当前位置: 仪器信息网 > 行业主题 > >

口腔分光光度计比色仪原理

仪器信息网口腔分光光度计比色仪原理专题为您提供2024年最新口腔分光光度计比色仪原理价格报价、厂家品牌的相关信息, 包括口腔分光光度计比色仪原理参数、型号等,不管是国产,还是进口品牌的口腔分光光度计比色仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合口腔分光光度计比色仪原理相关的耗材配件、试剂标物,还有口腔分光光度计比色仪原理相关的最新资讯、资料,以及口腔分光光度计比色仪原理相关的解决方案。

口腔分光光度计比色仪原理相关的论坛

  • 便携式分光光度计与台式分光光度计一样吗?

    实验室常用的分光光度计可以分为可见分光光度计和紫外-可见光分光光度计。各种类型分光光度计的结构和原理基本相同,一般包括光源、单色器、比色皿、检测器和显示器。台式分光光度计通常在实验室内部使用,不随意挪动位置,利于多种参数的测定。[url=http://www.hach.com.cn/product/dr1900]便携式分光光度计[/url]的原理、结构基本和台式分光光度计一样,只是各组成部分更加精密,大大减小了仪器的体积,便于携带,通常在野外和户外使用。

  • 分光光度计和酶标仪

    分光光度计和酶标仪区别分光光度计:利用单色仪或特殊光源提供的特定波长的单色光通过标样和被分析样品,比较两者的光强度来分析物质成分的光谱仪器。分光光度法则是通过测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析。常用的波长范围为:(1)200~400nm的紫外光区,(2)400~760nm的可见光区,(3)2.5~25μm(按波数计为4000cm~400cm)的红外光区。所用仪器为紫外分光光度计、可见光分光光度计(或比色计)、红外分光光度计或(或原子吸收分光光度计)。酶标仪:实际上就是一台变相的专用光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同。酶标仪按照功能的不同划分,可以分为(1)光吸收酶标仪(可见酶标仪,紫外/可见酶标仪)(2)荧光酶标仪(3)化学发光酶标仪。分光光度计和酶标板存在一些不同之处,具体差别体现在以下几个方面:(1)盛装待测溶液的容器:分光光度计用的是比色皿,酶标仪使用的是塑料微孔板(酶标板)。比色皿只能起到盛装溶液的作用,每个比色皿一次只能盛装一种溶液。酶标板常用透明的聚乙烯材料制成,对抗原抗体有较强的吸附作用,因此用它作为固相载体,酶标板通常为48孔或96孔,每个微孔可以盛装不同的溶液。(2)光路的方向:分光光度计是水平光路,而酶标仪则是垂直光路。由于酶标板盛样本的塑料微孔板是多排多孔的,光线只能垂直穿过,因此酶标仪的光束都是垂直通过待测溶液和微孔板的,光束既可是从上到下,也可以是从下到上穿过比色液。垂直光的特点是标本吸光度受液体浓缩或稀释的影响小,不足之处是受被测样本液面是否水平、酶标板透光性、孔底是否平整等的影响较大。(3)光路的长度:由于光密度(OD值)与吸光系数, 待测组分的浓度以及光路长度成正比关系。分光光度计采用的比色杯的宽度通常是1cm,所以光路长度固定为1cm。因此不同仪器,不同批次测量的数据具有同样的可比性。而酶标仪采用的是垂直光路, 所以光路的长度应该是液体液面的高度。所以测得的值受到样品的体积的影响。[font=宋体

  • 可见分光光度计工作原理及与紫外分光光度计的区别

    [font=微软雅黑]可见分光光度计(又名可见光度计、分光光度计)是可见光分光光度法是采用新型单片机技术,开发出能够进行定量测量(标准曲线测量,可对物质进行浓度直读);OD值直接测量(吸光度、透过率和能量等直读);动力学测试(测出物质浓度随时间变化OD值的变化);光谱扫描(可以对某一种物质进行全波段扫描,分析物质的特征波长,判断实验过程的误差);多波长测试(可以对物质同时进行多个波长的测试,分析物质的相关特性);还有可以进行DNA蛋白质测试、总磷总氮测试、重金属测试、农药残留测试、食品安全检测、热力发电金属离子测试等。[/font][font=微软雅黑][/font][b][b][font=微软雅黑][color=#008000]波长范围[/color][/font][/b][/b][font=微软雅黑]可见分光光度计的波长适用范围一般从350nm左右开始到1100nm左右,紫外可见分光光度计的波长适用范围一般从190nm到1100nm。从这点区别上看就是波长的适用范围不一样,紫外可见分光光度计多了从190到350nm左右这段波长。[/font][font=微软雅黑][/font][b][b][font=微软雅黑][color=#008000]光源不同[/color][/font][/b][/b][font=微软雅黑]可见分光光度计的光源一般只用钨灯,而紫外可见分光光度计是用钨灯 氘灯两个光源,同时还多了这两个光源灯的切换部件。这是因为钨灯的光谱范围主要在可见到近红外这段,氘灯主要在紫外端。也正是因为光源的不一样,紫外可见分光光度计也多了一个专门提供氘灯工作的氘灯电源了。[/font][b][b][font=微软雅黑][color=#008000]光学器件不同[/color][/font][/b][/b][font=微软雅黑]由于玻璃能吸收紫外波,而对可见到近红外端有比较好的透过性,所以可见分光光度计的一些光学部件可以使用玻璃,而紫外可见分光光度计就不能使用玻璃部件,一般使用石英光学部件。同时由于这个原因,在比色皿的选择上也就有不同了,可见分光光度计可以使用玻璃制的比色皿,而紫外可见分光光度计一般使用石英制的比色皿了。[/font][font=微软雅黑][/font][b][b][font=微软雅黑][color=#008000]接收器不同[/color][/font][/b][/b][font=微软雅黑]由于紫外可见分光光度计多了紫外波,所以在接收器的选择上也就不一样了。多了对紫外波的灵敏响应功能,这类接收器的价格就比可见分光光度计的接收器贵了很多了。[/font]

  • 分光光度计和酶标仪异同

    分光光度计和酶标仪都是实验室常用的两种仪器,它们的测定原理是相同的,都是使用朗伯-比耳定律,测定的都是样本的吸光度。酶标仪按照功能的不同划分,可以分为(1)光吸收酶标仪(可见酶标仪,紫外/可见酶标仪)(2)荧光酶标仪(3)化学发光酶标仪。分光光度计按照波长及应用领域的不同可以分为:(1)可见光分光光度计(2)紫外分光光度计(3)红外分光光度计(4)荧光分光光度计(5)[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计。  分光光度计和酶标板存在一些不同之处,具体差别体现在以下三个方面:  (1)盛装待测溶液的容器:分光光度计用的是比色皿,酶标仪使用的是塑料微孔板(酶标板)。比色皿只能起到盛装溶液的作用,每个比色皿一次只能盛装一种溶液。酶标板常用透明的聚乙烯材料制成,对抗原抗体有较强的吸附作用,因此用它作为固相载体,酶标板通常为48孔或96孔,每个微孔可以盛装不同的溶液。  (2)光路的方向:分光光度计是水平光路,而酶标仪则是垂直光路。由于酶标板盛样本的塑料微孔板是多排多孔的,光线只能垂直穿过,因此酶标仪的光束都是垂直通过待测溶液和微孔板的,光束既可是从上到下,也可以是从下到上穿过比色液。垂直光的特点是标本吸光度受液体浓缩或稀释的影响小,不足之处是受被测样本液面是否水平、酶标板透光性、孔底是否平整等的影响较大。  (3)光路的长度:由于光密度(OD值)与吸光系数, 待测组分的浓度以及光路长度成正比关系。分光光度计采用的比色杯的宽度通常是25px,所以光路长度固定为25px。因此不同仪器,不同批次测量的数据具有同样的可比性。而酶标仪采用的是垂直光路, 所以光路的长度应该是液体液面的高度,所以测得的值受到样品的体积的影响。

  • 分光光度计比色皿大小与吸光度关系

    分光光度计法测试离子膜烧碱中铁含量时,测试要求用D=4cm或5cm的比色皿,但是我们的光度计只带有1cm比色皿。据D与A成正比的关系换算出铁含量,可以么?为什么?如何解决?

  • 分光光度计工作原理的限制性条件

    分光光度计的工作原理是1、物质对光的选择吸收,2、琅伯-比尔定律。我们这里讨论琅伯-比尔定律的限制性条件。其一:通过溶液的光必须是平行的;其二:通过溶液的光必须是单色光;其三:待测溶液必须是纯净的、均匀的且浓度不宜过高,这是琅伯-比尔定律首要的三个前提条件。但是在实际的分光光度计的制造和使用过程中这三个条件是不可能达到的。其一:因为光是直线传播的,在分光光度计制造过程中,灯源发出的光是发散的,经过聚焦镜进行聚焦等直到经过溶液的整体过程中,光是不可能平行的。其二:灯源发出的光是复合光,经过狭缝,再经过光栅分光等步骤,因为受到狭缝和光栅本身的限制,光栅分光不可能达到纯单色光。还有光度计的整体设计问题,光度计不可能没有其它的杂光存在。其三:用户的溶液也不可能是纯净的,也会含有一些杂质,这些对光度的吸收都会存在影响。除以上三个方面的影响外,在实际的光度计应用过程中还会存在其他因素的影响,例如:1、经过比色皿的光是否垂直;2、比色皿宽度是否为10mm的标准值;3、测试波长是否准确;4、程序设计是否存在漏洞等等,都会直接影响到利用琅伯-比尔定律计算出的结果。所以在日常的测试过程中,得出的结果和琅伯-比尔定律有些偏差是很正常的,只是我们关注偏差多少的问题。

  • 酶标仪与分光光度计的优缺点

    酶标仪和分光光度计都是实验室常用的分析测量工具,它们的测定原理是相同的,都是使用朗伯-比耳定律,测定的都是样本的吸光度。 一、酶标仪和分光光度计的三大差别 酶标仪即酶联免疫检测仪。是酶联免疫吸附试验的专用仪器又称微孔板检测器。可简单地分为半自动和全自动2大类,但其工作原理基本上都是一致的,其核心都是一个比色计,即用比色法来进行分析。测定一般要求测试液的最终体积在250μL以下,用一般光电比色计无法完成测试,因此对酶标仪中的光电比色计有特殊要求。 分光光度计,又称光谱,是将成分复杂的光分解为光谱线的科学仪器。测量范围一般包括波长范围为380~780 nm的可见光区和波长范围为200~380 nm的紫外光区。不同的光源都有其特有的发射光谱,因此可采用不同的发光体作为仪器的光源。 同为,实验室内测定吸光度的仪器,酶标仪和分光光度计存在一些不同之处,具体差别体现在以下三个方面: (1)盛装待测溶液的容器: 分光光度计用的是比色皿,酶标仪使用的是塑料微孔板(酶标板)。比色皿只能起到盛装溶液的作用,每个比色皿一次只能盛装一种溶液。酶标板常用透明的聚乙烯材料制成,对抗原抗体有较强的吸附作用,因此用它作为固相载体,酶标板通常为48孔或96孔,每个微孔可以盛装不同的溶液。 (2)光路的方向: 分光光度计是水平光路,而酶标仪则是垂直光路。由于酶标板盛样本的塑料微孔板是多排多孔的,光线只能垂直穿过,因此酶标仪的光束都是垂直通过待测溶液和微孔板的,光束既可是从上到下,也可以是从下到上穿过比色液。垂直光的特点是标本吸光度受液体浓缩或稀释的影响小,不足之处是受被测样本液面是否水平、酶标板透光性、孔底是否平整等的影响较大。 (3)光路的长度: 由于光密度(OD值)与吸光系数, 待测组分的浓度以及光路长度成正比关系。 分光光度计采用的比色杯的宽度通常是1cm,所以光路长度固定为1cm。因此不同仪器,不同批次测量的数据具有同样的可比性。 而酶标仪采用的是垂直光路, 所以光路的长度应该是液体液面的高度。所以测得的值受到样品的体积的影响。 二、酶标仪和分光光度计的优缺点比较 分光光度计: 优点:1、检测波长范围较宽;2、加样量不一致对测量结果没有影响。 缺点:1、工作量大,操作繁琐,耗时;2、耗试剂;3、结果稳定性差,重复性较差,误差较大;4、对于微量物质,难以检测到。 主要应用领域:药品检验、药物分析、环境检测、卫生防疫食品、化工、科研等领域对物质进行定性、定量分析。 酶标仪: 优点:1、一次性处理样品量大,省时;2、样本、试剂用量少;3、操作简单,重复性好,检测速度快、效率高。 缺点:1、酶标仪96孔板在紫外光区有较强的紫外吸收,应尽量避免在300nm以下使用酶标仪进行含量测定;2、必须确保微孔板每个孔加样量严格一致,对实验者的操作技能提出了更高的要求。 主要应用领域:临床检验、生物学研究、农业科学、食品和环境科学等。

  • 分光光度计的比色皿能烘吗?

    今天看到新来的同事,拿了一个分光光度计的玻璃比色皿在烘箱里烘干,我就随口说了一句:比色皿能烘吗?他说:为什么不能烘?我还真不知道能不能烘,你知道吗?比色皿能烘吗?

  • 【分享】UV分光光度计的应用原理

    UV分光光度计已经成为现代分子生物实验室常规仪器。UV分光光度计是一种是利用物质对光的选择吸收现象,进行物质的定性和定量分析的光电式分析仪器,也是一种光谱仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。那么UV分光光度计的应用原理又是怎样呢,其实UV分光光度计的应用原理非常简单。UV分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。

  • 总氮的测定 紫外分光光度计 石英比色皿调皿差。。

    我们是刚出来实习的大学生,公司的紫外分光光度计 还有 石英比色皿 都特别灵敏,调皿差特别不好调,就算用酸泡洗过后还是一样的。就连测定水样的时候也是,数值一直在跳,不好稳定下来。有没有什么好的方法解决这个问题? (我们公司的紫外分光光度计是可读到小数点后4位数的,跟我们当时在学校时候用的不太一样。)

  • 【资料】分光光度计的应用常识(原理与应用)

    分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。 分光光度计的简单原理 分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。

  • 【原创】72型分光光度计 原理

    72型分光光度计是可见光分光光度计,波长范围为420nm~700nm,它由三大部分组 成:磁饱和稳压器、光源、单色光器和测光机构、微电计。其光学系统如图5-11所示。72型分光光度计的基本依据是朗伯—比耳定律,它是根据相对测量原理工作的,即先选定某一溶剂作为标准溶液,设定其透光率为100%,被测试样的透光率是相对于标准溶液而言的,即让单色光分别通过被测试样和标准溶液,二者能量的比值就是在一定波长下对于被测试样的透光率。如图所示,白色光源经入射狭缝、反射镜和透光镜后,变成平行光进入棱镜,色散后的单色光经镀铝的反射镜反射后,再经过透镜并聚光于出射狭缝上,狭缝宽度为0.32nm。反射镜和棱镜组装在一可旋转的转盘上并由波长调节器的凸轮所带动,转动波长调节器便可以在出光狭缝后面选择到任一波长的单色光。单色光透过样品吸收池后由一光量调节器调节为适度的光通量,最后被光电电池吸收,转换成电流后由微电计指示,从刻度标尺 上直接读出透光率的值。分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。 分光光度计的简单原理分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。核酸的定量核酸的定量是分光光度计使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260 nm。 每种核酸的分子构成不一,因此其换算系数不同。定量不同类型的核酸,事先要选择对应的系数。如:1OD的吸光值分别相当于50μg/ml的dsDNA,37μg/ml的ssDNA,40μg/ml的RNA,30μg/ml的Olig。测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。测试前,选择正确的程序,输入原液和稀释液的体积,尔后测试空白液和样品液。然而,实验并非一帆风顺。读数不稳定可能是实验者最头痛的问题。灵敏度越高的仪器,表现出的吸光值漂移越大。事实上,分光光度计的设计原理和工作原理,允许吸光值在一定范围内变化,即仪器有一定的准确度和精确度。如EppendorfBiophotometer的准确度≤1.0%(1A)。这样多次测试的结果在均值1.0%左右之间变动,都是正常的。另外,还需考虑核酸本身物化性质和溶解核酸的缓冲液的pH值,离子浓度等:在测试时,离子浓度太高,也会导致读数漂移,因此建议使用pH值一定、离子浓度较低的缓冲液,如TE,可大大稳定读数。样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒,尤其是核酸样品。这些小颗粒的存在干扰测试效果。为了最大程度减少颗粒对测试结果的影响,要求核酸吸光值至少大于0.1A,吸光值最好在0.1-1.5A。在此范围内,颗粒的干扰相对较小,结果稳定。从而意味着样品的浓度不能过低,或者过高(超过光度计的测试范围)。最后是操作因素,如混合要充分,否则吸光值太低,甚至出现负值;混合液不能存在气泡,空白液无悬浮物,否则读数漂移剧烈;必须使用相同的比色杯测试空白液和样品,否则浓度差异太大;换算系数和样品浓度单位选择一致;不能采用窗口磨损的比色杯;样品的体积必须达到比色杯要求的最小体积等多个操作事项。除了核酸浓度,分光光度计同时显示几个非常重要的比值表示样品的纯度,如 A 260 / A 280的比值,用于评估样品的纯度,因为蛋白的吸收峰是 280 nm。纯净的样品,比值大于 1.8(DNA)或者2.0(RNA)。如果比值低于 1.8 或者2.0,表示存在蛋白质或者酚类物质的影响。A 230表示样品中存在一些污染物,如碳水化合物,多肽,苯酚等,较纯净的核酸 A 260 / A 230 的比值大于 2.0。A 320检测溶液的混浊度和其他干扰因子。纯样品,A 320 一般是 0。蛋白质的直接定量(UV法)这种方法是在280 nm波长,直接测试蛋白。选择 Warburg公式,光度计可以直接显示出样品的浓度,或者是选择相应的换算方法,将吸光值转换为样品浓度。蛋白质测定过程非常简单,先测试空白液,然后直接测试蛋白质。由于缓冲液中存在一些杂质,一般要消除320 nm的“背景”信息,设定此功能“开”。与测试核酸类似,要求 A 280 的吸光值至少大于 0.1A,最佳的线性范围在1.0-1.5 之间。实验中选择 Warburg 公式显示样品浓度时,发现读数“漂移”。这是一个正常的现象。事实上,只要观察A 280的吸光值的变化范围不超过 1%,表明结果非常稳定。漂移的原因是因为 Warburg公式吸光值换算成浓度,乘以一定的系数,只要吸光值有少许改变,浓度就会被放大,从而显得结果很不稳定。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受到平行物质的干扰,如DNA 的干扰;另外敏感度低,要求蛋白的浓度较高。比色法蛋白质定量蛋白质通常是多种蛋白质的化合物,比色法测定的基础是蛋白质构成成分:氨基酸(如酪氨酸,丝氨酸)与外加的显色基团或者染料反应,产生有色物质。有色物质的浓度与蛋白质反应的氨基酸数目直接相关,从而反应蛋白质浓度。比色方法一般有 BCA,Bradford,Lowry 等几种方法。Lowry 法:以最早期的 Biuret 反应为基础,并有所改进。蛋白质与Cu2+反应,产生蓝色的反应物。但是与 Biuret相比,Lowry 法敏感性更高。缺点是需要顺序加入几种不同的反应试剂;反应需要的时间较长;容易受到非蛋白物质的影响;含EDTA,Triton x-100,ammonia sulfate 等物质的蛋白不适合此种方法。BCA(Bicinchoninine acid assay)法:这是一种较新的、更敏感的蛋白测试法。要分析的蛋白在碱性溶液里与Cu2+反应产生 Cu+,后者与 BCA 形成螯合物,形成紫色化合物,吸收峰在 562 nm波长。此化合物与蛋白浓度的线性关系极强,反应后形成的化合物非常稳定。相对于 Lowry 法,操作简单,敏感度高。但是与 Lowry法相似的是容易受到蛋白质之间以及去污剂的干扰。Bradford 法:这种方法的原理是蛋白质与考马斯亮兰结合反应,产生的有色化合物吸收峰595 nm。其最大的特点是,敏感度好,是 Lowry 和 BCA 两种测试方法的 2倍;操作更简单,速度更快;只需要一种反应试剂;化合物可以稳定1小时,方便结果;而且与一系列干扰 Lowry,BCA 反应的还原剂(如DTT,巯基乙醇)相容。但是对于去污剂依然是敏感的。最主要的缺点是不同的标准品会导致同一样品的结果差异较大,无可比性。某些初次接触比色法测定的研究者可能为各种比色法测出的结果并不一致,感到迷惑,究竟该相信哪种方法?由于各种方法反应的基团以及显色基团不一,所以同时使用几种方法对同一样品得出的样品浓度无可比性。例如:Keller 等测试人奶中的蛋白,结果 Lowry,BCA测出的浓度明显高于Bradford,差异显著。即使是测定同一样品,同一种比色法选择的标准样品不一致,测试后的浓度也不一致。如用Lowry测试细胞匀浆中的蛋白质,以 BSA 作标准品,浓度1.34 mg / ml,以 a 球蛋白作标准品,浓度 2.64 mg /ml。因此,在选择比色法之前,最好是参照要测试的样本的化学构成,寻找化学构成类似的标准蛋白作标准品。另外,比色法定量蛋白质,经常出现的问题是样品的吸光值太低,导致测出的样品浓度与实际的浓度差距较大。关键问题是,反应后的颜色是有一定的半衰期,所以每种比色法都列出了反应测试时间,所有的样品(包括标准样品),都必须在此时间内测试。时间过长,得到的吸光值变小,换算的浓度值降低。除此,反应温度、溶液PH值等都是影响实验的重要原因。此外,非常重要的是,最好是用塑料的比色法。避免使用石英或者玻璃材质的比色杯,因为反应后的颜色会让石英或者玻璃着色,导致样品吸光值不准确。细菌细胞密度(OD 600)实验室确定细菌生长密度和生长期,多根据经验和目测推断细菌的生长密度。在遇到要求较高的实验,需要采用分光光度计准确测定细菌细胞密度。OD600是追踪液体培养物中微生物生长的标准方法。以未加菌液的培养液作为空白液,之后定量培养后的含菌培养液。为了保证正确操作,必须针对每种微生物和每台仪器用显微镜进行细胞计数,做出校正曲线。实验中偶尔会出现菌液的OD值出现负值,原因是采用了显色的培养基,即细菌培养一段时间后,与培养基反应,发生变色反应。另外,需要注意的是,测试的样品不能离心,保持细菌悬浮状态。分光光度计的重要配件 —— 比色杯比色杯按照材质大致分为石英杯、玻璃杯以及塑料杯。根据不同的测量体积,有比色杯和毛细比色杯等。一般测试核酸和紫外定量蛋白,均采用石英杯或者玻璃杯,但是不适合比色法测定。因为反应中的染料(如考马斯亮兰)能让石英和玻璃着色,所以必须采用一次性的塑料杯。而塑料杯一般不适合用于在紫外范围内测试样品。由于另外测试的样品量不同,所以一般分光光度计厂家提供不同容积的比色杯以满足用户不同的需求。目前市场已经存在一种既可用于核酸、紫外蛋白质定量,亦可用于蛋白比色法测定的塑料杯,样品用量仅需50μl,比色杯单个无菌包装,可以回收样品。如Eppendorf UVette?塑料比色杯,是目前比色杯市场上一个革新。随着生命科学以及相

  • 紫外分光光度计的最基本的工作原理介绍

    紫外分光光度计根本作业原理和红外光谱仪类似,使用必定频率的紫外可见光照耀被剖析的有机物质,导致分子中价电子的跃迁,它将有挑选地被吸收。一组吸收随波长而改变的光谱,反映了试样的特征。在紫外可见光的范围内,关于一个特定的波长,吸收的程度正比于试样中该成分的浓度,因而测量光谱可以进行定性剖析,而且根据吸收与已知浓度的标样的对比,还能进行定量剖析。  紫外-可见分光光度计  紫外-可见分光光度计的类型很多,但可概括为三种类型,即单光束分光光度计、双光束分光光度计和双波长分光光度计。  1、单光束分光光度计  经单色器分光后的一束平行光,轮番经过参比溶液和样品溶液,以进行吸光度的测定。这种简便型分光光度计结构简略,操作方便,维修容易,适用于惯例剖析。  2、双光束分光光度计  经单色器分光后经反射镜分解为强度持平的两束光,一束经过参比池,一束经过样品池。光度计能主动对比两束光的强度,此比值即为试样的透射比,经对数变换将它变换成吸光度并作为波长的函数记载下来。  双光束分光光度计通常都能主动记载吸收光谱曲线。由于两束光一起别离经过参比池和样品池,还能主动消除光源强度改变所导致的差错。  3、双波长分光光度计  由同一光源宣布的光被分红两束,别离经过两个单色器,得到两束不同波长1和2 的单色光;使用切光器使两束光以必定的频率替换照耀同一吸收池,然后经过光电倍增管和电子控制系统,最后由显示器显示出两个波利益的吸光度差值。关于多组分混合物、混浊试样(如生物组织液)剖析,以及存在布景搅扰或共存组分吸收搅扰的情况下,使用双波长分光光度法,通常能进步办法的灵敏度和挑选性。使用双波长分光光度计,能取得导数光谱。  经过光学系统变换,使双波长分光光度计能很方便地转化为单波长作业方式。假如能在1和2处别离记载吸光度随时刻改变的曲线,还能进行化学反应动力学研讨.

  • 荧光分光光度计和紫外可见分光光度计的区别

    1、荧光分光光度计有两个单色器,而一般紫外可见分光光度计只有一个单色器。2、荧光分光光度计的光源和检测器是成直角分布的,而紫外可见分光光度计是成一条直线的。3、荧光分光光度计是以氙灯做为光源,而紫外可见分光光度计是以氘灯作为紫外区光源,钨灯或卤钨灯作为可见光区的光源。4、荧光分光光度计的比色皿是四壁均为光学面,而紫外可见分光光度计仅为两面为光学面。

  • 【分享】分光光度计的应用常识

    分光光度计的应用常识分光光度计已经成为现代分子生物实验室常规仪器。常用于核酸,蛋白定量以及细菌生长浓度的定量。分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光源透过测试的样品后,部分光源被吸收,计算样品的吸光值,从而转化成样品的浓度。样品的吸光值与样品的浓度成正比。核酸的定量 核酸的定量是分光光度计使用频率最高的功能。可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。核酸的最高吸收峰的吸收波长260 nm。每种核酸的分子构成不一,因此其换算系数不同。定量不同类型的核酸,事先要选择对应的系数。如:1OD 的吸光值分别相当于50μg/ml的dsDNA,37μg/ml的ssDNA,40μg/ml的RNA,30μg/ml的Olig。测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。测试前,选择正确的程序,输入原液和稀释液的体积,尔后测试空白液和样品液。然而,实验并非一帆风顺。读数不稳定可能是实验者最头痛的问题。灵敏度越高的仪器,表现出的吸光值漂移越大。事实上,分光光度计的设计原理和工作原理,允许吸光值在一定范围内变化,即仪器有一定的准确度和精确度。如Eppendorf Biophotometer的准确度≤1.0%(1A)。这样多次测试的结果在均值1.0%左右之间变动,都是正常的。另外,还需考虑核酸本身物化性质和溶解核酸的缓冲液的pH值,离子浓度等:在测试时,离子浓度太高,也会导致读数漂移,因此建议使用pH值一定、离子浓度较低的缓冲液,如TE,可大大稳定读数。样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒,尤其是核酸样品。这些小颗粒的存在干扰测试效果。为了最大程度减少颗粒对测试结果的影响,要求核酸吸光值至少大于0.1A,吸光值最好在0.1-1.5A。在此范围内,颗粒的干扰相对较小,结果稳定。从而意味着样品的浓度不能过低,或者过高(超过光度计的测试范围)。最后是操作因素,如混合要充分,否则吸光值太低,甚至出现负值;混合液不能存在气泡,空白液无悬浮物,否则读数漂移剧烈;必须使用相同的比色杯测试空白液和样品,否则浓度差异太大;换算系数和样品浓度单位选择一致;不能采用窗口磨损的比色杯;样品的体积必须达到比色杯要求的最小体积等多个操作事项。除了核酸浓度,分光光度计同时显示几个非常重要的比值表示样品的纯度,如A260/A280的比值,用于评估样品的纯度,因为蛋白的吸收峰是280nm。纯净的样品,比值大于1.8(DNA)或者2.0(RNA)。如果比值低于1.8 或者2.0,表示存在蛋白质或者酚类物质的影响。A230标示样品中存在一些污染物,如碳水化合物,多肽,苯酚等,较纯净的核酸A260/A230的比值大于2.0。A320检测溶液的混浊度和其他干扰因子。纯样品,A320一般是0。

  • 更好的使用和保护我们的分光光度计

    分光光度计是检测人员的忠实伙伴,所以要想得到理想的检测结果,对于[url=https://www.hach.com.cn/product/dr6000][color=#000000]分光光度计[/color][/url]的使用注意事项一定要了然于心。下面分享几个使用中的小细节:首先,分光光度计在实验室中最好放置在干燥阴凉处,原理水池等湿度大的地方,避免电路或者光电管受潮。其次,使用中一定要非常注意比色皿的放置问题,必须保证到位,不倾斜,还有比色皿的清洁问题,使用后要及时清洗不可偷懒。最后,实验室经常做各种检测和实验,难免会有腐蚀气体和各类尘埃,处在这样的环境中,可能会造成一些腐蚀,锈蚀等情况。我们一定要注意经常由专业人员检修分光光度计,然后进行调校和测试。

  • 分光光度计及使用维护中的注意事项

    分光光度计及使用维护中的注意事项 一、分光光度计及其分类 利用分光光度法或技术工作的仪器叫分光光度计,可分为如下几类: 一、 分光光度计检定(测试)的主要项目对分析结果的影响 1)波长准确度 分光光度法原理要求照射在样品池上的单色光必须对应于样品吸收光谱中的某一个吸收峰的波长。由于仪器的制造和调整误差,单色光的实际波长与仪器的波长读数值间都存在一定的误差。样品中绝大部分的主要吸收峰都有一定的宽度,对波长准确度要求允许宽些。但是,当吸收峰宽度较小,而且吸收峰两侧边缘比较陡直,此时波长准确度的影响就必须引起注意。 2)透射比(吸光度)准确度 很显然,透射比或吸光度的误差越大,测试结果的可信性越差,从而影响到测试数据的准确性. 3)杂散光 杂散光是由于光学元件制造误差以及光学和机械零件表面的漫反射形成的。杂散光是分析样品的非吸收光,随着样品浓度的增加,杂散光的影响也随之增大,将给分析结果带来一定的误差。在紫外的短波区域光源强度和检测器的灵敏度均明显减弱,杂散光的影响更不能忽视。因此,杂散光的大小也是仪器性能的一项重要指标。 二、与分光光度计正确使用和维护有关的几个注意事项 (在使用仪器前,必须仔细阅读其使用说明书) 1)若大幅度改变测试波长,需稍等片刻,等灯热平衡后,重新校正“0”和“100%”点。然后再测量。 2)指针式仪器在未接通电源时,电表的指针必须位于零刻度上。若不是这种情况,需进行机械调零。 3)比色皿使用完毕后,请立即用蒸馏水冲洗干净,并用干净柔软的纱布将水迹擦去,以防止表面光洁度被破坏,影响比色皿的透光率。 4)操作人员不应轻易动灯泡及反光镜灯,以免影响光效率。 5)WFZ800-DA、756型等分光光度计,由于其光电接收装置为光电倍增管,它本身的特点是放大倍数大,因而可以用于检测微弱光电信号,而不能用来检测强光。否则容易产生信号漂移,灵敏度下降。针对其上述特点,在维修、使用此类仪器时应注意不让光电倍增管长时间暴露于光下,因此在预热时,应打开比色皿盖或使用挡光杆,避免长时间照射使其性能漂移而导致工作不稳。 6)放大器灵敏度换挡后,必须重新调零。 7)比色杯的配套性问题。比色杯必须配套使用,否则将使测试结果失去意义。在进行每次测试前均应进行比较。具体方法如下;分别向被测的两只杯子里注入同样的溶液,把仪器置于某一波长处,石英比色杯;220nm、700nm装蒸馏水,玻璃比色杯:700nm处装蒸馏水,将某一个池的透射比值调至100%,测量其他各池的透射比值,记录其示值之差及通光方向,如透射比之差在±0.5%的范围内则可以配套使用,若超出此范围应考虑其对测试结果的影响。 四、分光光度计操作中容易出现的几个典型故障及其排除方法 1)仪器不能调零。可能原因:a)光门不能完全关闭。解决方法:修复光门部件,使其完全关闭。 b)透过率“100%”旋到底了。解决方法:重新调整“100%”旋钮。c)仪器严重受潮。解决方法:可打开光电管暗盒,用电吹风吹上一会儿使其干燥,并更换干燥剂。d)电路故障。解决方法:送修理部门,检修电路。 2)仪器不能调“100%”。可能原因:a)光能量不够。解决方法:增加灵敏度倍率档位,或更换光源灯(尽管灯还亮)。b)比色皿架未落位。解决方法:调整比色皿架使其落位。 c)光电转换部分老化。解决方法:更换部件。d)电路故障。解决方法:调修电路。 3)测量过程中,“100%”点经常变动。可能原因:a)比色皿在比色皿架中放置的位置不一致,或其表面有液滴。解决方法:用擦镜纸擦干净比色皿表面,然后将其安放在比色槽的左边,上面用定位夹定位。b)电路故障(电压、光电接收、放大电路)。解决方法:送修。 4)数显不稳。可能原因:a)预热时间不够。解决方法:延长预热时间至30分钟左右(部分仪器由于老化等原因,长时间处于工作状态时,也会工作不稳)。b)光电管内的干燥剂失效,使微电流放大器受潮。解决方法:烘烤电路,并更换或烘烤干燥剂。c)环境振动过大、光源附近空气流速大、外界强光照射等。解决方法:改善工作环境。d)光电管、电路等其它原因。解决方法:送修。 五、提高分光光度计透射比检定及使用精度的几种方法 在分光光度计的使用或检定中,透射比(吸光度)的准确度是衡量仪器工作性能的一项重要指标,它的准确程度直接关系到所测数据的可信性及科学性。所以提高此项指标的使用及检定准确度显得尤为重要。下面结合近年来对分光光度计的检定或修理实践,把如何提高透射比的测试及使用精度的几点方法列表叙述如下: 六、小结 综上所述,以下几个问题应引起仪器操作人员注意:1)比色皿架及比色皿在使用中的正确到位问题。有些使用者对这个问题不够重视,因操作不当造成偶然误差,严重影响分析结果。首先,应保证比色皿不倾斜放置。稍许倾斜,就会使参比样品与待测样品的吸收光径长度不一致,还可能使入射光不能全部通过样品池,导致测试比准确度不符合要求。其次,应保证每次测试时,比色皿架推拉到位。若不到位,将影响到测试值的重复性或准确度。最后,还应保证比色皿的清洁度,延长其使用寿命.2)干燥剂的使用问题。干燥剂失效将导致a)数显不稳、无法调“0”点或“100%”点(电路或光电管受潮)。b)反射镜发霉或沾污,影响光效率、杂散光增加。鉴于上述原因,分光光度计的放置地点应远离水池等湿度大的地方、干燥剂应定期更换或烘烤。3)仪器的工作环境。应避免阳光直射、避免强电场、避免与较大功率的电器设备共电、避开腐蚀性气体等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制