当前位置: 仪器信息网 > 行业主题 > >

动态信号分析仪的工作原理

仪器信息网动态信号分析仪的工作原理专题为您提供2024年最新动态信号分析仪的工作原理价格报价、厂家品牌的相关信息, 包括动态信号分析仪的工作原理参数、型号等,不管是国产,还是进口品牌的动态信号分析仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合动态信号分析仪的工作原理相关的耗材配件、试剂标物,还有动态信号分析仪的工作原理相关的最新资讯、资料,以及动态信号分析仪的工作原理相关的解决方案。

动态信号分析仪的工作原理相关的资讯

  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 动态热机械分析仪原理简介
    p  动态热机械分析(或称动态力学分析)是在程序控温和交变应力作用下,测量试样的动态模量和力学损耗与温度或频率关系的技术,使用这种技术测量的仪器就是动态热机械分析仪(Dynamic mechanical analyzer-DMA)。br//pp  DMA仪器的结构及重要部件如图所示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/26b5a0aa-c61a-4937-9512-91ce4103c5fd.jpg" title="DMA结构.jpg" width="400" height="238" border="0" hspace="0" vspace="0" style="width: 400px height: 238px "//pp style="text-align: center "strongDMA的结构示意图(左:一般DMA的结构 右:改进型DMA的结构)/strong/pp style="text-align: center "1.基座 2.高度调节装置 3.驱动马达 4驱动轴 5.(剪切)试样 6.(剪切)试样夹具 7.炉体 8.位移传感器(线性差动变压器LVDT) 9.力传感器/pp  DMA核心的部件有驱动马达、试样夹具、炉体、位移传感器、力传感器。/ppstrong驱动马达/strong—以设定的频率、力或位移驱动驱动轴/ppstrong试样夹具/strong—DMA依据所选用夹具的不同,可采用如图所示的不同测量模式:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/18bffd85-0be9-4361-927f-8be409b209c8.jpg" title="DMA测量模式.jpg" width="400" height="152" border="0" hspace="0" vspace="0" style="width: 400px height: 152px "//pp style="text-align: center "strongDMA测量模式/strong/pp style="text-align: center "1.剪切 2.三点弯曲 3.双悬臂 4.单悬臂 5.拉伸或压缩/ppstrong炉体/strong—控制试样服从设定的温度程序/ppstrong位移传感器/strong—测量正弦变化的位移的振幅和相位/ppstrong力传感器/strong—测量正弦变化的力的振幅和相位。一般DMA没有力传感器,由传输至驱动马达的交流电来确定力和相位/ppstrong刚度、应力、应变、模量、几何因子的概念:/strong/pp  力与位移之比称为刚度。刚度与试样的几何形状有关。/pp  归一化到作用面面积A的力称为机械应力或应力σ(单位面积上的力),归一化到原始长度Lsub0/sub的位移称为相对形变或应变ε。应力与应变之比称为模量,模量具有物理上的重要性,与试样的几何形状无关。/pp  在拉伸、压缩和弯曲测试中测得的是杨氏模量或称弹性模量,在剪切测试中得到的是剪切模量。/pp  在动态力学分析中,用力的振幅FA和位移的振幅LA来计算复合模量。出于实用的考虑,用所谓的几何因子g将刚度和模量两个量的计算标准化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/feb82561-d2c4-43db-a8c4-44864e46f3b1.jpg" title="DMA-1.jpg"//pp可得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c69705fc-1d40-430b-ab24-80b16e80df41.jpg" title="DMA-2.jpg"//ppFsubA/sub/LsubA/sub为刚度。所以测定弹性模量的最终方程为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08ff85ae-0c32-4333-a18d-1aef926a698d.jpg" title="DMA-3.jpg"//pp模量由刚度乘以几何因子得到。/pp  各种动态热机械测量模式及几何因子的计算公式见下表:/pp style="text-align: center "表1 DMA测量模式及其试样几何因子的计算公式/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1a1ebfe9-d3d3-4205-b263-c6348668361f.jpg" title="DMA测量模式及其试样几何因子的计算公式.jpg" width="400" height="276" border="0" hspace="0" vspace="0" style="width: 400px height: 276px "//pp  注:表中b为厚度,w为宽度,l为长度。/ppstrongDMA测试的基本原理:/strong/pp  试样受周期性(正弦)变化的机械振动应力的作用,发生相应的振动应变。测得的应变往往滞后于所施加的应力,除非试样是完全弹性的。这种滞后称为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅和应力与应变间的相位差。/pp  测试中施加在试样上的应力必须在胡克定律定义的线性范围内,即应力-应变曲线起始的线性范围。/pp  DMA测试可在预先设定的力振幅下或可在预先设定的位移振幅下进行。前者称为力控制的实验,后者称为位移控制的实验。一般DMA只能进行一种控制方式的实验。改进型DMA能在实验过程中自动切换力控制和位移控制方式,保证试样的力和位移变化不超出程序设定的范围。/ppstrong复合模量、储能模量、损耗模量和损耗角的关系:/strong/pp  DMA分析的结果为试样的复合模量Msup*/sup。复合模量由同相分量M' (或以G' 表示,称为储能模量)和异相(相位差π/2)分量M' ' (或以G' ' 表示,称为损耗模量)组成。损耗模量与储能模量之比M' ' /M' =tanδ,称为损耗因子(或阻尼因子)。/pp  高聚物受到交变力作用时会产生滞后现象,上一次受到外力后发生形变在外力去除后还来不及恢复,下一次应力又施加了,以致总有部分弹性储能没有释放出来。这样不断循环,那些未释放的弹性储能都被消耗在体系的自摩擦上,并转化成热量放出。/pp  复合模量Msup*/sup、储能模量M' 、损耗模量M' ' 和损耗角δ之间的关系可用下图三角形表示:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/51080aa0-2961-4541-81f5-b04011690e46.jpg" title="复合模量三角形关系.jpg" width="400" height="191" border="0" hspace="0" vspace="0" style="width: 400px height: 191px "//pp  储能模量M' 与应力作用过程中储存于试样中的机械能量成正比。相反,损耗模量表示应力作用过程中试样所消散的能量(损耗为热)。损耗模量大表明粘性大,因而阻尼强。损耗因子tanδ等于黏性与弹性之比,所以值高表示能量消散程度高,黏性形变程度高。它是每个形变周期耗散为热的能量的量度。损耗因子与几何因子无关,因此即使试样几何状态不好也能精确测定。/pp  模量的倒数成为柔量,与模量相对应,有复合柔量、储能柔量和损耗柔量。对于材料力学性能的描述,复合模量与复合柔量是等效的。/pp 通常可区分3种不同类型的试样行为:/pp纯弹性—应力与应变同相,即相角δ为0。纯弹性试样振动时没有能量损失。/pp纯粘性—应力与应变异相,即相角δ为π/2。纯粘性试样的形变能量完全转变成热。/pp粘弹性—形变对应力响应有一定的滞后,即相角δ在0至π/2之间。相角越大,则振动阻尼越强。/pp DMA分析的各个物理量列于下表:/pp style="text-align: center "表2 DMA物理量汇总/ptable border="1" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应力/span/p/tdtd width="284" style="border-right: none border-bottom: none border-left: none border-top: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "σ(t)=σsubA/subsinωt=FsubA/sub/Asinωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"应变/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "ε(t)=εsubA/subsin(ωt+δ)=LsubA/sub/Lsub0/subsin(ωt+δ)/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M*(ω)=σ(t)/ε(t)=M’sinωt+M’’cosωt/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"模量值/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "|M*|=σsubA/sub/εsubA/sub/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"储能模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’(ω)=σsubA/sub/εsubA/subcosδ/span/p/td/trtrtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗模量/span/p/tdtd width="284" style="border-width: initial border-style: none border-color: initial padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "M’’(ω)=σsubA/sub/εsubA/subsinδ/span/p/td/trtrtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:宋体"损耗因子/span/p/tdtd width="284" style="border-top: none border-right: none border-left: none border-bottom: 1px solid windowtext padding: 0px 7px "p style="text-align:center"span style="font-family:' Times New Roman' ,' serif' "tanδ=M’’(ω)/M’(ω)/span/p/td/tr/tbody/tablepstrong温度-频率等效原理/strong/pp  如果在恒定负载下,分子发生缓慢重排使应力降至最低,材料因此而随时间进程发生形变 如果施加振动应力,因为可用于重排的时间减少,所以应变随频率增大而下降。因此,材料在高频下比在低频下更坚硬,即模量随频率增大而增大 随着温度升高,分子能够更快重排,因此位移振幅增大,等同于模量下降 在一定频率下在室温测得的模量与在较高温度、较高频率下测得的模量相等。这就是说,频率和温度以互补的方式影响材料的性能,这就是温度-频率等效原理。因为频率低就是时间长(反之亦然),所以温度-频率等效又称为时间-温度叠加(time-temperature superposition-TTS)。/pp  运用温度-频率等效原理,可获得实验无法直接达到的频率的模量信息。例如,在室温,几千赫兹下橡胶共混物的阻尼行为是无法由实验直接测试得到的,因为DMA的最高频率不够。这时,就可借助温度-频率等效原理,用低温和可测频率范围进行的测试,可将室温下的损耗因子外推至几千赫兹。/ppstrong典型的DMA测量曲线:/strong/pp  DMA测量曲线主要有两大类,动态温度程序测量曲线和等温频率扫描测量曲线。/pp  动态温度程序测量曲线,是在固定频率的交变应力条件下,以一定的升温速率(由于试样较大,通常速率较低,以1~3K/min为佳),进行测试。得到的是以温度为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随温度的变化曲线,反应了试样的次级松弛、玻璃化转变、冷结晶、熔融等过程。/pp  等温频率扫描测量曲线,是在等温条件下,进行不同振动频率应力作用时的扫描测试。得到的是以频率为横坐标、模量为纵坐标的图线,图中可观察储能模量G' ,损耗模量G' ' ,和损耗因子tanδ随频率的变化曲线。等温测试的力学松弛行为与频率的关系又称为力学松弛谱,依据温度-频率等效原理,可将不同温度条件下的力学松弛谱沿频率窗横向移动,来得到对应于不同温度时的模量值。/p
  • 热分析仪核心部件原理简介
    p  常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。/pp  热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong电子天平/strong/span/pp  电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。/pp  电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title="电压式微量热天平.png"//pp style="text-align: center "strong电压式微量热天平/strong/pp  天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示:/pp style="text-align: center "F=KBLI/pp  其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。/pp  无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热电偶传感器/strong/span/pp  热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。/pp  热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。/pp  热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。/pp  热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong位移传感器/strong/span/pp  位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。/pp  LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。/p
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 热机械分析仪原理简介
    p  热机械分析是在程序控温非振动负载下(形变模式有膨胀、压缩、针入、拉伸或弯曲等不同形式),测量试样形变与温度关系的技术,使用这种技术测量的仪器就是热机械分析仪(Thermomechanical analyzer-TMA)。/pp  热机械分析仪的结构如图所示。试样探头上下垂直移动,探头上的负载由力发生器产生,探头由固定在其上面的悬臂梁和螺旋弹簧支撑,通过加马力马达对试样施加载荷,位移传感器测量探头的位置。探头直接放置于试样上,或者放置于试样上的石英圆片上 测量试样温度的热电偶置于试样下。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b6873b57-b49c-48ca-813d-250f596f2cd4.jpg" title="热机械分析仪结构示意图.jpg" width="400" height="339" border="0" hspace="0" vspace="0" style="width: 400px height: 339px "//pp style="text-align: center "strong热机械分析仪结构示意图/strong/pp style="text-align: center "1.气体出口旋塞 2.螺纹夹 3.炉体加热块 4.水冷炉体加套 5.试样支架 6.炉温传感器 7.试样温度传感器 8.反应气体毛细管 9.测量探头 10.垫圈 11.恒温测量池 12.力发生器 13.位移传感器(LVDT) 14.弯曲轴承 15.校正砝码 16.保护气进口 17.反应气进口 18.真空连接与吹扫气入口 19.冷却水 20.试样/pp  TMA的核心部件是LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/633cd90b-c338-4e46-9cce-ad33b88907d8.jpg" title="TMA常用测量模式示意图.jpg" width="400" height="134" border="0" hspace="0" vspace="0" style="width: 400px height: 134px "//pp style="text-align: center "strongTMA常用测量模式示意图/strong/ppstrong压缩或膨胀/strong/pp  两面平行的试样上覆盖一片石英玻璃圆片,以使压缩应力均匀分布。膨胀测试时,作用在圆柱体试样上力仅产生很小的压缩应力。/ppstrong针入模式/strong/pp  这种模式通常用来测定试样在负载下软化或形变开始的温度。通常用球点探头作针入测试,开始时球点探头仅与试样上的很小面积接触,加热时如果试样软化,则探头逐渐深入试样,接触面积增大,形成球星凹痕,导致测试过程中压缩应力下降。/ppstrong三点弯曲/strong/pp  这种模式非常适合在压缩模式中不会呈现可测量形变的硬材料如纤维增强塑料或金属。/ppstrong拉伸模式/strong/pp  适合薄膜或纤维。/pp style="text-align: center "strongspan style="color: rgb(255, 0, 0) "典型的TMA测量曲线/span/strong/ppstrong热膨胀系数测量曲线/strong/pp  热膨胀系数(coefficient of thermal expansion,CTE)也简称为膨胀系数。/pp  大多数材料在加热时膨胀。线膨胀系数α定义如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/774dbd00-e900-436f-b22e-2a114baf6286.jpg" title="TMA-1.jpg"//pp式中,dL为由温度变化dT引起的长度变化 Lsub0/sub为温度Tsub0/sub(通常为室温25℃)时的原始长度 α单位为10sup-6/supKsup-1/sup。/ppstrong玻璃化转变的TMA测量曲线/strong/pp  测定玻璃化转变温度是TMA最常进行的测试之一。在玻璃化转变处,由于热膨胀系数增大,导致膨胀测量曲线斜率明显增大。通过外推两段具有不同斜率热膨胀系数曲线所得到的焦点,即为玻璃化转变温度。/ppstrong测量杨氏模量的DLTMA曲线/strong/pp  如果采用振动负载,即负载呈周期性变化,则称为动态负载热机械分析(dynamic load thermomechanical analysis-DLTMA),该模式为TMA的扩展功能,可测量试样的杨氏模量。如果能确保在测试过程中施加在整个试样上的机械应力相同,就可由DLTMA曲线测定杨氏模量(弹性模量)。/pp  从原理上来说,DLTMA曲线类似于DMA曲线,傅里叶分析可得到应力应变之间的关系,可将复合模量分成储能模量和损耗模量。然而由于若干原因,这些计算并不准确,特别是用弯曲模式。因此,若想测定储能模量和损耗模量,最好用动态热机械分析DMA。/p
  • 热重分析仪原理简介
    p  热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热重分析仪基本结构/strong/span/pp  热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。/ppstrong热天平/strong/pp  热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title="电压式微量热天平.png"//pp style="text-align: center "strong电压式微量热天平/strong/pp  热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。/pp  TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。/pp  天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。/pp  天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。/pp  物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。/ppstrong加热炉/strong/pp  炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title="炉体结构图.png"//pp style="text-align: center "strong炉体结构图/strong/pp  1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝/ppstrong程序控温系统/strong/pp  加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。/pp  当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。/ppstrong气氛控制系统/strong/pp  气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热重分析仪测量曲线/strong/span/pp  热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。/pp  当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。/pp  引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。/pp  同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。/p
  • 纳米粒度分析仪的原理及应用
    梓梦科技纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 解读三|大动态复杂信号高精捕获与实时分析技术及应用——2023年度中国仪器仪表学会科学技术奖获奖项目
    随着现代装备向高精尖方向快速发展,众多电、磁、力、热场深度耦合的复杂部件,已广泛应用于尖端领域重大装备中,装备运行过程中面临的多源、大动态、高密度复杂共生信号环境,给其测试及维护保障带来了严峻挑战,如何快速捕获、高精处理这类大动态信号成为装备测试领域急需攻克的世界性难题。攻坚克难,创新突破在大动态宽带复杂信号捕获领域,西方国家长期占据着主导地位,相关仪器产品和技术对我国实行严格的禁运和封锁,加剧了我国在这一领域的技术差距。电子科技大学测试技术及仪器研究所、电子测试技术与仪器教育部工程研究中心程玉华教授、刘震教授,多年来专注于重大装备维护保障中的大动态、宽带复杂信号的高精捕获,在国家重点研发计划、自然科学基金(重点)等项目支持下,带领课题组持续攻关,突破了大动态超高分辨率采集等关键技术和难题,实现了大动态信号实时可重构采集架构,形成了具有完全自主知识产权的大动态信号采集分析仪等系列化国产测试仪器。潜心科研, 服务国家程玉华教授、刘震教授所在的电子科技大学“测试技术及仪器研究所”科研团队,在测试领域有着50余年的学术和技术积累,团队以研制基于高速数据采集测试仪器为目标,先后攻克了大规模并行采样、极高波形捕获率等核心技术,产生了多项国际先进并填补国内空白的技术成果。近十年来,团队瞄准国家重大仪器需求,在大动态宽带信号捕获方向上潜心科研、努力攻关,成功研制出兼具上百通道数、动态范围160dB、分辨率32bit的测试性能可组合重构的系列化测试仪器和采集系统,技术指标达到国际先进水平,满足了国家尖端科研和重大工程急需。成果突出,效益显著项目成果已授权国家发明专利90余项,美国专利6项。项目整体技术指标国际先进,大动态同步捕获能力达国际领先水平。研制的系列化测试仪器已在多型航空发动机、声呐探测、电网监测、新能源汽车等领域中应用,近三年共新增销售额3.66 亿元,新增利润约5000万元。2023年10月,“大动态复杂信号高精捕获与实时分析技术及应用”项目荣获中国仪器仪表学会科技进步一等奖。
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
  • 精彩回顾 | 莱比信《动态颗粒图像分析仪CPA 2-1专项培训会》顺利举办
    2019年7月8日,莱比信举行了动态颗粒图像分析仪CPA 2-1的专项培训会,邀请了德国Haver&Boecker公司的 Bastian Driefer 先生指导培训,旨在增进销售人员对筛分仪和动态图像颗粒分析仪的理解及要点掌握。  本次培训会主要内容为动态颗粒图像分析仪CPA 2-1的解读及仪器原理操作,会上不仅详细介绍了仪器的原理,还演示了检测样品的标准要求及检测方法,通过现场检测方法实操,让人更容易掌握系统知识。培训会上,每位销售都认真倾听工程师讲解,开展面对面互动交流,踊跃发言提问。  CPA 2-1 特别适于实验室分析34μm到25mm的颗粒形态、粒径及分布。  HAVER CPA 2-1上安装有HAVER CpaServ软件,可以在Windows操作系统下运行。CpasServ强大的软件功能使仪器安装更简单,操作更直观,与笔记本电脑相连进行操作使用,具有良好的移动性。  HAVER REAL TIME技术,可以即时对样品进行分析和处理。  德国Haver&Boecker公司创建于1887年,在全球拥有众多的分支机构和工厂。莱比信与其携手在颗粒分析测量领域展开合作,提供无论是过滤、筛选、颗粒分析、结构和设计问题,还是用于产品和工艺的制备、储存、包装和自动化的整体系统解决方案,日后双方将会锐意进取,不断创新,以高品质的产品满足客户的需求。
  • 精工电子发布动态热机械分析仪DMS7100
    新型测量模具和对话式软件提高仪器的操作性  精工电子纳米科技有限公司(简称:SIINT,社长:川崎贤司,总公司:千叶县千叶市)是精工电子有限公司(简称:SII,社长:镰田国雄,总公司:千叶县千叶市)的全资子公司,其主要业务是测量分析仪器的生产与销售。本公司于8月27日发售操作性以及可靠性大幅提升的动态热机械分析仪 「DMS7100」。     动态粘弹性测量法*1,,是一种热分析的科学方法。它主要用来分析塑料,橡胶弹性体,复合材料以及各种高分子材料力学特性。动态粘弹性测量不仅测量 杨氏模量*2及玻璃化转变*3,还可以获得关于聚合物的分子运动及分子结构的信息,在开发新材料上是不可缺少的测量方法。另外,工业材料的力学特性对产品 从基础开发到批量生产的加工过程中,都起着极为重要作用。也利用在材料的品质管理中。 本次发售的动态热机械分析仪「DMS7100」,沿袭了过去机型DMS 6100的性能及功能,提高了操作性和信赖性。新机型为了固定样品,改良了各种测量模具的形状,使之更方便样品的装卸。另外,通过对话式软件的「简单测量 导航」,将样品的拆装以及条件的设定明确地表示出来,这样,即使是第一次操作仪器的人也可以简单地进行操作测量。再加上通过「Lissajous」监控功 能能够观察到每个测量点的Lissajous图形,从而能够进行更高效率的测量。并且测量中的试样状态变化可以在CCD摄像头里观察,也能够通过样品观察 选项「DMS实时视图」来进行对应。作为日本国内顶级制造商,SIINT从1974年发售热分析仪器以来取得很多成就。这次的动态热机械分析仪「DMS7100」的加入,也为用户中广 受好评的SII的热分析仪器系列「EXSTAR70000」阵容的完善画上了完美的句号。今后我们将以促进功能性高分子材料为中心的新型工业材料的研究开 发及品质管理为目的来进行积极销售。  【DMS7100的主要特征】  1. 简易装卸样品的测量模具和对话型软件的便捷操作 通过对操作人员动作的研究,我们制作出能够对应各种形变模式的多种测量模具,并且改进了结构,以实现样品的便捷装卸。另外,从测量条件的设定到测量的开始 这一系列的操作通过插图的形式表示出来,这样即使是初学者也能够简单,准确的操作。     2. 通过Lissajous监控提高测量的可靠性 仪器配有的Lissajous监控功能可以测量过程中表示样品的应力和形变关系。还可以确认测量过程中样品不同测量点的实时变形状态。另外,通过 Lissajous图形的保存,在后期的数据解析时,可确认每个测量点上的样品变形状态,从而取得更加准确的数据。     3. 削减液化氮消费量的冷却装置 可以连接使用EXSTAR70000系列采用的全自动气体冷却装置。液化氮的消耗量可以削减约30%(本公司其他仪器比),是环保型的冷却装置。4. 试样观察系统「实时视图DMS」(选配) 实时视图DMS,能够将测量中的试样状态变化通过连续的图像显示并保存。测量结束后,可以通过分析软件调取保存的图像,与温度和各种信号相对应,数据平滑 表示后进行分析。对于松弛现象等的技术评判,取得更加准确的数据提供支持。     【DMS7100主要规格】形变模式: 拉伸,双悬臂梁弯曲,单悬臂梁弯曲,3点弯曲,剪切, 薄膜剪切,压缩 测量模式 : 动态测量・ 静态测量频率数 : 正弦波振动时0.01~200Hz  合成波振动时 同时5频率 测量范围(贮藏弹性模量): 105~1012Pa(拉伸)、105~1012Pa(双悬臂梁弯曲)、 106.5~1013.5Pa(3点弯曲)、103~109Pa(剪切)、 104~1010Pa(薄膜剪切)、105~109Pa(压缩)温度范围 : -150~600℃ 升温速度 : 0.01~20℃/min*1 动态粘弹性测量:对与试样施加随时间变化(振动)的应变或应力,测量由此发生的应力或应变,试样的力学性能的测量方法。*2 杨氏模量:固定一定粗细的棒的一侧,拉伸另一侧,棒的断面应力:σ和单位长度增长:ε之间有如下比例关系:σ=Eε。比例系数E即是杨氏模量。*3 玻璃化转变:对固体非晶材料进行加热时,在低温呈现如结晶态的高刚性低粘度状态,在某一温度范围内,刚度和粘度发生急剧变化,流动性增加,这一变化即为玻璃化转变。 以上
  • 综合热分析仪:基本原理、应用场景
    综合热分析仪是一种广泛应用于材料科学、化学、物理等领域的仪器,能够同时测量物质的多种热学性质、设备综合热重分析仪TGA及差示扫描量热仪DSC等。本文将介绍综合热分析仪的基本原理、应用场景及其优劣比较。上海和晟 HS-STA-002 综合热分析仪综合热分析仪的基本原理是热平衡法,即通过加热和冷却待测物质,并记录物质在不同温度下的热学性质。在具体操作中,将待测物质放置在加热炉中,加热炉会按照设定的程序进行加热和冷却,并使用热电偶等传感器记录物质在不同温度下的热学性质。通过数据处理软件,可以将这些数据转化为物质的热容、热导率、热膨胀系数等参数。综合热分析仪在各个领域都有广泛的应用。在材料科学领域,可以利用综合热分析仪研究材料的热稳定性、相变行为等性质,以确定其加工和制备工艺;在化学领域,可以利用综合热分析仪研究化学反应的动力学过程和反应速率常数,为新材料的开发和优化提供依据;在物理领域,可以利用综合热分析仪研究物质的热学性质和物理性能,为新技术的开发和应用提供支持。综合热分析仪的优点在于其能够同时测量物质的多种热学性质,且测量精度高、重复性好。此外,综合热分析仪还具有操作简便、自动化程度高等特点,可以大大减少实验操作的时间和人力成本。然而,综合热分析仪也存在一些缺点,如价格昂贵、维护成本高、对实验条件要求严格等。总之,综合热分析仪是一种重要的仪器,具有广泛的应用场景和优劣比较。在实际使用中,应根据具体需求选择合适的综合热分析仪,以获得更准确的实验结果。随着科技的不断发展,相信未来综合热分析仪将会在更多领域得到应用,并推动材料研究和开发的进步。
  • 从原理到应用,6大类元素分析仪大比拼
    p  元素定义:是strongspan style="color: rgb(0, 0, 0) "具有相同质子数(核电荷数)的同一类原子的总称/span/strong,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种./pp  元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。/pp  明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。/pp style="text-align: center "strongspan style="text-align: center color: rgb(0, 112, 192) "主要元素分析仪器/span/strong/pp  strongspan style="color: rgb(0, 0, 0) "1.紫外\可见光分光光度计(UV) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  2.原子吸收分光光度计(AAS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  3.原子荧光分光光度计(AFS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  4.原子发射分光光度计(AES) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  5.质谱(MS) /span/strong/ppstrongspan style="color: rgb(0, 0, 0) "  6.X射线分光光度计(XRF ) /span/strong/pp  常见分析仪器的归属类型:/pp  ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /pp  ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /pp  FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "各种元素分析仪器分析过程、特点及应用/span/strong/pp  strongspan style="color: rgb(192, 0, 0) "紫外\可见光分光光度计(UV)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title="1.jpg" alt="1.jpg"//pp  strong2.原理:/strong/pp  利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。/pp  strong3.主要特点/strongstrong:/strong/pp  (1)灵敏度高/pp  (2)选择性好/pp  (3)准确度高/pp  (4)适用浓度范围广/pp  (5)分析成本低、操作简便、快速、应用广泛/pp  strongspan style="color: rgb(192, 0, 0) "原子吸收和荧光分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title="2.jpg" alt="2.jpg"//pp  strong2.原子吸收光谱法原理:/strong/pp  原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。/pp  公式:A=KC/pp  式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。/pp  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。/pp  strong3.原子吸收主要特点:/strong/pp  (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /pp  (2)原子吸收谱线简单,选择性好,干扰少。/pp  (3)操作简单、快速,自动进样每小时可测定数百个样品 /pp  (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10%/pp  (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。/pp  strong4.原子荧光主要特点:/strong/pp  (1)有较低的检出限,灵敏度高。/pp  (2)干扰较少,谱线比较简单。/pp  (3)仪器结构简单,价格便宜。/pp  (4)分析校准曲线线性范围宽,可达3~5个数量级。/pp  (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。/pp  strongspan style="color: rgb(192, 0, 0) "原子发射分光光度计/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em "strong2.原理/strong/pp  原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。/pp  发射的光波长为:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title="0.png" alt="0.png"//pp  每个元素有自己独特的特征光谱,从而进行元素定性分析。/pp  strong3.主要特点/strong/pp  (1)高温,104K /pp  (2)环状通道,具有较高的稳定性 /pp  (3)惰性气氛,电极放电较稳定 /pp  (4)具有好的检出限,一些元素可达到10-3~10-5ppm /pp  (5)ICP稳定性好,精密度高,相对标准偏差约1% /pp  (6)基体效应小 /pp  (7)光谱背景小 /pp  (8)自吸效应小 /pp  (9)线性范围宽。/pp  span style="color: rgb(192, 0, 0) "strong质谱分析法/strong/span/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title="4.jpg" alt="4.jpg"//pp  strong2.原理/strong/pp  使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。/pp  strong3.主要特点:/strong/pp  (1)质量测定范围广泛 /pp  (2)分辨高 /pp  (3)绝对灵敏度,可检测的最小样品量。/pp  strongspan style="color: rgb(192, 0, 0) "X荧光光度计(XRF)/span/strong/pp  strong1.分析过程:/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title="5.jpg" alt="5.jpg"//pp  strong2.原理:/strong/pp  受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。/pp  strong3.主要特点:/strong/pp  (1)快速,测试一个样品只需2min-3min /pp  (2)无损,测试过程中无需损坏样品,直接测试 /pp  (3)含量范围广 /pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "几种元素分析仪器对比/span/strong/pp  strong1.工作范围/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title="6.jpg" alt="6.jpg"//pp  strong2.无机分析产品的检出限/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title="7.jpg" alt="7.jpg"//pp  strong3.干扰/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title="8.jpg" alt="8.jpg"//pp  strong4.费用/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title="9.jpg" alt="9.jpg"/  /pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/818.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "医用原子吸收光谱仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/646.html" target="_self" style="color: rgb(192, 0, 0) text-decoration: underline "span style="color: rgb(192, 0, 0) "金属多元素分析仪会场/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/zc/476.html" target="_self" style="text-decoration: underline color: rgb(192, 0, 0) "span style="color: rgb(192, 0, 0) "有机元素分析仪会场/span/a/p
  • 开心工作 快乐生活——中仪协分析仪器分会走访华科仪
    仪器信息网讯 2016年5月24日上午,中国仪器仪表行业协会分析仪器分会会员单位2016年第二次走访活动来到了北京华科仪科技股份有限公司。来自多家仪器公司的领导、员工约40人走进了华科仪,参观了华科仪的展厅、生产楼并进行了交流。华科仪总经理边宝丽、副总经理陈云龙等接待了一行参观人员。交流会现场  员工是公司发展的基础,在交流和参观过程中,我们处处能感觉出华科仪对员工的关怀。华科仪成立于1995年,并于2015年1月1日正式改制为北京华科仪科技股份有限公司,为创业板上市做准备。对此,边总介绍说:“之所以选择上市,很重要的一个原因是给那些跟随了华科仪21年的员工一个交代,希望他们对公司有更多的归属感,不仅他们能在华科仪工作,他们的下一代也能选择在华科仪工作。”在人员流动普遍偏高的北京,21年老员工让很多人艳羡,边总也为我们介绍了很多窍门和理念。人就应该快乐的工作,从不希望员工周末加班,如出现这种情况,只能说明公司流程出现了问题或者公司没有好产品来支持自己的利润率。公司除了是工作的地方,也是员工生活的地方,除了食堂、住宿外,华科仪还专门建立了一个小花园,作为员工休闲娱乐的地点。北京华科仪科技股份有限公司边宝丽总经理  技术是公司发展的基石,除了自己现有的优势产品外,华科仪还积极与客户沟通、与多方合作加强自己的技术储备。如ZFSC-1型工业在线腐蚀速度动态监测装置是华科仪与内蒙古电力科学研究院合作开发的,此款产品以测量管道中溶解氢为基础,经过复杂的模型计算得出管道的腐蚀速率,主要针对电厂管路腐蚀问题进行监测,结果直观。除此之外,华科仪还将推出自己的新产品HK-7501脱硝氨逃逸在线分析系统,此系统采用化学比色法,适用于烟气脱硝后对逃逸氨的自动监测,解决了激光吸收光谱原理产品因为粉尘干扰,光程短,结晶等原因而无法满足用户对监测下限要求的问题。  在交流会的最后,边总还为我们分享了华科仪的海外拓展经验。首先要看准市场,华科仪的主要客户集中在电力、石油化工行业,并兼顾环保等行业,经过多方摸索,认为印度和印度尼西亚有较大的市场空间。其次是找到一条出口的捷径,最初华科仪的产品是随着国内电力行业的总包商进入这些国家的,经过一段时间的发展,华科仪也设立了自己的办事处,为客户的后续需求服务。最后,可以尝试多种渠道,如国外展会、代理商渠道等等。当然还有很重要的一点是,公司的产品需要符合当地的标准和各种认证。参观人员合影  关于华科仪:  北京华科仪科技股份有限公司是专业从事化学水分析仪器,可燃、有毒气体报警器,仪表工作站,水处理装置、油分析仪等设备的研发,生产和销售的高科技股份制企业。公司创立于1995年,注册资金1100万,占地面积8000平米,建筑面积4000平米。设有总工办、市场部、技术部、采购部、制造部、销售部、财务部等各职能部门,各种高性能的实验设备、生产设备及检测设备齐全。公司现有员工200余人,其中大专及以上学历占总人数的90%,是一支高素质、专业化、年轻化的员工队伍。自公司成立至今,北京华科仪以“优良的产品”和“全面细致的服务”赢得了众多客户的信赖,树立了本行业的先导地位及良好的企业形象。编辑:李学雷
  • 115万!南开大学计划采购动态热机械分析仪
    一、项目基本情况项目编号:NK2022S014W项目名称:南开大学材料科学与工程学院动态热机械分析仪采购项目预算金额:115.0000000 万元(人民币)采购需求:1、采购内容:动态热机械分析仪的供货、安装及售后服务2、数量:1套3、本次项目接受进口产品投标。合同履行期限:交货时间:收到信用证后6个月内本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(一)根据《财政部发展改革委 生态环境部 市场监管总局关于调整优化节能产品 环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、关于印发节能产品政府采购品目清单的通知(财库〔2019〕19号)的规定 ,对政府采购品目清单中的节能产品采用优先采购和强制采购的评标方法。(二)根据《财政部发展改革委 生态环境部 市场监管总局关于调整优化节能产品 环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、关于印发环境标志产品政府采购品目清单的通知(财库〔2019〕18号)的规定 ,对政府采购品目清单中的环境标志产品采用优先采购的评标方法。(三)按照《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的要求,根据开标当日投标文件开启时间一个小时之内“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)的信息,对列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的投标人,拒绝参与政府采购活动,同时对信用信息查询记录和证据进行打印存档。(四)根据财政部发布的《政府采购促进中小企业发展管理办法》规定,本项目对小型和微型企业产品的价格给予10%的扣除。(五)根据财政部发布的《关于政府采购支持监狱企业发展有关问题的通知》规定,本项目对监狱企业产品的价格给予10%的扣除。(六)根据财政部、民政部、中国残疾人联合会发布的《关于促进残疾人就业政府采购政策的通知》规定,本项目对残疾人福利性单位产品的价格给予10%的扣除。注:小微企业以投标人填写的《中小企业声明函》为判定标准,残疾人福利性单位以投标人填写的《残疾人福利性单位声明函》为判定标准,监狱企业须投标人提供由省级以上监狱管理局、戒毒管理局(含新疆生产建设兵团)出具的属于监狱企业的证明文件,否则不予认定。以上政策不重复享受。3.本项目的特定资格要求:(一)营业执照副本或事业单位法人证书或民办非企业单位登记证书或社会团体法人登记证书或基金会法人登记证书,自然人的身份证明。(二)投标人具有良好的商业信誉和健全的财务会计制度,提供2021年度经第三方会计师事务所审计的企业财务报告或2022年至今银行出具的资信证明。(三)投标人具有依法缴纳税收和社会保障资金的良好记录,提供2022年至投标截止时间至少一个月的相关证明材料;依法免税或不需要缴纳社会保障资金的投标人,应提供相应文件证明其依法免税(税务机关出具)或不需要缴纳社会保障资金(社会保险基金管理部门出具)。(四)投标人参加政府采购活动前三年内,在经营活动中没有重大违法记录,并出具承诺函。(截至开标日成立不足3年的投标人可提供自成立以来无重大违法记录的书面声明)(五)若为进口产品代理商参与本次投标,还应提供仪器设备制造商针对本项目出具的授权书。(六)本项目不接受联合体投标,提供非联合体投标声明函。三、获取招标文件时间:2022年08月12日 至 2022年08月18日,每天上午9:00至12:00,下午13:30至16:30。(北京时间,法定节假日除外)地点:天津烜福工程招标有限公司(天津市河东区大桥道52号渤轻党校B座104室)方式:(1)现场发售。(2)因新冠疫情影响,本项目推荐网上报名:供应商将南开大学材料科学与工程学院动态热机械分析仪采购项目(项目编号:NK2022S014W)及供应商名称、联系人、联系电话发送至xuanfuzhaobiao@163.com报名,并致电022-84313819-801购买采购文件。(3)投标人在购买招标文件后,须在南开大学招投标管理办公室新版网站右侧“供应商注册”入口进行注册。已在旧版网站注册的供应商须在新版网站重新注册,注册网址:http://zbb.nankai.edu.cn,注册方法详见新版网站常用下载《供应商注册指南》。注:本项目采用资格后审合格制,报名成功不代表评标现场通过资格审查,投标文件中需提供完整、清晰、齐全的资格证明文件。售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年09月01日 09点30分(北京时间)开标时间:2022年09月01日 09点30分(北京时间)地点:天津烜福工程招标有限公司(天津市河东区大桥道渤轻党校B座107室)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南开大学     地址:天津市南开区卫津路94号        联系方式:于老师,022-23501661      2.采购代理机构信息名 称:天津烜福工程招标有限公司            地 址:天津市河东区大桥道52号            联系方式:李晨冉022-84313819/84316123-801(报名处)-802(财务)3.项目联系方式项目联系人:李晨冉电 话:  022-84313819/84316123
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 世界首台动态三维彩色粒度粒形分析仪问世
    世界首台动态三维彩色粒度粒形分析仪发布会在中国上海举行  仪器信息网讯 2014年10月14日上午,值第十二届中国国际粉体加工/散料输送展览会(IPB 2014)之际, 美国康塔仪器公司在上海国际展览中心举办了新闻发布会,宣布世界首台动态三维彩色粒度粒形分析仪MORPHO 3D问世。新闻发布会现场  过去,观察样品颗粒的全貌是依靠显微镜,对极少量颗粒进行拍照存档,但如何对颗粒的粒形进行科学的定量,一直是困扰科学家的课题。近年来,随着微电子技术渗入到各个科学领域,图像法粒度粒形分析仪应运而生,因其测量的随机性、统计性和直观性等特点,被公认为是测定结果与实际粒度分布吻合最好的测试技术。  然而,常规的图像法粒度粒形分析仪只能测得颗粒的长度和宽度,不能测量厚度,已无法满足日新月异的工业科技对同样粒径的颗粒进行属性区分要求。  鉴于此,比利时欧奇奥(Occhio)仪器公司经过十余年探索,成功推出了世界首台动态三维彩色粒度粒形分析仪MORPHO 3D,不仅可实现颗粒长度、宽度和厚度的三维测量,还可进行彩色成像。欧奇奥公司海外销售总监杰罗姆&bull 萨巴蒂尔(Jerome SABATHIER)  杰罗姆&bull 萨巴蒂尔介绍说,MORPHO 3D突破性地采用了两部呈90度角的相机由样品正上方和左侧采集数据的技术,以及欧奇奥专利皮带输送技术,首次实现了颗粒三维信息的真实获取,再结合欧奇奥公司的&ldquo 骄子&rdquo (Callisto)3D彩色分析软件,可用于分析非球形颗粒如小球、谷物、药片、玉米、化肥、大米等的粒度及厚度 其彩色分析功能还可以呈现颗粒颜色,并根据颗粒的不同颜色分析每种颗粒群所占比例。同时,其新型及独特的样品分散器能够将一个个颗粒完全分散开,从而保证颗粒之间无干扰采集数据 样品传送带可以将颗粒保持在同一位置,从而得到真实颗粒粒度及厚度即颗粒的三维数据。MORPHO 3D动态三维彩色粒度粒形分析仪从左到右依次为:3D成像分析仪原型机、专利螺旋式干法分散器、动态粒度粒形实时显示  作为欧奇奥公司的战略合作伙伴和中国总代理,美国康塔仪器公司特别将这款创新型颗粒粒度粒形分析仪推向中国市场,希望能够为中国客户打造出材料颗粒特性表征现代化与全方位解决之道。美国康塔仪器公司中国区经理、首席代表杨正红  杨正红表示:&ldquo 正如上世纪90年代末激光粒度分析仪逐渐取代沉降法分析一样,颗粒分析领域正在迎来一个新的时代。目前,国内的混凝土等行业对3D分析有着迫切的需求,因此,MORPHO 3D可以适时、及时地满足这种需求,我们希望越来越多的科研人员和工程师能够关注到MORPHO 3D动态三维彩色粒度粒形分析仪。&rdquo 由MORPHO 3D 捕捉到的颗粒成像效果  会上,与会者对MORPHO 3D动态三维彩色粒度粒形分析仪产生了极大的兴趣,纷纷就该新品的性能特点与应用领域提问,杰罗姆&bull 萨巴蒂尔现场回答了与会者的疑问。  后记:  会后,美国康塔仪器公司中国区经理、首席代表杨正红受仪器信息网编辑邀请,专门撰写了一篇内容详实的图像颗粒测试技术约稿,内容包括不同颗粒测试方法的优缺点、图像颗粒分析法发展历史与优势,以及MORPHO 3D的性能特点及应用领域等。在此,仪器信息网特别将约稿全文呈上,以飨读者。  点击下载:杨正红-图像颗粒测试技术约稿全文编辑:刘玉兰
  • 310万!山东大学85GHz信号分析仪采购项目
    项目编号:SDSHZB2023-210项目名称:山东大学85GHz信号分析仪采购项目预算金额:310.0000000 万元(人民币)最高限价(如有):310.0000000 万元(人民币)采购需求:详见招标文件合同履行期限:详见招标文件本项目( 不接受 )联合体投标。一、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业、监狱企业、残疾人福利性单位采购的项目,政府采购政策执行内容详见招标文件;3.本项目的特定资格要求:/二、获取招标文件时间:2023年02月01日 至 2023年02月07日,每天上午8:30至12:00,下午13:00至17:30。(北京时间,法定节假日除外)地点:山东盛和招标代理有限公司(济南市历城区唐冶西路868号东8区企业公馆B1号楼)方式:供应商发送邮件登记,内容为:项目名称、项目编号、公司名称、联系人、联系电话、邮箱发送至山东盛和招标代理有限公司邮箱cnshzbegs@163.com,邮件名称命名为山东大学85GHz信号分析仪采购项目-登记-“响应单位名称”。开户单位全称:山东盛和招标代理有限公司。开户行:兴业银行济南燕山支行。账号:376060100100168341。本项目实行资格后审,获取磋商文件成功不代表资格后审通过。售价:¥300.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2023年02月21日 09点00分(北京时间)开标时间:2023年02月21日 09点00分(北京时间)地点:山东盛和招标代理有限公司(济南市历下区奥体中心西柳体育场3014房间)四、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:山东大学地址:山东大学中心校区明德楼联系方式:马老师,0531-883697972.采购代理机构信息名称:山东盛和招标代理有限公司地址:山东盛和招标代理有限公司(济南市历城区唐冶西路868号东8区企业公馆B1号楼)联系方式:王凯,151531179173.项目联系方式项目联系人:王凯电话:15153117917
  • 中国分析测试协会:2015-2020全球分析仪器市场动态
    p  strong仪器信息网讯/strong 2018年1月25日,为更好贯彻执行党的十九大提出的建设科技强国会议精神,加快分析测试事业发展,中国分析测试协会在京召开有关企业和会员单位会议。会议邀请有关部门领导和专家作国家科技管理计划、中小企业创新政策、先进制造业发展规划及国内外科学仪器市场发展状况的报告,吸引近百位科研院校、仪器企业代表参加。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/8329366e-46cf-4093-9af7-f8199cec811a.jpg" title="DSC04055_副本.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "中国分析测试协会有关企业和会员单位会议/pp  会上,中国分析测试协会汪正范研究员作题为《2015-2020全球分析仪器市场》汇报,依据最新一期SDI报告,对2015至2020年间全球分析仪器市场数据进行披露。仪器信息网摘录信息,以飨读者。/pp span style="font-family: 楷体, 楷体_GB2312, SimKai " 注:报告中2015年数据为实际数据,2016-2020数据为预测数据。报告中2015数据与上一期SDI报告(2013-2018)中预测的2015数据基本吻合,说明SDI报告中的预测数据有一定可信度。/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/4bf92051-0ba6-4dc8-9a12-f4e8f9b3d20c.jpg" title="DSC04210_副本.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "中国分析测试协会汪正范研究员/pp  span style="color: rgb(255, 0, 0) "strong全球分析仪器市场——现状及发展趋势/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/2509ecd2-dcc1-47e3-8468-db1b3501df71.jpg" title="DSC04211.jpg"//pp  市场需求最多的是生命科学仪器,其次是色谱仪器。/pp  市场需求增长最快是质谱仪器,其次是表面科学仪器。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/fddaf56c-c8b5-4ef2-a9b1-0b7d0ef0733b.jpg" title="DSC04212.jpg"//pp  仪器本身需求占市场一半,零备件及服务占市场一半。零部件中,消耗品的需求占80%。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/fd60c7b7-4eaa-4ef1-98a2-db36cab85e66.jpg" title="DSC04213.jpg"//pp  北美对仪器的需求最多,其次是欧洲,两者需求占全球仪器市场的三分之二。/pp  仪器需求增长最快的是中国,其次是亚太地区和印度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/b925dfca-7610-4873-a1b9-2393608c7c2b.jpg" title="DSC04217.jpg"//pp  仪器需求最多的领域是学术研究,其次是制药工业。/pp  实验室自动化和软件、通用分析仪器市场的增长放缓。/pp span style="color: rgb(255, 0, 0) "strong 全球色谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/417c82e7-b3ba-4664-98f0-c2cb343ba054.jpg" style="" title="DSC04219.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/e4d09f2e-9482-446c-bfcc-15d252add085.jpg" style="" title="DSC04220.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/7ea6a1ab-e8e4-4921-8337-63ff2bc2a4d0.jpg" style="" title="DSC04221.jpg"//pp  分析用液相色谱仪占整个色谱市场的一半,其中制药和生物技术行业对液相色谱仪的需求约占液相色谱仪市场的40%以上。制药行业需求,推动了制备HPLC市场。/pp  HPLC在临床上的使用,使临床用HPLC成为液相色谱市场增长最快,达8.7%/pp  气相色谱的增长主要来自石油化工和环境监测发展的需求。环境监测越来越多地使用离子色谱仪。/pp  医院和制药是TLC的最大用户。/pp span style="color: rgb(255, 0, 0) "strong 全球质谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/ae4050c4-0cf8-49c9-b058-9a36de9a53f8.jpg" style="" title="DSC04224.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/361b855f-a4ad-4a0a-964d-4e0b74aa2079.jpg" style="" title="DSC04225.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/e8d14d8a-3abd-4197-989c-8492ac49d0be.jpg" style="" title="DSC04226.jpg"//pp  各类质谱仪器是全球分析仪器市场中需求增长最快的,除了磁质谱和GC/MS外,年增长都在6%以上。/pp  液相色谱-三重四极质谱仪器是质谱仪器市场中需求最大的质谱仪器。/pp  便携式和在线质谱的需求增长最快,年增长达9.6%,MALDI-TOFMS的需求增长次之。/pp  环境,农业/食品和石油及汽油工业发展导致气相色谱-质谱联用仪的需求激增。/pp  对气相色谱-质谱联用仪的需求正在由气相色谱-四极质谱联用仪转向气相色谱-三重四极质谱联用仪。/pp  span style="color: rgb(255, 0, 0) "strong全球生命科学仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/44ca6885-49f3-4c41-940a-32a1864e4da9.jpg" style="" title="DSC04230.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/87a0e197-f78c-4099-8dd0-e38aaa0bbe3c.jpg" style="" title="DSC04231.jpg"//pp  DNA测序仪在生命科学仪器市场中增长最快(9.4%)、需求最多,第三代测序仪已进入生命科学仪器市场。/pp  微珠阵列微芯片系统目前主要还是用于学术研究。/pp  低成本、特殊用途的流式细胞仪正变得越来越重要。/pp  正电子发射型计算机断层扫描成像(PET/CT)和单光子发射计算机断层扫描成像(SPECT/CT),是活体动物体内光学成像仪市场中发展最快的仪器。/pp  生命科学仪器的售后市场(主要是与生命科学仪器配套使用的试剂盒)占其整个市场的50%以上。/pp  span style="color: rgb(255, 0, 0) "strong全球分子光谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/1db43af0-8fe8-460a-8502-9bdc30763eda.jpg" style="" title="DSC04233.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/65a570cf-78db-4fde-b9f8-081e78d6a9b8.jpg" style="" title="DSC04234.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/0f8835a3-b747-4c1d-9f54-df55846b42d5.jpg" style="" title="DSC04235.jpg"//pp  拉曼光谱仪、红外光谱仪和近红外光谱仪的市场年增长率都超过了5%,其中拉曼光谱仪增长最快,达8.7%。/pp  制药和生物技术的发展都增加了对偏振仪的需求。/pp  半导体和电子业是偏振光解析仪的主要需求行业,表面生物学和太阳能电池是偏振光解析仪的巨大潜在市场。/pp  临床医学和生物学的应用是荧光光度计和发光分析仪的主要市场。/pp  由于快速筛查工作的需求,手持式/便携式的近红外光谱仪和拉曼光谱仪的需求快速增长。/pp  span style="color: rgb(255, 0, 0) "strong全球原子光谱仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/769cf184-a5c7-470b-ba44-2a9c35b0b9e0.jpg" style="" title="DSC04237.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/bbfec1ab-d550-4217-8e6a-c3373aad1bd5.jpg" style="" title="DSC04238.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/94e52d9b-8cd2-44b4-96ad-bfd45336c089.jpg" style="" title="DSC04239.jpg"//pp  原子吸收分光光度计市场是个传统、稳定的市场,环境与食品安全行业是原子吸收分光光度计的主要市场。/pp  环境检测是电感耦合等离子体光谱仪的主要市场。/pp  电感耦合等离子体质谱仪是原子光谱仪器市场中增长最快的,有取代电感耦合等离子体光谱仪的趋势。/pp  CHN分析仪现在燃料、润滑油、环境分析和材料分析中的应用不断增长。/pp  纳米技术领域是应用X-衍射仪最多的一个领域。/pp  由于中国RoHS2.0的实施,手持式X-荧光光谱仪市场将继续增长。/pp span style="color: rgb(255, 0, 0) "strong 全球表面科学仪器市场动态/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/17c6bd35-4a4a-49a9-82e0-d93b5d82b448.jpg" style="" title="DSC04241.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/7cf511d3-4487-435a-b819-93fab30a1868.jpg" style="" title="DSC04242.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/378e6213-938c-4e4b-87a2-fbcf02058d6b.jpg" style="" title="DSC04243.jpg"//pp  数码成像技术正改变着光学显微镜的市场,光学显微镜在表面科学仪器市场中占有率最大。/pp  电子显微镜、扫描探针显微镜和共聚焦显微镜年增长率都超过6%,研究型实验室需要高性能的电子显微镜。/pp  材料科学的发展促进了表面分析仪器需求。/pp  共聚焦显微镜在自然科学和生命科学领域得到发展,年增长率最高,达7.8%。/pp  生命科学发展的需求,促进了冷冻电镜的发展。/pp  span style="color: rgb(255, 0, 0) "strong全球材料特性测试仪器的市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/1a1e1f91-12a6-4ad9-a600-95d2b4cdd833.jpg" style="" title="DSC04245.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/a692e65f-8099-4445-bd32-232d8d8b2088.jpg" style="" title="DSC04246.jpg"//pp  热分析仪主要应用于聚合物/塑料领域,其零备件市场和维修保养市场占整个热分析仪市场的三分之一。/pp  低端流变仪将被粘度计取代。/pp  纳米粒子和它们的化学特性的研究促进了颗粒特性测定装置的发展。/pp  材料特性测试仪器市场中,物理性能试验装置占据了最大市场,其中万能材料试验机占了近二分之一。/pp  生物技术对量热计的需求占其市场将近四分之一。/pp  石油分析仪的主要市场在中国。/pp  span style="color: rgb(255, 0, 0) "strong全球实验室自动化仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/16518d1a-f457-4287-b680-46399d725fef.jpg" style="" title="DSC04248.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/2b0d3fcc-0378-4486-9469-aa2438903e92.jpg" title="DSC04250.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/256d1956-9ab1-44ee-a17b-ba52e540e6f5.jpg" style="" title="DSC04251.jpg"//pp  多通道/高通量的ELISA的市场年增长最快(5.7%),这是基础研究、药物研发、临床诊断和食品安全的需要。/pp  基因组研究和临床检测促进了液体取样器的需求,其需求占实验室自动化仪器市场的三分之一。校准移液器和自动液体取样器(ALH)系统变得日益重要。/pp  机器人市场在5年内将会继续增长,售后服务将变得日益重要。/pp  实验室信息管理系统(LIMS)发展势头良好,中国对LIMS的需求增长迅速。/pp  span style="color: rgb(255, 0, 0) "strong全球通用分析仪器市场动态/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/c4bbc57e-eb87-4983-9a23-c51bcca3d9b6.jpg" style="" title="DSC04253.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/7237c355-2813-40d1-bd12-81c7a31f7feb.jpg" style="" title="DSC04254.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/c637a5f5-46c8-413a-9bee-9d297bc31483.jpg" style="" title="DSC04256.jpg"//pp  通用分析仪器市场中,电化学仪器和天平的需求占整个通用分析仪器市场的80%以上。/pp  酸度计和离子选择电极占了电化学仪器市场的近一半。/pp  实验室用天平中,特殊用途的天平发展最快。/pp  医药行业占放射性测量仪器市场的四分之一。/pp  溶解度实验室仪器的主要市场是制药行业。/pp  环境检测和农业/食品分析的需求推动了CFA和discrete分析仪的市场,新的discrete分析仪将取代老的CFA。/pp  span style="color: rgb(255, 0, 0) "strong全球实验室装备市场动态/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/noimg/047e0266-5a15-42b9-909c-b58899dbaab8.jpg" title="DSC04260.jpg"//pp  实验室装备中需求最多的是实验室用离心机,台式离心机是实验室离心机市场的主体。/pp  实验室装备中需求增长最快的是各种移液装置(年增长6.7%),其次是生物反应器/发酵罐(年增长5.4%)。/pp  医药行业占提取装置和微波辅助化学装置市场的四分之一以上,微波提取正逐步取代传统的提取方法。/pp  提取装置的售后市场,占整个提取装置的三分之二。/pp style="text-align: right "strong /strong/p
  • 在线分析仪器在智能制造中的应用
    一、概述随着我国制造业迅速发展,已成为世界第一制造大国,《中国制造2025》指明智能制造是我国现代先进制造业新的发展方向。实现智能制造智就是从原材料、工厂制造、销售、客户需求一体化的数字化管理过程,使产品在生产过程中独立地找到自己的运行路径,持续提升制造执行力(交付能力),按用户需求动态地匹配产品产时、产量、运销等市场经营品质。智能制造作为一种工具来延展和完善产业链,提升我们认识世界和改造世界的能力,助力国家产业转型升级,将产生是一种全新的智能经济形态。智能制造是信息化和智能化技术与工业制造过程的深度融合,促进了传统制造业到新型的转变。本文主要简要介绍了在线分析仪器在冶金、石化工业生产中(智能制造)的一些应用,以及引导传统制造向智能制造转型升级的思路和过程,力求分析论述预期与客观效果的结合。二、在线分析简介在线分析仪器(成套系统)是在实验室离线分析基础上发展起来的,到目前为止仍有一些仪器是实验室分析技术的平移。起初在线分析仪器主要是解决实验室分析难做到的高分析频次、采样样品物性突变、现场采样安全性等系列问题。随着在线分析技术的发展,不仅解决了上述问题,主要解决数字化生产中“靶点” 和“靶标”问题,或者说是通过网络和大数据代替人工找出解决问题的方法(自学提高),不断完善和优化数字控制过程,实现清晰智能分析功能。在线分析仪器一般有两种基本形式,一种是取样式分析仪器,另一种是非取样式(原位)分析仪器,就使仪器分成了截然不同的两大类。取样式分析仪器由取样单元、样品预处理单元、智能分析仪器、数据处理与输出,以及公用工程的防护、信号传输(通信)、电气辅助设备等设施组成。这类仪器都可嵌入在工业生产流程中,完成对被测工艺介质的自动采样与物性参数定性、定量分析,连续不间断地往生产主控计算机(DCS)传输分析数据。图-1三、原理与分类工业在线分析仪器的种类繁多,用途各异,按分析方法和原理可分为数百种。按照被测介质的相态划分,将在线分析仪器分为气体、液体、固体分析仪器三大类;按照测量原理在冶金、石化等行业使用较多的划分为:光谱类、色谱类、湿法化学类、物性检测类。(1)光学仪器类包括采用吸收光谱法的红外线分析仪、红外光谱仪、紫外光谱仪、激光分析仪等;采用发射光谱法的化学发光法、紫外荧光法分析仪等。(2)湿法化学类包括采用化学滴定、化学色差法,PH、电位、电导、电流法的各种电化学分析仪等。(3)色谱分析类采用色谱柱分离技术和检测器定量的色谱类仪器,与其它分析仪器相比有显著应用特点,而且使用量较大,单独划为一类。(4)物性分析和专用仪器类物性分析仪器按其检测对象来分类和命名,如:露点、热值、浊度、分离指数等类物性分析仪器;针对石油石化行业的水分、密度、黏度、酸度、馏程、蒸气压、闪点、倾点、辛烷值等测定等仪器,统称为石化专用类。(5)其它类分析仪器在上述几类仪器之外的在线分析仪器,如磁氧分析仪、差热分析仪、冷焰燃烧分析仪、射线法分析仪(γ射线密度计、中子及微波水分、X射线能谱)等近代物理方法类的在线分析仪器。典型工业在线分析仪器原理图(如:图-2)图-2四、工业在线分析仪器典型应用仪器(一)湿法化学在线分析(滴定)成套系统在冶金行业应用1、在线酸浓度分析的由来酸洗是冷轧带钢生产的龙头工序,酸洗液浓度的控制会直接影响到产品的质量;如果酸洗液浓度偏低,会有氧化皮残留在钢铁表面;酸洗液浓度偏高,酸洗过度,钢铁表面则会出现针眼状凹坑。正常的盐酸酸洗能够有效溶解氧化铁皮,同时生成溶于水的氯化亚铁。当酸洗过程中铁离子浓度逐渐升高到一定量时,酸洗环境就发生改变,即使再增加酸的浓度,氧化皮(氧化亚铁)不发生置换反应,而是与金属铁发生复杂的氧化反应,致使金属铁被腐蚀。这时候就需要把酸换成新酸,才能恢复正常的酸洗流程。所以钢铁行业迫切需要对下面两个工艺参数动态控制和准确的分析:①酸洗槽中的酸浓度变化值,以动态补酸维持酸洗环境;②跟踪分析铁离子浓度的增加量,确定最佳 “换新酸节点”传统酸洗液检测方法是,人工在生产线上取酸样(通常频次为1次/4h),用化学滴定分析酸浓度和铁离子含量。再由生产线操作人员依据酸浓度分析数据凭经验补酸(维持酸浓度);依据铁离子含量数据确定换酸(换新配酸洗液)。此方式采样存在较多安全生产隐患,人工分析有及时性和频次问题,不适合规模化生产模式。虽然,行业也使用压差法、电磁法、PH计、β射线法等酸洗中分析法(压差法和β射线法是测密度原理),终因铁离子的干扰检测和不断补充辅助计算机校正模型库,分析数据误差较大,不适合数字化生产线。实践证明,湿法化学在线酸浓度分析(滴定)成套系统能较好解决上述问题。2、分析模型带钢酸洗件表面氧化层主要为FeO(96%)和少量的Fe2O3和Fe3O4含量,酸洗过程的反应原理为:FeO + HCl= FeCl2 + H2O酸浓度(H+%)和铁离子(Fe2+g/l)含量分析模型,其反应式如下: NaOH + HCl = NaCl + H2O… … … … … … … … … … … … ..(1)2NaOH + FeCl2 = 2NaCl + Fe(OH)2… … … … … … … … (2)滴定HCl溶液,化学计量关系式:(CV)HCL=(CV1)NaOH … … … … (3)滴定Fe2+离子,化学计量关系式:(CV)Fe=(CV2)NaOH ..… … … … (4)综合滴定曲线(如:图-3)图-3红色曲线为改进后实际滴定曲线,红色虚线为人工滴定曲线,红点等当点。计算公式: CHCL %=(CV)NaOH×36.5/VHCl … … … … … ⑴ CFe g/L=(CV)NaOH ×MFe/VHCl… … … .… … ⑵3、控制模型①控制模型流程图(如:图-4)图-4②软件组态图(如:图-5) 图-5③滴定控制图(如图-6):图-64、智能控制使用在线分析系统后,解决了人工采样分析和自动上传分析数据的问题,接下来就是要把分析系统嵌入到生产工艺控制系统中,实现智能补酸和换酸功能。根据即酸浓度(H+%)和Fe+2离子的浓度建立数据库,门限值和优化区间上下限,以及线性跟踪纠偏辅助数据库,将(H+%)和Fe两组数据间设置关联计算因子,关联计算换酸点,将补酸与换酸数据关联到DCS控制系统中实现智能控制。DCS生产线控制系统显示界面(如图-7):图-7 酸浓度和铁离子的浓度关系图(交点为换酸点) 5、应用考核与评价技术参数考核结果如下表(表-1)序号项目技术参数检测结论1分析频次每个组分的分析周期6分钟/次达标2酸浓度检测范围盐酸浓度:0~30%(w/v)硫酸浓度:0~80%(w/v)达标3Fe2+检测范围Fe2+含量;0-100 g/l达标4结果单位定义%、g/L、mg/L、ppm达标5分析频次酸浓度和Fe2+检测周期:5-8分钟/次达标6分析精度盐酸浓度:<1%;Fe2+含量;<1%达标7系统稳定性2100小时连续考察结果稳定、可靠、无故障达标8自动化程度采样、分析、传输信号、显示酸浓度和Fe2+检测结果全部自动进行达标9结果输出将分析结果远传DCS或独立计算机以二元曲线显示达标10内部存储器每个结果自动存储最近1800组数据达标在线滴定分析仪检测精度数据略(与标样对比验证)(二)在线色谱分析成套系统在石化行业典型应用1、氯化苄及相关生产工艺控制检测背景氯化苄产品是一个易燃、易爆、有毒、有害的危险化学品,相关生产过程危险性较大,安全生产一直是企业永恒的主题。应生产企业要求,我们做了相应在线分析方案,解决生产中检测分析和安全需求。经过实地考察了解相关的生产工艺、物料物性和分析检测现状,充分考虑到生产工艺过程特殊性,有针对性的设计和编制了工业在线分析系统技术配套方案,确保现场应用的可靠性、完整性及安全性。2、物料物性与分析需求(1)检测需求 氯化苄反应工段(区):8台反应釜的反应产物组成含量分析原料区:2个原料罐物质组成含量分析精馏区:3台精馏塔塔顶塔底产物组成含量分析(2)精馏产物项目密度(g/l)馏程(℃)压力(KPa)流量(Kg/m3)温度(℃)1#塔顶996暂缺-90.7暂缺48.21#塔釜1111暂缺-88.6暂缺111.22#塔顶1114暂缺-98.5暂缺67.52#塔釜1204暂缺-95.3暂缺105.83#塔顶1210暂缺-96.9暂缺84.23#塔釜未知暂缺-93.9暂缺122.33、检测原理 在线分析检测系统,是根据拟定检测的物料按流路输送到各个采样预处理单元,通过临界流量控制动和分子仿真技术,使物料中待测组分和杂质分离,经过高选择性检测器检测出含量信号,分析系统再将检测信号解读成可识别分析结果,并且自动传输到用户DCS窗口。4、分析系统流程5、检测流路取样流程配置说明:反应工序8台反应釜出料(产品),共用一套工业在线分析检测系统(IGC);精馏区的三个精馏塔的塔顶产品中高沸点杂质较少,共用一套IGC;精馏塔的塔釜回流液和1#塔进料含有高沸点物,共用一套IGC,减少过载。6、色谱分析单元控制图7、无残留进样控制示意图8、分析小屋布局图(视现场情况确定)9、在线分析系统构成(部件)(1)分析仪及相应的采样、前级减压站、样品预处理系统和分析小屋等。序号名称规格単位数量生产厂家备注1分析小屋2.5*2.5*2.7m套2磐诺仪器磐诺仪器2过程在线气相色谱仪PGC-88台3磐诺仪器3取样阀PF-1套15磐诺仪器4前级预处理PQ-2套15磐诺仪器5预处理PY-3套3磐诺仪器6标样4种套1国际标物7管缆米待定8开车备件批1详见清单注:所有预处理系统的部件型号需由乙方审核后方可采购。(2)过程气相色谱仪配置表序号名称规格和型号单位数量生产厂家备注1PGC-80谱分析仪PGC-80 监测套3磐诺仪器2零气发生器A8001套3磐诺仪器3氢气发生器A8002套3磐诺仪器4预处理单元PGC-80监测套3磐诺仪器5PGC-80D电控单元PANNA3.624.004套3磐诺仪器6专用色谱柱0.53×0.5×20m个3磐诺仪器(三)在线色谱分析成套系统在环保领域应用(因篇幅略)五、综述1、在线分析仪器(成套系统)是智能制造企业数字化控制的一个主要组成部分,它解决的是控制环节上的 “靶点”和“靶标”问题,系统配套赋予它代替人工(智能)实现控制的同时,还要融入体系自学提高(不断完善和优化数字控制资源),成为一类嵌入生产控制体系参与控制的智能系统。2、在从事在线分析技术推广应用的实践中,认识到每一个现场应用都是有很大差异的。只有深入现场调查了解应用状况,实际模拟推演才能确定两个模型。照抄照搬的方案遇到的问题很大,甚至导致应用失败。它决定实施应用的成败。仪器主要解决数字化生产中或者说是通过网络和大数据找出解决问题的方法,实现清晰智能分析功能。3、对于一些化工生产过程中,工业在线分析仪器配置较少,或者是配置了也是辅助参考,仍然依赖化验室人工分析数据等的系列问题,主要是企业还没有步入智能制造阶段,在线分析仪器只能代替人工采样分析,智能控制和嵌入生产系统功能未用上。是应用的时机不成熟,并不是智能制造和数字化工厂排斥它。(作者:魏宏杰,李杉)
  • 新型动态热机械分析仪(DMA)进入中山大学
    日前,中山大学和法国01dB-Metravib公司中国总代理仪尊科技有限公司(Esum Technology Limited)签订合同,购买中等力值的动态热机械分析仪(DMA)。该设备除可进行传统的材料粘弹性试验外,还可进行蠕变、应力松弛、热膨胀、静态测试、浸渍等多种试验。DMA25/50的机架可倒置,在设备上只需加一个烧杯就可进行各种浸渍试验,使目前最方便的浸渍试验方式。  DMA25/50 是测试范围极宽、功能极其强大的动态热机械分析仪(DMA),相信该类动态热机械分析仪(DMA)将会成为我国高等学校、研究单位及厂矿企业进行材料开发研究,尤其是需要浸渍材料特性研究必不可少的测试手段。  仪尊科技有限公司  Esum Technology Limited
  • 动态颗粒图像分析仪中标啦
    日前,我司的“动态颗粒图像分析仪”参加中北大学的招标活动,凭强劲的实力和极高的技术优势,赢得胜利。中标仪器型号:QICPIC/LIXELL特点:首次结合了特殊开发的高品质的照明系统、高效的分散系统、成像系统和信息处理技术,实现将团聚颗粒分散后再进行检测,每秒处理500万像素的数据(这一速度以前几乎不可想象)。一般来说,每次测量的颗粒数都超过一百万个,某些情况下甚至可能超过1千万个。检测保持很高的精确度,使取样误差小于1%成为了现实。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 150万!上海交通大学分析测试中心大力值动态热机械分析仪采购项目
    项目编号:0834-2241SH22A271项目名称:上海交通大学分析测试中心大力值动态热机械分析仪预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期交货地点1大力值动态热机械分析仪1 套2.1.3 ★动态力:不低于500 N;2.1.4 静态力:不低于450 N;(详见第八章)合同签订后3个月内关境外货物:CIP上海交通大学指定地点关境内货物:上海交通大学指定地点合同履行期限:合同签订后3个月内本项目( 不接受 )联合体投标。
  • 120万!山东大学动态热机械分析仪采购项目
    项目编号:SDDX-SDLC-CS-2022008项目名称:山东大学动态热机械分析仪项目采购方式:竞争性磋商预算金额:120.0000000 万元(人民币)最高限价(如有):120.0000000 万元(人民币)采购需求:动态热机械分析仪DMA是材料测试分析应用中应用范围最广的一种设备,像弹性体、塑料、陶瓷、建材、金属、纸张、涂料油漆等膏状体、流体等等。该设备的投入使用可以长期连续的测量单纤维在高温下的力学性能,同时课题组还能开展不同形式的材料,纤维膜、纤维海绵、气凝胶等材料在高温力学性能研究。具体内容详见磋商文件。标段划分:划分为1包合同履行期限:质保期1年本项目( 不接受 )联合体投标。
  • 新帕泰克发布纳米粒度分析仪新品NANOPHOX CS
    近日,德国新帕泰克最新发布了一款能够快速分析高浓度浑浊分散体的纳米粒度分析仪NANOPHOX CS。本款产品创新采用了PsB PCCS技术,不仅延续了PCCS技术上消除了高浓度体系检测时的多次散射影响,提高结果真实性、准确性的优点,还通过偏振分离散射技术将信噪比提高到一个新的水平,适用于更高的样品检测浓度,测试更快、重复性更高。基于动态光散射0.5-10,000 nm 纳米粒度分析仪动态光散射(DLS)基本原理由于分子的热运动,使得颗粒与溶剂分子产生碰撞并在溶液中做无规则的布朗运动;大颗粒运动慢,小颗粒运动快。动态光散射(DLS)仪器的实现就是利用颗粒的这种运动现象,将入射光照射到待测溶液中,随后与颗粒发生散射作用,再由探测器在一定角度上收集散射光光强信号。散射光光强随着颗粒的布朗运动发生波动,分析这些散射强度随时间的波动可确定颗粒的扩散系数,从而利用斯托克斯-爱因斯坦方程进行进一步分析,获得被检纳米溶液的粒度大小和分布。PCS与PCCS技术传统DLS仪器采用光子相关光谱(PCS)技术,无法避免高浓度测试下多重散射带来的结果偏差问题,往往需要大量稀释,因此样品准备工作往往非常耗时且容易出错,同时稀释也会导致样品的粒度分布和稳定性发生变化。光子交叉相关光谱(PCCS)技术采用双光束设计,通过相关处理获得单散射信号,从而提高了高浓度检测的准确性。交叉相关技术的应用允许了不受多重散射影响的粒度分析。通过测量不同浓度系列的100nm聚苯乙烯标准品悬浮液,我们可以直观地比较PCS与PCCS在可分析样品浓度上的差别:上图可见,PCS需要大量稀释后才能得到可靠的粒度结果,而PCCS在样品浓度较高时就可获得正确的结果。PsB PCCS技术在光子交叉相关光谱(PCCS)技术的基础上,NANOPHOX CS创新设计的偏振分离后向散射PCCS技术(PsB PCCS),实现了更高浓度以及更快速的纳米样品分析。在这项强大的技术中,垂直和平行的两束偏振激光束照射在同一个测量体积上,随后散射信号分别由对应的两个探测器接收,通过互相关处理获得粒度大小信息。偏振分离后向散射PCCS技术提供了一个新的信号质量水平,增强被测颗粒的单散射信号,显著提高信噪比,从而获得更加准确和重复的分析结果。PsB PCCS帮助NANOPHOX CS实现高于PCCS技术100倍以上的浓度检测, 同时测试时间缩短10倍以上,让高浓度样品在原始状态下直接进行分析成为可能,为高浓度体系的研究提供科学依据。高浓度纳米激光粒度仪NANOPHOX CS应用案例——油墨面对油墨分析,挑战不仅来自样品的高不透光性,还来自对聚集体的高分辨率,正确的粒度分析结果有助于油墨质量与稳定性的确认:NANOPHOX CS适合测量亚微米到纳米范围内油墨中颜料颗粒的大小: ● 原液检测,避免稀释可能导致的油墨变化或引入杂质等 ● 缩短分析时间,无需样品制备过程,轻松检测 ● 智能软件操作,全自动化参数和可测量性检查 ● 多峰敏感,区分原生颜料产品与聚集体总结分析结果的准确性与科学性是研究、制造的基础,高浓度纳米体系保持原始状态的分析显然更具意义。NANOPHOX CS的上市,将进一步助力纳米产品的研究、开发与质量控制。
  • 干货分享 | 热分析原理及介绍(DTA,DSC,TGA,TMA,DMA)
    药物冻干,电池爆炸;耐低温橡胶是如何在高寒环境下使用,哪种巧克力甜甜味美还不会在夏天熔化?纵观我们身边的任何物质都会经历温度变化的过程,材料随着温度变化其性质也会发生变化,影响制备工艺和使用性能,生产生活中无时无刻不都在上演着材料的“冰与火之歌”。为了对材料进行表征分析,热分析技术已经成为一种强有力不可或缺的分析手段。梅特勒托利多作为主要的热分析仪器制造商之一,将为大家详细介绍热分析技术及其应用。1 热分析技术概述物质在温度变化过程中可能发生一些物理变化(如玻璃化转变、固相转变)和化学变化(如熔融、分解、氧化、还原、交联、脱水等反应),这些物质结构方面的变化必定导致其物理性质相应的变化。因此,通过测定这些物理性质及其与温度的关系,就有可能对物质结构方面的变化作出定性和定量的分析,还可以被用来确定物质的组分及种类,测定比热容、热膨胀系数等热物性参数。图1-1 材料随温度变化发生的反应国际热分析和量热协会(ICTAC, International confederation for thermal analysis and calorimetry)于2004年对热分析提出新的定义:热分析是研究样品性质与温度间关系的一类技术。我国于2008年实施的国家标准《热分析术语》(GB/T6425-2008)中对热分析技术定义为:热分析是在程序控制温度下(和一定气氛中),测量物质的物理性质与温度或时间关系的一类技术。经过一百多年的发展,热分析技术凭借其快速、高效、低成本的优异特点,应用领域不断扩展,已逐渐成为新材料研究、产品设计和质量控制的必备的常规分析测试手段。根据测定的物理性质不同,国际热分析与量热协会ICTAC将热分析技术分为9类17种,如表1所示:表1-1 热分析技术分类在实际应用中,热分析技术还和其他分析仪器进行联用,例如红外光谱、拉曼光谱、气相色谱、质谱等分析方法,通过多种方式对物质在一定温度或时间变化过程内对材料进行结构和成分进行分析判断。2 重点热分析技术介绍2.1 差热分析(DTA, Differential thermal analysis)差热分析(DTA)是一种利用试样和参比物之间的温差与温度或时间的关系来评价试样的热效应。DTA曲线的纵坐标为试样和参比样的温度差(∆T),理论上单位应该为℃或者K。但因为记录的测量值通常为输出的电势差E,根据温度差与E的关系(公式(1)),转换因子b不是常数,而是温度T的函数,且其他传感器系统也存在类似的情况。公式(1)中,测量的温度差与热电偶输出的电势差E成正比,一些分析软件中DTA采集的信号经常为电势差的单位(μV)表示。现在DTA主要用于热重分析仪(TGA)等的同步测量,市场上已经难觅单独的DTA仪器。2.2 差示扫描量热法(DSC, Differential Scanning Calorimetry)2.2.1 DSC原理及规定差示扫描量热法(DSC)是在程序控制温度下和一定气氛中,测量输送给试样和参比物的热流速率或加热功率(差)与温度或时间关系的一类热分析技术。测量信号是被样品吸收或者放出的热流量,单位为毫瓦(mW),热流指的是单位时间内传递的热量,也就是热量交换的速率,热流越大热量交换的越快,热流越小热量交换的越慢,热流可由式(2)得到公式(2)中,∆T为试样与参比物的温度差,R_th为系统热阻,系统的热阻对于特定的坩埚、方法等是确定的。通过该公式就可以测得热流曲线,也就是DSC曲线。对DSC曲线上的峰进行积分就能够得到某个转变过程中样品吸收或者放出的热量。DSC信号的方向根据ICTA规则(∆T=Ts-Tr),规定为吸热朝下放热朝上,一般图片上标有^exo。反-ICTA(∆T=Tr-Ts)规则为吸热朝上,放热朝下,一般图片上标有^endo,不同规则的DSC曲线如图2-1所示。当样品吸收能量,这个过程被称作是吸热的,例如熔融和挥发过程。当样品放出能量,这个过程被称作是放热的,例如结晶和氧化分解过程。图2-1 DSC曲线:(a) ICTA规则,吸热向下; (b) 反-ICTA规则,吸热向上相比之下,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测得热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。通过DSC可以检测吸热或放热效应、测得峰面积(转变或反应焓值∆H)、确认所表征的峰或其他热效应所对应的温度(如玻璃化温度Tg、结晶点Tc、熔点Tm)以及测试比热容Cp,也可利用调制DSC测得潜热、显热以及可逆热流和不可逆热流,通过动力学可以计算得到活化能Ea。公式(3)中,DSC测得的总热流是由两部分组成的,一部分是由于温度升高引起的显热流,样品没有发生结构的变化;热流的第二部分是由于样品内部结构变化引起的潜热流,ΔHp表示这个反应完全发生所吸收或放出的热量。其中,C_p为样品的比热容,β为升温速率,ΔH_p为反应过程的焓变, dα/dt表示这个反应进行的程度。通常我们把没有发生反应时的热流曲线叫做DSC的基线,其实就是显热流曲线。由于物质的比热容都会随着温度的升高而增大,因此随着温度的升高DSC曲线应该向吸热方向倾斜,这个斜率就取决于样品的比热容随温度的变化率。图2-2 DSC热流曲线示意图2.2.2 DSC分类DSC分为热流式和功率补偿式,当前热流式DSC较为普遍,梅特勒托利多DSC均为热流式。热流式差示扫描量热法(Heat-flux type Differential Scanning Calorimetry, 简称热流式DSC),又称为热通量式DSC,是在按程序控制温度和一定气氛下,给样品和参比品输送相同的功率,测定样品和参比品两端的温差∆T,然后根据热流方程,将温差换算成热流差作为信号进行输出。功率补偿式DSC是在程序控温和一定气氛下,使样品与参比物的温差不变,测量输给样品和参比物功率(热流)与温度或时间的关系。热流式DSC采用单炉体,而功率补偿式DSC采用两个独立的炉体,分别对试样和参比物进行加热,并有独立的传感装置。图2-3 (a)热流式DSC和(b)功率补偿式DSC测量单元示意图2.2.3 DSC典型曲线图2-4为典型的DSC测试曲线示意图。在测试开始曲线出现了“1 启动偏移”。在该区域温度状态发生瞬时改变,有恒温变为升温,启动偏移的大小与样品热容及升温速率有关。在“3 玻璃化转变”区,试样热容增大,出现了吸热台阶。“4 冷结晶”区产生放热峰,“5 熔融”产生吸热峰,通过对峰面积的积分可以得到结晶焓和熔融焓。随着温度升高后为“6 分解”。图2-4 典型的DSC测试曲线示意图:1 初始基线漂移与样品热容成正比;2 无热效应时的DSC曲线(基线);3 无定形部分的玻璃化转变; 4 冷结晶; 5 结晶部分的熔融; 6 在空气气氛中氧化降解了解更多,请点击链接差示扫描量热仪(DSC)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DSC.html2.3 热重分析(TGA, Thermogravimetric Analysis)热重分析(TGA)是在一定控温程序和气氛下,测量试样质量与温度和时间之间的关系,可以获得样品质量随温度的函数。在此之前,人们使用TG作为这项技术的缩写。通过TGA可以检测样品质量的变化(增重或失重),分析质量变化台阶,以及在失重或增重曲线中确认某一台阶所对应的温度。TGA信号对温度和时间的一阶微变,表示为质量变化的速率为DTG曲线,是对热重信号的重要补充,当DTG曲线峰向上时试样质量增加,曲线峰向下试样质量会减小。热天平是热重分析仪中的重要部件,热天平具有三种不同的设计:上置式设计:天平位于炉体下方,试样支架垂直托起试样坩埚;悬挂式设计:天平位于测试炉体上方,测试坩埚放在下垂的支架上;水平式设计:天平与炉体处于同一水平位置,坩埚支架水平插入炉体。根据天平可达到的分辨率,可将天平分为半微量天平(10 μg)、微量天平(1 μg)、超微量天平(0.1 μg)。当样品以不同方式失去物质或与环境气氛发生反应时,质量发生变化,在TGA曲线上产生台阶或在DTG曲线上产生峰。典型的热重曲线如图2-5所示。在“1 挥发”区可为部分组分(水、溶剂、单体)的挥发;“2 分解”具有明显的失重台阶为聚合物的分解;“3 切换气氛”后,在“4 炭燃烧”表现为炭黑或碳纤维的燃烧台阶;“5 残留物”区质量变化微弱,主要为灰分、填料、玻璃纤维等残留。图2-5 典型的TGA测试曲线示意图:1 挥发;2 聚合物分解;3 气氛切换; 4 炭燃烧台阶; 5 残留物了解详情,请点击链接热重分析仪(TGA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TGA.html2.4 热机械分析(TMA, Thermomechanical Analysis)热机械分析TMA测量样品在设定应力/负载条件,样品尺寸变化与温度变化的关系。在TMA测试中,样品受恒定的力、增加的力或调制的力;而膨胀法测量尺寸变化则是使用能实现的小载荷来测量的。TMA具有不同的形变模式如图2-6所示,依据试样尺寸和特性进行选择:膨胀模式(A):是TMA常用的测量模式。测试基于温度的膨胀系数。通常测试时探头施加一个非常小的力于样品上。压缩模式(A):这种模式下,样品受力更大。穿透模式(B):其目的在于测试样品的软化点。拉伸模式(C):薄膜和纤维套件用于进行拉伸模式测试。可以测试由于收缩或者膨胀产生的较长形变。三点弯曲模式(D):用来研究刚性样品弹性行为的理想模式溶胀模式(E):许多样品在接触液体时会产生溶胀。通过溶胀套件可以测定样品在溶胀时发生的体积或长度变化。体积膨胀(F):液体同固体一样也会发生膨胀。图2-6 TMA不同形变模式根据不同的测试模式,我们可以使用TMA检测热效应(溶胀、收缩、软化、膨胀系数的变化),确定某表征的热效应的温度、测量形变台阶高度以及测定膨胀系数。TMA的典型测试曲线示意图如图2-7所示。图2-7 典型的TGA测试曲线示意图:1 玻璃化转变温度以下的热膨胀;2 玻璃化转变温度(斜率改变);3 玻璃化转变温度以上的热膨胀;4 塑性变形了解更多信息,请点击链接热机械分析仪(TMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TMA_SDTA_1.html2.5 动态机械分析(DMA, Dynamic Mechanical Analysis)动态热机械分析(DMA)是一种测试材料机械性能和粘弹性能的重要技术,可用于热塑性树脂、热固性树脂、弹性体、陶瓷和金属等材料的研究。DMA测试在程序控温和周期性变化的应力下,测试动态模量和力学损耗与时间温度的关系。在DMA测试中,试样受到周期变化的振动应力,随之发生相应的振动相变。除了完全弹性的试样外,测得的应变都表现为滞后与施加应力的变化。这种滞后成为相位差即相角δ差。DMA仪器测量试样应力的振幅、应变的振幅以及相位差这三个物理量。图2-8 周期性的力作用下应力与应变的关系应力与应变之比称为模量,DMA分析得到的结果为复合模量M^*,复合模量由储能模量和损耗模量组成:储能模量(M^' ):试样弹性特性的反应,是试样能否完全恢复形变的尺度损耗模量(M^”):试样粘性特性的反应,是试样在形变过程中热量的消耗(损失);损耗模量大表明粘性大,阻尼强。损耗因子(tanδ):损耗模量和储能模量之比,反映的是振动吸收性,也称振动吸收因数。梅特勒托利多的DMA 1提供了六种不同的形变模式。对于特定的应用,适合的模式取决于测试需求、样品的性质和几何因子。包括以下六种测试模式:3-点弯曲模式(A):这种模式用于准确测试非常刚硬的样品,例如复合材料或热固性树脂,尤其适合于玻璃化转变温度以下的测试。单悬臂(B):这种模式非常适合于条形高刚度材料(金属或聚合物)。单悬臂模式是玻璃化转变温度以下的理想测试方法,而且是测试粉末材料损耗因子的推荐模式。双悬臂模式(C):这种模式适合于低刚度的软材料,特别是比较薄的样品,例如膜材料。拉伸(D):它是薄膜或纤维的常规形变模式。压缩(E):压缩模式用于测试泡沫、凝胶、食品以及静态(TMA)测试。剪切(F):剪切模式适合于测试软样品,例如弹性体,压敏胶,以及研究固化反应。图2-9 DMA不同形变模式图2-10为典型热塑性塑料的DMA曲线。在不同状态下储能模量和损耗因子会发生不同的变化。在玻璃态下,储能模量为几个GPa的数量级。损耗因子很小。在玻璃化转变区域,材料的机械性能发生了显著的变化:储能模量通常降低几个数量级并且损失因子显示出明显。 然后是材料在橡胶区域变得柔软。在更高的温度下,热塑性塑料变得更软并开始流动。这时储能模量进一步降低,而tanδ显着增加。因此DMA可以测定材料的玻璃化转变温度、机械模量、阻尼;粘弹性行为和力学性能,包括蠕变或应力松弛,研究样品的机械行为,以及交联固化反应等。图2-10 典型热塑性塑料的DMA曲线了解更多信息,请点击链接:动态热机械分析仪(DMA)www.mt.com/cn/zh/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/DMA.html2.6 热分析技术应用总结针对不同的材料以及想要测试的属性或热效应,所采用的热分析方法也存在差异,未得到理想的结果需要根据实际样品情况和测试需求来选择不同的热分析方法。表2-1合适的热分析技术选择作者:热分析技术应用顾问 邵艳茹参考文献J.O. Hill. For Better Thermal Analysis and Calorimetry III [M]. ICTA, 1991.热分析术语[S]. GB/T 6425-2008.陆立明. 热分析应用基础[M]. 东华大学版社.E. Ezm, M.B. Zakaria. State of the art and definitions of various thermal analysis techniques. [in] Thermal Analysis, 2021, 1-39.刘振海, 陆立明, 唐远旺. 热分析简明教程[M]. 科学出版社.UserCom, Mettler Toledo International Inc.
  • 分析仪器稳定可靠的光电技术保障:详解 BCEIA 2017 滨松新品
    由中国分析测试协会主办的第十七届北京分析测试学术报告会暨展览会(bceia 2017)于10月10日-13日在北京国家会议中心举办,现场可谓是红红火火,人从众众!而滨松展台上也聚集了新老朋友,人潮攒动在一个不大的透明展柜周围,而在这个展柜中,就是这次滨松为分析仪器应用准备的新惊喜!按照分析技术手段的不同,分析仪器一般可分为光、电、色、质四大板块,那针对不同领域,此次滨松带去的“新惊喜”——新产品和新的解决方案到底是怎样的呢?下面让我们重返会场,打开展柜的玻璃罩,一个一个地拿起来详细解读,同时也将分享各种分析仪器应用的小知识哦!here we go~滨松中国展台质谱质谱技术发展至今已逾百年,一百多年来,质谱工作者们站在彼此的肩头,将一个简单的物理现象在理论和实践上推到今天的高度。从一开始对元素同位素的辨别、相对原子量的测定,到第二次世界大战用于分离核燃料铀235制造原子弹,乃至今天广泛应用于化学、环境、医学及生命科学研究,质谱技术的每一次进步,都推动了其他相关领域,如原子物理学、化学、材料科学、核技术、环境科学、生命科学乃至地球和天体科学的发展。 质谱技术的核心是“制造离子”和“检测离子”,其他所有的一切都是为这个目的服务。上图是质谱仪的基本工作流程,在本次bceia中,图中所示的几个重要元件就是滨松展台的重头戏之一。1、电离源要在质谱仪上检测到某种化合物,前提是这种化合物必须被电离,因此离子源的发展一直影响着质谱技术的发展,反过来质谱技术的发展也对离子源不断提出着更高的要求。 常见的质谱离子源包括电子电离源(ei)、化学电离源(ci)、大气压化学电离源(apci)、大气压光致电离离子源(appi)、快原子轰击电离子源(fab)、基质辅助激光解析电离源(maldi)等。 大气压光致电离源(atmospheric pressure photoionization,appi)是由前苏联的i. a. revel’ skii在1986年推出的,其最初的目的是取代放射性的ni63来提供分子电离的能量,出乎意料的是,这一改变使仪器的线性范围得到扩展并提高了灵敏度。之后通过对结构的不断改进,这种技术逐渐应在了那些难于被esi和apci技术离子化的化合物上。而且,由于appi不仅能够将非极性分子离子化,其应用还能扩展到极性化合物,因此取得了快速发展。 光致电离是使用波长在真空紫外区(vacuum-ultraviolet, vuv)的光子所携带的高能量使待测化合物电离,此次出展的全新光致电离离子源——vuv氘灯 l13301,就可以很好的担起这个任务。带有驱动电路的vuv氘灯l13301 基于mgf2窗材的滨松vuv氘灯可以促成一种高电离效率、碎片离子峰产生量少的新型软电离方式。 它的电离能可达到10.78ev,电离效率提高,且相对于传统pid灯可以电离出更多的离子,使仪器整体灵敏度有数倍提高,此外还具备低成本、易安装等特点。2、探测器探测器作为质谱仪的“眼睛”,和质量分析器一起在检测端担当起双核之一的重要作用:如何将微弱的离子信号放大到能够使人顺利辨别的水平并将其背景干扰排除。 从最初的无极质谱时代的手工描绘到干版照相感光,再到有机质谱出现后的长条记录仪和光束示波仪直至各种不同的电子倍增器,质谱仪的探测系统经历了漫长的发展过程。因为探测器的主要任务是检测质谱仪产生的离子信号,因此灵敏度、精确度和反应时间就成为衡量探测器的重要指标。电子倍增器电子倍增器(electron multiplier, 下称em)是目前使用最多的质谱探测器,其形式多样,基本原理是对带电粒子产生的次级电子进行放大。从质量分析器出来的离子根据其极性不同被施加正/负高压,在此高压下离子被加速进入em。em可分为非连续式(discrete dynode electron multiplier,下图a)和连续式倍增电极(channel electron multiplier, cem,下图b)。其通常有13~23级表面涂布有良好次级电子发射能力的金属氧化物(如cu-be的氧化物)的倍增电极。从质量分析器出来的离子束被聚集在第一级(或转换打拿极)上之后从其表面会发射一次电子,一次电子的数目和离子束的性质(质量、携带电荷、结构等)、撞击速度、倍增极表面金属合金氧化物的功函数等因素有关。根据电子轨迹的设计,一次电子之后打到之后的倍增极产生二级电子,最后阳极部分负责将经过各级倍增的二次电子进行收集,并通过外接电路将电流信号进行输出。 而从本质上来说,em就是没有光阴极面的光电倍增管(pmt)。(下图中蓝色线标注部分)传承了pmt的工艺,滨松em也已有40年的历史。因为em一般作为四级杆及四级杆相关串联质谱仪的探测器去应有,需要进行定量分析,因此要求em具有宽动态范围、长寿命、高增益等特性。除了具有上述特征外,滨松的em还能够根据客户不同需求提供丰富的产品线:小体积紧凑型、低噪声结构型、双极性探测型、大动态范围双模式输出型等。 近年来,针对冶金、环保、地质矿产、食品等领域越来越多的痕量重金属检测需求,icp-ms得到更加广泛的应用,因为icp-ms面向的是痕量无机元素的测定(检出限ppt级别),本次展会上的具有大动态范围双模式输出(模拟输出和计数输出)的em r13733就十分合适了。当入射离子量很小时,可以选择高增益的技术模式对输出脉冲进行计数;当入射离子量增加较多后,可以选择较低增益的模拟输出模式。这样探测器就可提供更宽的动态范围,避免饱和输出。不同模式下r13733的增益曲线 双模式输出工作示意图 荧光屏 在电子光学聚焦系统中,为把光电子图像转换为可见的光学图像,通常需要荧光屏。荧光屏是由发光材料的微晶颗粒沉积或喷涂而成的薄层,可以将电子动能转换成光能。 某些金属的硫化物、氧化物或硅酸盐等粉末状晶体在适当处理后具有受激发光的特性,这些材料称之为晶态磷光体,当高速光电子轰击荧光屏时,晶态磷光体基质中的价带电子受激跃迁到导带,所产生的电子和空穴分别在导带和价带中扩散。当空穴迁移到发光中心的基态能级上时,就相当于发光中心被激发了,而导带中的受激电子有可能迁移到这一受激的发光中心,产生电子和空穴的符合而释放光子。 展会上具有极短衰减时间(仅为3.5ns)的滨松快速荧光屏j13550-09d,可以与微通道板结合构成组件,使得待测离子打出的电子在荧光屏上进行显像。微通道板(组件)微通道板(microchannel plate, mcp)是一种蜂窝状的二维平面真空电子器件,其板面上有数目巨大的直径为4~25μm、长度在数十μm到数mm之间的微孔,实际上是一块通道内壁具有良好二次发射性能和一定导电性能的微细空心通道玻璃纤维面板。 mcp表面由高电阻的材料构成,为连续式的倍增电极,其工作原理和电子倍增器类似,首先是离子或光子撞击倍增电极表面产生一次电子或光电子,而后反射撞击下一表面产生多次倍增的二级电子使信号放大。将微通道板集成了阳极、电压接线、电容、法兰、螺孔等功能器件后即是微通道板组件,可作为独立功能的探测器件对飞行时间质谱仪(tof-ms)的离子信号进行测量。 飞行时间(time of flight, tof)质量分析器自上世纪50年代出现在质谱领域,其基本思想是测量离子离开离子源后,在通常为1~2m长的真空飞行管中飞行到达检测器所需的时间。基本工作原理 因为飞行路径中没有电场/磁场影响,尽管所有的离子在离开离子源时具有同样的动能,但由于不同的离子具有不同的质荷比(m/z)从而影响其飞行速度,到达探测器的时间也就有先后,m/z小的离子先到,m/z大的离子后到。 在tof-ms发展的早期,因为缺少能使大分子离子化的电离源,主要使用的离子源是ei,但是ei源产生的离子动能基本一致,tof中离子飞行动能受到初始动能的影响使其飞行时的速度差别不大,导致tof-ms的仪器解析能力不高,再加上当时使用的光束示波记录仪赶不上仪器数据产生的速度,制约了tof-ms的应用。 tof-ms的重生是上世纪80年代伴随解析离子源,特别是maldi技术的发展而开始的。再加之探测器及数据采集技术的发展,使得tof能够在更大的m/z范围内以更快的速度、更高的解析能力来获取完全的数据。 tof-ms较其他质谱仪具有灵敏度好。分辨率高、分析速度快、高质量检测限等优点,再配合基质辅助激光解析离子源(maldi)/电喷雾电离源(esi)/大气压化学电离源(apci)/大气压光电离源(appi),使之成为当今最具发展前景的质谱仪。 现在tof-ms已被用于很多国际前沿和热门课题的研究:小分子领域,如结合气溶胶采样系统或vuv真空紫外光源,应用于环保pm2.5或是vocs在线源监测及应急监测;大分子领域,结合maldi应用于蛋白质组学、药物代谢、基因及基因组学、微生物检验等领域,特别是在大通量、分析速度要求快的生物大分子分析中,tof-ms成为唯一可以实现要求的分析手段。 针对tof-ms的特点及对mcp探测器的要求,最新的f12396-11、f13446-11、f1094-11作为代表在bceia中登场,他们诠释了如下几个滨松mcp的突出特征: a、相应速度快b、极小的后脉冲c、鲁棒性,无畸变滨松的mcp组件对于环境有很好的耐受度,即使长期使用依然能够保持良好的平坦度,长时间保持很好的“jitter time”表现。d、漏斗型mcp,保持更高探测效率漏斗型mcp接受通道可使更多的离子进入mcp通道内,保持更高的探测效率 除以上特征以外,其还可结合荧光屏进行电光转换,后端加ccd相机可显图像。滨松拥有mcp裸片及组件在内的丰富产品线,可根据科研、产业等不同的需求,选择合适的型号(也提供定制化服务)。 光谱在原子光谱(原子吸收、原子发射、原子荧光等)及分子光谱(紫外可见分光光度计、红外光谱仪、分子荧光光谱仪、激光拉曼光谱仪、光纤光谱仪等)应用中,都经常出现滨松pmt、各类半导体器件及光源的身影。 相比于传统的电子真空器件,近年来半导体类器件在分析仪器中得到了广泛应用,比如最近刚揭晓的2017年诺贝尔化学奖——冷冻电镜硬件部分的高峰,即是利用4k*4k的ccd图像传感器作为直接电子探测器得到应用。此次bceia中,两个近红外新半导体器件也是光谱应用中的必看点。 我们都知道,近红外(NIR)光谱仪和拉曼光谱仪近年来备受关注,特别是在食品安全、农业畜牧业、药物质检、国土安全等领域,便携式手持式近红外、拉曼光谱仪得到越来越多的应用。针对市场对于小型化便携化及特别应用的需求,这样的产品即呈现了出来:lcc(leadless chip-carrier)封装线阵ingaas图像传感器g13913系列(近红外应用)相比于DIP封装的InGaAs图像传感器,g13913系列具有更小更紧凑的体积,功耗低,便于客户集成到便携式近红外光谱仪中。基于mems法布里-珀罗干涉(fpi)的微型近红外光谱探测器c14272、c13272-02(近红外应用) 关于这款产品想必都不陌生了,c13272系列是滨松推出的笔尖大基于mems-fpi近红外光谱探测器、曾入围国际光学“棱镜奖”,并获得了本届“bceia新产品奖”的荣誉。因为其极致紧凑的身躯、低成本、以及可工作在近红外波段等特征,一经面世便获得巨大关注。 系列还在不断扩展中,最新的c14272系列也即将上市。相比于c13272系列,c14272具有不同的波长范围(1350nm~1650nm)和更大的单点探测器面积,将为近红外光谱仪开发应用提供更多的可能性。c14272系列分光光谱图 InGaAs近红外探测器G14237系列(1064nm拉曼应用) 拉曼光谱可以高灵敏度分析化学物质的结构和组成,具有非接触、非侵入性和无损性,无需样品制备(或者只需简单样品制备)等特点。随着仪器开发和分析方法等方面的突破,如荧光校正技术等,拉曼光谱得到越来越广泛的应用,包括药物分析、爆炸物探测、文物检测、医疗诊断等多个领域。 发展高效和易于使用的小型便携式或手持式拉曼系统,是拉曼光谱一个重要方向。大多数这样的手持系统能够直接分析容器和包装袋中的样品,不需要任何样品制备,同时也避免了对化学物质的接触。 一般商用化的小型便携或手持拉曼系统多采用532nm、785nm、1064nm的激光器,但对于一个特定的应用来说,通常只有一种可以提供最好的解决方案。所以选择最佳激发波长时要考虑多方面的因素:每个激发波长对应的分析速度和准确度、样品的荧光背景、样本基质的透明度(容器壁、溶剂、被测物等)。在面对具有很强荧光信号的待测物时,为了降低背景荧光信号,1064nm激光器拉曼无疑是最佳选择。苏丹红的1064nm vs 785nm激光拉曼信号 但拉曼强度与激发波长的四次方成反比,针对1064nm激光拉曼的信号较弱,因此需要具有更低噪声和暗电流的InGaAs图像传感器。考虑到很多测试中2500cm-1拉曼位移已经可以满足应用,此时对应的波长在1450nm左右,因此滨松推出了具有更低暗噪声、长波截止波长在1450nm的ingaas图像传感器。InGaAs近红外探测器G14237系列 液相色谱 紫外可见(UV-Vis)检测器/二极管阵列检测器(DAD)是高效液相色谱(HPLC)中应用最多的检测器。其检测器的光源紫外部分为氘灯。此次出展的X2D2氘灯L9518的中心部分亮度是常规氘灯的2倍,为检测器灵敏度的提升提供了更优选择。针对UV-Vis或DAD检测器的探测器端,升级后的PPS(passive pixel sensor)型cmos图像传感器s10121系列则带来了更好的表现。HPLC中对检测限和动态范围要求较高,相比于APS(active pixel sensor)型cmos,PPS型cmos具有更低的噪声和更高的动态范围。aps和pps型cmos图像传感器对比 而s10121系列相比于之前的PPS型cmos图像传感器,具有更高的紫外响应和紫外响应平滑度,且针对紫外区域探测,滨松的cmos图像传感器无需镀膜,没有多步光电转换的损耗且没有薄膜损耗,给仪器应用提供更优化的探测端使用体验。以上就是bceia2017滨松展台中的主要看点啦,滨松中国在本届BCEIA中继续展示了“光电使能”的力量,并结合中国市场和客户的需求,提供稳定可靠的光电技术保障。参考文献:massspectrometry: a textbook (second edition), j.h.gross现代质谱与生命科学研究,科学出版社,赖聪仪器信息网:532、785还是1064nm?手持拉曼激发光选择有讲究!
  • 280万!合肥工业大学计划采购大力值动态热机械分析仪
    一、项目基本情况项目编号:23AT134017100069项目名称:合肥工业大学大力值动态热机械分析仪采购预算金额:280万元最高限价:241万元采购需求:购置具备双动态力传感器且具备静态力传感器的大力值动态热机械分析仪,详见招标文件采购需求合同履行期限:进口设备:签订外贸合同后 6 个月内交货;国产设备:合同签订后3个月内完成供货;本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:无4.投标人不得存在以下不良信用记录情形之一:(1)投标人被人民法院列入失信被执行人的;(2)投标人被税务部门列入重大税收违法案件当事人名单的;(3)投标人被政府采购监管部门列入政府采购严重违法失信行为记录名单的,以及存在《中华人民共和国政府采购法实施条例》第十九条规定的行政处罚记录。5.单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。三、获取招标文件时间:2023年01月10日至2023年01月17日,每天上午09:00至12:00,下午14:00至17:00(北京时间,法定节假日除外 )。地点:信e采https://www.xinecai.com方式::网上获取。具体操作参见信e采操作手册,信e采服务热线:400-050-9988售价:0元四、提交投标文件截止时间、开标时间和地点时间:2023年02月02日14点00分(北京时间)地点:信e采招标采购电子交易系统备注:本项目为电子标。投标人应在截止时间前通过信e采招标采购电子交易系统(https://www.xinecai.com)递交电子投标文件。逾期未在信e采招标采购电子交易系统上传电子投标文件的,信e采招标采购电子交易系统将自动予以拒收。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目落实节能环保、中小微型企业扶持等相关政府采购政策。2.本次招标公告同时在中国政府采购网上发布。3.投标人应合理安排招标文件获取时间,特别是网络速度慢的地区防止在系统关闭前网络拥堵无法操作。如果因计算机及网络故障造成无法完成招标文件获取,责任自负。七、对本次招标提出询问,请按以下方式联系。1.采购人名称:合肥工业大学地址:安徽省合肥市屯溪路193号联系方式:李老师,0551-62901145;2.采购代理机构名称:安徽安天利信工程管理股份有限公司地址:安徽省合肥市祁门路1779号国贸大厦1406联系方式:刘工/林工,0551-63736291邮箱:yjliu@ahbidding.com3.项目联系方式项目联系人:刘工/林工电话:0551-63736291
  • 全球功能超强大的动态热机械分析仪(DMA)落户中国科学院长春应化所
    众所周知,法国01dB-Metravib公司生产的动态热机械分析仪(DMA)是全球塑料橡胶领域所青睐的首选品牌。在中国也拥有众多高端客户。 继中国科学院声学研究所采购两台动态热机械分析仪后,中国科学院长春应用化学研究所又引进一台DMA+450型动态热机械分析仪。 这也是一年多来中科院系统引进的第三台DMA+450型动态热机械分析仪。  DMA+450 是目前市场上测试范围最宽、功能最强大的动态热机械分析仪(DMA)。其力值范围可达五个数量级,其频率范围高达八个数量级。 尤其结构和机架设计更是超群,机架刚度高达5X107N/m, 达到目前DMA机架刚度的极点。 从而摆脱了传统DMA随着测试温度降低, 测试结果偏差逐步增大的弊端。为客户提供了超强的材料测试手段。  另外,DMA+450型动态热机械分析仪是集材料粘弹性测试、蠕变测试、松弛测试及动态疲劳测试为一体的材料综合力学测试平台。  仪尊科技有限公司  Esum Technology Limited
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制