。
  • 血清(浆)类固醇激素液相色谱-串联质谱检测质量保证专家共识发布
    液相色谱-串联质谱(LC-MS/MS)在人体血清(浆)类固醇激素检测中展现出优于传统免疫学方法的特异性高、分析测量范围宽、多标志物同时检测等特点,已成为国际内分泌学领域相关疾病实验室诊断的首选方法。目前,国内医学实验室开展血清(浆)类固醇激素LC-MS/MS检测多参考已发表学术论文和仪器厂家说明书提供的通用操作和检测程序。然而,血清(浆)类固醇激素LC-MS/MS检测的技术难度大,临床实验室检验人员大多数缺少质谱领域专业培训和实践经验,而通用程序缺乏针对性和实操性,尤其我国尚无针对该检测程序和质量保证的系统性文件,导致实验室间检测结果存在较大差异,阻碍了该技术的临床应用。为规范我国血清(浆)类固醇激素LC-MS/MS检测,共识从检验前、中、后程序及其质量保证进行详细说明,并提出针对性建议,为实验室开展该检测项目提供参考,以推动我国血清(浆)类固醇激素LC-MS/MS检测的临床应用和结果一致性。  类固醇激素是一类具有环戊烷多氢菲母核的脂肪烃化合物,根据化学结构及生理功能可分为肾上腺皮质激素(糖皮质激素、盐皮质激素)、性激素(雌激素、雄激素、孕激素)及维生素D [ 1 ] ,在人体生长发育、能量代谢、免疫调节、生育功能调节等方面发挥重要作用。血清(浆)类固醇激素异常与先天性肾上腺皮质增生(congenital adrenal hyperplasia,CAH)、原发性醛固酮增多症、库欣综合征、多囊卵巢综合征(polycystic ovary syndrome,PCOS)、儿童发育延迟或性早熟等多种内分泌疾病密切相关 [ 2 ] ,因此其检测广泛应用于多种内分泌疾病的临床研究、诊断以及健康评估。传统免疫学方法尽管自动化程度高,但特异性相对不足,且线性范围窄,难以实现精准检测。液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)具备特异性高、分析测量范围宽等性能优势,且能在短时间内同时准确测定多种类固醇激素及中间代谢产物,是目前精准、全面定量分析血清(浆)类固醇激素的首选方法 [ 3 , 4 ] 。  尽管已有众多研究报道多种类固醇激素的LC-MS/MS检测,包括方法开发和优化 [ 5 , 6 ] 、生物参考区间建立 [ 7 ] 等,国外已有针对血清(浆)雄激素、雌激素LC-MS/MS检测程序的指南 [ 8 ] ,国内有LC-MS/MS临床应用通用建议共识及25羟-维生素D和雄激素LC-MS/MS检测的共识 [ 9 , 10 , 11 ] ,但依然缺乏涵盖检验前、中、后阶段的LC-MS/MS检测操作程序和质量保证的指南和共识。基于此,为规范我国血清(浆)类固醇激素LC-MS/MS检测,中国质谱学会临床质谱专家委员会组织专家参阅国内外相关文献并结合临床应用经验,面向医学实验室临床质谱检验人员,针对肾上腺皮质激素和性激素LC-MS/MS分析全流程的质量保证进行详细说明并提出建议,为实验室开展血清(浆)类固醇激素检测项目提供参考,以推动我国血清(浆)类固醇激素检测的临床应用和结果一致性,提升我国类固醇激素异常相关疾病的精准诊断能力。  01血清(浆)类固醇激素LC-MS/MS检验前质量保证  (一)标本采集  人体类固醇激素浓度受多种因素影响,包括昼夜节律、生理周期、采血体位和药物等,应根据临床具体需求和激素水平影响因素,制定合理采样流程,并推荐给标本采集人员和患者。例如:皮质醇分泌通常在清晨6:00—8:00达到峰值浓度,因此峰值监测推荐清晨采集患者血液标本 连续监测则采样时间点应相对固定 [ 12 ] 醛固酮仰卧位采血比直立位采血检测结果低50% [ 13 ] 女性患者进行血清(浆)雌激素检测时需明确卵泡期、黄体期等信息,对于无规律月经周期女性,需明确绝经(特别是早绝经)原因,如自然绝经、外科手术、辐射、药物作用等 [ 14 , 15 ] 。  含有分离胶的促凝管中存在睾酮干扰峰,且分离胶可吸收类固醇激素,标本体积和储存时间也可不同程度影响检测结果 [ 16 ] 。新生儿CAH二级筛查中,EDTA采血管可导致17α-羟孕酮、雄烯二酮及11-脱氧皮质醇的LC-MS/MS检测结果偏高,造成假阳性 [ 17 ] 。另外,更换采血管品牌或批号也可能影响待测物色谱峰分离度,应制定包括峰分离度、保留时间漂移范围等色谱参数的可接受标准,以监测潜在干扰峰的影响强弱及变化。  建议1 针对有昼夜和/或周期节律的类固醇激素,实验室应根据其临床预期用途,指导患者和采血人员选择合适的采血时机,例如清晨采血检测皮质醇、睾酮水平,卵泡期采血检测雌激素水平。推荐采用不含分离胶的血清(浆)采血管采集标本,新生儿二级CAH筛查推荐采用肝素抗凝剂采血管。  (二)标本保存和运输  实验室应根据类固醇激素质谱检测的标本保存条件及检测频率进行标本的稳定性验证 [ 18 ] 。标本稳定性验证实验应至少包括环境温度、冷藏和/或冷冻条件下的稳定性,如果标本存在冻存后复查的可能,还需考察反复冻融对标本稳定性的影响。另外,标本采集、运输及前处理阶段的稳定性也需进行评估。标本稳定性实验均需使用新鲜血清(浆),通过比较新鲜采集和保存后的血清(浆)标本检测结果评估其稳定性。  如果实验室根据参考文献报道或试剂说明书设置标本保存条件,需包含明确的稳定性、标本类型、类固醇激素浓度、保存温度范围、保存时间以及保存后标本浓度较新鲜标本的变化百分比。为确保标本保存后类固醇激素检测结果“稳定”或“无明显变化”,需明确测量程序、含量计算程序及含量变化的可接受范围。如果这些信息缺失,实验室应自行建立标本稳定性的可接受条件。  建议2 实验室应根据标本保存的实际需求,使用新鲜标本对来自文献报道或试剂说明书的标本稳定性进行验证,或自建稳定性可接受的标本保存条件。建议血清(浆)标本中类固醇激素稳定保存的条件及时间见 表1 。  02 血清(浆)类固醇激素LC-MS/MS检验质量保证  (一)标本前处理  标本前处理方法取决于待测物的理化性质、灵敏度要求和分析方法。其目的是将待测物从血清(浆)及其他潜在干扰物质中分离、提取、纯化,并实现对待测物的浓缩。大多数糖皮质激素(如17α-羟孕烯醇酮、17α-羟孕酮、11-脱氧皮质醇、皮质醇、可的松)和盐皮质激素(如孕烯醇酮、孕酮、脱氧皮质酮、皮质酮)为疏水结构,均可与相应转运蛋白结合存在于血液中,游离形式约占1%。但血液中,约50%醛固酮以游离形式存在。睾酮和雌二醇与白蛋白结合力弱,与性激素结合球蛋白(sex hormone binding globulin,SHBG)结合力强,2%~4%睾酮呈游离形式,60%~75%睾酮与SHBG结合,20%~40%睾酮与白蛋白结合 [ 1 ] 。平衡透析可去除血中结合型类固醇激素进而检测游离型激素水平,但测量程序要求更高的灵敏度。如果结合型类固醇在水解前无法被直接检测,则需水解后进行检测,并明确结合型类固醇是否完全水解,且水解步骤不会导致类固醇降解,如硫酸雌酮在提取之前需通过水解酶获得游离型雌酮。亲脂性性激素(雄烯二酮、睾酮、双氢睾酮、雌酮、雌二醇、雌三醇)较亲水性性激素(硫酸脱氢表雄酮、硫酸雌酮)在血液中浓度低,因此亲脂性性激素的LC-MS/MS测量程序通常需要更复杂的标本前处理以消除基质干扰并浓缩待测物以达到理想的定量限(limit of quantification,LOQ)。  血清(浆)类固醇激素LC-MS/MS检测的标本前处理流程通常包括:(1)取等量临床标本、标准品、质控品和基质空白 (2)加入内标物 (3)提取 (4)纯化 [ 19 ] 。对易氧化的类固醇激素,前处理时需尽可能避免发生氧化以防待测物降解及产生干扰物。例如,在样品浓缩时使用惰性气体(如氮气),而非加热真空离心浓缩。去除可能干扰检测或影响前处理的物质后,宜将分析物转移到液相色谱流动相洗脱溶剂中,保持初始浓度比例,以备后续分析。推荐使用与待测物具有相似结构和离子化性质的同位素标记物(或结构类似物)作为类固醇激素LC-MS/MS检测内标物,例如氘代或 13C标记的类固醇。通过比较已知浓度内标物与待测物的信号,校正样本前处理、色谱分离、离子化过程及基质效应所产生的误差。类固醇激素的同位素内标物大多为商品化试剂,如无商品化试剂,应优先选择使用非内源性但与待测物结构类似的合成类固醇作为内标物,并确保内标物与待测物具有相同或相近保留时间。内标物的相对分子质量应至少比相应待测物大3,氘代或 13C标记数量控制在7,化学纯度应≥98%,同位素内标物纯度≥97%。  内标物需加入到所有校准品、质控品和待测标本中,且应在提取或纯化步骤之前或同时加入。加入内标物后需静置足够长的时间(通常15~30 min)以平衡内标物与结合蛋白的相互作用,抵消因蛋白结合导致的检测浓度偏低,如睾酮和睾酮-d 3需30 min完成平衡(22 ℃)。内标物的质谱信号强度应在不同分析批次中保持稳定,平衡时间不足可能会导致内标物信号强度不稳定。  建议3 使用与待测物有相同理化性质的商品化同位素标记物作为类固醇激素LC-MS/MS检测内标物( 表2 ),浓度设置在校准曲线的中浓度或医学决定水平附近,实验室应制定内标物信号强度波动的批间可接受范围。  血液中存在的大量蛋白质、多肽、小分子化合物等可引起LC-MS/MS的离子源和检测器饱和,导致离子抑制或分辨率不足,干扰检测结果。因此,LC-MS/MS分析前应提取待检测物,去除无机化合物(如盐)、蛋白质、脂质(如甘油三酯)和磷脂等物质的干扰,提高检测灵敏度、重复性和稳定性。  LC-MS/MS分析标本的提取方法包括蛋白沉淀(protein precipitation,PPT)、液液萃取(liquid-liquid extraction,LLE)、固相萃取(solid-phase extraction,SPE)等。PPT利用蛋白沉淀剂使蛋白变性沉淀,离心后直接取上清液进行检测,不适用于含量较低或有蛋白结合特性的类固醇激素。LLE利用溶剂的相似相溶原理,将目标化合物从液体混合物中分离出来,因操作繁琐且需要消耗大量有机溶剂,故临床常用固相支撑液液萃取(supported liquid extraction,SLE)替代传统LLE,降低有机溶剂消耗。而SPE采用固体颗粒色谱填料(通常填充于小柱型装置中)对样品不同组分进行化学分离,较SLE具有更优的去磷脂干扰能力,是类固醇激素标本提取的首选方法,但也具有操作步骤多、成本高等缺点。针对类固醇激素的不同极性,脂溶性激素通常选择亲脂基团填料的SPE方法萃取待测物,非脂溶性激素选择亲水基团或阴阳离子交换填料的SPE方法萃取待测物。为进一步去除与待测物共同洗脱的干扰物,可联合LLE和SPE,或吹干提取物后用不同溶剂重新提取。其中,通过高效液相色谱(high performance liquid chromatography,HPLC)可在线进行SPE,以减少手工操作,节省时间和人力成本,但目前尚无多种类固醇激素在线SPE提取解决方案。也有通过使用单个或多个提取柱串联色谱柱,如提取/上样柱、一次性SPE柱、二维色谱,提高色谱分离效率和检测灵敏度,使血清(浆)标本无需或只需经简单蛋白沉淀处理即可进行分析。  建议4 根据待测类固醇激素理化性质及测量灵敏度要求推荐使用SLE或SPE标本提取方法。  (二)类固醇激素LC-MS/MS定量分析  LC-MS/MS通过结合HPLC的高效分离浓缩能力与三重四极杆质谱的高特异性和高灵敏度定量性能,准确测量标本中浓度极低、理化性质相似的类固醇激素,其特异性较免疫学分析明显提高。  1. HPLC分离:HPLC是一种基于待测物在固定相和流动相中具有不同分配系数的分离技术。通常使用对非极性分子具有高亲和力的非极性固定相(如 18C、五氟苯基等)色谱柱分离类固醇激素 [ 20 ] ,通过流动相极性变化将吸附于色谱柱上的类固醇激素重新溶于流动相,从而实现逐步洗脱分离。通过开发精密的流动相梯度洗脱程序和使用适合的色谱柱可以分离结构非常相似的类固醇激素及其代谢物,包括一些同分异构体(如21-脱氧皮质醇、11-脱氧皮质醇)。通过依次洗脱标本中所有待测物,降低检测信号的复杂度,分离组分信号随时间出现一组近似高斯分布的色谱峰群,生成检测信号强度随时间变化的色谱图。另外,流动相中通常加入挥发性添加剂(如0.01 mol/L甲酸铵、0.1%甲酸),其浓度不应超过0.5%,以增强化合物离子化,而不应含非挥发性流动相添加剂。色谱柱可选择粒径较小的分离柱,实现短时间内更好的分离效果,也可根据文献综合选择。色谱柱应在寿命期限内使用,并根据检测量、峰型、保留时间、分离度、柱压等参数判断是否需要更换。实验室应做好色谱柱的日常维护,在每日检测结束后进行日常冲洗程序,并最终将色谱柱保持在95%及以上的甲醇或乙腈中,尽可能地延长色谱柱的使用寿命及使用质量。  建议5 为有效分离结构相似的类固醇激素及其代谢产物,推荐实验室使用 18C或五氟苯基填料,色谱柱粒径≤3 μm,有机相梯度洗脱程序:0.5~4.0 min,40%~55% 4.0~6.5 min,55%~75% 6.5~7.5 min,75%~99%。  2. 串联质谱检测:类固醇激素LC-MS/MS测量程序使用的离子源主要包括电喷雾电离(electrospray ionization,ESI)和大气压化学电离(atmospheric pressure chemical ionization,APCI)。在常规临床检测中,醛固酮、皮质醇、11-脱氧皮质醇、21-脱氧皮质醇、可的松、睾酮、孕酮、17α-羟孕酮、皮质酮、雄烯二酮、脱氢表雄酮可采用ESI或APCI离子源。与ESI相比,APCI离子源温度更高,脱溶剂更充分,因此基质效应更小。然而,APCI更适用极性较小的类固醇激素,如3β-羟基-5-烯类固醇 [ 21 ] ,在需同时检测多个类固醇激素的临床应用中具有局限性。  类固醇激素分子经离子源电离后进入三重四极杆质量分析器,根据质荷比进行分离,并采用多反应监测(multiple reaction monitoring,MRM)或选择反应监测(selected reaction monitoring,SRM)模式采集数据。最终借助质量分析器选择特定母离子和子离子,通过母离子/子离子对和各分析物及内标物的色谱图及峰面积对目标化合物进行定量。不同仪器,其离子对信息及检测参数并不完全相同,每个化合物通常选择2个离子通道分别作为定性离子和定量离子通道( 表3 )。基于定性离子、化合物极性及内标物分离峰综合判断目标化合物的分离峰。  建议6 类固醇激素LC-MS/MS检测选择ESI或APCI离子源,采用MRM或SRM模式,应在性能验证时优化质谱参数。  3. LC-MS/MS测量程序性能验证和/或确认:测量程序的性能要求取决于其预期临床用途、待测类固醇激素生物学变异及仪器灵敏度水平。如检测女性、儿童血清睾酮,测量程序的灵敏度需要达到0.02 ng/ml 同时检测浓度差异大的多个分析物,如雌二醇、雌酮、雄烯二酮,需验证测量程序对每个分析物的分析性能是否满足临床需求。值得注意的是,由于血清(浆)类固醇激素LC-MS/MS测量程序包含的人工操作步骤多,各实验室环境条件、仪器设备配置、人员水平相差大,因此即使实验室使用商品化试剂盒(Ⅰ、Ⅱ类),也应进行性能确认或验证。LC-MS/MS测量程序性能验证和/或确认程序可参考共识 [ 22 ] 或美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)C62-A [ 23 ] ,并根据生物变异、临床指南、政策法规等设定性能验证中每项参数的可接受标准。  (三)类固醇激素LC-MS/MS测量程序的分析性能指标  类固醇激素相关疾病的临床诊断对检测指标及灵敏度有不同需求,实验室应综合临床需求及仪器灵敏度确定LC-MS/MS测量程序分析性能。  1.肾上腺皮质激素:皮质醇是最主要的肾上腺皮质激素(约占75%~95%),血液中总皮质醇、游离皮质醇水平及昼夜节律变化常用于辅助诊断原发性和继发性肾上腺功能不全、库欣综合征、艾迪生病。正常成人清晨血清总皮质醇浓度通常在20~50 ng/ml,经平衡透析后的游离皮质醇浓度约占总皮质醇5%,可更准确反应皮质醇水平及节律,推荐检测血清(浆)游离皮质醇(LOQ≤1 ng/ml)。皮质醇联合17α-羟孕酮、雄烯二酮常用于筛查11-羟化酶或21-羟化酶缺乏型CAH。大多数(约90%)CAH由21-羟化酶基因变异导致,患者血清雄烯二酮水平通常升高5~10倍,17α-羟孕酮水平升高幅度更大,而皮质醇水平较低或无法检测。不同年龄、性别人群17α-羟孕酮及雄烯二酮水平差异较大,推荐实验室检测17α-羟孕酮(LOQ≤0.1 ng/ml),检测区间上限设定在参考区间上限10倍以上 [ 24 ] 。  硫酸脱氢表雄酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮常用于已排除11-羟化酶、21-羟化酶缺乏型CAH,及确认3β-羟基类固醇脱氢酶缺乏和17α-羟化酶缺乏型CAH。在非常罕见的17α-羟化酶缺乏症中,雄烯二酮、所有雄激素前体(17α-羟孕烯醇酮、17α-羟孕酮、硫酸脱氢表雄酮)、睾酮、雌酮、雌二醇和皮质醇水平降低,而盐皮质激素(孕酮、11-脱氧皮质酮和18-羟皮质酮)水平明显升高。醛固酮是典型的盐皮质激素,常用于辅助诊断原发性醛固酮增多症(如肾上腺肿瘤、肾上腺皮质增生)和继发性醛固酮增多症(如肾血管疾病、盐耗竭、钾负荷、肝硬化腹水、心力衰竭、妊娠、Bartter综合征),以上情况醛固酮水平通常可升高10~100倍。因此,建议醛固酮LOQ≤0.02 ng/ml,检测区间上限设定在参考区间上限100倍( 表4 )。  2.雄激素:LC-MS/MS较易检测正常成年男性雄激素水平,但对低雄激素水平人群,如女性、儿童以及性腺功能减退的男性,则要求测量程序具有更高的灵敏度。对成年女性,睾酮水平通常用于评估由肾上腺合成异常和PCOS导致的高雄激素血症及相关的女性多毛症、月经紊乱、不孕等疾病。对儿童,睾酮水平通常用于评估外生殖器性别模糊、性早熟或发育延迟,以及用于CAH的诊断。建议女性或儿童的睾酮测量程序LOQ≤0.02 ng/ml,并需配置高灵敏度LC-MS/MS系统,并对样品进行离线或在线前处理,如LLE、SPE或多个提取步骤结合(如PPT结合SPE) [ 8 ] 。  双氢睾酮以及双氢睾酮/睾酮比值可用于诊断雄激素缺乏症、监测雄激素替代治疗或5α-还原酶抑制剂疗效,建议采用双氢睾酮非衍生化法LC-MS/MS检测(LOQ≤0.05 ng/ml)。雄烯二酮还可用于诊断和评估女性高雄激素血症、多毛症、不孕症,儿童性早熟、发育延迟、CAH,以及肾上腺、性腺肿瘤。在CAH、女性高雄激素血症等疾病中,雄烯二酮水平明显升高,但在3β-羟基类固醇脱氢酶缺乏症、17α-羟化酶缺乏症及类固醇合成急性调节蛋白缺乏症等罕见病及2岁以下儿童中,其水平较正常成人明显降低,建议其LOQ≤0.02 ng/ml。雄烯二酮检测的子离子与睾酮子离子具有相同的质荷比,因此实验室需验证睾酮和雄烯二酮的色谱分离度。  脱氢表雄酮和硫酸脱氢表雄酮除联合肾上腺皮质激素用于CAH辅助诊断以外,还可用于鉴别诊断肾上腺功能不全或亢进。与性激素联合可用于区分肾上腺功能初现与性早熟,诊断儿童CAH和女性PCOS。儿童脱氢表雄酮水平较低(通常1~8岁儿童2 ng/ml),为了准确诊断儿童肾上腺功能初现、性早熟,建议脱氢表雄酮LOQ≤0.02 ng/ml,硫酸脱氢表雄酮LOQ≤30 ng/ml。  3.雌激素:对低浓度雌激素的准确检测可用于儿童性发育延迟或性早熟的评估,以及绝经后女性乳腺癌发病风险或芳香酶抑制剂治疗效果评估。非衍生化前处理,ESI负离子模式下检测雌二醇、雌酮及雌三醇建议LOQ≤0.01 ng/ml [ 25 ] 。硫酸雌酮在体内的浓度是雌二醇和雌酮的10~50倍,且半衰期较长,因此可用于雌激素水平状况评估。  建议7 实验室应根据临床需求、待测类固醇激素生物学变异及仪器灵敏度水平,建立分析性能满足要求的类固醇激素LC-MS/MS测量程序( 表4 )。  (四)类固醇激素LC-MS/MS测量程序的质量保证  1. 量值溯源:量值溯源是通过一条具有明确不确定度的不间断传递链,使测量结果的量值能够与规定的参考标准(国家或国际计量标准)联系起来 [ 28 ] 。类固醇激素量值的可溯源性是实现实验室间测量结果一致的基础,即同一标本在不同时间和地点采用不同测量程序得到准确测量结果。实验室应参考国际标准化组织(International Organization for Standardization,ISO)17511文件及中国合格评定国家认可委员会关于测量结果的计量溯源性文件要求建立计量溯源链,核心要素包括被测物、参考物质、校准及赋值程序、测量结果验证 [ 28 ] 。  实验室应参考国际临床化学和检验医学联合会/国际纯粹与应用化学联合会文件明确被测物属性,包括分析物特性(如化学形式)、测量基质、单位等 可通过检验医学溯源联合委员会网站或国家标准物质资源共享平台查询参考物质信息,并优先选择具有明确溯源信息的参考物质(如有证参考物质)作为校准品。对无有证参考物质的类固醇激素,实验室应参考CLSI EP30评估校准品的特性、纯度、均一性、稳定性及互通性并制定相关评估程序 [ 29 ] 。  需明确的是,计量溯源链本身并不直接保证测量结果的准确性和一致性,溯源链中每次量值传递都会新增测量不确定度,测量的准确度和不确定度也可能在使用新校准品或仪器大修后改变,实验室应通过检测校准品、参加能力验证计划或实验室间比对,明确测量程序的正确度和精密度。  建议8 实验室应优先选择具有明确溯源信息的类固醇激素参考物质作为校准品,建立计量溯源链。  2. 校准:校准是确定或校正质谱仪检测信号强度与待测物浓度之间的相关性。通常将校准物质加入到经活性炭处理、不含待测类固醇激素的单一来源或混合血清(浆)基质中以制备一系列稀释校准品。类固醇激素LC-MS/MS测量程序性能验证、更换试剂或校准物批号后,需确定每个分析批校准曲线的斜率、截距和相关系数的可接受标准。每个分析批都需进行校准,如果一个分析批包含的样品很多,校准品可在分析批不同位置进样,并监测每个校准品检测值与理论值的偏倚,以明确在大样本量分析中的校准漂移情况。  校准确认是采用与检测临床标本相同的测量程序,分析在报告范围内已知待测物浓度的标本或商品化室间质量评价(external quality assessment,EQA)质控物以确认仪器或检测系统的校准,验证正在使用的校准曲线在检测患者标本时依然有效。建议在变更标准品批次后、确认不同分析批之间的校准有效性时,开展校准确认。校准确认品应与实际患者标本相同或具有相似的性质,并与患者标本进行相同的前处理。与患者标本基质不同的质控品和校准品不可作为校准确认品。  建议9 实验室应对每个分析批进行校准,并监测每个校准品浓度检测值与理论值的偏倚。  3. 室内质量控制:血清(浆)类固醇激素LC-MS/MS测量程序室内质控的难点是获取与患者标本基质相近且稳定性好的质控品。对于多组分分析的血清(浆)类固醇激素LC-MS/MS测量程序,应优先选择生产质控严格、稳定性明确,并同时包含多个待测组分的商品化质控品。使用经处理的血清(浆)、冻干或合成基质质控品的一个明显缺点是,因与患者标本基质不完全相同而产生不同的质谱响应。而未添加分析物的患者血清(浆)质控品可能在评估测量程序性能时比经过处理的质控品更可靠。如通过将类固醇纯溶液标准品添加入基质制备质控品,用于制备质控品的类固醇标准品批号及基质应有别于制备校准品的类固醇标准品及基质。另外,实验室可使用低、中、高浓度的单个或混合患者样本作为质控品。为了保证质控结果解读的一致性,质控样品应大批量制备,分装储存,并明确质控品的储存稳定性及与患者标本基质的一致性。  实验室应自行确定质控物靶值及最大允许不精密度( 表4 ),将质控物放置在每一分析批内和分析批间的不同位置检测,以监测测量程序的批内、批间漂移情况。可参考《临床检验定量测定室内质量控制 WS/T641-2018》 [ 30 ] 建立测量程序的质控方案和失控规则(如1 3 s 、3 2 s 等),以及失控后处理措施,如分析批内质控不合格,应复测标本。  建议10 实验室应优先选择质量可靠、与患者标本基质一致的质控物,确定质控物靶值及最大允许不精密度,建立质控方案、失控规则和处理措施。  4. 分析批设置:血清(浆)类固醇激素LC-MS/MS测量一般分批进行,分析批的长度取决于系统校准稳定性和成本效益。一个典型的分析批应包含校准品、质控品、患者样本、空白样品、校准确认品(用于验证校准曲线的有效性,非必需)。实验室通过校准曲线、质控和校准确认监测每个分析批的有效性。当检测量大于2×96个时,建议每检测批次(96个/批次)都包含校准品、质控品和空白样本。实验室应确定并文件化血清(浆)类固醇激素LC-MS/MS测量程序的分析批长度 [ 31 ] 。  建议11 实验室应根据血清(浆)类固醇激素LC-MS/MS测量系统的稳定性和成本效益确定分析批的长度,并通过校准曲线、质控和校准确认监测每个分析批的有效性。  5. 能力验证/室间质量评价:由于血清(浆)类固醇激素LC-MS/MS检测程序标准化不足,基于分组数据进行测量结果一致性评估的EQA计划价值有限。正确度验证计划可同时监测测量程序的正确度和一致性,实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心正确度验证计划,如卫生健康委临床检验中心组织的类固醇激素正确度验证。正确度验证计划使用经最少程序处理的临床样本,通过参考方法对类固醇激素定值后,用于评估参评实验室LC-MS/MS测量程序的正确度和量值溯源性。对无正确度验证和室间质量评价计划的类固醇激素LC-MS/MS检测项目,实验室需定期(如2次/年)进行实验室间比对,并应优先选择通过ISO15189认可的实验室,以保证实验室间结果的一致性。  建议12 实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心组织的类固醇激素检测能力验证计划,无能力验证计划的项目需定期(2次/年)进行实验室间比对。  (五)数据收集及分析  实验室应建立患者样品、空白样品、校准品和质控品的数据处理、峰积分的标准操作程序,并在每一次临床检测中保持一致。数据处理软件应带有审核追踪功能可查询每个样品的数据处理方法。  1. 校准曲线接受原则:以校准品/内标物浓度比值为 X轴、分析物/内标物响应比值为 Y轴,构建校准曲线,将每个患者样品、质控品和空白样品的分析物/内标物响应比值代入校准曲线方程计算被测物浓度。分析患者标本时使用的校准曲线回归方法应与进行测量程序性能验证时使用的方法保持一致,大多数情况采用线性回归。如果校准曲线数据方差不同质(不同浓度点差异不同),推荐使用1/ x或1/ x 2权重回归分析以使低浓度校准点的偏倚在可接受范围。实验室应通过观察每个校准浓度点的相对偏差或总相对偏差选择合适的权重分析方法。  血清(浆)类固醇激素LC-MS/MS测量程序性能验证应明确校准曲线可接受标准:使用校准曲线计算出的校准品浓度与理论浓度之间偏倚可接受范围为85%~115%(LOQ浓度点:80%~120%)。确定校准曲线斜率和截距的可接受标准,计算相关系数、确定其接受范围(通常需0.99),并应用于常规分析的评估。校准曲线的可接受标准应与测量程序性能(如准确度)匹配。  建议13 血清(浆)类固醇激素LC-MS/MS测量校准曲线计算的校准品浓度与理论浓度之间偏倚的可接受范围推荐设置为85%~115%(LOQ浓度点:80%~120%)。  2. 色谱峰积分:应在类固醇激素LC-MS/MS常规检测中通过优化积分参数完成色谱峰的自动积分,以尽量避免操作人员手动积分导致的不一致性。通常使用3倍LOQ浓度类固醇激素样品的色谱峰优化自动积分参数。对色谱峰进行平滑处理可提升积分准确性,仪器背景杂质信号过高或色谱峰采集数据点不足可导致色谱峰不够平滑。但色谱峰过度平滑会导致峰形变宽和丢失细节,如将肩峰平滑进待测物的色谱峰,将影响待测物定量结果准确性。对于采样率较慢的系统,可使用成组平滑方法减小背景杂质信号的影响。经验性色谱峰平滑参数应在所有样品分析中保持一致。  建议14 应尽量通过优化积分参数完成每个待测类固醇激素的色谱峰自动积分,避免手动积分,实际标本检测需统一峰积分、平滑参数。  3. 色谱峰核查:在类固醇激素LC-MS/MS测量程序性能验证时,应建立色谱峰保留时间、背景杂质信号强度、峰形和峰分辨率的核查规则。理想的色谱峰是对称的且基线分离完整。如果一个分析批内有样品色谱峰基线分离不完整、峰形变宽或裂分,排除管路连接不正确的原因,应考虑更换色谱柱。实验室必须核查色谱峰的保留时间以确保待测物分析峰的正确积分,并在标准操作流程中明确保留时间的最大允许漂移范围,分析批间的变化应不超过±2.5%。样品中分析物色谱峰的保留时间应与校准品的保留时间一致。实验室可采用人工核查色谱峰,也可通过在仪器控制软件中设置色谱峰核查参数自动完成。如果使用自动色谱峰核查,实验室需验证自动核查参数及流程的有效性,同时明确需人工介入核查的情况。  建议15 实验室应建立每个待测类固醇激素的色谱峰保留时间、背景杂质信号强度、峰形、峰分辨率的核查规则和允许范围。  4. 内标峰面积核查:通过计算每个类固醇激素LC-MS/MS检测样品内标峰面积与校准品平均峰面积的比值确定每个样品的内标峰面积回收率。内标回收率用于校正分析物提取回收率,每个样品内标峰面积不同是可接受的,但在性能验证时应建立样品之间内标峰面积变动的最大可接受范围。样品内标峰面积回收率出现明显降低提示前处理效率低或存在其他可导致离子抑制的干扰物或存在干扰内标定量离子对的杂质峰。对于内标峰面积比前后样品少2/3或50%的样品,应复检。明显升高的回收率提示内标峰包含干扰峰,也需复检。可通过内标峰面积随进样量变化作图,识别过低或过高的回收率。  建议16 实验室应日常监测每个待测类固醇激素的内标峰面积在标准品、质控物及标本间的波动,建立内标峰面积波动的最大可接受范围。  5. 定性离子对监测:类固醇激素LC-MS/MS常规检测中,一个离子对用于定量分析(定量离子对),另一个离子对用于定性分析(定性离子对)。定性离子对用于分析物定性,在识别样品干扰物中发挥重要作用。定量离子对峰面积与定性离子对峰面积的比值在不同样品间应保持一致,如果发生变化则提示存在干扰物质。如果无法检出定量或定性离子对则提示样品中不存在该分析物或存在干扰物,应进一步分析原因。应同时评估分析物和内标物的定量离子对/定性离子对比值。定性离子对应在整个测量区间有稳定的响应,避免使用脱水分子、脱乙酰基、脱甲基或加合物的子离子设置定性离子对。测量程序性能验证时应建立定量/定性离子对比值差异的可接受范围(如±30%),并在每一个样品检测中予以监测。  建议17 实验室应日常监测每个待测类固醇激素的定量/定性离子对峰面积比值在标准品、质控物及标本间的波动,并设置最大可接受范围。  03 血清(浆)类固醇激素LC-MS/MS检验后质量保证  1.数据存储:实验室应保存血清(浆)类固醇激素LC-MS/MS分析产生的完整原始数据和处理数据,包括测量程序使用的色谱和质谱参数设置、每个离子对的色谱和质谱数据等,必要时使用独立系统备份数据。  2.参考范围:由于抗原抗体非特异性反应及与LC-MS/MS测量结果的偏差,采用免疫法建立的类固醇激素参考范围一般不适用于LC-MS/MS测量程序,然而我国目前尚未建立公认统一的类固醇激素LC-MS/MS检测参考范围,实验室可参考CLSI EP28针对目标检测人群验证国外权威机构建立的参考范围 [ 32 ] ,不同类固醇激素需按性别、年龄和/或月经周期分组,例如绝经前妇女的雌二醇、雌酮和雌三醇的浓度因月经周期或妊娠阶段的不同而有较大差异。  建议18 实验室可针对目标检测人群验证国外权威机构建立的类固醇激素LC-MS/MS参考范围,推荐建立中国人群的参考范围。  3.结果解读及报告:肾上腺皮质激素代谢终产物醛固酮和皮质醇浓度增高分别和醛固酮增多症和皮质醇增多症(库欣综合征)密切相关 17α-羟孕烯醇酮、17α-羟孕酮及其雄激素代谢产物(如脱氢表雄酮、雄烯二酮)水平的异常往往与女性PCOS、高雄激素血症及性发育异常等内分泌疾病相关 绝经后女性雌二醇检测是乳腺癌发病风险评估的关键 对女性和青春期前儿童体内睾酮的检测是鉴别儿童性早熟、女性高雄激素血症和PCOS的关键 对峰谷游离皮质醇的准确检测可有效辅助诊断库欣综合征 对17α-羟孕酮、雄烯二酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮的准确检测是确定CAH亚型的重要依据。此外,血清(浆)类固醇激素检测结果的解读应基于目标患者或人群的基本信息,如性别、年龄、生理期、昼夜节律及立卧位等,对结果解读具有重要参考意义。因此,实验室应为类固醇激素质谱检测的目标人群建立个性化的结果解读规则。为了报告的准确性,类固醇激素结果的解读还应结合类固醇代谢通路和临床初步诊断。  建议19 实验室应结合患者临床信息、方法性能、临床预期用途、类固醇代谢通路解读和报告血清(浆)类固醇激素LC-MS/MS检测结果。  血清(浆)类固醇激素LC-MS/MS检测在精确评估类固醇激素水平、诊断类固醇激素失衡相关疾病(如CAH、肾上腺功能不全、高雄激素血症等)、监测治疗效果中发挥着越来越重要的作用。本共识对血清(浆)类固醇激素LC-MS/MS检测全流程进行了详细说明,包括标本采集、保存、运输及前处理的检验前过程,LC-MS/MS定量分析方法、分析性能指标、质量保证、数据收集及分析的检验中过程,以及数据存储、参考范围、结果解读及报告的检验后过程,并提出19项针对性建议供实验室参考。本共识旨在规范我国血清(浆)类固醇激素LC-MS/MS检测程序,提升其检测质量和结果一致性,推动其临床应用。  执笔人:李霖(四川省医学科学院 四川省人民医院临床医学检验中心),蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),郭玮(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科)  专家组成员(以姓氏拼音排序):曹正(首都医科大学附属北京妇产医院检验科),戴锦娜(中国医科大学附属第一医院检验科),俸家富(绵阳市中心医院检验科),郭启雷(山东英盛生物技术有限公司),郭玮(复旦大学附属中山医院检验科),郭晓兰(川北医学院附属医院检验科),黄庆[陆军军医大学附属大坪医院(陆军特色医学中心)检验科],蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),蒋廷旺(常熟市第二人民医院转化医学科),柯江维(江西省儿童医院医学检验科),李霖(四川省医学科学院 四川省人民医院临床医学检验中心),李卿(上海市临床检验中心参考测量实验室),李水军(上海市徐汇区中心医院中心实验室),李艳妍(吉林大学第一医院检验科),廖璞(重庆市人民医院检验科),刘华芬(杭州凯莱谱精准医疗检测技术有限公司),刘靳波(西南医科大学附属医院医学检验科),卢丽萍(中国医科大学附属盛京医院检验科),闵迅(遵义医科大学附属医院医学检验科),倪君君(和合诊断集团研究院),聂滨(宜宾市第二人民医院检验科),潘柏申(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科),王成彬(解放军总医院检验科),王书奎(南京医科大学附属南京医院医学检验科),夏勇(广州医科大学附属第三医院检验科),徐元宏(安徽医科大学第一附属医院检验科),张传宝(国家卫生健康委临床检验中心生化室),张华(贵州省人民医院检验科),赵蓓蓓(金域医学临床质谱检测中心)
  • 标准物质如何正确使用?这些问题该注意!
    标准物质是化学分析和成分测量过程中量值传递的载体,对于确保化学测量结果的一致和溯源性具有重要意义,因此被形象地称为“化学砝码”。近年来,国家政策大力扶持计量标准物质的产业发展,如国务院制定的《计量发展规划(2013-2020)》就明确指出,开展基础前沿标准物质研究,扩大国家标准物质覆盖面,填补国家标准物质体系的缺项和不足,因此我国标准物质产业也迎来了快速发展期。2021年,十四五开局之年,标准物质领域将迎来怎样的新机遇?标准物质产业又将如何发展?基于此,仪器信息网特推出专题标准物质:“化学砝码”的现状与未来,为广大业内专家及用户介绍标准物质领域现状及未来发展方向。本期邀请迪马科技聊一聊标准物质该如何正确使用! 一、标准品常见的保存方法• 常温保存:通常用于化学性质比较稳定的标准品,建议保存于干燥阴凉的地方,必要时要避光保存。• +4 ℃冷藏:用于常温下不是很稳定的物质,保存于冰箱冷藏室。• -20 ℃冷冻:用于化学性质不稳定,常温下容易分解的物质,保存于-20℃冷冻室。• -80 ℃保存:一些具有生物活性的物质,需要保存于特定的-80 ℃的冰箱。 对于配制成溶液的标准品的保存大部分的溶液标准物质都是冷藏避光贮存的,使用前于(20±3 ℃ ) 平衡,并摇动均匀。安瓿瓶一经打开,应立即使用,不可再次熔封后作为标准物质使用,也可选择一次性制备成中间标准储备溶液保存、使用。对于一些溶质溶解度低,溶液性质稳定的标准溶液,为防止低温下溶质析出,可放置于阴凉干燥的地方室温保存。 对于己经打开使用的标准品如何保存溶液型的产品最好一次性使用完,如果不能一次使用完,建议打开后立即转移到样品瓶密封保存,或一次性制备成中间标准储备溶液,密封好后,冷藏避光保存。固体密封好用封口膜把瓶口包裹,放在温度、湿度均合适(产品 说明书上有)的地方;如果是固体溶解定容后的,将其从容量瓶中移至样品瓶,再将样品瓶置于较大的有盖容器里,放于冰箱中冷冻。液体同样密封好,注意避光,不要经常震动就好,也要注意温度湿度;如果原包装是安瓿瓶的,分装于棕色样品瓶中( 也可根据需要稀释几个梯度保存)。这样保存也是有一定期限的,样品浓度、封存时间等标签要做好。 二、选择标准品还是试剂?标准品的用途是定性或定量。如在色谱中确定检测物的保留时间,建立标准曲线,做内标,以及其他仪器分析中用于定性定量用途的产品,均应购买标准品。除化学标准品外,还有基质标准品或标准物质,用于作为能力验证样品或质控样品等。 三、标准品过期了,可以废物利用吗?按照CNAS 认可准则的要求,过期的标准品是不能用于与检测结果报告的相关检测的。可以这样处理:• 当作废液或者固废统一分类处理;• 用来做内部质量控制;• 对过期标样作一次核查,用新购的标液去定量( 请注意成本考量) ;• 参考一下标准品的理化性质,只要变化不大,可用作回收率试验;• 可用于标准品变化规律的研究;• 在其降解产物响应极弱的前提下,用于色谱分析的峰定性;• 农药做定性分析和快速筛查用;• 实验室内部用来做摸索实验条件用,优化参数。 四、标准品的运输条件相对于长期保存的条件,运输过程由于时间比较短,所以运输条件相对来说要求没有保存条件那么严格。合格的标准品都是经过短期稳定性检验的,短期稳定性检验的条件要比一般的运输条件苛刻。长期保存条件为常温和+4 ℃的标准品都可以在常温条件下运输,-20 ℃保存的标准品在运输时可以放入冰袋来降低温度,而-80 ℃保存的物质则需要在运输时加入干冰。但是干冰的有效时间只能维持1 天左右,所以这类型的物质不适合于长途运输。 五、关于溶剂的选择甲醇、乙腈、丙酮——用于GC、HPLC 均可环己烷、正己烷、异辛烷——基本只用于GC 检测互溶性——丙酮是很好的中间过渡溶剂 六、是否可以将瓶中产品全部溶解,按照产品规格计算?除非特别说明,所有供应商提供的产品规格均不是精确规格,而是指不少于相应质量或体积。如规格100 mg,是指产品不少于100 mg ;规格1 mL,安瓿瓶所装产品通常为1 mL。所以,除特别说明,请用户务必先对产品进行称量,在标准曲线浓度计算中使用实际称量数值。溶剂选择:请客户根据已有的方法或者物质的相关理化性质选择合适溶剂。不适当的溶剂可能造成无法溶解或者产品降解。如果没有参考资料可以用于确定溶剂,请联系我们,我们将与厂家联系看能否提供相关信息供您参考。 七、对少量标准品的称量及溶解方法当样品量非常少时,如何从瓶子中获取所有的纯物质?特别是某些标准品由于非常昂贵,厂商只能以非常小的包装提供给客户,如1 mg,5 mg,10 mg 等。此时,客户拿到产品时可能会觉得瓶子是空的,这种情况是由于粉末状的物质会分散在瓶壁和盖子上,而液体状物质会在瓶壁形成一层可能看不见的液层。客户可根据具体的实际情况,按照以下操作来获取瓶内所有产品:(1) 擦拭瓶外壁和盖子,等其晾干。(2) 称量整个瓶子( 等到天平读数稳定),记录数据,精确至0.1 mg。(3) 用合适的溶剂( 能溶解产品并容易挥发) 将瓶内的产品转移到容量瓶中。荡洗瓶盖和瓶内壁数次并都转移到此容量瓶中。(4) 中等加热或者氮吹使瓶外壁和内壁干燥。(5) 在同一台天平上称量空瓶连盖的重量,精确至0.1 mg。(6) 两次称量差值即为容量瓶内溶解的产品量。(7) 用溶剂定容至容量瓶刻度,即可计算所配溶液的浓度。 八、标准品如何进行期间核查首先需要明确的是期间核查并没有标准规定,所以期间核查的方式可根据客户自身的经济和技术条件灵活掌握。(1) 最简单的期间核查:检查标准物质的标签、证书及包装的完整性,核查标准物质的有效期及保存条件,核查标准物质的状态(包括颜色、粉末、结晶等)。(2) 对于自己制备的相关储备液,由于没有相关的稳定性和均匀性数据,所以要重点关注量值变化,可利用质量控制图进行趋势分析,也可以通过上下批次的量值比对等方法进行考察。(3) 期间核查的频次:对于预期稳定的标准物质( 比如有机氯农药),可以放宽期间核查的频次;对于预期不稳定的标准物质( 比如维生素类),要求加大审核频次,甚至要求每次进行核对。可参考《CNAS CL01 检测和校准实验室能力认可准则》中涉及标准物质期间核查的描述。 关于迪马科技:迪马科技的xStandard标准品的产品优势为:xStandard 品牌创立于2007年,标准品种类丰富,含有实验室常用的单标及混标,涉及食品、环境、制药、化妆品、纺织品、石油化工等行业。迪马科技紧密跟踪最新国家标准、环境标准、行业标准等法规,及时定制相应的xStandard 混标。xStandard混标严格符合标准中组分、溶度、溶解溶剂的要求,极大节省了分析工作者配制混标的时间,同时提高了分析工作者配制混标的准确度。另外,迪马科技还可根据用户的个性化需求提供混标的定制服务。xStandard 化学标准品特点:• 农药、兽药、食品添加剂等实验室常用标准品• 紧密跟踪最新法规需求• 长期严格验证兼容性和稳定性• 全面仔细的原料控制程序• 全部去活的玻璃器皿• 详尽的分析证书(COA)• 种类齐全的单标或混标• 更为人性化的小包装量,利于保存,节约成本供稿:迪马科技
  • 差示扫描量热仪原理简介
    p  差示扫描量热法是在程序控温和一定气氛下,测量流入流出试样和参比物的热流或输给试样和参比物的加热功率与温度或时间关系的一种技术,使用这种技术测量的仪器就是差示扫描量热仪(Differential scanning calorimeter-DSC)。/pp  扫描是指试样经历程序设定的温度过程。以一个在测试温度或时间范围内无任何热效应的惰性物质为参比,将试样的热流与参比比较而测定出其热行为,这就是差示的含义。测量试样与参比物的热流(或功率)差变化,比只测定试样的绝对热流变化要精确的多。/pp  差热分析法是测量试样在程序控温下与惰性参比物温差变化的技术,使用这种技术测量的仪器就是差热分析仪(Differential thermal analyzer-DTA)。DTA是将试样和参比物线性升温或降温,以试样与参比间的温差为测试信号。DTA曲线表示试样与参比的温差或热电压差与试样温度的关系。/pp  现在,DTA主要用于热重分析仪(TGA)等的同步测量,市场上已难觅单独的DTA仪器。/pp  DSC主要有两类:热通量式DSC和功率补偿式DSC。/ppspan style="color: rgb(255, 0, 0) "strong热通量式DSC/strong/span/pp  热通量式DSC是在程序控温和一定气氛下,测量与试样和参比物温差相关的热流与温度或时间关系的一种技术和仪器。热通量式DSC是通过试样与参比物的温差测量流入和流出试样的热流量。/pp  热通量式DSC的测量单元根据所采用的传感器的不同而有所区别。/pp  如下图所示为瑞士梅特勒-托利多公司采用金/金-钯热电偶堆传感器设计的DSC测量单元示意图。传感器下凹的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。热电偶以星形方式排列,以串联方式连接,在坩埚位置下测量试样与参比的温差。试样面和参比面的热电偶分布完全对称。几十至上百对金/金-钯热电偶串联连接,可产生更高的测量灵敏度。传感器的下凹面提供必要的热阻,而坩埚下的热容量低,可获得较小的信号时间常数。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/f02e8309-d24c-4db9-9b02-ba4b239805a5.jpg" title="金_金-钯热电偶堆传感器热通量式DSC测量单元截面示意图.jpg" width="400" height="345" border="0" hspace="0" vspace="0" style="width: 400px height: 345px "//pp style="text-align: center "strong金/金-钯热电偶堆传感器热通量式DSC测量单元截面示意图/strong/pp  如下图所示为美国Waters公司采用的康铜传感器设计的DSC测量单元示意图。康铜是一种铜-镍合金(55%Cu-45%Ni)。康铜与铜、铁、镍/铬等组成热电偶时,灵敏度较高(μV/K较大)。与贵金属铂、金/金-钯等相比,康铜耐化学腐蚀性较差。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/be5eca73-9eb5-41bf-83a6-dd1c6a5325a1.jpg" title="康铜传感器热通量式DSC测试单元示意图.jpg" width="400" height="255" border="0" hspace="0" vspace="0" style="width: 400px height: 255px "//pp style="text-align: center "strong康铜传感器热通量式DSC测试单元示意图/strong/pp  传感器上凸的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。两对热电偶分别测量试样温度和参比温度,测得温差。/pp  热通量式DSC的炉体一般都由纯银制造,加热体为电热板或电热丝。可选择不同的冷却方式(自然或空气、机械式或液氮冷却等)。/pp  热通量式DSC热流的测量/pp  以金/金-钯热电偶堆传感器设计的DSC为例,热流Φ以辐射状流过传感器的热阻 热阻以环状分布于两个坩埚位置下面。热阻间的温差由辐射状排列的热电偶测量。根据欧姆定律,可得到试样面的热流Φ1(由流到试样坩埚和试样的热流组成)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13d50f86-2166-44cc-93f7-4a0dfc48a0e2.jpg" title="DSC-1.jpg"//pp式中,Tsubs/sub和Tsubc/sub分别为试样温度和炉体温度 Rsubth/sub为热阻。/pp  同样可得到参比面的热流Φr(流到参比空坩埚的热流)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/66a68742-b966-4f01-80ea-6940d21e12f9.jpg" title="DSC-2.jpg"//pp式中,Tsubr/sub为参比温度。/pp  DSC信号Φ即样品热流等于两个热流之差:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8b903427-9007-493f-8229-23065fe62ac7.jpg" title="DSC-3.jpg"//pp  由于温差由热电偶测量,因此仍需定义热电偶灵敏度的方程S=V/ΔT。式中,V为热电压。于是得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/54c0c2b1-c913-449b-84db-541255ac821e.jpg" title="DSC-4.jpg"//pp式中,热电压V为传感器信号 Rsubth/subS的乘积称为传感器的量热灵敏度 Rsubth/sub和S与温度有关 令Rsubth/subS为E,E与温度的关系可用数学模型描述。/pp  在DSC曲线上,热流的单位为瓦/克(W/g)=焦耳/(秒· 克)[J/(s· g)],以峰面积为例,热流对时间(s)的积分等于试样的焓变ΔH,单位为焦耳/克(J/g)。/pp  热通量式DSC试样温度的测量/pp  炉体温度Tsubc/sub用Pt100传感器测量。Pt100基本上是由铂金丝制作的电阻。/pp  DSC测试所选择的的升温速率基于参比温度而不是试样温度,因为试样可能发生升温速率无法控制的一级相变。/pp  与热阻有关的温差ΔT对于热流从炉体流到参比坩埚是必需的。该温差通常是通过升高与ΔT等值的炉体温度实现的。炉体温度Tsubc/sub与参比温度Tsubr/sub的时间差等于时间常数τsublag/sub,与升温速率无关。/pp  在动态程序段中,计算得到的温度升高ΔT加在炉体温度设定值上,因而参比温度完全遵循温度程序。/pp  严格来说,试样内的温度与测得的试样坩埚的温度存在微小差别。通过在软件中正确选择热电偶的灵敏度,可补偿该差别。/pp  采用康铜传感器设计的DSC仪器,试样坩埚温度由热电偶直接测量。也需要通过软件中正确选择热电偶的灵敏度,通过修正来获得试样内的温度。/ppspan style="color: rgb(255, 0, 0) "strong功率补偿式DSC/strong/span/pp  功率补偿式DSC是在程序控温和一定气氛下,保持试样与参比物的温差不变,测量输给试样和参比物的功率(热流)与温度或时间关系的一种技术。与热通量(热流)式DSC采用单独炉体不同,功率补偿式DSC以两个独立炉体分别对试样和参比物进行加热,并各有独立的传感装置。炉体材料一般为铂铱合金,温度传感器为铂热电偶。/pp  如下图所示为美国珀金埃尔默公司功率补偿式DSC测量单元的示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c459d34d-d427-453c-acdf-3a462e04e3e4.jpg" title="功率补偿式DSC测量单元示意图.jpg" width="400" height="263" border="0" hspace="0" vspace="0" style="width: 400px height: 263px "//pp style="text-align: center "strong功率补偿式DSC测量单元示意图/strong/pp  由于采用两个小炉体,与热通量式DSC相比,功率补偿式DSC可达到更高的升降温速率。/pp  功率补偿式DSC对两个炉体的对称性要求很高。在使用过程中,由于试样始终只放在试样炉中,两个炉体的内部环境会随时间而改变,因此容易发生DSC基线漂移。/pp  功率补偿式DSC热流的测量/pp  功率补偿式DSC仪器有两个控制电路,测量时,一个控制升降温,另一个用于补偿由于试样热效应引起的试样与参比物的温差变化。当试样发生放热或吸热效应时,电热丝将针对其中一个炉体施加功率以补偿试样中发生的能量变化,保持试样与参比物的温差不变。DSC直接测定补偿功率ΔW,即流入或流出试样的热流,无需通过热流方程式换算。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/4b2384fe-4770-4f1b-af33-e5d731956a4c.jpg" title="DSC-5.jpg"//pp式中,QsubS/sub为输给试样的热量 QsubR/sub为输给参比物的热量 dH/dt为单位时间的焓变,即热流,单位为J/s。/pp  由于试样加热器的电阻RS与参比物加热器的电阻RsubR/sub相等,即RsubS/sub=RsubR/sub,因此当试样不发生热效应时,/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13c863c9-be1e-4808-942f-e0765844b444.jpg" title="DSC-6.jpg"//pp式中,IsubS/sub和IsubR/sub分别为试样加热器和参比加热器的电流。/pp  如果试样发生热效应,则输给试样的补偿功率为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1fa7ba2d-3a0b-4911-a86b-801d2336f395.jpg" title="DSC-7.jpg"//pp设RsubS/sub=RsubR/sub=R,得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/83f06029-71c9-4e13-bf3e-d2c6b64eed1a.jpg" title="DSC-8.jpg"//pp因总电流IsubT/sub=IsubS/sub+IsubR/sub,所以/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/35825b17-b30d-4aa7-9bc8-a8a1ae877397.jpg" title="DSC-9.jpg"//pp式中,ΔV为两个炉体加热器的电压差。/pp  如果总电流IsubT/sub不变,则补偿功率即热流ΔW与ΔV成正比。/ppbr//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongDSC仪器性能评价的重要参数/strong/span/ppstrongDSC仪器的灵敏度和噪声/strong/pp  每个传感器都具有一定的灵敏度。灵敏度是指单位测量值的电信号大小,用每度热电压(V/K)表示。例如,室温时的铜-康铜热电偶的灵敏度约为42μV/K,金-金钯热电偶约为9μV/K,铂-铂铑(10%铑,S型)热电偶约为6.4μV/K。/pp  信号的噪声比灵敏度更加重要,因为现代电子装置能将极其微弱的信号放大,但同时也会将噪声放大。噪声主要有三个来源:量的实际随机波动(如温度的微小波动) 传感器产生的噪声(统计测量误差) 放大器和模-数转换器的噪声。/pp  噪声与叠加在信号上的不同频率的交流电压相一致。因此,对于交流电压,噪声可用均方根值(rms)或峰-峰值(pp)表示。rms值得计算式为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8355adf9-cd1e-46b0-9538-67ac7bd524e4.jpg" title="DSC-10.jpg"//pp式中,n为信号值个数 xsubi/sub为单个信号值 x为平均信号值。/pp  对于正弦振动,pp/rms比为2 (2.83左右) 对于随机噪声,比值为4~5。/pp  灵敏度与检测极限是不同的。检测极限(常误称为“灵敏度”)指可检出的测试信号的最小变化量。检测极限比背景噪声明显要大,如10倍与rms值(或pp值的2倍)。信号和噪声水平决定最终的检测极限。/pp  值得指出的是,通过数学光滑方法可容易地获得低噪声水平,但这样会同时“修剪”掉微弱却真实的试样效应,所以噪声水平低并不一定表示灵敏度高。/pp  TAWN灵敏度最初是由荷兰热分析学会提出的方法,用来比较不同的DSC仪器。TAWN灵敏度测试法测量一个已知弱效应的试样,用峰高除以峰至峰噪声得到的信/噪比来表征DSC仪器的灵敏度。峰高/噪声的比值越高,DSC仪器的灵敏度越好。/ppstrongDSC仪器的分辨率与时间常数/strong/pp  在很小温度区间内发生的物理转变的分辨率(分离能力)是DSC仪器的重要性能特征。分辨率好的仪器给出高而窄的熔融峰,换言之,峰宽应小而峰高应大。/pp  分辨率的表征方法有多种,常用的有铟熔融峰峰高与峰宽比、TAWN分辨率和信号时间常数等。/pp  由铟熔融峰测定的分辨率=峰高/半峰宽,数值越高表明分辨率越好。TAWN分辨率为基线至两峰之间DSC曲线的最短距离与小峰高度之比,数值越低表明分辨率越好。信号时间常数τ定义为从峰顶降到后基线的1/e,即降63.2%的时间间隔。信号时间常数τ是热阻Rsubth/sub与试样、坩埚和坩埚下传感器部分的热容之和(C)的乘积,τ=Rsubth/subC。显然,较轻的铝坩埚可得到较小的信号时间常数。信号时间常数越小,DSC分辨率越好。/p
  • 小菲课堂|浅析热灵敏度对检测精度的重要性
    目前,监控体系在生产和生活中起着越来越大的作用,成为人们生活中不可缺少的一道安全屏障。一般情况下,普通的可见光摄像头就可以很好地起到监控的作用,但如果等到夜深人静、大雾弥漫,雨雪等光照条件不足的恶劣情况时,一般可见光摄像头就难以捕捉到隐藏的问题。因此,监控技术是必须在任何可能的情况下都提供检测率。自从红外热像仪在安全应用上商业化以来,热成像技术已经成为最可靠的技术,因为它可以在可见光摄像机可见光盲区的情况下提供清晰的图像。然而,并不是所有的热像设备都是相同的,不同热灵敏度的热像仪拍摄的热图像清晰度有很大差异。热灵敏度,即噪声等效温差(NETD-Noise Equivalent Temperature Difference),其描述了所使用的热像设备所能看到的最小温差。实际上,使用毫开尔文(mK)测量的NETD值越低,传感器就越能记录较小的温差,下表可用于确定热探测器的质量:30 mK非常灵敏40 mK比较灵敏50 mK灵敏60 mK一般灵敏80 mK较低灵敏小伙伴们还要注意到一个问题,有些制造商生产的一些低成本热像仪通过将NETD标称在环境温度为50℃(NETD:XXmK,@50℃)而不是行业标准的30℃(NETD:XXmK,@30℃),从而来隐藏低灵敏度的问题。如果你需要测量的目标通常有很大的温差,那么具有较低热灵敏度的入门级产品就够用。然而,对于更微妙的应用,如检测湿度问题,你将需要更高灵敏度的热像仪。探测细微的细节,比如墙上的螺柱,需要很高热灵敏度的热像仪在为安全监控系统选择红外热像仪时,检测率是一个非常重要的考虑因素。入门级热像仪仍然容易受到雨、雾、雪等恶劣天气条件的影响,这些条件会降低图像的对比度,导致能见度低,阻碍检测精度,并导致有限的态势感知。因此,拥有一个具有优异热灵敏度的热像仪对监控系统的创建非常重要。热传感器的灵敏度越高,其检测精度就越高。比如FLIR A310能够很好地担任“监工”的职责,其搭载有非制冷微量热型探测器,可在热灵敏度为50mK(0.05℃)时输出分辨率为320x240像素的热图像。它包含内置分析功能,提供单点温度测量、区域温度测量和自动报警功能。
  • 产品应用|使用等温微量热法测试锂离子电池的质量和性能
    由寄生反应测量推动的研究突破过去十年中,在电池研究、开发和质量控制领域,已将原位和操作中等温微量热法(IMC)用作评估锂离子电池循环期间热流的主要方法。将电池循环至失效可能需要数月的时间,但新兴的诊断测试能够在几周内预测长期行为。此类新兴诊断方法之一是测量电池在循环过程中的寄生热。Krause等人概述了将寄生热事件与总热量生成进行分离的程序,以对寄生反应进行量化,然后利用寄生反应数据以实现:√ 判断电池质量√ 协助活性材料配方的研发√ 研究添加剂的影响√ 研究固体电解质界面(SEI)的形成和增长√ 协助循环和日历寿命预测模型的制定通过了解寄生反应 加强新电池配方的研发J. Krause等人和Jeff Dahn小组研究了不同石墨以及电极配方对电池性能的影响。他们使用TAM III微量热仪测量寄生能量并将其与活性锂损失或库仑效率相关联的早期创新者,“确认寄生能量的来源是锂化电极和电解质之间发生的反应热。”已经证明,他们的方法对研究新材料组合和预测电池寿命是有效的。先前的工作表明,从石墨锂离子软包电池的电解质中去除碳酸亚乙酯(EC)可延长循环寿命和高压运行寿命。S. L. Glazier 等人通过联用TAM III微热量仪和电池循环器测量在高压运行期间的寄生热流,研究了无EC电解质的性能。该团队测量了寄生反应的时间和电压依赖性,以表征电池中复杂的内部反应。他们发现,不含EC的电解质“在较低电压下产生更高的寄生热流,但在4.3 V以上时的表现优于含EC的电解质。”此外,不含EC的电解质在高压暴露后能够更好地恢复到较低的寄生热流。他们的工作证实,不含EC的电解质可提供出色的高性能操作,进一步的研究可帮助改善电池在低电位下的性能,以获得更成功的电池电解质配方。通过高压热流测量 评估新型电池材料L. Glazier等人还通过测量寄生热流和容量保持率对天然石墨和人造石墨电池进行了比较。事实证明,他们的TAM III微热量仪有助于“了解高压锂离子软包电池中寄生反应的电压和时间依赖性。”他们使用IMC在低电压范围内研究寄生反应,以探测电解质在负电极中的反应,然后在高电压范围内进行测试,以探测氧化的正/负相互作用。结果表明,含足够电解质添加剂负载的天然和人造石墨电极将产生相似量的寄生热,人造石墨产生的热量最少。电解质添加剂负载不足会产生更大的寄生热流,并且在高电压范围内的电化学性能显著恶化。长期循环行为表明,与人造石墨相比,天然石墨电池具有更快的容量衰减速度。该小组提出,在电解质负载不足的情况下,SEI层很薄,无法有效承受锂化过程中天然石墨颗粒的机械膨胀,并且由于新的SEI在暴露表面形成,会导致不可逆膨胀和更大的容量衰减率。通过评估寄生反应 为优化高镍NMC阴极制定基线C. D. Quilty等人在研究富镍锂镍锰钴氧化物(NMC)阴极电池的研究中也评估了新型锂离子电池材料。NMC提供了高能量密度,但受到潜在的容量衰减较高的影响,因此必须谨慎限制其容量。要最大限度地提高NMC电池的寿命和高容量,需要使用一套工具来测量容量衰减机制,包括操作中IMC实验。C. D. Quilty等人使用TAM IV微热量仪实时测量(去)锂化过程中的热量,以全面了解了电池退化过程。他们指出,IMC是一个“强大的非破坏性工具,能够以超高精度捕捉循环电池释放的瞬时热流”,为他们的研究提供了帮助。他们发现,在更高电压下,容量衰减率的增加可能由更大的热能浪费或更低的电化学效率引发。他们的结论为未来的NMC阴极优化设定了基准。评估预锂化 对新型锂离子电池加工技术的影响预锂化是一种新的锂离子电池化成方法,该方法在电池单元运行之前增加活性锂含量。预锂化可补偿形成循环中的锂损失,如果操作正确完成,有望获得高能量密度和更好的循环性能。然而,对预锂化可能产生的负面影响仍处于研究阶段。Linghong Zhang等人使用TAM III微热量仪评估了预锂化过程和相关的寄生反应。第一个循环期间,预锂化电池产生了额外的寄生反应,但在三个循环后,“在预锂化电池和对照电池中观察到类似的来自寄生事件的热信号,表明预锂化的稳定性,以及可能不存在长期的副作用。”该研究首次展示了应用等温微量热法评估预锂化,并提供了有关该程序的有前景的结果。他们得出结论,“操作中等温微量热法是表征锂离子电池预锂化应用的有力工具。”未来的研究可继续优化预锂化,监测预锂化添加剂对大规模安全形成电池的影响尤为重要。研究背后的技术上述研究均使用到TA仪器的TAM系列微量热仪,这是一款先进的分析工具,可在受控温度条件下测量样品的热行为。许多研究将TAM与恒电位仪或电池循环器配对使用,使它们能够测量电池运行期间的热流,以获得可靠的结果。TA仪器全新推出的电池循环微量热仪解决方案专为这一应用而构建。该方案将TAM IV微量热仪与BioLogic VSP-300恒电位仪搭配成一个集成系统,从而形成一个端到端的运行中(in-operando)测量工具,在灵活和直观的系统中实时揭示电池在用户定义的温度和电压曲线下的详细热-电化学特性。现在,各级研究人员和科学家都可以通过无缝系统控制和数据分析来测量操作中的电池热流,从而缩短测试时间、加快决策。电池循环器微型量热仪解决方案包括两个主要系统的无缝软件和硬件集成:TAM IV 微型量热仪——可在受控温度条件下测量样品热行为的最先进的分析工具BioLogic VSP-300 恒电位仪/循环器——用于探测材料电性能的研究级电化学分析工具高级集成√ 仅通过一个软件接口,即可提供无缝系统控制√ 实时汇总数据,无需等待漫长的实验完成即可查看初步结果√ TAM ASSISTANT软件可一键进行数据可视化分析,更快提供结果和新见解卓越生产率√ 可同时循环并测量多个电池单元和外形尺寸的寄生热量√ 无需处理或操纵电线,消除了对专项工程的需求以及与定制OEM产品相关的不安全操作风险灵敏可重复√ 温度范围扩展至4℃-150℃,更好模拟现实世界中的应用√ 无与伦比的自放电测量的灵敏度和温度稳定性
  • 谱育科技便携傅里叶红外参与国家标准方法验证工作
    近日,浙江省生态环境监测中心组织在杭州监测现场开展了《固定污染源废气 氨、氯化氢的测定 傅里叶红外吸收法》方法验证工作。谱育科技EXPEC 1680 便携式傅里叶红外光谱仪 受邀参与了该国家环境标准方法的验证实验。测试期间,谱育科技严格按照《环境监测分析方法标准技术导则》的有关规定,开展方法检出限、精密度、准确度、正确度验证,为进一步完善国家环境保护标准体系提供有力的技术、数据和服务支持。 标准验证过程中测试现场 标准参与单位 本次标准编制受中国环境监测总站委托,由浙江省生态环境监测中心承担主导;谱育科技子公司谱育检测、上海市生态环境监测中心、福建省生态环境监测中心、山东省生态环境监测中心、绍兴市生态环境监测中心、台州市生态环境监测中心6家单位共同完成方法验证工作。 标准定制意义 此标准主要适用于固定污染源废气污染物氨和氯化氢的现场快速测定,有助于提高固定污染源废气污染物氨 和 氯化氢现场测定的准确性和时效性,为环境管理部门监管执法提供及时、有效的技术支撑,增强环境管理部门监管效能。截至今日,EXPEC 1680 凭借其优异的性能已多次参与浙江、上海、重庆等省市国家标准与地方标准的制定与验证工作,为国家标准的制定与验证工作提供了相关的实验数据与参考意见。EXPEC 1680 便携式傅里叶红外光谱仪仪器无需进行样品前处理、不受水汽干扰,可直接进行烟气中SO2、CO、CO2、NO、NO2、HCl等因子的测定,全程高温伴热,尽可能还原烟气中真实的物质浓度。该产品的自主创新和成功研制,有效填补了国内该领域的空白。自仪器投入市场以来,成熟的技术和应用获得业界用户好评,目前已广泛应用于燃煤燃气电厂、垃圾焚烧厂、钢铁厂、快速应急监测等多个领域,为环境管理部门监管执法提供及时、有效的技术支撑。高可靠拥有更宽的温度、湿度的适用范围,IP53的防护等级,保证户外现场的正常使用;高集成➢可配置吹扫气瓶,可自动吹扫,无需人为干预;➢内置采样系统,实现自动控温、远程控制、连锁保护;➢自带北斗+GPS双定位系统,自动记录数据采集点信息,数据可追溯;高交互可视化触摸系统,仪器状态清晰,配有WIFI模块,实现远距离的无线通讯能力;多组分可实现多组分同时分析,快速扫描得到全谱吸收光谱图,同时定性、定量分析无机/有机气体。* 部分内容素材来源于浙江省环境监测中心往期精选谱育科技助力淮安市突发环境事件应急监测演练及培训活动
  • 【2022培训课程】X射线、激光粒度、纳米粒度、GPC、微量热培训下半年课程安排及报名通道
    01课程介绍及时间安排XRD 基础课程XRD Basic了解粉末衍射的基本理论和光路几何,进一步掌握针对各种样品的测试如何选择仪器配置寄设置扫描参数,深入学习HighScore (Plus) 物相分析软件。D1:X射线的产生,晶体学基础及粉末衍射聚焦光路 D2:平行光路几何,上机操作 D3:物相定性分析,晶粒尺寸分析,结晶度分析 D4:结构精修,无标定量分析 D5:衍射仪维护保养,上机操作,自由讨论 波长色散 XRF 基础课程WD-XRF Basic了解X射线荧光工作原理,掌握样品的制备,了解波长色散型荧光光谱仪主要光学部件组成和软件功能,掌握建立定量分析方法的步骤和Omnian无标定量分析软件的基本功能。课程时长5天。D1: X射线荧光原理介绍,样品制备分析,软件简介 D2: 详细介绍定量分析方法的建立 D3: Omnian无标定量分析软件的基本功能 D4: 上机操作,自由讨论 D5: 荧光光谱仪的维护和保养 能量色散 XRF 基础课程ED-XRF Basic了解X射线荧光工作原理,掌握样品的制备,了解Epsilon系列能量色散型荧光光谱仪主要光学部件组成和软件功能,掌握建立定量分析方法的步骤。课程时长4天。D1: X射线荧光原理介绍,样品制备分析,软件简介 D2: 详细介绍定量分析方法的建立 D3: 上机操作,自由讨论 D4: 荧光光谱仪的维护和保养 激光粒度课程Mastersizer 3000了解激光衍射基本理论、原理,掌握样品制备和测量方法,数据解析及误差原因分析。课程时长2天。通用课程:D1:激光衍射基本理论, 测量原理;影响测量结果的因素分析, 结果可靠性的判别及最优化样品分散方法的建立。 D2:软件功能培训;典型样品分散及测量实例,上机实践,疑难问题解答及仪器的维护保养。纳米粒度及电位课程Zetasizer了解动态光散射、zeta电位基本理论、原理,掌握样品制备和测量方法,数据解析及软件应用。课程时长2天。通用课程:D1: 动态光散射(DLS)基本理论,测量原理,样品分散要点,测量结果及参数分析, 典型样品测量及问题解答。D2: Zeta 电位理论基础及测量原理,样品制备原则及应用指导,上机实践, 疑难问题解答及仪器的维护保养规程。纳米粒度跟踪课程NTA(Nanosight)了解纳米颗粒跟踪分析技术理论原理,学习测量与分析方法。课程时长1天。D1:纳米颗粒跟踪分析技术(NTA)基本理论,测量原理,应用案例分析,上机实践,疑难问题解答及仪器维护保养。GPC课程GPC(Omnisec)了解凝胶渗透色谱技术理论原理,掌握溶剂配制原则和样品制备方式,掌握检测条件和信号读取的设置,并理解其意义。课程时长3天。D1:凝胶渗透色谱分离原理及检测器原理,流动相要求及样品制备方式。D2:检测条件设置,信号读取,窄分布和宽分布样品的检测及其意义。D3:实际操作培训。 微量热技术课程ITC&DSC (MicroCal ITC & DSC)等温滴定量热仪(PEAQ-ITC)是如何工作的?它能解决我们科研工作中的哪些问题?如何设计一个合理的ITC实验,如何获取可靠的ITC数据?面对实验中出现的一些奇怪的图谱,我们应该如何判断、分析和改进?马尔文全新一代的PEAQ-ITC提供了哪些方便的选项?课程时长1天至1天半。D1:PEAQ-ITC的原理及应用介绍,仪器讲解及实验操作、软件讲解及仪器维护等。微量热差式扫描量热仪(PEAQ-DSC)是如何工作的?如何正确的设计一个DSC实验?如何准备DSC样品?如何获取可靠的DSC数据?马尔文全新一代的PEAQ-DSC automated又提供了哪些方便的选项?课程时长1天至1天半。D1:微量热差式扫描量热仪原理及应用介绍;仪器讲解及上机演示;软件讲解及仪器维护等。马尔文帕纳科2022年度下半年培训课程一览培训地点:上海时间课程报名截止时间7月18-22日GPC(Omnisec)7月11日7月28-29日激光粒度(MS 3000 ) 7月18日8月1-5日WDXRF基础(Zetium) 7月25日8月15-18日XRD基础(Aeris) 8月8日9月5-9日WDXRF基础(Zetium) 8月29日9月26-29日EDXRF基础 9月19日10月11-12日微量热技术(PEAQ DSC)10月3日10月13日微量热技术(PEAQ ITC)10月3日10月17-21日WDXRF(基础)(Axios)10月10日10月27日纳米粒度及电位(Zetasizer)10月20日10月31日-11月4日XRD基础10月24日11月24-25日激光粒度(MS 3000 )11月14日11月28日-12月2日WDXRF基础(Zetium)11月21日培训地点:北京时间课程报名截止时间8月25日纳米粒度跟踪(Nanosight)8月16日9月1日纳米粒度及电位(Zetasizer)8月22日9月22-23日激光粒度(MS 3000 )9月12日* 培训费为RMB2303元/人天,每台仪器的新用户可提供两个免费培训名额,不包含食宿和交通费用,每场培训报名人数达到6人即可开班,培训人数上限为16人,报满截止,报名确认后会于培训前发培训通知。02咨询及付费信息以上课程安排可能会因不可抗因素进行调整,实际开课日期请参考报名表单中实时更新的选项。如您有任何疑问请联系咨询马尔文帕纳科亚太卓越应用中心X射线分析仪器负责人:万益娟 女士电话:135 6429 0063邮箱:yijuan.wan@panalytical.com物性测量仪器培训负责人:黎小宇 女士电话:139 1861 1071邮箱:Sherry.li@malvern.com.cn或北京实验室负责人:张瑞玲 女士电话:010-5323 6737邮箱:rain.zhang@malvern.com.cn培训费付费方式:培训费由公司转账到上海思百吉仪器系统有限公司(账号信息如下)公司名称:上海思百吉仪器系统有限公司公司地址:上海市闵行区元山路88弄9号公司电话:021-61133688开户行:中国银行闵行支行账号:445559221333税号:91310000772121566L点击报名培训课程下半年课程已开放申请,点击按钮即可报名亚太卓越应用中心地址马尔文帕纳科亚太卓越应用中心地址:上海市闵行区中春路1288号金地威新闵行科创园区24号楼3A层访问热线: +86 400 630 6902北京应用实验室地址马尔文帕纳科北京应用实验室地址:北京市石景山区鲁谷路74号瑞达大厦F906咨询电话:010-5323673703公司使命目标马尔文帕纳科的使命是通过对材料进行化学、物理和结构分析,打造出客户导向型创新解决方案和服务,从而提高效率和产生切实的经济影响。通过利用包括人工智能和预测分析在内的最新技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品及帮助产品更快速地上市。联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902邮箱:info@malvern.com.cn网址:www.malvernpanalytical.com.cn
  • 环境监测关键计量标准及测量技术研究项目启动
    为环境监测提供计量技术支持  环境监测关键计量标准及测量技术研究项目启动  日前,国家科技支撑项目“环境监测关键计量标准及测量技术研究”在中国计量院正式启动。该项目的完成将对提升我国环境监测领域测量水平提供有力的计量技术支持。  从中国计量院获悉,该项目将针对环境领域急需解决的关键计量问题开展研究。项目总体目标为:初步建立涉及环境和气候监测科目的相应计量标准装置9套,研制标准物质60余种,形成高水平技术规范13项、测量方法23种,完善9项量值传递体系。同时开展相应量值的国际比对,取得气候环境监测的国际等效和互认。通过推广应用,满足社会对环境计量和相关检测技术的需要,解决环境监测中制约行业发展的共性、关键性计量标准及测量技术问题,最终实现监测仪表量值溯源,保证监测数据的正确性和有效性,实现国际互认,提高国家环保监测水平和履行国际公约的能力。  作为环境保护的技术基础,环境监测水平直接决定了环境保护的效果,而环境监测的计量标准水平则决定了监测仪表数据的准确度。据悉,我国共建有专业、行业监测站4800多个,环境监测计量标准的研究和建立,将能够有效地提升环境监测数据的一致性、可靠性和有效性。目前,我国在环境监测领域缺乏计量基标准和相应的溯源体系,难以保证监测数据的准确可靠、可比,不能实现国际互认。因此,环境监测领域急需计量标准的支撑。  该项目的完成将对提升我国环境监测领域测量水平提供有力的计量技术支持,填补我国在环境监测领域部分计量标准装置、标准物质、规范的空白,初步建立我国环境监测计量体系,并向上溯源至国家计量基标准。  项目的组织实施单位为国家质检总局,中国计量院为项目牵头单位。项目共包括《烟气中二氧化碳排放量量值溯源技术研究》等8个课题,实施周期为4年。
  • SOCOREX发布SOCOREX 826可调微量移液器新品
    产品优势* 新型 Acura manual XS系列是现代科研人的理想选择* 人体工程学外形设计,更短!更省力!更轻!* 短管,细轴适合更小尺寸的微孔管* 人体工程学设计 ,超轻重量* 全新气密性技术,超轻滑动阻力* JustipTM 吸头推杆高度调节设计,可匹配更多吸头* 圆锥型设计微孔板微量离心管操作更为便捷* 一键式校准系统* 121℃整支高压蒸汽灭菌* CE 标示,符合 IVD98 /97EEC标准 技术参数 不准确度(E%)不精确度(CV%)订货号量程范围刻度增量Min.Vol.Mid.Vol.Max.Vol.Min.Vol.Mid.Vol.Max.Vol.适配吸头Acura826XS826.00020.1-2μL0.002μL±6.0%1)±4.0%±2.0%5.0%1)3.3%1.5%Ultra10μL826.00100.5-10μL0.01μL±2.5%2)±1.8%±1.0%1.8%2)1.2%0.5%Ultra10μL826.0010Y1-10μL0.01μL±2.5%±1.8%±1.0%2.5%1.6%0.7%200μL826.00202-20μL0.02μL±2.5%±1.8%±1.0%1.7%1.1%0.5%200μL826.00505-50μL0.1μL±1.5%±1.3%±1.0%1.0%0.7%0.4%200μL826.010010-100μL0.1μL±1.5%±1.2%±0.8%1.0%0.6%0.2%200μL826.020020-200μL0.2μL±1.5%±1.1%±0.6%0.6%0.4%0.2%200μL826.1000100-1000μL1μL±1.5%±1.0%±0.5%0.5%0.4%0.2%1000μL①更舒适的移液移液器适合于所有戴手套或者不戴手套的操作者,人体工程学外形设计,更轻的重量和活塞滑动阻力②创新移液体积调节装置只需要轻松旋转顶部旋钮,就可以准确设定移液体积,且系统带自锁死装置,在操作过程中不会发生体积变化④推杆长度可调节JUSTIP™ 吸头杆高度调节设计使移液器对吸头的适配性更强,拓展了吸头的通用性⑤移液器维护吸液单元可以互换,且吸液单元可以简单拆卸,可以高温灭菌⑥⑦即校式校正系统无需特殊工具的即校式校正系统,用户可随时对移液器自己进行校正,也可以委托SOCOREX 在中国的标准实验室进行校准密封签 ⑧防止误操作,再进行校准时移去即可巴斯的管巴斯的管适配器 9可以匹配2ml 或者5ml 的玻璃巴斯德管来代替PP 材质的吸头吸嘴过滤器 10对于大容量移液器,为防止液体渗透和崩溅进入吸嘴套管,可以选择移液器过滤嘴移液器使用注意事项1、移液器使用过程中保证校准键始终在LOCK档。2、定期维护校准移液器。3、校准时请严格按照校准说明文件进行操作,一般建议校准周期为6个月/次,不得超过12个月。4、使用完毕请将移液器的量程调至最大值刻度,使弹簧处于松弛状态以保护弹簧。5、移液器应竖直挂置在移液器支架上,防止移液器掉落。禁止平放于实验台,防止液体倒流腐蚀损坏机器内腔体。 6、校准步骤(1)检查吸头的密封性:将吸头,吸入水,垂直向下15秒没有水滴滴下,就视为密封良好。(2)要求十万分之一天平(20uL以下规格要求百万分之一天平),将空烧杯放入天平内,归零。(3)将移液器量程调到最大,对移液器进行移液操作,将所移液体移入到天平内的烧杯中。(4)对烧杯内的液体进行称量。(5)重复上述2)3)4)步三次,称量结果取平均值,换算成质量对应的体积。如果误差在不准确度的范围之内,则不需要校准。如825.1000移液器,准确度是0.5%,测量结果如果误差在5uL范围内则不需要校准。如需要校准则按6)操作。(6)校准按钮拨到CAL的位置,打开移液器顶帽,拔出校准旋杆,通过旋转旋杆将显示窗里的体积调为我们换算出的体积, 最后将旋杆按回,把校准按钮拨回到LOCK的位置,安上顶帽。(7)校准完成后,需要进行验证(当然这是在确保移液器其它部件正常的情况下,例如吸头的密封性不好,也会造成校准不准检修常识常见问题原因解决方法移液器漏液使用了不合适的吸头用原厂的吸头吸头安装不正确稳妥安装吸头吸头圆锥磨损货污染清洗吸头连接杆更换吸头连接杆活塞密封磨损或润滑剂不足清洗并给垫圈重上润滑剂更换垫圈仪器损坏送去维修非标准测试条件或校准改变根据ISO 8655标准进行测试,必要时再校正移液器没有定期保养进行常规维护并在测试吸头过滤嘴污染更换吸头过滤嘴移液器漏液见以上说明操作按钮卡住或无法固定液体已经通过吸头连接杆并在移液器内部变干清洗活塞/密封处和吸头连接杆并上油吸头过滤嘴污染更换吸头过滤嘴润滑油不足相应上润滑油移液器阻塞,吸液困难液体已经通过吸头过滤嘴并在移液器内部变干清洗并给垫圈和活塞重上润滑剂,清洗吸头连接杆吸头弹出杆卡住或无法固定吸头连接杆或止推环污染用柔和的清洁剂或70%乙醇清洗干净创新点:全新气密性技术,大大减轻了滑动阻力SOCOREX 826可调微量移液器
  • 多项国际标准发布!涉及测量辐射、船舶电磁等
    ISO发布关于第三方支付安全新标随着支付趋势从现金转向在线金融交易,诸如PayPal等第三方支付(TPP)服务商的使用将越来越多。虽然这种支付方式便捷,但其使用量的增加不可避免地会带来更大的安全风险。为促进技术的安全发展,ISO最近刚刚发布了一项提供 TPP 服务的信息系统新标准。TPP提供商是一种可以在没有商家账户的情况下接受在线支付。但由于中间商的存在,这种处理付款的方式增加了欺诈风险,所以不一定安全。ISO 23195《第三方支付服务信息系统的安全目标》,提供了一个全球一致的术语和定义清单,2个逻辑结构模型和一个安全目标清单。为确保最大限度的相关性,该标准中的逻辑结构模型、资产、威胁和安全目标都基于现实实践。认识到TPP服务商正在不断设法减少支付欺诈的风险,这一标准是对现有措施的坚实补充。ISO 23195是由ISO/TC 68“金融服务”技术委员会的ISO SC 2金融服务与安全分技术委员会制定。ISO/TC 68/SC 2的秘书处工作是由ISO的英国成员BSI承担。ISO发布第一项无障碍旅游国际标准对于全世界10亿多残障人士来说,旅游是件难事。认识到消除旅游业中不必要的障碍十分重要,因此ISO发布了一项新标准,以帮助每个人享受无障碍旅游。发布的标准:ISO 21902《旅游业和相关服务--无障碍旅游--要求与建议》提出了让所有人都能平等获得良好的旅游体验要求和指南,无论年龄大小或活动能力如何,包括有肢体障碍或有特定访问要求的人,比如残疾人和老年人。玛丽娜迪奥塔列维(Marina Diotallevi)是世界旅游组织(UNWTO)的成员,也是制定这项标准的专家工作组召集人。她认为:“各国对于构建无障碍的旅游设施与服务没有一致且明确的规范,而这种状态会继续增加旅游的障碍。这些障碍常常是因为行业内缺乏相关知识与培训造成的,这也意味着善意的努力被白白浪费了。现在各国之间,甚至同一个国家的民族之间,都有不同的现行标准。旅游业急需规范如何正确应用无障碍旅游相关标准。”耶稣埃尔南德斯(Jesús Hernández)是ISO 21902项目负责人、ONCE基金会普遍无障碍与创新部主任。他补充道:“有的国家根本没有适用的标准,因此旅游业供应商没有指南,不知如何调整旅游设施与产品,以满足每个人需求。ISO 21902是第一项旨在填补这一关键空白的国际标准,从而提高整个旅游价值链的无障碍设施。”新的标准旨在满足从事旅游业及接触旅游业的每个人的需求,这一群体包括国家旅游局、市政府、负责基建政策的公共部门,以及发展与立法/规范体系。同时,还将惠及所有旅游相关业务,比如旅游公司/旅行社、交通公司、住宿设施、医院、餐饮,以及建筑师、信息与通信技术开发者等相关支持方,当然还有游客们。ISO 21902是由ISO/TC 228“旅游及相关服务”技术委员会制定,其秘书处是由ISO的西班牙成员--西班牙标准化协会(UNE)承担。IEC发布关于测量辐射标准使用锗探测器测量辐射水平的例子有:测定土壤样品中的放射性污染物、确保医疗放射治疗的剂量正确、侦测非法贩运放射性材料以及保护核材料。为保障这些探测器性能,IEC发布了新版IEC 61452《核仪器——伽马射线放射性核素活度或放射率的测量——锗基光谱仪的校准和使用》。该项标准规定了校准和使用锗基光谱仪的方法。锗基光谱仪可以测量光子能量和发射率,并根据测量结果计算放射性核素活度。该标准让锗半导体探测器的常规校准和使用设定基础成为可能。该标准提供了统一的方法,以评估锗半导体探测器的性能特征,从而提高了仪器系统的质量和准确度。一、认识锗基光谱仪伽马射线光谱仪由锗探测器及其液氮或机械冷冻低温恒温器和前置放大器组成,与模拟或数字电子模块有关,包括探测器偏置和信号处理(放大、多通道转换和存储)以及数据读出装置。此外,探测器周围一般有辐射屏蔽,以尽量减少背景辐射可能造成的影响。锗晶体中光子(X射线和γ射线)相互作用,将能量传递给电子。通过产生电子-空穴对,电子的能量被释放。汇集电子和空穴,可产生脉冲,其振幅与锗晶体有效体积中沉积的能量成正比。这些脉冲被放大、整形和分类,根据脉冲高度直方图,显示出探测器吸收的光子数量。光子数量是能量的函数。收集足够多的脉冲后,直方图会显示有一个或多个峰值的频谱,峰值对应的是将自身全部能量转移到探测器的光子。排放率的测量用于确定给定样品中放射性核素的活度。二、IEC 61452的范围为确保锗基光谱仪的正常运作和校准,IEC 61452规定了以下内容:性能测试,以确保光谱仪在可行范围内运转脉冲堆积的测量和校正方法进行测试,以确定符合相加的大致范围检查探测器中,由级联伽马射线的真符合相加造成的大误差的光谱分析结果的技术该标准还提出了建立放射性核素识别、衰变校正和将伽马射线辐射率转换为衰变率数据库的建议。该标准的上一个版本发布于1995年。IEC发布关于船舶电磁新标准的第一版IEC(国际电工委员会)即将发布旨在保护非金属船体免受电磁(EM)干扰的重要标准第一版,该文件旨在满足IMO resolution A.813(19)决议的要求。IEC 62742 ED1提供了关于如何在非金属材料(包括玻璃纤维等各种复合材料)船体的船舶上实现电磁兼容(EMC)的指南。该项标准也可以用于具有金属船体但装备非金属上层结构或部件的混合船。它是对IEC 60533的重要补充,IEC 60533规定了对金属船体的要求。简基斯范德文(Jan-Kees van der Ven)负责IEC/TC18船舶电磁标准化技术委员会工作,他解释说,“随着越来越多的船主选择更轻的船只,复合材料制造的船体正变得越来越普遍。然而,与金属不同,常规的复合材料不能保护电子设备免受电磁干扰。IEC 62742建立了不同的方法来保护基本设备,例如无线电设备的传输电缆,这是船舶上的关键电气设备。再比如,屏蔽式电缆是一种选择,并且为此制定了标准计划”。由于屏蔽物可以容纳和转移电磁能量,屏蔽式电缆辐射的电磁能量更少。屏蔽物可以采用铝箔,也可以采用缠绕在电缆布线上的铜编织的形式。“有个有趣的发展趋势,船体较轻的船只可以装备重型电池组,这对促进船上的电气化至关重要。促进电气化是减少柴油排放污染的一种方法。虽然国际海事组织(IMO)仍然要求所有船舶使用柴油发动机,但使用电池产生的电力来执行任务可以减少污染。”新标准可能在9月份发布,届时简基斯范德文(Jan-Kees van der Ven)的专家组将对IEC 60533进行修订。“该标准自1999年以来没有进行过重大更新。我们在2015年进行了小的修改,但在我看来,需要彻底重新制定,因为在过去的几年里,船舶的电气和电子环境发生了巨大的变化。随着传感器、LED灯等越来越多的电子设备在飞机上使用,标准变得越来越复杂。我们的想法也是为了明确船主和造船商必须遵守的一系列要求,而现有的标准是针对电气设备制造商的,”简基斯范德文(Van der Ven)说道。随着船舶变得更加自动化,舰载电子设备预计也会更加复杂。在自动化和电动运输的崭新世界中,IEC航运标准发挥着越来越重要的作用。
  • 欧洲计量创新与研究计划(EMPIR)发布全球首个《石墨烯电学测量方法标准化指导手册》
    近期,欧洲计量创新与研究计划(EMPIR)的项目 “GRACE-石墨烯电学特性测量的新方法”发布了全球关于石墨烯电学特性测量方法的标准化指导手册。“GRACE-石墨烯电学特性测量新方法”项目是由英国实验室(NPL)主导,与意大利计量研究所、西班牙Das-nano 公司等合作,旨在开发石墨烯电学特性的新型测量方法,以及未来石墨烯电学测量的标准化制定。 图一 石墨烯电学测量方法标准化指导手册(发送邮件至info@qd-china.com获取完整版资料) 图二:GRACE项目合作单位 石墨烯由于其特优异的电学特性,在未来有望成为大规模应用于电子工业及能源领域的新材料。但是,目前受限于:1)如何制备大面积高质量石墨烯,且具有均匀和可重复的电气和电子性能;2)无论是作为科研用的实验样品还是在生产线中的批量化生产,对其电学性质的准确且可重复的表征方法目前尚不完善,缺乏正确实施此类测量方法的指导手册及测量标准。针对目前面临的问题和挑战,EMPIR 的“石墨烯电学特性测量新方法”项目对现有测量方法进行了总结和规范指导,更重要的是开发了石墨烯电学特性的快速高通量,非接触测量的新方法,并用现有技术对其进行了验证,取得了很好的一致性。图三: 目前石墨烯电导率接触式测量方法及新开发的非接触式测量方法 西班牙Das-Nano公司参与了“GRACE-石墨烯电学特性测量新方法”项目中基于THz-TDS的全新非接触测量方法的开发及测量标准的制定。基于该技术,Das-Nano推出了全球一款可以实现大面积(8英寸wafer)石墨烯和其他二维材料的100%全区域无损非接触快速电学测量系统-ONYX。ONYX采用一体化的反射式太赫兹时域光谱技术(THz-TDS),弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学特性,为科研和工业化提供了一种颠覆性的检测手段[1,2]。ONYX主要功能:→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向:石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线 参考文献:[1] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).[2] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Sci Rep 10, 3223 (2020).
  • 助推产业走出去,红外热成像国际标准再获突破
    近日,国际标准化组织(ISO)正式发布ISO 18251-2:2023《无损检测 红外热成像 第2部分:系统和设备的综合性能测试方法》。这是继2017年中国首项红外热成像国际标准ISO 18251-1:2017《无损检测 红外热成像 第1部分:系统和设备的特性》发布实施后,由我国主持制定的第2项红外热成像ISO国际标准。这两项红外热成像国际标准的发布标志着中国在红外热成像检测领域国际标准化工作取得了重大突破。新发布的国际标准ISO 18251-2:2023《无损检测 红外热成像 第2部分:系统和设备的综合性能测试方法》由中国牵头制定,中国特种设备检测研究院沈功田研究员团队主持、上海材料研究所有限公司等单位参与制定。红外热成像仪是采用红外热成像技术,通过测量目标物体的红外辐射,经过光电转换、信号处理等手段,将目标物体的热分布数据转换成视频图像的设备。最为人所熟知的红外热成像仪如红外测温仪。其实红外热成像设备在电力工业、钢铁工业、电子工业、石油化工、建筑、航空航天和医学等领域已被广泛使用。比如对化工企业高空污染源和罐区顶部挥发性有机物排放的远距离检测检查,红外热成像设备可以提供温度测量和热状态分析,为执法人员远距离、无接触现场执法检提供便利;又如,在医学领域,红外热成像仪可以通过热成像诊断系统采集人体红外辐射,最后转换成不同颜色的图像,从而反映疼痛的性质、程度、范围。红外热成像检测作为一种新型非接触式的检测手段,具有无损、远距离检测、检测面积大、速度快、在线检测等优点。国际上一直缺乏红外热成像无损检测仪器和设备的标准。ISO 18251-1:2017和ISO 18251-2:2023的发布实施正填补了这一领域的空白。ISO 18251-1:2017给出了无损检测用红外热成像系统与设备关键部件和整机的性能参数描述和指标要求。在此基础上ISO 18251-2:2023对红外热成像设备和系统综合性能参数的标准测试方法作出了规定。党的二十大报告指出,加快实施创新驱动发展战略。以国家战略需求为导向,集聚力量进行原创性引领性科技攻关,坚决打赢关键核心技术攻坚战。2021年全球除军用红外热成像设备市场规模达62.32亿美元。而在全球十强红外热成像设备制造厂商中,中国厂商已占据四席,合计占比约44%。这两项国际标准的发布,充分彰显了我国红外热成像无损检测技术的国际先进性,进一步提高了我国在红外热成像检测领域的国际影响力,为我国生产的红外热成像检测仪器和设备走向国际市场起到极大的促进作用,具有重大的现实意义和价值。
  • 光谱仪测量误差有哪些,如何降到最低?
    当我们使用光谱仪仪器进行测量时,我们都希望所获得的结果尽可能准确,而想要获得更为准确的测量结果,就需要尽量地将测量误差降到最低。但在降低因光谱仪测量误差之前,必须得先认识一般都有哪些误差类型,在了解了常见的误差类型后,我们才能更好地将光谱仪测量误差降到最低。对此,本文整理了以下3个常见的误差类型,及降低误差对应的技巧,可供参考!过失误差:我们的首要任务是检查并消除测量中的过失误差。通过观察上述图表,我们会发现,一个过失误差将导致测量结果完全位于绿色区域之外,并且可能会被视为异常。制备过程中的样品污染等工艺误差可能导致过失误差。缺陷样品亦如此,例如,测量区域中的空腔或运行不正确的测量程序也会导致过失误差。通过培训和使用正确的程序,可以避免过失误差。系统误差:系统误差通常与正确度有关,并在测量样品的平均值和预期结果之间给出一致的偏差。造成这类误差的原因在于设备缺乏维护、部件磨损或校准不良等设备故障。由于偏差对于确定的关注区域内的每个测量值均一致,因此可以测量偏移量,然后将校正系数合并到样品测量值中。定期校准和维护可以减少系统误差。随机误差:随机误差与精密度有关。随机变化越大,测量精密度越低,误差幅度越大。不同于系统误差,这类误差是不可预测的,并且使用统计方法进行估计。这些测量波动可能由样品的不均匀性、测量环境的微小变化以及用于校准的参考样品的测量不确定性造成。目标是通过良好的程序和维护良好的设备,尽可能提高精密度。降低测量误差技巧:事实上,您能完全相信结果的唯 一方法是您了解读数的误差范围。在每次测量中,由于测量系统的局限性和其中的随机波动,总会存在误差范围。为获得尽可能准确的读数,我们应消除过失误差,减少系统误差和随机误差,然后在商定的置信度内接受并计算剩余的误差范围。
  • 民政局101所签订锥形量热仪采购合同
    莫帝斯燃烧技术(中国)有限公司,日前同中华人民共和国民政局101所签订FESTEC 锥形量热仪采购合同,预计将于2011年11月投入使用。   目前,表征材料燃烧性能的试验方法较多,如氧指数(LOI) 法、UL 标准中的水平垂直燃烧法及NBS烟密度测试箱法等。它们多是传统的小型试验方法,试验操作环境与真实火灾相差较大,试验获得的数据也只能用于一定试验条件下材料间燃烧性能的相对比较,不能作为评价材料在真实火灾中行为的依据。为能客观地评价真实火灾中材料的燃烧性能,1982 年Babrauskas 等人开发设计了锥形量热仪(Cone Calorimeter ,简称锥形量热仪) 这一先进的试验仪器。锥形量热仪的燃烧环境极相似于真实的燃烧环境,其试验结果与大型燃烧试验结果之间存在很好的相关性,能够表征出材料的燃烧性能,在评价材料、材料设计和火灾预防等方面具有重要的参考价值。经不断研制和改进, 锥形量热仪现在已成为研究火灾和评定材料燃烧性能的理想试验仪器。  中华人民共和国民政局101所火化设备重点实验室,通过采购FESTEC锥形量热仪可对材料的热释放速率、烟密度性能、材料热失重状态、热总量等指标进行科学的研究及了解,配备该设备必将推动我国殡葬科学技术与基础理论研究进入到一个全新的领域,为我国殡葬行业的发展提供了一把科研利器。     用户简介:  民政部一零一研究所是民政部直属正司局级事业单位,是我国殡葬领域中唯一的国家级公益类科研机构和国家唯一授权的环境监测机构,以“研究殡葬技术、推进殡葬进步”为宗旨,承担“殡葬科学技术与基础理论研究,殡葬建筑、设施设备及产品研究与开发,殡葬行业技术标准拟定,殡葬专业理论与技术培训,殡葬行业环境监测、评价与治理,殡葬设备设施及产品质量检测,相关咨询服务”等职能,目前,已逐渐成为我国殡葬行业中集科研、产业开发、环境监测、技术标准化制修订等为一体的综合性科研机构。下设7个内设机构,拥有民政部防腐整容重点实验室、民政部火化设备重点实验室和民政部污染控制重点实验室3个部级重点实验室。自1989年成立以来,在民政部的正确领导和科技部、财政部等部委的大力支持下,承担了国家级和部级科研课题63个,包括“十一五”国家科技支撑计划项目8个国家课题,下达科研经费3134万元,其中已完成51个 制修订国家和行业标准25个,其中已颁布14个 发表论文88篇 出版专业书籍23部 获国家发明专利2项,获实用新技术专利5项,获国家重点新产品推广计划项目3项,获部级以上科技进步二等奖2项、三等奖1项, 获首都民族团结进步先进集体荣誉。
  • 多项食品接触材料新标准将于2024年9月正式实施!
    2023年9月25日,国家卫健委发布85项新食品安全国家标准,其中与食品接触材料相关的标准有17个,详见文末标准更新清单。这17个FCM新国标包括5个材质标准(塑料、金属、橡胶、复合材料、油墨)和12个测试方法类标准(GB 31604系列)。5个材质标准将于2024年9月6日正式实施;12个测试方法中有2个标准(GB 31604.1 & GB 31604.59)将于2024年9月6日正式实施。另外10个标准将于2024年3月6日正式实施。材质标准更新概要塑料 GB 4806.7-2023 食品安全国家标准 食品接触用塑料材料及制品适用范围:食品接触用塑料材料及制品,包括未硫化的热塑性弹性体、淀粉基塑料。实施日期:2024年9月6日主要变化:①将现行标准GB 4806.6-2016和GB 4806.7-2016合并。②塑料材料及制品的检测项目新增芳香族伯胺迁移。③树脂删除GB 4806.6中各种提取物、干燥失重、灼烧残渣等项目。④新增允许使用的树脂清单名录,新增树脂通用类别名缩写对照表。金属GB 4806.9-2023 食品安全国家标准 食品接触用金属材料及制品适用范围:食品接触用金属材料及制品实施日期:2024年9月6日主要变化:①新增检测项目铅、镉、砷、汞杂质元素含量,其中不锈钢、薄钢板、铝制品、其他金属基材和金属镀层分别对应不同的杂质元素含量要求。②重金属元素的迁移从现行的金属5项(铅,镉,砷,铬,镍)扩增为13项迁移(砷,镉,铅,锑,铝,铬,钴,铜,锰,钼,镍,锡,锌)。③重复使用的制品迁移试验需要进行3次,金属材料(除了不锈钢)三次的迁移结果有任何一次超标即判为不合格。橡胶GB 4806.11-2023 食品安全国家标准 食品接触用橡胶材料及制品适用范围:食品接触用橡胶材料及制品。包括天然橡胶、合成橡胶、硫化的热塑性弹性体,不包括硅橡胶。实施日期:2024年9月6日主要变化:①检测项目新增芳香族伯胺迁移、N-亚硝胺和N-亚硝胺可生成物。②使用50%乙醇作为模拟物时,校正因子不适用。③高锰酸钾消耗量明确试验次数,重复使用以第3次的迁移结果为准;如果有证据显示3次的迁移结果不会增加,可以第一次的迁移试验结果为测试结果。④附录A新增橡胶材料及制品允许使用的基础原料。复合材料GB 4806.13-2023 食品安全国家标准 食品接触用复合材料及制品适用范围:食品接触用复合材料及制品。复合材料是指,由不同材质或相同材质材料通过黏合、热熔或其他方式复合而成的两层或两层以上的食品接触材料及制品。实施日期:2024年9月6日主要变化:GB 4806.13与所取代的GB 9683-1988差异较大,与之前的复合材料征求稿也有较大差异。①总体来说,复合材料应符合各层材料相应的食品安全国家标准规定。②成品的感官和通用理化指标(总迁移,高锰酸钾消耗量,重金属(以Pb计),脱色试验)符合“直接接触食品层材料”的相应要求。③特定迁移和残留量则需要考虑各层材料的要求。④预期与食品直接接触,且不经清洗直接使用的复合材料及制品的微生物应符合 GB 14934 的规定。⑤关于标签标识,复合材料按照从外层到直接接触食品层的顺序标示,并以斜杠/隔开。油墨GB 4806.14-2023 食品安全国家标准 食品接触材料及制品用油墨适用范围:食品接触材料及制品用油墨及其形成的印刷油墨层。包括直接接触食品用油墨和间接接触食品用油墨,也包括与油墨配套使用的光油。实施日期:2024年9月6日主要变化:油墨为新制定的标准。①油墨需要关注配方原料的要求:直接接触用油墨所使用的的基础原料和添加剂应为GB 2760及相关公告中的物质。间接接触用油墨不应使用基于铅、汞、镉、铬(VI)、砷、锑、硒元素或其化合物的着色剂,所用的着色剂符合GB 9685的要求;其他基础原料应为我国批准用于食品接触材料的基础原料。②油墨的检测项目包括:感官和浸泡液,铅、汞、镉、铬、砷的残留量,总迁移,高锰酸钾消耗量,重金属(以Pb计),芳香族伯胺迁移等。③油墨标签标识的要求:标示产品类别(直接接触食品用油墨、间接接触食品用油墨);标明宜使用的印刷基材、印刷工艺(如固化时间等)及特殊使用要求等信息。检测标准更新概要 GB 31604.1-2023食品安全国家标准 食品接触材料及制品迁移试验通则本次对GB 31604.1-2023《食品安全国家标准 食品接触材料及制品迁移试验通则》(以下简称“迁移试验通则”)的修订,是自2015年发布后的首次修订,该标准正式实施日期为2024年9月6日。与原标准比较,2023版迁移试验通则主要变化归纳如下:表 GB 31604.1新标准主要修订内容GB 31604.59-2023食品安全国家标准 食品接触材料及制品 化学分析方法验证通则本标准规定了食品接触材料及制品化学分析方法验证的通用要求。本标准适用于食品安全国家标准食品接触材料及制品化学分析方法制定和修订过程中的验证。该标准对残留量分析方法性能参数:特异性、检出限、定量限、测定范围、正确度、精密度、稳定性、稳健性的验证要求和方法进行规定。————————————————————————————————————为了促进食品接触材料行业分析检测技术交流,研讨国内外最新研究应用进展,仪器信息网将于4月9日举办第五届“食品接触材料检测技术”主题网络研讨会。届时,我们将特别邀请行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。点击图片,免费报名参会
  • 正确的使用手持式电导率计可以提高测量的精准度
    手持式电导率计适用于精密测量各种液体介质的电导率仪、TDS和盐度值的仪器,配置CON1型铂金电导电极,有一点按键自动校准、自动量程转换、自动信息提示等优点。仪器广泛适用于各领域的科研和生产。 手持式电导率计是如何使用的: 1.使用前观察表针是否指零。 2.将校正测量开关扳在“校正”位置。 3.插接电源线,打开电源开关,并预热数分钟调节“调正”调节器使电表指示满度。 4.当使用(1)-(8)量程来测量电导率低于300μS.cm-1的液体时,选用“低周”,这时将高/低周开关扳向低周即可。当使用(9)-(10)量程来测量电导率在300μS.cm-1至105μS.cm-1范围里的液体时,则将扳向“高周”。 5.将量程选择开关扳到所需要的测量范围,如预先不知被测溶液电导率大小,应先把其扳到zui大电导率测量档,然后逐渐下降,以防表针打弯。 6.电极的使用:使用时用电极夹夹紧电极的胶木帽,并把电极夹固定在电极杆上。 7.将电极插头插入电极插口内,旋紧插口上的紧固螺丝,再将电极綅入待测溶液中。 8.接着校正当用(1)-(8)量程测量时,校正时扳到低周,当用(9)-(12)量程测量时,则校正扳到高周,扳到“校正”,调节校正调节器,使指示在满度。 9.当用(0-0.1)或(0-0.3)μS.cm-1这两档测量高纯水时,先把电极引线插入电极插孔,在电极未綅入溶液前,调节电容补偿调节器使电表指示为zui小值。 手持式电导率计的产品特点: 1.仪器配置:CON1型铂金电导电极1支,温度探棒1支,9V电池1节,BEC-530/531/540 型配置CON10型电导电极1支。 2.可设定TDS系数:根据电导分析法,测量水质溶解性总固体时应准确估算,设定TDS系数,530/540可在0.01至1.00之间设定以保障测量值的精确可靠。 3.可设定温度系数:含有不同离子的溶液往往具有不同的温度系数,准确设定温度系数对精确测量至关重要,BEC便携型可在0至3.9%每摄氏度的范围内进行设置。 4.一点按键自动校准:仪器配合标准电导液可以进行每个量程1点自动校准,校准时,仪器自动识别校准液,如果您使用错误的或与设定值偏差较大的电导液进行校准,仪器将自动报警。 5.可设定电极常数:测量高或低电导溶液时,您需要选配不同常数的电导电极,BEC便携型具有三个电极常数可选,您可以根据选用的电极自行设定,仪器将自动转换终点测量值。 6.自动量程转换:测量电导率或溶解性总固体(TDS)时,仪器具有自动量程转换功能。当电极传感器浸入溶液后,BEC便携型将自动扫描当前测量值并转换量程,仪器将以精确的分辨率显示终点测量值。 7.手持式电导率计带有自动信息提示:BEC便携型具有操作信息提示功能,当您进入某一项设置或测量信息栏将帮助您了解仪器在当前状态下可执行什么操作及如何操作,它等同于使用手册的操作步骤说明。通过信息栏的引导,您能轻松完成某项设置或测量任务。
  • 岛津GB 23200.121农药多残留检测方法标准技术培训班-山东站圆满结束
    2021年3月5日,国家卫健委、农业农村部、国家市监总局联合正式发布GB 23200.121-2021《植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法》,该标准规定了植物源性食品中331种农药及其代谢物残留量的液相色谱-质谱联用测定方法,并将于今年9月份正式实施。岛津企业管理(中国)有限公司有幸参与了GB 23200.121-2021和GB 23200.113-2018两个标准制修订工作。 2021年7月8-9日,我们邀请了制标单位-农业农村部环境保护科研监测所专家来到了位于祖国东部,美丽的黄海和渤海之滨-山东,围绕此标准分别在青岛、济南开展两场workshop培训,解读标准体系技术内容从前处理到上机操作演示,希望为一线检测工作的用户朋友们提供更加完善、有效、及时的服务与帮助。 会议伊始,岛津企业管理(中国)有限公司分析计测事业部华北大区魏雅馨经理首先进行了致辞,对参加本次检测技术交流研讨会的同行表达了热烈的欢迎,魏雅馨经理表示:岛津不仅仅是仪器公司,而是希望成为可以为广大的用户朋友提供全方位的应用服务支持的技术伙伴。岛津针对GB 23200.121-2021开展了一系列培训班,将邀请制标单位-农业农村部环境保护科研监测所的专家详细解读农残新标准的技术体系,随后我司市场部、耗材部、分析中心的各位老师,从应用、耗材、到上机实际操作全方位的为大家梳理岛津如何助力山东的食品安全检测行业的用户朋友们做好标准应用工作。 岛津企业管理(中国)有限公司 分析计测事业部 华北大区魏雅馨经理 致辞 紧接着,农业农村部环境保护科研监测所专家带来了题为《植物源性食品中331种农药及其代谢物残留量的测定 液相色谱质谱联用仪》标准解读,详细介绍了标准制定的背景、前处理方法、方法正确度、精密度、定量限、基质效应和关键控制点,使现场学员对新国标有了全面深入的了解。 随后,岛津企业管理(中国)有限公司分析计测事业部市场部刘芳女士,做题为《GB23200.121-2021植物源食品中331种农残液相色谱质谱联用法及岛津农残整体解决方案》的报告,介绍了针对新国标的前处理耗材、数据库方法包、数据处理等为客户提供的全套方案。此外,还介绍了GC-MS/MS农残检测方案以及食品和中药农残检测的双MS方案,岛津在农残检测的各个方面为客户提供支持和服务。 岛津企业管理(中国)有限公司分析计测事业部市场部刘芳女士 岛津企业管理(中国)有限公司分析计测事业部分析中心应用工程师汪勇先生进行了题为《GB 23200.121-2021岛津解决方案实验要点介绍》的报告。主要讲了三部分内容,第一部分介绍了客户最关注和感兴趣的内容-岛津 GB23200.121方法包的内容以及如何使用。第二部分介绍了实验要点,包括离子对选择,脱溶剂管温度,溶剂效应,色谱柱选择,梯度优化,喷针位置等。第三部分介绍了insight的几个特殊功能,包括标签功能,选择性出具报告功能,数据导出功能等。 岛津企业管理(中国)有限公司分析计测事业部分析中心应用工程师汪勇先生 大会发表的最后一个环节,岛津(上海)实验器材有限公司的许瑞先生发表了题为《GB 23200.121-2021配套耗材包及前处理介绍》的报告。讲解了常用的农残检测样品前处理技术,介绍了岛津匹配GB 23200.121-2021的农残耗材方法包并分享了新标准前处理过程中的注意事项和相关应用数据。 岛津(上海)实验器材有限公司 许瑞先生 同时,本次发表还利用“岛津科技资讯通”视频号进行了同步直播,跨地域、跨空间、多维度地将岛津的应对方法与用户分享。在直播过程中通过评论区留言互动的形式与场外用户“云相约”,就直播内容进行深入探讨。 下午,岛津工作人员带领与会人员来到青岛国家质检中心(7月8日)、山东省农药检定所(7月9日)进行上机实验,并进行样品前处理及软件功能演示,双方展开了热烈的讨论。 岛津(上海)实验器材有限公司的张慧荣女士讲解了本次新标准前处理的关键点和注意事项,带领大家完成了番茄基质的QuEChERS前处理操作演示。 岛津(上海)实验器材有限公司的张慧荣女士 岛津企业管理(中国)有限公司分析计测事业部分析中心应用工程师汪勇先生 大会现场传真-青岛 大会现场传真-济南 大会签到剪影 参观实验室
  • 爱拓发布ATAGO(爱拓)二氧化碳糖度检测仪CooRe酷尔瑞新品
    【碳酸饮料必备】ATAGO(爱拓)全自动二氧化碳糖度检测仪——CooRe 酷尔瑞【产品介绍】ATAGO(爱拓)全新力作——全自动二氧化碳糖度检测仪CooRe 酷尔瑞,专为碳酸饮料而设计,同时检测碳酸饮料的二氧化碳(CO2)和糖度,与传统“手摇法”不同,CooRe 酷尔瑞实现穿刺与检测与一体设计,直接对瓶(罐)穿刺,把样品吸入样品腔,内置样品搅拌器,无需人为对样品摇晃,保证摇晃力度均匀,一机同时测量多种数据(CO2浓度,压力,白利度(Brix)、温度),通过建立标准曲线,根据转换系数,把测量压力值自动转换成CO2浓度值并显示出来,免去查表手续,更可同时测量样品的白利度(Brix),非常适合碳酸饮料(汽水),尤其适合研发部门、质检部门使用,便携式设计,既可用于实验室,也可以现场测量。 碳酸饮料二氧化碳糖度检测仪——“CooRe”(酷尔瑞) 是ATAGO(爱拓)公司的最新力作,可同时测量碳酸饮料或者啤酒中的二氧化碳含量、可溶性固形物(Brix)含量、压力和温度,具有精度准确、测试稳定性好的特点,是一款值得信赖的二氧化碳糖度检测仪。【产品型号】CooRe 酷尔瑞 【货号】9332 【测量项目】二氧化碳浓度CO2 (自动温度补偿) 白利度 Brix (自动温度补偿) 压力 温度【测量范围】白利度Brix : 0.00 ~ 20.00 % 二氧化碳浓度CO2 :   0.000 ~ 12.000 vol.   0.000 ~ 24.000 ×10-6 kg/cm3   0.000 ~ 24.000 g/L 压力:   0.00 ~ 10.00 bar   10 ~ 10000 mbar   0.000 ~ 145.000 psi   0.000 ~ 1.000 MPa   0 ~ 1000 kPa 温度:   0.0 ~ 30.0 ℃   32.0 ~ 86.0 ℉   273 ~ 303 K 【分辨率】白利度Brix:0.01% 二氧化碳浓度CO2 :  0.001 vol.  0.001 ×10-6 kg/ cm3  0.001 g/L 压力  0.01 bar  10 mbar  0.001 psi  0.001 MPa  1 kPa 温度   0.1 ℃   0.1 ℉ 1 K【测量精度】Brix: ±0.05%压力: ±1.0%(20℃)温度: ±1℃【重复性】Brix: ±0.02% 压力: ±0.3%(at F.S. 20℃) 【温度补偿范围】Brix 白利糖度: 5.0 to 30.0℃ CO2 二氧化碳浓度: 0 to 25℃ 【样品温度】0 to 30℃(保证精度允许范围: 5.0 to 25.0 ℃)【压力传感器】隔膜泵,压力表【折光仪光源】LED (近似D线)【搅拌法】磁力搅拌器【温度传感器】铂薄膜温度传感器(折射仪/压力传感器各一个)【样品体积】100ML (压力腔容积:20ML)【测量时间】大约60秒【电源】AC 100至240V【功率】50VA【国际防护等级】IP 65 *仅适用于USB终端和电源端盖开启时(或连接交流源时)【尺寸和重量】40.5*21*45cm 13kg(含电源)【数据输出】 USB存储器【环境温度/湿度】 温度0.0 ~ 40.0 ℃湿度30~80%【选配件】RE-74840 锂电池 RE-79424 过滤装置RE-79425 滤芯 RE-99440 干燥剂(100g)RE-99441 后盖固定螺丝 RE-78068 延长排水管 *尼龙管(ф4,长度1m)和连接套件RE-99442 CooRe穿刺装置压杆专用润滑油 【测量步骤】1.设置样品。2.压下手柄,穿刺装置刺穿容器。3.点击“START”,开始测量。创新点:一机同时测量碳酸饮料的二氧化碳含量和白利度(糖度),自带样品搅拌器,无需使用传统的”手摇法”,有效消除人为摇晃力度误差,更能确保测量结果的准确性。ATAGO(爱拓)二氧化碳糖度检测仪CooRe酷尔瑞
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制