当前位置: 仪器信息网 > 行业主题 > >

隧道激光断面测试仪实验原理

仪器信息网隧道激光断面测试仪实验原理专题为您提供2024年最新隧道激光断面测试仪实验原理价格报价、厂家品牌的相关信息, 包括隧道激光断面测试仪实验原理参数、型号等,不管是国产,还是进口品牌的隧道激光断面测试仪实验原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合隧道激光断面测试仪实验原理相关的耗材配件、试剂标物,还有隧道激光断面测试仪实验原理相关的最新资讯、资料,以及隧道激光断面测试仪实验原理相关的解决方案。

隧道激光断面测试仪实验原理相关的资讯

  • 顺利贯通!硬X射线自由电子激光装置项目隧道建设取得阶段性进展
    3月5日23点58分,上海硬X射线自由电子激光装置项目4号工作井至3号工作井之间的首条光束线隧道实现基本贯通,东线盾构(束线一号)顺利开始进洞工序,进洞过程顺利,盾构姿态良好。硬X射线自由电子激光装置(SHINE)是上海科技大学作为法人单位、国内迄今为止投资最大的科技基础设施项目,是国家重大科技基础设施建设“十三五”规划优先启动项目,以及上海建设张江综合性国家科学中心的核心内容和重大项目。项目于2018年4月27 日开工建设,计划2025 年建成。本次贯通的光束线隧道连接SHINE项目束线站总体的前端实验大厅和加速器总体的三号工作井,是继主加速器隧道贯通后,建安总体的又一项重要建设进展,标志着项目进入了隧道工程建设的高峰期。按照建设规划,除了已贯通的2条隧道,另外8条隧道预计在2022年内实现贯通。较一般隧道掘进,SHINE工程的隧道对轴线精度和渗水均有极高的要求。“束线一号”盾构机自2021年12月6日始发,春节期间持续掘进。整个过程中隧道轴线精度控制、渗水控制均达到了工程的要求,实现高质量、高速度建设。硬 X 射线自由电子激光科学意义重大,世界主要先进国家都争相建设各自的硬 X 射线自由电子激光装置,以掌握新历史时期的科技发展主动权。SHINE项目的建成将标志着我国拥有最新的高重频硬X 射线自由电子激光光源,可以为物理、化学、生命科学、材料科学、能源科学等多学科提供高分辨成像、超快过程探索、先进结构解析等尖端研究手段,可同时满足面向物质、单分子、超强超短单颗粒成像,以及极端光物理等实验需求。SHINE项目建成后将成为我国唯一、具备世界领先水平的第四代 X 射线光源大科学装置。
  • 磁光克尔效应系统再发Nature:全反铁磁隧道结新突破!
    巨磁阻效应自发现以来就被广泛应用于MRAM、磁传感器等自旋电子器件中。目前,基于巨磁阻效应的自旋电子器件主要是铁磁体磁隧道结,其研究和发展受限于铁磁体的使用。因此,为进一步提升自旋电子器件的磁阻比等性能,探究其他磁体开发的高效自旋电子器件的研究非常有必要。近期,东京大学的Satoru Nakatsuji团队对手性反铁磁体Mn3Sn组成的磁隧道结进行了深入探究。作者首先对Mn3Sn手性反铁磁态中自旋正极化、负极化和磁八极的投影态密度进行了表征,发现八极矩的大多数和少数能带之间存在明显的能量漂移,与铁磁性铁中自旋矩的大多数和少数能带的漂移非常相似,并根据第一性原理进行了模拟验证,结果表明Mn3Sn在基于隧穿磁阻(TMR)的器件(如MRAM)中具有巨大的应用潜力。此外,为了更好的观测其TMR效应,作者制备了基于Mn3Sn的磁性隧道结( MTJ ),测得室温下的隧穿磁阻(TMR)比率约为2%,出现在手性反铁磁状态下簇磁八极的平行和反平行构型之间。该成果以《Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction》为题发表在Nature上。图1 带簇磁八极的反铁磁隧道结(a)铁磁(FM)隧道结示意图(b)反铁磁(AFM)隧道结示意图(c)(d)铁磁隧道结和反铁磁隧道结的投影态密度图(pDOS) 本文中,作者使用了英国Durham公司的磁光克尔效应系统-NanoMOKE3,通过系统自带的磁滞回线测量功能,对反铁磁隧道结顶部和底部Mn3Sn电极的矫顽力进行了测量。图2 室温基于手性Mn3Sn反铁磁体的磁隧道结表征图 (a)高分辨率TEM表征图(b)磁光克尔测量示意图(c)顶部和底部Mn3Sn反铁磁体的磁滞回线图 英国Durham公司是依托于英国Durham大学的高科技企业。与Durham大学强大的磁光学研究相对应,Durham公司的Russell Cowburn教授(英国剑桥大学卡文迪许实验室主任,英国科学院院士)设计并研发了灵敏度能到10-12 emu兼具Kerr显微镜与回线测量功能的高精度磁光克尔效应系统——NanoMOKE3。相比于历代MOKE系统,NanoMOKE3系统将磁光克尔的光路部分集成在光学盒中,避免了实验人员测试前搭建光路的工作,大大减少了实验人员操作量。另外,光学盒中的光路经过特殊设计,可以同时实现极向克尔和纵向克尔的测量,无需调整光路,只需更换镜片即可完成极向克尔和纵向克尔的切换。左)NanoMOKE3磁光克尔效应系统;右)NanoMOKE3光学集成盒因其高集成度的系统设计和开放式的样品环境,NanoMOKE3具备丰富的拓展性。实验人员可以以NanoMOKE3系统为基础,与其他实验设备组合搭建,进行其他领域方面的测量。一、低温磁光克尔系统NanoMOKE3系统允许用户在样品台部分搭建低温恒温器,实现低温磁光克尔的测量。例如,下图所示为NanoMOKE3与美国Montana Instrument无液氦低温恒温器进行了组合使用,从而实现了10K以下的磁光克尔测量。NanoMOKE3的低温磁光克尔测量性能在国内外领域内具有极高的水平。此低温MOKE方案已在南方科技大学安装使用。NanoMOKE3 磁光克尔系统与 Montana Instrument无液氦低温恒温器组合使用示意图二、晶圆扫描探测系统如今,越来越多的晶圆检测设备采用非接触式的光学测量,取代了传统的接触式晶圆测试方法。其中,以磁光克尔效应原理进行晶圆检测的方法就因其操作简单、检测速度快而被广泛使用。Durham公司在现有磁光克尔系统基础上改造升级,推出了超高灵敏度的晶圆扫描探测系统(wafer mapper),专门用于测量整个晶圆表面的磁滞回线和磁畴图像。系统中集成的磁光克尔能对整个晶圆样品区域(可按X和Y轴自由移动)进行磁滞回线扫描和区域Mapping的测量,最终绘制得到晶圆样品整体区域的磁性分布图,从而完成晶圆样品的检测。该款晶圆级磁光克尔测绘仪选用NanoMOKE3特创的光学盒,继承了其测量速度快,操作简单的优点。整个测量过程可以通过系统自带的LX PRO3软件完成,无需进行繁琐的实验预设值,大大增加了实验效率。晶圆扫描探测系统装配图 Durham公司特创的NanoMOKE3磁光克尔光学集成盒是Cowburn教授从事MOKE系统研发和深耕多年的结晶。不但减轻了实验人员的操作繁琐度,更重要的是以磁光克尔效应为基础,为更丰富领域的测量提供了可能,有望助力各个领域科研人员实现更高水平的突破!参考文献:[1]. Chen, X., Higo, T., Tanaka, K.et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).
  • 扬州大学研制地铁隧道“体检仪”
    来自中国城市轨道交通协会的消息显示,2020年,我国内地累计有41个城市开通城轨交通线路7141.55公里。地铁已经成为城市日常出行必不可少的交通工具,但在地铁隧道中也会出现各种“病害”,威胁着人们的出行安全。  “当前,我国地铁隧道检测主要依赖人工检测和少量进口自动化设备,效率低、成本高,无法满足庞大的里程检测需求。”扬州大学信息工程学院(人工智能学院)副教授徐永安在接受采访时表示。  如何高效、准确、经济地检测出地铁隧道“病害”?在“科创导师”制的“牵线搭桥”下,扬州大学信息工程学院(人工智能学院)学生张雅欣等组建了大学生科技创新团队。由导师徐永安指导,团队研发了地铁隧道三维激光检测系统。“该系统检测速度可达国外同类设备的5倍以上。”张雅欣说。  将宝贝搬出实验室  在初中时期,受家人的影响,张雅欣萌生了创业的想法。2019年,正在上大二的她加入徐永安课题组,并组建了自己的大学生科技创新团队,选择了地铁隧道检测研究。  对张雅欣而言,导师不仅是科研路上的护航人,更是自己创业的榜样。记者获悉,在科技创新和科研成果转化路上,徐永安已经坚持了20多年。  1997年,在北京举办的中国国际机床展览会上,一个摆放着国外光学测量仪的展台被观众围得水泄不通,正在攻读博士学位的徐永安也是围观者之一。  从展会回来后,研制光学测量仪的想法一直萦绕在徐永安的脑海里。他随之改变了自己的研究方向,历经两年攻关,终于研制出国产光学测量仪。但在当时,他对科研成果转化还没有深刻的意识,便将这一宝贝成果“藏”在自己的实验室里。  “国外的设备那么贵,你有这么好的仪器,为什么不推向市场呢?”这样的声音越来越多,终于说服徐永安将宝贝搬出实验室。2011年,徐永安参与创办了一家公司,并将自主研发的光学测量仪设备推向市场。  当然,教书育人才是徐永安的本职工作。如何让学生在学习课本知识之外,学会创新思考,尝试自主研发技术并推动成果落地转化?20世纪90年代,扬州大学开启了“科创导师”制的探索之路,让学生在导师的指导下参与科技创新工作。  徐永安说:“过去,学生与导师的关系,主要是学生在导师的实验室开展科研,导师对学生的毕业设计进行指导。现在,导师不但要在科研上指导学生,还要带领学生开展科创工作。”  深入隧道后改变方法  谈及为什么选择地铁隧道检测研究,张雅欣告诉记者,目前,国内外地铁隧道自动化检测系统大多采用1个激光点绕隧道旋转的测量技术,检测速度慢。“好比一个电动机带着一个手电筒旋转,手电筒每次照射在物体表面时只能出现一个亮斑。这意味着每次只能采集一个点,效率太低。”  如何实现快速检测呢?经过一年多的攻关,以张雅欣为首的大学生科技创新团队研发出6条激光线扫描技术,360°环形激光线投射在隧道表面,8部每秒500帧高速数码相机实时采集隧道表面的激光线图像,并换算为隧道表面形状坐标。张雅欣解释道:“6条激光线同时工作,地铁隧道检测效率得到显著提高。”  然而,研发过程并非一帆风顺。在徐永安的指导下,张雅欣带领团队先后前往青岛、兰州、佛山等城市的地铁公司,深入地铁隧道,开展实践调研。团队在调研中发现,地铁公司对隧道快速检测系统有着迫切的需求。  在精准了解地铁隧道检测痛点后,张雅欣团队开始了与时间“赛跑”的测量工作。“我们只能在夜间12点到凌晨4点进入现场开展检测工作,因为这段时间地铁处于停运状态。另外,每天进入现场前的安检过程就要耗费半个多小时,实际的测量时间非常有限。”  经过近3个月的测量,张雅欣团队发现进展缓慢,于是做出了改变测量方法的决定,希望提高检测效率。经过徐永安的点拨,团队在实验室里自建了模拟隧道。“在模拟隧道里开展实验,不但提高了实验效率,缩短了研发周期,还解决了后期新冠疫情期间实地检测的困难。”张雅欣介绍说。  在解决了测量环境问题后,团队又遇到了由振动引起的测量误差问题。“测量车在轨道上运行会产生轻微振动,这种振动会带来一些误差。”张雅欣团队成员吴传昊告诉记者。为此,团队采用了基于特征面的方法对隧道测量数据进行纠偏,“这种方法可以大幅降低测量车振动对测量精度的影响,降低动态测量误差。”  “该系统检测速度最高可达每小时17.1公里,是国外同类设备的5倍以上,动态精度为±1.6毫米,检测密度小于2毫米,而价格只有国外设备的70%左右。”张雅欣表示,系统还可以根据用户需求制定检测速度、密度、精度。  徐永安透露,目前,该系统申请发明专利4项、登记软件著作权4项,通过了江苏省产品质量监督检验研究院质检,符合CMA中国计量认证标准。  大学生创业还需多磨砺  来自用户的消息显示,张雅欣团队研发的这套系统已在投入运营的地铁隧道进行了实地检测,在检测速度、精度以及密度方面均满足实际应用要求。目前,已有多家轨道交通公司与团队达成初步合作意向。  张雅欣表示,下一步团队将继续对产品进行优化设计,并计划注册成立公司。“地铁里程数较大的城市,可直接购买检测系统 地铁里程数小的城市,可购买检测服务。”  在张雅欣看来,虽然研发过程非常艰辛,但非常有意义。“一方面培养了我们解决问题的能力,另一方面还培养了我们团队建设、组织和管理的能力,对未来的创业起了铺垫作用。”  她感叹道:“大学生参与科创,要有顽强的毅力和勤奋刻苦的精神,对团队中不同的意见要善于倾听,脚踏实地攻克每一个难关。”  徐永安也指出,对于刚毕业的学生而言,如果没有成熟的技术积累和市场认知,可以先进入企业积累几年经验,对市场形成一定认知后再进行创业。  在他看来,高校“孵化器”应该实现良性循环,当政府和高校投入资金等支持后,若能实现良好的产出,投入的积极性也将越来越大,反之则可能陷入不良循环。“政府和高校还应进一步研究如何解决这一矛盾。”
  • 隧道检测仪器保障地铁安全运营
    “从1969年10月1日北京地铁一号线试运行至今已经历50多年,我国地铁里程不断攀升。据中国城市轨道交通协会最新统计,2020年我国地铁运营总里程6200多公里,在建5000多公里,总历程达到超过一万公里。当前,我国北、上、广、深等特大城市,轨道交通里程处于世界前五的水平。”近日,北京交通大学副教授王耀东接受采访时说。  而地铁隧道病害与表面状态检测则是保障安全运营的重要内容之一。“否则,地铁隧道一旦发生事故,将会给生命财产带来巨大损失。”在4月22日举行的聚焦2021年北京地区广受关注学术成果报告会上,王耀东说。随着隧道病害检测技术的快速发展,他和团队正在尝试将机器视觉、先进传感等技术引入相关检测,让这一过程变得更加高效、智能。  隧道“体检”,从人工巡检到机器检视  地铁交通极大方便了城市居民的出行,但是地铁隧道中出现的各种“病害”,如隧道裂缝、渗漏水、沉降、衬砌剥落、掉块等,给电客车安全运营带来挑战。  以隧道裂缝为例,王耀东表示,其形成原因比较复杂,岩层性质、岩土压力、混凝土收缩、结构移位变形、侵蚀破坏、施工遗留等都是潜在诱因。别是南方的过江过河隧道或地下水较丰富区域的隧道,如果产生裂缝产生就会产生渗漏水,影响地铁运行的安全。因此需要定期巡检,及时养护、维修。  王耀东还记得2012年回国之初跟随地铁巡检人员做现场数据采集的情形。“凌晨1点到4点,夜深人静,地铁停运,才会开始人工巡检,要用肉眼观察、手写记录。”  他表示,尽管传统的超声波检测法、声发检测法、电磁波检测技术等不断提高检测精度,但速度低、效率慢,难以满足现代轨道交通快速发展的需求。而信息技术的发展,多维传感、机器视觉检测技术的使用则为这项检测工作的提速、高效提供了新的契机。  “机器视觉的特点是效率高、可移动、非接触,特别是信息处理自动化、智能化、数字化,也是隧道巡检的发展方向。”王耀东说。他和同事在不断尝试把机器视觉技术、图像处理技术、多维感知、人工智能等技术,应用在隧道病害检测当中,这些智能巡检技术可以逐步代替人工,完成隧道基础设施的自动检测。  裂缝识别,让机器拥有“人眼”和“大脑”  “裂缝检测智能巡检技术主要分两个步骤,第一步是图像裂缝采集,利用高速相机和特制的辅助光源,保证采集到高质量的隧道图像 第二步是裂缝病害图像处理,对所有原始图像进行预处理,包括:匀光处理、连通区域分块化、噪声滤波等,提取纹理目标进行特征判断,最后识别裂缝区域,为后续速调维护提供技术支持。”王耀东介绍。  这些听起来似乎很简单,但如何让机器像人眼一样,全面、精细采集图像,并像人脑一样准确地识别裂缝种类呢?每一步做起来都不简单,都需要精细化的算法研究和关键技术的攻克。  例如,他们研发了图像采集系统样机引入了线阵相机(进行连续拍摄形成二维图像,避免图像重叠和数据冗余)、面阵相机(针对隧道中照明不佳,进行大面积强光源补光)、定向运动设备(对隧道进行扫描式图像采集降低漏检率),来获得高质量的图像。他们还开发出一套表面裂缝图像的批量识别软件,设计出核心算法进行图像处理。  经过近十年的“磨剑”,王耀东及团队成员克服各种挑战,2018年在发表于《铁道学报》的论文研究中,首次报告了基于局部图像纹理计算的隧道裂缝视觉检测技术。他们研发的一套图像采集系统实验样机,将线状激光光源、高速线阵相机、激光发生器、图像采集卡,安装在可调节移动式视觉检测平台上,可在隧道中进行巡检。然后将高分辨率裂缝图像分成子区域,针对性地进行算法研究,完成最后的检测。  “这种智能巡检技术有助于解放人力,服务地铁运维。”王耀东说。他坦言,从综合指标看,目前这种技术对于背景简单的普通隧道裂缝识别率比较高,可以达到84%以上。但对于比较复杂环境下的裂缝,识别率还有待提高。”。  2018年至今,随着深度学习卷积神经网络深入发展,对海量隧道图像的计算性能有了数十倍的提升,识别率也有较大提高。然而,王耀东表示,对于复杂恶劣环境下,肉眼难以观察的微小缺陷仍然很难检测到。  增强自主创新,助力交通强国建设  王耀东希望,在未来检测算法上,加强对不同类型纹理噪声的识别,提高图像处理的计算效率,进一步提高隧道病害检测效率。  为此,他们建立了隧道病害样本库,基于深度学习,对隧道表面病害图像多分类智能识别。为了更好地采集图像,他们还对采集系统进行了模块化研发,并研制了隧道巡检机器人,对隧道裂缝、三维形变、沉降进行检测。  目前,他们还在研制多种类、移动式隧道检测平台,如低速便携手推式(0-10公里/小时)检测平台,到中速紧凑自主行走式检测平台(0-30公里/小时),再到高速车载式综合检测平台(0-100公里/小时)的,以及路轨两栖式综合平台(0-60公里/小时)。对隧道、轨道多维数据进行采集,并进行智能分析和大数据处理,最后生成区间报表提供给专业人员使用,用于隧道和轨道维护。  “目前,我国轨道交通运营里程已经位居世界第一位,智能运维也处于世界前列。”王耀东说,但仍然亟需加强自主创新。他举例说,我国轨道交通智能数据采集设备、高精尖传感器还需要从国外进口,这些设备有的一套系统单一功能,但因为技术被国外垄断,报价却达到数百万元,甚至上千万元。  “我们科技工作者还要继续努力,推动基础研究创新,将主动权掌握在自己手中。”他说,2035年我们国家要基本建成交通强国,这将推动我国城市轨道交通进一步向大数据、智能化、精准化方向去发展,让老百姓出行更安全、更便利,乘坐舒适性更高。
  • 第十一届扫描隧道显微学学术会议举办
    仪器信息网讯 2010年11月3日-5日,由中国科学院武汉物理与数学研究所承办的第十一届扫描隧道显微学学术会议在武汉举行。130余名来自全国高等院校、科研机构、企业的从事扫描探针显微学的专家学者参加了此次会议。仪器信息网作为独家支持媒体也应邀参会。会议现场  扫描隧道显微学学术会议是由白春礼院士发起的全国性会议,每两年一届。会议开幕式由中国科学院武汉物理与数学研究所曹更玉研究员主持,中国科学院武汉物理与数学研究所党委书记詹明生研究员致开幕词。  中国科学院武汉物理与数学研究所 曹更玉研究员  中国科学院武汉物理与数学研究所党委书记 詹明生研究员  本次会议内容主要包括:扫描隧道显微学(STM)与物理、扫描隧道显微学与化学和材料科学、扫描探针显微学(SPM)在生命科学中的应用、扫描探针显微学技术进展。会议展示了最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果。  扫描隧道显微学与物理学  报告人:中国科技大学 杨金龙教授  报告题目:Theoretical studies of inelastic electron tunneling phenomena in STM  杨金龙教授介绍了课题组近几年在STM非弹性扫描隧道谱方面的理论研究工作:1. 非弹性电子在扫描隧道显微镜的应用中产生的许多现象;2.在常规的程序包中增加程序,并用于理论非弹性隧道谱和模拟实验的比较;3.研究非弹性电子在扫描隧道显微镜实验中所产生的表面分子化学运动,如旋转、激发、断键等;4.非弹性电子引起的 “分子开关”效应。  报告人:合肥微尺度物质科学国家实验室 董振超教授  报告题目:STM诱导的分子光电新现象  董振超教授指出扫描隧道显微镜不仅可以用来观察和操纵纳米世界的单个原子和分子,而且其高度局域化的隧穿电流可以激发隧道结发光,他介绍了自己如何通过分子光子态调控来实现分子隧道结的新光电效应。  报告人:中国科学院物理研究所 肖文德研究员  报告题目:Ru(0001)上外延生长单层石墨烯的电子结构和振动模式的STM研究  肖文德研究员介绍说虽然光电子能谱、拉曼光谱、红外光谱等技术可对石墨烯的电子和声子特性进行研究,但是这些技术通常获得的是样品表面较大范围的平均信息。而石墨烯通常都呈现一定的起伏和皱,应用高分辨扫描隧道显微镜的扫描隧道谱和非弹性隧道谱法,实现了对Ru(0001)上外延生长单层石墨烯不同区域的电子结构和振动模式的研究。  此外,来自合肥微尺度物质科学国家实验室的张汇博士介绍了利用扫描隧道显微镜研究Si(111)表面In原子链上的一种孤子,并利用第一性原理的计算得到了这种孤子的精确结构。大连理工大学吴永宽博士利用原子力显微镜对室温沉积的Ge2Sb2Te5薄膜进行实位温控成像研究。上海交通大学分析测试中心的邹志强研究员利用超高真空STM对Mn及其硅化物薄膜在Si(111)衬底上的固相外延和反应外延生长进行了详细研究。  扫描隧道显微学与化学和材料科学  报告人:华南理工大学材料科学与工程学院 邓文礼教授  报告题目:设计合成有机分子的纳米构筑和仿生纳米制造探索  邓文礼教授设计合成了1,3,5-苯三氧十三酸乙酯等化合物分子,并了在大气环境条件下,利用扫描隧道显微镜分别研究了合成化合物分子在固态表面的吸附和自组装行为。  此外,邓文礼教授重点介绍了对于爬山虎吸盘粘附作用的研究,通过探究其表面结构、所含的天然成分、生长过程等实现纳米仿生粘附材料的研制,并期望可以在航空航天、医学、建筑等领域发挥作用。邓文礼教授研究小组是目前国内唯一的从事相关研究的课题组。 报告人:中国科学院武汉物理与数学研究所 于迎辉副研究员  报告题目:Cu-Al(111)合金及其表面氧化铝薄膜的物性研究  于迎辉研究员通过在Cu(111)中引入杂志Al形成α相的Cu-Al合金,进而在合金表面生长有序的氧化铝薄膜做为脱偶层。利用俄歇电子能谱表征Cu-Al合金表面的Al含量、低能电子衍射和低温扫描隧道显微镜检测Cu-Al(111)合金表面原子结构及电子分布。  扫描探针显微学在生命科学中的应用  报告人:吉林大学超分子结构与材料国家重点实验室 张文科教授  报告题目:AFM在核酸-蛋白质相互作用研究中的应用  张文科教授利用原子力显微镜(AFM)成像原位观测核酸与蛋白质之间的相互作用,研究了双螺旋DNA的AFM单分子力学指纹谱,并利用该力学指纹谱研究DNA结合蛋白与DNA的相互作用、外力诱导下DNA构象转变的本质。最后,张文科教授以烟草花叶病毒为例,探索了单分子力谱在研究复杂体系中核酸-蛋白质相互作用中的应用。  报告人:暨南大学 蔡继业教授  报告题目:扫描探针显微学结合量子点标记研究细胞表面分子  蔡继业教授介绍说单分子探测是目前的一个研究热点,但大部分集中在材料和化学研究中,对于细胞中单分子的研究比较少。扫描探针显微镜克服了共聚焦显微镜、扫描电镜在细胞研究中的缺点,量子点标记解决了荧光漂白的缺点。将扫描探针与量子点标记相结合实现了特异性识别细胞表面的抗原和抗体,并探测它们之间的相互作用力。  对于扫描探针显微学在生命科学中的应用,东南大学曹黎黎博士介绍了利用AFM研究小分子药物作用于环状双链DNA分子所引起的DNA结构和构象的变化。武汉大学林毅副教授提出一种基于轻敲模式原子力显微术成像原理的在成像同时测量压缩弹性模量通用方法,并应用于单根双链DNA径向压缩弹性模量的测量。东南大学巴龙教授设计了原子力探针的磁力驱动线圈,用于研究聚电解质多层微囊的动态力学性质及其与结构的关系。  扫描探针显微学技术进展  报告人:北京航空航天大学 钱建强教授  报告题目:原子力显微镜自激振调频检测成像模式的研究  钱建强教授介绍了自行研制的基于自激励振荡音叉探针的调频成像模式原子力显微镜。采用石英音叉探针作为力检测敏感原件,通过对其驱动电极施加正反馈,在自激振荡控制下使其在谐振频率下工作。由于不使用外部的探针振荡检测器和外部的探针激振器,系统结构简单并且易于操作。通过实验表明仪器能够满足频率调制模式成像要求。  此外,将具有高空间分辨率的STM与化学分析能力较强的拉曼光谱结合是一种新型的表征手段。中国科学院苏州纳米技术与纳米仿生研究所钟海舰博士采用自主研发的基于扫描探针显微镜和拉曼光谱仪的扫描近场光电探针测试系统,研究了化学气相沉积方法生长的石墨烯,可在获得样品表面形貌的同时,进行样品原位的局域电学性质研究和光谱测试。中国科学技术大学张瑞博士介绍了实验室组建的结合STM的具有超高真空、低温环境的TERS(针尖增强拉曼光谱)实验设备,利用该设备实现了Au(111)上分子薄膜、单个分子的TERS检测,并在Au(111)台阶处几个分子上得到了约4nm的TERS空间分辨率。  会议同期还设置了论文墙报展及小型仪器展览会。布鲁克、安捷伦、天美科技、岛津、SPECS、NT-MDT、汇德信科技等仪器厂商和仪器代理商参加了展会。论文墙报展   本届大会还评选了“青年科技奖”,用于表彰在扫描探针显微镜研究领域取得突出成就的青年学子,中国科学技术大学张汇博士、暨南大学李盛璞同学获此殊荣。中国科学院物理研究所徐文炎博士、厦门大学李纪军博士获得了本届大会的“优秀墙报奖”。据了解,第十二届扫描隧道显微学学术会议初步确定将由陕西师范大学承办。颁奖现场参会人员合影
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 一文看懂扫描隧道显微镜STM/AFM
    p  strong扫描隧道显微镜/strong(scanning tunneling microscope,缩写为STM),亦称为扫描穿隧式显微镜,是一种利用量子理论中的隧道效应探测物质表面结构的仪器。它于1981年由格尔德· 宾宁及海因里希· 罗雷尔在IBM位于瑞士苏黎世的苏黎世实验室发明,两位发明者因此与恩斯特· 鲁斯卡分享了1986年诺贝尔物理学奖。/pp  它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。/pp  它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持稳定的电流,依此来观测物体表面的形貌。/pp  换句话说,扫描隧道显微镜的工作原理简单得出乎意料。就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有落,如此便极其细致地探出它的轮廓。在许多的流通后,通过绘出电流量的波动,人们可以得到组成一个网格结构的单个原子的美丽图片。/pp  strong原子力显微镜/strong(atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscopy,SFM))是一种纳米级高分辨的扫描探针显微镜,是由IBM苏黎士研究实验室的比宁(Gerd Binning)、魁特(Calvin Quate)和格勃(Christoph Gerber)于1986年发明的。AFM测量的是探针顶端原子与样品原子间的相互作用力——即当两个原子离得很近使电子云发生重叠时产生的泡利(Pauli)排斥力。工作时计算机控制探针在样品表面进行扫描,根据探针与样品表面物质的原子间的作用力强弱成像。/pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100352076.jpg" height="210" width="459"//centerp style="text-align: center "strong世界上第一台原子力显微镜和发明人之一比宁/strong/pp  以一种简单的方式进行类比,如同一个人利用一艘小船和一根竹竿绘制河床的地形图。人可以站在小船上将竹竿伸到河底,以此判断该点的位置河床的深度,当在一条线上测量多个点后就可以知道河床在这条线上的深度。同样道理绘制多条深度线进行组合,一张河床的地形图就诞生了。与此类似,在AFM工作时的,原子力传感器相当于人和他手中的竹竿,探针顶端原子与样品原子间作用力的大小就相当于竹竿触及河底时水面下的长度。这样,在一艘小船(控制系统)的控制下进行逐点逐行的扫描,AFM就可以绘制出一张显微图像啦。/pp  /pcenterimg alt="" src="http://www.kepu.net.cn/gb/special/hydrogenbond/basicknowledge/201312/W020140613331100358209.jpg" height="283" width="388"//centerp style="text-align: center "strong普通原子力显微镜的原理示意图/strong/pp  原理解释起来并不算十分复杂,但是AFM的发明、使用与改进汇聚了大批科学家们的辛劳努力和创造性思维。特别是拍摄到氢键实空间图像所使用的非接触式原子力显微镜,经过分子沉积、温度控制、防振、探针、真空、控制系统等多方面的摸索与改造才最终具有如此强大的分辨能力。/pp strong1 基本原理/strongbr//pp  原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。/pp  strong2 /strongstrong成像模式/strong/pp  原子力显微镜的主要工作模式有静态模式和动态模式两种。在静态模式中,悬臂从样品表面划过,从悬臂的偏转可以直接得知表面的高度图。在动态模式中,悬臂在其基频或谐波或附近振动,而其振幅、相位和共振与探针和样品间的作用力相关,这些参数相对外部参考的振动的改变可得出样品的性质。/pp  1)strong接触模式/strong/pp  在静态模式中,静态探针偏转用做反馈信号。因为静态信号的测试与噪音和偏移成正比,低硬度探针用来增强外偏转信号。然而,因为探针非常接近于样品的表面,吸引力非常强导致探针切入样品表面。因此静态原子力显微镜几乎都用在总使用力为排斥力的情况。结果,这种技术经常被叫做“接触模式”。在接触模式中,扫描过程时保持探针偏转不变来使其探针和样品表面的作用力保持恒定。/pp  2)strong非接触模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/5/5d/AFM_noncontactmode.jpg" height="291" width="350"//centerp style="text-align: center "strong原子力显微镜非接触模式/strong/pp  在这种模式下,悬臂上的探针并不接触样品表面,而是以比其共振频率略高的频率振动,振幅通常小于几纳米。范德华力在探针距离表面样品1~3纳米时最强,它与其他在表面上的长程力会降低悬臂的振动频率。/pp  通过调整探针与样品间的平均距离,频率的降低与反馈回路一起保持不变的振动频率或振幅。测量(x,y)每个数据点上的探针与样品间的距离即可让扫描软件构建出样品表面的形貌。/pp  在接触模式下扫描数次通常会伤害样品和探针,但非接触模式则不会,这个特点使得非接触模式通常用来测试柔软的样品,如生物组织和有机薄膜 而对于坚硬样品,两个模式得到的图像几乎一样。然而,如果在坚硬样品上裹有一层薄膜或吸附有流体,两者的成像则差别很大。接触模式下探针会穿过液体层从而成像其下的表面,非接触模式下则探针只在吸附的液体层上振动,成像信息是液体和下表面之和。/pp  动态模式下的成像包括频率调制和更广泛使用的振幅调制。频率调制中,振动频率的变化提供探针和样品间距的信息。频率可以被非常灵敏地测量,因此频率调制使用非常坚硬的悬臂,因其在非常靠近表面时仍然保持很稳定 因此这种技术是第一种在超高真空条件下获得原子级分辨率的原子力显微镜技术。振幅调制中,悬臂振幅和相位的变化提供了图像的反馈信号,而且相位的变化可用来检测表面的不同材料。 振幅调制可用在非接触模式和间歇接触领情况。在动态接触模式中,悬臂是振动的,以至悬臂振动悬臂探针和样品表面的间距是调制的。[来源请求]振幅调制也用于非接触模式中,用来在超高真空条件下使用非常坚硬的悬臂和很小的振幅来得到原子级分辨率。/pp  strong3)轻敲模式/strong/pp  /pcenterimg alt="" src="http://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg/285px-Single-Molecule-Under-Water-AFM-Tapping-Mode.jpg" height="215" width="190"//centerp style="text-align: center "strong在不同的pH的溶液环境中使用轻敲模式得到的高分子单链的原子力显微镜图(0.4 nm 厚)/strong/pp  通常情况下,绝大部分样品表面都有一层弯曲液面,为此非接触模式下使探针足够靠近样品表面从而可以测试短程力,但是此时探针又容易粘贴到样品表面,这是经常发生的大问题 动态模式就是为了避免此问题而发明的,又叫做间歇接触模式(intermittent contact)、轻敲模式(tapping mode)或AC模式(AC Mode)。在轻敲模式中,悬臂通过类似于非接触下的装载在探针上的微小的压电元件做来上下振动,频率在其共振频率附近,然而振幅则远大于10纳米,大概在100~200纳米间。当探针越靠近样品表面时,探针和样品表面间的范德华力、偶极偶极作用和静电力等作用力会导致振幅越来越小。电子自动伺服机通过压电制动器来控制悬臂和探针间的距离,当悬臂扫描样品表面时,伺服机会调整探针和样品间距来保持悬臂的预设的振幅,而成像相互作用力则得到原子力显微镜轻敲模式图像。轻敲模式减少了接触模式中对样品和探针和损伤,它是如此的温和以致于可以成像固定的磷脂双分子层和吸附的单个高分子链。比如液相的0.4纳米厚的合成聚合物电解质,在合适的扫描条件下,单分子实验可以在几小时内保持稳定。/pp  strong3 优点与缺点/strong/pp  相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。他就像盲人摸象一样,在物体的表面慢慢抚摸,原子的形状很直观的表现。/pp  和扫描电子显微镜相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。/p
  • 激光粒度原理及应用
    p  粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。/pp  激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。/pp  strong激光粒度仪的光学结构/strong/pp  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。/pp  strong激光粒度仪的原理/strong/pp  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。/pp  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。/pp  为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。/pp  strong激光粒度仪测试对象/strong/pp  1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。/pp  2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。/pp  3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。/pp  strong激光粒度仪的应用领域/strong/pp  1、高校材料/pp  2、化工等学院实验室/pp  3、大型企业实验室/pp  4、重点实验室/pp  5、研究机构/pp  文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115)/ppbr//p
  • 地铁隧道气象传感器-一款闪闪发光的五要素气象传感器@2023已更新《风途/仪器》
    地铁隧道气象传感器Czujnik pogody tunelu metra风途【FT-WQX5】是一款闪闪发光的五要素气象传感器。随着公路隧道向长大化方向发展,行车速度和密度加大,公路隧道火灾事故的发生率也随之增加,隧道通风排烟问题也逐渐引起高度重视。  一、产品简介  山东风途物联网科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。  与传统的微型气象仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。  FT-WQX5型五要素微气象仪创新性地将风速、风向、温度、湿度、大气压力通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将五项参数一次性输出给用户。  二、产品特点  1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡(实用新型专利,专利号ZL 2020 2 3215713.X)☆  2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向(发明专利,专利号ZL 2021 1 0237536.5)☆  3、风速、风向、温度、湿度、大气压力五要素一体式(实用新型专利,专利号ZL 2020 2 3215649.5)☆  4、采用先进的传感技术,实时测量,无启动风速☆  5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行  6、高集成度,无移动部件,零磨损  7、免维护,无需现场校准  8、采用ASA工程塑料室外应用常年不变色  9、产品设计输出信号标配为RS485通讯接口(MODBUS协议) 可选配232、USB、以太网接口,支持数据实时读取☆  10、可选配无线传输模块,最小传输间隔1分钟  11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆
  • 先进检测仪器助力隧道“体检” 获隧道界“奥斯卡”奖
    昝月稳在颁奖礼上  西南交通大学教授昝月稳团队凭借“高效快速检测隧道衬砌结构状态车载探地雷达新技术”,获得国际隧道与地下空间协会(ITA)颁发的2015年度技术创新奖。  这一被誉为隧道界“奥斯卡”的奖项今年吸引了全球103个项目参评,最终8个项目获奖。昝月稳团队的参评项目是中国今年获得的唯一奖项,也是ITA颁发的首个年度技术创新奖。这项检测技术,被ITA赞为“解决了国家铁路网隧道安全检查的重大问题,具有显著的社会效益”。  历时14年,研制出隧道新型“体检设备”  随着交通日益发达,地铁、公路隧道、穿山铁路隧道等地下交通在我们的生活中占有越来越大的比重。  不过,这些隧道开始运营之后,就像人体一样,会产生生老病死等各种问题,随之出现的落石、漏水、开裂等等,会对交通和安全产生不可估量的危险。因此,需要经常对这些隧道进行“体检”。但是,目前的体检方式还依赖于人工,检测人员操纵笨重的机器一步步的检测,有时仅仅一公里的隧道,一天都检测不完。  11月19日,国际隧道与地下空间协会在瑞士举行了一场颁奖典礼,由西南交通大学教授昝月稳、李志林等申报的“高效快速检测隧道衬砌结构状态车载探地雷达新技术”项目获得了年度技术创新大奖。这也是我国获得的唯一奖项。  这种车载探地雷达系统大大颠覆了现在的隧道检测技术,不仅解放了人力,还将检测成本至少降低了一半。而今年10月,这种检车方法已经在成都铁路局所属的达成铁路上应用了。  对比  老方法  检测人员手举天线一公里隧道一天都检测不完  “目前,隧道的运行周期是一百年,它会不断地老化,会产生各种问题。”12月18日上午,在西南交大,昝月稳教授介绍起了他的这项研究。  他说,隧道老化很正常,但列车在隧道运行的时候,最害怕的就是隧道掉块、漏水,掉块砸到列车,被迫停车,封锁线路十几个小时的事情都是有的。为了减少这种状况的发生,就需要经常对隧道进行体检。  而现在平常检查隧道的方法比较“原始”,主要依靠人工,拿着手电筒在隧道走上一遍,照一下重点方位,靠人判断是否有状况发生。  每隔一段时间,还会进行全面“体检”,通常用的是“探地雷达”,趁着列车行进的间歇,把机器开进隧道,由人工压着天线紧贴隧道墙壁,探头通过天线发射电磁波,检测人员再通过回波探测出墙下结构,分析墙面状况。这种人工检测的方法约莫需要七八个工作人员同时工作,检测时速在5公里左右,需要来回五次才能把整个隧道检测完毕。“因为检测必须在列车行进间歇进行,有时候一公里的隧道,一天都检测不完,”昝月稳说道。  新成果  6个探头安在列车尾部成都到西安一晚就能完成检测  同传统人工检测使用一个探头不同,昝月稳研究的“车载探地雷达设备”是安装在一节列车车厢的尾部,上方和左右两侧共有6个探头同时探测,与此同时,它的最高时速可以高达175km,只需要两名工作人员监控系统,就可以在正常的列车运行条件下完成整条线的检测。  “以前人工检测必须紧贴着墙壁,你看这个,安装在列车上的探头,距离墙壁的最远距离多达2.25米。”昝月稳指着图示解释说,以前的人工探测就像是照相机,而他的“车载探地雷达设备”就像是摄像机,列车一路行走,探头就能完成记录整个过程中的地质状况。“而为了保证质量,目前我们检测时列车运行时速为80公里。从成都到西安,坐在车上不用动,一晚上就可以完成整条线的检测。”  从间歇式的5公里/时到目前的80公里/时,从原来的紧贴墙壁到现在可透过空气检测,从原来的单线检测到现在的6个探头同时检测,不仅减少了人力,还把检测费用降低到了原有的一半,昝月稳的“车载探地雷达设备”彻底地改变了国家铁路网隧道病害不能普查和定期体检的现状。这项技术不仅节省了人力成本,还降低了检测费用。2015年,这项技术在西安铁路局全面推广并在成都铁路局达成铁路上应用。  应用  2002年开始测试今年已应用在成都线路上  这项技术是以昝月稳为主的科研团队从2002年开始研制,2012年,西南交通大学以此项技术申报国家发明专利,2014年4月获得国家发明专利权。  2013年1月,这项科研项目通过铁道部科技司课题验收,2015年,这项检测技术开始在西安铁路局所管辖的线路上进行全面推广,并进行了所有线路的检测。今年10月,在成都铁路局所管辖的达成线上完成检测。  “其实,这项技术不仅仅可以用在铁路隧道上的检测,在地铁隧道和公路隧道上,也具有广阔的应用前景。”这不,今年10月,这个项目还在广州地铁上进行了检测,测试效果也非常好。  背后故事  14年潜心研究  曾背着主机显示屏徒步10公里去测试  一个科研项目的成功,背后当然凝聚着研究人员的心血,而这项“车载探地雷达设备与技术”的成功,昝月稳整整用了14年的时间。  2002年,作为某单位里的唯一一名博士,他辞掉安稳的科长职务,开始专心研究车载探地雷达技术。当时,研究人员少、资金短缺,他就和几个科研人员背着显示器、计算机主机、探头、天线等一整套的探测雷达系统,走上10多公里的小路,到大山中的隧道中去探测。科研经费短缺,他就自己边赚钱边研究。  昝月稳说,因为需要跟着列车走,几天几夜吃住在车上的事情都是常有的。冬天内蒙古冷到零下28℃,那时候他就知道了手摸到铁皮要粘起来的感受。新隧道检测,里面全部是粉尘,他们就用被单把列车的车门、窗户全部蒙起来。  不过,这些苦还不是最大的挑战。最让他们焦心的是,研究过程中机器设备的耗损,一不小心就会坏掉,三更半夜到了车站,来不及休息,就到处敲门找人去修,“没办法呀,不修好所有数据都没了,这一趟真的是白跑了,那时候半夜去敲门的状况还是很多的。”最让昝月稳印象深刻的是一次事故,列车到了陕南的一小站,山间容易起雾,设备都是放在露天的车站,早上五六点发车,一启动,接收器全部都烧了,没有办法,只能白跑一趟,回去再全部重新定做机器。  昝月稳说,隧道的一般病态有漏水、断裂、腐蚀老化、掉块等,为保证运输隧道安全,需要对其进行病害普查,特别要对老龄隧道进行定期检查。该项目就是为铁路隧道提供“体检”的新设备与技术。
  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 长生不老神丹妙药的炼丹技术一细胞时空隧道技术
    摘要:间充质干细胞,干细胞外泌体已经被广泛应用到了多个领域的临床研究中,是医药史上最为复杂的治疗性产品。间充质干细胞,外泌体直接输入注射治疗法永远也不可能修成正果,时间机器突破干细胞瓶颈所面临的重重困难和障碍,利用细胞时间隧道技术与衰老组织细胞进行胞质效应交换能生产出万能干细胞,是再生医学长生不老的“神丹妙药”。1、干细胞治疗技术尚不成熟面临一系列技术瓶颈近年来,间充质干细胞,外泌体已经被广泛应用到了多个领域的临床研究中,其中包括多项疾病的临床治疗在肝损伤、肾损伤等方面都展现出强大的修复再生能力。间充质干细胞外泌体具有间充质干细胞的生物学特性,并且其含有大量且种类繁多的蛋白质、细胞因子和生物活性物质。此外,间充质干细胞外泌体中的miRNA,可以调控基因表达,其比例比细胞更高,例如miR-155、let-7f、miR-199a、miR-221、miR-125b-5p和miR-22等,使得其能够参与多种生理和病理过程,起到对多项临床疾病的干预治疗。有望取代技术不成熟的间充质干细胞,成为细胞治疗时代的下一个风口。干细胞制品的复杂多能性,动态性、异质性问题从根本上挑战了药物的均一性、稳定性基本质量要求。是干细胞临床治疗技术绕不过去的一道弯。从以上资料中我们可以看到一方面是干细胞科研成果不断涌现,而另一方面又是干细胞治疗技术产品的不成熟,不断的遭遇到夭折。临床应用干细胞面临着一系列技术瓶颈,怎样突破干细胞技术瓶颈所面临的重重困难和障碍,去再创辉煌。这就要我们从干细胞基础领域里去做起寻找突破口。2、生命分子时间无处不在,干细胞与时间撞碰将化解所有的技术瓶颈自从H. G. Wells于1895年撰写了他的著名小说《时间机器》以来,时间旅行便成为一个流行的科幻小说主题,但是它能真的实现吗?建造一台把人运送到过去或是未来的机器可能吗?爱因斯坦企图解释时间,由于他提出测量时间要取决于观察者如何运动等苛刻条件,以至于未能完成对时间的真正理解。生命科学则不同,任何学者都能正确分辨DNA、蛋白质的时间。例如原核mRNA半衰期平均大约3min,真核mRNA的半衰期平均3h,有的寿命长达数天。正常的P53蛋白半衰期为20min,突变型P53-蛋白半衰期为2~12h,如人正常细胞一生只能分裂50~60次,而突变的癌细胞无限增殖性,成为“不死”的永生细胞。在分子端粒酶、糖蛋白糖链、P53蛋白半衰期上,生物时间概念无所不在,有了时间概念,时间机器也就不在话下了。然而这一切归根结底就还是干细胞临床应用基础理论出现了问题,干细胞目前还是处于分子遗传学水平,当干细胞临床应用真正踏入生命量子时代,基因对分子时间有了进一步认识。干细胞有了时间概念,终将化解当前临床转化所有的技术瓶颈。事实上干细胞逆分化也正是想要建造一座细胞逆时空隧道来低抗人类衰老。根据爱因斯坦的相对论,干细胞魂牵梦绕的时空隧道它会出现吗?3、分子遗传学细胞时空隧道技术分子遗传学己经成功制造了时间机器,但它却还不知道什么是时间机器。克隆羊“多莉”的诞生震惊了世界。多莉的诞生证明高度分化成熟的哺乳动物乳腺细胞,仍具有全能性,还能像胚胎细胞一样完整地保存遗传信息,这些遗传信息在母体发育过程中并没有发生不可恢复的改变,还能完全恢复到早期胚胎细胞状态,最终仍能发育成与核供体成体完全相同的个体。以往的遗传学认为,哺乳动物体细胞的功能是高度分化了的,不可能重新发育成新个体。与这一理论相反,多莉终于被克隆出来了,它的诞生推翻了形成了上百年的上述理论,实现了遗传学的重大突破,为开发新的哺乳动物基因操作提供了动力,是一个了不起的进步。但直到现在,人们仍然不知道这就是时间机器,它使已分化的成熟体细胞在卵母细胞的时光中穿梭获得胚胎发育新生(细胞胞质效应技术实际上就是时间机器技术)。 生命科学制造的时间机器已有了大量的成功案例,现举例如下:鸡红血细胞是终末分化细胞,其细胞核不合成RNA或DNA,在与人Hela干细胞融合后,其细胞核可被Hela干细胞的细胞质激活而合成RNA和DNA,说明细胞质在基因表达中起重要作用。Hela干细胞miRNA等小分子在胞质效应中时光穿梭,使鸡红血细胞核获得激活,这是一例非常经典的分子遗传学时空机器技术。尽管大量工作表明细胞核和细胞质在不同动物的不同发育期均起重要作用,但二者间的相互作用、相互依存是胚胎发育过程中调控基因活动最重要环节之一。原肠胚期细胞质开始激活核内不同基因的活动,最初的基因产物移至细胞质中合成专一性蛋白质,它们又可回到核内,参与染色质的合成与复制,并调控另一些基因的活动。通过反复的核-质间相互作用,使未分化的细胞相继分化为定型的细胞,真正做到了细胞时间旅行。 4、量子遗传学细胞时间机器技术量子时间机器原理:细胞核移植实验和细胞移植的医学实践都已有了大量的成功案例,积累了丰富的文献资料。早期伯尔格(Berger)和施瓦格(Shweiger)作了伞藻的核移植,用年轻的和年老的细胞质分别与年老和年轻的细胞核分别在体外培养,10天中移植进去的老核变得年轻起来,而新核移植到衰老的细胞中则会受影响而老化,这说明胞质对核能产生影响。年轻的胞质能使衰老的细胞核恢复青春,年老的细胞质则使年轻的细胞核老化,根据这一原理我们制作了DNA时间机器,让生物细胞分子在细胞质效应中穿越时光。DNA相对论(DNA、蛋白质时间、空间、质量、能量的科学理论)是允许这一时空旅行发生在生物这种特定的时空结构中:一个旋转的生物细胞质宇宙,一个旋转的细胞核柱体,以及非常著名的虫洞—半透膜一条贯穿空间和时间的隧道,它成功构建了第一台细胞时间机器。 溶液通过弥散超滤作用,使细胞内高激发态物质向激发态低一侧流动,而miRNA等小分子由渗透压低向渗透压高的流动过程,最终达到动态平衡。DNA时间机器是通过年老细胞质(时间半衰期短)使年轻(时间半衰期长)的细胞核老化。年轻(时间半衰期长)的细胞质能使年老细胞核时间回到年轻,为癌症、干细胞研究又打开了一扇新的窗口,真正做到了细胞时间旅行。DNA时间机器这项生物量子技术成果将开拓癌症根本性治疗、干细胞应用、病毒快速减毒,解决小分子miRNA两面派特性的新工具(利用紫外吸收光谱测能技术掌握增减DNA核能)具有划时代的重大意义。生物时间机器技术(专利号;201309120065447.0) 5、长生不老神丹妙药的炼丹技术一细胞时空隧道技术时间机器突破干细胞瓶颈所面临的重重困难和障碍间充质干细胞,干细胞外泌体,都被归类为不同组织中多种不同的细胞群生物学特性,并且其中含有大量且种类繁多的蛋白质、细胞因子和生物活性物质,是医药史上最为复杂的治疗性产品。干细胞供者遗传背景千差万别,各种组织来源及不同代次的细胞区别显着,而且不同的技术路径、试剂仪器、操作手法等也会对细胞生理状态存在显着影响,干细胞,外泌体制品的动态性、异质性面临着重重困难和障碍。间充质干细胞,外泌体直接输入注射治疗法永远也不会修成正果,生命时空隧道技术为干细胞临床应用打开了一扇新的窗口。生物时间机器一细胞时间隧道透析机,大体可以分为:时间透析膜隧道系统、时间透析柱内外系统、细胞时间监测系统(DNA蛋白质能量监测仪系统)、自动温度控制系统、时间透析机机械系统等部分组成。将间充质干细胞,外泌体加进在生物时间机器透析外柱內对透析柱內里的人体内采集的某组织衰老细胞,通过溶液及半透膜在时间机器中进行生长因子,激发态物质交换,然后再回输到衰老人体内的方法。 细胞时间机器膜外柱为干细胞等外泌体激发态高的细胞物质通过小分子miRNA等溶质向膜内柱人体内采集的衰老细胞及外泌体物质,撞碰移动从而激发调整了衰老细胞DNA蛋白质激发时间,干细胞时间在年老的细胞质时间中穿梭,能真实的回到过去年轻细胞时间(DNA氢介子结合能一份份合成就是DNA逆时间)。生物时间机器时空结构简单:一个旋转的生物胞质小宇宙,一个旋转的柱体,以及非常著名的虫洞-半透膜所组成。超滤膜根据需要通过干细胞小分子miRNA的大小设计,从干细胞中分离出miRNA以及外泌体来。 最常见的过滤膜具有0.8μm、0.45μm或0.22μm的孔径,也有设计成微柱多孔硅纤毛结构以分离40-100nm的miRNA外泌体。但最为关健一点是要密切利用时间测能技术来监测“干细胞种子”以及“人体内采集的衰老细胞土壤”移植时能量高低的透析时间差问题,这样才能做到安全有效的细胞时间旅行。 虽然间充质干细胞是不同的细胞群,分泌不同的细胞外泌体miRNA等,但它们都具有强大的细胞生长因子。1、利用超滤膜可以中筛选出专一人体内采集的某细胞分泌体miRNA;2、其它不同群细胞miRNA可在时间机器里,通过分子之间耦合作用,快速传递给采集的专一衰老细胞上;3、人体内采集的细胞与时间机器交换后可再监测安全有效性;4、生成某组织增强干细胞后可再进一步纯化分离,然后再安全回输到衰老人体内组织中。利用细胞时间隧道透析机与衰老组织细胞进行胞质效应交换,能生产出万能干细胞是再生医学长生不老的神丹妙药。本文作者:严银芳 武大医学部病毒学研究所武汉市武昌东湖路115号联系电话15927431505☆相关资料,《自然》:打破间充质干细胞神话https://xw.qq.com/cmsid/20180927A0A9PL/20180927A0A9PL00DNA相对论是生命科学的第一生产力http://post.blogchina.com/p/2545288
  • 杨泽超:6年时间,研发高时空分辨变温扫描隧道显微镜
    在近日举行的首届“大走廊杯”中国杭州博士后科创精英赛总决赛中,杭州师范大学物理学院杨泽超教授团队带来的项目“高时空分辨变温扫描隧道显微镜的研发与制造”从来自美国、英国、德国等13个海外国家和北上广深等30余个城市的300多个青年博士后团队中脱颖而出,得到不少科研人员和投资者的关注。首届“大走廊杯”中国杭州博士后科创精英赛总决赛现场要实现弯道超车、跨越发展,科学研究就要更具前瞻性一位创投公司高级投资总监表示:“我很看好这个项目,觉得这个产品应用范围很广,而且有较高的技术壁垒,他们把分辨率做到了原子级。同时,此仪器还能对原子的运动过程进行毫秒级的实时捕捉。”物理学院杨泽超教授据悉,扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种空间分辨率可以达到原子量级的微观探测工具,它能使人类直接地观察到物质表面的单个原子及其排列状态,并且能够研究其相关的物理、化学性质,因此在表面科学、材料科学、生命科学等领域得到了广泛应用。杨泽超介绍,表面纳米结构在不同温度条件下表现出不同的物理化学性质,而扫描隧道显微镜因具有原子分辨率实空间成像能力,尤其适合用来研究这类材料的表面物性。但同时表面结构动力学过程通常发生在毫秒或微秒的时间尺度。因此,在变温条件下工作的同时具有高时间分辨率的扫描隧道显微镜已经成为世界上很多研究小组的研究项目。“目前基于超高真空环境的扫描隧道显微镜已经高度商品化,尤其是德国和日本公司的产品占据市场的统治地位。但是兼具高时空分辨的变温快速扫描隧道显微镜国内外尚未出现成熟商品化产品。”杨泽超瞄准了这个空白, 2016年在德国马普学会弗里茨-哈伯研究所开展博士后研究工作时,将精力和重心放在高时空分辨变温扫描隧道显微镜的研发与制造上。他说,要实现弯道超车、跨越发展,科学研究就要更具前瞻性。“光搭建这个显微镜设备就花了2年时间,如果算上前期研发设计,总共花了6年。我们每周工作70个小时以上,无论酷暑还是严寒,我们都坚守在实验室内,紧盯测试过程,饿了就几顿并作一顿,累了就趴在桌子上休息。”回忆起研发历程,作为团队核心成员的杨泽超非常感慨,“六年磨一剑,不仅要坐得住冷板凳,还要有不惧困难的勇气。下一步我们将继续优化仪器的软硬件设计,提高仪器操作的便捷性。”个人价值和国家需要相结合,是很有成就感的事2021年,在德国求学生活已过十年的杨泽超,做出了一个决定,结束自己的海外生涯,正式归国。他带着“高时空分辨变温扫描隧道显微镜的研发与制造”项目加入物理学院。“我们不仅针对性解决了传统扫描隧道显微镜在快速扫描时图像畸变和快速慢速扫描不易切换等硬件方面的问题,而且自主研发的扫描头和快速扫描控制系统,在保有原子分辨率的前提下可以达到120帧/秒的成像速率。可以系统地研究不同覆盖度下氧原子在 Ru(0001) 表面的扩散运动机制。仪器的工作温度范围也扩展到了(200-1000 K)。这套设备将成为研究纳米材料‘时间-结构-性质’构效关系的理想科研仪器,为表面物理和化学的研究提供更多的实验手段,在原位实时实空间研究表界面原子扩散、薄膜材料生长和化学反应等领域均具有重要意义。” 杨泽超自豪地介绍道,“作为杭师大的老师,我不仅想让这个项目在祖国落地,更想在我工作生活的杭州有所作为,能将个人价值和国家需要相结合,是很有成就感的事。”目前杨泽超已将他研发的高时空分辨变温扫描隧道显微镜放置在学校实验室内。“作为一名教师,除了基础的教学,我也想通过自己研发扫描隧道显微镜的经历引导学生了解前沿的技术动态和趋势,带给学生更多的启发。” 他动情地说,“物理学作为基础学科,对于国家的现代化建设和产业升级具有重要的推动作用,我愿为培养这样的基础学科人才而继续努力。”
  • 德科学家开发一种磁冷却扫描隧道显微镜:用于量子效应研究!
    仪器信息网讯 扫描隧道显微镜(STM)能够以原子精度捕获材料图像,可用于操纵单个分子或原子。多年来,研究人员一直在使用这类仪器来探索纳米尺度世界。近日, 德国Jülich研究中心(Forschungszentrum Jülich)的物理学家开发了一种新方法,这种方法帮助使用STM来研究量子效应创造了新的可能性。由于该技术方法采用磁冷却,他们的扫描隧道显微镜无需任何移动部件即可工作,并且在低至 30 毫开尔文的极低温度下几乎无振动。该仪器可以帮助研究人员解锁量子材料的特殊特性,这对量子计算机和传感器的发展至关重要。物理学家认为接近绝对零度的温度范围是一个特别令人兴奋的研究领域。热波动降至最低,量子物理定律开始发挥作用,揭示材料的特殊性质。电流自由流动,没有任何阻力。另一个例子是一种称为超流体的现象:单个原子融合成一个集体状态,并在没有摩擦的情况下相互移动。Stefan Tautz 教授(左下)、Taner Esat 博士(左上)和 Ruslan Temirov 教授(右)与Jülich量子显微镜,图片自:Forschungszentrum Jülich / Sascha Kreklau研究和利用量子效应进行量子计算也需要这些极低的温度。全世界以及 Jülich研究中心的研究人员目前正在全速追求这一目标。在某些项目上,量子计算机可能远远优于传统的超级计算机。然而,发展仍处于起步阶段。一个关键的挑战是寻找材料和工艺,使具有稳定量子位的复杂架构成为可能。来自 Jülich 研究中心的 Ruslan Temirov 解释说:“我相信像我们这样的多功能显微镜是完成这项迷人任务的首选工具,因为它能够以多种不同方式在单个原子和分子的水平上对物质进行可视化和操作。”量子物理研究的一个典型对象:在中心,可以看到一个单一的分子,它是通过显微镜尖端分离出来的。在接近绝对零的温度下,没有干扰图像的噪声。图片来源:Forschungszentrum Jülich / Taner Esat, Ruslan Temirov经过多年的工作,他和他的团队为此装备了带有磁冷却的扫描隧道显微镜。 “我们的新显微镜与所有其他显微镜的不同之处类似于电动汽车与内燃机汽车的不同之处,”Jülich 物理学家解释说。到目前为止,研究人员一直依靠一种液体燃料,即两种氦同位素的混合物,将显微镜带到如此低的温度。 “在操作过程中,这种冷却混合物通过细管不断循环,这会导致背景噪音增加,”Temirov 说。另一方面,Jülich 显微镜的冷却装置则是基于绝热退磁过程。这个原理并不新鲜。它在20世纪30年代首次用于在实验室中达到低于 1 开尔文的温度。 Ruslan Temirov 说,对于显微镜的操作,它有几个优点:“通过这种方法,我们可以通过改变通过电磁线圈的电流强度来冷却我们的新显微镜。因此,我们的显微镜没有移动部件,几乎没有振动。”Jülich 科学家是有史以来第一个使用这种技术构建扫描隧道显微镜的人。 “新的冷却技术有几个实际优势。它不仅提高了成像质量,而且简化了整个仪器的操作和整个设置,”研究所主任 Stefan Tautz补充说,由于采用模块化设计,Jülich 量子显微镜也对技术进步保持开放态度,因为可以轻松实施升级。“绝热冷却是扫描隧道显微镜的真正飞跃。优势非常显着,作为下步计划我们现在正在开发商业原型机。”Stefan Tautz 解释说,量子技术是目前许多研究的焦点,这种仪器也势必会吸引许多相关研究学者的关注。这项研究发表在《Review of Scientific Instruments》上,DOI: 10.1063/5.0050532。mK STM 设置的示意图布局,包括 UHV 室、承载 mK 棒的 ADR 低温恒温器和高容量低温泵。 主 UHV 系统,包括负载锁、制备室 1 和 2 以及转移室,通过柔性波纹管连接到低温恒温器。 要将 mK 棒从真空中取出,低温恒温器和 UHV 系统必须在虚线标记的平面上分开。 右下角:插图显示了从 UHV 中提取 mK 棒的过程。 支撑 UHV 系统的框架在垂直于主图平面的方向侧向平移以进行提取。mK 棒的渲染 CAD 模型。 左:mK 棒全长 156.5 厘米。 箭头表示不同温度阶段的位置。 右上角:mK 棒的头部,其机制将其锁定到垂直操纵器,将其加载到低温恒温器中。 用于与温度传感器和 STM 压电元件建立电接触的两个接触板也是可见的。 建立同轴偏置和隧道电流触点的第三个接触板位于背面。 右下角:4K 载物台下方的 mK 棒的图像细节,无需布线。 左图:自制 STM 的分解图。 STM 的顶部通过蓝宝石板与 STM 主体电隔离。 STM 主体包含一个单独的压电管,用于 STM 尖端的粗略和精细运动。 右图:压电管的剖视图,显示粘滑粗调电机。
  • 【新闻快讯】公司中标上海交通大学太赫兹光耦合扫描隧道显微镜
    项目名称:上海交通大学太赫兹光耦合扫描隧道显微镜项目编号:0773-2341SHHW0045招标范围:设备名称: 太赫兹光耦合扫描隧道显微镜 数量:1套招标机构:中金招标有限责任公司招标人:上海交通大学开标时间:2023-06-20 09:30公示时间:2023-06-21 16:58 - 2023-06-25 23:59中标结果公告时间:2023-06-26 10:48中标人:束蕴仪器(上海)有限公司制造商:CreaTec Fischer & Co. GmbH制造商国家或地区:德国
  • 1150万!北京理工大学低温磁场扫描隧道显微镜、多功能针尖增强拉曼光谱仪采购项目
    一、项目基本情况1.项目编号:0873-2301HW2L0473项目名称:北京理工大学低温磁场扫描隧道显微镜采购预算金额:800.000000 万元(人民币)采购需求:采购低温磁场扫描隧道显微镜1套;用于科研,接受进口产品投标,详见附件合同履行期限:合同签订后2个月内出具图纸,采购人批复图纸后8个月交付。本项目( 不接受 )联合体投标。2.项目编号:CFTC-BJ01-2311049项目名称:北京理工大学多功能针尖增强拉曼光谱仪预算金额:350.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述多功能针尖增强拉曼光谱仪教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:北京中教仪国际招标代理有限公司512室,北京市海淀区文慧园北路10号方式:建议采用汇款形式进行报名(节假日、工作日均可),请按本公告“其他补充事宜”所述账户信息汇款(不接受个人账户汇款),请您在本公告页面最下方附件自行下载“报名登记表”,填写完成后以word文本形式和汇款底单一起发送至shige@china-didac.com,工作日可以现场登记报名,招标文件售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:北京市海淀区中关村南大街5号        联系方式:林老师,010-68917981      2.采购代理机构信息名 称:北京中教仪国际招标代理有限公司            地 址:北京市海淀区文慧园北路10号            联系方式:施歌、李璟琨、卢琛曦、杨硕,010-59893121、010-59893127、010-59893109            3.项目联系方式项目联系人:施歌、李璟琨、杨硕、蒋旭、谢杰、韩寿国电 话:  010-59893121、010-59893129
  • 纳米隧道电穿孔技术可对细胞精确用药
    据美国物理学家组织网10月16日报道,美国俄亥俄州立大学科学家开发出一种名为“纳米隧道电穿孔”的新技术,或称为NEP。利用其给细胞注射基因治疗药剂时,不用针头,而是用电脉冲通过微小的纳米隧道,几毫秒内就能把精确剂量的治疗用生物分子“注射”到单个活细胞内。该研究发表在最近的《自然纳米技术》杂志网站上。  长期以来,在进行基因治疗时,人们对插入细胞的药剂数量无法控制,因为人体绝大部分细胞都太小,最小的针头也无能为力。而“NEP让我们能研究药剂和其他生物分子是怎样影响了细胞的生物和基因路径的,现有其他技术都无法达到这么细微的水平。”该校化学与生物分子工程教授詹姆斯李说。他们用这种方法,将定量的抗癌基因成功插入到白血病细胞中并杀死了它们。  研究人员用聚合物压制成一种电子设备样机,用DNA(脱氧核糖核酸)单链作为模板来构建纳米隧道。詹姆斯李发明了一种使DNA链解旋的技术,并使其按照需要形成精确结构。他们给DNA链涂上一层金涂层并加以拉伸,使之连接两个容器,然后将DNA蚀去,在设备内部留下一条连通两个容器的尺寸精确的纳米隧道。  隧道中的电极将整个设备变成一个微电路,几百伏特的电脉冲从一个装药剂的容器经纳米隧道到达另一个装细胞的容器,在隧道出口处形成了强大的电场,与细胞自身的电荷相互作用,迫使细胞膜打开一个小孔,足够投放药物而不会杀死细胞。调整脉冲时间和隧道宽度,就能控制药物剂量。  为了测试NEP能否递送活性药剂,他们把一些治疗用RNA(核糖核酸)插入了白血病细胞,发现5毫秒的电脉冲能递送足够剂量的RNA杀死这些细胞 而更长的脉冲,如10毫秒,能杀死几乎所有的白血病细胞。作为对照,他们还插入了一些无害的RNA到白血病细胞中,这些细胞都没死。  詹姆斯李指出,由于这种方法一次只能给一个或几个细胞注射,更适合用在实验室。目前他们正在开发一种机械式细胞装载系统,一次能给10万个细胞注射,有望用于临床诊断和治疗。  “我们希望NEP能最终用于早期癌症检测与治疗,比如在干细胞或免疫细胞中插入精确剂量的基因或蛋白质,引导它们分化改变,不必担心过量注射带来的安全问题,然后把这些细胞放回体内作为一种细胞基础疗法。”詹姆斯李说,这种方法还可能用于白血病、肺癌及其他肿瘤。
  • 2012年上半年仪器新品盘点:表界面及颗粒测试仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。比表面分析仪  比表面分析仪是用来检测颗粒物质比表面积的专用设备,而比表面积测试方法主要包括动态色谱法和静态容量法,其中动态色谱法是将待测粉体样品装在U型的样品管内,使含有一定比例吸附质的混合气体流过样品,根据吸附前后气体浓度变化来确定被测样品对吸附质分子的吸附量 而静态法根据确定吸附量的方法的不同分为重量法和容量法 重量法是根据吸附前后样品重量变化来确定被测样品对吸附质分子的吸附量,由于分辨率低、准确度差、对设备要求很高等缺陷已很少使用 容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子的吸附量。  现在国际上比表面积分析仪的使用已经非常广泛,在国内也逐步得到了认识,因此涌现出了好多优秀的厂商,然而企业能够持续发展来源于它持续的创造力。下面列举国内外厂家2012年上半年推出的新产品,以飨读者。  2012年上半年的表面分析仪器主要有:北京精微高博科学技术有限公司全自动比表面积及真密度测试仪JW-BK224T、北京金埃谱科技有限公司物理吸附分析仪V-Sorb 4800、贝士德仪器科技(北京)有限公司高精度比表面积和孔隙度测定仪3H-2000PS2、瑞典百欧林科技有限公司上海代表处Theta QC光学接触角仪、威杰(香港)有限公司全自动表面能分析仪SEA、浙江泛泰仪器有限公司全自动微反评价设备4200。  从这些新产品的创新点可以看出未来表界面仪器的发展趋势。  北京精微高博科学技术有限公司全自动比表面积及真密度测试仪产品型号:JW-BK224T  上市时间:2012年6月  北京精微高博科学技术有限公司独自开发设计静态容量法和动态色谱法两大类六种型号比表面仪器,其中静态容量法比表面及孔隙率测定仪是与国外同类产品相同质量和功能的仪器,JW-BK和JW-RB为精微高博独创的静态容量法比表面积及比表面及孔隙率测定仪,性能达到国外同类水平,深受国内用户欢迎。而JW-BK224T是精微高博的创新产品,该产品设有4个样品分析位,4个样品预处理位,测试系统与预处理系统可同时工作,互不干扰 比表面和真密度测试积聚一身的测试仪器!真密度测试:采用新颖独特的集装式管路设计,有效提高了真密度分析仪密封性,减小了基体腔自由体积空间,同时可有效提高整体测试系统的温度均匀性及抗各种外界干扰能力,有利于提高测试结果的重复性。  北京金埃谱科技有限公司物理吸附分析仪产品型号:V-Sorb 4800  上市时间:2012年3月  全自动物理吸附分析仪V-Sorb 4800是金埃谱科技自主研发的全自动智能化比表面积和孔径分析仪器,采用静态容量法测试原理,并参考众多著名科研院所及500强企业应用案例,相比国内同类产品,金埃谱物理吸附分析仪多项独创技术的采用使产品整体性能更加完善, 该仪器采用进口4升大容量金属杜瓦瓶,在无需增加保温盖的条件下可连续进行72小时测试,无需添加液氮,可同时进行4个样品的分析和脱气处理,相比同类产品工作效率提高了一倍。整个测试系统采用模块化结构设计,完全自动化的设计理念,配以功能完善的测试软件,可实现夜间无人值守式自动测试,大大提高测试效率。  贝士德仪器科技(北京)有限公司高精度比表面积和孔隙度测定仪产品型号:3H-2000PS2  上市时间:2012年1月  贝士德公司今年一月份刚刚推出的高精度比表面积和孔隙度测定仪3H-2000PS2增加了国内唯一的分子置换模式,对样品预处理模式进行了改进 该仪器增加了PO测试,PO测试对静态法比表面积和孔隙度测定仪的准确性和重复性有很大的作用.。另外,该仪器还获得了两项国家技术专利:静态法高精度比表面积和孔隙度测定仪的净化预处理装置(专利号:ZL201120136943.9) ,静态法比表面及孔径分析仪的饱和蒸汽压测试装置(专利号:ZL201120136959.X )。  瑞典百欧林科技有限公司上海代表处光学接触角仪产品型号:Theta QC  上市时间:2012年2月  瑞典百欧林科技有限公司拥有Q-Sense, KSV, Attension, Nima, Osstell等品牌,主要产品为基于QCM-D专利技术的石英晶体微天平、LB膜分析仪,浸入成膜仪、表/界面张力仪,光学接触角仪、表面等离子共振仪、表面流变测试仪、表面红外测试仪等。在2012年一月刚刚推出的Theta QC 是一款设计精巧紧致的便携式光学接触角测试仪,可用于精确测试润湿、吸附、均一性、表面自由能、铺展性、吸收、清洁度和印刷适性等,用于快速在线检测和生产过程中的质量控制,可广泛应用于包装、涂料、印刷和材料工程等行业。与同类仪器相比,Theta QC的主要特点:1. 轻巧,灵活便携,适用于在线检测 2. 真正的无线测试:自带电池可连续工作8小时,测试数据可无线传输至远程电脑 3. 内置存储,可存200个数据点 4. 使用方便,软件界面友好。  威杰(香港)有限公司全自动表面能分析仪产品型号:SEA  上市时间:2012年1月  iGC(反气相色谱法)-是一项的针对粉末、颗粒、纤维、薄膜、半固体的表面与体积性质的气相表征技术。iGC 表面能分析仪继续保持了SMS 公司15年来开拓历史的反气相色谱法的世界领导者地位。全自动表面能分析仪SEA代表了iGC技术的巨大进步。SEA创新的核心是其独特的多面注射系统。这个系统生成了具有最大精度和范围的溶剂脉冲,精确地产生样品空前的高和极低的表面覆盖范围的等温线。这使得非均匀分布的表面量的测量更加精准。Cirrus Plus 利用了iGC SEA的实验灵活性,提供广泛的,人性化的数据分析,并可以单击生成报表,帮您最大程度的运用iGC数据。 浙江泛泰仪器有限公司全自动微反评价设备 产品型号:4200  上市时间:2012年3月  浙江泛泰仪器有限公司在2012年3月推出了这款全自动微反评价设备4200,装置采用框架式结构,模块化设计,分为气体减压、进料、反应、产品收集和放空等区域,且该装置反应各部件可以根据用户的具体需求,做相应的调整 该仪器的控制装置能够自动控制气体和液体流量,多段式反应炉的温度 此外,全自动微反评价设备主要用来进行催化剂或其他物质的固定床微反评价,可以实现同时多路气体和多路液体进样,并使用MFC和液体计量泵计量 反应器可以支持1200度或20Mpa的操作压力,能够设计成桌面型、小型立式、DCS控制型、小试装置等。颗粒/粉体流动性测试   随着颗粒技术的发展,颗粒测试技术已经受到广泛的关注与重视. 近年来颗粒测试技术进展很快,表现在以下几个方面:1) 激光粒度测试技术更加成熟2) 图像颗粒分析技术东山再起3) 颗粒计数器不可替代4) 纳米颗粒测试技术有待突破5) 光子相关技术独树一帜6) 颗粒在线测试技术正在兴起。其中,粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。另外,测定粉末流动性的仪器称为粉末流动仪,也叫霍尔流速计。由漏斗、底座和接粉器等部件组成。因为在工业生产中,粉体的颗粒形状、细度、粒度分布和粘聚性,会直接影响产品的质量,所以不管是颗粒度的测试还是粉体流动性的测试在实际的应用中都很为重要,选用仪器分析检测也尤为重要。  2012年上半年的颗粒或者粉体流动性测试仪器的新品主要有:珠海欧美克仪器有限公司生产的激光粒度仪LS-C(III)型干湿二合一和英国Freeman Technology公司(大昌华嘉商业(中国)有限公司代理)生产的FT4多功能粉末流动性测试仪。  从这些新产品的创新点可以看出未来试验机行业的发展趋势。  珠海欧美克仪器有限公司激光粒度仪产品型号:LS-C(III)  上市时间:2012年1月  欧美克是一家专注于粒度检测与控制技术的研发与生产的公司,是中国粒度检测仪器第一大制造企业。刚刚面世的这款激光粒度仪采用独有的大角散射光的球面接收技术(专利号:95223756.3),对透镜后傅立叶变换结构,将大角探测器布置在适当的球面上,以实现大角散射光的精确聚焦 该仪器采用一体化激光发射器(专利号:00228952.0),有效降低了激光管热变形、外界机械振动对仪器稳定性的影响。自动对中系统步进精度达到0.5微米,使用户操作更为方便 湿法进样系统采用增压泵,转速达5000转/分,相较于蠕动泵能有效实现大颗粒的循环 干法进样系统振动电机无极可调,实现遮光比的有效控制 测试窗口材质采用高品质光学材料,窗口构件采用全不锈钢材,耐磨、易清洗,维护方便 光路系统采用全封闭设计,防止灰尘污染及外界光污染。  大昌华嘉商业(中国)有限公司多功能粉末流动性测试仪产品型号:FT4  上市时间:2012年2月  国外高技术仪器公司众多,但是他们中很多公司并不能全面理解中国文化和市场,在拓展中国市场方面“心有余而力不足”,因此急需诸如华嘉这样专注市场拓展的贸易代理公司的帮助。早期,华嘉总是搜寻一些大公司或第一品牌的公司进行合作,而如今,华嘉更加倾向于专业型企业,同时这些企业也必须在他们所专注的领域具有领导地位或者拥有创新的技术。英国Freeman Technology公司就是这样的一家优质公司。今年4月份推出的最新一代FT4多功能粉末流动性测试仪,利用专利的粉末均匀化预处理,通过测量粉末的动力学性质,剪切性质和包含压缩性、透气性和密度在内的粉末整体特性,给出粉末高重复性的流动性质的定量数据,在此之前,没有任何其他仪器可以做到这些。除此以外,一些与加工过程有关的变量,如贮存时间、静电、结团、颗粒偏析、颗粒破碎或湿法制粒时的含水量等也都可以由FT4获得评估,真正实现了粉末在实际应用环境中的定量表征。
  • 案例分享‖“深中牵手”成功!深中通道海底隧道顺利合龙
    6月11日凌晨,国家重大工程深中通道海底沉管隧道最终接头从E23管节顺利推出,与E24管节成功实现精准对接,标志着世界最长最宽钢壳沉管隧道正式合龙。最终接头长5.1米,宽46米,高9.75米,重约1600吨,套置于E23管节扩大段内,这种整体预制水下管内推出的结构装置为世界首创,进一步丰富了世界跨海沉管隧道的“中国方案”。该项目中要实现管道精准对接,首先要保证施工船舶稳定,船舶由于受到海面风浪的影响会不断地产生姿态变化,需要实时调节。同时施工船舶通过吊钩与沉管隧道连接,整个吊装、运输、下沉、对接过程,需要实时监测吊钩的应变应力以评估受力情况。某单位采用江苏东华测试DH59系列采集系统、表面式应变计、速度传感器,对吊钩进行应变应力实时监测以及施工船舶航向、转体、振动实时监测,为稳定船舶姿态、管道精准对接提供了技术保障。部分图文来源于网络
  • 扫描隧道显微镜助力揭示二维材料边界态物理本质
    p style="text-indent: 2em text-align: justify "传统的三维半导体材料表面存在大量的悬挂键,可通过捕获和散射等方式影响和限制自由载流子的运动,因此表面态的设计、制造和优化是提高三维半导体器件性能的关键因素。类似于三维半导体材料的表面态,单层二维材料(如二硫化钼和石墨烯)在边界原子的终止和重建可以产生边界态,这使二维材料产生了许多独特的现象,使其得到广泛的应用。 /pp style="text-indent: 2em text-align: justify "针对此现象,微电子所微电子器件与集成技术重点实验室刘明院士和李泠研究员的科研团队与中科院物理所、北京理工大学、美国加州大学洛杉矶分校合作,对单层MoS2/WSe2晶体管进行了器件测试、扫描隧道显微镜实验观测和第一性原理计算,发现二维材料的边界态是控制器件亚阈值特性及影响器件迁移率的关键因素,并在国际上首次提出这种边界态是拉廷格液体的物理本质。该科学发现对于研究器件性能优化和低功耗应用具有一定的意义。 /pp style="text-align: justify text-indent: 2em "该工作以《Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals》为题发表在 Nature Communications期刊上(DOI: 10.1038/s41467-020-14383-0)。微电子所博士后杨冠华和物理所邵岩博士为该文章第一作者,微电子所刘明院士、李泠研究员、北京理工大学王业亮教授和美国加州大学洛杉矶分校段镶锋教授为共同通讯作者。 /pp style="text-align: justify text-indent: 2em "上述工作得到了国家自然科学基金委、科技部、中科院等相关项目的资助。 /pp style="text-indent: 2em text-align: justify "全文链接:https://www.nature.com/articles/s41467-020-14383-0#citeas /pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://www.ime.ac.cn/zhxx/ttxw/202009/W020200925583655261172.png"//pp style="text-align: center "strong图a./strong二维材料边界电导比例与温度、栅压关系。strong图b./strong I/T1+α与qV/kBT关系。strong图c. /strongSTS能谱。 /pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/287a2421-2521-43a6-aa4c-219af657b8e0.jpg" title="半导体材料与器件.jpg" alt="半导体材料与器件.jpg"//a/p
  • 激光粒度测试数据异常的原因及应对方法
    在粒度测试过程中,有时会出现数据异常的情况,如重复性不好、同一个样品结果与之前有差异等。这样的情况一般是由以下几个原因造成的。1、环境异常:粒度仪的使用环境应该满足以下条件,一是室温在10℃~30℃之间,并且介质温度要与室温相同或相近,若介质与室温温相差过大会导致样品池结雾而影响测试结果。二是实验台要稳固,周围无振动源。振动会使仪器测试过程中光路发生变化,导致测试结果不稳。三是电源电压要稳定且有良好的接地,电压不稳会影响仪器内部电路运行的可靠性和光源的稳定性,从而使信号不稳或完全错误,从而导致结果异常。下图为样品池结雾时测试窗口异常的状态:环境异常的解决办法是对症下药,消除异常,如加装空调、加固工作台、远离振动源、远离电磁干扰设备(如电炉)、加装稳压电源、加装接地等。2、折射率发生改变:现代激光粒度仪一般采用Mie散射理论,选择正确的折射率直接决定了测试结果的准确性,正确的折射率可以通过系统或测量来得到。下图是同一样品不同折射率时的测试结果差异。 折射率发生变化的原因是测试不同的样品时忘记把上一个样品的折射率修改成现在样品的折射率,解决办法是严格按操作规范进行操作,要认真细致,不马马虎虎。3、保养维护不当:激光粒度仪是精密仪器,日常使用要按照操作规程使用,日常保养和维护不当会产生样品池污染、样品池划伤、透镜污染、管路脏、光电探测器损坏、使用腐蚀性介质测试导致循环系统损坏等,这些原因都会导致仪器测试结果异常。下图为样品池或者透镜脏时测试仪器背景。解决方法是定期清洗样品池和管路,及时更换划伤的样品池、不在非耐腐蚀循环泵中使用腐蚀性介质、不用汽油擦仪器表面、不随便打开仪器上盖、不使杂物掉到循环池中等。4、样品制备原因:一是取样不具有代表性(包括从车间里取样和实验室缩分)。二是所用的介质不合适。三是分散剂的种类和用量不正确。四是超声分散时间和强度不一致等。下图是同一种样品分散前后的对比图像。 解决方法还是对症下药,一是从车间取样时要尽量从料流中取样而不要在堆积状态下取样,如果不得不在堆积状态下取样,必须进行多点取样(至少4点),即从不同位置、不同深度取样后混合到一起。二是从实验室样品中取测试样时,要先搅拌均匀,用小勺多点(至少4点)取样放到仪器中进行分散测试。三是悬浮液取样时,要先用电动搅拌器搅拌均匀,然后用液体取样器从中部抽取。对比重较大、较粗、粒度分布很宽的特殊样品,要先加很少量的介质制成膏状物,混合均匀后再取样。四是介质要纯净、不与颗粒发生物理和化学反应、对颗粒表面具有良好的润湿作用、使颗粒具有适当的悬浮状态、介质与室温的温差要尽量小等。五是干法粒度测试时对气体介质的要求是纯净、干燥、无油、压力适中等。六是选择合适的分散剂并控制好用量。七是确定并使用最佳超声功率和时间。以上四个方面讨论了激光粒度测试过程中出现数据异常的常见原因,并给出了相应的解决方法。但引起数据异常的原因很多,情况也不一样,本文无法一一列举,如出现类似问题,可求教于专业人士,丹东百特也愿意以“专业、迅速、热情、周到”的服务理念,为您排忧解难。 (本文作者:百特售后服务工程师 管青宇)
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style="text-indent: 2em "strong编者按:/strong如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。/pp style="text-indent: 2em text-align: center "strong激光粒度仪应用导论之原理篇/strong/pp style="text-indent: 2em "当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。/pp style="text-indent: 2em "首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。/pp style="text-indent: 2em "span style="color: rgb(0, 176, 240) "【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。/span/pp style="text-indent: 2em "麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。/pp style="text-indent: 2em "现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。/pp style="text-indent: 2em "世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title="图1:颗粒光散射示意图.jpg"//ppbr//pp style="text-indent: 0em text-align: center "颗粒光散射示意图/pp style="text-indent: 2em "激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。/pp style="text-indent: 2em "strong 编者结:/strong明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。/pp style="text-indent: 0em text-align: right "(作者:张福根)/p
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 干货锦囊 | 灭菌隧道降低细菌污染风险
    监管机构更倾向于对注射药物进行灌装后灭菌。但是对于某些产品,例如生物药品,无法进行灌装后灭菌,因为这会对产品产生不利影响。在这些情况下,必须在100级或ISO-5环境中对产品进行无菌灌装。样品瓶必须清洗以去除颗粒,然后在填充之前进行灭菌处理。从历史上看,如果对产品进行灌装后灭菌,通常的做法是将西林瓶从清洗机中直接转移到灌装室。但是,2018年4月发布的《ISPE基线指南第3卷无菌产品制造设施1》中建议对所有西林瓶进行灭菌处理,即使产品会进行灌装后灭菌也是如此。灭菌是从西林瓶表面去除热原的过程,包括消除细菌内毒素。有几种不同的方法可以对西林瓶进行灭菌处理。非常常见和有效的方法之一是使用烘烤干燥。将样品瓶暴露于250°C以上的温度会破坏热原。大多数灭菌过程被设计为至少使内毒素减少至千分之一,甚至百万分之一。灭菌的两种最常见方法是灭菌烘箱和灭菌隧道(见图1),但是这两种方法的风险水平不同。使用灭菌隧道所涉及的风险主要来自隧道内气流的控制。用烘箱灭菌有关的风险包括手动操作西林瓶以及灭菌与灌装之间的停留时间。本文讨论了这些风险和解决方案。 图1 灭菌隧道灭菌隧道与灭菌烘箱灭菌烘箱或灭菌隧道(见图1)都可以完成样品瓶的灭菌工序。在使用灭菌烘箱过程时,在准备区域(通常为C级或ISO-7洁净室)中清洗西林瓶,放在托盘上,然后手动装入烘箱。烘箱位于准备区域和灌装线之间。设计良好的灭菌烘箱有两道门,一道通往准备区,另一道通往灌装线隔离器或无尘室。灭菌过程完成后,西林瓶需要手动转移到灌装线上。灌装工序可能需要几个小时后才能开始。Haag2(2011)的论文中强调了在灌装过程中由于容器内表面暴露在空气中而造成污染的风险,并论证了开口西林瓶与污染风险增加的相关性,即使在A级无菌环境中也是如此。但是在高效的灭菌通道中处理的西林瓶,经过约15分钟的冷却过程,就会自动送入灌装机,污染的风险大大降低。举例说明:我们现在考虑每批生产10,000瓶样品,生产线速度为每分钟50个(假定生产效率为80%)。在常见的商业灌装线上,从开口的西林瓶离开灭菌通道开始,到开始加塞的时间大约为8分钟。但是对于灭菌烘箱,相同批次的最末尾一个西林瓶从烘箱中出来的时间算,暴露时间可能长达250分钟甚至更久。更长的暴露时间使污染风险增加了30倍,这还不包括操作人员手动操作带来的相关污染风险。Rick Friedman(FDA / CDER科学与法规政策副主任)在2019年ISPE无菌会议上的开幕词中,谈到了做出积极选择以最、大的程度降低污染风险,并评论说“所有新的无菌灌装线设计均应采用灭菌隧道而不是灭菌烘箱。”预灭菌西林瓶可能产生的风险购买预先消毒的西林瓶是厂内灭菌工艺的替代方法。在这种情况下,西林瓶的清洗和消毒在另外的地方进行,然后将西林瓶装进双层袋中,然后运到生产现场。供应链复杂性的增加带来了不可避免的风险。比如说,必须对西林瓶供应商进行监控,以确保其在整个灭菌和包装过程中均遵循一定的质量标准。用于包装的薄膜尽量是无颗粒的,并且洗涤,灭菌和包装过程是自动化的,以减少人工操作。下一个要考虑的风险来自运输过程,在运输过程中,玻璃瓶之间的摩擦和碰撞会产生难以清除的玻璃颗粒和碎屑。操作员在手动开包的过程中需要遵循特殊的消毒程序,以确保外部包装上的污染物不会转移到西林瓶中。灭菌隧道相关的质量评估对于大批量生产,灭菌隧道是个显而易见的*选择。但是,从降低风险的角度出发,对于较小的生产规模,也应考虑使用灭菌隧道。专门为小批量应用设计的西林瓶清洗机和灭菌隧道组合占用的空间极小,仅占8英尺(2.5m)。灭菌隧道的主要目的是实现内毒素的对级降低。在选择隧道制造商时,至关重要的是评估制造商的气流设计,以确保洁净室和盥洗室内的压力波动不会影响灭菌过程。对空气质量要求最严格部分是灌装部分。相对于空气质量要求较低的的区域,该区域应始终处于较高的气压下,以防止空气倒流。但是,例如在开关门时,空气处理系统的调节有滞后性,这个时候气压水平会发生波动。这种压力波动可能会影响设计不当的灭菌隧道的性能。一些隧道设计使气流从灌装区到清洗区进行分级流动(见图2)。灌装区域气压的波动会使得冷空气更多从寒冷区域进入热区域,消耗了高温灭菌所需要的热量。图2:从洁净室到热区的级联空气。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域更复杂的隧道设计会对隧道的加热灭菌区加压,从而西林瓶能够始终暴露于适当的温度下(见图3)。西林瓶传送带下方设计了一个气体返回装置,能够形成从冷却区直接到进料区的空气通道。此外,有些设计还配有风扇,可将新鲜空气从制备室通过预过滤器带入热区。对此气流进行严密监视,并精确调节风扇速度以抵消灌装室压力的任何变化。设计*的隧道,在热区加压的情况下,可以控制70Pa的灌装级联过程,而复杂程度较低的装置通常只能控制10-15Pa。热区加压的第二个好处是自然温度梯度,当热区空气与相邻区域的较冷空气混合时会出现自然温度梯度。这样可以提供逐渐变化的温度,从而将因温度剧变引起碎瓶的风险降低。图3:经过加压的热区。蓝色区域=灌装区域(冷区),红色区域=热灭菌区域,橙色区域=预热区域隧道设计中要考虑的另一个问题是穿过西林瓶传送带的空气速度。空气速度与温度成正比,因此从质量的角度来看,重要的是要尽量小化加热过程中的温度变化。对传送带上的风速进行统一控制的隧道,能够实现更好的过程控制和批次均一性。在隧道两侧都带有回风的隧道(与单侧回风相反)通常在整个传送带上的空气速度变化较小(见图4)。 图4 (左)两侧回风;(右)单侧回风一些单面回风隧道设计结合了气流控制,可以补偿压力梯度,并在传送带的整个宽度上产生非常一致的气流(见图5)。这样的设计能够产生极优结果,消除温度过低的位置,并提供一致的灭菌效果。 图5 速度补偿后的单侧回风 其次,应考虑对灭菌隧道中无法清除的颗粒数量进行原位监测。大多数灭菌通道的设计可在进料区和冷却区进行颗粒计数。但是,迄今为止,只有一家制造商提供了监视加热灭菌区中西林瓶颗粒数量的功能。从热区收集的空气通过热交换器流向颗粒计数器(以避免损坏传感器)。该过程通常记录冷区(灌装区)5秒钟的颗粒计数,再记录5秒钟的热区(加热灭菌区)颗粒计数,再记录5秒钟的进料区颗粒计数,然后在整个生产过程中重复该循环。该解决方案可对所有三个区域进行全面的原位颗粒监控,以实现极其*的过程中质量控制。总结生产注射药物时,必须始终将患者安全放在首位。药品的生产和包装过程很复杂,但是制药行业在降低产品污染风险方面已经取得了重大进展。操作人员是无菌过程中最常见的颗粒和污染物来源。自动化生产极大降低了人员污染的风险。自动化设备很容易用于大规模生产过程。但是,传统上较小规模的生产更多地是通过是手动过程进行的,因此受到污染的风险更高。随着生物药品的发展以及更多定制化药品的出现,药品每批次生产的数量随之降低,设备供应商也相应作出改变,提供机器人灌装设备为这类产线服务。在为小规模生产选择清洗和灭菌设备的时候,必须考虑质量控制问题。现在可以使用自动洗瓶机和灭菌隧道来适应这些高价值的小批量应用。在选择设备时,尺寸、处理量,还有气流设计,都是提供无菌和无颗粒物保证的关键考虑因素。SP隶属于SP Industries.Inc., 是一家知名的科学设备供应商,品牌包括SP VirTis,SP FTS,SP Hotpack,SP Hull,SP Genevac,SP PennTech,SP i-Dositecno等。涉及的产品包括冻干,无菌灌装生产线,离心浓缩,低温循环水浴,玻璃器皿清洗机,恒温恒湿箱等。SP的产品服务于制药,科学研究,工业,航空,半导体和医疗保健等行业。总部位于宾夕法尼亚州的沃明斯特(Warminster),在美国,西班牙和欧洲的英国设有生产工厂,提供遍布全球的销售和服务网络,并提供包括培训和技术支持在内的全面产品支持。参考文献 1.Baseline Guide Vol 3: Sterile Product Manufacturing Facilities, April 2018, ISPE. 2.Mattias Haag, 2011, Calculating And Understanding Particulate Contamination Risk. Pharmaceutical Technology Europe,Volume 23, Issue 3
  • 北大开发出新型激光增强表面等离激元探测技术
    记者从北京大学获悉,该校马仁敏研究员和戴伦教授合作,实现了一种新型激光增强表面等离激元探测技术。  这种新型探测技术的强度探测品质因子比传统的表面等离激元(SPR)探测器高400倍左右。同时成本低,尺寸仅为微米量级,在一根头发丝的端面上即可制备数以千计的探测器。  “该探测器所具有的极高灵敏度、低成本和小体积的特点可能会使其在疾病的早期诊断、公共场所的安全监测和环境食品卫生等领域发挥重要的作用。”马仁敏说。  表面等离激元是一种局域在金属介质界面的局域电磁模式,通过将光频段的电磁波与贵金属中的自由电子的振荡耦合,将电磁场的能量限制在很小的尺度内,其振荡频率对周围环境非常敏感。通过探测由周围折射率变化引起的等离激元共振模式的变化形成的表面等离激元探测器是一种实时和不需要荧光标记的新型探测器。近20年以来,其在疾病诊断、生物化学研究与应用和环境监控等领域取得了非常大的成功。  马仁敏说,用于产生等离激元共振的金属中自由电子的振荡所带来的欧姆损耗在传统的等离激元探测器中不可避免,从基本物理原理上来讲,是进一步提高探测器灵敏度的障碍。马仁敏研究小组将激光原理引入到了表面等离激元探测器中,利用激光中的受激辐射光放大补偿了欧姆损耗,在前期气相超灵敏爆炸物检测的基础上(Nature Nanotechnology, 2014),实现了液相激光增强表面等离激元(LESPR)探测器。  新的探测器主要包括金属层和增益介质层,增益介质层形成在金属层上 在增益介质层和金属层的界面上形成表面等离激元模式,此模式由增益介质层的边界限制从而形成表面等离激元激光腔 待测液体覆盖在增益介质层上 激发光经过待测液体入射至增益介质层,增益介质在激发光的泵浦下产生受激辐射,经由激光腔反馈放大产生表面等离激元激光,该表面等离激元激光的波长和强度与待测液体的折射率有关。  在实验中应用了戴伦教授合成的发光波长在700纳米左右的硒化镉纳米晶体作为增益材料,其发光波长正好位于生物组织和水散射和吸收较小的700纳米到900纳米的窗口波长。相比于通常应用于等离激元激光中的金属银,他们使用了金。  “金虽然具有较高的欧姆损耗,但其化学性质远比银稳定,适合应用于生物和其他复杂环境的应用。”戴伦教授说。  在实验中,除了预期的激光效应补偿欧姆损耗使得等离激元共振的谐振线宽显著变窄意外,他们还发现激光增强表面等离激元探测器具有传统表面等离激元探测器所不具有的高斯光谱线型和无背景辐射的优点。  “这些特点使激光增强表面等离激元探测器具有高达84000的强度探测品质因子,比传统的表面等离激元探测器的强度探测的品质因子高400倍左右。”马仁敏说,“同时,因为使用了微腔效应,整个激光增强表面等离激元探测器的尺寸仅为微米量级,在一根头发丝的端面上即可制备数以千计的探测器,具有低成本、小型化、规模化集成的优点。”  该工作目前已被领域内的知名期刊Nanophotonics接收发表,北京大学博士后王兴远,博士生王逸伦和王所为文章共同第一作者,马仁敏研究员和戴伦教授为通讯作者。同时他们也为该探测器申请了发明专利。
  • 井下隧道互联互通,逸云天气体检测仪巧破数据难题
    随着科技的不断发展,隧道互联互通和井下工作的重要性日益凸显。然而,在实际应用中,我们面临着诸多困难和挑战。面对这一需求,逸云天的MS600仪器发挥了关键作用。  MS600从机仪器包含了丰富而强大的功能,如常规四气检测、温湿度检测、以及 SOS一键呼救和LORA互联。当部署在隧道和井下环境中时,它能够实时且精确地监测各种关键参数。SOS功能确保了在紧急情况下能够及时呼救,为人员安全增添保障;温湿度的准确检测有助于作业人员了解工作环境的舒适度和潜在风险;而对常规四气的监测更是直接关系到作业现场的安全状况。  通过LORA传输功能,井下人员可以轻松地将数据实时传到井上的主机,实现了隧道的互联互通。这种高效的数据传输方式,让井上人员能够随时查看井下的各种数据信息,无论是气体浓度的变化、温度湿度的波动,还是其他重要参数的动态。  与之配套的MS600主机则负责接收从机数据,确保了数据的稳定传输和有效整合。它就像是一个数据枢纽,将井下传来的信息汇总并呈现给井上的监控人员,为决策和管理提供了坚实的依据。并通过4G无线传输功能将数据上传到云平台服务器,可实现远距离监控现场情况。  通过MS600主从机互联,解决了井下数据难以实时获取的问题,打破了信息壁垒,让井上和井下的沟通更加顺畅和及时。同时,也极大地提高了安全管理的水平,能够提前预警潜在的危险,保障人员的生命安全。此外,对于作业过程的优化和效率提升也有着显著的促进作用,管理人员可以根据实时数据进行合理的资源调配和工作安排。  总体而言,逸云天的MS600仪器在隧道与井下作业中展现出了卓越的性能和无可替代的价值,为行业的发展和安全保障立下了汗马功劳,成为了推动隧道工程和井下作业不断向前的强大助力。相信在未来,逸云天的产品将在更多的领域得到应用,为人们的生命安全和工作效率做出更大的贡献。
  • 中科院物理所采购扫描隧道显微镜及共聚焦显微镜系统
    日 期: 2013年3月12日  招标编号: OITC-G13033059  1、东方国际招标有限责任公司受中国科学院物理研究所(招标人)的委托,就中国科学院物理研究所科研仪器设备采购项目(以下简称项目)所需的货物和服务,以公开招标的方式进行采购。  2、现邀请合格的投标人就下列货物及有关服务提交密封投标。有兴趣的投标人可从招标代理所在地址得到进一步信息和查看招标文件。  3、本次招标货物分为 2 个包,每个投标人可对其中一个包或多个包进行投标,投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。 包号   货物名称 数量(台/套)   1   低温扫描隧道显微镜   1   2   激光共聚焦显微镜系统   1   4、投标人资格条件:  1)具有独立承担民事责任能力,遵守国家法律法规,具有良好信誉,具有履行合同能力和良好的履行合同的记录,具有良好资金、财务状况的法人实体。  2)本项目不接受联合体投标。  3)按本投标邀请的规定获取招标文件。  5、有兴趣的投标人可从2013 年3月12日至2013年3月31日每天上午9:00至下午17:00(北京时间)在东方国际招标有限责任公司(地址:北京市海淀区阜成路67号 银都大厦15层)1507室查阅或购买招标文件,本招标文件售价为500元/包,如需邮寄另加100元的邮资费用,邮寄过程中产生的任何问题由购买标书人自己负责,招标代理机构不负责任。售后不退。  6、所有投标文件应于2013年4月1日下午13:30时(北京时间)之前递交至东方国际招标有限责任公司1513会议室,并须附有不低于投标金额1%的投标保证金,以招标机构为承受人。  7、兹定于2013年4月1日下午13:30时在东方国际招标有限责任公司1513会议室公开开标。届时请投标人派代表出席开标仪式。  8、招标机构名称:东方国际招标有限责任公司  地  址:北京市海淀区阜成路67号 银都大厦15层  邮  编:100142  电  话:68729912  传  真:68458922  电子信箱:fyu@osic.com.cn  联 系 人:于峰  开户名(全称):东方国际招标有限责任公司  开户银行:招行西三环支行  帐号:862081657710001  备注:以电汇方式购买招标文件、递交投标保证金、支付中标服务费须在电汇凭据附言栏中写明招标编号及用途。
  • “全国第十一届扫描隧道显微学学术会议”第一轮通知
    由中国科学院武汉物理与数学研究所承办的“全国第十一届扫描隧道显微学学术会议”(简称STM’11)将于2010年11月3-5日在武汉东湖宾馆召开。这次会议的宗旨是展示最近两年来我国高校与科学研究机构在扫描探针显微术及其应用领域所取得的研究成果,并为与会者提供一个学术交流的平台。会议将邀请知名研究学者报告最前沿的研究成果。还将组织以“科学、艺术与健康”为主题的参观考察活动,包括湖北省博物馆、武汉物理与数学研究所、武汉光电国家实验室和华中地区著名的汤池温泉。  武汉交通快捷,有高速铁路(武广、沪汉)、铁路、高速公路和航空构织的密集交通网络。武汉的十一月初是天高气爽的宜人金秋。我们热忱欢迎各位与会代表的光临!  一.会议内容  1)STM与物理 2)STM与化学和与材料科学 3)SPM在生命科学中的应用 4)SPM技术发展 5)国内外SPM厂商仪器介绍与展示。  二、会议方式  包括邀请报告、口头报告和墙报。口头报告和墙报论文均享有同等学术地位。组织委员会根据本人愿望和议程的可能,确定安排口头报告或墙报论文。会议将出版摘要论文集,论文全文经审阅将在《电子显微学报》同期专刊发表。  三、投稿要求  凡未在学术刊物或会议上发表过的论文均可投稿,会议接受论文摘要和全文。摘要用Word文档编排,不超过一个版面(A4页面 页边距:上2.5cm、下2cm、左2.5cm、右2cm),内容包括题目(加粗楷体三号字)、作者、单位、地址、邮编(均为楷体小四号字)、摘要正文(楷体五号字)及图表等。摘要不少于400字,并请在右上角注明专题代号。全文论文格式请参阅《电子显微学报》。  四、时间安排  1. 论文摘要截止日期: 8月31日  2. 报名截止日期: 9月30日  3. 会议报到时间: 11月2日全天,3日早晨  4. 会议时间: 11月3-5日  5. 参观时间: 11月4日下午,11月5日下午-6日上午  *参观考察:省博物馆、武汉物理与数学研究所/武汉光电国家实验室、应城汤池温泉等。  五、学术会议主席:白春礼院士(中国科学院常务副院长)  六、承办单位:中国科学院武汉物理与数学研究所  七、会议规模:本次会议规模预计约200-250人。  八、STM11 “青年科技奖”与“最佳墙报奖”  为鼓励广大青年科技工作者参加会议,会议将设立“青年科技奖” 为表彰以墙报形式参会的会议代表,会议还将设立“最佳墙报奖”。大会组委会将向获奖者颁发获奖证书。  九、注册费与会务费  注册费:一般会议代表:1500元  研究生:1200元(凭学生证)  随行人员:1200元  会务费:会务费含注册费,并可包含住宿费与参观游览费  *会务组统一安排食宿,餐费全免。  十、会议报名与其他事项  详见本次会议专题网站:http://www.wipm.ac.cn/stm11  十一、联系方式  联系人:秦志辉博士(会议秘书)、曹更玉研究员(会议主席)  联系地址:湖北省武汉市武昌区小洪山西30号  邮政编码:430071  联系电话:027-87198256 传真:027-87198576  E-Mail: zhqin@wipm.ac.cn,gycao@wipm.ac.cn  会议网址: http://www.wipm.ac.cn/stm11
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制