当前位置: 仪器信息网 > 行业主题 > >

气相色谱高碳与低碳分离原理

仪器信息网气相色谱高碳与低碳分离原理专题为您提供2024年最新气相色谱高碳与低碳分离原理价格报价、厂家品牌的相关信息, 包括气相色谱高碳与低碳分离原理参数、型号等,不管是国产,还是进口品牌的气相色谱高碳与低碳分离原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱高碳与低碳分离原理相关的耗材配件、试剂标物,还有气相色谱高碳与低碳分离原理相关的最新资讯、资料,以及气相色谱高碳与低碳分离原理相关的解决方案。

气相色谱高碳与低碳分离原理相关的论坛

  • 气相色谱仪工作原理及分类

    工作站打印分析结果 一色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。1、色谱分离基本原理: 在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。    气相色谱仪的特点  高灵敏度:可检出10-10克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。  高选择性:可有效地分离性质极为相近的各种同分异构体和各种同位素。  高效能:可把组分复杂的样品分离成单组分。  速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。  应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。  所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。设备和操作比较简单仪器价格便宜。  气相色谱简单分析装置流程  气相色谱法简单分析装置流程基本由四个部份组成:  1、气源部分,2、进样装置,3、色谱柱,4、鉴定器和记录器.色谱分类方法: 色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。   ㈠按固定相聚集态分类:  1、气固色谱:固定相是固体吸附剂,  2、气液色谱:固定相是涂在担体表面的液体。  ㈡按过程物理化学原理分类:  1、吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。  2、分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。  3、其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱;利用温度 变化发展而来的热色谱等等。  ㈢按固定相类型分类:  1、柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。  2、纸色谱:以滤纸为载体,  3、薄膜色谱:固定相为粉末压成的薄漠。  ㈣按动力学过程原理分类:可分为冲洗法,取代法及迎头法三  气相色谱法的常见术语及概念解释  1、相、固定相和流动相:一个体系中的某一均匀部分称为相;在色谱分离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。  2、色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。  3、基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。  4、峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。色谱峰高一半处的宽为半峰宽,一般以 x1/2表示。  5、峰面积:流出曲线(色谱峰)与基线构成之面积称峰面积,用A表示。  6、死时间、保留时间及校正保留时间:从进样到惰性气体峰出现极大值的时

  • 【求助】采用气相色谱分离技术制氮气的原理

    各位大侠好!今天在百度上搜到 采用气相色谱分离技术(无需“加液” )制氮:内容如下 这是一种新型的空气分离方法,它以压缩空气为原料,合成分子筛为吸附剂,采用气相色谱柱吸附流程,在常温压力下,利用空气中的氧和氮在分子筛中的扩散速度不同,把氧和氮加以分离,氮气的纯度和产气量可按客户需要调节。所产生气体流速稳定,氮气纯化彻底,产出的氮气纯度高,最高可得到99.9995%的纯氮,适用于各种气相色谱检测器。该系列高纯发生器只要一按开关,便可以源源不绝的生产出高质量和高纯度的氮气,运行稳定可靠,最重要的是它不需要任何化学消耗品。 操作方便,可24小时无人值守。且它可以在不需任何监管和最低保养的情况下无故障地运行。 其中有2个问题不明白1、合成分子筛为吸附剂,这是什么牌号的分子筛? 2、既然是通过分离技术,怎样确定在什么时间内取到比较纯的氮气?我对这个不了解,期待高手指教。

  • 液相色谱反相柱的碳载量对分离有何影响?

    看到有帖子说反相柱碳载量越大,极性越小,保留越强,分离度越好。事实真的如此吗?发现很多色谱柱碳载量都差别很大,而且不是新出的产品就一定比后出的高。比如inertsil ODS4碳载量仅有11%,比ODS3的15%低的多,但是宣传的分离效果却要好。那么碳载量对分离究竟有何影响,是越大越好么?谢谢高手解答。

  • 顶空毛细管柱气相色谱法分离三氯甲烷与四氯化碳

    用顶空法气相色谱分离三氯甲烷和四氯化碳,ECD检测器,色谱仪是Claurs 580,毛细管柱是elite-5(30m*0.25mm*0.25μm),所用的条件如下:色谱分析条件:气化室温度200℃,柱温60℃,检测器温度200℃,载气流量 1mL/min,分流比20:1为什么不能把三氯甲烷和四氯化碳分离开来呢?问题可能会出现在哪里?求指教。谢谢。

  • 离子色谱仪的分离原理

    离子色谱仪的分离原理有高效离子交换色谱、离子排斥色谱和离子对色谱3种,离子交换色谱用低容量的离子交换树脂,离子排斥色谱用高容量的树脂,离子对色谱用不含离子交换基团的多孔树脂。 高效离子交换色谱应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,这在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构,以便于快速达到交换平衡,离子交换树脂耐酸碱可在任何pH范围内使用。 离子排斥色谱主要根据Donnon膜排斥效应,电离组分受排斥不被保留,而弱酸则有一定保留的原理,制成离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。它主要采用高交换容量的磺化H型阳离子交换树脂为填料以稀盐酸为淋洗液。 离子对色谱的固定相为疏水型的中性填料,可用苯乙烯二乙烯苯树脂或十八烷基硅胶(ODS),也有用C8硅胶或CN,固定相流动相由含有所谓对离子试剂和含适量有机溶剂的水溶液组成,对离子是指其电荷与待测离子相反,并能与之生成疏水性离子,对化合物的表面活性剂离子,用于阴离子分离的对离子是烷基胺类如氢氧化四丁基铵氢氧化十六烷基三甲烷等,用于阳离子分离的对离子是烷基磺酸类。

  • 色谱分离原理比喻(转贴)

    色谱分离原理比喻样品:胖丁丁,Luna样品性质点评,胖丁丁高大威猛略胖,Luna形象[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]佳……(只是为了剧情需要,大家多包涵,我吐口先 :)1、反相柱分析机理:色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群美女。结果:众美女都喜欢帅哥,不断有人拉Luna的手,并要求合影签名等等,拉胖丁丁的少了些,结果胖丁丁和Luna的距离越来越远,出门的时候,已经分离的很好拉,分离度3.0,柱效15万/m反相柱使用范围:1)、不可用于分离帅得离谱的人,会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女过于激动会造成休克,严重者甚至兴奋而死,造成柱子过早老化,降低柱效。另外分离此种物质会造成强吸附现象,出峰时间太久甚至不出峰,2)、不可用于分离过于猥琐丑陋可怕的人,结果会造成美女流失,柱效下降,出峰时间太快,影响分离效果,不过有方法可以恢复柱效,就说此地正莱尔斯丹的鞋正挥泪大甩卖,美女将迅速赶回,柱效即可恢复!注:此恢复方法并不适用于分离杀人犯强*犯!2、正相柱分离原理色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群男子。结果:Luna被率先赶出,胖丁丁被同胞悻悻相惜,留下来吃完饭,吃完后大家含泪送别,分离度2.8,柱效13万/m正相柱分离注意事项:并不适用于分离BT男3、体积排租色谱分离原理色谱柱:钻溶洞结果:溶洞里洞有大有小,非常好玩,本以为Luna个头小灵活会早点爬出来,其实是体积庞大的胖丁丁先爬出来拉:)分离度2.5,柱效12万/m原因:两人一钻溶洞便发现仿佛回到了童年,逮着洞就想钻,不过胖丁丁突然发现自己已不是3岁时的胖胖拉,要是卡住不崴了嘛:)于是只好作罢,沿大路走出来了,扼腕叹息“时光蹉跎,青春少年已不复4、离子对色谱色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群美女。胖丁痛苦回忆:众美女都喜欢帅哥,不断有人拉Luna的手,并要求合影签名等等,拉胖丁丁的少了些,结果胖丁丁和Luna的距离越来越远,出门的时候,已经分离的很好拉,分离度3.0,柱效15万/m胖丁对策:往事不堪回首,所以第二天再过这间屋子的时候,胖丁想到了他的必杀技——小胖。结果,胖丁抱着小胖和Luna一起穿过,众美女发现居然还有如此帅的小男生,纷纷过来掐掐小脸蛋,小胖搭讪美女的工夫也不含糊,“美女,敢吃青椒吗?”。老胖也不手软,为小胖报仇,把众美女脸蛋一一掐个遍 ,正当老胖还色迷迷的看着众美女的时候,Luna已经顺利离开了美女屋,最后小胖发话拉“爸爸,我饿!”老胖才恋恋不舍的抱起小胖,发话“最后再重掐一遍!……”Luna在门口,顿倒……拍摄花絮:1)观众问:美女为什么喜欢小帅哥不喜欢Luna?女人总是有母爱的,这是与生俱来的本能。所以此处美女年龄要大点:)2)排完这段之后,导演“卡”了N次,因为小胖被掐后没有表现出天真浪漫可爱的样子,反而哭了N次,最终排得小胖又累又饿又疼才终被导演放行!3)该CASE结束时,镜头正面是胖斑得意而归的表情,远端发现众美女正在揉脸,忿忿曰“死胖子,手够狠啊!……5555555!”影片悬念:胖斑得意是因为给小胖报仇呢?还是因为别的什么呢?……

  • 温度决定成败——浅谈气相色谱柱温对分离效果的影响

    色谱柱温度,不仅影响色谱过程的热力学因素,也影响传质过程的动力学因素。柱温变化,不仅影响柱前端压力、载气流速等,更重要的是对物质的分离、分析结果带来影响。气相色谱中,根据升温方式,程序升温可分为线性程序升温和非线性程序升温,前者更普遍。线性程序升温,即随时间线性变化的升温方式,可分为一阶线性程序升温和N阶线性程序升温。对于每阶程序升温,都包含初温、程升速率、终温以及不同温度下的保持时间四个基本参数。 气相色谱恒温分析中,对化学性质相似的同类型的化合物,保留时间和沸点呈对数关系,随着保留时间增加,峰宽迅速增加,导致先流出峰相互叠加,后流出峰又因峰展宽,使检测灵敏度下降。因此一般通过柱温程序升温来解决这个问题。 那么,程序升温时,柱温N阶程序如何确定,是否N越大越好? 程序升温时,在最佳分离条件下,保留时间与沸点近似成线性关系,即随着柱温的升高,峰底宽基本不变或增加很小。程序升温中各组分均在最佳柱温下出峰,但并不是N越多越好。 气相色谱分析中,对于组分沸点范围窄、化学性质类似的样品,如同系物,可选用一阶升温;样品组分沸点范围宽、性质差异大的,应选择N阶程序升温。N应根据化合物的多少、需要达到的分离效果、仪器的条件等各方面来选择。 每阶程序升温中,设置初温、程升速率和终温这三个基本参数优化分离条件,要从分离效果和分析速度两方面考虑。 对于初温,一般比样品中沸点最低的组分沸点要低,可参考低沸点组分恒温分析时的温度。初温的选择,主要是依据低沸点组分,但要高于固定液的凝固温度。 升温速率的选择,在了解样品组分复杂程度的基础上,既要保证较小的保留时间,又要保证较大的分离度,一般在0-10℃/min之间。 终温的选择,主要根据固定相、样品组分的热稳定性和高沸点组分的沸点确定。同样的样品组分,流出时的柱温,在毛细管柱上的温度比填充柱低,毛细管柱上的温度一般比样品的沸点约低50℃。 此外,气相色谱中,柱温是影响化合物保留时间的重要因素。使用中,应注意柱温的选择,因为柱温关系到:① 色谱柱固定液的寿命。若柱温高于固定液的最高使用温度,则会造成固定液随载气流失,不但影响柱的寿命,而且固定液随载气进入检测器,将污染检测器,影响分析结果。② 分离效能和分析时间。若柱温过高了,会使各组分的分配系数K值变小,分离度减小;但柱温过低,传质速率显著降低,柱效能下降,而且会延长分析时间。③ 化合物保留时间。柱温越高,出峰越快,保留时间变小。柱温变化会造成保留时间的重现性不好,从而影响样品组分的定性结果。一般柱温变化1℃,组分的保留时间变化5%;如果柱温度变化5%,则组分的保留时间变化20%;④ 色谱峰峰形。柱温升高,正常情况下会导致半峰宽变窄,峰高变高,峰面积不变。但是组分峰高变高,以峰高进行定量时时分析结果可能产生变化;反之柱温降低,则相反。 而在色谱定性方法中,柱温变化对定性结果的影响如下:① 当采用绝对保留值定性时,其他色谱条件不变,柱温变化时,保留时间就会发生变化,这样就直接影响定性结果判断。② 当采用相对保留值α定性时,α只是柱温和固定液的函数,只与待测组分的热力学性质有关,消除了外界因素的影响,因此跟柱温变化关系不大,但是柱温变化影响判断结果。③ 当采用保留指数定性时,恒温分析,保留指数与保留时间有关,而柱温影响保留时间变化;程序升温分析,除了保留时间,保留指数还与保留温度有关。因此,这种定性方法易受柱温变化影响。④ 当采用纯样叠加法定性时,已知混合物中含某组分,将该组分的纯样加入,观察加入前后的响应信号变化。柱温变化,保留时间变化,但是加入前后的样品影响信号变化是一致的,因此柱温变化不影响采用这种方法定性的结果。 而在定量计算时,经常要用到校正因子,如重量校正因子,和组分的质量以及响应信号有关。柱温变化,峰高变化,峰面积不变,因此,在柱温变化不影响峰形正常的前提下,以峰高为响应信号的重量校正因子,受柱温影响,而以峰面积为响应信号的重量校正因子将不受影响。常见定量方法中,在柱温波动不影响出峰效果的前提下,对定量结果的影响如下:① 采用归一化法时,定量时需要各组分的校正因子,当以峰面积为响应信号时,定量结果不受影响,以峰高为响应信号则受影响。② 采用内标法时,需要计算定量校正因子,影响规律和①同。③ 采用外标法时,即标准曲线法,当以峰面积为响应信号时,不受影响,但是当以峰高为响应信号时,影响很大。 总之,柱温变化可能会导致定性、定量分析结果的变化。 既然柱温变化对分析结果有重要影响,那么选择合适的柱温以及对柱温进行控制就很重要了。 首先,应保证柱温不高于固定液的最高使用温度(即色谱柱的最高耐受温度),避免固定液流失而影响色谱柱柱效和使用寿命; 其次,选择合适的柱温,柱温的选择应使难分离的两组分达到预期的分离效果,峰形正常而分析时间又不长为宜,一般柱温应比试样中各组分的平均沸点低20-30℃,通过试验决定。对于沸点范围较宽的试样,应采用程序升温,按预定的加热速度随时间呈线性或非线性地增加温度。一般升温速度是呈线性的。 最后,特别是要保证仪器柱温控制的稳定性、均匀性,以及实际温度与预设温度之间的一致性。一般气相色谱仪柱温控温精度为±1℃,有些厂家的可达到±0.1℃。

  • 利用气相色谱法测定液氧中碳氢化合物的浓度

    空分设备长期运行后,入塔空气中残存的微量乙炔和其他碳氢化合物在液氧中必然会逐渐浓缩,当含量超过其溶解度时就会出现固体颗粒析出,从而构成了对空分生产的极大危害。为确保空分系统长周期安全运行,所以对液氧中乙炔和其他碳氢化合物的含量进行分析监测,以便为空分生产提供可靠的分析依据。我厂购买了HZT-02型气相色谱仪。采用氢火焰离子化气相色谱法解决了液氧中的碳氢化合物的定性定量的分析问题。  1 分析所用仪器  HZT-02型痕量总烃色谱分析仪。电脑数据处理氢气发生器高纯氮气一瓶仪表空气。  气源要求:要求氢气必须为超纯且干燥。空气为无油且干燥空气,采用瓶装氮气作载气,纯度为99.995%以上。  2 分析方法  2.1色谱柱的选择  若要成功地分析样品,必须针对分析对象正确选择柱子的类型,柱长和内径等。以便能快速高效地分析样品。  色谱柱选择:根据厂家提供及日常分析所需选用1米不锈钢调试柱和1#浓缩柱  总之色谱柱是决定分离好坏的核心,一只质量好的色谱柱应该拄效高,选择性好,内壁惰性和使用温度范围宽  2.2载气及其流速的选择  对一定的色谱柱和试样来说,有一个最佳载气流速,此时柱效最高。此外,还必须考虑检测器的类型,不同类型的检测器对载气有不同的要求。尤其是使用氢焰离子检测器(FID)时,最大灵敏度需要一定浓度的含有所需化合物的标准样品来优化流量,用该标样在不同载气,空气和氢气流量进行实验来确定产生最大响应的流量,其中起决定作用的变量是氢气和载气的比率。  根据厂家提供和实验,我们厂选定以下进样系统的压力:  载气:0.08MPa氢气:0.04MPa空气:0.055MPa  2.3柱温的选择  柱温是一个重要的操作参数,直接影响分离度和分析速度。首先柱温不能超过柱子的最高使用温度。一般提高柱温使各组分挥发靠近,不利于分离,若柱温太低,则峰形变宽,柱效下降,分析时间延长。选择的一般原则是在使最难分离的组分尽可能好的分离前提下,尽可能地采用较低的柱温,但以峰形不拖位尾,保留时间适当为基准。若试样的沸点范围较宽,宜采用程序升温。具体操作条件的选择应根据不同的实际情况而定。  我们所要分析的是C4以内的气态烃,沸点范围虽然不是太宽,但对柱温的改变也相当灵敏。一般若恒温可以满足分析要求时,尽量不采用程序升温,经过实验,我们将柱温设定为50度,检测器温度100度。  2.4分析法的选择  从理论上来讲,分析方法有归一法,内标法和外标法三种。但是液氧中碳氢化合物组分含量是不能确定的,各组分浓度范围变化不大,属同质痕量组分的气体样品分析。根据这些特性,外标法比较适合,且方便而快捷。所以我们采用外标法作为定量分析。具体做法即通过标样分析,求出对应组分的校正因子。近而求出对应组分的含量。校正因子的测定是关键,因为若想得到各组分的准确含量,必须确保校正因子准确无偏差,进样量多少要适中,一般为1ml。  3 结论  采用氢火焰离子化气相色谱仪可以圆满解决液氧中碳氢化合物的分析问题,而且也可分析液空,氧槽中碳氢化合物。而且稳定性好,操作方便,保证了空分的安全生产

  • 极精彩的色谱分离原理比喻(转帖)

    1、反相柱分析机理:色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群美女。结果:众美女都喜欢帅哥,不断有人拉Luna的手,并要求合影签名等等,拉胖丁丁的少了些,结果胖丁丁和Luna的距离越来越远,出门的时候,已经分离的很好拉,分离度3.0,柱效15万/m反相柱使用范围:1)、不可用于分离帅得离谱的人,会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女过于激动会造成休克,严重者甚至兴奋而死,造成柱子过早老化,降低柱效。另外分离此种物质会造成强吸附现象,出峰时间太久甚至不出峰,2)、不可用于分离过于猥琐丑陋可怕的人,结果会造成美女流失,柱效下降,出峰时间太快,影响分离效果,不过有方法可以恢复柱效,就说此地正莱尔斯丹的鞋正挥泪大甩卖,美女将迅速赶回,柱效即可恢复!注:此恢复方法并不适用于分离杀人犯强*犯!2、正相柱分离原理色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群男子。结果:Luna被率先赶出,胖丁丁被同胞悻悻相惜,留下来吃完饭,吃完后大家含泪送别,分离度2.8,柱效13万/m正相柱分离注意事项:并不适用于分离BT男3、体积排租色谱分离原理色谱柱:钻溶洞结果:溶洞里洞有大有小,非常好玩,本以为Luna个头小灵活会早点爬出来,其实是体积庞大的胖丁丁先爬出来拉:)分离度2.5,柱效12万/m原因:两人一钻溶洞便发现仿佛回到了童年,逮着洞就想钻,不过胖丁丁突然发现自己已不是3岁时的胖胖拉,要是卡住不崴了嘛:)于是只好作罢,沿大路走出来了,扼腕叹息“时光蹉跎,青春少年已不复4、离子对色谱色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群美女。胖丁痛苦回忆:众美女都喜欢帅哥,不断有人拉Luna的手,并要求合影签名等等,拉胖丁丁的少了些,结果胖丁丁和Luna的距离越来越远,出门的时候,已经分离的很好拉,分离度3.0,柱效15万/m胖丁对策:往事不堪回首,所以第二天再过这间屋子的时候,胖丁想到了他的必杀技——小胖。结果,胖丁抱着小胖和Luna一起穿过,众美女发现居然还有如此帅的小男生,纷纷过来掐掐小脸蛋,小胖搭讪美女的工夫也不含糊,“美女,敢吃青椒吗?”。老胖也不手软,为小胖报仇,把众美女脸蛋一一掐个遍,正当老胖还色迷迷的看着众美女的时候,Luna已经顺利离开了美女屋,最后小胖发话拉“爸爸,我饿!”老胖才恋恋不舍的抱起小胖,发话“最后再重掐一遍!……”Luna在门口,顿倒……

  • 高温气相色谱点滴

    高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与石油分析   [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)法是以气体做为流动相,利用冲洗的方法,采用柱色谱形式对混合物进行分离的一种测试手段。它具有柱效高、灵敏度高、分析速度快、易与其它分析仪器(如MS)联用等特点,是分离、鉴定石油烃类等复杂物质特别是研究生油岩及原油中诸多生物标记化合物特征(如正构烷烃碳数分布、某些异戊二烯类烷烃组成与分布)的一种实用分离方法。它要求被分离的组份于室温条件下无论是液态还是固态,在柱内流动时必须处于“气化”状态,所以对于那些高沸点复杂混合物的分离就要使用耐高温的毛细管色谱柱,如分离原油中碳数高于40以上的烃类等。但是迄今普遍使用的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]由于受到毛细管柱及固定相热稳定性等方面的限制,最高柱温为325 ℃左右,只能够提供碳数小于35左右的化合物组成信息。也就是说,相对低水平的仪器分析条件在一定程度上限制了有机地球化学领域中高碳数烃类(>C40)的理论研究与实际应用,导致某些方面的认识比较薄弱。   近十多年来,随着生油岩、原油、精炼蜡及合成蜡中较高分子量烃类研究的迫切需要,耐高温(325~450 ℃)的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱孕育而生并得到迅速发展。估且称325 ℃以下柱温的色谱为常温色谱,高于325 ℃以上者为高温色谱(HTGC)〔1〕。色谱柱是进行分离的核心部分,所以围绕高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的柱系统研究开发工作始终比较活跃,主要包括柱材料、几何尺寸(柱长及内径大小)、内壁处理、固定相类型及其液膜厚度等。柱材料一般选择镀铝弹性石英毛细管柱或不锈钢柱,固定液多利用热稳定性高的端羟基聚二甲基硅氧烷在涂渍过程中交联并与石英表面的硅羟基缩合而键合到毛细管壁上〔1〕。进样系统也是色谱仪的一个重要组成部件,它直接影响色谱分析的精确度和分析物的回收率,进样器常采用冷柱头(Cool On-column)或可快速升温的程序升温(PTV)等方式。在这种情况下,柱系统的热稳定性得到增强,有条件将色谱柱温升高,使[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的分辨率提高到C35以上,有些甚至可以达到C120左右。目前高水平的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]能够将最高温度提升到500 ℃,如卡劳尔巴(Carlo Erba)公司的HRGC5300和珀金埃尔默(Perkin Elmer)公司的8700GC仪〔2〕。这里仅就以下几个方面谈谈HTGC新技术与石油分析的密切关系。 1 原油的模拟蒸馏   石油含有大量不同碳数的烷烃,了解其碳数分布特点可以准确评价影响原油物理性质和石油产品性能的因素,为合理制定精馏分割方案、设计加工装置、控制产品质量提供重要依据。原油的实沸点蒸馏实验可以解决部分问题,但是它操作复杂、费用高、分析周期长,而且该方法通常的蒸馏温度只能达到538 ℃,仅相当于轻质烃的85%、重质烃的50%得到了分析〔3〕,如果要切割相当于C60以上正构烷烃的沸点馏分,即使在真空条件下也不太容易做到。为了实施重油轻质化深加工与处理技术,及时了解沸点高于500 ℃以上的重油馏分的化学组成,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]便以其价格低、速度快、用量少的优势在原油的模拟蒸馏方面得到广泛应用,例如利用高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](HTGC)可以顺利进行沸点高达800 ℃的重油馏分模拟蒸馏(相当于C120左右的正构烷烃得到表征),这时的色谱柱温要控制在430 ℃以上〔3〕。 2 高蜡原油中高分子量烃类(>C40)的分析   中国湖相原油普遍含蜡量较高,一般为15%~25%,某些地区含量更高,例如大民屯凹陷高凝原油的含蜡量变化范围为30.0%~53.5%,泌阳凹陷原油平均含蜡量为39.3%。这种类型的原油在世界其它地方分布也较广泛,被称之为高蜡原油〔4〕,它常常含有高比例的高碳数正构烷烃、异构烷烃、环烷烃等。大量存在的这些重质成分使高蜡原油很难保持其溶解特性,当温度降低到一定水平,就会引起固态蜡的析出,而蜡的出现将严重影响原油的渗流过程,造成石油在驱动过程中石油衍生障碍物的产生,阻碍油田保持高产稳产。因此这些地区的特高含蜡量问题一直被作为缓解含水率上升速度快、提高原油采收率的主要攻关项目之一。海相原油虽然总体上以低含蜡量(含蜡量小于5%)为特征,但有些地区如塔里木满加尔油气系统中的部分原油含蜡量偏高(高者可达12%)〔5〕。众所周知,具有奇碳优势的长链正构烷烃(>C21)主要由陆源高等植物提供;不具有明显的奇偶优势的低碳数(<C21)正构烷烃可能指示细菌和水生低等浮游植物的贡献(如藻类)。多数研究认为大民屯地区高蜡油的形成与陆生高等植物特别是高等植物类脂(如植物蜡、角质体、孢子体等)以及细菌微生物改造过的高等植物某些组分有关。比较而言,泌阳凹陷的氧化还原条件与大民屯凹陷有所不同,它生成的高蜡原油与藻类物质关系更为密切。由此可见,高蜡原油应是某些特定显微组分的产物。为了从有机地球化学角度查明这类原油的化学组成及其可能的先驱物,有必要解决高分子量烃类化合物(>C40)的分离鉴定问题。Carlson等〔6〕利用HTGC研究了来自中苏门答腊盆地和犹因塔盆地的高含蜡原油,发现这些样品在C40~C60范围内(甚至更高碳数范围内)清楚地展现出了一系列正构烷烃和异构烷烃分布。他还根据同一样品在不同技术水平下的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]鉴测出的结果进一步肯定了高分子量烃类(C40~C60)的存在,论证了高蜡原油是一类特别富含高碳数(>C22+,甚至高达C60以上)烃类的复杂混合物,其中以链烷烃含量丰富、环烷烃和芳香烃含量少为特征。李新景等〔7〕曾用Hewlett Packard 6890型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],配置大口径不锈钢毛细管柱15 m×0.53 mm×0.25 μm,在柱温100~400 ℃的条件下分析大民屯凹陷新安19-31井高蜡原油,研究证明该样品饱和烃馏分以正构烷烃占绝对优势且含有一定数量的碳数高达C40~C60以上的烃类,为深入探讨不同沉积环境,不同有机质来源,不同水介质条件下的高蜡原油形成机制提供了重要理论依据。 3 石蜡产品中高碳数烷烃的表征   石蜡是室温下为固态的各族烃类(主要是链烷烃和环烷烃)的混合物。作为重要的石油产出品之一,它是不可缺少的原材料。理论上,决定低含油石蜡性质的关键因素是正构烷烃、异构烷烃和环烷烃的碳原子数分布和它们的相对含量〔8〕。因为同分异构的正构烷烃和异构烷烃性质之间存在明显的差异,由不同比例不同碳数分布的正构烷烃和异构烷烃构成的不同石蜡产品其性质和性能亦有区别,所以在生产、研究、设计各种商品蜡过程中,要明确石蜡的化学组成及其含量,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]便是解决这类问题的有效方法之一。目前利用高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析高熔点蜡的研究工作已有些报道。例如Rio〔9〕用Carlo Erba 色谱仪配置3 m长HT-5镀铝毛细管柱在温度为100~440 ℃、升温速率为8 ℃/min条件下测试费歇尔—托普法(Fischer-Tropsch)合成蜡,谱图完整地显示了C20至C75范围正构烷烃的相对含量及分布;周云琪〔10〕用HP5890II型色谱仪将某样品分析到C55左右。再如SGE公司〔11〕利用12 m×0.53 mm×0.15 μm(HT5)镀铝弹性石英毛细管柱,在初始温度为200 ℃,最高柱温 480 ℃,升温速率为10 ℃/min等条件下分析聚合蜡polywax 1000 TM,实验证明它含有C20~C100之间的一系列化合物,事实上,它就是一种碳数高达100以上的聚乙烯。然而运用高温色谱分离各种精炼蜡、合成蜡时常遇到热裂解问题。有学者提出正常大气压条件下蜡热裂解的温度为400 ℃,达到500 ℃时其中90%的正构烷烃将分解,但是在柱系统内因有He、H2或N2做载气,裂解效应被消弱了〔3〕,这个观点还有待进一步验证。相信,随着高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术的不断成熟,将有更多的机会从另一角度来认识不同用途的石蜡新产品。 4 高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](HTGC)与质谱(MS)联用   色谱法作为一种高效的分离手段在进行定性分析时主要依据的是保留时间,对复杂的未知化合物很难作出明确的解释,质谱法则相反,它具有很强的结构鉴定能力,却不具备分离能力,不方便直接用于复杂化合物的鉴定,所以在常规石油有机地球化学分析中普遍使用色谱—质谱联用技术。同样,运用高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—质谱联用技术也能够为高分子量烃类化合物提供较高的分辨率和选择性的检测能力。Gallegos等〔12〕1991年首次采用HTGC—EIMS(电子轰击质谱)与HTGC—FIMS(场离子化质谱)对Boscon原油和Monterey生油岩C28~C33初口 朴啉、脱氧叶红初口 朴啉(DPEP)以及C36~C70的高分子量饱和烃进行了分析。口 朴啉是高分子量的化合物,结构复杂且具有大量的异构体。从探索石油成因、运移和聚集规律角度来看,口 朴啉虽然含量少,却构成了极为重要的含氮化合物。目前用常规GC—MS分离鉴定口 朴啉很困难;脱金属分离法又可能导致口 朴啉选择性分解;高效液相色谱—质谱(HPLC—MS)可能成为较好的口

  • 气相色谱法在化工领域的应用

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法在化工领域在石油和石油化工分析中,GC是非常重要的。从油田的勘探开发到油品质量的控制,都离不开GC这种分析成本低、速度快、分离度和灵敏度高的方法。美国材料与分析协会(ASTM)已开发了、并继续开发各种用于石化分析的GC标准方法。GC在石化分析中的应用主要涉及以下几个方面:1.油气田勘探中的地球化学分析;2.原油分析;3.炼厂气分析;4.模拟蒸馏;5.油品分析;6.单质烃分析;7.含硫和含氮化合物分析;8.汽油添加剂分析;9.脂肪烃分析;10.芳烃分析;11.工艺过程色谱分析。

  • 你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    检测器是气相色谱分析中不可或缺的部分,被称做色谱仪的“眼睛”。被测组分经色谱柱分离后,以气态分子与载气分子相混状态从柱后流出,必须要有一个装置或方法,将混合气体中组分的真实浓度或质量流量变成可测量的电信号,且信号大小与组分量成比例关系,此装置就是检测器,是一种能检测气相色谱流出组分及变化的器件。检测器按照不同方法有不同的分类:按照性能特征分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201417_614520_2384346_3.png按照工作原理分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614522_2384346_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614521_2384346_3.png 大家可以发现气相色谱检测器的种类繁多,而平日里我们最常见到的检测器有电子捕获检测器(ECD)、氮磷检测器(NPD)、火焰离子化检测器(FID)和质谱仪(MSD)等。今天就和大家聊一聊这些检测器的选择问题。通性 MSD与ECD、NPD、FID等都可作为GC的检测器,提供GC分离后的组分相关信息。样品经色谱柱分离后,各成分按保留时间不同,顺序地随载气进入检测器,检测器按时间及其浓度(质量)的变化,把组分化合物转化成易于测量的电信号,经过必要的放大传递给记录仪或计算机,最后得到该样品的色谱图及定性和定量信息。区别 ECD、NPD、FID都属于有一定选择性的检测器,仅对某类特征化合物有响应,可以排除样品中其他组分的干扰,从而可简化复杂样品的前处理,降低对色谱柱分离能力的要求。而MSD是质量型、通用型检测器,只要化合物能够离子化,就能获得响应,在总离子流色谱图上表现出来。对不同的化合物,各种检测器的适用性和信号响应有所差别,见图1,具体如下:①电子捕获检测器(ECD)是灵敏度最高的气相色谱检测器之一。ECD工作原理是色谱柱流出载气及吹扫气进入ECD池,在放射源放出β-射线轰击下被电离,产生大量电子;在电源、阴极和阳极电场作用下,该电子流向阳极,得到10-9-10-8A的基流;当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰;通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。负峰不便观察和处理,通过极性转换即为正峰。ECD仅对那些能俘获电子的化合物(含电负性元素)有响应,如卤代烃、含N、O和S等杂原子的化合物,但线性范围较窄。②氮磷检测器(NPD)是一种质量型检测器。NPD工作原理是将一种涂有碱金属盐如Na2SiO3、Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。NPD对氮、磷化合物有较高的响应,灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如有机磷及氨基甲酸酯类农药等。③火焰离子化检测器(FID)由Harley和Pretorious发明,演化自Scott发明的燃烧热检测仪(Heat of Combustion Detector)。FID工作原理是以氢气作为燃烧气,和空气在一个圆筒状的电极里的喷嘴处燃烧,燃烧的火焰作为能源,其中氦气、氮气等载气作为洗脱剂,在极化极和收集极之间外加的高电压电场作用下,利用含碳有机物在火焰中燃烧产生离子,使离子形成离子流,收集起来产生电流,根据离子流产生的电信号强度,放大并传送到记录仪或电脑数据采集系统的A/D转换器处,从而检测被色谱柱分离出的组分。④质谱检测器(MSD)是质量型、通用型检测器,对所有适合于GC检测、能离子化的化合物都能给出响应。MSD不仅能给出色谱图(即总离子流色谱图,TIC),且能够给出每个色谱峰时间点的质谱图,利用计算机对标准谱库的自动搜索,可提供化合物分子结构信息,是GC定性分析的有效工具。将色谱的高分离能力与MS的结构鉴定能力结合在一起,采用保留时间和质谱图双重定性,灵敏度高。MSD数据处理工作量非常大,一般必须配计算机系统才能有效地工作;根据仪器配置不同,还可以采用EI、CI等电离方式,结合不同扫描方式,提高灵敏度与准确度。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://ng1.17img.cn/bbsfiles/images/2015/06/201506241721_551410_2989334_3.png图1 气相色谱不同检测器灵敏度对比

  • 【原创大赛】气相色谱法进行萃取精馏分离甲醇-碳酸二甲酯共沸物系的研究

    【原创大赛】气相色谱法进行萃取精馏分离甲醇-碳酸二甲酯共沸物系的研究

    色谱赛区第八届原创大赛这么火热,所以将在校期间没有进行发表数据有关气相色谱的一部分拿来参赛。 气相色谱法进行萃取精馏分离甲醇-碳酸二甲酯共沸物系的研究摘要 工业生产中,经常需要采用特殊精馏方法对存在的共沸物进行分离。近些年,绿色化学的兴起使得离子液体在萃取精馏技术中被用作萃取剂的研究得到了快速的发展。本文测定了甲醇-碳酸二甲酯(DMC)共沸物系的汽液平衡数据。并采用1-丁基-3-甲基咪唑三氟甲磺酸盐(OTf)离子液体作为萃取剂对其进行有效地分离。一、绪论 液体混合物的分离在化工生产中很常见,对其进行分离可以回收其中的有用组分或达到提纯的目的。分离互溶液体混合物的方法有很多种,蒸馏及精馏是众多分离方法中最常见的一种。但当液体混合物中的被分离组分如果可以形成共沸物,或者是两者之间的相对挥发度接近1,这时,采用普通的精馏技术对其进行分离,或在技术上不可达成,或在经济上不符合常理,这个时候就需要利用特殊精馏技术。特殊精馏就是向这种液体混合物中加入一个新组分,而这个新组分可以达到改变被分离组分间的相对挥发度的作用,从而使被分离组分易于分离的精馏过程。工业上常用的特殊精馏技术有萃取精馏技术、共沸精馏技术和加盐精馏技术三种。本文采用的是萃取精馏技术,萃取剂选用的是绿色溶剂离子液体。 离子液体(Ionic Liquid)是在室温状态或者处于低温时呈现液态,并且完全是由阳离子和银离子所构成的物质。它又被称为室温熔融盐或是室温离子液体。离子液体的阳离子是有机高分子,极性较小,阴离子是无机或有机阴离子,极性较大,这就造成了离子液体结构上的极度不对称性,使得离子液体在室温下不容易形成晶态而以液态形式存在。二、实验部分2.1 实验试剂及仪器 采用离子液体(OTf),对待分离组分甲醇-DMC进行分离。http://ng1.17img.cn/bbsfiles/images/2015/08/201508121418_560219_2984502_3.jpg2.2 主要实验仪器http://ng1.17img.cn/bbsfiles/images/2015/08/201508121419_560220_2984502_3.jpg 表2-2中为本实验中测定二元及三元组分的汽液相平衡数据所用到的主要实验仪器。 除表2-2中所列的实验仪器外,本实验还用到了尖头型微量进样器(1 μL)、水银温度计、氢气瓶、容量瓶、烧杯等仪器。2.3 实验装置 汽液相平衡数据的测定实验中,关键设备是汽液平衡釜,本实验采用的是型号为CE-2的改进的Othmer汽液平衡釜。改进的Othmer汽液平衡釜已经经过了多次数据的可靠性验证,被许多文献报道过。例如,Xing Liu等等利用此平衡釜在常压下测定了乙醇-水-2-羟基乙胺四氟硼酸盐的汽液相平衡数据,并利用热力学模型对实验数据进行了关联与回归,计算出实验数据的平均相对偏差在6.5 %以下;Orchillés A. V.等利用此平衡釜测定了含离子液体体系的多种三元组分的汽液平衡数据,同样计算出了平均相对偏差,均在4 %以下;Li等利用此平衡釜测定了含离子液体体系的三元组分汽液相平衡数据,平均相对偏差也都在5 %以下。 改进的Othmer汽液平衡釜的结构见图2-1。它测定VLE数据的原理是,将配置好的试样(二元或三元组分)加入到平衡室中,样品在加热棒的作用下,会在平衡室内达到平衡状态,利用微量进样器分别从汽相和液相取样口采样,利用气相色谱仪分析,就可得到该组的VLE数据。在整个实验过程中,压力控制器可以使得实验压力为常压,数据测定时的平衡温度也可以由温度计读得。http://ng1.17img.cn/bbsfiles/images/2015/08/201508121422_560221_2984502_3.jpg2.4 实验步骤 本文在101.3kPa下测定了甲醇– DMC二元体系,以及甲醇– DMC – OTf三元体系的汽液相平衡数据。离子液体的摩尔分数都采用了0.050, 0.100, 0.150三个系列,每个系列都测定了9个浓度点,每个浓度点都取样5次或以上,利用气相色谱仪分析数据,将多次平行的实验结果平均计算出最终摩尔分数。具体的实验步骤如下:(1)离子液体前处理。因离子液体较易吸水,在使用之前要将其在真空条件下干燥48 h(80℃)以除去其中的微量水。(2)配置溶液。实验数据测定需要的二元和三元组分,每个试样配置60 mL,各组分需要的加入量可提前算出后列成数据表。根据各组分需加入的质量数据表,利用电子天平称量,要求各组分加入的含量误差保持在0.001 g以下。配置好溶液后,将盛放溶液的锥形瓶用生胶带密封并标号。三元组分的溶液在使用后要回收其中的离子液体。(3)气密性检查。在开始实验前,要检查汽液平衡釜的气密性,保证实验的顺利进行。同时,用胶头滴管在放置温度计的槽口中滴入些许热导油,能淹没温度计的水银柱即可,使得实验过程中读取的平衡温度更加准确。(4)测定汽液平衡数据。将配置好的溶液摇匀并快速倒入平衡釜的平衡室,安装好平衡釜并放入加热棒,打开冷凝水,用生胶带将平衡釜各个接口密封。打开电源,逐步升温直到加热电流达0.2 A左右。通过控制电流将汽相回流速度维持在每秒2滴为宜,当平衡温度和汽相回流的速度保持恒定达30 min左右时,视为该组试样达到汽液平衡的状态。此时,读取温度计中的平衡温度,用润洗过的微量进样器分别从汽相和液相取样口取样放入气相色谱仪分析数据。通过调节气速,使出峰时间在6 min以内。多次测量每个数据点,峰面积的误差保证在0.0002以内。同时,整个实验的测量方式相同,包括进样位置和气速等,目的是为了减少人为的误差。(5)清洗实验仪器。每个实验点测定完成后,将电流调到零,关闭电源。待平衡釜降为室温,将溶液倒出并清洗。尤其是三元组分溶液(包含离子液体),溶液要回收,并需用纯溶剂反复清洗锥形瓶和平衡釜,尽量回收其中的离子液体。清洗之后,将平衡釜干燥。(6)回收离子液体。回收的含有离子液体的溶液集中加入到1000 mL的圆底烧瓶中,利用旋转蒸发仪,将其中的有机溶剂蒸发,剩余的离子液体循环使用。离子液体的回收过程与前处理过程相同,都需在真空条件下进行48 h(80℃),然后利用卡尔费休水分测定仪测量回收过后的离子液体含水量,达到标准后,放入对应离子液体瓶中待用。(7)实验结束。整天的实验结束后,关闭色谱工作站,将气相色谱仪电桥调为“0”,将加热状态调为“OFF”,等显示温度为40 ℃时,关闭气相色谱仪,等其温度降为室温时,关闭氢气罐开关。为了第二天实验的顺利进行,将衬管内的石英棉换新(为了阻止离子液体进入色谱柱),石英棉的数量不宜过多,根据经验添加。2.5 实验分析方法 本实验利用气相色谱仪对实验数据进行分析时,采用面积归一法测定各组分含量,其中色谱仪的分析条件是: 色谱柱:由Propak-Q填充,规格为3 m × 3 mm; 检测器:TCD,温度为453 K; 汽化室温度:443 K; 柱室温度:403K; 载气:氢气; 取样量:1μL左右。三、实验结果分析与讨论3.1 甲醇-DMC二元数据测定 为了验证本课题所用实验设备的可靠性,以及得到甲醇-DMC二元组分的交互作用参数和对应基团的基团作用参数,实验测定了101.3 kPa下甲醇-DMC二元体系的VLE数据。并绘制成汽液平衡曲线。圆圈处表示存在共沸

  • 不同离子色谱仪的运用领域原理分析

    早在20世纪初,俄国著名植物化学家次维特提出色谱概念以后,直到1975年,美国Dow化学公司的H。Small等人才首先提出了离子交换分离、抑制电导检测分析思维,即提出了离子色谱这一概念。色谱技术经历了半个多世纪的发展,才发展到离子色谱的阶段。这一概念的提出,便立即被商品化、产业化。由Dow公司组建的Dionex公司最早生产离子色谱并申请了专利。我国也从20世纪80年代才开始引进离子色谱仪器。  离子色谱按照分离原理分类,可以分3种不同类型,分别是离子交换色谱、离子对色谱和离子排斥色谱。。  其中离子色谱分离,主要是应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,它在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂。  离子对色谱的固定相为疏水型的中性填料,用于种植牙阴离子分离的对离子是烷基胺类,如氢氧化四丁基铵、氢氧化十六烷基三甲烷等。用于阳离子分离的对离子是烷基磺酸类,如己烷磺酸钠、庚烷磺酸钠等。  离子排斥色谱,主要根据Donnon膜排斥效应:电离组分受排斥不被保存,而弱酸则有一定保存的原理制成。离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根、碳酸根和硫酸根、有机酸等。目前,离子色谱的应用有:无机阴离子的检测;无机阳离子的检测和有机阴离子和阳离子分析,主要包括生物胺,有机酸和糖类分析。  具体在实验中,用户应该结合实际选择合适的分离方式,例如上海牙防所水合能高和疏水性弱的离子,如Cl-或K,最好用HPIC分离。水合能低和疏水性强的离子,如高氯酸(ClO4-)或四丁基铵,最好用亲水性强的离子交换分离柱或MPIC分离。有一定疏水性也有明显水合能的pKa值在1与7之间的离子,如乙酸盐或丙酸盐,最好用HPICE分离。有些离子,既可用阴离子交换分离,也可用阳离子交换分离,如氨基酸,生物碱和过渡金属等。  随着不断的实验与改进,离子色谱也在不断发展,无论是在检测方法,还是色谱柱方面,相信离子色谱在今后的应用会越来越广泛。

  • 色谱分离原理之搞笑版

    样品:胖丁丁,Luna样品性质点评,胖丁丁高大威猛略胖,Luna形象气质佳……(只是为了剧情需要,大家多包涵,我吐口先 :)反相柱分析机理:色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群美女。结果:众美女都喜欢帅哥,不断有人拉Luna的手,并要求合影签名等等,拉胖丁丁的少了些,结果胖丁丁和Luna的距离越来越远,出门的时候,已经分离的很好拉,分离度3.0,柱效15万/m反相柱使用范围:1)、不可用于分离帅得离谱的人,会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女过于激动会造成休克,严重者甚至兴奋而死,造成柱子过早老化,降低柱效。另外分离此种物质会造成强吸附现象,出峰时间太久甚至不出峰,2)、不可用于分离过于猥琐丑陋可怕的人,结果会造成美女流失,柱效下降,出峰时间太快,影响分离效果,不过有方法可以恢复柱效,就说此地正莱尔斯丹的鞋正挥泪大甩卖,美女将迅速赶回,柱效即可恢复!注:此恢复方法并不适用于分离杀人犯强*犯!2、正相柱分离原理色谱柱:为一间屋子,有一门可进,一门可出,屋里有大群男子。结果:Luna被率先赶出,胖丁丁被同胞悻悻相惜,留下来吃完饭,吃完后大家含泪送别,分离度2.8,柱效13万/m正相柱分离注意事项:并不适用于分离BT男3、体积排租色谱分离原理色谱柱:钻溶洞结果:溶洞里洞有大有小,非常好玩,本以为Luna个头小灵活会早点爬出来,其实是体积庞大的胖丁丁先爬出来拉:)分离度2.5,柱效12[f

  • 气相色谱如何有效地进行分离条件优化?

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]是有机实验室主要的设备之一,由于样品组分在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中传质速度快,与固定相相互作用次数多,加上可供选择的固定液种类很多,可供使用的检测器灵敏度高、选择性好,因此[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]被广泛地应用在有机样品检测领域。色谱操作条件的选择和优化[b]1、固定相的选择[/b]固定相类型:气-固色谱:固体吸附剂气-液色谱:固定液与载体混合物在不同固定相上的分离,如图所示:[img]https://file.jgvogel.cn/134/upload/resources/image/308687.jpeg?x-oss-process=image/resize,w_700,h_700[/img]注:1-乙腈(强极性);2-2-丙醇(质子受体);3-1,2-二氯乙烷(弱极性);4-三乙胺(质子受体);5-正辛烷。固定相种类的不同,直接影响到样品中各组分分离效果优劣。固定相的选择一般按照“相似相溶原理”。常用固定液:[img]https://file.jgvogel.cn/134/upload/resources/image/308688.jpeg?x-oss-process=image/resize,w_700,h_700[/img]固定相液的选择:分离非极性物质,一般选用非极性固定液。分离极性物质,一般按极性强弱来选择相应极性的固定液。分离非极性和极性混合物时,一般选用极性固定液。能形成氢键的试样,一般选用氢键型固定液。对于复杂组分,一般可选用两种或两种以上的固定液配合使用。2、载气种类的选择载气种类的选择应考虑三个方面:载气对柱效的影响、检测器要求及载气性质。(1) 载气摩尔质量大,可抑制试样的纵向扩散,提高柱效。(2) 载气流速较大时,传质阻力项起主要作用,采用较小摩尔质量的载气(如H2、He),可减小传质阻力,提高柱效。(3) 在载气选择时,还应综合考虑载气的安全性、经济性及来源是否广泛等因素。载气的选择与检测器有关:TCD一般选用氢气或氦气做载气FID 一般选氮气和氩气做载气ECD 一般选氮气做载气FPD 一般选氮气做载气3、载气流速的选择[img]https://file.jgvogel.cn/134/upload/resources/image/308689.png?x-oss-process=image/resize,w_700,h_700[/img]根据公式,绘制H~u曲线,以实现最佳载气流速的获取,实际载气流速的选择。[img]https://file.jgvogel.cn/134/upload/resources/image/308690.png?x-oss-process=image/resize,w_700,h_700[/img]在曲线的最低点,塔板高度H最小(Hmin),此时柱效最高。与H最小所对应的流速为最佳流速uopt[img]https://file.jgvogel.cn/134/upload/resources/image/308691.png?x-oss-process=image/resize,w_700,h_700[/img]4、柱长和内径的选择柱长增加,分离度增大,对分离有利。但柱长增加也使传质阻力增大,色谱峰区扩展加剧,分析时间延长。因此,在确保一定分辨率的条件下应尽可能使用短色谱柱。填充柱:柱长1~5 m,柱内径2~6 mm。毛细管柱:柱长20~200 m,柱内径0.1~0.5 mm。5、柱温的选择柱温对分离度的影响比较复杂。兼顾分离度和分析速度两个方面。(1)柱温升高,被测组分的挥发度↑,即被测组分在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中的浓度↑,tR↓,改善[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]的传质速率,有利于提高柱效,但低沸点组份峰易产生重叠。(2)柱温降低,分离度↑,分析时间↑。对于难分离物质对,降低柱温虽然可在一定程度内使分离得到改善,但是不可能使之完全分离。这是由于两组分的相对保留值增大的同时,两组分的峰宽也在增加,当后者的增加速度大于前者时,两峰的交叠更为严重。(3) 柱温选择:接近或略低于组分平均沸点时的温度。[table][tr][td]沸点[/td][td]柱温[/td][td]固定液用量[/td][/tr][tr][td]气体[/td][td]室温~100℃[/td][td]20-30:100 红色担体[/td][/tr][tr][td]100~200℃[/td][td]150℃[/td][td]10-20:100 红色担体[/td][/tr][tr][td]200~300℃[/td][td]150~200℃[/td][td]5-10:100 白色担体[/td][/tr][tr][td]300~400℃[/td][td]200~250℃[/td][td]1-5:100 白色或玻璃担体[/td][/tr][/table][size=14px]⑷ 组分复杂:宽沸程的试样,采用程序升温。[/size]采用程序升温的方法能兼顾高、低沸点组分的分离效果和分析时间,使不同沸点组分基本上都在其较合适的平均柱温下进行分离。程序升温条件:升温方式;起始温度;升温速度;终止温度。6、进样条件和进样量的选择 进样速度越快越好,这样可使样品汽化后能立即被载气带入色谱柱中。若进样时间过长,试样原始宽度变大,流出峰宽也必然变宽甚至发生峰变形。液体试样量一般进样0.1~5 uL,气体试样0.1~5 mL。进样量大,会使几个峰重叠在一起分离不好;但进样量太少,又会使含量少的组分因检测器灵敏度不够而检不出。最大允许的进样量,应控制在峰面积或峰高与进样量呈线性关系的范围内。7、气化室和检测器温度的选择气化室温度的选择:(1)原则是保证样品,同时不分解(2)一般比样品组分最高沸点高30-50度或比柱温高30-70度。检测器温度的选择:一般比柱温高30-50度。TCD要求温度恒定,FID要求温度120度

  • 气相色谱百问精编----第4问:载气流速对分离测定的影响

    闲下来看了看气相色谱百问精编,也和大家分享下:第4问: 载气流速对分离测定有何影响?主要表现以下方面:1、对柱效的影响。流速过快,降低分离效能;流速过慢,色谱峰容易拖尾或者前伸。2、对样品组分保留时间的影响。不同流速下,时间保留时间差别很大,对于特定的色谱柱和色谱条件,样品组分峰的保留时间和载气流速成反比。为了加快分析时间,一般用高于最佳流速的线速度分析。3、对检测定量结果的影响。流速快慢影响峰型,影响分离度,影响灵敏度,从而影响定量结果。因为对信号的响应特征不同,检测器可分为浓度型(TCD、ECD)和质量型检测器(FID/FPD/TID)。对于浓度型检测器,流速增大,出峰快,峰变窄,峰高不变,峰面积减小;质量型检测器,流速增大,峰高增加,峰面积不变。解决方案(或注意事项):1、TCD,运行中,流速增到一定程度,本分析物在热传导达到平衡之前就被洗脱出热导池,因而响应信号峰高和峰面积都减小。2、ECD 其灵敏度与样品的瞬时浓度呈正比,因此较小载气流速能得到较大的灵敏度3、FID 当色谱柱、样品组分一定时,载气总流量30ml/min附近灵敏度(以峰高表示)最高,流量过低或过高都会造成响应减小、灵敏度低。同时,载气和氢气的配比以及空气的流量,都影响检测器的灵敏度。一般气体流量比例初始条件可设为:载气:空气:氢气=1:10:14、FPD 因测磷、硫的响应机理不同,最佳操作条件不一样,高流速载气下硫的响应值下降,用氮气做载气比用氦气影响更大,但磷的响应值变化小。5、TID 对氢气流量有严格的控制。同时,空气和载气的流量对灵敏度有影响,一般流量增加,灵敏度降低。同时,我也对标注红色的区域表示不理解,也请各位坛友指点迷津!1、对于特定的色谱柱和色谱条件,样品组分峰的保留时间和载气流速成分比。 可否举个例子?2、ECD 其灵敏度与样品的瞬时浓度呈正比,因此较小载气流速能得到较大的灵敏度。 为了获得最大的灵敏度,载气流速怎么取舍?3、FID 当色谱柱、样品组分一定时,载气总流量30ml/min附近灵敏度(以峰高表示)最高,流量过低或过高都会造成响应减小、灵敏度低。同时,载气和氢气的配比以及空气的流量,都影响检测器的灵敏度。一般气体流量比例初始条件可设为:载气:空气:氢气=1:10:1 总流量30灵敏度最高,怎么的出来的http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif

  • 白酒分析气相色谱仪分离条件的选择

    [align=center][b][size=24px]白酒分析气相色谱仪分离条件的选择[/size][/b][/align][size=18px] 气相色谱仪分析白酒时,除了选择适合的色谱柱和分析方法外,还要选择好分离的蕞佳操作条件,提高色谱柱的分离效能,增大分离度,获得好的分析结果。色谱技术人员根据实际经验总结出白酒分析气相色谱仪分离条件选择,供大家参考。1. 载气及流速、分流比的选择白酒的气相色谱分析,一般使用FID检测器,常用高纯N2做载气,H2做燃烧气,空气作助燃器。若使用一般填充色谱柱,内径在3~4mm,载气的流量在20~100m L/min。对于内径在0.25mm左右的毛细管色谱柱,载气流量在1~2m L/m in。流速太快会降低色谱柱的分离效能,一般高于蕞佳流速10%左右即可,既保证了色谱柱的分离效能,又能获得比较快的分析速度。H2的流速与载气N2流速相当(毛细管色谱柱载气流量+载气分流的流量),实验证明H2流量∶空气流量=1∶10时,FID检测器蕞灵敏。使用毛细管色谱柱时,分流比的选择直接影响到出峰的个数与分离效果。当分流比为30∶1时蕞为恰当,色谱柱分离效能较高,白酒微量成分分离效果好。载气中微量水分、氢气和空气中的微量杂质对色谱柱和检测器影响很大,严重时会使色谱柱失效,基线不稳,噪声增大,检测器灵敏度下降。所以在载气、H2、空气进入色谱仪之前,应当使用分子筛、硅胶等对气体进行净化处理。2. 色谱柱温的选择白酒中的大部分组分沸点都不高,但沸点范围较宽,为了使低沸点的组分有比较好的分离度,一般初始柱温在50℃。程序升温速度不宜过快,否则分离效果变差,程序升温速度太低,出峰时间长,峰形扁平。一般设定在1~8℃/m in,蕞佳程序升温速度在8℃/m in左右,以保证白酒中各组分在相应的温度下得到良好的分离。蕞终温度不能太高,一般不超过250℃,防止色谱柱温过高,引起固定液挥发流失,分离效能变差,出现基线漂移,或导致色谱柱失效。3. 气化室、检测器温度选择白酒的气相色谱分析中,气化室温度一般高于色谱柱温度50~60℃以上,一般控制在120~200℃,以保证进样时白酒试样中所有的组分都能瞬间变成气体。FID检测器的温度通常控制在150~250℃,避免水蒸汽在检测器中凝结,增大噪声而降低检测器的灵敏度,也可以避免出现检测器点火困难的问题。4. 进样量和进样速度的控制使用填充色谱柱时,柱容量比较大,进样量通常在1~5μL,使用10μL或5μL的微量注射器。采用毛细管色谱柱时,柱容量小,进样量通常在0.1~2μL。进样量低不利于使用低含量组分法进行检测,进样量过高则会导致部分组分峰发生重叠,分离不好。进样速度要求比较快,要求1 s内完成,以保证酒样瞬间气化。如果进样速度太慢,就会引起先插进去的针头部分的酒样先气化,导致色谱峰变宽或者异型,峰形不好,分析误差大的问题。每次进样时,应将微量注射器用被测酒样抽洗5次以上并排净气泡,保证待测试样浓度不发生变化,减少进样带来的误差。5. 其他注意事项为了尽可能地减少分析误差,保证分析结果的准确性,要定期老化色谱柱,在高于使用温度20℃,脱开检测器,通以载气10 h以上,让色谱柱中残留的高沸点组分流出,降低仪器噪声,减小高沸点残余物质的干扰。同时还要定期清理色谱柱头和衬管中积累的不挥发物,防止堵塞色谱柱。每进样50次左右就需更换气化室中的硅橡胶垫,保证气化室不漏气,避免出现色谱峰异常现象。在白酒的气相色谱仪分析中,适当地选择分析方法与测定条件,既可以提高色谱分析的分离效能与检测的灵敏度,又可以提高分析结果的准确度。这就需要我们在实际工作中不断探求与创新,找出每种酒样的蕞佳分析条件,做到准确而快速地分析白酒的微量成分,有效地指导白酒的生产、研发和质量监督,保障白酒的食品安全。[/size]

  • 如何选择能够分离硫化氢(H2S)和二氧化碳(CO2)的气相色谱柱

    [color=#444444]最近我会涉及到同时吸收硫化氢和二氧化碳的实验,会利用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析检测尾气的气体成分。[/color][color=#444444]尾气里除了[/color][b]硫化氢[/b][color=#444444]和[/color][b]二氧化碳[/b][color=#444444],可能也会有[/color][b]氮气[/b][color=#444444]。[/color][color=#444444]想向各位请教,用哪种[/color][b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱[/b][color=#444444]能达到最好的分离效果?谢谢![/color][color=#444444](注:检测器是TCD)[/color]

  • 【资料】-全二维气相色谱的原理

    【资料】-全二维气相色谱的原理

    [b]全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的原理[/b][img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608171238_23986_1613333_3.jpg[/img]图1是GC×GC仪器的流程图。试样从进样口导入第一柱(一般为较长的或者液膜较厚的非极性柱)后,各化合物根据沸点不同进行第一维分离,然后经调制器聚焦,以脉冲方式(区带转移)进入第二柱(一般为较短的或液膜较薄的极性柱或中等极性柱),第一柱中因沸点相近而未分离的化合物再根据极性大小不同进行第二维分离,检测器检测到的响应信号经数据采集软件处理后,得到三维色谱图(两个横坐标分别代表第1柱和第2柱的保留时间,纵坐标则表示检测器的信号强度),或者是二维轮廓图。根据三维色谱图或二维轮廓图中色谱峰的位置和峰体积,得到各组分的定性和定量信息"因调制器对第一柱流出物具有聚焦作用,而且调制器的脉冲周期很短,故不会造成第二维谱带的扩宽,保持了第一维分离原有的分辨率。通常,第二柱的柱长比第一柱短很多,固定相的厚度也不如第一柱,因而第二柱分离速度比第一柱快得多,这保证了在较短的脉冲周期内完成第二维分离,不会导致前后两次脉冲流出的组分相互交叉或重叠。GC×GC的正交分离是通过线性程序升温的方法和固定相极性的改变两者共同作用而实现的。仅仅依靠两维固定相极性的改变是不能保证两维完全不相关的,因为在恒温条件下,在非极性柱上保留强的物质在极性柱上也会保留强,高沸点的物质在第一维和第二维出峰都晚,而低沸点物质则都早。如果结合使用线性程序升温的方法,那么高沸点物质相对于低沸点的同类化合物进入第二柱晚但得到了温度补偿,沸点越高温度补偿越大,这样就可以消除两维相关,实现真正的正交分离,同时充分利用了GC×GC的二维分离空间。根据化合物所属类型,GC×GC谱图被明显地分割成不同的区带,每一区带代表特定的族,同一族化合物在其区带内按照沸点大小不同进行分离,如烷烃、环烷烃、单环芳烃和多环芳烃等分别分布在不同的区带内,这就是GC×GC的族分离。

  • 有关气相色谱分离的问题

    [color=#444444]GC,对分离原理不甚了解,恳请各路大侠指点。以HP-5色谱柱为例,恒定温度,暂不考虑峰形。[/color][color=#444444]问题1:化合物A极性大,沸点高,柱温低于A沸点时,A在柱中不汽化而一直不出峰,这种判断对否?[/color][color=#444444]问题2:化合物B极性小,沸点低,柱温高于B沸点,在HP-5中保留较强,而较晚出峰,这种判断对否?升高柱温能缩短B的保留时间吗?[/color][color=#444444]问题3、化合物C比D极性大,沸点相近,柱温高于两者沸点(即都能气化),C比D先出峰这种判断对否?[/color][color=#444444]总之就是沸点和极性的问题没弄明白。[/color]

  • 【原创大赛】二氧化碳还原分析系统方案一 原理介绍

    【原创大赛】二氧化碳还原分析系统方案一 原理介绍

    二氧化碳还原分析系统方案一 原理介绍[align=center]概述[/align]采用自动六通阀一次切换的方法,实现对二氧化碳样品中微量氢气氧气氮气甲烷一氧化碳乙烷乙烯的定量的分析系统原理介绍。[align=center]背景介绍[/align][color=black]化石燃料属于不可再生资源,其燃烧所产生的二氧化碳(CO2)是温室效应的主要原因,众多科研机构均已开展利用光催化、电催化等方法将二氧化碳还原为CO和CH4物质的研究。其反应的产物中含有的氢气、一氧化碳、甲烷等组分需要连接[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]予以在线或者离线监测。[/color][color=black]本文介绍利用自动六通阀,单次切换的方法实现该样品的分析的一种分析方案。[/color][align=center][color=black]方案介绍[/color][/align][color=black]本系统使Shimadzu公司的GC-2014型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],配置有三个检测器——两个FID检测器和一个TCD检测器——和三根色谱柱。通过六通阀V的切换,实现三根色谱柱的不同组合,实现分离,如图1所示[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191905479296_1919_1604036_3.jpg[/img][/align][align=center]图1 系统原理图[/align][color=black]待测样品利用气密性注射器或者在线微反应装置进样,首先经由六通阀进入预分离柱C1,样品中的微量氢气、氧气、氮气和甲烷在C1柱上不能分离,作为合峰进入C3色谱柱,C3色谱柱可以将上述组分完全分离。[/color][color=black]样品中的微量氢气、氧气、氮气在TCD检测器被检测到,微量的甲烷、一氧化碳经由镍转化器(一氧化碳通过镍转化器之后生成可以被FID检测到的甲烷),在FID2检测器出峰。[/color][color=black]当合峰组分全部进入C3色谱柱后,六通阀进行切换,系统流路变为图2所示的状态。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191905481614_9206_1604036_3.jpg[/img][/align][align=center]图2 系统切换之后的状态[/align][color=black]此时C1中的载气流量发生倒转,二氧化碳、乙烷、乙烯作为合峰进入色谱柱C2,在C2中三个组分发生分离,进入FID1检测器,乙烯、乙烷出峰。[/color][align=center]小结[/align]二氧化碳光催化分析系统原理简介。

  • 【资料】合成树脂乳液中残余单体含量的气相色谱测定方法探讨

    合成树脂乳液中残余单体含量的气相色谱测定方法探讨 吴亚虎,韩婷婷(广东中山市巴德士化工有限公司品控中心,528427) 摘要:讨论了用气相色谱内标法测定合成树脂乳液中未反应完的残余单体含量的方法,并对该方法的精密度、准确度进行了考察/实验表明,该方法简单易行,准确可靠,适用于各种合成树脂乳液样品。 关键词:气相色谱;极性小口径毛细管柱;内标法; 醋酸乙烯酯、甲基丙烯酸甲酯、苯乙烯、丙烯酸丁酯、丙烯酸异辛酯等单体。 0.引言 自国家十项强制性标准颁布以后,市面上各种涂料中的有害物质必须达到国家相关限量标准。由于合成树脂乳液中未反应的残余单体对人的身体健康和环境会带来不同程度的影响,为此必须设法控制乳液中残余单体的浓度……..目前国科多采用顶空进样技术分析乳液中的残余单体含量,由于仪器投资较大,且样品回收率也不理想,样品前处理较烦锁,对于中小企业这样投资较少,易于在中小企业中推广,该分析方法较难于推广,而我们介绍的是普通分析方法。采用小口径毛细管柱,用氢火焰离子化检测器(FID)进行检测,以内标法定量。柱温采用程序升温,分离效果十分理想。其加标回收率分别在94%-103%之间,分析结果的精密度、准确度完全达到检测要求。 1.实验部分: 1.1 仪器和试剂 电子分析天平(万分之一);GC5890F气相色谱仪(带有分流装置);1.0ul微量进样器;20ml带胶塞小玻璃瓶若干;医用注射器1ml、2ml各两只;小口径毛细柱DB-17HT(0.25mm x 30m x 0.15um;最高使用温度为360℃);积分仪或色谱工作站。醋酸乙烯酯VAM(色谱纯)、甲基丙烯酸甲酯MMA(色谱纯)、苯乙烯ST(色谱纯)、丙烯酸丁酯BA(色谱纯)丙烯异辛酯2-EHA(色谱纯)、丙酮(分析纯)配成4+1混合水溶液(作稀释剂),水(纯净水或蒸馏水)。内标物:环已酮(色谱纯) 1.2 测定原理试样中加适量内标物并用少许丙酮(4+1)稀释摇匀后,用微量注射器将稀释后的溶液注入气相色谱仪,样品被载气带入色谱柱,在柱内被分离成相应的组份,用氢火焰离子化检测器检测并记录色谱图,反数据用内标法计算试样溶液中各待测残余单体的含量。 1.3 测定条件 气化温度:280℃ 检测温度:320℃ 载气:氮气:纯度≥99.99%,变色硅胶+5A分子筛除水、除油,柱前压力为60Kpa(30℃); 氢气:纯度≥99.99%,变色硅胶+5A分子筛除水、除油,柱前压力为65Kpa(30℃); 空气:变色硅胶[/fon

  • 【谱图】气相色谱法的流程

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法的流程 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法是色谱分析的一种方法。早在1906年M.C.茨维特(M.C.LIbet)分离叶绿素的各组分时,就将绿色植物叶子的石油醚提起夜(即叶绿素提起夜),通过填充有吸附剂碳酸钙(为固定相)的玻璃管(即色谱柱),然后用石油醚溶剂(为流动相)不断地冲洗玻璃管,即将叶绿素中的各组分(胡萝卜素、叶黄素等)分离,而在填充有碳酸钙的玻璃柱上呈现出不同颜色的清晰色带,这就是色谱法名称的由来。 由于上述分离过程,使用的是液体石油醚作为流动相,所以也叫液相色谱仪。以后沿用上述的分离原理,用惰性气体(N2、CO2等)作为流动相,使气态样品通过固定相而得到分离,就叫做气象色谱法,此时就没有颜色的特殊含义了。 气象色谱法是一种分离分析方法。操作时使用气象色谱仪,被分析样品(气体或液体气化后的蒸气)在流速保持一定的惰性气体(称为载气或流动相)的带动下进入填充有固定相当色谱柱,在色谱柱中样品被分离城一个个单一组分,并以一定的先后次序从色谱柱流出,进入监测器,转变成电信号,再经过放大,由记录仪记录下来,在记录纸上得到一组曲线图(称为色谱峰),根据色谱峰道峰高或峰面积就可定量样品中各组分的含量。这就是气象色谱法的简单测定过程。[img]http://ng1.17img.cn/bbsfiles/images/2007/04/200704051113_47974_1617071_3.gif[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制