催化剂原位红外光谱仪原理

仪器信息网催化剂原位红外光谱仪原理专题为您提供2024年最新催化剂原位红外光谱仪原理价格报价、厂家品牌的相关信息, 包括催化剂原位红外光谱仪原理参数、型号等,不管是国产,还是进口品牌的催化剂原位红外光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合催化剂原位红外光谱仪原理相关的耗材配件、试剂标物,还有催化剂原位红外光谱仪原理相关的最新资讯、资料,以及催化剂原位红外光谱仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

催化剂原位红外光谱仪原理相关的仪器

  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • 一体化设计、全密封结构,集成了防潮型 ZnSe 分束器和高灵敏度的检测器。宽敞的样品仓可与用户的红外透射池/ATR 附件/漫反射池完美匹配。即使实验中涉及的原位漫反射附件,如温控仪、管线等辅助设备都可以合理放置,不占用实验室有限的空间资源,使得整个原位红外装置简洁紧凑。FI-RXF100-R 额外配置了外置式可调节的高精度光圈,用户可以根据样品的特性(如厚度、颜色等)随时调节光圈大小,而无需在软件中进行选择,这样的设计配合不同档位的增益功能,可以让用户实时、快速地看到样品最大的红外光通量,获取最佳的信噪比。FI-RXF100-R 还可以安装其他各类原位红外漫反射附件或者原位吡啶吸附池等与催化剂表征相关的的红外装置。会按照您不同的科研项目,实现您个性化的实验需求。硬件特点干涉仪:具有优异的性能、良好的可靠性、完美的稳定性和极强的抗干扰性能;提供 10年期的质量担保光学系统:全部使用金反射镜,反射率比铝镜高 5 %以上;抗氧化性强,光学性能更稳定检测器:可选高灵敏度 DLaTGS、电子制冷 MCT、液氮制冷 MCT 等固态激光器:性能稳定,使用寿命达 10 年以上光源:高性能,使用寿命长FI-RXF100-R傅里叶变换红外光谱仪的应用领域:红外光谱仪可以采用不同的红外测量模式,比如固体透射、ATR 反射、漫反射等。固体透射: 各种固体粉末的压片; 薄膜材料的定性分析; 热压成膜定量分析; 可透红外光的材料,如各类玻璃、翡翠、晶体材料、功能改性材料等;固体 ATR 测量: 各类粉末样品,无需压片,直接测量; 不规则形状的样品,测后不破坏样品; 各类聚合物、纤维、薄膜等高聚物样品; 各种O 型圈、橡胶类样品; 其他透射难以测量的样品;液体透射: 密封液体池定量测量有机溶液、易挥发溶剂; 拆卸液体池,可改变光程,定量分析; 各类润滑油的定量分析; 在红外窗片上形成液膜进行定性分析;气体测量: 直通式气体池,玻璃或不锈钢材质,可选温控,光程可选 1.5 厘米、3 厘米、5 厘米、7 厘米等, 适合用户测量高浓度气体; 多次反射式气体池:不锈钢材质,可选温控,光程可选 50 厘米、100 厘米、5 米、定制光程等, 适合用户测量低浓度气体; 防腐气体池:可为用户定制特种材质的气体池,比如 热红联用、腐蚀性气体的测量;原位红外原理红外光谱的采集需要首先测量背景光谱,然后再采集样品谱图,系统会自动计算得到样品的透过光谱或者吸收光谱,这两种谱图形式可以相互转化。因此,如果用户想获得催化剂本身的谱图,那么就需要以氮气为背景测量空白光路,然后再测量催化剂的薄片即可。如果用户研究催化剂的吸附/脱附性能,那么我们可以直接以催化剂样品作为背景来测量,然后再通入探针分子进行吸附/脱附,这样获得的就是探针分子在催化剂表面的红外吸收。FI-RXF100-R 定制红外具备宽敞的样品空间,可以实现原位透射测量,也可以进行原位漫反射测量。下图为原位漫反射测量的示意图,配置有冷却水循环系统和高精度温控系统。FI-RXF100-R 在催化剂表征中的应用在催化研究领域,傅里叶变换红外光谱仪的应用越来越受到研究人员的重视。一方面,红外表征催化剂的方法简单,速度快,而且几乎没有任何耗材(正常的液氮消耗除外);另一方面,红外表征催化剂的方法很成熟,已经被众多研究者所认可。目前,市场上使用红外法来研究催化剂的方式主要有:原位红外漫反射和原位红外透射。这两种方法可以为用户提供以下信息: 研究催化剂的化学反应动力学 用于在线研究催化剂在高温或高压或高真空环境下的催化性能 获得催化反应的反应机理和反应过程 通过对探针气体分子与催化剂在不同温度下的吸附和脱附实验,可以了解催化剂表面的吸附活性位和吸附性能 对催化剂的酸碱性能进行有效表征 为制备新型的催化剂提供实验数据 实现对催化剂样品的成分鉴定和结构分析 FI-RXF100-R其它相关应用领域 可加热的原位透射池 高温原位漫反射红外池 材料的绝对透过率(平行光入射) 材料漫透射测量(积分球附件) 材料的反射率测量(反射角度 10°、30°、45°、80°及变角附件等) ATR 测量(晶体可选:金刚石、硒化锌、锗晶体等) 常规固体、液体、气体样品的透射表征 特别适用于: 定制化附件的应用 条件苛刻的测试环境主要技术性能光谱仪参数干涉仪:立体角镜迈克耳逊干涉仪,能适应各类现场分束器:硒化锌防潮分束器及防潮窗片红外光源:空冷陶瓷光源,1550K检测器:高灵敏度DLaTGS 检测器、或者可选液氮冷却 MCT 检测器光谱范围:8000~350cm-1/5000~500cm-1光谱分辨率:优于0 . 5 cm-1波数精度:优于 0.01 cm-1尺寸(长宽高):685 mm X 415 mm X 223mm重量:25kg原位漫反射系统反应池采用耐化学腐蚀的不锈钢制成,搭配可拆卸的不锈钢圆顶,圆顶带有两个 BaF2 红外透射窗一个蓝宝石测量窗口,可通过第三窗口引入触发光进行光化学、光催化原位表征。反应池运行温度和压力范围宽,温度范围室温 C -800°C,压力范围 133 kPa (1 ktorr) -0.133 mPa (10-6 torr),含水冷快速接头,两路K 型热电偶,三路反应气接口,可通过卡套、快插、KF 真空接头等方式与真空、配气系统相连接,兼容拉曼和红外漫反射测量。
    留言咨询
  • FI-RXF100-R-T双通道、双样品腔傅里叶红外光谱仪,是顺应市场需要推出的一款国产化研究型红外光谱分析系统,紧凑轻盈、灵活高效,可以满足透射、ATR测量、漫反射、镜反射等多种测量模式的任意组合,且无需频繁更换附件。满足第三方实验室固、液、气体样品的测量及科研院所对各类催化剂原位表征的需要。FI-RXF100-R-T创新性地设计出2个独立的、等效的样品腔,且不会额外增加仪器的体积,双通道自动切换技术,可以极大提高用户的测量效率;该系统配置高灵敏度液氮冷却MCT检测器及室温DLaTGS检测器,方便用户对不同的应用场景均可实现最优化测量。产品特点 双通道、双样品腔设计,相互独立且等效使用; 软件自动切换通道,方便快捷; 软件自动选择不同的扫描速度,可选择2.5K~60K等6挡速度; 软件自动进行K-M变换,更方便用户比较漫反射谱图的变化; 全自动采集及连续采集模式,满足在线分析和原位测量的需求; 随时保存或调入背景谱图进行分析,软件可提示背景有效时间; 样品腔宽敞通透,兼容各类大型红外附件; 大型附件不用频繁更换,光路准直性好; 防潮性ZnSe分束器,可免除用户的维护强度; 低温检测器和室温检测器的配合,使用户的检测效果更加优化; 适合各类催化剂的表征应用,原位反应池的气路、水路及电路等外围连接装置可以长久安置,不用担心更换; ATR测量和其他测量模式,可以平行并存,极大提高测试效率;FI-RXF100-R-T 在催化剂表征中的应用在催化研究领域,傅里叶变换红外光谱仪的应用越来越受到研究人员的重 视。一方面,红外表征催化剂的方法简单,速度快,而且几乎没有任何耗 材(正常的液氮消耗除外);另一方面,红外表征催化剂的方法很成熟, 已经被众多研究者所认可。目前,市场上使用红外法来研究催化剂的方式主要有:原位红外漫反射和 原位红外透射。这两种方法可以为用户提供以下信息: 研究催化剂的化学反应动力学 用于在线研究催化剂在高温或高压或高真空环境下的催化性能 获得催化反应的反应机理和反应过程 通过对探针气体分子与催化剂在不同温度下的吸附和脱附实验,可以了解催化剂表面的吸附活性位和吸附性能 对催化剂的酸碱性能进行有效表征 为制备新型的催化剂提供实验数据 实现对催化剂样品的成分鉴定和结构分析下图为中国科学院某研究所使用FI-RXF100-R-T对不同的催化剂进行原位漫反射和原位透射的表征现场。FI-RXF100-R-T 在多任务检测中的应用实验室检测人员往往会接到各类不同的样品测试需求,比如固体、液体、气体样品的测量,或者对样品进行不同的分析,透射或者ATR反射测量,这种情况下,更换不同的红外制样附件,耗时且易出错。FI-RXF100-R-T可以根据客户实际需求来配置固定的附件,自动实现光路的切换,准确高效。 可加热的原位透射池 高温/真空原位漫反射红外池 高温/高压原位漫反射红外池 低温/真空原位漫反射红外池 材料的绝对透过率(平行光入射) 材料漫透射测量(积分球附件) 材料的反射率测量(反射角度 10°、30°、45°、80°及变角附件等) ATR 测量(晶体可选:金刚石、硒化锌、锗晶体等) 常规固体、液体、气体样品的透射表征产品参数 项目FI-RXF100-R-T 主要参数通道/腔体全自动切换的双通道、双样品腔光谱范围5000-500cm-1 光谱分辨率≤0.5cm -1波数精度≤0.01cm-1 干涉仪国产高稳定立体角镜干涉仪,恒久准直,使用寿命大于 10 年分束器国产中红外专用硒化锌(ZnSe)防潮分束器 检测器1、高灵敏度液氮冷却 MCT 检测器,内置 ADC,液氮保持长达10 小时,标配面板防冻裂设计;2、防潮型高灵敏度 DLaTGS 检测器,内置 ADC红外光源长寿命中红外陶瓷光源,工作温度 1550K激光器固体激光器,10 年质保测量技术双通道测量技术,可以极大提高测量效率;独立、等效的双样品腔结构可以满足透射、ATR 测量、漫反射、镜反射等多种测量模式的任意组合,且无需频繁更换附件。满足实验室固、液、气体样品的测量及各类原位表征的需要。软件1、Win10 操作系统下的全中文版处理软件,功能包括:红外光谱测量功能、光谱数据预处理功能、谱图快速比较功能、标准谱峰检索功能、用户自建标准谱库功能、定量分析功 能、自动扣除金刚石/CO2 吸收峰功能、智能峰位识别报警功能、一键式测评功能、报告自动生成及打印功能等。2、可实现自动切换通道,配置 20K、40K、60K 等不同的快速扫描速度及漫反射测量 K-M 数据自动变换功能。3、可以实现全自动软件采集及连续采集,满足在线分析和原位测量的需求。数据库可根据用户需要,配置相应的的红外谱图数据库尺寸750 mm×515 mm×223 mm主机配置清单名称型号数量备注傅里叶红外光谱仪FI-RXF100-R-T1 台主机液氮检测器-1 套包含室温检测器-1 套包含干燥剂管-2 个包含电源线/网线-1 套包含电脑-1 套可选原位漫反射附件,可配置高温、低温、高压反应池-1 套可选原位透射附件(固液吸附、气固吸附)-1 套可选温控系统-1 套可选 配气系统-1 套可选循环水系统-1 套可选真空泵系统-1 套可选 其他可用于原位催化研究的主机除此之外,还提供其他高灵敏度红外主机用于催化剂的原位表征,比如:FI-RXF100-R 和 FI-RXF200。下图为某大学的客户使用 FI-RXF100-R 及原位漫反射池进行研究。
    留言咨询

催化剂原位红外光谱仪原理相关的方案

催化剂原位红外光谱仪原理相关的论坛

  • 【转贴】红外分光光度计--红外光谱研究吸附催化反应

    物理吸收电磁被附加分子以范德华力与吸附剂相结合。化学吸附则因被吸附分子和吸附剂间形成了离子键或共价键。这两种吸附情况,在红外光谱上的反映是不同的。物理吸附只看得谱带的位移、化学吸附由于形成了新的化学键,故出现新谱带。  (1)氮在低温多孔玻璃上的吸附是物理吸附。在未吸附氮分子的干燥多孔玻璃上,它的表面结构中羟基的倍频7326cm-1,引入氮分子后,它的倍频移到7257cm-1。并随时间的增加而加强。7326cm-1带则减弱,二十分钟后,7326cm-1源谱带完全消失。如加热到20℃ ,则7326cm-1带又出现了。这是因为加热使物理吸附的氮分子解吸了的缘故。     (2)乙烯催化加氢反应机理长久未能解决。最终还是用红外光谱解决了这个问题。有两种说法:①先打开双键CH2-CH2的缔合吸附再加氢。②先发生C-H断裂再加氢CH=CH+HM。      │  │              │ │      M  M              M M  由乙烯在镍上化学吸附后的红外光谱研究指出,这两种情况都有可能。而取决于实验条件——温度、压力、以及催化剂表面是否有一层预吸附层。如有预吸附层则为缔合吸附。这时在红外光谱上有2950-2880cm-1的饱和碳氢伸缩带及1465cm-1的亚甲基弯曲振动。  如催化剂表面无吸附层,则乙烯催化加氢的反应是离解型。红外光谱上有3030cm-1谱带出现,说明有v=CH伸缩振动带出现。

催化剂原位红外光谱仪原理相关的耗材

催化剂原位红外光谱仪原理相关的资料

催化剂原位红外光谱仪原理相关的资讯

  • 看散射型近场纳米红外光谱与成像系统如何助力胶原纤维、生物催化、活体细胞等生物领域研究
    一、胶原纤维研究 胶原纤维是人体各种器官(如骨、肌肉)中关键的组成成分之一。胶原纤维拥有复杂的微纳生物结构,这种结构的有序排列使胶原纤维能够表现出优异的生理性能,同时,这种结构的改变会导致其生理特征的急剧变化。劳损、骨折等常见疾病的发病机理就与胶原微纳结构变化密切相关。如何观测并理解胶原纤维微纳尺度的结构变化是治疗相关胶原类疾病的关键所在。 近日,中国科学院物理研究所陈佳宁课题组利用散射式近场扫描显微镜(IR-neaSCOPE)对胶原纤维进行纳米分辨率红外扫描成像。该研究通过在组织切片表面近场测量紧凑排布的胶原纤维簇,对胶原纤维的纳米周期性横纹结构进行量化分析,并观察到胶原纤维发生的横纹倾斜现象。该研究借助胶原晶格模型解释其现象的产生机理,揭示了胶原纤维内部分子间可能存在的滑移位错形变。 该结果有助于人们理解胶原结构失序时胶原纤维可能发生的纳米结构变化,为解读胶原类疾病的发病机理提供了新思路。同时,该工作展示了s-SNOM在生命科学中对于生物微纳尺度结构研究的广阔应用前景。相关结果发表在近期的《Nano Research》上。该工作得到了重点研发计划、自然科学基金,中国科学院战略重点研究计划的资助。 二、生物催化(MOF体系)研究 生物催化转化在生物体中,如多酶催化联,在不同的细胞膜区隔的细胞器中高效率地进行。然而,在自然系统中模拟生物催化联过程仍然具有挑战性。 近日,华东师范大学李丽老师课题组报道了多壳金属有机骨架(MOF)可以作为一种层次化的支架,在纳米尺度上对酶进行空间组织,以提高联催化效率。 研究人员通过外延逐壳过生长的方法将多壳MOF包裹在多酶上,其催化效率是溶液中游离酶的5.8~13.5倍。重要的是,多壳MOF可以作为一个多空间隔室的纳米反应器,允许在一个MOF纳米颗粒中物理分隔多个酶,以便在一个锅中进行不相容的串联生物催化反应。研究人员使用纳米傅立叶变换红外光谱(Nano-FTIR)来解决与多壳MOF中的酶相关的纳米振动活性的不均一性。多壳MOF能够根据特定的串联反应路线方便地控制多酶的位置,其中载酶1和载酶2的壳沿内到外壳的紧密定位可以有效地促进质量传递,从而促进高效的串联生物催化反应。 这项工作有望为设计高效的多酶催化联反应提供新的思路,以鼓励其在许多化工和制药工业过程中的应用。 三、原位液相活体细胞研究 近日,德国attocube systems AG的工程师Korbinian联合德国慕尼黑大学Fritz Keilmann课题组报道了基于散射型纳米红外成像与光谱技术在液相环境关于纳米颗粒和活体细胞的定量研究。纳米红外光谱与成像的液相探测基于一个由10 nm厚度的SiN薄膜和金属液相池组成,通过扫描探针在针形成有效的红外探测近场对吸附(浸润)在SiN另一侧的纳米颗粒或活体细胞进行原位液相扫描。 液相原位纳米红外成像与光谱下的A 549癌细胞 这项工作是基于反射式光路的散射型扫描近场显微镜(s-SNOM)和nano-FTIR建立的原位液相样品池,通过搭配波长可调谐的红外激光器,有希望拓展从近红外(特别是近红外II区)到中红外(全指纹区覆盖)乃至远红外的全红外波段的液相环境下材料和细胞的纳米尺度探测。
  • 红外光谱仪在各行业中的应用
    近些年来,随着红外光谱仪的在行业中的广泛应用,给人们的生活带来了很大的变化,下面小编就给大家介绍几个主要的应用领域以便大家参考。一、在化学、化工方面的应用在该方面的应用又可分为表面化学、催化化学和石油化学方面的应用。1、在表面化学研究中的应用红外光谱技术在表面化学研究中的应用具有两个鲜明特征:(1))继续不断地开发表面与薄膜的原位和实时红外分析技术。根据报道已有一种适用于原位和同时红外分析的FT-IR扩散反射室。(2)以红外吸附光谱(IRAS ) ,ATRFT-JR、和R反射光谱为代表的红外光语技术广泛地应用于研究自组织膜和L-B膜。如应用IR反射光谱研究薄膜,测定组织薄膜的厚度、成分和结构,傅立叶变换红外光谱仪在石油化学中的应用是一个十分广泛的领域,如在重油的组成、性质与加工方面,应用R表面自硅胺色谱得到的胶质和沥清质。红外光谱仪在润渭油及其应用方面的进展体现在∶用于鉴别未知油品和标定润滑油的经典协理性质(如贴粘度、总酸值、总碱值) 被纳入以设备状态监测为目的的油液分析计划,用于表征在用油液的降解和污染程度,油润滑表面摩擦化学过程及产物的原位监测与表征。红外光谱仪应用于轻质油品生产控制和性质分析方面的主要进展包括∶应用红外光谱预厕汽油的辛烷值,应用IR测定汽油中含匐化合物的含量。此外,还应用ATRFT-R与GC联用测定汽油中的芳烂的含量。3、在催化化学研究中的应用(1)扩韵反射红外光膳傅立叶变换光港(DRIFTS)的应用报道特别突出,其次是IRAS,DRIFTS用于监控催化剂表面吸附化合物的分解动力学。IRAS的典型应用实例包括研究CO在P催化剂表面的氧化反应动力学,以及研究NO和CO在Pd和Pd-Sio2表面的共吸附现象。(2〉原位红外光道技术除了依然应用普通的原位红外光罐技术研究懂化反应过程外,还应用于原位反射/吸附红外光谱研究催化剂表面的点位阻塞效应,另外产生了大星新的与原位红外光谱技术相配合的附件装置。4、在半导体和超导材料等方面的应用在此方面的应用主要有∶分析抽原子与CO和CO2反应产物的基体红外光增,研究了铀。钴。镍。锡变性锰铝锏强逝性合金的远红外性质。分析C60填料笼形包含物的红外和拉曼光港。用反射傅立叶变换红外显微光谱法测定有机富油页岩中海藻化石。5、在环境分析中的应用用气相色谱﹑傅立叶变换红外联用技术测定水中的污染物,结台了毛细管气相色谱的高分排能力和傅立叶变换红外光谐快速扫描的特点,对C -MS不能鉴别的异构体,提供了完整的分子结构信息,有利于化合物首能团的判定。K1A1KoCk等报道了气相色谱/红外光潜Ⅰ质道联目技术在环境分析中的应用。运用傅立叶变换红外遥感技术,可以测定工业大气空间的特性。由于控制汽油质星与保护环境密切相关,应用美国HP GCIRP Ms测定汽油中的甲醇、乙醇、1-丙醇、2-丙酿、1-丁醇、﹖-丁馥、异丁酿、特丁醇、苯、甲苯、邻二甲苯、间二甲苯、对二甲苯等,其准确度为1%,相对偏差为0.155%。应用傅立叶变换红外法可以定量分析气态经类混和物,对于测定水中的石油怪类,非色散红外法已成为我国环境监测的标准方法。二、在临床医学和药学方面的应用监于每个化合物都有自己独持的红外光谱,除特殊情况外,目前尚未发现两种不同的化合物具有相同的红外光港,所以红外光谱为药品质量的监测提供了快速准确的方法。如药材天麻、阿胶,西药红霉素、环磷酰胺的监测和抗肝炎药联笨双酯同质异晶体的研究。傅立叶变换红外光谱仪在临床疾病检测方面也有广泛的应用,如利用红外光谱法对冠心病、动赫硬化、糖尿病、癌症的检测。红外光道法测定蛋白质基体中的葡萄塘含量。以及用FT- Raman光谱在700 ~ 1900 cm - 1处的差异,对胃、牙齿、血管、肝等人体组织的研究可用于体内诊断。恶性肿瘤是一种严重危害人类身心健康并消耗大星医疗卫生资源的疾病,由于目前缺乏有效的对晚期癌症的治疗手段,肿瘤的早期诊断对延长患者的生存时间和提高生活质量具有重要的意义。傅里叶变换红外光谱可以提供有关分子结构和变化的多种信息,能在分子水平对细胞组织的改变做出反映,是行之有效的肿瘤早期检测的手段,较传统的肿瘤手段而言具有快速,准确,客观等特点 甚至可以通过光纤附件,实现肿瘤的原位、在体、实时检测和诊断。通过胃癌组织与正常组织的FTIR谱图比较,可以发现胃癌组织具有特征性的光谱。此外,傅立叶变换红外光谱仪在其传统领域———物质结构分析、热力学状态分析、热/动力学过程分析与表征也有着不同程度的进展。
  • 将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化
    1. 文章信息标题:Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/ AgCl@SiO2DOI: 10.1039/d2sc01140a2. 文章链接https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC01140A3. 期刊信息期刊名:Chemical ScienceISSN:2041-65202020年影响因子:9.825分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(首要作者),周宝文(首要通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)、NP2000、CEL-SPS1000、CEL-TPV2000文章简介:设计一种能够在温和条件下利用甲烷的光催化剂具有重要意义,我们制备了一种Ag/AgCl@SiO2 光催化剂,其可以高选择性将甲烷光氧化为一氧化碳,一氧化碳产量为2.3 为μmol/h,选择性为73%。基于半原位红外光谱学、电子顺磁共振等一系列表征研究,二氧化硅的引入可以增加光生载流子的寿命,并且揭示了甲烷通过原位形成的单线态氧转化为COOH*中间体从而氧化为CO的中间过程。同时Ag/AgCl@SiO2催化剂也能在环境条件下使用真实的阳光进行甲烷的转化。 我们一致认为本文的创新之处有以下几点:1. 首次将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化2. 通过一系列表征表明二氧化硅的引入可以增加载流子的寿命3. 在真实太阳光下也能发生图1 催化机理图

催化剂原位红外光谱仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制