当前位置: 仪器信息网 > 行业主题 > >

压力真空度测试仪工作原理

仪器信息网压力真空度测试仪工作原理专题为您提供2024年最新压力真空度测试仪工作原理价格报价、厂家品牌的相关信息, 包括压力真空度测试仪工作原理参数、型号等,不管是国产,还是进口品牌的压力真空度测试仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合压力真空度测试仪工作原理相关的耗材配件、试剂标物,还有压力真空度测试仪工作原理相关的最新资讯、资料,以及压力真空度测试仪工作原理相关的解决方案。

压力真空度测试仪工作原理相关的论坛

  • 真空度测试仪的原理和特点简介

    真空度测试仪采用磁控放电法进行测量。将真空开关灭弧室的两触头拉开一定的距离,施加电场脉冲高压,将灭弧室置于螺线管圈内或将新型电磁线圈置于灭弧室外侧,向线圈通以大电流,从而在灭弧室内产生与高压同步的脉冲磁场。这样,在脉冲强磁场和强电场的作用下,灭弧室中的带电离子作螺旋运动,并与残余气体分子发生碰撞电离,所产生的离子电流与残余气体密度即真空度近似成比例关系。对于不同的真空管型号(管型),由于其结构不同,在同等触头开距、同等真空度、同等电场与磁场的条件下,离子电流的大小也不相同。通过实验可以标定出各种管型的真空度与离子电流间的对应关系曲线。当测知离子电流后,就可以通过查询该管型的离子电流一真空度曲线获得该管型的真空度。真空度测试仪将灭弧室的两触头拉开一定的开距,施加脉冲高压,将电磁线圈环绕于灭弧室的外侧,向线圈通以大电流,从而在灭弧室内产生与高压同步的脉冲磁场,这样在脉冲磁场的作用下,灭弧室中的电子做螺旋运动,并与残余气体分子发生碰撞电离,所产生的离子电流与残余气体密度即真空度近似成比例关系。对于不同的真空管,在同等真空度条件下,离子电流的大小也不相同,当测知离子电流后,通过离子电流一真空度曲线,由计算机自动完成真空度的计算,并显示真空度值。真空度测试仪特点:1、可定量测量各种型号真空开关灭弧室内的真空度;   2、现场测量时不需拆卸真空开关;   3、测试结果准确可靠;   4、液晶汉字显示,操作更加简单方便;   5、可保存、打印、查看测试的试验数据;   6、仪器带有RS232通讯接口,可以连接计算机实现真空度-离子电流曲线下载、寿命估计等多种功能;   7、仪器重量轻,携带方便。   8.实现了真空灭弧室的免拆卸测量,直接显示真空度值,使真空断路器用户详细掌握灭弧室的真空状态,为有计划地更换灭弧室提供了可靠的依据,为电网的安全运行提供了有力保障,克服了工频耐压法仅能判断灭弧室是否报废的缺陷。真空度测试仪技术参数1. 真空度测量范围: 9.999×10-1~1×10-5   2. 离子电流测量范围: 9.999×10-1~1×10-7   3. 测量误差: 10%   4. 测量分辨率: 10-5pa   5. 允许环境温度: -20℃~50℃   6. 空气湿度: ≤80%RH   7. 电源: AC/220V/50Hz±10%   8. 外型尺寸: 420×290×210(mm)   9. 高压输出: 脉冲30kV15kHz

  • 【资料】分享真空度测试仪的使用注意事项

    真空度测试仪的使用注意事项如下:  1、真空度测试仪属精密仪器,电路板布线密度较大,一般要求存放于较干燥的地方。若环境较潮湿,则应经常通电。  2、若测试后电流值显示为零,应检查灭弧室表面是否清洁。因为表面不清洁可能使漏电的变化值大于电离电流值,这样,测量值减去漏电后小于零,而被仪器判为零。发生这种情况后,将灭弧室表面檫干净,再做试验,一般来说这样得到的真空度值较精确。  3、在使用真空度测试仪时,高压输出线不得触及人体,以防触电。  4、高压指示灯亮时,不要触及高压线和磁控电流线,以防触电。  5、拆装打印纸在仪器先断电的情况下进行,以免损坏打印机。换纸时,将前面板打开,用食指和拇指捏紧打印机两端的两夹片轻轻拖出打印机,使出纸口略高于仪器面板,但不能拖出距离太大,将新纸端口部分剪成尖头状,插入打印机的进纸口,打开仪器电源开关,按下打印键,使纸从打印机的上端走出一段距离,插入面板出口缝导出。盖好打印机面板,装纸完毕。  6、真空度测试仪无任何用户可维修的部件,如出现故障,请专业人员维修,或与供应商联系,切勿擅自打开仪器,以免发生意外或造成不必要的损失。  7、真空度测试仪真空度测量范围在9.999×10-1~1×10-5之间,离子电流测量范围在9.999×10-1~1×10-7之间,当真空管的真空度大于10-2Pa或离子电流大于500uA时建议该真空管报废。  8、若真空管内压力等于大气压(即真空管破损),真空度测试仪测量范围内,本仪器则拒绝检测,返回初始状态。

  • 彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制

    彻底讲清如何在真空系统中实现压力和真空度的准确测量和控制

    [color=#cc0000]摘要:本文详细介绍了真空系统中压力和真空度测量和控制的基本概念已经常用的技术指标,详细介绍了模/数转换精度应压力和真空度测量分辨率的匹配,介绍了采用不同量程电容压力计进行真空度控制的最小建议范围。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000]1. 问题的提出[/color][/size]  在各种真空工艺和测试系统的真空容器中,容器内部的气体压力或真空度的准确测量控制对于保证产品品质和仪器测量精度至关重要。由此在气压或真空度控制过程中,需要根据容器内的真空度稳定性要求来确定控制方式和真空度采集精度,据此来选择合理的控制仪表,因此需要充分理解与真空度相关的基本概念,并深入了解压力和真空的测量方式以及控制器的特性和局限性。[color=#cc0000][size=18px]2. 真空和压力的度量[/size]2.1. 真空和压力的各种度量单位[/color]  在各种真空和压力测量系统中,需要清晰的了解不同压力指标的含义。  通常用于真空测量的度量单位是托(Torr),等于1mmHg,它表示将汞的沉没柱高度提高1.0mm所需的大气压力,一个标准大气压力等于760Torr。在一些真空系统的真空测量中使用Torr的衍生单位毫托或1/1000Torr。大于1.0毫托的真空度通常用科学计数法表示(例如5.0E-06 Torr),在欧洲和亚洲常用的真空系统中的真空和气象测量通常将条形图分为1/1000,以产生毫巴(mbar)。  在美国常用的压力度量标准是psi或“磅/平方英寸”,使用此度量标准,海平面上的大气压力测量值为14.69psi。为了进行比较,欧洲和亚洲的压力测量将大气压力定义为1.0bar。另一个指标是“水的英寸高度”,该指标通常用于报告美国天气预报中的气压,单位是指由大气压支撑的水下水柱的高度。使用此度量标准,大气压为406.8英寸水柱(在4°C时),有时此度量单位用于工业过程中的真空测量。  压力的国际单位制量度为Pascal(缩写为Pa),以法国数学家和物理学家Blaise Pascal命名,它被定义为单位面积上的力的度量,等于每平方米一牛顿。SI单位的大气压为1.01325E+05 Pa。有些气压测量通常也会以千帕斯卡(kPa)为单位进行报告。表2-1列出了最常见的压力表和真空表。[align=center][color=#cc0000]表2-1 压力和真空的度量[/color][/align][align=center][img=,690,302]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131045122503_3567_3384_3.png!w690x302.jpg[/img][/align][color=#ff0000]2.2. 压力和真空传感器[/color]  压力和真空的测量一般采用传感器,这些传感器所组成的压力表和真空表根据测量原理的不同分为多种形式,这些仪表的主要类型包括:  (1)机械规:这类仪表使用某种形式的机械联动装置或膜片装置,无需任何电子器件,仅依靠机械式的移动来指示压力或真空度。因为无需带电运行,所以这类仪表常用于压力和真空系统的安全性指示,即使在系统断电情况下也能大致了解腔体内的情况。  (2)热导规:通常称为皮拉尼、热偶和对流表,其作用原理是气体的导热系数随压力而变化,电热丝是平衡电子电路中的传感元件。由于热丝的热损失率随气体的导热系数而变化,因此也会随着腔体内气体压力和真空度而发生改变,这种变化要求改变电路的电气特性之一(电流、电压或功率)以保持电路平衡。  (3)应变规:这是一类基于应变的压力测量仪表,常用于正压测量。它们采用了一个薄隔膜,其背面装有应变感应电子电路。压力的变化会引起膜片偏转,从而产生应变,该应变被传感器检测到。  (4)电容规:常用于压力/真空测量,它们依赖于隔膜和通电电极之间电容的变化。  (5)柱规:它们使用液体,其在封闭柱中的高度会随压力而变化。  (6)电离规:取决于周围气体分子的电离和相应离子电流的测量。离子电流与腔室内的真空压力直接相关。  表2-2显示了不同类型的压力/真空表的比较,从中可以看出没有一类仪表可以满足每个过程中的所有测量要求。[align=center][color=#cc0000]表2-2 主要类型压力表的性能比较[/color][/align][align=center][color=#cc0000][img=,690,167]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131045550873_8034_3384_3.png!w690x167.jpg[/img][/color][/align][color=#cc0000][/color][align=center][/align][size=18px][color=#cc0000]3. 压力和真空仪表常用技术指标[/color][/size]  与其他物理量测量中存在的现象类似,很多用户对如何评价压力和真空仪表存在模糊的概念,因此这里简要说明压力和真空仪表的常用技术指标。  (1)参考标准:一种非常准确的压力或真空测量仪器,用于校准其他此类仪器。  (2)精确度:压力或真空仪表和用于校准的参考标准之间的绝对测量差。常用是以读数的百分比或满量程的百分比为单位来表达。  (3)线性度:与大多数其他传感器类似,压力和真空仪表(无论是数字还是模拟形式)都以设计为线性化输出作为达到理想状况的标准。线性度是衡量电子设备完成这项任务的程度——通常指定为满量程的百分比。  (4)重复性:衡量压力和真空仪表在多个不同过程运行期间,在相同压力下能达到相同输出的接近程度。一些仪表制造商在技术指标中包括了重复性,但并非全部都如此。如果没有特别注明,用户应要求供应商提高该指标。  (5)分辨率:压力和真空仪表可以实际测量的最小压力和真空度。如果仪表是模拟信号输出的型号,并且需要数字输入,则几乎总是需要高分辨率的模/数转换(至少14位),否则A/D分辨率将决定压力和真空测量的分辨率,而不是压力计和真空计的分辨率。  (6)零位和零位偏移:零位是指将压力计的输出调整为在(a)系统中可获得的最低压力或(b)低于电容式压力计分辨率的压力下读取零时发生的情况。经过一段使用时间后,零位置可能会发生变化,从而改变压力表的位置并在压力计的整体输出中产生偏移,因此必须除去这种偏移以获得可接受的精度。如果系统达到的基本压力低于压力计的分辨率,则可以将压力计的输出调整为最小输出。但是,如果最小系统压力高于压力计的分辨率,则必须使用永久零偏移量来确定正确的系统压力。零偏移或零漂移的存在并不总是表明设备需要重新校准,因为零位置的变化仅很少影响实际的压力计校准。  从表2-2可以看出,电容式压力/真空计的测量准确性最高,因此电容式真空计通常作为其他类型压力计的参考设备(即用来校准其他产品)。如对于无加热功能的的1000Torr电容压力计的准确度指标(包括重复性)约为读数的0.25%,相比之下,相同量程的皮拉尼或热偶压力计的读数精度为5~25%,电容式真空计的准确度是它们的100倍。[size=18px][color=#cc0000]4. 高精度压力和真空度控制的实现[/color][/size]  对于与真空相关的各种系统中,在指定的压力和真空度区间内进行精确测量和控制至关重要。例如,如果过程设定值介于5.0~6.0mTorr之间,并且所需的压力读数精度为0.5mTorr,则所需的测量精度为读数的10%,或者,对于100mTorr的电容压力计,为满量程的0.5%。如果选定的压力计或真空计不能达到这一精度水平,则无法将真空过程控制在所需的过程区间内。  用作闭环压力和真空度控制的压力计或真空计输入信号必须具有足够的分辨率,以辨别过程中非常小的压力变化。同时,回路中的压力和真空度控制器和控制阀也必须具有必要的分辨率,以便有效地利用这些数据来控制压力的微小变化。很多用户往往只重视了压力或真空计的选择和相应的技术指标,而忽视了控制器以及控制阀的分辨率指标,这基本是造成控制精度达不到要求或波动度较大的主要原因。[color=#cc0000]4.1. 压力计和真空计的选择[/color]  选择压力计和真空计的第一个考虑因素是满量程压力和真空度范围。为了获得良好的测量精度,真空计范围应与待测量的预期压力或真空范围相匹配。理想情况下,压力计范围应包含最高预期压力,这将最大化输出信号(模拟)并提高信噪比。如考虑在5mTorr和80mTorr之间操作的真空过程,该过程的最佳压力计(如电容压力计)的满量程范围为100mTorr。如果采用电容压力计,则该传感器在最小预期压力下的模拟输出为满量程的5%,在低压下提供良好的精度和高信噪比,同时保持足够的范围来测量高系统压力。虽然满量程为1Torr的电容压力计也适用于这种应用,但在5mTorr时的模拟输出将减少10倍,信号强度的这种变化将大大降低信噪比,降低读数精度。  许多商品化的压力计将其输出作为模拟信号发送给主机、过程控制器或数据记录设备,输出信号有多种形式,如0~10V直流电、0~5V直流电、0~1V直流电和4~20mA是最常见形式。在大多数格式中,输出与压力成线性关系,使得压力计的输出易于在软件中缩放。[color=#cc0000]4.2. 压力计和真空计信号的输出和采集[/color]  各种测量原理的压力计和真空计,其信号输出一般为模拟量,大多为连续的直流电压信号。为了将这些模拟信号直接以数字信号输出,或在控制过程中用控制器和数据记录仪采集这些模拟信号,都需要根据要求对这些模拟信号有足够高的采集精度,也就是说目标压力信号的模拟/数字(A/D)转换必须具有足够的分辨率,以将信号与压力计的正常背景噪声区分开来。例如,压力计信号的12位模数转换将区分压力计满量程模拟输出0.02%的最小信号。对于1Torr全刻度压力计,这意味着不能检测到小于0.2mTorr的压力或压力变化。在假设压力计和真空计的模拟输出为0~10V直流时,表4-1显示了各种压力计的最小可分辨压力与模数转换精度的关系。[align=center][color=#cc0000]表4-1 常见(A/D)模数分辨率下的最小可分辨压力(满量程测量范围为0~10V直流)[/color][/align][align=center][img=,690,309]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131047065875_9748_3384_3.png!w690x309.jpg[/img][/align]  从上表可以看出,将压力计输出和所需过程测量精度与主机、数据记录器或控制器的分辨率相匹配非常重要。例如,如果过程在满量程范围的1.0%下运行,压力计的满量程输出为10.000V直流信号,主机必须能够可靠地辨别100mV模拟信号。因此,A/D数据采集系统需要至少12位分辨率才能在其大部分测量范围内使用压力计。更高位的分辨率允许在最低压力下提高压力计测量的分辨率。表4-1显示了不同A/D分辨率下的最小可分辨模拟信号。上海依阳实业有限公司的压力和真空度控制器都提供至少16位的模数转换,能够解析低至0.4mV的信号,也可以根据需要提供更高位数的模式转换及相应的控制器。[color=#cc0000]4.3. 压力和真空度的闭环控制[/color]  在微小变化的压力和真空度闭环工作过程中,需要将压力计的量程选择至少要限制少整整十倍。如考虑在5mTorr下使用压力计控制过程的情况,100mTorr满量程压力计是可以使用的最大压力范围。事实上,较低的满量程范围设备将是一个更好的选择,因为它们提供更高的输出信号,更容易检测和解决,这将提高压力控制的精度。表4-2给出了一些常见电容压力计真空范围的最小建议控制压力。[align=center][color=#cc0000]表4-2 满量程压力计范围的最低控制压力[/color][/align][align=center][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2021/01/202101131047445188_687_3384_3.png!w690x230.jpg[/img][/align][size=18px][color=#cc0000]5. 结论[/color][/size]  压力计和真空计是许多工艺过程和测试系统应用中压力/真空测量的常用传感器,为了在准确性和精确性方面实现最大性能,必须考虑并正确选择压力计特性。这些包括压力计固有的电子特性,如量程和灵敏度。另外,使用这些压力计信号的任何系统,必须匹配合理的模/数(A/D)测量精度。当然,一般而言,模数精度越高,造价越高,体积越大。[align=center]=======================================================================[/align]

  • 海瑞思密封测试仪工作原理是什么?

    海瑞思密封测试仪工作原理是什么? 气密封测试仪连接到一个测试室,特别设计来容纳需要被检测的包装。测试腔包装被置于要被抽真空的实验腔内。单或双真空传感器技术用于监控测试室为两个层次的真空状态同样也监测预定测试时间段的真空变化,绝对真空和相对真空的变化暗含了包装中存在的泄漏和缺陷。 海瑞思密封测试仪又叫包装检漏仪,是生产、加工企业专门用来检测食品、乳制品以及制药行业的包装袋、瓶子、罐子等容器密封性的仪器,从而保证产品不会因为包装泄漏而产生质量问题(有些泄漏点是肉眼看不到的),延长产品的货架期。http://www.hairays.com/show-22-60.html

  • 实验室用冷冻干燥机中如何实现高精度的压力和真空度控制

    实验室用冷冻干燥机中如何实现高精度的压力和真空度控制

    [size=14px][b][color=#cc0000]摘要:本文针对实验室用冷冻干燥机的真空度控制,提出了干燥过程中的真空度精密控制解决方案。解决方案主要是采用双真空计(电容真空计和皮拉尼真空计)测量干燥过程中的真空度变化,双通道PID真空度控制器一方面采集电容真空计信号并通过电动针阀对干燥腔室的真空度进行高精度控制,同时采集皮拉尼真空计信号显示和记录整个干燥过程中的真空度变化曲线。此解决方案可完美的实现干燥过程中的真空度精密控制和监测。[/color][/b][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px] 在典型的真空冷冻干燥过程中,为了监控整个过程的真空度变化,一般会采取真空度比较测量方式,即在腔室和冷凝器上分别配置电容真空计和皮拉尼真空计。由此在冷冻干燥过程中,用电容真空计测量和控制腔室真空度,同时使用皮拉尼真空计进行真空度监测。这种方法利用了皮拉尼真空计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分依赖性,该皮拉尼计的输出变化反映了当过程从一次干燥过渡到二次干燥时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分的变化。这个典型过程中的真空度和温度变化如图1所示。一般是基于电容真空计来控制腔室真空度,这不仅仅是因为它独立于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分而测量绝对压力(绝对真空度)。电容式压力计比皮拉尼压力计更准确、线性和稳定。[/size][size=14px][/size][align=center][size=14px][color=#cc0000][img=真空冷冻干燥过程中的典型真空度和温度变化曲线,600,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231817231440_186_3221506_3.jpg!w690x460.jpg[/img][/color][/size][/align][color=#cc0000][size=14px][/size][/color][align=center]图1 真空冷冻干燥过程中的典型真空度和温度变化[/align][size=14px][/size][align=center]皮拉尼压力表(洋红色),电容压力计(红色)[/align][size=14px][/size][align=center][color=#cc0000]隔板温度用黑线表示,其他线是热电偶测量的单个产品温度[/color][/align][size=14px] 从上述真空冷冻干燥过程中可以看出,冷冻干燥机上需要配备两只真空计,一个是电容真空计,另一个是皮拉尼计。其中电容真空计用来控制腔室真空度,真空度控制范围在几十豪托左右,而皮拉尼计则用来监控整个真空度的变化过程并用来判断干燥过程的变化。为此,我们设计了如图2所示的冷冻干燥机真空度控制系统。[/size][align=center][size=14px][color=#cc0000][img=真空冷冻干燥机真空度控制系统结构示意图,500,428]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231818284971_7024_3221506_3.jpg!w690x592.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2 真空冷冻干燥机真空度控制系统结构示意图[/color][/align][size=14px] 图2所示的控制系统主要四个部分组成,分别描述如下:[/size][size=14px] (1)真空泵:主要用于抽取真空。在冷冻机干燥过程中,由于真空腔室一般工作在较高真空范围,所以真空泵要求处于全速开启抽取状态而无需调节排气速率。[/size][size=14px] (2)真空计:真空计包含了电容真空计和皮拉尼真空计,其中高精度的真空计为绝对真空传感器,用来作为真空度控制用传感器。精度稍差的皮拉尼真空计由于测试量程较大,用来监视整个过程的真空度变化,并作为第一次和第二次干燥变化的判断。[/size][size=14px] (3)电动针阀:通过步进电机来快速调节针阀的开度,以调节进气流量。[/size][size=14px] (4)双通道PID真空度控制器:此控制器为带有PID参数自整定功能的双通道控制器,其中第一通道与电容真空计和电动针阀组成闭环控制回路用来控制腔室真空度,第二通道与皮拉尼真空计连接作为测试和显示。此双通道PID控制器具有24位AD和16位DA,采用了双浮点计算方法可使得最小输出百分比达到了0.01%的高控制精度,非常适合冷冻干燥过程中的真空度控制。而且此控制器具有标准的MODBUS协议,可与上位机进行通讯实现远程遥控。[/size][size=14px] 总之,本文所述的解决方案非常适合实验室冷冻干燥机的真空度精密控制和干燥过程的监测,强大的双通道PID控制器除了可保证真空度控制精度和自动控制之外,还可以通过随机配备的计算机软件独立进行冷冻干燥机真空度控制过程的参数设置、PID参数自整定、自动运行、真空度设置和测量值的测量、曲线显示和存储。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 真空封装器件漏率和内部真空度的非接触测量方法

    真空封装器件漏率和内部真空度的非接触测量方法

    [size=16px][color=#339999][b]摘要:大量MEMS真空密封件具有小体积、高真空和无外接通气接口的特点,现有的各种检漏技术无法对其进行无损形式的漏率和内部真空度测量。基于压差法和高真空度恒定控制技术,本文提出了解决方案。方案的具体内容是将被测封装器件放置在一个比器件内部真空度更高的真空腔体内,采用电动可变泄漏阀和控制器自动调节微小进气流量进行高真空度控制,由此在被测器件内外建立恒定压差,通过测量此压差下的漏率可得到器件内部真空度。[/b][/color][/size][align=center][size=16px][color=#339999][b]=========================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 真空密封器件通常需要在特定的真空度下才能正常工作,即需要高真空度和长时间的真空保持度。例如杜瓦组件作为广泛使用的绝热容器在制冷、 红外探测以及超导中都有应用,而杜瓦的绝热效果与其夹层真空度直接相关。有机发光二极管对水蒸气和氧气含量特别敏感,工作时需要真空条件,含量超标的水蒸气和氧会严重影响其寿命和稳定性。高精度的MEMS惯性器件如MEMS陀螺仪、MEMS谐振式加速度计等需要工作在高真空环境中,其内部真空度的好坏决定其品质因数的大小。由此可见,为了保证真空密封器件的密封性能,需要对漏率和真空度的变化进行测试评价,但由于存在以下几方面的原因,使得这种评价技术成为目前迫切需要解决的难题:[/size][size=16px] (1)对于大多数真空密封器件而言,其几何尺寸一般很小,且不能配置真空度和漏率测量接口,这导致了很多现有真空测量领域的传感器和仪器都无法直接使用。[/size][size=16px] (2)对于个别真空封装器件,可通过在外部形成高压将示踪气体(如氦气)加载到真空封装器件内,然后再在外部抽真空条件下采用检漏仪测量真空封装器件的漏率。但这种方法往往会破坏真空封装器件内部的真空度,且不可逆转,可能会造成真空封装器件性能的降低。[/size][size=16px] (3)直接在真空密封器件内集成真空度传感器不失为一种有效手段,如集成如皮拉尼计和音叉石英晶振等,国内外的各种研究也曾在这方面做过努力,但由于所集成传感器自身特性(如结构形状、尺寸、真空度测量范围和精度等)以及所带来附加影响,使得这种技术仅勉强适用于个别真空密封器件,根本无法作为一种通用技术得以应用。[/size][size=16px] 为了解决目前真空封装器件存在的检漏问题,特别是实现对真空封装器件内部真空度的测量,本文基于压差法提出了一种间接测量的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 对于内部具有一定真空度的真空封装器件,其漏率和内部真空度的测量将基于压差法。具体是即将被测真空封装器件放置在一个要比器件内部真空度更高的密闭腔体内,由此在封装器件内外形成压差。通过测量获得此压差下的漏率,然后再通过漏率计算出器件内部真空度。[/size][size=16px] 依据解决方案设计的真空封装器件漏率和真空度测量装置结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=真空密封器件漏率和真空度测试系统结构示意图,690,253]https://ng1.17img.cn/bbsfiles/images/2023/09/202309041023569886_4228_3221506_3.jpg!w690x253.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 真空密封器件漏率和真空度测试系统结构示意图[/b][/color][/size][/align][size=16px] 依据检漏中的压差法原理,漏率的测量结果与压差(P1-P0)呈线性关系。因此,如图1所示,只要精确控制密闭腔体内的真空度P1,在测量得到漏率后,就可以计算出真空封装器件内部的真空度。由此可见,测试真空密封器件漏率和真空度需要解决以下两个关键问题:[/size][size=16px] (1)腔体真空度P1的精确控制:对于具有高真空(如P01E-03Pa)的封装器件,腔体真空度需要达到P11E-03Pa的更高真空度,以形成尽可能大的压差,这就要求对超高真空度能实现准确控制,控制精度越高则计算得到器件内部真空度的精度越高。[/size][size=16px] (2)漏率测量:漏率测量也是决定精度的关键因素,具体实施时可以采用各种高灵敏度的漏率测量方法,如氦质谱检漏仪。为了实现定量和高精度的漏率测量,也可以采用特殊设计的漏率测试系统,但这部分内容不在本文阐述的内容之内。[/size][size=16px] 本文的重点是介绍解决方案中的超高真空度精密控制技术。如图1所示,超高真空度的控制采用调节进气流量来实现,具体采用了VLV2023型号的电动可变泄漏阀,进气流量的调节范围是1E-8PaL/s~500PaL/s,调节信号为0~10V。超高真空度控制回路有真空计、真空控制器和电动可变泄漏阀组成,真空控制器采集真空计信号并与设定值进行比较后,输出PID控制信号对可变泄漏阀进行驱动来调节微小的进气流量,由此使腔体真空度快速恒定在设置值处。[/size][size=16px] 在超高真空控制中还面临另外一个问题是真空计输出信号的非线性,为此本文解决方案中采用了具有线性化处理功能的VPC2021系列真空压力控制器,通过在真空和电压的关系曲线中取八个数据点进行拟合,可很好的解决线性PID控制非线性信号的问题。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案很好的突破了真空密封件漏率和内部真空度测量难题,关键是实现了高真空度精密控制中的微小进气流量自动调节以及传感器非线性输出信号的PID控制器线性化处理。解决方案中的高真空度控制装置可广泛应用于任何真空系统,PID控制器线性化技术可广泛应用于各种非线性传感器测量控制场合。[/size][size=16px] 本解决方案对高真空微小压差下的漏率测试技术并未做详细的介绍,这部分内容将在后续研究报告中给出详细的测试系统描述。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~[/color][/b][/align]

  • 【讨论】光谱仪显示真空度不够,不工作,原因分析

    真空直读光谱仪电脑显示真空度达不到要求(显示条是红色的,变不成绿的),无法进行检测分析,是什么原因造成的? 是否可以从以下一些方面考虑?还有什么原因呢? 1、真空泵坏了 2、与光室连接的管路有堵塞或漏气 3、真空度测试装置出问题了 4、软件出问题了 换了个新真空泵没有解决问题,实在搞不懂了,我们是康诚的机器。

  • 【我们不一YOUNG】MS真空系统由哪些部分组成?GCMS正常工作时的真空度是多少?

    [align=center]MS[font=DengXian]真空系统由哪些部分组成?[/font][url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url][font=DengXian]正常工作时的真空度是多少?[/font][/align]MS[font=DengXian]真空系统由哪些部分组成:[/font]MS[font=DengXian]真空系统主要由机械泵,高真空泵,真空管道,真空阀门,真空规,吸附肼以及控制部件组成。机械泵(提供初级真空,有油泵或干泵之分)主要把系统真空压力降到[/font]0.1-0.01[font=DengXian]托,它是高真空系统的前级泵。高真空泵把系统真空压力降到[/font]10-5 [font=DengXian]–[/font] 10-6[font=DengXian]托。一般为分子涡轮泵,也有少数使用油扩散泵。[/font][url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url][font=DengXian]正常工作时的真空度一般为[/font]10[font=DengXian]的[/font]-5[font=DengXian]或者[/font]-6[font=DengXian]次方[/font]torr[font=DengXian]。[/font]

  • 【分享】真空度的含义及其单位

    “真空度”顾名思义就是真空的程度。是真空泵、微型真空泵、微型气泵、微型抽气泵、微型抽气打气泵等抽真空设备的一个主要参数。所谓“真空“,是指在给定的空间内,压强低于101325帕斯卡(也即一个标准大气压强约101KPa)的气体状态。在真空状态下,气体的稀薄程度通常用气体的压力值来表示,显然,该压力值越小则表示气体越稀薄。对于真空度的标识通常有两种方法:一是用“绝对压力”、“绝对真空度”(即比“理论真空”高多少压力)标识;在实际情况中,真空泵的绝对压力值介于0~101.325KPa之间。绝对压力值需要用绝对压力仪表测量,在20℃、海拔高度=0的地方,用于测量真空度的仪表(绝对真空表)的初始值为101.325KPa。(即一个标准大气压) 二是用“相对压力”、“相对真空度”(即比“大气压”低多少压力)来标识。 "相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时),表的初始值为0。当测量真空时,它的值介于0到-101.325KPa(一般用负数表示)之间。比如,有一款微型真空泵PH2506B(http://www.weichengkj.com/PH.htm)测量值为-75KPa,则表示泵可以抽到比测量地点的大气压低75KPa的真空状态。 国际真空行业通用的“真空度”,也是最科学的是用绝对压力标识;指得是“极限真空、绝对真空度、绝对压力”,但“相对真空度”(相对压力、真空表表压、负压)由于测量的方法简便、测量仪器非常普遍、容易买到且价格便宜,因此也有广泛应用。理论上二者是可以相互换算的,两者换算方法如下:相对真空度=绝对真空度(绝对压力)-测量地点的气压例如:有一款微型真空泵VM8001(http://www.weichengkj.com/VM.htm)的绝对压力为80KPa,则它的相对真空度约为80-100=-20Kpa,(测量地点的气压假设为100KPa)在普通真空表上就该显示为-0.02MPa。

  • 【分享】真空度的含义及其单位

    “真空度”顾名思义就是真空的程度。是真空泵、微型真空泵、微型气泵、微型抽气泵、微型抽气打气泵等抽真空设备的一个主要参数。所谓“真空“,是指在给定的空间内,压强低于101325帕斯卡(也即一个标准大气压强约101KPa)的气体状态。在真空状态下,气体的稀薄程度通常用气体的压力值来表示,显然,该压力值越小则表示气体越稀薄。对于真空度的标识通常有两种方法:一是用“绝对压力”、“绝对真空度”(即比“理论真空”高多少压力)标识;在实际情况中,真空泵的绝对压力值介于0~101.325KPa之间。绝对压力值需要用绝对压力仪表测量,在20℃、海拔高度=0的地方,用于测量真空度的仪表(绝对真空表)的初始值为101.325KPa。(即一个标准大气压) 二是用“相对压力”、“相对真空度”(即比“大气压”低多少压力)来标识。 "相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时),表的初始值为0。当测量真空时,它的值介于0到-101.325KPa(一般用负数表示)之间。比如,有一款微型真空泵PH2506B(http://www.weichengkj.com/PH.htm)测量值为-75KPa,则表示泵可以抽到比测量地点的大气压低75KPa的真空状态。 国际真空行业通用的“真空度”,也是最科学的是用绝对压力标识;指得是“极限真空、绝对真空度、绝对压力”,但“相对真空度”(相对压力、真空表表压、负压)由于测量的方法简便、测量仪器非常普遍、容易买到且价格便宜,因此也有广泛应用。理论上二者是可以相互换算的,两者换算方法如下:相对真空度=绝对真空度(绝对压力)-测量地点的气压例如:有一款微型真空泵VM8001(http://www.weichengkj.com/VM.htm)的绝对压力为80KPa,则它的相对真空度约为80-100=-20Kpa,(测量地点的气压假设为100KPa)在普通真空表上就该显示为-0.02MPa。

  • 土壤三轴试验制样和力学性能测试中的真空压力控制技术

    土壤三轴试验制样和力学性能测试中的真空压力控制技术

    [size=16px][color=#339999][b]摘要:在当前的各种三轴测试仪中,对月壤和月壤模拟物的样品制备和力学性能测试还无法实现样品的真空制备、测试过程中的可变围压控制和样品的超真空度准确控制。为此本文提出了实现这些功能的解决方案,解决方案采用不同气体流量控制技术以及特殊样品机构来实现月壤样品负压吸膜压实制备和给样品提供高真空环境,采用正压气体压力控制技术实现月壤样品的可变围压控制。此解决方案可用于开发新型真空三轴仪和现有三轴仪的升级改造。[/b][/color][/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 随着我国探月工程的开展,对月球土壤和岩石的研究工作也在进一步深入开展,其中目前迫切需要开展的工作之一是在实验室模拟月球的高真空条件下,测试循环载荷对月壤(或月壤模拟物)密度的影响以及相应的应力-应变-强度特性。这些工作都需要在具有超高真空形成和控制能力的三轴仪上进行,在这种超高真空三轴仪上需要具体开展的研究内容如下:[/size][size=16px] (1)不同真空度条件下的样品压实及其密度变化研究。[/size][size=16px] (2)开发新型高真空型三轴仪或改造现有圆柱形三轴装置,用于在高真空下对压实月球模拟物的应力-应变-强度进行测试。[/size][size=16px] (3)循环压实模拟物的约束和三轴剪切试验。[/size][size=16px] (4)评估原位(围压)应力和高真空对压实模拟物响应的影响,确定变形和强度参数。[/size][size=16px] 为了开展上述研究工作,特别是针对开发新型高真空三轴仪或对现有的三轴仪进行高真空技术改造,本文提出了相应的解决方案,解决方案的核心是设计新型的月壤样品卡具,并增加相应的真空压力配套系统,实现超高真空和正压围压的精密控制。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 无论是开发新型高真空三轴测试仪,还是对现有三轴设备进行高真空技术改造,都需要实现以下几方面的功能和技术指标:[/size][size=16px] (1)可对月壤样品进行单独的抽真空,使包裹有橡胶膜的月壤样品处于模拟的月球真空环境中,真空度范围为1×10[font='times new roman'][sup]-11[/sup][/font]Torr~760Torr(绝对压力),真空度可在此范围内的任意设定点上进行控制,控制精度由真空计的测量精度确定。[/size][size=16px] (2)在包裹有橡胶膜的月壤样品外部空间内,提供高于一个大气压的气体压力用于形成围压,可在0~400kPa(表压)范围内的任意设定点上进行控制,控制精度优于1%。[/size][size=16px] 为了实现上述三轴仪功能和技术指标,本文提出了相应的真空压力控制解决方案,解决方案的前提是三轴仪需具备独立的样品抽真空管路、样品顶部和底部的低漏率密封连接件以及密闭型的围压生成腔体。解决方案所设计的三轴仪和真空压力控制系统如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.三轴仪真空压力控制系统结构示意图,690,450]https://ng1.17img.cn/bbsfiles/images/2023/07/202307250954595123_1111_3221506_3.jpg!w690x450.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 三轴仪真空压力控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,月壤样品通过外侧的橡胶膜、密封顶杆和基座、以及上下密封圈形成独立的真空密闭环境。在真空度控制过程中,由顶盖管路进行抽真空排气,由底部基座管路进气,通过排气和进气速率达到不同的动态平衡状态实现相应设定真空度的控制。[/size][size=16px] 月壤样品上下两端的真空管路都经过三轴仪底部基座与外部的真空控制管路连接,所连接的真空排气控制管路用紫色线表示,排气控制管路上连接有由皮拉尼计、电容规、电动球阀、干泵和分子泵。[/size][size=16px] 真空进气分为低真空和高真空两个控制管路,这两个管路并联且共用三轴仪底部基座的进气口,以分别负责大流量进气和微小流量进气。其中低真空进气控制管路用绿线表示,此管路中连接有电动针阀、压力调节器、高压气源和双通道真空压力控制器。高真空微量进气控制管路用蓝线表示,此管路中连接有电动针阀、泄漏阀、压力调节器、高压气源和双通道真空压力控制器。[/size][size=16px] 为了给月壤样品四周提供可变的围压,需要在图1中的腔室内形成充气正压,即处于真空状态下的月壤样品被放置在一个气体压力可控的密闭腔室内。正压腔室同样也经过三轴仪底部基座通道与黄线所代表外部正压控制管路连接,此管路中连接有压力计、压力调节器、高压气源和双通道真空压力控制器。[/size][size=16px][color=#339999][b](1)低真空控制[/b][/color][/size][size=16px] 所谓低真空是指仅靠干泵抽气所能达到的真空能力,一般是0.01~760Torr绝对真空度范围。在此低真空范围内的控制时,使用到了紫线所示的抽气管路和绿线所示的低真空控制管路,此时分子泵和蓝线高真空管路处于关闭状态。[/size][size=16px] 在此低真空0.01~760Torr范围内,一般需要配置两个不同量程的电容规才能覆盖。因此,低真空范围内的控制,采用了双通道真空压力控制器,其中第一通道连接1000Torr量程的电容规和电动球阀,用来控制1~760Torr范围内的真空度;第二通道连接1Torr量程的电容规和电动针阀,用来控制0.01~1Torr范围内的真空度。[/size][size=16px][color=#339999][b](2)高真空控制[/b][/color][/size][size=16px] 所谓高真空是指在低真空基础上还需分子泵继续抽气所能达到的真空能力,一般是指绝对真空度范围1×10[font='times new roman'][sup]-2[/sup][/font]~1×10[font='times new roman'][sup]-11[/sup][/font]Torr。在此高真空范围内的控制时,使用到了紫线所示的抽气管路和蓝线所示的高真空控制管路,此时干泵和绿线低真空管路处于关闭状态。[/size][size=16px] 在此高真空范围内,可以根据精度要求选择不同的真空计,另外还需分别控制电动针阀和压力调节器。高真空范围内的控制同样也采用了双通道真空压力控制器,其中第一通道连接真空计和压力调节器进行真空度自动调节;第二通道连接电动针阀用于高真空控制管路的打开和关闭。[/size][size=16px][color=#339999][b](3)正压压力控制[/b][/color][/size][size=16px] 正压压力控制是提供0~400kPa(表压)范围内的自动控制,使用了黄线所示的压力管路,并可以根据控制精度要求选择相应的压力计,同时采用了单通道真空压力控制器。在正压控制过程中,压力计、压力调节器和真空压力控制器组成闭环控制回路,可自动根据压力设定点或设定程序对进气压力进行减压定点控制或可编程控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过此解决方案可很好的实现三轴测试仪在高真空环境和可变围压条件下的测试,但在实际应用中还需注意以下两个方面:[/size][size=16px] (1)通过上述真空控制功能,也可以进行圆柱形月壤样品的压实制作。即在颗粒状样品压实制作时,先将橡胶膜管放置在一个侧壁透气的金属圆管内,然后把低真空控制管路连接到腔体正压接口对腔体抽真空,通过橡胶膜外部的真空作用使橡胶膜紧密吸附在金属圆管内壁上,由此可方便的倒入颗粒月壤并进行压实,最终制作出非常规整的外部套有橡胶膜的圆柱状月壤样品。[/size][size=16px] (2)在此方案中,仅指定了高真空度的有限范围和一路高真空控制管路。如果需要进一步扩展到更高真空度,还需根据所扩展的真空度选择不同的真空泵,由此还需改变高真空控制中的泄漏阀技术指标,或增加高真空控制管路数量,这样才能满足不同高真空度范围内的准确控制。[/size][size=16px] (3)此解决方案所涉及的真空压力控制技术,结合流量测量技术后,也可拓展应用到月壤和各种土壤的渗透性能测试。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=16px][/size][size=16px][/size][size=16px][/size][size=16px][/size][size=16px][/size]

  • 推拉力测试仪工作原理

    推拉力测试仪分为两种,一种是数显式推拉力测试仪,另外一种是指针式推拉力计  推拉力计是由一个高精度的应变片式传感器及一个集成电路组成  当力作用与传感器时,传感器会发生形变,从而使阻抗发生变化,同时使激励电压发生变化,输出一个变化的模拟信号。该信号经放大电路放大输出到模数转换器,转换成便于处理的数字信号输出到CPU运算控制,CPU根据键盘的命令以及程序设定将这种结果输出到显示器,直至显示这种结果。  以推拉力计的工作原理是根据:胡克定律F=kx。写作: F=k.x  其中:“F”,表现弹簧的弹力,而弹力是弹簧产生形变时对施力物的作用力。  “x”,是弹簧伸长或缩短的长度,注意“x”是以弹簧没有形变时的长度为基准,即x=x'-x0或x=x0-x'。  “k”,叫弹簧的劲度系数,它描写单位形变量时所发生弹力的大小,k值大,阐明形变单位长时须要的力大,或者说弹簧“硬”.k跟弹簧资料,是非,粗细等都有关系。k的国际单位是牛/米。  假如将几个相同的数显推拉力测试仪串联或并联起来后,这个新的弹簧的劲度系数不再是本来的劲度系数.设两个劲度系数都是k的弹簧串联后的劲度系数为k1,则有F=k1·x,由于a点的弹力也为F,所以对弹簧1可写两个劲度系数都是k原长雷同的弹簧并联时的劲度系数为k2,则有F=k2·x 数变小,并联后的变大。  数显推拉力测试仪,他用数显方法显示丈量到的力,读数就比弹簧机械式要方便我多了  1.即使是在垂直向上拉,而且是静止的情况下,弹簧测力计的拉力与重力大小是相等的,然而,弹簧的拉力的方向确与重力的方向相反,而力是矢量单位,是有方向性的,所以弹2簧的拉力就是重力的说法不对。  2.假如在垂直方向上,用弹簧测力计拉侧重物向上做加速活动时,推拉力计弹簧测力计的拉力大小大于重物的重力。  3.其它情形略。

  • 真空冷冻干燥过程中压力和真空度控制的最佳操作实践

    真空冷冻干燥过程中压力和真空度控制的最佳操作实践

    [color=#cc0000]摘要:本文主要针对压力参数,介绍了真空冷冻干燥过程中使用压力监控仪表推荐的最佳操作过程研究,尤其是用于监视冷冻干燥过程中压力变化以及可能用于设备功能测试的最佳过程研究结果。[/color][color=#cc0000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=24px][color=#cc0000]1. 问题的提出[/color][/size]  在真空冷冻干燥过程中,温度和压力都是影响传热、传质、过程效率和产品质量的关键变量,因此,要特别注意冷冻干燥过程中的产品温度和压力测量和控制。对于压力的控制,整个行业内(特别是国内)还普遍存在非常浅显的认知,有关压力测量和控制的研究也鲜有报道和介绍。另外,在真空冷冻干燥领域中对于真空计的有效使用并没有普及,这主要是对压力和真空度控制及控制器技术缺乏准确的认识,在控制器选择上存在较大的误区,现有大多数国内外的控制器无法真正满足真空冷冻干燥工艺过程中的控制精度要求,鲜有真空冷冻干燥机厂家能提供压力和真空度控制的技术指标。  本文主要针对压力参数,介绍了真空冷冻干燥过程中使用压力监控仪表推荐的最佳操作过程研究,尤其是用于监视冷冻干燥过程中压力变化以及可能用于设备功能测试的最佳过程研究。[size=24px][color=#cc0000]2. 冷冻干燥中的压力(真空度)测量[/color][/size]  压力传感器的类型很多,本文不进行介绍,本文只介绍两种类型压力传感器:导热型压力计和电容压力计。尽管这两种类型的传感器常被用在真空冷冻干燥过程中,但并没有得到最有效的应用。[size=18px][color=#cc0000]2.1. 导热型压力计[/color][/size]  导热型压力计有两种基本类型:热电偶计和皮拉尼计。  热电偶计由点焊到加热丝的热电偶组成。由恒定电流馈入的金属丝达到温度,该温度由金属丝通过热辐射和通过工艺气体的传导和对流结合而损失的能量的速率决定。通过使用低热辐射率的细丝(例如铂),可以将热辐射造成的能量损失保持在很小的水平。系统中的压力越高,灯丝的能量损失速度越快。热电偶计的输出信号存在严重的非线性,因此可用的压力测量范围很小,仅约2个数量级。通常在较便宜的实验室规模的冷冻干燥机上可以找到这种热电偶型压力表。  在皮拉尼计(Pirani)中,两个细丝被用作惠斯通电桥的两个“臂”。其中一根丝是参考丝,保持恒定压力和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]组成。另一根丝是测量丝。在皮拉尼计(Pirani)中,将测量丝温度控制在一个恒定值,并监控所需的电流。皮拉尼计的有效测量范围是热电偶计的100倍,因此是用于冷冻干燥的首选导热型压力和真空测量仪器。  任何热导型仪表的一个重要特征是对所监控[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]组成(气体成分)的函数响应,这在冷冻干燥中很重要,因为腔室中的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]组成会发生巨大变化,从初次干燥阶段中的基本100%的水蒸气变为在二次干燥后期的基本100%的氮气(或将任何气体导入腔室以控制压力)。水蒸气的自由分子热导率要比氮的自由分子热导率高约60%,此特性可作为一种优势用作过程监控工具,如下所述。  重要的是要记住,导热型压力计使用的是热丝。当冷冻干燥包含有机溶剂(例如叔丁醇)的制剂时,这会引起严重的安全隐患。产生爆炸必须满足两个条件:(1)必须有足够高浓度的有机溶剂来点燃,以及(2)必须有足够的氧气来支持燃烧。初次干燥期间均未满足任何条件,看来最大的安全风险阶段是在初始真空下降期间,其中可能存在相对较高浓度的有机溶剂和足够的氧气来支持燃烧。由于存在这种风险,因此在冷冻干燥包含有机溶剂的产品时,最好关闭热导型压力计。或者,可以在开始冷冻之前用氮气冲洗产品腔室。  重要的是要意识到,不同的皮拉尼压力计(真空计)在反复进行蒸汽灭菌时的耐用性各不相同,而且目前我们尚不知道造成这些故障的机理。可能的故障模式可能是过压(大多数Pirani压力计的压力上限约为1000Torr)或暴露于过高的温度下。但是,承受反复蒸汽灭菌的能力可能与细丝的成分有关。使用了几种细丝成分,包括钨/铼、铂/铱、铂/铑、铂和镀金钨,其中曾有机构测试了一种针对腐蚀性环境设计的量规,该压力计使用铂/铱丝,经证实可承受80~100次蒸汽灭菌循环。尽管该压力计的蒸汽消毒频率较低,但仍未发生故障。相比之下,还测试了另一个使用镀金钨丝的量规,经过两个或三个灭菌周期后,该压力计出现故障。假设皮拉尼量规在某个时候会失效并需要更换可能是明智的选择,但是在选择量规时要特别小心。[size=18px][color=#cc0000]2.2. 电容压力计[/color][/size]  所有基于电容的真空仪表都以二选一的方式工作:通过保持系统的几何形状恒定但允许介电常数变化,或者通过具有恒定介电常数的可变几何形状。后者原理是电容压力计压力计的基础。传感器有两个侧面,一个是在大约1E-04 mTorr的非常低压力下抽真空并密封的参考面,另一个是暴露在工艺过程中的测量面。侧面由金属膜片(通常为Inconel)和优质不锈钢隔离,随着过程压力的变化,隔膜膜片会变形,从而改变仪器的几何形状,从而改变仪器的电容。电容式压力计由于其宽泛的使用范围(大约跨越四个数量级)、准确性、稳定性和线性度而成为真空冷冻干燥的首选仪器。另一个引人注目的功能是,电容压力计可测量绝对压力(单位面积的力),且与所测的气体成分无关。最佳规程是使用加热型电容压力计,以避免仪表内部可能发生水蒸气凝结(可能由于蒸汽灭菌)的可能性,并避免由于环境温度变化而导致零漂移的可能性。[color=#cc0000][size=24px]3. 真空冷冻干燥的最佳压力监控方案[/size][size=18px]3.1. 压力监控中压力计的配置[/size][/color]  根据我们的研究和实践经验,我们认为监控冷冻干燥过程中腔室和冷凝器内压力的最佳方式是在腔室和冷凝器上均装有电容压力计和皮拉尼压力计,这种配置可以实现所谓的比较压力测量。在此过程分析方法中,使用电容压力计测量和控制腔室压力,同时使用皮拉尼压力表监测压力。这项技术利用了皮拉尼真空计的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]成分依赖性,该仪器的输出变化反映了当过程从一次干燥过渡到二次干燥时[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]成分的变化。此类过程数据的示例如图31所示。  皮拉尼压力计测得的初级干燥过程中较高的表观压力反映了水蒸气较高的热导率,水蒸气几乎构成了初级干燥过程中室内所有的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]。随着冰的升华完成,腔室表观压力下降。从初始干燥过程中的伪稳态到电容压力计平衡的过渡区域的宽度是初始干燥速率中产品与产品之间一致性的量度——产品与产品之间升华速率越均匀,过渡过程中的表观压力下降越剧烈。例如,“边缘效应”,即在一排样品瓶边缘的样品瓶比在一排样品瓶中心的样品瓶干燥得更快,会导致在第一次干燥结束时表观压力逐渐降低。在提高隔板温度进行二次干燥之前,等待皮拉尼读数接近电容压力计读数被认为是一种良好的做法。一般来说,只要一次干燥过程中的稳态压力超过约40mTorr,5~10mTorr的压力读数差异似乎就能很好地工作。一些冷冻干燥机制造商提供了非常有用的选择,根据电容压力计和皮拉尼压力计之间的表观压力差异,对从一次干燥到二次干燥的循环进行排序。  比较压力测量的主要优点在于,它不依赖于对单个产品瓶的监视,而是依赖于腔室内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的组成。事实证明,该技术灵敏、可靠且稳定。需要注意的一点是,如果有任何小瓶从隔板上掉到干燥机的底部,从而以不具有代表性的速度干燥,则这些小瓶可能会“欺骗”皮拉尼液位计并使之产生异常响应。  如图3-1所示,比较压力测量对于监视二次干燥的进度也很有用。通常,在二次干燥初期,由于制剂中未冻结的水在较高的产品温度下释放,产品中的水蒸气会“爆裂”。当皮拉尼读数返回到电容压力计读数时,在该架子温度下几乎没有发生额外的干燥。[align=center][img=,690,466]https://ng1.17img.cn/bbsfiles/images/2021/01/202101142200146443_7124_3384_3.png!w690x466.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-1 作为过程监视方法的比较压力测量:皮拉尼压力表(洋红色),电容压力计(红色)。隔板温度用黑线表示,其他线是通过热电偶测量的单个产品温度[/color][/align]  最佳操作过程是基于电容压力计来控制腔室压力,这仅仅是因为它独立于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]成分而测量绝对压力(绝对真空度)。电容式压力计比皮拉尼压力计更准确、更线性、更稳定。一些操作基于皮拉尼压力计进行压力控制,并通过电容式压力计测得的压力升高来检测一次和二次干燥的终点。从过程一致性的角度来看,这不是一个好主意,并且可能在将过程条件从一个制造地点转移到另一个制造地点时引起问题,尤其是如果没有人关注压力测量和控制的细节时。当在接近初次干燥即将结束的关键产品温度附近进行该过程时,还有可能会超过关键产品温度。随着水蒸气的相对分压降低,氮气流量增加以维持设定点。这导致绝对压力增加、传热增加、产品温度升高以及产品风险增加。  为什么要在腔室和冷凝器上都安装电容压力计?这主要是因为腔室压力与冷凝器压力之比可以作为设备性能的衡量标准。任何冷冻干燥机都有一个在任何给定压力下都能支持的最大升华速率,并且整个行业普遍缺乏对设备能力的定量了解。有几个因素会限制设备的能力——制冷能力、冷凝器表面积和可达到的货架温度上限。另一个限制因素与“阻塞流”有关,这是冷冻干燥放大的不确定度来源。简而言之,阻塞流动是由这样一个事实引起的,即水蒸气从腔室到冷凝器的速度有一个热力学上的速度限制,即声速。随着升华速率的增加,蒸汽速度接近声速(在室温下,水蒸气的速度约为350m/s),蒸汽流速变得与连接腔室和冷凝器的导管的冷凝器侧的压力无关。阻流点可以通过冰板来测量,其中托盘环衬有塑料,部分用水填充。然后水被冻结,系统被抽空,压力被控制在冷冻干燥机的压力范围的低端。一旦系统达到平衡,搁板温度就会升高,直到设定点压力不再保持,此时水蒸气的质量流速是系统的瓶颈。然后建立新的压力设定点,再次系统地提高搁板温度,并在更高的压力下达到新的节流点。只要冷凝器温度不会随着水蒸气流速的增加而显著增加,那么节流点和室压之间的关系就是线性的,这一事实简化了这项任务。另一种方法被称为最小可控压力法,其中压力设定点处于不可接受的低值,例如10mTorr,货架温度以逐步的方式增加,在每个搁板温度下,压力将达到对应于阻塞流量的稳态水平。  在扼流点测量质量流率的最简单方法是使用可调二极管激光吸收光谱仪或TDLAS。在没有TDLAS的情况下,可以在剩余大部分初始冰负荷的位置停止过程后,通过重量分析法测量与阻塞流量相对应的质量流量。这需要更多的工作,因为需要在每个压力设置下进行单独的实验才能确定平均质量流率。热通量测量是另一种测量升华率的方法,应提供与TDLAS相当的数据。这些都不在本文介绍范围之内。  至少原则上确定阻塞点的一种替代方式是腔室与冷凝器之间的压力比,特别是当圆柱形管道将腔室与冷凝器连接时。对于圆柱形风管,对应于扼流开始的压力比为3:1。扼流的流量不适用于带有内部冷凝器设计的冷冻干燥机,一些较新的冷冻干燥机具有不同的腔室/冷凝器配置,其中冷凝器位于腔室下方,由矩形板分隔,该矩形板可通过液压方式上下移动(图3-2)。能够通过测量该配置的腔室与冷凝器的压力比来确定节流点,这将非常有用。一个相关研究问题是对该设计是否可以计算临界压力比。  由此可以指出,差分电容压力计是可用的。这些仪器用于测量不同位置之间的压力差。在污染控制技术的背景下,它们通常用于监视相邻区域的压差。但是,我们不知道为什么不能使用差动电容式压力计来监测腔室和冷凝器之间的压力差。[align=center][img=,690,503]https://ng1.17img.cn/bbsfiles/images/2021/01/202101142200407014_173_3384_3.jpg!w690x503.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 在该冷冻干燥机中,冷凝器位于腔室下方,由液压驱动板隔开[/color][/align]  最后,为什么在冷凝器上安装皮拉尼压力计是一个好主意?首先,偶尔会在系统某处出现泄漏,从而阻止建立任何真空。例如,在许多实验室规模的冷冻干燥机中,箱门或冷凝器门上的垫圈可能无法正确放置。腔室和冷凝器上均装有皮拉尼真空计,有助于快速定位泄漏源。尽管皮拉尼压力计在低于大气压的压力下可能不太准确,但这对于这种类型的故障排除并不重要。一旦建立真空,皮拉尼真空计应开始读数。  对于较小量程的电容压力计在这里没有用,因为直到压力达到该压力表范围的上限(通常为1或10Torr),它们才会给出读数。第二,在腔室和冷凝器上同时装有皮拉尼真空计和电容压力计,可以借助计算流体动力学将连接导管用作质量流量计。目前,这是一项比较活跃的研究项目,可以证明对设备能力曲线的测量非常有用,特别是对于没有配备可调谐二极管激光吸收光谱法的大型冷冻干燥机。[size=18px][color=#cc0000]3.2. 压力和真空度的控制模式[/color][/size]  压力控制是真空冷冻干燥过程中的一个重要工艺过程,其控制精度严重影响产品的质量,压力控制是否精准平稳,是考察冷冻干燥硬件设备能力的重要指标之一。同时,因为一次干燥时的压力或真空度,直接影响产品升华界面温度。因此精准平稳的控制压力和真空度,对于一次干燥过程至关重要。而这方面的探索和相关报道则非常少见,目前很多这方面的认知还都基于和参照温度控制方式。  真空冷冻干燥过程中的压力控制,一般可以通过两个途径来实现,上游控制模式和下游控制模式,本文将会详细讲解两种控制模式的原理以及优缺点,同时还介绍了融合这两种模式优点的双向控制模式。[size=16px][color=#cc0000]3.2.1. 上游控制模式[/color][/size]  在上游控制模式中,通过电动控制阀来控制流入腔室的气体。上游控制模式是维持真空系统本身上游的压力,在真空泵抽速一定的情况下,增加进气流量以降低压力,减少进气流量以增加压力。其主要特点如下:  (1)可提高真空系统中工艺的稳定性和速度;  (2)使用快速作用控制阀,将控制仪器放置在真空系统的上游可提供更快的响应时间和更好的稳定性。上游模式还消除了对附加阀的需求,减少了系统中潜在泄漏点的数量,减少了下游设备的需求并降低了安装成本。  (3)可方便的进行可以压力变化斜率的控制,进气可持续将升华气体带入到冷阱,对于散装样品的工艺有很大帮助。  (4)上游控制模式的缺点是比较费气,特别是进气为一些较昂贵的高纯度惰性气体时尤为如此。[color=#cc0000]3.2.2. 下游控制模式[/color]  下游控制模式是一种对抽气进行控制的模式,即通过真空泵和冷井之间的控制阀,控制调节这个阀门的开度来实现对真空泵的抽速进行控制从而实现压力的控制。其主要特点如下:  (1)下游模式作为目前常用的控制模式,通常在各种条件下都能很好地工作,最大特点是不会进入额外气体,并且比较节省进气量;  (2)但在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化或腔体内部气压的突然改变。此外,某些流量和压力的组合会迫使阀门在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。  (3)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。  (4)如果阀门是简单的开关式阀门,则这种模式下的压力不如上游模式下的压力那样准确和稳定,而且很难实现压力变化斜率控制。[color=#cc0000]3.2.3. 双向控制模式[/color]  通过上述两种控制模式的特点可以看出,两种模式各有优缺点。目前在真空冷冻干燥过程的压力控制中常用的方法是以上游控制模式为主控方法,即恒定真空泵抽速而控制进气量。也有采用下游控制模式的形式,即同时在真空系统的上游设置几个控制档位来控制进气流量,由此来最大限度发挥两种模式的优点,但这种控制方式还无法实现全自动化。  随着自动化控制技术的发展,目前已经开发出双向自动控制技术。这种双向控制模式可以最大限度发挥控制优势,节省时间和成本,并提高了真空工艺的效率和质量。[size=18px][color=#cc0000]3.3. 压力和真空度的准确控制[/color][/size]  在真空冷冻干燥过程中,在指定的压力和真空度区间内进行精确测量和控制至关重要。例如,如果过程设定值介于5.0~6.0mTorr之间,并且所需的压力读数精度为0.5mTorr,则所需的测量精度为读数的10%,或者,对于100mTorr的电容压力计,为满量程的0.5%。如果选定的压力计或真空计不能达到这一精度水平,则无法将真空过程控制在所需的过程区间内。  用作闭环压力和真空度控制的压力计或真空计输入信号必须具有足够的分辨率,以辨别过程中非常小的压力变化。同时,回路中的压力和真空度控制器和控制阀也必须具有必要的分辨率,以便有效地利用这些数据来控制压力的微小变化。很多用户往往只重视了压力或真空计的选择和相应的技术指标,而忽视了控制器以及控制阀的分辨率指标,这基本是造成控制精度达不到要求或波动度较大的主要原因。  对于目前常用的压力计和真空计,其信号输出一般为模拟量,大多为连续的直流电压信号。为了将这些模拟信号直接以数字信号输出,或在控制过程中用控制器和数据记录仪采集这些模拟信号,都需要根据要求对这些模拟信号有足够高的采集精度,也就是说目标压力信号的模拟/数字(A/D)转换必须具有足够的分辨率,以将信号与压力计的正常背景噪声区分开来。例如,压力计信号的12位模数转换将区分压力计满量程模拟输出0.02%的最小信号。对于1Torr全刻度压力计,这意味着不能检测到小于0.2mTorr的压力或压力变化。  另外,在真空冷冻干燥过程中,压力控制器的PID参数选择非常有讲究,这主要体现在腔室内空载和满载产品时PID参数的严重不同。因此,大多数情况下要根据加载产品情况来选择不同的PID参数,而且要选择具有PID参数自整定功能的压力控制,从而可以方便的根据不同加载情况探索出合理的PID控制参数。[size=18px][color=#cc0000]3.4. 升压测试[/color][/size]  升压测试(PRT)是一种已经使用了数十年的工艺流程,涉及在干燥过程中通过关闭干燥室和冷凝器之间的阀门,将干燥室与冷凝器快速隔离。在初次干燥过程中执行PRT时,会导致特征性的压力上升模式。最初,当阀门关闭时,压力迅速升高,然后缓慢而几乎呈线性地升高。在二次干燥过程中,关闭隔离阀后,腔室压力大致呈线性增加。有研究结果表明,初次干燥过程中压力上升曲线中的这个拐点可被视为升华表面上饱和压力的指标,并建议使用该压力拐点从蒸气压与纯冰的温度估算批料平均产品温度。用这种方法还假设可以测量残留水含量,并且改进后的PRT法可以以测量升华率。许多现代的商用冻干机都配备了PRT选件。虽然PRT为过程监控提供了重要的机会,但它主要用于初级和次级干燥步骤的终点确定。  升压测试的改进,即压力和温度测量(MTM),可以通过将压力升高数据拟合到一组方程式来计算初级干燥过程中的产品温度,这些方程式考虑了导致压力升高的四种机理:  (1)在恒定温度下将冰直接升华通过干燥的产品层;  (2)由于平衡了整个冷冻层的温度梯度,升华界面的温度升高;  (3)冰温升高由于在测量过程中对冷冻基质的持续加热;  (4)腔室中的泄漏,在实践中通常可以忽略不计。  通过分析可得出产品温度、滤饼的传质阻力和产品传热系数的合理估计。测压温度测量的局限性在于,它需要在腔室和冷凝器之间安装一个阀门,该阀门与压力上升测量的时间过程相比,循环时间非常快,通常不超过30s。大多数生产规模的冷冻干燥机的隔离阀循环太慢,无法进行有意义的MTM测量。但是,对MTM的研究表明,在PRT/MTM过程中,腔室压力的增加是负载、腔室尺寸、产品温度和主要干燥步骤进行的函数。例如,随着批次大小的增加,腔室尺寸的减小以及初级干燥过程中产品温度的升高,压力的增加将更大且更快。因此,建议考虑所有这些因素,以便在初级和次级干燥步骤中建立有意义的PRT参数。[size=18px][color=#cc0000]3.5. 压力计的校准[/color][/size]  为了校准电容压力计,必须使用相应的量值传递标准,这是另一种电容压力计。绝不能使用热或机械压力计来校准电容压力计,因为电容压力计要更精确。冷冻干燥中使用的电容压力计通常具有约0.25%的读数准确度指标,而在相同量程范围内,皮拉尼计或热电偶表的准确度指标仅为5~25%。用作传递标准的电容压力计通常具有读数的0.05%的精度。共有三种基本的校准方法:原位(in situ)、现场(onsite)和异地(off-site)。在原位校准时,不能从冷冻干燥机中取出被测单元,取而代之的是,将所使用的传递标准尽可能靠近被测单元(UUT)的端口连接到真空室,或者使用T形连接,其中传递标准可以靠近UUT进行连接。但是,校准的最佳方法是将真空系统抽取至电容压力计的分辨率以下,以将电容压力计设置为零。不幸的是,冷冻干燥机无法抽空到低于仪器分辨率的压力水平。通过现场校准,将UUT从冷冻干燥机中取出,并连接到由高真空泵送系统,传递标准和压力控制系统组成的校准系统。在进行异地校准时,可将传感器从冷冻干燥机中取出并发送到校准设备。以下准则适用于电容测力计校准:  (1)通电后,被测单元和传递标准必须至少运行4h,并且必须处于正常工作温度下。  (2)必须通过将系统泵至UUT的分辨率以下来将仪器归零。建议的调零压力比满量程低四个量级。  (3)六个数据点通常被认为足以确保仪器在校准范围内。推荐的校准点为满量程读数的10%、20%、40%、60%、80%和100%。。  关于校准的频率,最佳的作法是收集历史数据。使用条件对于建立适当的校准间隔很重要。与在低压下隔离相反,冷冻干燥机上的大多数电容压力计通常会暴露于大气压下,这将要求更频繁的校准。同样,重复的蒸汽灭菌将倾向于要求更频繁的校准。根据有些机构的经验,蒸汽灭菌设备的电容压力计应每3个月进行一次校准。与大气压隔离的电容压力计在两次校准之间的间隔时间可能更长。  皮拉尼真空计通常使用氮气进行校准,这解释了为什么初级干燥期间的表观压力远高于电容压力计指示的压力。校准方法通常与上面讨论的相同,其中传递标准通常是电容压力计。假设电容压力计用于压力控制,则皮拉尼压力表的校准就不用电容压力计校准没有那么严格。原因是,通过皮拉尼压力计,我们关注表观压力的变化比对精确的绝对压力测量和控制更感兴趣。[size=24px][color=#cc0000]4. 总结[/color][/size]  (1)电容式压力计是真空冷冻干燥机中压力测量和控制的首选仪器,但强烈建议使用温度控制型的压力计。  (2)强烈建议要选择合适的压力控制模式和压力控制器,以确保在合理的采集和控制精度前提下适合方便的摸索出各种工况下的PID控制参数。  (3)最佳实践是在腔室和冷凝器上同时安装一个电容压力计和一个皮拉尼压力计。  (4)强烈建议使用比较压力测量作为过程监控工具,以确定一次和二次干燥的终点。  (5)特别提醒,反复暴露于大气压和反复进行蒸汽灭菌均会缩短电容压力计校准之间的间隔。历史记录对于建立两次校准之间更合适的时间间隔非常有用。原位校准不被视为最佳实践。[align=center]=======================================================================[/align]

  • “百度文心”一言在超高真空度精密控制解决方案中的应用

    “百度文心”一言在超高真空度精密控制解决方案中的应用

    [size=16px][color=#cc0000]摘要:本文采用国产版本ChatGPT百度“文心一言”作为一种辅助工具,针对超高真空度精密控制装置的开发进行了初期的技术路线设计,对话调研的重点是了解可调节式微流量进气阀门和可用于连接非线性输出信号型真空计的PID控制器。总体而言,目前的人工智能技术所能提供的帮助十分有限,还无法替代研究人员的基本专业能力以及互联网技术的应用能力,但比较适合用来进行某个未知领域的入门级学习。[/color][/size][align=center][size=16px][color=#cc0000][b]===========================[/b][/color][/size][/align][align=left][b][size=18px][color=#c00000]1. [/color][color=#c00000]项目的提出[/color][/size][/b][/align][size=16px] ChatGPT做为全新一代知识增强大语言模型,使用特定的学习算法,可以用于对话方式的头脑风暴。正如最近的文献和各种报道所证明的那样,这种大语言模型的人工智能技术可能会给众多领域带来一场革命。然而,考虑到目前围绕这种人工智能技术的大肆宣传,也可能意味着对其当前能力存在着错误认识,虽然ChatGPT的应用范围似乎非常广泛,但在工业和科学界也存在一些问题。[/size][size=16px] 最近的很多报道都提出了一个严重的问题:虽然生成性聊天机器人是未来的变革工具,但大多数职业都需要快速解答来解决不确定性所带来的问题。聊天机器人有时会给出看似合理但完全错误的信息,这也是一个严重的问题。然而,无需置疑的是该工具可以加速研究,改善工作流程,降低语言障碍和展示新的想法。[/size][size=16px] 为了解ChatGPT能否有效地帮助仪器设备的研发,我们参考了有些文献中介绍的方法和途径,采用ChatGPT国产版百度“文心一言”研究ChatGPT在研发中的适用性,其中我们的重点是一个工业技术研究的主题:超高真空度的精密控制。问题是:ChatGPT能成为仪器设备开发人员的工具或有用的伙伴吗?本文介绍了实验方法、使用聊天机器人进行的查询以及对结果的讨论。我们工作的主要特点是展示了基于大语言模型的人工智能在未涉及的自动化控制领域中的适用性,并且我们的发现可能有助于从专业工业领域到教育和学术研究应用人工智能的讨论。[/size][align=left][b][size=18px][color=#c00000]2. [/color][color=#c00000]实验信息[/color][/size][/b][/align][size=16px] 我们想调查ChatGPT是否可以帮助我们开发各种仪器设备,我们的案例研究是超高真空度精密控制,这是因为超高真空度控制技术是最近在半导体行业(如镀膜、沉积、封装检漏、光刻机等)和仪器设备(如质谱仪、电子显微镜、加速器等)逐渐得到了重视。因此,聊天机器人可以在此超高真空度控制技术主题上开展工作,这从实际的软硬件开发角度来看也是十分有趣。此外,该主题的复杂性足以测试这种大语言模型人工智能对问题的各个层面给出答案的能力。本研究涉及以下几个技术层面:[/size][size=16px] (1)统一对超高真空度的定义和理解。[/size][size=16px] (2)对超高真空度控制装置进行分解,如分解为传感器、控制器和执行器三部分内容。[/size][size=16px] (3)超高真空度控制方法。[/size][size=16px] (4)传感器、控制器和执行器的选型、性能指标和功能要求。[/size][size=16px] (5)通过参考文献和专利扩大视野。[/size][size=16px] 采用国产版ChatGPT百度“文心一言”的具体工作流程如下:[/size][size=16px] (1)文心一言是通过第一个查询来引入问题:真空度一般如何定义,分为那几个范围。这个问题是一个一般性问题,以了解机器人对超高真空范围的理解,并为后续工作界定范围。[/size][size=16px] (2)之后,更具体的问题被问及:超高真空度控制装置一般由几部分组成,各自的功能是什么。这是为了让机器人进行项目分解,以便后续针对每个部分继续进行查询工作。[/size][size=16px] (3)然后,机器人被问及:超高真空度控制方法有那些。这是此项目的关键内容,这决定了开发工作的技术方向和具体技术路线,希望通过机器人的帮助能更全面的了解超高真空度控制方法,尽可能避免技术层面的缺失。[/size][size=16px] (4)机器人还被问及超高真空度控制装置中各个部分的厂家、型号和技术指标。[/size][size=16px] (5)最后,机器人被提示提供一个文献综述、相关专利和其他参考,包括DOI(数字对象标识符)号码。由于机器人的性质,这一步是在我们的查询结束时完成的。一旦户建立了主题,机器人就可以更深入地讨论这个主题。[/size][size=16px] 上述工作流程如图1所示。[/size][align=center][size=16px][color=#cc0000][b][img=在超高真空度控制设备开发中使用文心一言的工作流程,660,130]https://ng1.17img.cn/bbsfiles/images/2023/09/202309071141046519_4168_3221506_3.jpg!w690x136.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#cc0000][b]图1 在超高真空度控制设备开发中使用文心一言的工作流程[/b][/color][/size][/align][align=left][b][size=18px][color=#c00000]3. [/color][color=#c00000]结果[/color][/size][/b][/align][align=left][size=16px][b][color=#c00000]3.1. [/color][color=#c00000]超高真空度[/color][color=#c00000]的定义和范围[/color][/b][/size][/align][size=16px] 提问:真空度一般如何定义,分为那几个范围?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]真空度是指处于真空状态下的气体稀薄程度,通常用“真空度高”和“真空度低”来表示。具体来说,真空度等于大气压强减去绝对压强,即真空度=大气压强-绝对压强。绝对压强等于大气压强加上表压强,即绝对压强=大气压强+表压强(-真空度)。[size=16px] 在真空技术中,通常采用不同的范围来分类真空度。例如,低真空度范围是指压强在101325帕斯卡以下,中真空度范围是指压强在10-1~10-6帕斯卡之间,高真空度范围是指压强在10-7~10-9帕斯卡之间。[/size][size=16px] 需要注意的是,真空度的定义和范围可能因不同的应用领域而有所不同。[/size][size=16px] 评述:从上回答可见,机器人按照低、中、高三级对真空度进行划分,将超高真空度划分为高真空度范围内。[/size][align=left][size=16px][b][color=#c00000]3.2. [/color][color=#c00000]超高真空度控制装置的主要构成以及相应部分的功能[/color][/b][/size][/align][size=16px] 提问:何为高真空度控制,高真空度控制装置一般由几部分组成,各自的功能是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]高真空度控制是指在更高真空度下的压力测量和过程控制,高真空控制装置一般由以下几部分组成:[size=16px] 真空压力变送器:用于测量真空度,将真空压力信号转换为电信号。[/size][size=16px] 智能化控制仪:用于接收真空压力变送器的电信号,进行数据处理和控制输出。[/size][size=16px] 气动阀门:用于控制真空系统的进出口阀门,实现真空系统的开启和关闭。[/size][size=16px] 连接管道:用于连接真空系统各部分,保证真空度的稳定。[/size][size=16px] 其中,真空压力变送器是高真空度控制装置中的核心部件,其功能是将真空压力信号转换为电信号,并通过智能化控制仪进行处理和控制输出。智能化控制仪则是高真空度控制装置中的智能化核心,它可以对接收到的电信号进行处理、运算和控制,实现高精度的压力测量和过程控制。气动阀门是实现真空系统开启和关闭的关键部件,连接管道则是保证真空系统稳定运行的重要组成部分。[/size][size=16px] 需要注意的是,高真空度控制装置的具体组成和功能可能因不同的应用领域而有所不同。[/size][size=16px] 评述:机器人的回答完全准确和比较详细,这也为后续工作进行了内容分解。[/size][align=left][size=16px][b][color=#c00000]3.3. [/color][color=#c00000]超高真空度的控制方法[/color][/b][/size][/align][size=16px] 提问:高真空度控制方法有那些?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]高真空度控制的方法主要包括以下几种:[size=16px] 使用真空泵进行抽真空控制。这是最基本的控制方法之一,通过真空泵将真空腔室内的气体抽出,达到所需的真空度。[/size][size=16px] 使用压力控制器进行真空度控制。压力控制器可以监测真空腔室内的压力,根据设定的压力值进行控制,保持真空度稳定。[/size][size=16px] 使用双通道PID控制器进行真空度控制。这种控制方法具有更高的精度和稳定性,可以同时控制真空腔室内的压力和流量,以达到所需的真空度。[/size][size=16px] 使用电动针阀进行进气流量控制。通过调节电动针阀的开度,可以控制进入真空腔室的流量,从而控制真空度。[/size][size=16px] 使用材料选择控制。选择适合的材料可以减少气体的吸附和释放,从而提高真空系统的真空度。例如,使用不易吸附气体的材料,如不锈钢、铝等。[/size][size=16px] 需要注意的是,不同的控制方法具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:机器人给出了一个真空度控制的大致轮廓,但还不够具体,还需根据上述回答进一步追问。[/size][size=16px] 提问:超高真空度控制方式有那些呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]超高真空度控制通常是指在真空度达到10-7~10-9帕斯卡之间的控制。以下是几种常见的超高真空度控制方式:[size=16px] 使用分子泵进行抽真空控制。分子泵是一种能够将气体分子抽到真空腔室外的设备,其抽气速度和抽气效率比机械泵和分子泵更高,可以达到超高真空度。[/size][size=16px] 使用低温泵进行抽真空控制。低温泵利用低温表面将气体分子凝结,从而实现抽真空。其抽气速度和抽气效率也较高,可以达到超高真空度。[/size][size=16px] 使用离子泵进行抽真空控制。离子泵通过离子束将气体分子电离,并将电离后的离子抽到真空腔室外部,其抽气速度和抽气效率也很高,可以达到超高真空度。[/size][size=16px] 使用电子束蒸发进行真空度控制。电子束蒸发是一种通过电子束将材料加热到熔融状态,并迅速蒸发的方法。通过控制蒸发速率和蒸发面积,可以控制进入真空系统的气体流量,从而实现真空度控制。[/size][size=16px] 需要注意的是,不同的超高真空度控制方式具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:这一次机器人给出的超高真空度形成所用的真空泵类型,但对控制方式还是没有明确回答,继续追问。[/size][size=16px] 提问:在超高真空度控制中,压力控制器的具体功能是什么呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,压力控制器具体的功能是监测真空腔室内的压力,并根据预设的压力范围进行比较和分析,然后输出相应的控制信号,以控制真空泵、阀门等设备的动作,从而实现对真空腔室内压力的自动控制。压力控制器可以与压力变送器、电气转换器、电气阀门等设备一起使用,实现高精度的压力控制,以保证真空系统的稳定性和精度。[size=16px] 评述:都是一般常识性的内容,回答正确。[/size][size=16px] 提问:在超高真空度控制中,双通道PID控制器又是具体什么功能呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,双通道PID控制器是一种具有两个独立PID控制回路的控制器,可以同时对两个不同的控制变量进行PID控制。双通道PID控制器具体的功能如下:[size=16px] 采集两个不同的压力信号,例如绝对压力和表压,并将其转换为电信号。[/size][size=16px] 根据预设的压力偏差范围,对两个压力信号进行比较和分析,选择合适的控制信号输出。[/size][size=16px] 根据选择的控制信号,双通道PID控制器会输出相应的电压或电流信号,以控制真空泵、阀门等设备的动作,从而实现对真空腔室内压力的自动控制。[/size][size=16px] 双通道PID控制器还可以通过串口通讯或模拟量输出等方式,与上位机或PLC等设备进行数据传输和监控。[/size][size=16px] 双通道PID控制器具有高精度、高稳定性、可扩展性等优点,可以广泛应用于各种真空控制系统中,例如真空冷冻干燥机、真空镀膜机等。[/size][size=16px] 评述:也是一般常识性的内容,回答正确。[/size][size=16px] 提问:在超高真空度控制中,进气流量都有那些控制方法。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,进气流量控制的方法有很多种,以下列举几种常用的控制方法:[size=16px] 气体质量流量计控制:通过安装质量流量计来测量进入真空腔室的气体流量,然后根据测量值来控制气体流量。该方法精度高,但价格较高。[/size][size=16px] 薄膜电容规控制:通过测量薄膜电容规的电容变化来测量进入真空腔室的气体流量,然后根据测量值来控制气体流量。该方法精度较高,但需要较高的真空密封性。[/size][size=16px] 皮拉尼电阻规和电热偶规控制:通过测量进入真空腔室的气体流量,然后根据测量值来控制气体流量。该方法精度较高,但需要较高的真空密封性和稳定性。[/size][size=16px] 电动针阀控制:通过调节电动针阀的开度来控制进入真空腔室的气体流量。该方法精度较高,但需要较高的控制精度和稳定性。[/size][size=16px] 高速电动针阀控制:与电动针阀控制类似,但采用高速电动针阀,具有更高的控制精度和响应速度。该方法需要较高的控制精度和稳定性。[/size][size=16px] 需要注意的是,不同的进气流量控制方法具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:一般性常识,回答正确,但对于超高真空度控制,回答中所提及的方法并不适用,更改关键词继续提问。[/size][size=16px] 提问:超高真空度控制中,漏率控制有那些方法呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,漏率的控制非常重要,因为即使是微小的漏点也可能对真空系统的性能和稳定性产生显著的影响。以下是一些常用的漏率控制方法:[size=16px] 检漏仪直接连接到高真空侧进行检漏。在这种方法中,检漏仪连接到真空系统的被检容器上,通常是高真空侧,然后对整个系统进行检漏。这种方法适用于容器较大、焊缝和法兰连接较长的系统,因为较长的焊缝和法兰连接可能导致较大的漏率。[/size][size=16px] 检漏仪连接到前级真空侧进行检漏。在这种方法中,检漏仪连接到真空系统的高真空侧的前一级真空侧,然后对整个系统进行检漏。这种方法适用于容器较小、焊缝和法兰连接较短的系统,因为较短的焊缝和法兰连接可能导致较小的漏率。[/size][size=16px] 除了以上两种方法外,还可以采用其他漏率控制方法,例如氦质谱检漏、吸枪检漏、涂抹法检漏等。具体选择应根据应用场景和要求进行综合考虑。[/size][size=16px] 评述:回答侧重到了真空腔体的漏率以及相应的检漏方法。并未回答提问。[/size][size=16px] 提问:在超高真空度控制中,微小进气量的调节有那些方法。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]在超高真空度控制中,微小进气量的调节非常重要,因为微小的进气量可能会对真空系统的性能和稳定性产生显著的影响。以下是一些常用的微小进气量调节方法:[size=16px] 使用质量流量控制器(MFC)进行微小进气量的调节。MFC可以通过测量进入真空腔室的气体流量来控制气体流量,具有高精度和稳定性。[/size][size=16px] 使用针阀进行微小进气量的调节。通过调节针阀的开度,可以控制进入真空腔室的气体流量,具有较高的调节精度和稳定性。[/size][size=16px] 使用步进电机进行微小进气量的调节。通过控制步进电机的运动,可以精确控制进入真空腔室的气体流量,具有高精度和稳定性。[/size][size=16px] 使用热式质量流量控制器(TMF)进行微小进气量的调节。TMF可以通过测量气体流速和温度来控制气体流量,具有高精度和稳定性,适用于微小流量的调节。[/size][size=16px] 需要注意的是,不同的微小进气量调节方法具有不同的优缺点,具体选择应根据应用场景和要求进行综合考虑。同时,在进行微小进气量的调节时,还需要注意气体流量的稳定性和控制精度。[/size][size=16px] 评述:还是在重复前面的回答,更换关键词继续提问。[/size][size=16px] 提问:什么是可变泄漏阀,可变泄漏阀在超高真空度控制中的作用是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]可变泄漏阀是一种用于控制真空系统中气体流量的阀门,其作用是在不同的真空度下,通过调节阀门的泄漏率来控制进入真空腔室的气体流量,以保持真空度的稳定。[size=16px] 在超高真空度控制中,可变泄漏阀的作用非常重要。由于真空系统的漏率通常很小,即使存在微小的漏点,也可能对真空度产生显著的影响。因此,通过使用可变泄漏阀,可以根据真空度的变化,自动调节阀门的泄漏率,以保持真空度的稳定。[/size][size=16px] 例如,当真空系统中的气体压力升高时,可变泄漏阀会自动增加其泄漏率,以保持真空度的稳定;反之,当气体压力降低时,可变泄漏阀会自动减小其泄漏率,以保持真空度的稳定。[/size][size=16px] 总之,可变泄漏阀在超高真空度控制中起着维持真空度稳定的作用,是保证真空系统性能和稳定性的重要组成部分。[/size][size=16px] 评述:回答侧重到了起到安全作用的泄漏阀,并不是调节微小进气流量的可变泄漏阀。继续提问。[/size][size=16px] 在经过多次不同问题的提问后,以下提问获得了比较有价值的回答。[/size][size=16px] 提问:可变泄漏阀的功能是什么?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]可变泄漏阀的功能主要是通过改变进气压力来实现微小进气流量调节,以维持真空系统的稳定性。在超高真空度控制中,超低漏率和超低流量调节阀是关键部件,国内外所采用的技术基本都是在超低漏率的前提下,通过调节阀门开度来进行流量调节。然而,对于微小流量调节而言,阀门的微小开度调节功能势必会大幅增加阀门的复杂和精密程度,自动调节需要增加机械结构的电动装置,甚至还需采用一些特殊材料,这是造成进口调节阀价格高昂的主要原因。[size=16px] 可变泄漏阀的优势在于,在保证超低漏率的前提下,它固定了阀门开度大小,通过改变进气压力来调节气体流量,由此直接将微流量调节技术升级到自动控制水平。这种阀门的出现,降低了进口调节阀的价格,并且达到了相同的调节效果。同时,可变泄漏阀还具有自适应能力,能够适应不同的真空泵抽气速率,达到更好的抽气效果。[/size][size=16px] 评述:在此回答中包括了真正有价值的内容。[/size][size=16px] 总结:根据上述的提问和回答,基本可以确定超高真空度精密控制的整体方案,具体内容如下:[/size][size=16px] (1)真空计采用适用于超高真空度范围的相应真空度传感器。[/size][size=16px] (2)真空泵采用分子泵、低温泵和离子泵等相应的超高真空抽气泵。[/size][size=16px] (3)真空度控制器采用双通道PID控制器,用来进行不同量程的真空度控制。[/size][size=16px] (4)实现超高真空度控制的关键是采用可变泄漏阀对进气流量进行调节。在自身具有超低漏率前提下,可变泄漏阀可采用两种形式进行微小进气流量调节,一是改变泄漏阀的开度大小以控制流经气体的流量,二是改变泄漏阀进气压力大小以改变流经气体的流速。[/size][size=16px] 有关真空计和真空泵的选择,这些都是真空技术领域内很容易获取和确定的内容,在此不再涉及。本文主要采用文心一言来帮助选择和探索可变泄漏阀和真空度控制器的技术方案以及所含技术问题。[/size][align=left][size=16px][b][color=#c00000]3.4. [/color][color=#c00000]可变泄漏阀查询[/color][/b][/size][/align][size=16px] 提问:具有上述功能的可变泄漏阀都有那些产品和型号呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]具有可变泄漏阀功能的真空阀门有很多种类,以下列举几种具有该功能的产品和型号:[size=16px] 型号为 FJL5-1/4-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 型号为 FJL10-1/2-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 型号为 FJL20-1/2-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 型号为 FJL50-1/2-300-A 的真空阀门,该阀门采用波纹管密封,上装式结构,锻钢阀体,适用于高真空系统的截止阀。[/size][size=16px] 评述:机器人所提供的回答都是用于超高真空系统的截止阀,只能作为气体通断开关使用过,都无法用于气流流量大小的调节。[/size][size=16px] 提问:具有上述功能的可变泄漏阀都有那些厂家的产品和型号呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]具有可变泄漏阀功能的真空阀门有很多厂家生产,以下列举几个厂家的产品和型号:[size=16px] 国产的陕西北斗星通,其产品有CJ174-1/2-300-A型针阀和CJ174-1/2-300-B型针阀,该类阀门采用针阀结构,适用于高真空系统的截止阀。[/size][size=16px] 国产的北京亚星仪,其产品有FJL5-1/4-300-A型真空截止阀,该类阀门采用波纹管密封,适用于高真空系统的截止阀。[/size][size=16px] 进口的安捷伦(Agilent Technologies),其产品有7791型可调泄漏阀,该类阀门适用于高真空系统的截止阀。[/size][size=16px] 评述:机器人提供的还都是截止阀,增加“超低漏率”关键词后继续提问。[/size][size=16px] 提问:超低漏率的可变泄漏阀,国内外有那些公司的产品和具体型号呢。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]超低漏率的可变泄漏阀是真空领域的一种重要部件,目前国内外有很多公司都在生产这种产品。以下是一些国内外公司的产品和具体型号:[size=16px] 安捷伦(Agilent Technologies):安捷伦的产品只有一种手动调节泄漏阀,具体型号为7791。[/size][size=16px] VAT公司:VAT调节阀则有手动和自动调节泄漏阀两款产品,其电动调节泄漏阀是在手动调节阀基础上增加了电动装置和PID调节器。具体型号包括59024-GE G(A)G(C-J)、59024-GE G(A)I、59024-GE G(A)L、59024-GE G(A)P、59024-GE G(A)Y。[/size][size=16px] MDC公司:MDC公司也有超低漏率的可变泄漏阀产品。[/size][size=16px] 除了以上列举的公司,还有诸如Pfeiffer公司和Parker公司等国外公司也有类似的产品。需要注意的是,这里只列举了部分具有超低漏率的可变泄漏阀功能的公司和产品,具体选择应根据实际应用需求和系统配置进行选型。同时,在购买时也需要注意产品的质量、性能、价格等因素。[/size][size=16px] 评述:进一步细化提问后,机器人给出了较准确的回答,我们根据回答进行了核实,所提到的三家国外公司确实有超低漏率可变泄漏阀,其中VAT公司产品的功能和型号都完全正确,而安捷伦和MDC公司实际上是同一款产品,但给出的型号不对。为了进一步了解VAT公司和安捷伦公司可变泄漏阀的工作原理,进行了追问。[/size][size=16px] 提问:安捷伦公司和VAT公司的调节泄漏阀的工作原理是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]安捷伦公司和VAT公司的调节泄漏阀的工作原理是基于压力改变流量的原理。[size=16px] 安捷伦公司的调节泄漏阀通过改变压力来实现泄漏量的调节。具体来说,该阀门通过改变进气压力来实现微小进气流量调节,从而实现对真空系统的稳定性和压力控制。[/size][size=16px] VAT公司的调节泄漏阀也是基于压力改变流量的原理。该阀门通过改变进气压力来实现微小进气流量调节,从而实现对真空系统的稳定性和压力控制。[/size][size=16px] 总之,安捷伦公司和VAT公司的调节泄漏阀都是基于压力改变流量的原理,通过改变进气压力来实现微小进气流量调节,从而实现真空系统的稳定性和压力控制。[/size][size=16px] 评述:根据我们对这两家公司产品的核实,机器人回答是完全错误的。分别进行单独追问。[/size][size=16px] 提问:安捷伦公司的调节泄漏阀的工作原理是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]安捷伦公司的调节泄漏阀的工作原理是通过对压力的调节来实现流量的控制。具体来说,该阀门通过改变进气压力和排气压力之间的压差来控制进入真空腔室的气体流量,从而实现对真空系统的稳定性和压力控制。[size=16px] 安捷伦公司的调节泄漏阀具有小于10^-10 PaL/s的超低漏率,以及微小流量调节功能。它采用了具有专利技术的超低漏率阀座和微型喷嘴,并通过改变阀口开度和压力差来控制气体流量。此外,该阀门还采用了压力反馈机制,通过PID控制器将实际压力与预设压力进行比较,然后根据误差信号进行自动调节,使真空系统保持恒定的真空度。[/size][size=16px] 综上所述,安捷伦公司的调节泄漏阀通过改变压力和阀口开度来实现对气体流量的控制,并通过压力反馈机制实现自动调节,从而实现对真空系统的稳定性和压力控制。[/size][size=16px] 评述:给出了新的回答内容,部分正确,但前后矛盾。[/size][size=16px] 提问:VAT公司的调节泄漏阀的工作原理是什么[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]VAT公司的调节泄漏阀的工作原理是基于压力改变流量的原理。该阀门具有超低漏率的微流量调节功能,通过改变进气压力来实现微小进气流量调节。具体来说,该阀门通过改变阀口开度和压力差来控制进入真空腔室的气体流量,从而实现对真空系统的稳定性和压力控制。[size=16px] VAT公司的调节泄漏阀具有手动和自动调节两种类型。对于手动调节泄漏阀,用户可以通过旋转手轮来改变阀口开度,从而实现对气体流量的控制。对于自动调节泄漏阀,它是在手动调节阀的基础上增加了电动装置和PID调节器,可以根据预设的压力和实际压力之间的误差进行自动调节,使真空系统保持恒定的真空度。[/size][size=16px] 总之,VAT公司的调节泄漏阀通过改变压力和阀口开度来实现对气体流量的控制,从而实现真空系统的稳定性和压力控制。[/size][size=16px] 评述:给出了新的回答内容,部分正确,但前后矛盾。[/size][size=16px] 到此为止,通过机器人的回答以及产品的具体核实,在目前的超高真空度精密控制过程中,已经基本可以确定微量进气控制国外采用的超低漏率可调节式泄漏阀,有手动和自动两种型号规格,它们的工作原理都是通过调节阀口开度来实现对气体流量的控制。[/size][align=left][size=16px][b][color=#c00000]3.5. [/color][color=#c00000]双通道真空控制器查询[/color][/b][/size][/align][size=16px] 提问:用于超高真空度测量的真空计有那些,它们的输出信号与所测真空度是线性关系还是非线性关系呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]用于超高真空度测量的真空计有以下几种:热阴极电离真空计、冷阴极电离真空计、压电陶瓷真空计、磁悬浮转子真空计、光学真空计。它们的输出信号与所测真空度之间的关系如下:[size=16px] 热阴极电离真空计:通常呈现出非线性关系,可以用指数函数或多项式函数描述。[/size][size=16px] 冷阴极电离真空计:通常呈现出非线性关系,可以用幂函数或多项式函数描述。[/size][size=16px] 压电陶瓷真空计:通常呈现出线性关系,可以用线性函数描述。[/size][size=16px] 磁悬浮转子真空计:通常呈现出线性关系,可以用线性函数描述。[/size][size=16px] 光学真空计:通常呈现出线性关系,可以用线性函数描述。[/size][size=16px] 评述:回答基本都是正确的。[/size][size=16px] 提问:PID控制器是一种线性控制,还是一种非线性控制呢?[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]PID控制器是一种线性控制器。PID控制器根据给定值与实际输出值构成控制偏差,然后通过对偏差的比例、积分和微分进行线性组合来对被控对象进行调节,使得被控对象的输出接近于所期望的参考值。因此,PID控制器是一种线性控制器。[size=16px] 提问:对于线性控制的PID控制器,如果采集的非线性信号,那对控制效果有什么影响呢。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]对于线性控制的PID控制器,如果采集的非线性信号,会对控制效果产生以下影响:[size=16px] 控制不准确:线性PID控制器是基于线性系统理论的,它假设系统的输入与输出之间存在线性关系。然而,如果采集的信号是非线性的,那么系统的输入与输出之间的关系将不符合线性假设,导致控制不准确。[/size][size=16px] 控制稳定性下降:非线性信号可能导致系统的动态行为变得复杂,产生振荡或不稳定的行为。如果PID控制器对非线性信号进行线性调节,可能会导致系统的稳定性下降,使得控制效果变得不可预测。[/size][size=16px] 需要更复杂的控制策略:对于非线性系统,通常需要更复杂的控制策略来处理非线性信号。线性PID控制器可能无法满足非线性系统的控制需求,需要采用更复杂的控制策略来提高控制效果。[/size][size=16px] 因此,对于非线性系统,通常需要采用非线性控制策略来处理非线性信号,以确保控制效果的准确性和稳定性。[/size][size=16px] 提问:非线性信号的线性化处理,都采用那些具体技术手段呢,请列出所有线性化处理技术名称。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]非线性信号的线性化处理可以采用以下一些具体技术手段:[size=16px] 增量线性化模型(Incremental Linearization Model)、McCormick包络法(McCormick Envelope)、Mc-Carl方法(McCarl Method)、基于Taylor级数展开的线性化方法、基于反馈的线性化方法、基于状态空间模型的线性化方法、非线性滤波(Nonlinear Filtering)、非线性变换(Nonlinear Transformation)、非线性系统建模(Nonlinear System Modeling)、非线性时频分析(Nonlinear Time-Frequency Analysis)、非线性降噪(Nonlinear Denoising)、非线性信号识别(Nonlinear Signal Recognition)。[/size][size=16px] 需要注意的是,非线性信号处理涉及到较多的数学知识和算法,因此需要具备一定的数学和计算机基础才能进行研究和应用。[/size][size=16px] 评述:回答的内容尽管很多,但还是不够完整,继续追问。[/size][size=16px] 提问:那多点曲线拟合属于线性化处理技术手段嘛。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]多点曲线拟合(Polynomial Curve Fitting)是一种基于最小二乘法的拟合方法,通过对多个离散数据进行拟合,得到一个能够描述数据趋势的连续函数。虽然这种方法主要用于处理非线性数据,但也可以作为一种线性化处理技术手段来使用。[size=16px] 在某些情况下,非线性系统可以通过分段线性化方法来近似,即将非线性系统的输入输出关系近似为一系列的直线段。分段线性化方法通常用于处理具有分段线性特性的非线性系统,例如开关式系统、含有分段线性元件的系统等。[/size][size=16px] 在这种情况下,多点曲线拟合可以作为一种实现分段线性化方法的技术手段。通过选择适当的拟合函数和参数,可以将非线性系统转换为一系列的线性系统,从而可以使用线性控制理论进行分析和设计。[/size][size=16px] 因此,可以说多点曲线拟合可以作为一种线性化处理技术手段,但并不是所有情况下的非线性信号处理都需要进行线性化处理。具体的处理方法需要根据实际系统的特性和要求进行选择和调整。[/size][size=16px] 提问:那些国内外的PID控制器具有这种多点曲线拟合功能呢,具体型号是什么。[/size][size=16px][font='times new roman'][back=#ffff00] 文心一言:[/back][/font][/size]目前市场上有很多国内外的PID控制器都具备多点曲线拟合功能,以下是一些常见的品牌和型号:[size=16px] 国外品牌:National Instruments:NI-PIDController、Keysight Technologies:E8257D、Agilent Technologies:8720D、Rohde & Schwarz:R&S-PNG130/160[/size][size=16px] 国内品牌:YOKOGAWA:GC5510、BF-controller:BF-PIDController、other brands:EP100、LS200等[/size][size=16px] 需要注意的是,不同的品牌和型号可能具有不同的多点曲线拟合功能,具体使用方法和参数设置也可能有所不同。因此,在选择和使用时,需要根据具体的需求和实际情况进行评估和选择。[/size][size=16px] 评述:根据机器人的回答内容,我们做了核实,证明机器人回答的内容都是错误的。有用的信息是至少知道还是有多点曲线拟合功能的PID控制器产品。[/size][align=left][size=16px][b][color=#c00000]3.6. [/color][color=#c00000]关于此主题的[/color][color=#c00000]文献[/color][color=#c00000]和专利[/color][/b][/size][/align][size=16px] 在这里我们不做提问和回答内容的详细展示,因为机器人所提供的内容都是错误的。我们在广泛使用搜索引擎(谷歌学术和谷歌专利)和给定期刊的文章列表中寻找机器人给定的引文,发现这些论文和专利根本不存在。[/size][align=left][b][size=18px][color=#c00000]4. [/color][color=#c00000]讨论[/color][/size][/b][/align][size=16px] 通过采用国产版本ChatGPT百度“文心一言”的对话,我们发现在开发超高真空度控制装置时,机器人能够提供相应的基础性和常识性信息来帮助缩小选择的范围。可能是受制于训练机器人的大模型还不够完备,机器人仅能提供一些肤浅但非常有用的建议,这非常适用于该领域的入门学习。[/size][size=16px] 通过与机器人的对话以及产品的具体核实,至少可以勾画出超高真空度控制装置中的整体结构和关键部件所需达到的功能。确定了采用低漏率可变泄漏阀是正确的技术路线,而可变泄漏阀有阀门开度调节式和进气压力调节式两种形式,国外产品采用的是阀门开度调节式结构,而我们的产品开发则可以采用压力调节式结构。[/size][size=16px] 有关超高真空度传感器具有非线性特征这一事实,通过机器人回答和具体真空计指标得到了验证,通过机器人对话也明确了可采用具有线性处理功能(更具体是多点曲线拟合功能)的PID控制器来进行超高真空的准确控制。[/size][size=16px] 我们发现机器人进行文献检索的能力是不可靠的,这点在其他很多ChatGPT使用者得出的结论一样。机器人为给定的技术主题能推荐看似正确和相关的引用文献,但都是假的,都是用相关关键词、已有作者、期刊名和DII捏造的,看似真实但实际上并不存在。[/size][align=left][b][size=18px][color=#c00000]5. [/color][color=#c00000]总结[/color][/size][/b][/align][size=16px] 通过采用国产版本ChatGPT百度“文心一言”作为一种辅助性的调研工具,针对超高真空度精密控制项目的开发开展了初期的技术路线设计。总体结论是目前的人工智能技术所提供的帮助十分有限,还无法替代研究人员的基本专业能力以及互联网技术的应用能力,但比较适合用来进行某个未知领域的入门级学习。[/size][size=16px] 另外,尽管目前的大模型以及人工智能可能还不够完备以及无法进行更深入的数据挖掘,但在具体使用上如果注意一些技巧,还是能得到一些更有用的帮助。比较重要的技巧是对提问问题的设计,提问时一般需要把握此六项原则:明确问题、提供背景、限定范围、拆分问题、指出建议和多样提问。[/size][size=16px][/size][align=center][size=16px][b][color=#cc0000]~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 真空度常用标识方法

    [font=微软雅黑][color=#000000]对于真空度的标识通常有两种方法[/color][/font][b][font=微软雅黑][color=#000000]:[/color][/font][/b][font=微软雅黑][color=#000000] 一是用“压力”、“真空度”(即比“理论真空”高多少压力)标识;在实际情况中,真空泵的压力值介于0~101.325KPa之间。压力值需要用压力仪表测量,在20℃、海拔高度=0的地方,用于测量真空度的仪表(真空表)的初始值为101.325KPa(即一个标准大气压)。[/color][/font][font=微软雅黑][color=#000000] 二是用“相对压力”、“相对真空度”(即比“大气压”低多少压力)来标识。"相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时),表的初始值为0。当测量真空时,它的值介于0到-101.325KPa(一般用负数表示)之间。[/color][/font][font=微软雅黑][color=#000000] 国际真空行业通用的“真空度”,也是科学的是用压力标识;指得是“极限真空、真空度、压力”,但“相对真空度”(相对压力、真空表表压、负压)由于测量的方法简便、测量仪器非常普遍、容易买到且价格便宜,因此也有广泛应用。[/color][/font]

  • 低气压环境沿面闪络特性测试中的真空度精密控制解决方案

    低气压环境沿面闪络特性测试中的真空度精密控制解决方案

    [size=16px][color=#990000][b]摘要:针对现有低气压环境下沿面闪络测试中存在真空度无法精确控制所带来的一系列问题,特别是针对用户提出的对现有沿面闪络试验装置的真空控制系统进行技术改造要求,本文提出了相应的技改方案,技改方案采用基于动态平衡法的电动针阀和电动球阀上下游控制模式,并辅助上游微小进气流量的自动可变泄漏阀控制技术,可在超高真空至常压的全真空度范围内实现低气压环境的精密控制和准确模拟,可有效提高沿面闪络性能测试精度。[/b][/color][/size][align=center][size=16px][color=#990000][b]=====================[/b][/color][/size][/align][size=18px][color=#990000][b]1. 项目背景[/b][/color][/size][size=16px] 沿面闪络是指在绝缘材料与空气、真空等介质交界面处形成的贯穿性击穿放电现象。由于沿面闪络的放电电压远小于绝缘材料的击穿放电电压,因此沿面闪络成为空问环境中航天器表面静电放电的主要形式之一,对航天器安全有着严重的威胁,因此对其研究和测试十分重视。[/size][size=16px] 国内外在绝缘材料沿面闪络特性方面进行了广泛的研究,特别是针对航天器所处太空环境的复杂性,我国也建立了航天器表面带电模拟系统,并以航天器常用绝缘材料——聚酰亚胺为典型研究对象,研究低气压环境下聚酰亚胺以及其他新材料的沿面闪络特性,为航天器静电防护设计提供依据。但已建立的低气压环境沿面闪络试验装置存在无法高精度控制真空度的问题,由此会给沿面闪络测量带来较大误差,同时也会造成对解吸附气体、粗糙度、化学变化等影响因素的研究产生严重影响,更不利于新材料研发过程中的沿面闪络性能及其相关因素的准确评价。[/size][size=16px] 针对现有沿面闪络试验装置存在的问题,用户提出要对试验装置的真空控制系统进行技术改造。为此,本文根据用户的技术要求提出了技改方案,以在全真空度范围内实现低气压环境的准确模拟,有效提高沿面闪络性能测试精度。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 基于现有低气压环境沿面闪络试验装置,解决方案拟达到如下技术指标:[/size][size=16px] (1)气压控制范围(绝对压力):1×10[sup]-4[/sup]Pa~1×10[sup]5[/sup]Pa。[/size][size=16px] (2)1×10[sup]-1[/sup]Pa~1×10[sup]5[/sup]Pa范围控制精度:读数的±1%。[/size][size=16px] (3)1×10[sup]-4[/sup]Pa~1×10[sup]-1[/sup]Pa范围控制精度:读数的±20%。[/size][size=16px] (4)功能:在气压控制范围内可设置任一值进行自动恒定控制,控制装置带通讯接口可与上位机通讯。[/size][size=16px] 为了实现从低真空至超高真空的全量程真空度准确控制,解决方案将采用动态平衡法进行控制,其具体控制内容如下:[/size][size=16px] (1)对于1×10[sup]3[/sup]Pa~1×10[sup]5[/sup]Pa的低真空范围,采用下游控制模式,即固定真空腔体进气流量,通过调节下游排气流量来实现真空度的准确控制。[/size][size=16px] (2)对于1×10[sup]-4[/sup]Pa~1×10[sup]3[/sup]Pa的高真空范围,采用上游控制模式,即固定(或最大)真空腔体排气流量,通过调节上游进气流量来实现真空度的准确控制。[/size][size=16px] 依据上述控制方法设计的真空度控制系统如图1所示。[/size][align=center][size=16px][color=#990000][b][img=沿面闪络试验装置真空度控制系统结构示意图,690,369]https://ng1.17img.cn/bbsfiles/images/2023/11/202311061723030230_8839_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 沿面闪络试验装置真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,整个真空度控制系统主要由以下三部分组成:[/size][size=16px] (1)下游排气流量调节装置:如图1右边所示,下游排气流量调节装置主要由低真空电容规、电动球阀、VPC2021-1系列单通道真空度控制器、干泵和分子泵组成。其中干泵用来提供低真空源,分子泵用来提供高真空源,低真空电容规真空度测量量程为1×10[sup]3[/sup]Pa~1×10[sup]5[/sup]Pa,电容规测量得到的真空度信号传输给真空度控制器,控制器将检测信号与设定值比较后再经PID计算输出控制信号驱动电动球阀的开度变化,由此来调节排气流量使沿面闪络测试装置真空腔体内的真空度快速恒定在设定值处。[/size][size=16px] (2)上游进气流量粗调装置:如图1左上角所示,上游进气流量粗调装置主要由高真空电容规、电动针阀、压力调节器、双通道真空度控制器和高压气源组成。高真空电容规真空度测量量程为1×10[sup]1[/sup]Pa~1×10[sup]3[/sup]Pa,电容规测量得到的真空度信号传输给真空度控制器,控制器将检测信号与设定值比较后再经PID计算输出控制信号驱动电动针阀的开度变化,由此来调节进气流量使沿面闪络测试装置真空腔体内的真空度快速恒定在设定值处。为了保证电动针阀进气口处的压力稳定且略高于一个大气压,在电动针阀的进气口处安装了一个压力调节器,以对高压气源进行降压和精密恒压控制,由此可有效保证高真空度控制精度。粗调装置采用了VPC2021-2系列双通道真空度控制器,其中第一通道用来连接高真空计和电动针阀组成闭环控制回路,第二通道则直接用来控制压力调节器。[/size][size=16px] (3)上游进气流量细调装置:如图1左下角所示,上游进气流量细调装置主要由用于超高真空测量的皮拉尼计或电离规、可变泄漏阀、VPC2021-1系列单通道真空度控制器和高压气源组成。皮拉尼计或电离规真空度测量量程为1×10[sup]-4[/sup]Pa~1×10[sup]1[/sup]Pa,电离规测量得到的真空度信号传输给真空度控制器,控制器将检测信号与设定值比较后再经PID计算输出控制信号驱动可变泄漏阀,由此来调节微小进气流量使沿面闪络测试装置真空腔体内的真空度快速恒定在设定值处。需要注意的是,在进气流量细调过程中,需要将粗调装置中的电动针阀关闭,使得粗调管路内无任何进气。[/size][size=16px] 在整个真空度量程范围的控制过程中,具体操作步骤需要注意以下内容:[/size][size=16px] (1)对于1×10[sup]3[/sup]Pa~1×10[sup]5[/sup]Pa的低真空范围,采用下游控制模式。在下游控制运行之前要关闭上游进气细调装置和开启上游进气粗调装置,并设置上游进气粗调装置为手动模式,使电动针阀的开度保持恒定,即使得进气流量保持恒定,然后再运行下游控制模式。[/size][size=16px] (2)对于1×10[sup]-4[/sup]Pa~1×10[sup]3[/sup]Pa的高真空范围,采用上游控制模式。在上游控制运行之前要设置下游进气粗调装置为手动模式,并使控制器输出值(OP)为100%,使电动球阀的开度保持全开状态,即使得排气流量为最大状态,然后再运行上游控制模式。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决低气压环境沿面闪络特性测试过程中的真空度控制问题,并具有很高的控制精度和自动控制能力。此外,本解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,实现各级真空度的精密控制。[/size][size=16px] (2)本解决方案可以通过高压气源的改变来实现不同工作气体下的真空度控制,也可进行多种气体混合后的低气压环境控制,具有很大的灵活性。[/size][size=16px] (3)解决方案中的所有型号控制器都自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了试验装置的搭建和测试研究。[/size][align=center][size=16px][color=#990000][/color][/size][/align][align=center][size=16px][color=#990000][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][size=16px][b][/b][/size]

  • 真空度的标识通常有两种方法

    [align=left]真空度的标识通常有两种方法[b]:[/b][/align][align=left] 一是用“绝对压力”、“绝对真空度”(即比“理论真空”高多少压力)标识;在实际情况中,真空泵的绝对压力值介于0~101.325KPa之间。绝对压力值需要用绝对压力仪表测量,在20℃、海拔高度=0的地方,用于测量真空度的仪表(绝对真空表)的初始值为101.325KPa(即一个标准大气压)。[/align][align=left] 二是用“相对压力”、“相对真空度”(即比“大气压”低多少压力)来标识。"相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时),表的初始值为0。当测量真空时,它的值介于0到-101.325KPa(一般用负数表示)之间。[/align][align=left] 国际真空行业通用的“真空度”,也是最科学的是用绝对压力标识;指得是“极限真空、绝对真空度、绝对压力”,但“相对真空度”(相对压力、真空表表压、负压)由于测量的方法简便、测量仪器非常普遍、容易买到且价格便宜,因此也有广泛应用。[/align][align=left] [/align]

  • 【分享】什么叫“真空度”?

    “真空度”顾名思义就是真空的程度。是真空泵、微型真空泵、微型气泵、微型抽气泵、微型抽气打气泵等抽真空设备的一个主要参数。所谓“真空“,是指在给定的空间内,压强低于101325帕斯卡(也即一个标准大气压强约101KPa)的气体状态。在真空状态下,气体的稀薄程度通常用气体的压力值来表示,显然,该压力值越小则表示气体越稀薄。对于真空度的标识通常有两种方法:一是用“绝对压力”、“绝对真空度”(即比“理论真空”高多少压力)标识;在实际情况中,真空泵的绝对压力值介于0~101.325KPa之间。绝对压力值需要用绝对压力仪表测量,在20℃、海拔高度=0的地方,用于测量真空度的仪表(绝对真空表)的初始值为101.325KPa。(即一个标准大气压) 二是用“相对压力”、“相对真空度”(即比“大气压”低多少压力)来标识。 "相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时),表的初始值为0。当测量真空时,它的值介于0到-101.325KPa(一般用负数表示)之间。比如,有一款微型真空泵测量值为-75KPa,则表示泵可以抽到比测量地点的大气压低75KPa的真空状态。 国际真空行业通用的“真空度”,也是最科学的是用绝对压力标识;指得是“极限真空、绝对真空度、绝对压力”,但“相对真空度”(相对压力、真空表表压、负压)由于测量的方法简便、测量仪器非常普遍、容易买到且价格便宜,因此也有广泛应用。理论上二者是可以相互换算的,两者换算方法如下:相对真空度=绝对真空度(绝对压力)-测量地点的气压例如:有一款微型真空泵的绝对压力为80KPa,则它的相对真空度约为80-100=-20Kpa,(测量地点的气压假设为100KPa)在普通真空表上就该显示为-0.02MPa。常用的真空度单位有Pa、Kpa、Mpa、大气压、公斤(Kgf/cm2)、mmHg、mbar、bar、PSI等。近似换算关系如下:1MPa=1000KPa1KPa=1000Pa1大气压=100KPa=0.1MPa1大气压=1公斤(Kgf/cm2)=760mmHg1大气压=14.5PSI1KPa=10mbar1bar=1000mbar

  • 电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    电动针阀和手动可变泄漏阀在超高真空度PID自动精密控制中的应用

    [size=16px][color=#000099]摘要:超高真空度的控制普遍采用具有极小开度的可变泄漏阀对进气流量进行微小调节。目前常用的手动可变泄漏阀无法进行超高真空度的自动控制且不准确,电控可变泄漏阀尽管可以实现自动控制但价格昂贵。为了实现自动控制且降低成本,本文提出了手动可变泄漏阀与低漏率电控针阀组合的解决方案,结合真空压力PID控制器可实现超高真空度自动控制。[/color][/size][align=center][size=16px][/size][/align][size=16px][/size][align=center][color=#000099]~~~~~~~~~~~~~~~~~~~~~[/color][/align] [b][size=18px][color=#000099]1. 问题的提出[/color][/size][/b][size=16px] 超高真空一般是指10-7Pa~10-2Pa范围的真空度,相应的超高真空技术应用也十分广泛,特别是对于芯片级原子钟(CSACs)、电容膜片规(CDGs)、显微镜、质谱仪和和新型金属有机化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积(MOCVD)等需要超高真空环境的设备,其真空度控制的稳定性通常非常重要。[/size][size=16px] 超高真空度控制的基本原理如图1所示,可采用开环和闭环两种控制形式,基本控制原理是固定真空泵的抽速,通过调节进气流量来实现不同真空度的控制。对于超高真空控制,要求进气量非常微小,所以一般采用可变泄漏阀(varible leakage valve)进行调节进气量。[/size][align=center][size=16px][color=#000099][b][img=01.超高真空度控制系统结构示意图和各种可变泄漏阀,650,493]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272211542322_7977_3221506_3.jpg!w690x524.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 超高真空度控制的基本原理和各种可变泄漏阀[/b][/color][/size][/align][size=16px] 如图1所示,目前常用的可变泄漏阀有手动和自动两种形式,但在实际应用中存在以下两方面的问题:[/size][size=16px] (1)手动可变泄漏阀只能组成开环控制回路,需要人工调节泄漏阀开度并同时观察真空计读数进行超高真空度控制。这种开环控制方法很难实现真空度的稳定,气源和真空腔体内稍有扰动就会带来严重的波动,另外就是在多个真空度点控制时很难操作和控制。[/size][size=16px] (2)自动可变泄漏阀是在手动泄漏阀上配置了一个电子致动器和PID控制器,与真空计可构成闭环控制回路,可实现超高真空度的精密控制,但存在的问题是价格昂贵,自动可变泄漏阀要比手动泄漏阀贵三倍左右。[/size][size=16px] 针对目前可变泄漏阀具体使用中存在的上述问题,本文提出了如下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是采用价格相对较低的手动可变泄漏阀以提供微小的很定进气流量,然后再配备低漏率的电控针阀对此微小进气流量进行电动调节,以实现最终超高真空度的自动控制,由此构成的超高真空度控制系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=02.手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图,600,267]https://ng1.17img.cn/bbsfiles/images/2023/04/202304272212262679_3036_3221506_3.jpg!w690x308.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 手动泄漏阀和电动针阀组合式超高真空度控制系统结构示意图[/b][/color][/size][/align][size=16px] 由图2所示的控制系统可以看出,整个系统由手动泄漏阀、电控针阀、真空计和PID真空压力控制器构成,并形成闭环控制系统。在具体控制过程中,首先将手动泄漏阀调节到某一固定位置使其保持恒定的微小进气流量,真空压力控制器根据采集到的真空计信号与设定值比较后对电控针阀进行动态调节。由于电控针阀自身有很小的真空漏率,所以电控针阀的开度变化相当于是对手动泄漏阀进气流量的进一步调节,由此电动针阀与手动泄漏阀配合可实现对进入腔体的流量进行调节而最终实现超高真空度的控制。[/size][size=16px] 在图2所示的控制系统中,真空计采用了组合式皮拉尼真空计,真空度测试范围可以从一个大气压到5×10-8Pa,全量程真空度对应的模拟信号输出为0~10V。此真空计信号可以直接被真空压力PID控制器接收,PID控制器具有24位AD、16位DA和0.01%最小输出百分比技术指标,并带有程序控制和RS485通讯功能,可很好的进行超高真空度的全量程自动控制。[/size][size=16px] 此解决方案除了可以满足小型真空腔室的超高真空度控制之外,也可以用于较大腔室的控制,所需的只是改变手动可变泄漏阀开度大小。[/size][align=center][size=16px][color=#000099]~~~~~~~~~~~~~~~~[/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align][align=center][size=16px][color=#000099][/color][/size][/align]

  • 【讨论】PMT负高压与真空度的关系

    看了有的版友说一些仪器真空度下降,负高压加不上去查找了一些资料,PMT的外壳由玻璃或石英制成,内部抽真空,在光室真空度未达到一定值时,不能打开负高压开关,否则会导致光电倍增管辉光放电因为我接触较多的是斯派克,光室里面是充惰性气体,压力1024 hPa左右,比正常的大气压还要高些所以我有点小迷惑,为什么斯派克的PMT可以在1024 hPa工作,而其他的仪器需要在真空下才能打开负高压?是斯派克使用了特殊的PMT,还是PMT在惰性气体中不会辉光放电?望各位高手解惑

  • 真空解冻过程中高精度真空度控制的解决方案

    真空解冻过程中高精度真空度控制的解决方案

    [font=微软雅黑, sans-serif][size=16px][color=#339999]摘要:为了解决目前各种真空冷冻过程中存在的真空压力还是人工手动调节,无法进行可编程准确自动控制的问题,本文提出了具体解决方案。解决方案的基本原理是根据动态平衡法,具体实现是依据不同的真空压力设定值分别采用电动针阀调节进气流量和电动球阀调节排气流量,最终实现对各种冻品的解冻真空度在任意设定点上进行准确的程序控制,由此使真空解冻技术更具有广泛的适用性和品质保证能力。[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][img=真空升华-复水解冻过程中高精度真空度控制的解决方案,550,385]https://ng1.17img.cn/bbsfiles/images/2023/02/202302280945091217_5177_3221506_3.jpg!w690x484.jpg[/img][/align][b][size=24px][color=#339999]1. [font='微软雅黑',sans-serif]问题的提出[/font][/color][/size][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif] 随着经济的发展和人民生活水平的提高,食品生产、储运和加工领域内技术发展越来越受到关注。真空解冻([/font][font=&]VT[/font][font='微软雅黑',sans-serif]:[/font][font=&]Vacuum Thawing [/font][font='微软雅黑',sans-serif])以及衍生出的真空升华[/font][font=&]-[/font][font='微软雅黑',sans-serif]复水解冻([/font][font=&]VSRT[/font][font='微软雅黑',sans-serif]:[/font][font=&] Vacuum Sublimation - Rehydration Thawing [/font][font='微软雅黑',sans-serif])技术就是这类新型食品加工技术之一。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font] 真空解冻技术是利用真空状态下的压力不同和水的沸点不同的特性,水在真空室中沸腾时形成的水蒸气,在遇到温度更低的冻结食品时就在其表面凝结成水珠,蒸汽凝结时所放出的潜热,被冷冻食品吸收,最终使冻品温度升高而解冻。[font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]与其他解冻方法相比,真空解冻具有解冻速率快,解冻效果均匀,解冻温度低等优点。且解冻过程中冻品处于真空低氧环境,可有效抑制食品的氧化和一些好氧性微生物的繁殖,[/font][font='微软雅黑',sans-serif]减少品质损失。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]随着技术进步,目前又出现了一种基于真空解冻技术发展起来的新方法:真空升华[/font][font=&]-[/font][font='微软雅黑',sans-serif]复水解冻法。该方法的最大特点是可推广应用到如水果、蔬菜、熟食、水产品等其他冷冻食品的解冻过程。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]总之,真空解冻以及真空升华[/font][font=&]-[/font][font='微软雅黑',sans-serif]复水解冻法的重要优势之一是解冻参数(温度和真空度)可以根据冻品特性和能量消耗进行优化,从而使得解冻达到最佳状态。以真空升华[/font][font=&]-[/font][font='微软雅黑',sans-serif]复水解冻过程为例,其解冻过程中相应的温度和压力变化如图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示。[/font][align=center][b][color=#339999][img=真空升华-复水解冻过程中真空室内压力、温度和冷冻产品温度的变化,690,498]https://ng1.17img.cn/bbsfiles/images/2023/02/202302280941478230_2865_3221506_3.jpg!w690x498.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]真空升华[/font][font=&]-[/font][font='微软雅黑',sans-serif]复水解冻过程中真空室内压力温度和冻品温度的变化[/font][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]从图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示的解冻过程可以看出压力变化有以下几方面的特点:[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])整个解冻过程由升华和复水两个阶段构成,在两个阶段过程中冻品的核心和表面温度要求不同,由此要求两个阶段的真空度需要控制在不同水平上。总之,准确控制真空度的目的是为了保证解冻过程中冻品表面温度始终按照设计要求进行变化。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])对于不同的冻品,解冻过程中的温度变化要求并不相同,因此就需要对不同设定真空度进行准确控制。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]图[/font][font=&]2[/font][font='微软雅黑',sans-serif]所示是一个典型的真空升华[/font][font=&]-[/font][font='微软雅黑',sans-serif]复水解冻装置的结构示意图。此真空解冻装置非常具有代表性,体现了目前实验室和工业生产中大多数真空解冻装置的压力控制方面基本还处于比较粗糙的手动调节水平,无法进行不同设定压力下的准确控制,更不能进行全自动化的可编程程序控制。[/font][align=center][b][color=#339999][img=真空升华-复水解冻装置示意图,600,354]https://ng1.17img.cn/bbsfiles/images/2023/02/202302280942155595_6958_3221506_3.jpg!w690x408.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]真空升华[/font][font=&]-[/font][font='微软雅黑',sans-serif]复水解冻装置示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]为了解决真空冷冻过程中存在的真空度无法可编程自动准确控制的问题,本文提出了具体解决方案。解决方案的基本原理是根据动态平衡法,根据不同的真空压力设定值分别采用电动针阀调节进气流量和电动球阀调节排气流量,最终实现对各种冻品的解冻真空度在任意设定点上进行准确的程序控制,由此使真空解冻技术更具有广泛的适用性和品质保证能力。[b][size=24px][color=#339999]2. [font='微软雅黑',sans-serif]真空压力控制的动态平衡法原理[/font][/color][/size][/b][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]在真空压力控制过程中,常用的精密控制方法是动态平衡法,如图[/font][font=&]3[/font][font='微软雅黑',sans-serif]所示,其基本原理是基于进气流量与排气流量达到动态平衡,由此实现不同真空压力设定值的准确控制。[/font][align=center][img=真空压力动态平衡法基本原理示意图,690,201]https://ng1.17img.cn/bbsfiles/images/2023/02/202302280942445698_5056_3221506_3.jpg!w690x201.jpg[/img][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]3 [/font][font='微软雅黑',sans-serif]真空压力控制的动态平衡法原理示意图[/font][/color][/b][/align][b][color=#339999][/color][/b][size=24px][color=#339999][b]3. [font='微软雅黑',sans-serif]解决方案[/font][/b][/color][/size][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]为了实现真空解冻装置中的真空度自动精密可编程控制,基于上述动态平衡法,本文提出了相应的解决方案,即在图[/font][font=&]2[/font][font='微软雅黑',sans-serif]所示的现有真空解冻装置上,增加了真空度控制系统,如图[/font][font=&]4[/font][font='微软雅黑',sans-serif]所示。[/font][align=center][b][color=#339999][img=真空解冻装置及其真空压力自动控制系统结构示意图,600,453]https://ng1.17img.cn/bbsfiles/images/2023/02/202302280943040421_6672_3221506_3.jpg!w690x521.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]4 [/font][font='微软雅黑',sans-serif]真空解冻装置及其真空度控制系统结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]真空控制系统的工作流程是双通道真空压力控制器根据真空度设定值或设定程序,与采集自真空计的信号进行比较。控制器根据比较后的差值采用[/font][font=&]PID[/font][font='微软雅黑',sans-serif]算法计算后输出控制信号,控制信号驱动电动针阀或电动球阀动态调节进气或排气流量使得真空腔体内的真空度发生改变,这使得真空计测量值快速接近设定值实现自动控制。解决方案中的真空度控制系统各组成部分的说明如下:[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]1[/font][font='微软雅黑',sans-serif])尽管可以采用现有的真空计,但为了保证真空度的控制精度,建议真空计采用精度较高的薄膜电容真空计,其任意真空度下的测量精度可优于[/font][font=&]0.3%[/font][font='微软雅黑',sans-serif]。另外,为了满足各种冻品的真空解冻,需要在较宽泛的真空度范围进行进行真空度控制,所以建议采用两只不同量程的电容真空计予以覆盖,推荐的两个真空计的量程分别是[/font][font=&]1Torr[/font][font='微软雅黑',sans-serif]和[/font][font=&]10Torr[/font][font='微软雅黑',sans-serif]。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]2[/font][font='微软雅黑',sans-serif])真空度控制系统采用了电动针阀和电动球阀分别调节进气和排气流量,其作用是高真空区间调节电动针阀而固定电动球阀开度,低真空阶段调节电动球阀而固定电动针阀开度,同时结合高低量程的两个真空计,可实现全真空度量程范围内优于[/font][font=&]1%[/font][font='微软雅黑',sans-serif]的控制精度。另外,为保证控制精度和真空度稳定性,电动针阀和电动球阀需要满足一定的漏率以及响应速度要求。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font='微软雅黑',sans-serif][font=微软雅黑, sans-serif] [/font]([/font][font=&]3[/font][font='微软雅黑',sans-serif])真空控制系统中的另外一个关键仪表是高精度的双通道真空压力控制器,其独立的两路[/font][font=&]PID[/font][font='微软雅黑',sans-serif]控制通道分别与[/font][font=&]1Torr[/font][font='微软雅黑',sans-serif]真空计和电动针阀组成高真空控制通道,与[/font][font=&]10Torr[/font][font='微软雅黑',sans-serif]真空计和电动球阀组成低真空控制通道。重要的是每个独立通道都是[/font][font=&]24[/font][font='微软雅黑',sans-serif]位[/font][font=&]AD[/font][font='微软雅黑',sans-serif]、[/font][font=&]16[/font][font='微软雅黑',sans-serif]位[/font][font=&]DA[/font][font='微软雅黑',sans-serif]和[/font][font=&]0.01%[/font][font='微软雅黑',sans-serif]最小输出百分比,由此可保证真空压力的精密控制。另外,此控制器具备[/font][font=&]PID[/font][font='微软雅黑',sans-serif]参数自整定功能可快速实现对[/font][font=&]PID[/font][font='微软雅黑',sans-serif]参数的合理选择,配备的标准[/font][font=&]RS485[/font][font='微软雅黑',sans-serif]通讯接口和计算机软件,便于与上位机通讯和采用上位机进行控制参数设置、运行操作、过程变量采集显示存储及调用。[/font][font='微软雅黑',sans-serif][size=16px][/size][/font][font=微软雅黑, sans-serif] [/font]总之,本文提出的真空度控制解决方案,可很好的满足真空解冻过程所有对真空度自动和准确控制要求,非常适应于实验室真空解冻工艺研究和大量冻品处理的真空解冻设备。[b][size=24px][color=#339999]4. [font='微软雅黑',sans-serif]参考文献[/font][/color][/size][/b]Chen S, Wu W, Yang Y, etal. Experimental study of a novel vacuum sublimation – rehydration thawing forfrozen pork[J]. International Journal of Refrigeration, 2020, 118: 392-402.[align=center]~~~~~~~~~~~~~~~~~~[/align][font='微软雅黑',sans-serif][size=16px][/size][/font]

  • 真空、真空度、流量单位基础知识

    [font=&][color=#333333]真空系统是指低于该地区大气压的稀薄气体状态。[/color][/font][font=&][color=#333333]真空度[/color][/font][font=&][color=#333333]处于真空状态下的气体稀薄程度,通常用“高真空度”和“低真空度”来表示。在通常交流中,真空度高表示真空度“好”的意思,真空度“低”表示真空度“差”的意思。[/color][/font][font=&][color=#333333]真空度单位[/color][/font][font=&][color=#333333]通常用托(Torr)为单位,近年国际上取用帕斯卡(pa)作为单位。[/color][/font][font=&][color=#333333]1Torr(托)=1mmHg(毫米汞柱)=133.322pa(帕斯卡)[/color][/font][font=&][color=#333333]相对真空度[/color][/font][font=&][color=#333333]即以大气压作为零位,表示比大气压低多少压力。一般用负值表示,这个负值的绝对值越大,则真空度越高。在明确了是负压参数的情况下,也可以仅用绝对值来表示,而不加负号。[/color][/font][font=&][color=#333333]绝对真空度[/color][/font][font=&][color=#333333]可以粗略的理解为:抽了真空以后,剩余气体的压力。绝对真空度等于测量点当地大气压加上相对真空度。即:相对真空度=绝对真空度(绝对压力)-测量地点的气压(大气压)。[/color][/font][font=&][color=#333333]极限真空[/color][/font][font=&][color=#333333]真空容器经过充分抽气后,稳定在某一个真空度,此真空度称为极限真空。[/color][/font][font=&][color=#333333]标准大气压[/color][/font][font=&][color=#333333]学术界定义101.325kpa的气压为一个标准大气压,符号(Atm)。[/color][/font][font=&][color=#333333]压强常用单位[/color][/font][font=&][color=#333333]压强的单位是“帕斯卡”,简称“帕”符号是“pa”。工业领域常常还用到的单位:bar(巴)、mmHg(毫米汞柱)、psi(磅每平方英寸)、kgf/cm2(千克力/平方厘米)通常简称“公斤”。[/color][/font][font=&][color=#333333]1Atm=101.325kpa=1.01325bar=760mmHg=760Torr=14.697psi≈1kgf/cm2。[/color][/font][font=&][color=#333333]抽气速率(抽速)和流量[/color][/font][font=&][color=#333333]简言之,在一定的压强和温度下,单位时间内由泵进气口处抽走的气体称为抽气速率,简称抽速。通常情况下,大多时候用“流量”这个词语来替代“抽速”,不是特别严谨。常用的单位是:L/s(升/秒)、L/min(升/分钟)、m3/h(立方米/小时)。[/color][/font]

  • 彻底讲清手套箱中真空度和温度的准确控制方法

    彻底讲清手套箱中真空度和温度的准确控制方法

    [color=#990000]摘要:为充分发挥手套箱的强大功能,针对手套箱中真空度和温度这两个环境变量,本文详细介绍了准确测量和控制真空度和温度的一体化解决方案,描述了上游、下游、双向和切换控制模式在不同真空度范围内的具体应用,同时还展示了控制中用到的新型数控针阀、数控球阀和24位超高精度PID控制器。[/color][align=center][color=#990000][img=真空手套箱,690,365]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111350205454_339_3384_3.png!w690x365.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]1. 问题的提出[/color][/size] 真空手套箱常用于极易氧化和潮解物质在无氧无水环境下需要人工操作的化学反应、材料处理和性能测试,功能十分强大。手套箱的核心功能是提供真空环境和便于人工操作,但在目前的实际应用中,大多只用了手套箱的无氧环境和人工操作功能,并没有充分发挥手套箱的作用。手套箱更强大的应用还体现在以下两方面: (1)真空手套箱是一个密闭式环境箱,极限真空度一般都可以达到10Pa左右,由此可以将手套箱内的真空度按照要求控制在10Pa至一个大气压之间的任何设定点上,这就可以进行各种对真空度敏感的化学反应、试验和测试,并便于在不改变和破坏真空环境的条件下进行各种人工操作。 (2)除真空度外,温度也是很多反应、试验和测试的另一个重要环境变量。在手套箱中放置相应的加热装置,就可以进行温度和真空度复合环境下的各种试验研究。以此类推,还可以配置其他物理量环境条件,形成多种边界条件下的多物理量耦合试验条件。 为充分发挥真空手套箱的强大功能,针对手套箱中真空度和温度这两个环境变量,本文详细介绍了准确测量和控制真空度和温度的一体化解决方案,并针对不同真空度范围介绍了真空度控制过程中的上游、下游和双向控制模式。[size=18px][color=#990000]2. 手套箱的真空度控制[/color][/size] 手套箱属于一种低真空环境腔体,采用机械泵一般手套箱的真空度最高可达绝对压力10Pa左右,通过抽真空和充惰性气体,由此手套箱的真空度可以控制在10Pa至一个大气压(绝对压力0.1MPa)的范围内。在如此跨越四个数量级的真空范围内进行控制,会根据实际需要采用不同精度的真空度传感器,相应就有不同控制模式。以下为各种控制模式的具体内容。[size=16px][color=#990000]2.1 上游控制模式[/color][/size] 如图1所示,在保持下游真空泵抽速恒定的条件下,上游控制模式是根据真空计测量信号,通过PID真空压力控制器调节上游进气口电动针阀的开度,即通过控制进气流量使手套箱内的压力控制在设定值。上游模式常用于高真空度控制。[align=center][img=真空手套箱,500,523]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111357256824_7565_3384_3.png!w690x722.jpg[/img][/align][align=center][color=#990000]图1 上游控制模式结构示意图[/color][/align][size=16px][color=#990000]2.2 下游控制模式[/color][/size] 如图2所示,在保持下游真空泵抽速恒定的条件下,下游控制模式是根据真空计测量信号,通过PID真空压力控制器调节下游出气口电动球阀的开度,即通过控制出气流量使手套箱内的压力控制在设定值。下游模式常用于低真空度控制。[align=center][img=真空手套箱,500,431]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111357506722_4691_3384_3.png!w690x595.jpg[/img][/align][align=center][color=#990000]图2 下游控制模式结构示意图[/color][/align][size=16px][color=#990000]2.3 双向控制模式[/color][/size] 上述上游和下游控制模式各有优势,在实际应用中很少单独使用,一般都是将上游和下游模式集成在一起用,即所谓的双向控制模式,如图3所示。在双向控制模式中,要求真空压力控制器具有正反向控制功能,即对上游电动针阀用反向控制,对下游电动球阀用反向控制。[align=center][img=真空手套箱,500,408]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111358058160_7167_3384_3.png!w690x564.jpg[/img][/align][align=center][color=#990000]图3 双向控制模式结构示意图[/color][/align][size=16px][color=#990000]2.4 双传感器自动切换模式[/color][/size] 如前所述,如果在10Pa~0.1MPa全范围内进行真空度的准确测量和控制,一般需要配置1000Torr和10Torr两只高精度的电容薄膜真空计,由此在控制过程中就需要进行传感器的自动切换。如图4所示,高切换点(2-3) 是低真空传感器工作的高点,低切换点(1-2) 是高真空传感器工作的低点,在这两点之间控制器进行平滑计算。当低真空测量值PV1和高真空测量值PV2的连续采样低于下切换点,切换到低真空传感器。当低真空测量值PV1和高真空测量值PV2的连续采样高于上切换点,则切换到高真空传感器。[align=center][img=真空手套箱,500,332]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111358269424_623_3384_3.png!w690x459.jpg[/img][/align][align=center][color=#990000]图4 双传感器自动切换过程示意图[/color][/align][size=18px][color=#990000]3. 真空计、阀门和控制器的选择[/color][/size][size=16px][color=#990000]3.1 真空度传感器的选择[/color][/size] 与其他任何传感器一样,各种真空度传感器也同样具有一定的测量范围和精度,基本规律也是测量范围宽的传感器,精度较差;测量精度高的传感器,测量范围较窄。对于手套箱,如图5所示,所采用的真空度传感器一般有以下三类: (1)常规真空计:皮拉尼真空计,精度为满量程的±(15~50)%,但一只真空计可覆盖全量程。 (2)高精度真空计:电容薄膜真空计,精度为满量程的±2.5%,如果覆盖10Pa~0.1MPa范围,一般需要配置1000Torr和10Torr两个真空计。 (3)超高精度真空计:半导体真空计,精度为满量程的±0.05%,有效量程为50Pa ~0.1MPa,无法覆盖较高真空。[align=center][img=真空手套箱,690,220]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111358455209_397_3384_3.png!w690x220.jpg[/img][/align][align=center][color=#990000]图5 三类真空度传感器:(a)皮拉尼计、(b)电容薄膜规、(c)半导体真空计[/color][/align][size=16px][color=#990000]3.2 电动阀门的选择[/color][/size] 在手套箱真空度控制中,一般会涉及两类阀门:一类是调节进气端流量的进气阀门,另一类是调节排气流量的排气阀门。进气阀门多用来进行小流量调节,因此一般选择针型阀;排气阀门多用来进行抽真空,因此一般要求使用口径较大的球形阀。由于要进行自动控制,无论是针型阀和球形阀,都要求可以用直流电压、直流电流或数字信号(RS485)进行驱动,即所谓的电动阀门或电子阀门。 电动针型阀选择小尺寸的步进电机驱动的电动针阀,如图6所示。这种电动针阀具有较高的响应速度(1s以内)和线性度(1%以内)。[align=center][color=#990000][img=真空手套箱,450,335]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111359021706_9837_3384_3.png!w603x449.jpg[/img][/color][/align][align=center][color=#990000]图6 电动针型阀[/color][/align] 电动球阀选择微型电动球阀,如图7所示。这种电动球阀同样具有较高的响应速度(7s以内),也可以选择开关时间1s以内的高速电动球阀。[align=center][img=真空手套箱,236,300]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111359189541_1861_3384_3.png!w315x400.jpg[/img][/align][align=center][color=#990000]图7 电动球阀[/color][/align][size=16px][color=#990000]3.3 控制器选择[/color][/size] 从上述手套箱真空度的各种控制模式可以看出,真空度的控制过程对控制器提出了很高的要求,如图8所示,所选择的控制器要满足以下几方面的要求:[align=center][color=#990000][img=真空手套箱,500,373]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111359333538_669_3384_3.png!w600x448.jpg[/img][/color][/align][align=center][color=#990000]图8 超高精度PID控制器[/color][/align] (1)最起码是PID控制器,并具有PID参数自整定功能。 (2)真空计自身精度较高,为充分发挥真空计测量精度,需要数据采集和控制的PID控制器通用要具有较高精度,建议控制器为24位A/D采集,16位D/A输出。 (3)至少2通道以上,实现温度和真空度同时测量及控制,并减小安装空间。 (4)多种输入信号接入功能,可直接连接热电偶、热电阻、直流电压等不同类型传感器的输入信号,实现不同参量的同时测试、显示和控制。 (5)正反向控制功能,以实现双向控制模式。 (6)具有双传感器切换功能,每一个通道都可支持温度高低温和高低真空度的双传感器切换,两通道可形成总共接入四只传感器的控制组合。 (7)程序控制功能,可自行建立和存储多个控制程序,使用时只需选择调用即可开始(程序控制模式)。 (8)具有通讯接口与计算机连接,如标准MODBUS协议的RS485接口等。[size=18px][color=#990000]4. 手套箱的温度控制[/color][/size] 手套箱除了可以提供真空环境之外,还可以在手套箱内放入加热装置进行不同温度下的各种试验和测试,由此就需要在手套箱应用中引入温度控制功能。 温度控制是一种非常成熟的经典技术,一般是结合温度传感器采用PID控制器予以实现。为了造价和安装体积的降低,一般是采用一个多通道PID控制器同时进行温度和真空度的控制,控制器与计算机通讯以显示和存储测量控制数据和曲线。 手套箱内的工作温度一般要求不能太高,但如果做好隔热防护和冷却,也可以实现1000℃以上的工作温度范围。温度测量传感器一般选择热电偶,如果对测量精度要求较高,也可以选择热电阻和热敏电阻温度传感器,这些传感器都可以直接与上述高精度PID控制器连接使用。[size=18px][color=#990000]5. 总结[/color][/size] 通过上述内容的介绍,基本讲清楚了手套箱中真空度和温度的各种控制方法和所涉及的主要传感器、电动阀门和PID控制器。在具体应用中,可以针对具体手套箱结构和功能进行局部改进,也可以根据实际要求进行手套箱的整体设计、安装和集成。 尽管本文只介绍了手套箱中真空度和温度的测量和控制,但这些方法和具体实施内容也可以推广应用到对气氛环境比较敏感的其它领域内的试验参量控制,如低温、几何量、光学和声学等领域。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [align=center][img=真空手套箱,690,308]https://ng1.17img.cn/bbsfiles/images/2021/12/202112111352279951_3805_3384_3.jpg!w690x308.jpg[/img][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制