当前位置: 仪器信息网 > 行业主题 > >

智能单光柱测控仪的工作原理

仪器信息网智能单光柱测控仪的工作原理专题为您提供2024年最新智能单光柱测控仪的工作原理价格报价、厂家品牌的相关信息, 包括智能单光柱测控仪的工作原理参数、型号等,不管是国产,还是进口品牌的智能单光柱测控仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能单光柱测控仪的工作原理相关的耗材配件、试剂标物,还有智能单光柱测控仪的工作原理相关的最新资讯、资料,以及智能单光柱测控仪的工作原理相关的解决方案。

智能单光柱测控仪的工作原理相关的论坛

  • 【原创大赛】LED光柱血压计的推广前景及检测方法

    【原创大赛】LED光柱血压计的推广前景及检测方法

    [color=#333333] 血压是血管内血液对血管壁的[/color][url=https://baike.baidu.com/item/%E4%BE%A7%E5%8E%8B%E5%8A%9B][color=#333333]侧压力[/color][/url][color=#333333],是人体重要的生命参数。测量血压的方法包括直接测量法和间接测量法。由于血压的直接测量法属于有创式测量法,除了较危重的病人很少使用,所以我们常见的血压测量方法主要是间接测量法,其测量原理包括:柯式音法和示波法。其中柯式音法又是目前被大众最为认可的测量方法,被誉为血压测量的“金标准”,是国际医学界最为认可的血压测量方法。目前在我国所使用的血压计仍为水银柱式血压计。但水银柱式血压计属于液体式压力计,其完成测量的介质是水银,存在水银易外泄、易蒸发的问题。外泄后,水银在常温 即可蒸发,生成的汞蒸汽人吸入后会造成严重的汞中毒,故已成淘汰的趋势,但另一种常用的采用柯式音法测量的血压表却又存在稳定性差、可靠性低、易损坏、易失准的问题,在实际工作中使用较少。而目前出现的LED光柱血压计却不存在上述问题,污染并且完全的模拟了传统水银柱式血压计读数模式,使用方便。但目前这种LED光柱血压计却缺少必要的通行的检定方法。[/color][color=#333333][b]LED光柱式血压计的基本原理[/b][/color][color=#333333] LED光柱式血压计测量过程中的基本原理与传统的水银柱式血压计相同,均是都是使用[/color][url=http://www.baike.com/sowiki/%E6%9F%AF%E6%B0%8F%E9%9F%B3%E6%B3%95?prd=content_doc_search][color=#333333]柯氏音法[/color][/url][color=#333333]原理的血压计,不同之处在于LED光柱式血压计使用压力传感器代替了水银柱[/color]式血压计的水银壶和指示标尺。当压力传感器受压后,由控制电路驱动装有LED发光二极管的光栅条,使光栅条内的LED发光点增多或减少,进而指示出压力值。[b]一、LED光柱式血压计的检测方法[/b] 因为LED光柱式血压计与[color=#333333]水银柱式血压计使用和工作原理基本相同,检测过程中可参考JJG270-2008《血压计和血压表检定规程》的相关内容。JJG270-2008《血压计和血压表检定规程》规定血压计和血压表需检定的计量性能项目包括:零位误差、血压计灵敏度、气密性、示值误差、血压表指针偏转平稳性。由于[/color]LED光柱式血压计不同于传统的水银柱式血压计和血压表,不存在指针,示值显示不通过机械传动,并且压力传感器不与大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通,所以[color=#333333][b]血压计灵敏度[/b]和血压表指针偏转平稳性两个检定项目不适用于[/color]LED光柱式血压计。而其他项目适用,并应该定期进行检测。[b]1、LED光柱式血压计的[color=#333333]零位误差及检测方法[/color][/b][color=#333333] 参考JJG270-2008《血压计和血压表检定规程》提出的要求,[/color]LED光柱式血压计的[color=#333333]零位误差[/color]不应大于±0.5kPa。检测[color=#333333]零位误差时,在[/color]LED光柱式血压计无臂袋条件下,使LED光柱式血压计直接与大[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]通,此时LED光柱应不高于+0.5kPa或完全熄灭。[b]2、LED光柱式血压计[color=#333333]示值误差及检测方法[/color][/b][color=#333333] 参考JJG270-2008《血压计和血压表检定规程》提出的要求,[/color]LED光柱式血压计的[color=#333333]示值误差[/color]不应大于±0.5kPa。检测[color=#333333]零位误差时,在[/color]LED光柱式血压计无臂袋条件下,通过三通将LED光柱式血压计与标准压力计、压力发生源相连通,如下图所示。[img=,559,241]http://ng1.17img.cn/bbsfiles/images/2018/08/201808011115470322_9470_1638093_3.png!w559x241.jpg[/img] 对LED光柱式血压计的[color=#333333]示值误差检测点不少于5个点(不含零点),以40kPa作为检测的起始点,进行2次降压测量,以2次降压测量示值误差的绝对值最大的作为[/color]LED光柱式血压计的[color=#333333]示值误差。[/color][color=#333333][b]3、气密性检查[/b][/color] LED光柱式血压计橡皮球上的气阀旋紧时不应漏气,回气阀应有止气作用。在气阀旋紧时,LED光柱式血压计压力下降速率不大于0.5kPa/min。[img=,666,159]http://ng1.17img.cn/bbsfiles/images/2018/08/201808011117005222_8311_1638093_3.png!w666x159.jpg[/img] LED光柱式血压计不仅具备传统水银柱式血压计简洁直观的读数方式,同时不存在水银泄漏的问题。在现今示波法无创自动测量血压计临床应用中可靠性仍不被认可的情况下,只要解决好LED光柱式血压计的周期检测问题,使其计量性能得到有效保证,用其代替传统的水银柱式血压计将具有良好的应用前景。

  • 基于MC9S08AW32芯片的开关柜智能测控装置设计及应用

    摘 要:电力系统中高压开关柜的一次开关设备工作状态、温湿度控制、高压带电指示等功能一般是由信号灯和独立的电气元件实现的,这势必会带来集成度低、配线复杂、可靠性差的缺点。本文介绍了一种开关柜智能测控装置,适用于3~35kV户内高压开关柜,用于一次开关设备状态模拟显示、高压带电指示、防凝露温湿度控制、电参数测量等,大大提高了开关柜操控和测显的集成度和智能化程度。关键词:MC9S08AW32;开关柜;一次系统图;智能测控装置Abstract: According to the survey, working state of the switching device, control of temperature and humidity and high-voltage live instruction are usually achieved by some signal lamps and several independent electronic devices in a high-voltage switchboard of power system, which will inevitably bring about the shortcomings of low integration, complex wiring, and lower reliability. An intelligent monitoring and control device for switchboard named ASD is introduced in this paper, which is used in 3 ~ 35kV indoor high voltage switchboard. The device is used for the indicate of switching device status, high-voltage live instructions, anti-condensing temperature and humidity control, electrical parameter measurement and so on, which is highly increased the integration and intelligence of manipulation and measurement of the switchboard.Key words: MC9S08AW32; switchboard ; primary system diagram; intelligent monitoring and control device0  引言  开关柜一般有断路器(负荷开关)、隔离刀闸、接地刀闸等一次开关设备。在运行或调试中,监测这些一次开关设备状态是至关重要的。在传统的开关柜上,一般使用信号灯来指示这些状态的,这样做显示不直观,且接线不方便。开关柜智能测控装置将一次设备状态显示与开关柜的一次方案图相结合,LED显示器件置于一次方案图中设备符号所处位置,电路状态一目了然,生动直观,如图1  同时集成的高压带电显示、自动温湿度控制、电参数测量功能使开关柜盘面简洁大方,降低二次接线工作量。1  硬件设计方法1.1 设计平台  中央处理器采用Freescale公司的第一款基于高度节能型S08核的器件MC9S08AW32高性能单片机,该单片机片上资源丰富,支持BDM片上调试功能,片内集成看门狗电路,抗干扰能力突出,具有业内最佳的EMC性能。CPU总线频率最高可达20MHz,最高运行速率可达40MHz。丰富的片上资源:32KB在线可编程FLASH存储器,内部时钟发生器,带有2个可编程定时器,丰富的I/O口:双SCI口,SPI、I2C等接口,极大的方便了硬件的扩展。  电能计量芯片采用美国ADI公司的高精确度三相电能测量芯片ADE7758。该芯片的测量精度高,功能强大。该IC内嵌高精度的模数转换器和固定模式的数字处理信号处理器( DSP),具有数字积分、数字滤波、实用电能监测、计量功能。芯片带有一个SPI串行口、有功电能脉冲输出、无功电能脉冲输出,可用于各种三相系统中有功功率、无功功率、电能、电压电流有效值的测量以及以数字方式校正系统误差所必须的信号处理电路。  ADE7758为各相提供系统校准功能,包括有效值偏移校准、相位校准、功率校准。1.2 设计框图  装置硬件电路设计框图如下,整个系统以MC9S08AW32为核心,按功能可划分为中央处理单元、电源模块、电压电流采样及运算、开关量控制模块、温湿度采集模块、人机交互模块、通讯模块等。1.3 部分电路1.3.1 中央处理单元  中央处理单元电路图如图3所示,CPU对采样信号进行处理计算,根据测量得到的电流、电压、温湿度值与预先设定的各种保护数值进行对比,由此来判断开关柜的电压电流是否正常、温湿度状况是否正常,若不正常则输出相应的告警信息。外部扩展了铁电存储器,用于存储一些重要的参数,即使以后升级程序也不会丢失先前的重要数据。1.3.2 开关量控制模块  开关量控制模块包括开关量输入和告警输出,其电路图如图4所示。开关量输入经光电耦合接入CPU;告警由GPIO口经光电耦合器连接到继电器输出。开关量输入设有8路,依次对应一次图中的断路器合、断路器分、手车工作位置、手车试验位置、接地刀位置以及弹簧储能指示,其余预留。开关量输入对应一次图可编程设置。开关量输出设有6路,依次输出加热器1、加热器2、风扇、告警、照明、闭锁的状态。1.3.3 人机交互单元  本装置高端产品的人机交互界面采用LCD液晶显示模块。LCD采用128*128点阵显示,初始界面为电参量显示界面,通过按键输入进入菜单设置界面,菜单选项均采用中文显示界面,使得操作直观易懂。通过菜单选项可以设置诸如接线方式、电压变比、电流变比、告警定值、通信地址波特率等参数。低端产品则采用双排四位LED数码管显示来温湿度信息及各种可编程信息。用户可根据实际需要进行设置各种告警定值参数、通信地址波特率等。1.4 评述  本装置采用的电源模块为开关电源模块。该电源模块输入电压为AC90~285V或DC100~300V,输入频率45~60Hz,输出电压稳定、故障率小,输出纹波<1%,转换效率≥75%。具有过压、过流保护。该模块经实际现场使用,具有很高的稳定性、可靠性和抗干扰能力。  温湿度传感器采用SHT10,该系列产品是一款高度集成的温湿度传感器芯片,具有超快响应、抗干扰能力强等优点,提供全标定的数字输出。CPU与SHT10采用串行接口,在传感器信号的读取及电源损耗方面,都做了优化处理。  高压带电显示模块由高压带电传感器输入电信号,由此判断此高压柜是否带电。由于母线电压较高,所以高压带电显示电路采用了各种过压保护、隔离保护器件来确保装置内部电路的正常工作。  此外,本装置还集成有操控功能、人体感应功能、语音防误提示功能等。2  软件设计流程  系统软件设计包括主程序、通讯模块2个部分。  主程序完成上电或复位初始化,电能芯片初始化,其他外设初始化,温湿度测量,读取电参数,电量计算,状态显示及报警处理,LCD显示刷新及按键处理等功能,程序设计流程如图5。  CPU初始化主要指对CPU的特殊状态寄存器SFR进行配置,设置I/O口的输入输出状态及初始状态,读取铁电寄存器数据等;电能芯片初始化主要指对ADE7758功能寄存器的配置;主程序其余部分则是对各项功能的完成,只有合理安排程序流程来完成这些功能,装置才能可靠工作。  通讯模块以中断方式实现,主要完成接收数据,协议处理等功能。通讯协议采用标准MODBUS-RTU规约,便于上位机的通讯,与其他网络仪表组网使用,实现对开关柜状态的实时监测。3  实现的技术指标及性能  ASD系列开关柜智能测控装置的技术指标见表1。产品设计时采用优异的电磁干扰PCB设计技术,生产时经过整机带电老化与出厂检验测试,确保了产品的长期工作的稳定性和可靠性。 表1 ASD装置技术指标技术参数指标输入网络三相三线、三线四线频率45~60 Hz[t

  • [资料]航天测控数据采集工作站软件

    DAS通用数据采集工作站是可用于各种实时数据采集控制场合的通用数据采集软件,其配置灵活,能够按照即插即用的方式配置和使用VXI、PXI、CPCI、GPIB等各类仪器,动态在线或离线地添加和删除被测控对象,提供从数据的大量采集到数据的实时处理的全套解决方案。适用于Windows 95/98/2000/NT和Linux系统。  区别于VITE软件,DAS工作站主要针对发动机等需要连续监测、在线处理的静动态数据采集场合。同一信号点的长时间监测和采集工作是应用该软件工作站的主要目的。  提供强大的数据采集和开、闭环控制功能,可用于多种采集、控制能力和各种预配置的解决方案。  采用可互换的虚拟仪器技术,体系结构上采用先进的模块化结构,构成自主版权的通用数据采集软件框架平台。  快速测量无需编程。过去需要测试人员几个月编程才能建立和运行数据采集系统,现在测试人员仅需简单地使用DAS软件配置采集通道,点击运行按钮就完成了采集的设计组建运行任务。  易用性好。直观的用户界面减少了系统开发时间,降低了使用维护难度;在线监视确保了测量的可信度。  通用性好,测试系统规模可大可小。  可扩充性好。根据测试任务的需求的增加,增加相应的仪器,采集软件无需修改。  用数据库管理测试对象的信息,可以灵活的增加删除测试对象,组建小型化的测试流程。  用数据库管理测试仪器及通道信息,可以灵活的配置测试仪器和添加新的测试仪器。  用数据库管理测试数据,以便高效率的调用测试数据。网站:航天测控网址:http://www.casic-amc.com描述:虚拟仪器,数据采集,DCS集散控制,测控技术,VXI、PXI、CPCI/PCI总线产品,控制器、通讯接口、数字多用表、波形发生器、数字I/O、信号调理、台式仪及测控协会信息Email:amc@casic-amc.com

  • 弹簧拉压试验机的工作原理你了解多少?

    这样才方便购买者进一步的详细了解。弹簧压力试验机比较常用的试验机因此对于弹簧拉压试验机有哪些工作原理?也是需要掌握的内容。    可达示值的0.5%, 弹簧拉压试验机由固装在机座上的门形机架为支撑体、其上组装装夹、加载、导向机构、位移、压力传感器及微机控制和数据处置单元组成。这种微机控制压力试验机丈量精度高。量程范围大,测试范围10N~50KN,可对不同吨位的拉压弹簧进行直接测试,直观显示出各项参数和动态特性曲线,丈量结果打印输出,丈量速度快、效率高、操作调试方便、过载停机自动维护。弹簧疲劳试验机包括机架、上、下夹板及其固定螺栓、质量铁块以及驱头构成,受试验弹簧装置于夹板及质量铁块之间,机架上装置驱动头,驱动头是由铁芯及其激磁线圈构成,铁芯一端装于机架上,另一端插入激磁线圈,激磁线圈中心线与质量铁块面垂直。至少有三个所说驱动头固定装置于机架上。这样可以较大提高本机的试验能力和使用效率。    包括工作台和测控系统, 弹簧组装试验机。工作台内设置有一套机械系统,机械系统包括一个底座,底座上方设置的导向体,导向体内上下滑动的加载装置,加载装置内部设置的带动加载装置运动的升降装置,微机控制压力试验机以及装置在底座一侧的测力装置;测力装置的上方为加载装置的加载头,其内部还设置有一个与测控系统电连接的压力传感器,导向体内设置有一个位移传感器,该位移传感器也与测控系统电连接。

  • 高智能食品安全检测仪的原理介绍

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]高智能食品安全检测仪的原理介绍[/color][/font]高智能食品安全检测仪的工作原理基于多种先进技术和方法,以实现对食品中有害物质和残留物的准确检测。首先,该仪器通过采集食品样品,并运用检测分析技术,对食品中的化学成分进行识别和分析。它可能采用扫描食品表面的方式或者直接提取样品进行检测,从而获取食品中的相关信息。其次,高智能食品安全检测仪还利用特异性反应原理,例如待测物质与特异性抗体或胶体金的反应,来检测食品中的有害物质。这种特异性反应能够实现对食品中有害物质的快速、准确检测。此外,该仪器预先建立了各类添加剂和有害物质及配套试剂的数据库,通过检测样品时将其数值解方程并查找数据库,得出实际含量,并与检测标准进行比较,以判定含量是否超标。最后,高智能食品安全检测仪采用一体化服务器设计,包括食品安全检验控制模块、农药残留检测控制模块等多个功能模块。它可以在同一软件平台下保持全部检验项目的检验,并通过同一界面直观地显示检测结果。这种设计使得仪器的操作更加简便、快速,并且具备高灵敏度、高检验精度和高可重复性精密度。综上所述,高智能食品安全检测仪通过综合运用多种检测原理和技术,能够实现对食品中有害物质和残留物的快速、准确检测,为食品安全监管提供了有力的技术支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403281002189567_7691_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 虚拟仪器技术在测控调闸系统中的应用

    摘要:本文描述了基于虚拟仪器思想在实际测控系统中的应用。通过选用多功能数据采集卡和信号调理电路组成自动测试系统,软件开发以专业测控工具LabWindows/CVI为平台,实现了数据采集、分析和处理。使整个测控系统既经济又便于操作,同时易于改进和功能扩展。同时,与基于传统的开发平台的测控系统进行了比较。   关键词:虚拟仪器;Labwindows/CVI;数据采集      1、引言      虚拟仪器是以一种全新的理念来设计和发展的仪器,它是20世纪90年代发展起来的一项新技术。虚拟仪器技术就是利用高性能的模块化硬件,结合高效灵活的软件来完成各种自动测试、过程控制、仪器设计、数据分析和自动化的应用。灵活高效的软件能帮助您创建完全自定义的用户界面,其基本思想是在仪器设计或测试系统中尽可能用软件代替硬件,即“软件就是仪器”,它是在通用计算机平台上,根据用户需求来定义和设计仪器的测试功能,其实质是充分利用计算机的最新技术来实现和扩展传统仪器的功能,这种测试仪器的硬件功能软件化,给测试仪器带来了深刻的变化,因此虚拟仪器代表了当前测试仪器发展的方向之一。      2、虚拟仪器的特点和构成      2.1虚拟仪器的特点   与传统仪器相比,虚拟仪器具有高效、开放、易用灵活、功能强大、性价比高、可操作性好等明显优点。      2.2虚拟仪器的构成   虚拟仪器的构建主要从硬件电路的设计、软件开发与设计两个方面考虑。   根据目前我们所完成的测试设备,硬件电路的设计一般是选择现有的各种不同功能的板卡以及信号调理板来搭建。所选用板卡的功能包括:高速数据采集和信号转换;信号输出与控制;数据的A/D转换。将具有一种或多种功能的板卡结合信号调理板组建起来,就能构成任何一种虚拟仪器。例如使用高速数据采集板卡和高速实时数据处理就能构成1台示波器、1台数字化仪或 1台频谱分析仪;使用数字量信号输入/输出板卡和实时数据处理就能构成1台函数发生器、1台信号源或1台控制器。      3、虚拟仪器在实际测控系统中的应用      3.1虚拟仪器在航空机载电子测控系统中的应用   测控系统在航空机载成件中起着举足轻重的作用,提高和完善测控系统的精度和测试能力对于整个飞机性能分析具有重要的意义。我们主要完成了基于虚拟仪器的各型继电器盒、各型开关盒测控系统的测试。使用数字采集板及工控机并在LabWindows/CVI开发平台中实现了对整个测试的电压采集、对各型继电器盒的逻辑状态及延时时间进行输出存储和分析。  3.1.1 测试系统组成   整个测控系统由美国NI公司的LabWindows/CVI8.0,研华的1块PCI_1751 48路数字量输入/输出板,2块PCI_1754 64路数字量输入板、2块PCLD_785B 24通道继电器输出板、6块PCLD_782 24通道光电隔离数字量输入板,1块PCL_818L 16通道A/D转换板、若干信号调理板及工控机组成。   测控系统的数据采集和处理采用虚拟仪器测量平台。测控部分主要作用是参与被测产品的控制、测试数据处理和量化,驱动测试数据显示;工控机通过数字量输出板,经继电器输出板变换为被测产品的模拟控制信号;从被测产品采集来的电气逻辑信号经光电隔离数字量输入板转换为数字量信号,通过数字量输入板输至工控机;另外,利用A/D转换板来显示电压;利用系统时钟来完成被测产品的时间继电器延时时间的测试。   3.1.2 基于虚拟仪器的航空机载电子系统测控平台   该平台整体系统采用美国国家仪器公司的虚拟仪器专用开发平台LabWindows/CVI系统。由于CVI在标准C语言(Ansi C)的基础上增加了仪器控制和工具函数库的虚拟仪器开发软件,它的集成化开发平台、交互式编程方法、丰富的面板功能和库函数使其自身功能更加强大,应用更加方便,界面完全能够虚拟真实实物进行设计,使得人机对话界面直观、友好。   由于测试的产品种类多,归属性强,因此系统测控平台的用户界面采用下拉菜单式,所需测试的产品一目了然,选用方便。      3.2基于虚拟仪器的测控平台在测控系统中的应用所使用的几个关键技术   3.2.1 通过采用系统时钟的方法提高软件测时时间   在测试过程中要获得延时继电器的时间,一种方法是采用定时器/计数器板专门进行计数,另一种方法是采用系统时钟进行计数。由于所需测试的时间为秒级,要求误差为20%,采用后一种方法完全能达到,一是可以节约成本,二是选购的计算机可不必多配置一个插槽,节省了空间。在程序中使用了以下函数来获取高精度时间,它的精度可以达到毫秒级。   3.2.2 在测控系统中运用了数据库管理技术   由于Lab Windows/CVI开发平台能够方便使用NI公司开发的SQL工具包,使得大量的测试数据能够以数据库的形式存储、查询。   在测控系统中,可以通过所设置的产品名称、件号、时间、测试结果、温湿度、试验者、质控者等字段来进行保存,完成了一套产品的履历记录,通过查询产品的件号、时间等就可以调出每个产品的测试记录,这样就解脱了人工管理的诸多不便,提高了工作效率。   3.2.3 调用ActiveX自动化编程技术并打印生成了Excel表格   ActiveX自动化是一种能将单个应用程序和其他应用程序结合在一起的方法。通过Lab Windows/CVI提供的ActiveX控件可以直接调用Excel程序,并使用这些控件提供的函数对从Excel表格进行操作,从数据库中读取测试数据,转换并填入单元格,最后自动生成产品正式履历表并进行打印。      3.3 基于虚拟仪器的测控平台与一般测控平台比较   采用LabWindows/CVI开发工具使得不同的信号可以统一在同一个程序里面实现方便的采集与保存。继电器盒测试系统以前有一个运用Visual C++开发的测试平台,和基于虚拟仪器的测控平台相比,它们在本系统中功能的实现和维护都存在很大的差距。   首先运用Visual C++开发的测试平台不如使用LabWindows/CVI开发的基于虚拟仪器的测控平台简单方便[url=http://www.dttjf.c

  • 学术讨论--检测,测量,测控,测试等技术异同点

    测量技术,诸如长度,宽度,高度等量的测定,这些被测对象是分离,单一,独立的量,故而要求技术实现难度不高;检测技术,诸如医学检测,食品成分检测,这些被测对象一般与其他非检测对象混杂在一起,是隐蔽的,混合的,故而要求技术实现难度较高;测控技术,诸如微机化仪器,智能仪器,它除了有测定对象,还有控制对象,诸如航天测控网;测试技术,测定信号与其他信号交织在一起,测量过程是一个测量试验的过程。这些观点不对处,欢迎参加讨论!

  • 关于对《光柱式血压计检定规程》征求意见函

    [table][tr][td][align=center][color=#0000cc]关于对《光柱式血压计检定规程》征求意见函[/color][/align][/td][/tr][tr][td]各位专家:由济南市计量检定测试院等单位起草的《光柱式血压计》山东省地方计量检定规程,已完成编制工作,现进行公示,请于2018年12月9前将意见反馈至省市场监管局计量处)。公示时间:2018年11月13日到2018年12月9日。邮箱:[email]jlc_sj@126.com[/email]电话:0531-89012090联系人:郑春英附件:[color=#000080][url=http://www.cma-cma.org/bmdfjlgcgsl/D15/gzsxyj/gzsxyj.rar]《光柱式血压计检定规程》(征求意见稿)及编制说明[/url][/color]谢谢![align=center]山东省质量技术市场监督管理局[/align][align=center]2018.11.12[/align][/td][/tr][/table]

  • 【原创大赛】气相色谱仪电子流量控制原理与维护 (三-五) 流量传感器和测控注意事项

    【原创大赛】气相色谱仪电子流量控制原理与维护   (三-五)  流量传感器和测控注意事项

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](三)[/font] [font=宋体]压力和流量传感器的位置[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]如何测量进样口压力和流量[/font][font=宋体] [/font][align=center][font=宋体]简介[/font][/align][font=宋体][font=宋体]与常见的工业测量场合不同,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口的压力(流量)传感器并不处于样品流路之中,或者说压力(流量)传感器可能会直接接触样品,如图[/font]1[font=宋体]所示:[/font][/font][align=center][img=,690,242]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023467318_8346_1604036_3.png!w690x242.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]常见工业测量场合[/font][/font][/align][font=宋体][font=宋体]不论进样口采用手工流量控制器或者自动流量控制器,不论进样口使用压力表、转子流量计或者电子传感器,含样品气体都不会直接接触传感器表面。如图[/font]2[font=宋体]所示:[/font][/font][align=center][img=,690,213]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030023590096_8789_1604036_3.png!w690x213.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]进样口压力(流量)传感器的位置[/font][/font][/align][font=宋体]手工流量控制器经常采用的的压力测量单元是压力表,流量测量单元是流量计。[/font][font=宋体]电子流量控制器的压力测定一般是基于压阻式压力传感器的。核心部件类似应变片,不耐有机污染物和水。[/font][font=Calibri] [/font][font=宋体] [/font][font=宋体]柱流量的测量:[/font][font=宋体]柱流量的控制一般通过进样口压力的控制来实现。[/font][font=宋体]柱流量一般数值比较小,较小的流量和不容易测量准确。如果在色谱柱后检测器之前放置流量传感器,那么传感器一般难以承受色谱柱的高温,样品导致的污染,腐蚀等问题。[/font][font=宋体]另外压力或流量传感器一般会存在较大的死体积,会对气流的控制带来不良的影响。[/font][font=宋体]隔垫吹扫流量的测量:[/font][font=宋体]隔垫吹扫流量面临与柱流量较为类似的问题。[/font][font=Calibri] [/font][font=宋体]分流流量的测量:[/font][font=宋体]分流出口往往存在较大量的样品,可能会严重污染传感器。日常使用中,一定要注意分流出口捕集阱的使用和维护,以保护控制器。[/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]电子流量控制原理与维护[/font][/align][align=center][font=宋体] (四) 进样口是否漏气的判定[/font][/align][align=center][font=Calibri] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以Shimadzu [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2010/[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2030系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]为例,讲述进样口泄漏检查的方法。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的缺陷[/font][/align][font=宋体]目前越来越多的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]安装了电子流量控制器,可以比较智能的感知到进样口的“比较严重”的泄漏问题,一般会发出报警、强制停机以利于实验人员进行确认和解决。[/font][font=宋体]但是不可以过分依赖电子流量控制器。[/font][font=宋体]可能有两种情况:微漏和实际上不漏。[/font][font=宋体]如果进样口漏气的情况比较微弱,那么电子流量控制器是不能感知到的,此时[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统也不会报警,但是实验数据会发生保留时间和峰面积的重复性不良。[/font][font=宋体]如果分析方法不良,造成电子流量控制器误报警。[/font][font=宋体]我们还是回顾一下电子流量控制的结构原理,如图1[/font][img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025211084_352_1604036_3.png!w690x419.jpg[/img][font=Calibri] [/font][font=宋体] [/font][align=center][font=宋体] [/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]电子流量控制器开启后,流量控制器向进样口供给确定的流量,如果进样口压力升高到设定值以上,那么分流控制打开,使得进样口压力稳定在设定值。[/font][font=宋体]如果进样口存在微漏,那么分流控制器仍然可以控制保持进样口压力,那么[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会认为不漏气。[/font][font=宋体]如果分析方法中给定的进样口总流量过低,进样口的压力长时间不能达到设定值,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]系统就会错误的认为进样口存在泄漏,而产生误报警。特别需要注意的,使用小口径色谱柱时,一定要避免使用太小的分流比。[/font][font=宋体] [/font][align=center][font=宋体]进样口漏气的确认[/font][/align][font=宋体]Shimadzu的[font=Calibri][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2010[/font]或[font=Calibri]2030[/font]系列的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],可以利用不分流方式或者直接注入方式,来确认进样口是否漏气。[/font][font=宋体]在仪器面板或者工作站,将进样口工作方式修改为“不分流”或者“直接注入”,当系统流量状态达到就绪之后,由于分流关闭的原因,进样口的总流量应该等于柱流量和隔垫吹扫流量之和。[/font][img=,690,368]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030025289045_632_1604036_3.png!w690x368.jpg[/img][font=Calibri] [/font][align=center][font=宋体]图2 进样口进样模式[/font][/align][font=宋体]如果在仪器面板或者工作站的监视器中观察到总流量大于柱流量和隔垫吹扫之和,那么进样口应该存在泄漏。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]不要过分依赖电子流量控制器。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][font=宋体] [/font][font=宋体][/font][font=宋体][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体](五) [/font][font=宋体]进样口压力流量不稳定的原因[/font][/align][align=center][font=宋体]概述[/font][/align][align=center][font=宋体]进样口电子流量控制器的控制原理,和进样口压力流量不稳定的可能原因。[/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体]进样口压力流量的控制原理[/font][/align][font=宋体]进样口电子压力(流量)控制系统是一个比较典型的闭环控制系统,大致的原理如图1所示:[/font][align=center][img=,690,215]https://ng1.17img.cn/bbsfiles/images/2020/09/202009030026598217_4950_1604036_3.png!w690x215.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体]图1 进样口流量压力闭环控制原理[/font][/align][font=宋体]以流量为例讲述:[/font][font=宋体]流量控制器在工作的同时,会不断的测量输出流量反馈回比较器,当系统的输出流量由于某种原因产生增加,比较器将感知这一变化,输送给流量调节器“降低流量”的命令,最终使输出流量稳定下来。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制器的延迟[/font][/align][font=宋体]在这个控制过程中,存在一个时间延迟的问题,比较器可以迅速的感知输出流量的变化,但是命令发送给流量控制器后。流量控制器开始动作(降低输出流量)与实际流量恢复动作之间是存在时间延迟的。在延迟的期间内,系统仍旧检测到流量偏大的现象,就会发出流量再次降低的指令,就会造成调节过度。最终就会观察到流量震荡的现象。[/font][font=宋体]实际仪器设计的时候,流量的感知和控制器动作之间特意设计一段时间的延迟,以满足实际硬件系统的要求,达到流量稳定。[/font][font=宋体] [/font][align=center][font=宋体]流量压力震荡的原因[/font][/align][font=宋体]当仪器的硬件系统出现时间延迟的较大变化(或者说系统阻尼变化),就会破坏控制,产生流量震荡。[/font][font=宋体] [/font][font=宋体]常见的原因有[/font][font=宋体]1 气源压力流量不稳定。[/font][font=宋体]任何控制系统都会对输入量的稳定性有一定要求,如不满足,系统难以稳定。[/font][font=宋体]2 堵塞造成系统阻尼变化。[/font][font=宋体] 分流部分、隔垫吹扫部分的堵塞,都可能导致流量(压力)震荡。[/font][font=宋体]3 漏气会造成系统阻尼变化[/font][font=宋体]4 外设的引入会影响阻尼,例如顶空,热解析,吹扫捕集,进样阀等部件。[/font][font=宋体]5 进样口输入流量太小,会使阻尼变化[/font][font=宋体]6 进样口工作与分流和不分流状态下,阻尼不同,如果进样口压力可以恒定,就不影响进样。[/font][font=宋体] [/font][font=Calibri] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]流量控制器的阻尼变化,是压力流量震荡的主要原因。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=Calibri] [/font]

  • 汽车数字智能仪表测控系统设计

    在汽车智能数字仪表的开发过程中,数字仪表所需要采集的信息量比较多,各种车型的信息参数又差别较大,这些问题的存在给仪表的实车测试和参数标定带来了困难。为了在开发过程中能够快速有效地测试系统的各项功能,提高系统开发效率,我们设计了一套测试系统,它能够模拟产生汽车上的各种参数信息,快速地对设计仪表进行全面的测试,节约台架或实车测试时间,降低测试风险。    系统设计    汽车智能数字仪表测试系统的开发要求针对不同的车型,能够模拟产生出仪表所需的各种采集信号信息,并且能够通过CAN接口与被测仪表进行通信。本文介绍的测试系统包括以下主要功能:车速里程表的脉冲信号模拟产生;    发动机转速表的脉冲信号模拟产生;    车辆燃油表信号模拟产生;    车辆水温表信号模拟产生;    各种车灯、车窗、车门等车身开关信号模拟产生。    数字仪表具有CAN通信接口,作为一个CAN节点,可以与车上CAN网络上的其他节点进行通信。    系统硬件设计    数字仪表测试系统的硬件系统主要包括主控制器、PXI板卡、信号接线盒、数据通信转换板卡、供电电源以及被测试仪表等主要部分。NI提供的PXI模块化板卡设备具有体积小、速度快、易扩展等特点,因此在硬件设计方面我们采用了PxI板卡发生汽车仪表所需的各种信号。汽车数字仪表的里程表和发动机转速表需要采集的是数字脉冲信号,不同的车型由于采用的传感器不同,所输出的脉冲信号高电平从3V~12V不等,为了能够测试设计仪表的信号范围适用性,采用PXI一6624板卡,配合外部供电电路,能够产生仪表所需采集的数字脉冲信号。PXI一6624是工业级隔离的32位定时器/计数器:PXI接口板卡,具有8路隔离的通道,我们采用Couter0和Counterl作为车速表和转速表的脉冲信号提供通道。燃油表和水温表采集的是模拟信号,PXI一6233能够输出4路10V模拟电平信号,PXI一6713能够输出8路10V模拟电平信号,我们选择PXI一6713的2个模拟输出通道作为信号提供通道。由于仪表上的开关量信号比较多,他们之间产生的干扰随着也比较大,我们选用PXI一8528R对仪表的开关量进行控制,PXI一6528是高速隔离的数字I/O通道,输入和输出通道分别独立,有效的抑制了信号之间的干扰。    仪表参数的标定以及作为CAN节点与车上其他CAN节点的数据通信,采用一块数据通信转换卡来完成,该卡的主要功能是完成串口信号一CAN信号之间的转换功能,开发数据通信转换卡的目的一是为了节约成本,二是考虑到大多数PC没有CAN接口。通过这个板卡对被控仪表的特征参数,如车辆的特征系数、传感器的传感系数、发动机的速比以及仪表的一些标定参数等进行设定。由于目标车型不确定,仪表的一些特征参数需要实车测试才能最后标定,所以该板卡可作为以后仪表参数标定用。    系统软件设计    仪表测试系统软件采用NI公司的LabVIEW8.20平台进行设计,本系统采用LabVIEW的图形化程序语言,以一种很直观的方法建立前面板人机界面和程序框图。前面板是用户可见的,类似传统仪器的操作面板,利用工具模板从控制模板中添加输入控制器和输出指示器,控制器和指示器种类可选择。程序框图是支持虚拟仪器实现其功能的核心,对程序框图的设计涉及节点、数据端口和连线的设计。连线代表数据走向,节点则是函数、Ⅵ子程序、结构或代码接口。本测试系统考虑到仪表整体功能测试和模块功能测试的需要,整个系统主要包括界面模块和各个功能测试模块,根据信号类型将仪表功能测试分为:车速表测试模块、发动机转速表测试模块、燃油表测试模块、水温表测试模块、开关量测试模块、CAN通信测试模块以及参数设置模块等主要功能模块。    界面模块    测试平台左侧是各种模块功能测试的切换按键,可以切换到单个功能模块的测试项目。右侧主界面模拟汽车仪表板的显示界面,如车速表、转速表、水温表、燃油表、里程指示以及各种报警和开关信号等信息显示。在进行测试实验中,工作人员通过主界面即可观测到仪表测试的整体功能。    模块测试设计    车速表的测试需要预先了解设定目标车型的特征参数,如车辆特征系数、车速传感器的传感系数等,然后通过数据通信卡(cAN总线信号)将特征参数下载到被测仪表,按照测试要求产生脉冲信号,信号的幅值、频率可以通过手动/自动进行调整,车速信号具备超速报警提示功能,根据设定的超速门限值,高于该门限值时,通过主界面前面板上的超速报警灯闪烁提示。测试过程也可以手动/自动进行,测试结果存档以备查询。    车速表测试模块的设计采用状态机设计模式,主要分为开始、获取参数、手动/自动选择、采集(手动)、检查时间(自动)、输出信号和停止等状态。其中参数的获取主要是获取前面板上特征系数和传感系数的参数值,通常,这两个值在仪表参数标定的时候需要在线修改。检查时间是指按照程序规定的时间输出规定的信号,本系统中采取'V'模式阶梯状的车速变化趋势对仪表进行测试。    发动机转速表测试模块类似于车速表测试模块,区别在于它的特征参数不同,根据特定车型的情况,通过数据通信卡(CAN总线信号)将发动机转速比下载到被测仪表,然后对其进行测试。    燃油表的测试需要预先设定目标车型的燃油测试范围以及燃油门限报警值,通过数据通信卡(CAN总线信号)将参数值下载到被测仪表,然后按照测试要求开始测试跟据设定的燃油门限值,低于该门限值时,通过主界面前面板上的燃油报警灯闪烁提示。测试过程可以手动/自动进行。燃油表的测试采用状态机的设计模式,主要分为开始、获取参数、手动/自动、采集、检查报警、输出信号等状态。水温表的测试同燃油表,在此不做具体说明。    CAN通信测试模块    所有的模块测试之前首先需要对该模块的参数进行初始化,如进行特征系数、传感系数、发动机速比、超速门限、燃油门限、水温门限以及测量范围等参数的设置。数据通信采用CAN协议,鉴于成本方面考虑,我们在LabVIEW上对串口进行操作,然后通过数据转换板卡输出cAN信号,cAN信号直接与被测仪表进行数据通信,因此,需要定义一个简单的CAN通信协议。测试系统作为CAN网络上的一个节点,节点ID号可以根据需求自行设定,数据区域由命令字、数据长度、数据、校验位组成。图6和表1是仪表参数设定CAN通信简单协议。    结语    采用NI系列PxI板卡以及灵活方便的LabVIEW软件平台,使得我们在短期内构建一套汽车数字仪表产品开发、测试、评估多功能于一体的测试平台,通过对实际仪表的测试,结果表明该套测试系统能够快速准确地完成对被测仪表的各项功能测试,并且该系统具备可扩展性,可以很方便地移植到其他产品的测试方案中,为我们后续汽车电子产品的研发积累了测试经验。

  • 【转帖】冷热冲击试验箱测控系统

    冷热冲击试验箱测控系统  1、温度测量:Pt100铂电阻。  2、控制装置:控制器采用进口可编程PLC及优质进口LCD彩色液晶触摸屏双回路温度控制系统、其控制显示器采用进口彩色液晶触摸大屏幕(5.7英寸)控制显示屏该控制器采用中文操作显示界面显示,可显示、设定试验参数、曲线、总运行时间、段总运行时间、加热器工作状态及日历时间等。控制程序的编制采用人机对话方式,界面友好,仅需设定温度就可实现制冷机的自动运行功能。   控制系统使用智能化控制软件系统,具备自动组合制冷、加热等子系统的工况,从而保证在整个温度范围内的高精度控制,同时达到节能、降耗的目的,完善的检测装置能自动进行详细的故障显示、报警,如当试验箱发生异常时,控制器用中文汉字显示故障状态、同时具备历史数据表趋势图及历史故障记录的储存功能。制造商提供两年内控制软件系统免费升级的服务。   可选配R485计算机通讯接口及计算机上、下机计算机机辅助控制系统装置,实现连机数据传输及远程控制功能。  3、系统设定精度:温度:0.1 ℃  时间:1min  4、冷热冲击试验箱的运行方式:程式运行或定值运行均可  5、冷热冲击试验箱具备独立的工作时间累计时器。

  • 基于SEP3203拉力试验机嵌入式测控系统设计

    作者:费亚琴,高龙琴扬州大学  0引言万能材料试验机是测定材料机械性能的基本设备之一,主要用作对金属、橡胶、塑料、陶瓷和水泥等材料的拉伸、压缩、弯曲和剪切等机械性能的试验,可完成对材料的强度、塑性、弹性及韧性的检测。随着国际化的不断深入,国内外材料试验机的发展主要呈现出计算机化、数据处理全面化、控制精确化、全面化的特点。  基于SEP3203嵌入式测控系统设计—,当前万能材料试验机测控系统的开发具有一定的复杂性,要在尽可能小的空间中集成数据采集、处理,人机界面,串行通信等多个功能。传统的单片机由于功能单一,往往无法满足要求,或者即使可以实现,也需要使用大量的MCU协同工作,在信号连接、编程和减少体积方面,都会遇到不小的困难。在裸机上直接开发运行前后台系统的开发、和扩展都很困难,而且这样的系统本质上是一个程序超循环,根本无法测控系统的实时性要求。  万能材料试验机测控系统不但要求系统能够及时响应随机发生的外部事件,对其进行快速处理,还需要同时执行多个任务,并对每个任务实时响应。如果使用嵌入式系统技术,则可以使用单片嵌入式CPU,集成多种功能,逐步解决存在的问题。  本文就是基于这样的背景,提出一种基于SEP3203处理器和实时操作系统μC/OS-Ⅱ的高精度万能材料试验机测控系统的实现。  1系统工作原理  试验机利用控制器,先经交流伺服单元控制电机运转,再经精密减速器减速后,通过反齿隙游移螺帽由电机带动双螺旋丝杠副,驱动动横梁上下移动,从而实现对试样的加载过程,完成试样的拉伸、压缩等力学性能试验。它的工作原理如图1所示。在做拉力试验或者其他试验时,由于试验机的负荷传感器与试样失去平衡,电桥产生一个弱小的不平衡电压输出。该电压在一定范围内与作用力的大小呈线性正比例关系。然而试样在负荷作用下引起的变形量则通过电子引伸计获得。负荷传感器和电子引伸计输出的小信号都经测量单元放大处理后,送给控制器数据采集输入端进行数据处理,得到力和变形量值,同时绘制出力和变形等特征曲线。此外,动横梁的位移则通过安装在电机转轴上的光电编码器数字测量获得。  http://design.eccn.com/uploads/article/201104/20110401111807926.jpg  2测控系统硬件设计  根据试验机的功能要求和工作原理,该系统硬件体系结构如图2所示。  2.1核心板和电源模块  核心板上的处理器采用东南大学博芯公司的SEP3203。SEP3203处理器内嵌了英国ARM公司提供的ARM7TDMI处理器内核,内嵌20KB片上零等待静态存储器;集成了支持黑白、灰度、彩色的LCD控制器;支持用于连接触摸屏通信的SPI协议。一个通道实时时钟模块,85个通用I/O口和18个外部中断源。  核心板中存储器部分包括8MBSDRAM和2MBNORFLASH。通过扩展插座引入核心板所用到的RESET和WAKEUP功能引脚;通过扩展插座将22位地址线和32位数据线以及未用的控制信号扩展到母板。  该系统要求多电源供电,如ARM核心板需要3.3V和5V两电源;在系统的外围部件中,LCD控制模块需要5V电源供电;A/D转换模块需要6V电源同时供电;伺服驱动器则需要12V电源供电,所以应该对输入电源进行相应的稳压、分等设计。  2.2外围通用接口模块  试验机控制器的外围通用接口模块主要包含通用I/O口、USB接口、JTAG调试口等。在试验机系统中,控制器除了要与上下层通信外,主要还涉及到传感器测量参数的数据采集和伺服控制信号的输出等。同时,开关量也是测控现场最简单且使用较频繁的信号之一,如试验机动横梁的限位开关、液晶显示控制和灯的亮灭等。设计中采用SEP3203的通用I/口来实现这些信号的输入/输出。  SEP3203提供了85个通用I/O口和18个外部中断源,无需扩展I/O口。使用端口功能时首先在程序里把引脚功能模式定义好,即将每个端口配置为输入模式、输出模式或中断功能模式,每个复用引脚都有对应的寄存器位来选择实际使用的功能模式。该设计中,I/O通道使用双向缓冲器件74LVCH162245A,以增强总线驱动能力。  此外,系统中还添加了2个USB接口,用于测试结果的输出或作为备用接口。  2.3信号采集模块  拉力试验机信号采集模块包括多通道力值采集模块和多通道变形信号采集模块。  力值和变形是系统所采集的最主要信号。传感器的电压信号输入到模/数转换器CS5530中,CS5530的差动输入端可以直接测量来自传感器的毫伏信号,这简化了与外围电的连接。可编程增益放大器能使放大倍数从1~32进行设定,大大提高了系统的动态特性。多级程控数字滤波器可使数据输出速率得到选择,范围为7.5Hz~3.84kHz,拉力试验机方便了与外设的连接。另外,CS5530内部有一个完整的自校正系统,可以进行自校准和系统校准,从而可消除A/D本身的零点增益和漂移误差,以及系统通道的失调和增益误差。此外,由线性稳压元件7806提供工作电压,以确保信号采集精度。  2.4人机交互模块  为了使万能试验机测控系统具有更好的人机交互界面,便于用户调试与操作,需要给其配置显示装置,如LCD液晶显示屏以及信号灯提示等。另外.要进行人机交互,还得有输入装置,使用户可以对ARM主控制器发出命令或输入必要的控制参数等,该系统采用触摸屏输入。  根据系统的实际需要,液晶显示模块采用240×320黑白4级灰度显示屏,兼容彩色7寸64K彩色TFT液晶屏,触摸屏与LCD合为一体。触摸屏采用AC97+UCB1400工作方式。UCB1400的小体积与低电压(3.3V)特性使其成为新一代PDA应用产品的理想选择。它集成了先进的音频编解码、触摸屏控制器以及电源管理等功能,并以标准、立即可用的产品形态提供客户化功能。UCB1400控制器作为液晶显示屏与ARM的接口,用来直接驱动液晶控制字符、汉字以及图形的显示。借助UCB1400,可以直接利用SEP3203的I/O口模拟液晶的读/写和控制时序,使得ARM对液晶的操作实际上变为ARM对液晶显示控制器UCB1400的操作,从而简化了接口电的硬件连接和软件编程。  3测控系统软件设计  μC/OS-Ⅱ是为嵌入式应用而设计的完全可剥离的实时操作系统,可以管理64个任务,其中留给用户的应用程序最多可有56个任务。这种RTOS应用软件的开发过程为:  (1)根据系统设计方案,明确应用软件的功能;  (2)结合RTOS的并发特性(或准并发特性),对应用软件要实现的功能进行大小适当的划分,也就是把应用软件的功能按照一定的原则划分为若干个任务模块;  (3)对各个任务间的通信和时延进行仔细的确认。  在μC/OS-Ⅱ中,每个任务都是一个无限的循环,都可能处于以下5种状态:休眠态、就绪态、运行态、挂起态和被中断态。任务状态之间的转换如图3所示。  http://design.eccn.com/uploads/article/201104/2011040111180891.jpg  3.1测控系统软件模块分析  在该系统中,主要实现的功能是测试数据(包括力值、位移值)的采集、测试数据在LCD的显示、伺电机的控制、人机交互以及数据通信等。由于力值和位移值是试验机系统的2项关键数据,将直接表征被测试件的力学性能,对采集的实时性和精度要求都很高,所以就需要在测试过程中连续地将实时力值和位移值传递给主控制器。主控制器将凭借所获取的力值和位移值来确定当前测试状态,确定控制操作。如图4、图5所示。  http://www.eeworld.com.cn/uploadfile/qrs/uploadfile/201104/20110417015501967.jpghttp://www.eeworld.com.cn/uploadfile/qrs/uploadfile/201104/20110417015502281.jpg  表中,SysTaskstart的任务主要是完成系统硬件的初始化、用户配置初始化、图形界面GUI的初始化及其他任务的创建等工作。主测试任务TaskTest是整个材料试验机测控系统的核心。该任务用来实现材料试验机的测试逻辑,实时读取力传感器和位移传感器的数值,判断测试状态,依据不同的状态执行相应的控制操作,以完成测试,最后保存测试结果。  3.2人机交互界面设计  人机界面是嵌入式系统的重要组成部分,它可以让用户方便地输入参数,执行操作,并及时呈现出必要的信息提示用户。用户在测试材料时,需要频繁地向控制器发出不同的操作命令或更改系统参数,因此友好的人机交互界面是必需的。该系统采用μC/GUI来进行人机界面的设计。μC/GUI是一个源代码的GUI,可以实现Windows风格的图形界面,微型是它的最大特点,同时它占用很小的系统资源,易于移植,功能强大;可以运行在μC/OS-Ⅱ操作系统中;采用了100%的ANSIC编写,可以应用于任何LCD和CPU中;加上其源代码的特点,使用起来非常灵活。  4结语  该

  • 透明软管测径仪 单向测径仪 蓝鹏测控可定制

    透明软管测径仪 单向测径仪 蓝鹏测控可定制

    [b][url=https://detail.1688.com/offer/542262396785.html?spm=a2615.2177701.0.0.AHKm0E]LPXJ70.1单路测径仪[/url][/b]可以对被测轧材的外径尺寸进行在线测控,由于其为非接触式的测径仪,可以对软管进行外径测量,测量更加准确,非常适用于这样易形变的产品测量,不易造成测量误差。LPXJ70.1单路测径仪是用于软管一个方向上的外径查重在线检测,也是一款单向测径仪,该测径仪还可以对透明的轧材进行外径尺寸测控,只要其能形成阴影。产品参数:产品型号:LPXJ70.1测量范围:0~70mm被测物直径:0.1~60mm测量精度:±0.03mm测量频率:500Hz显示频率:2~3次/秒测量方式:连续适用行业:线缆电缆、光纤、软管、橡胶、塑料等。实现功能:在线实时测量外径尺寸。超差报警监测。轧材尺寸在线控制。数字显示测量数据。设置超差上下限,参数值等,自动控制与手动控制可自由切换。正向控制与反向控制可选。可对接多种外接设备。[img=,686,646]http://ng1.17img.cn/bbsfiles/images/2017/07/201707061537_01_3193000_3.jpg[/img]

  • 干式运输型液氮罐的智能控制系统

    干式运输型液氮罐的智能控制系统

    干式运输型液氮罐在现代物流中扮演着重要的角色。这种特殊的液氮罐能够安全、高效地储存和运输液体氮气,被广泛应用于医疗、化工、半导体等领域。  然而,在使用过程中,液氮罐的温度和压力控制是至关重要的,这直接关系到液氮罐内液氮的稳定性和可靠性。为了提高效率和保障安全,智能控制系统成为必不可少的一部分。本文将探讨干式运输型液氮罐智能控制系统的设计与优化。  首先,我们需要了解液氮罐的基本工作原理。干式运输型液氮罐主要由罐体、内胆、真空绝热层和控制系统组成。当液体氮气进入储罐后,通过真空绝热层的保护,减少了热量的传输,从而保持液态状态。而控制系统则对液氮罐的温度和压力进行监测和控制,以确保液氮罐内的环境始终稳定。[img=液氮罐,400,372]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301123439518_1703_3312634_3.jpg!w400x372.jpg[/img]  传统的液氮罐控制系统通常采用传感器和人工操作的方式来实现温度和压力的监测与调节。然而,这种方式存在着人工操作不准确、反应迟缓等问题,同时也增加了人工成本。因此,智能控制系统应运而生。  智能控制系统通过集成传感器、执行器、控制算法和通信技术,能够实时监测和控制液氮罐的温度和压力。首先,通过温度传感器和压力传感器采集罐内环境的数据,并将其传输给控制器。控制器根据预设的参数和算法进行数据处理,判断罐内环境的状态,并根据需要发送控制信号给执行器。  在控制信号的作用下,执行器可以自动调节液氮罐的温度和压力。例如,当温度过高时,控制系统可以启动冷却装置将温度降低 当压力过大时,控制系统可以通过排气阀门释放部分气体来降低压力。通过智能控制系统的优化和升级,液氮罐的温度和压力控制将更加准确和高效。  此外,智能控制系统还具有远程监控和故障诊断的功能。通过通信技术,控制系统可以与上位机或云平台进行数据交换和传输,实现远程监控。操作人员可以随时查看液氮罐的运行状态和数据,并根据需要进行调整和控制。同时,智能控制系统可以对液氮罐进行故障诊断,及时发现并报警故障,提高维护效率和减少停机时间。  总之,干式运输型液氮罐(www.cnpetjy.com)的智能控制系统在提高效率和保障安全方面具有重要作用。通过集成传感器、执行器、控制算法和通信技术,智能控制系统能够实时监测和控制液氮罐的温度和压力,实现自动化调节 同时,还能够实现远程监控和故障诊断,提高了运行效率和可靠性。未来,随着技术的不断进步,液氮罐智能控制系统的功能和性能还将进一步提升,为物流行业带来更多的便利和效益。

  • 【知识】氘灯的原理

    【知识】氘灯的原理

    氘灯是一种弧光放电,下图是其工作原理馈电图:[img]http://ng1.17img.cn/bbsfiles/images/2006/10/200610272137_30783_1621975_3.jpg[/img] 灯内充有氘气(~10mmHg)。灯丝电压Vf<2~10V、交流或直流。起辉电压Vs~300V直流稳压稳流电源供应。起辉后工作电压Va=70~100V。工作电流~300mA。氘灯的发光机理是:灯丝阴极发射的热电子在电场加速下向阳极运动与氘气分子实现非弹性碰撞而激发,从而辐射氘分子的连续光谱。氘灯工作是利用其阳极光柱,因此强度很大。为避免阳极电弧光斑,在阳极垂直方向安装一个开有小孔的隔挡片以隔除杂光,使光自小孔发出。氘灯一旦被点燃,延时电路将自动切断灯丝电源Vf(一般灯丝加热约数秒)。工作中氘灯不宜频繁起动,要注意氘灯的预热,以获得稳定的光输出。

  • 高低温冲击试验机的智能化控制

    从当前的形势来说,智能化控制是现在最为热门的控制系统,智能控制技术包括仿人的特征提取技术、目标自动化辨识技术、知识的自学习技术、环境的自适应技术、最佳决策技术等。 现代化的高低温冲击试验机经过不断的创新、研究、改革,以最新、最高档的智能化控制面向大家,其中的智能化控制包括各种最佳方式监控智能化工具、装备、系统以达到既定目标的技术,是直接涉及测控系统效益发挥的技术,是从信息技术向知识经济技术发展的关键。智能控制技术可以说是测控系统中最重要和最关键的软件资源。 最重要的就属于高低温冲击试验机的仪表控制显示器部分了,采用的是可编程控制为基础的开放式控制系统及先进控制技术,特种测控装备和测控技术,系统成套集成技术,操作起来简捷、快速、方便。

  • 【资料】测控电路 PPT

    测控电路PPT [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137825]测控电路第1章:绪论[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137826]测控电路第2章:信号放大电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137827]测控电路第3章:信号调制解调电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137828]测控电路第4章:信号分离电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137829]测控电路第5章:信号运算电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137830]测控电路第6章:信号转换电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137831]测控电路第7章:信号细分与变向电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137832]测控电路第8章:逻辑控制电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137834]测控电路第9章:连续信号控制电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137836]测控电路第10章:典型测控电路分析[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137828]测控电路第4章:信号放大电路[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=137827]测控电路第2章:信号调制解调电路[/url]

  • 光栅尺工作原理

    光栅尺工作原理及详细介绍光栅:光栅是结合数码科技与传统印刷的技术,能在特制的胶片上显现不同的特殊效果。在平面上展示栩栩如生的立体世界,电影般的流畅动画片段,匪夷所思的幻变效果。 光栅是一张由条状透镜组成的薄片,当我们从镜头的一边看过去,将看到在薄片另一面上的一条很细的线条上的图像,而这条线的位置则由观察角度来决定。如果我们将这数幅在不同线条上的图像,对应于每个透镜的宽度,分别按顺序分行排列印刷在光栅薄片的背面上,当我们从不同角度通过透镜观察,将看到不同的图像。 光栅尺:其实起到的作用是对刀具和工件的坐标起一个检测的作用,在数控机床中常用来观察其是否走刀有误差,以起到一个补偿刀具的运动的误差的补偿作用,其实就象人眼睛看到我切割偏没偏的作用,然后可以给手起到一个是否要调整我是否要改变用力的标准。 【相当于眼睛】 一、引言 目前在精密机加工和数控机库中采用的精密位称数控系统框图。 随着电子技术和单片机技术的发展,光栅传感器在位移测量系统得到广泛应用,并逐步向智能化方向转化。 利用光栅传感器构成的位移量自动测量系统原理示意图。该系统采用光栅移动产生的莫尔条纹与电子电路以及单片机相结合来完成对位移量的自动测量,它具有判别光栅移动方向、预置初值、实现自动定位控制及过限报警、自检和掉电保护以及温度误差修正等功能。下面对该系统的工作原理及设计思想作以下介绍。 二、电子细分与判向电路 光栅测量位移的实质是以光栅栅距为一把标准尺子对位称量进行测量。目前高分辨率的光栅尺一般造价较贵,且制造困难。为了提高系统分辨率,需要对莫尔条纹进行细分,本系统采用了电子细分方法。当两块光栅以微小倾角重叠时,在与光栅刻线大致垂直的方向上就会产生莫尔条纹,随着光栅的移动,莫尔条纹也随之上下移动。这样就把对光栅栅距的测量转换为对莫尔条纹个数的测量,同量莫尔条纹又具有光学放大作用,其放大倍数为 : (1) 式中:W为莫尔条纹宽度;d为光栅栅距(节距);θ为两块光栅的夹角,rad 在一个莫尔条纹宽度内,按照一定间隔放置4个光电器件就能实现电子细分与羊向功能。本系统采用的光栅尺栅线为50线对/mm,其光栅栅距为0.02mm,若采用四细分后便可得到分辨率为5μm的计数脉冲,这在一般工业测控中已达到了很高精度。由于位移是一个矢量,即要检测其大小,又要检测其方向,因此至少需要两路相位不同的光电信号。为了消除共模干扰、直流分量和偶次谐波,我们采用了由低漂移运放构成的差分放大器。由4个滏电器件获得的4路光电信号分别送到2只差分放大器输入端,从差分放大器输出的两路信号其相位差为π/2,为得到判向和计数脉冲,需对这两路信号进行整形,首先把它们整形为占空比为1:1的方波,经由两个与或非门74LS54芯片组成的四细分判向电路输入可逆计数器,最后送入由8031组成的单片机系统中进行处理。 三、单片机与接口电路 为实现可逆计数和提高测量速度,系统采用了193可逆计数器。假设工作平台运行速度为v,光栅传感器栅距为d,细分数为N,则计数脉冲的频率为: (2) 若v=1m/s,d=20μm,N=20,则f=1MHz,对应计数时间间隔为[font=Times New Roman

  • 航天测控S波段下变频器

    引自:航天测控网站:http://www.casic-amc.com  航天测控AMC3202和AMC3203 VXI总线下变频器模块主要是完成射频信号至中频信号的频率转换。即将频率范围为2200.5MHz~2300.5MHz或2020MHz~2120MHz的射频信号,变频为160MHz的中频信号输出。总线特性 VXI总线信号规范,即插即用 尺寸 单插宽,C尺寸 设备类型 寄存器基模块 驱动程序 符合VXI Plug&Play规范 支持95/98/2000/NT框架 主要技术指标 输入频段 AMC3202 2200.5MHz~2300.5MHz AMC3203 2020MHz~2120MHz 晶振频率准确度 2×10-5/日 点频控制 程控步进,步长0.5 MHz 点频控制方式 8位二进制编码控制,TTL电平 噪声系数 <1.1dB 驻波比 <1.3 射频输入功率 -60~0dBm 输出频率 160 MHz 输出压缩点 ≥5dBm

  • 基于FPGA智能变送器控制系统总体方案

    随着工业自动化控制技术的发展,自控水平越来越高,对过程参数控制精度要求越来越严,要求变送器表不仅精度高,而且要功能多、稳定可靠、能准确传送过程参数(压力、差压、绝压、流量)、抗干扰能力强、使用维护简单,并能与控制器、执行器等设备组成功能强大的控制系统,实现通讯和过程的自动控制。所以,过去的变送器由于受测量原理和通讯所限,很难实现这种高精度控制要求,因此,自然而然地产生了原理先进具有通讯功能的智能变送器。这类先进的智能变送器集现代科技与一身,是微电子技术、精密机械加工技术、计算机技术和现代通讯技术完美结合的产物,能实现过程控制的多种要求,推动了整个自控技术的向前发展。先进的智能变送器是工业过程控制技术发展的需要,也是工艺过程实现高精度控制的必须,具有很好的市场前景。    本文根据工业应用的实际需要以及网络通信发展的功能要求,提出了基于FPGA智能变送器控制系统的总体方案,硬件系统设计、软件设计。该设计实现了系统MCU主控模块、数据采集模块、电源控制模块、数据处理模块、数据通信模块等硬件电路,并给出了系统软件流程图,重点论述了数据采集和数据模拟输出控制电路的FPGA实现,详细阐述了系统各模块电路的组成原理和实现方法,给出了整个电路系统的原理图,并制作了印刷电路板。结合XILINX公司的ISE10.1设计软件给出了模/数转换、数/模转换的仿真结果,验证了系统功能。    1、智能变送器的总体设计    本智能变送器由前端信号调理电路、高速A/D采样电路、数字信号处理电路、模拟输出电路和数字输出电路组成。如图1所示。    分析不同类型的传感器,其输出信号可分为电流信号、电压信号和电荷信号3大类,相应地设计了3种信号调理电路。以大型设备振动监测项目为例,县体的传感器有加速度、速度和位移传感器。选择不同的前端信号调理电路,变成统一规格的电压信号供后面的A/D采样。    A/D采样部分对前端电路的输出电压信号进行采样。A/D采样芯片采用ADI公司的AD7264,AD7264是双通道同步采样、14-bit、高速、低功耗、逐次逼近型模数转换器,采用5V单电源供电,采样速率高达1MSPS。A/D采样电路与前端信号调理电路用同一隔离电源供电,与后级数字信号处理电路隔离。AD7264的数据接口为串行接口,便于隔离处理。    数字信号处理电路选择带有CPU软核的FPGA。FPGA是智能式变送器的核心,它不但能对采样数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节。在整个系统中,FPGA主要实现对系统的控制和数据的预处理。    智能式变送器有两种输出方式:模拟输出和数字输出。数字输出将处理后的信号直接输出,通过CAN接口、TCP/IP接口传给上位机。模拟输出通过DAC芯片将信号转换成标准电压电流信号输出。    2、系统硬件设计与实现    智能变送器具有采集、处理、指示、通讯等功能,其硬件设计围绕功能进行。整个智能变送器单元根据所完成的功能分为以下几个主要功能模块:信号采集模块(传感器放大电路)、信号转换模块(模/数转换和数/模转换电路)、FPGA控制模块、通信模块(以太网和CAN总线通信)以及为整个系统提供电源的电路部分等。其中FPGA系统为整个控制器单元的核心,是变送器实现数字智能化的标志。    智能变送器的硬件总体结构框图如图2所示。变送器工作时,由传感器把被测量转变为电信号,然后将信号作A/D转换,把模拟信号变换成数字信号,送入到FPGA(XC3S4005PQ205)控制模块,FIGA通过FIR滤波器核对信号进行滤波,并通过查表法对信号进行自动补偿,然后根据实际需要。经数/模转换后将数据传给下级电路,同时也可能通过以太网或CAN总线传给局域网,实现智能变送功能。系统PCB板实物图如图3所示。    3、系统软件设计与仿真    该系统以XILINX公司的XC3S4005PQ208C作为中央处理器,整个系统主要包括初始状态(Initialization)、数据采集状态(Data_Sample)、数据处理状态(Data_Processing)、以太网传输状态(Enet_Transfers)、CAN总线传输状态(CAN_Transfers)、和模拟输出状态(Analog_Transfers)等6种状态,因此,可以利用有限状态机的设计方案来实现。其状态转换图如图4所示,通过开发工具ISE10.1对各个模块的VHDL源程序及顶层电路进行编译、逻辑综合,电路的纠错、验证、自动布局布线及仿真等各种测试,最终将设计编译的数据下载到芯片中即可。    初始状态:实现系统初始化;数据采集状态:完成数据采集过程;数据处理状态:对采集的信号进行一系列的滤波处理,非线性校正等;以太网传输状态,CAN总线传输状态:根据实际需要将信号数字输出;模拟输出状态:进行数模转换,输出标准的电压电流信号。    3.1数据采集的FPGA设计    数据采集是工业测量和控制系统中的重要部分,它是测控现场的模拟信号源与上位机之间的接口,其任务是采集现场连续变化的被测信号。对数字系统来说,数据采集主要由传感器放大电路和A/D转换电路构成,由硬件电路可见,系统通过AD7264模/数转换器来实现模/数转换。AD7264内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。由于XC3S4005PQ208C和AD7264都兼容SPI接口,两者的编程只需按照时序图进行即可。AD7264与FPGA的接口主要包括PD0数据输入选择端:DoutA(DoutB)两路数据输出端;OUTa(OUTb)两路数据输入端;CoutA(CoutB、CoutC、CoutD)比较器输出;G3(G2、G1、G0)四路增益控制输入信号。增益由控制寄存器的低四位控制;ADSCLK时钟信号;ADCS片选信号,低电平有效。AD7264工作频率为20MHz,在CS下降沿,跟踪保持器处于保持模式。此时,采样、转换同时被初始化模拟输入。这需要至少19个SCLK周期。第19个SCLK的下降沿到来时。AD7262恢复至跟踪模式,并设置DOUTA、DOUTB为使能。数据流由14位组成,MSB在前。图5为AD7264读寄存器时序仿真图。    3.2数据输出的FPGA实现    智能化信号调理器的输出分为数字输出和模拟输出,数字输出通过CAN接口和TCP/IP输出到上位机,或者通过总线方式输出;模拟输出通过DA转换成标准的电压电流信号输出。系统选用ADI公司AD5422数/模转换器来实现数/模转换。AD5422通过数据移位寄存器输入数据,数据在串行时钟输入SCLK的控制下首先作为24位字载入器件MSB中。数据在SCLK的上升沿逐个输入。该24位字在LATCH引脚的上升沿无条件锁存,然后数据继续逐个输入,此时与LATCH的状态无关。图6为AD5422写操作时序仿真图。    4、结束语    采用XILINX公司的ISE10.1设计软件及MODELSIM软件对系统进行反复调试仿真,给出了试验结果,验证了系统功能。并运用美国PCB公司的608A11作为加速度传感器。对设备的振动进行监测,其模拟输出的测试结果如表1所示。    最终的调试结果表明,本文所设计的智能变送器器能够稳定的实现温度、压力等变量的变送,并且频率、幅值的调节精度等技术指标均达到了预期的设计要求。

  • 青岛和晟测控蒸汽预付费计量终端,用户使用体验分享

    蒸汽预付费计量终端是青岛和晟测控蒸汽预付费系统的现场设备之一,是集流量、热量、压力、温度等数据采集处理、存储传输于一体的综合性流量计量控制设备。为更好地完善产品性能,我们跟进了几位正在使用和晟测控蒸汽预付费系统的用户,在此和大家分享一下来自一线的蒸汽预付费计量终端使用体验。[img=青岛和晟测控蒸汽预付费计量终端,用户使用体验分享]https://p3.toutiaoimg.com/origin/tos-cn-i-qvj2lq49k0/5314b579085d4c799e760f7fa1bbbe85?from=pc[/img]反馈一:数据显示直观,操作起来也比较方便青岛和晟测控:蒸汽预付费计量终端配备的智能流量积算仪,可以直观显示瞬时流量、累计流量、剩余气量、压力、温度、密度等参数,方便运维人员实时查看数据。同时,流量积算仪还具备多种自动补偿方式,如温度、压力、焓值补偿等。反馈二:安全性比较高,不怕用户偷汽漏气了青岛和晟测控:蒸汽预付费计量终端设置了开箱报警功能以及主电源掉电报警功能;IC卡和设备一一对应,不能互换使用;流量积算仪设置了双层密码,非运维人员不能随意修改,以上功能的实现不仅对偷汽漏气现象起到了震慑作用,同时也避免了用户作弊现象的发生。[img=青岛和晟测控蒸汽预付费计量终端,用户使用体验分享]https://p3.toutiaoimg.com/origin/tos-cn-i-qvj2lq49k0/ac5af058090c4f0dbdd505d1c0822761?from=pc[/img]反馈三:对预付费功能很满意,再也不用为收缴汽款头疼了青岛和晟测控:蒸汽预付费计量终端是预付费功能实现的第一站,支持用户远程充值或IC卡刷卡充值。热用户预充值后,系统显示用汽余量。当余额>0时,阀门可在系统授权下开启,用户正常用汽;当0<余额<报警限额时,阀门正常开启,用户正常用汽,系统自动下发缴费提醒信息;当余额=0时,阀门自动关闭,停止用户供汽。预付费管理功能从根本上解决了收费困难的问题,实现了“先缴费,后用汽”的目标,进而高效实现贸易结算。反馈四:断电保护功能不错,恰巧遇到一次停电,没想到数据都保存下来了青岛和晟测控:蒸汽预付费计量终端配备的UPS电源可以保障市电断电后,由24VDC蓄电池供电,并将主电源掉电信息通过无线数据收发器传到主站,在数据显示画面和历史曲线画面中显示,以便掌握信息,进行人工督查。同时仪表最多可记录10次掉电事件,记录数据断电永不丢失。反馈五:有问题找售后,售后小伙很热心,交给他们很放心青岛和晟测控:公司设置了专业的售后服务团队,均由经验丰富的技术人员组成,对全国范围内的公司产品提供售后服务,包括安装指导、技术培训、软件升级等服务。此外,公司对所有产品实行“三包”政策,并提供365天质保期,充分保障用户权益。[img=青岛和晟测控蒸汽预付费计量终端,用户使用体验分享]https://p3.toutiaoimg.com/origin/tos-cn-i-qvj2lq49k0/a14d3b5a7426455c95c0386012f973b0?from=pc[/img]以上为蒸汽预付费计量终端用户的使用分享,相关技术交流欢迎留言咨询~

  • 适用差压变送器的测控环境?

    适用差压变送器的测控环境?高温下粘稠介质易结晶的介质带有固体颗粒或悬浮物的沉淀性介质强腐蚀或剧毒性介质可消除导压管泄漏污染周围环境现象的发生;可免去采用隔离液时,因测量信号的不稳定,需要经常补充隔离液的繁琐工作。连续精确测量界面和密度远传装置可避免不同瞬间介质的交混,从而使测量结果真实地反映过程变化的实际情况。卫生清洁要求很高的场合如食品、饮料和医药工业生产中,不仅要求变送器接触介质部位符合卫生标准,并且应便于冲洗,以防止不同介质交叉污染。

  • 分析智能仪器仪表的几大发展趋势

    智能仪器仪表凭借其体积小、功能强、功耗低等优势,迅速地在家用电器、科研单位和工业企业中得到了广泛的应用。智能仪器仪表的工作原理为传感器拾取被测参量的信息并转换成电信号,经滤波去除干扰后送入多路模拟开关;由单片机逐路选通模拟开关将各输入通道的信号逐一送入程控增益放大器,放大后的信号经a/d转换器转换成相应的脉冲信号后送入单片机中;单片机根据仪器所设定的初值进行相应的数据运算和处理(如非线性校正等);运算的结果被转换为相应的数据进行显示和打印;同时单片机把运算结果与存储于片内flashrom(闪速存储器)或e2prom(电可擦除存贮器)内的设定参数进行运算比较后,根据运算结果和控制要求,输出相应的控制信号(如报警装置触发、继电器触点等)。此外,智能仪器还可以与pc机组成分布式测控系统,由单片机作为下位机采集各种测量信号与数据,通过串行通信将信息传输给上位机——pc机,由pc机进行全局管理。 智能仪器仪表的发展概况 80年代,微处理器被用到仪器中,仪器前面板开始朝键盘化方向发展,测量系统常通过ieee—488总线连接。不同于传统独立仪器模式的个人仪器得到了发展等。 90年代,仪器仪表的智能化突出表现在以下几个方面:微电子技术的进步更深刻地影响仪器仪表的设计;dsp芯片的问世,使仪器仪表数字信号处理功能大大加强;微型机的发展,使仪器仪表具有更强的数据处理能力;图像处理功能的增加十分普遍;vxi总线得到广泛的应用。 近年来,智能化测量控制仪表的发展尤为迅速。国内市场上已经出现了多种多样智能化测量控制仪表,例如,能够自动进行差压补偿的智能节流式流量计,能够进行程序控温的智能多段温度控制仪,能够实现数字pid和各种复杂控制规律的智能式调节器,以及能够对各种谱图进行分析和数据处理的智能色谱仪等。 国际上智能测量仪表更是品种繁多,例如,美国honeywell公司生产的dstj-3000系列智能变送器,能进行差压值状态的复合测量,可对变送器本体的温度、静压等实现自动补偿,其精度可达到0.1%fs;美国raca-dana公司的9303型超高电平表,利用微处理器消除电流流经电阻所产生的热噪声,测量电平可低达-77db;美国fluke公司生产的超级多功能校准器5520a,内部采用了3个微处理器,其短期稳定性达到1ppm,线性度可达到0.5ppm;美国foxboro公司生产的数字化自整定调节器,采用了专家系统技术,能够像有经验的控制工程师那样,根据现场参数迅速地整定调节器。这种调节器特别适合于对象变化频繁或非线性的控制系统。由于这种调节器能够自动整定调节参数,可使整个系统在生产过程中始终保持最佳品质。

  • 智能涡街流量计品牌哪个好?LUB系列值得推荐

    伴随着计算机技术及通讯技术的发展,用户对智能涡街流量计的需求逐渐增大。那么什么是智能涡街流量计?智能涡街流量计的品牌哪个值得推荐呢?今天小编为大家推荐一款用户反馈较好的涡街流量计品牌——和晟测控LUB系列智能涡街流量计。[img=智能涡街流量计品牌哪个好?LUB系列值得推荐]https://p26.toutiaoimg.com/origin/tos-cn-i-qvj2lq49k0/c76e437306f249be99a959982e0bf64b?from=pc[/img]智能涡街流量计是基于卡门涡街原理而设计的一种具有国际先进水平的新型流量计,多用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。区别于传统涡街流量计,智能涡街流量计具有更加可靠的稳定性、抗振性及更加精确的测量水平,同时智能涡街流量计配备多种通讯协议,便于远程监控及操作。LUB系列智能涡街流量计是由和晟测控独立研发生产的数据型涡街流量计。相较于其他品牌涡街流量计具备以下优势:[list=1][*]抗振性能好,稳定性高;[*]结构简单牢固,维护量低;[*]宽量程高精度,精度等级高达1.0;[*]支持配备多种通讯协议,便于远程监控及操作;[*]压力损失小,应用范围广;[/list][img=智能涡街流量计品牌哪个好?LUB系列值得推荐]https://p26.toutiaoimg.com/origin/tos-cn-i-qvj2lq49k0/7bc2ee5ffffb416da0daf078d2aecb19?from=pc[/img]智能涡街流量计品牌哪个好?推荐和晟测控LUB系列。和晟测控是专业的涡街流量计生产厂家,用户遍及全国各地。其LUB系列智能涡街流量计广泛应用于热电、石油、化工、冶金、纺织、造纸、食品等行业,因其较高的稳定性及独特的产品优势得到了用户的广泛认可。蒸汽预付费管理系统、智慧热网管理系统、涡街流量计、电磁流量计、超声波流量计、平衡流量计、智能流量积算仪、预付费计量监控终端等,相关技术欢迎交流咨询~

  • 温度、压力测控简介

    测温目的:1. 方便实验,重现性好。不同种类样品,消解温度不同,只要设定温度大于消解温度,样品一定能被消解,和样品质量无关(在安全压力前提下)。2. 保证消解罐不超温。因为消解罐为工程塑料,熔点较低,如果超温,罐子会熔化,造成不必要损失。测压目的:1. 为了安全。已知消解罐是工程塑料,承受压力有限,如超过消解罐承受值,爆罐,危险,不必要损失。2. 如已知消解样品一定一定不会产生很大压力,不会超过消解罐承受值,不测压也可。3. 对于高有机质含量样品,会有压力骤升情况,比如胶囊,在约160度时压力几乎直线上升,如无压力监控,微波持续发射,温度继续上升,不能保证压力不会超过极限值。特别是在消解罐使用一段时间后,承受值会下降。测温技术:1. 插入式最普遍,测温准确,传感器种类:铂电阻,热电偶,光纤。以光纤最佳,无趋附效应,缺点价格太高,易损坏,成本高。2. 红外测温,消解罐内温度准确度有待考量。测压技术:1. 毛细管连通消解罐内部和压力传感器,直接测量罐内压力;2. 压力传感器置于消解罐外部,间接测压;控温、控压:温度、压力达到设定点,微波受控,关停或者功率变小,保证温度、压力不超过设定值双重测控:CPU同时检测温度、压力数值,任一数值超过设定值,即控制微波,维持设定的温度或压力值。各微波消解仪器厂商都有多种温度、压力测控技术,技术之利弊,需客户多了解。不足之处,请补充。

  • 水位传感器工作原理及结构作用

    水位传感器工作原理及结构作用

    水位传感器用于水位控制、水位检测,先介绍水位传感器的分类。[b]水位传感器的种类:[/b]水位传感器种类很多,包括单法兰静压/双法兰差压水位传感器,浮球式水位传感器,磁性水位传感器,投入式水位传感器,电动内浮球水位传感器,电动浮筒水位传感器,电容式水位传感器,磁致伸缩水位传感器,伺服水位传感器等,超声波水位传感器,雷达水位传感器等。[img=,690,536]http://ng1.17img.cn/bbsfiles/images/2018/05/201805151523299345_7907_3397320_3.png!w690x536.jpg[/img]不同水位传感器的工作原理也不一样,适用的地方也不一样,简单介绍一下这几种水位传感器的原理浮筒式水位传感器:浮筒式水位变送器是将磁性浮球改为浮筒,水位传感器是根据阿基米德浮力原理设计的。浮筒式水位变送器是利用微小的金属膜应变传感技术来测量液体的水位、界位或密度的,它在工作时可以通过现场按键来进行常规的设定操作。[b]浮球式水位传感器:[/b]浮球式水位变送器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成,一般磁性浮球的比重小于0.5,可漂于液面之上并沿测量导管上下移动,导管内装有测量元件,它可以在外磁作用下将被测水位信号转换成正比于水位变化的电阻信号,并将电子单元转换成信号输出。浮球开关因为是最简单、最古老的检测方式,有着检测水位不精确的缺点,浮子易卡死。特点:价格较便宜。[img=,600,449]http://ng1.17img.cn/bbsfiles/images/2018/05/201805151524165625_3685_3397320_3.jpg!w600x449.jpg[/img][img=,413,302]http://ng1.17img.cn/bbsfiles/images/2018/05/201805151527336054_4890_3397320_3.png!w413x302.jpg[/img][b]静压式水位传感器:[/b]该变送器利用液体静压力的测量原理工作,它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,最后以4~20mA或0~10mA电流方式输出。[b]超声波式水位传感器:[/b]这是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的超声波,超声波在碰到液体会产生显著反射形成反射成回波。因此以超声波作为检测手段,产生超声波和接收超声波。这就是超声波式的水位传感器工作原理。超声波式水位传感器特点:频率高、波长短、绕射现象小,特别是方向性好、能够成 为射线而定向传播,缺点是价格较贵。[img=,690,383]http://ng1.17img.cn/bbsfiles/images/2018/05/201805151524567854_8545_3397320_3.jpg!w690x383.jpg[/img][img=,200,217]http://ng1.17img.cn/bbsfiles/images/2018/05/201805151527132654_2430_3397320_3.png!w200x217.jpg[/img][b]光电式水位传感器:[/b]光电液位传感器是利用光在两种不同介质界面发生反射折射原理而开发的新型接触式点液位测控装置。光电水位传感器具有结构简单、定位精度高,没有机械部件,不需调试,灵敏度高及耐腐蚀、耗电少、体积小等诸多优点,还具有耐高温、耐高压、耐强腐蚀,化学性质稳定,对被测介质影响小等特征。[img=,690,465]http://ng1.17img.cn/bbsfiles/images/2018/05/201805151525527755_1345_3397320_3.jpg!w690x465.jpg[/img]光电式的水位传感使用范围广,拥有检测精度高、寿命长、稳定性强等特点,因此适用于很多方面。光电水位传感器是利用光在两种不同介质界面发生反射折射原理而开发的新型接触式点水位测控装置。它具有结构简单,定位精度高;没有机械部件,不需调试;灵敏度高及耐腐蚀;耗电少;体积小等诸多优点而受到市场的逐渐认可。[img=,513,238]http://ng1.17img.cn/bbsfiles/images/2018/05/201805151526306105_1327_3397320_3.gif!w513x238.jpg[/img]由于水位的输出只与光电探头是否接触液面有关,与介质的其它特性,如温度、压力、密度、电等参数无关,所以光电[url=http://www.eptsz.com][color=#000000]水位传感器[/color][/url]检测准确、重复精度高;响应速度快,液面控制非常精确,并且不需调校,就可以直接安装使用。由于光电水位传感器探头体积相对小巧,可分开安装在狭小空间中适合特殊罐体或容器中使用。另外还可以在一个测量体上安装多个光电探头制成多点水位传感器。由于光电式水位传感器内部没有任何机械活动部件,因此光电水位传感器可靠性高、寿命长、免维护。深圳市能点科技有限公司是一家专业的开关生产厂家,主要供应水位开关、倾倒开关、流量计、液位传感器、水位开关、直键开关、水箱控制开关等产品。http://www.eptsz.com

  • 你的温压测控装置是否和消解罐随转盘360度正转一周,反转一周?

    你的温压测控装置是否和消解罐随转盘360度正转一周,反转一周?看到某微波资料介绍: 温压测控装置和消解罐随转盘同方向同步旋转,通过专利的接线盒技术让转盘始终朝一个方向不停顿地旋转,无需360度来回旋转,旋转过程中无停顿,微波加热更均匀;温压测控电缆很短,运转中没有任何缠绕扭曲,安装拆卸方便;转盘电机负荷小,使用寿命长。我用得CEM的是360度正转一周,反转一周的

  • 宝武集团到访天恒测控参观指导

    10月13日上午,宝武集团检测中心多位专家到访长沙天恒测控技术有限公司,与天恒测控磁测专家,就硅钢磁测量进行了深入的技术交流,并了解了天恒测控最新磁测量相关产品。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制