当前位置: 仪器信息网 > 行业主题 > >

扫描电迁移率粒径谱仪原理

仪器信息网扫描电迁移率粒径谱仪原理专题为您提供2024年最新扫描电迁移率粒径谱仪原理价格报价、厂家品牌的相关信息, 包括扫描电迁移率粒径谱仪原理参数、型号等,不管是国产,还是进口品牌的扫描电迁移率粒径谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合扫描电迁移率粒径谱仪原理相关的耗材配件、试剂标物,还有扫描电迁移率粒径谱仪原理相关的最新资讯、资料,以及扫描电迁移率粒径谱仪原理相关的解决方案。

扫描电迁移率粒径谱仪原理相关的论坛

  • 薄膜综合物性分析仪(导热,赛贝克,电阻率,霍尔,迁移率

    薄膜综合物性分析仪(导热,赛贝克,电阻率,霍尔,迁移率

    薄膜综合物性分析仪(导热系数,电导率,电阻率,赛贝克系数,霍尔系数,迁移率 载流子浓度 发射率)同步测量苏需要的热物性参数,消除样品的几何尺寸,样品物质组分和热分布不均的影响,结果非常具有可靠性。可测量30nm-30μm的涂层与薄膜样品,样品面积约25mm²采用芯片式设计,样品于传感器紧密接触,构成一个缩小的热带发导热测量模型,可配置锁相放大器,以适应3ω法对样品的in-plance和cross-plance导热进行测量。可以适应不同材质样品。无论是金属,陶瓷,半导体等无机薄膜还是有机薄膜,都可以用TFA测量模块化设计, 根据需求,添加测量模块。1:瞬态导热测量磨坏:锁相放大器 配置3ω测量单元,可测平面,交叉面导热系数,比热等2: 霍尔效应测量模块: 配置磁场单元,可测霍尔电压,迁移率,载流子浓度。3 低温附件模块:-150°-400°C 样品两侧均安装LN2管道, 有利于样品两侧温度控制。导热系数:稳态热带法,3ω法。电阻于霍尔系数:范德堡法赛贝克:静态直流法http://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581948_3060548_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581949_3060548_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/01/201601151255_581950_3060548_3.png

  • 【求助】离子迁移谱仪用户调查

    离子迁移谱技术是20 世纪 60 年代发展起来的一种痕量探测技术,国外 20 世纪 80 年代将 IMS 技术应用于现场分析检测。 IMS 技术的原理是通过气态离子的迁移率来表征各种不同的化学物质,达到对各种物质分析检测的目的,具有极高的探测灵敏度。 离子迁移率谱仪方法(IMS)是一种高效的毒品、爆炸品、生化武器等的检测方法,可以在秒级别时间内对邮件、包裹等物品内是否有爆炸物品、毒品等做出判别,同时能对人体是否隐匿爆炸物品直接进行检测,有效提高打击恐怖活动力度,确保人民生命和财产安全。因此IMS技术为各级安全机构的检测,提供了很好的检测手段。可广泛应用于机场、海关、边防、车站、码头及体育场馆等反恐缉私场所 本人对离子迁移谱仪在国内的使用情况非常感兴趣,希望使用离子迁移谱仪的坛友能支持我的问卷调研,并将填好后的问卷反馈给我,email:luomeina2003@163.com,欢迎大家的参与和讨论。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=61734]离子迁移谱仪用户调查[/url]

  • 求助离子迁移谱与飞行时间质谱的区别

    离子迁移谱和飞行时间质谱 都是依靠时间来确定物质,前者依靠迁移率来分辨,后者依靠质荷比判定。哪位分析下二者的区别,是不是飞行时间质谱在常压下,原理就与离子迁移谱一样了。

  • 【讨论】离子迁移检测技术在国内的发展与应用

    离子迁移谱技术是20 世纪 60 年代发展起来的一种痕量探测技术,国外 20 世纪 80 年代将 IMS 技术应用于现场分析检测。 IMS 技术的原理是通过气态离子的迁移率来表征各种不同的化学物质,达到对各种物质分析检测的目的,具有极高的探测灵敏度。 离子迁移率谱仪方法(IMS)是一种高效的毒品、爆炸品、生化武器等的检测方法,可以在秒级别时间内对邮件、包裹等物品内是否有爆炸物品、毒品等做出判别,同时能对人体是否隐匿爆炸物品直接进行检测,有效提高打击恐怖活动力度,确保人民生命和财产安全。因此IMS技术为各级安全机构的检测,提供了很好的检测手段。可广泛应用于机场、海关、边防、车站、码头及体育场馆等反恐缉私场所本公司对离子迁移谱仪在国内的使用情况非常感兴趣,希望使用离子迁移谱仪的用户或有兴趣的朋友共同探讨,email:[email]xiaoyixiao0@163.com[/email],QQ:543694183欢迎大家的参与和讨论。

  • 【讨论】一次粒径和二次粒径问题

    粒度测试有一个不太好定性的问题,那就是一次粒径和二次粒径问题。对于多数粉体颗粒,它有一定的大小,广义角度看单个颗粒是一个个体。但是从严谨角度说它依然是个可再分的由更小颗粒组成的群体。这时候问题就产生了,我们对颗粒进行粒度分析时,到底是希望测试粉体被分散到什么程度时的粒度分布呢?举个例子:某硫酸钡粉体,电镜拍摄的照片显示,单晶颗粒都在几百纳米级别,但是激光粒度仪测试结果微米级别的粒度分布,相差一个数量级。有些测试人员片面认为照片拍摄的东西绝对可靠,是粒度仪测试不准。这样判断过于主观了。这类问题晶粒如果处理后的样品体系中,超微粒子是均匀的,检测方法一般是一次粒度分析。如直观观测法,主要采用扫描电镜(SEM)、透射电镜(TEM)、隧道扫描电镜(STM)、原子力显微(AFM)等手段观测单个颗粒的原始粒径及型貌。但如果处理后的样品微粒是不均匀的,且团聚体是不易分散体,此时电镜法得到的一次粒度分析结果一般很难代表实际样品颗粒的分布状态。因此,对处理后的物料体系必须作二次粒度统计分析。目前,较先进的3种典型方法按原理上可分为高速离心沉降法、激光粒度分析法和电超声粒度分析法。 这个问题其实也是一个粉体分散问题,测试粒度分布时,到底使用什么手段分散?分散到什么程度才是正确的?希望各路高手一起探讨,也让小弟多开阔眼界。

  • 不同原理的粒度仪与粒径

    由于颗粒形状的复杂性,颗粒测量只能采用等效粒径的概念,和间接测量的方式。不同原理的粒度仪器,采用不同的等效粒径:激光衍射(散射)仪器采用的是散射粒径,近似等于等效截面粒径。沉降粒度仪采用的斯托克斯粒径(沉降速度与同质球体等效)。库尔特(电阻法)粒度仪采用的是体积等效粒径。 如果使用球形颗粒,各种仪器测量结果应该相同。 对于非球形颗粒,各种仪器测量结果差别不可预测,因为颗粒形状太复杂。但是对同一种非球形颗粒,不同仪器测量结果有规律可循。为此微纳公司研制了数据校准软件。根据用户提供的样品和相关目标仪器的粒度分布数据,交给具有一定的学习功能软件,今后遇到同类样品即使大小不同,也可给出相关性令人满意的结果。

  • 各种质谱仪的分析器的基础知识汇总

    分析器起着分离或区分导入离子的功能,是质谱仪的核心部件,也是我们学习和使用质谱仪必须了解掌握的知识点,今天小析姐整理了分析器:四级杆和扇形磁场部分的基础知识分享给大家,希望能对你有所帮助。[size=14px]四级杆[/size][size=14px]在1953年,西德物理科学家Wolfgang Paul和Helmut Steinwedel描述了四级杆质谱仪。[/size][size=14px]在4根平行杆之间,叠加的射频(RF)和恒定的直流(DC)电势能够作为质谱分离器,或过滤器,仅限于特点质量范围的离子,以恒定振幅振荡,能够在分析器上收集。现代仪器制造商将四级杆瞄准到特定的应用中。单四级杆质谱仪要求基质干净,以避免无用离子的干扰,表现出非常好的灵敏度。[/size][size=14px][/size][size=14px]三重四级杆或串联四级杆(参见四级杆),是将一个四级杆加到另一个附加的四级杆上,四级杆串联后能以各种方式发挥作用。一种途径是通过离子独有的质荷比(m/z)分离并检测复杂混合物中的目标离子。证实串联四级杆有效的另一途径是当与可控裂解分析联用时。这些分析通常将目标离子与其它分子(典型的气体,如氩)进行碰撞,母离子裂解成产物离子,MS/MS质谱仪通过其独特组成部分鉴别目标化合物。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234484.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]如上图所示,[/size][size=14px]当设置过滤某一特定离子,那么其它质量的离子则会以多种方式中丢失,比如撞击到四级杆上,或直接偏离去检测器的轨道。[/size][size=14px][/size][size=14px]四级杆分析器由四根杆组成,通常平行排列,材质为金属,比如钼合金。已投入了大量的技术和研究,设计开发四级杆。按照离子在DC和RF场中的运动,将质量分类。通过在软件上改变参数,系统可改变场强,在任何指定时间内,某一m/z值的离子被过滤掉,或通过四级杆到达检测器。[/size][size=14px][/size][color=#ff4c41][size=14px]相比于一些质谱仪的设计,比如飞行时间(TOF)质谱仪,四级杆分辨率较低。而四级杆相对简单,容易使用,是具有较高实用性的质谱仪,能以相对低的成本提供各种接口。[/size][/color][size=14px][/size][size=14px]在比较和说明MS的分析能力时,一些专业用语是必需的,在该入门指南的后续内容中将会给出完整的定义:[/size][size=14px]分辨力(通常缩写为"res"-质谱仪分离两种质量的能力):[/size][size=14px][/size][size=14px][color=#ff4c41]- 低分辨力=单位质量=1000- 较高或中等分辨力=1000到10000- 高分辨力=10000+- 非常高的分辨力=高达3-5百万Fragmentation[/color][/size][size=14px]"精确质量"(Exact Mass)是化合物质量的理论值,而准确质量(Accurate Mass)是化合物质量的测量值,有相关的误差范围,比如5ppm。准确质量也经常用于针对具体的技术,而不是测得的质量。[/size][size=14px][/size][size=14px]MS/MS - [/size][size=14px][color=#ff4c41]描述了监测前体离子或碎片向产物离子转变的多种实验(多反应监测[MRM]和单反应监测[SRM])[/color][/size][size=14px],总的趋势是在一台仪器上提高检测的选择性、专一性或灵敏度。即前后两个质量分析器,两极质谱分析在一台质谱仪器中实现。[/size][size=14px][/size][size=14px]在三重四级杆质谱仪中有3套四级杆过滤器,但是仅有第1和第3套四极杆用作质量分析器。近来的设计完全将中间设备区分开(取代早期设计的四级杆),增加了更多的功能,通常将其改称为串联四级杆。[/size][size=14px][/size][size=14px]第一套四级杆(Q1),作为质量过滤器,传输并加速选定离子,将其送向Q2(被称为碰撞室)。虽然在一些设计中,Q2类似于其它两套四级杆,[/size][size=14px][color=#ff4c41]RF施加在杆上的作用仅是传输,而不是质量选择。[/color][/size][size=14px]Q2中的压力较高,离子在碰撞室内与中性气体相碰撞。结果经CID发生裂解。碎片随后加速进入Q3,另一个质量过滤器,离子被排列后,进入检测器。[/size][size=14px][/size][size=14px]裂解CID也称为碰撞激活解离(CAD),为一种裂解机制,通过该机制在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中,分子离子裂解,通常在真空区域经电势加速到高动能,接着与中性气体分子碰撞,比如[/size][size=14px][color=#ff4c41]氦、氮或氩[/color][/size][size=14px]。部分动能通过碰撞而转化(或内化),这引起化学键的断裂,分子离子减小形成较小的碎片。一些类似的‘特别目的'的裂解方法,包括电子转移解离(ETD)和电子捕获解离(ECD)。[/size][size=14px][/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234485.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]上面是硫丹-β产物离子质谱图。237Da的前体离子从左边进入,在MS/MS碰撞室内裂解。关于MS谱的全扫描,数据系统仅能够显示目标碎片(不是得到的所有碎片),得到相对简单的图谱。我们能控制破碎的限度,因此能选择前体离子。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234486.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]这张图MRM响应(左)和SIR响应(右)的比较图表明,由于基质的化学背景,被测物即使在溶液中,也不能由SIR数据确定被测物峰。使用相同的GC/MS/MS质谱仪,选择m/z=146的丁基化离子作为前体离子,裂解该离子,得到产物离子(显示为57m/z),定量鉴别它的存在。[/size][size=14px][/size][size=14px]在一些控制工业中,为了满足阳性化合物的鉴别要求,每个MRM计为1.5"鉴别点",而每个SIR计为1.0。因此,为满足选择性要求,得到3"IPS",每个化合物需要2个MRM转换,或3个SIR。[/size][size=14px]扇形磁场[/size][size=14px]扇形磁场或扇形磁场质量分析器,是早期仪器,一直用到现今,尽管用的较少[/size][size=14px][color=#ff4c41](已被现代的能以ESI电离模式工作的质谱仪取代)[/color][/size][size=14px]。[/size][size=14px][/size][size=14px]扇形磁场弯曲成弧形离子轨道。离子的"动能与电荷"比率决定了轨道的半径,可通过电或磁场测定。较大m/z的离子比较小m/z通过的轨道路径长。通过改变磁场强度,可控制轨道路径。双聚焦质谱仪可按各种组合方式,将磁场和电场结合起来,但扇形电场后接磁场更常见。[/size][size=14px][/size][size=14px]两种场最初联用时,按照离子流出离子源的动能采用扇形电场聚焦离子。角度聚焦之前的能量聚焦,使相同质量,但分子式不同的离子实现分离。[/size][size=14px]离子阱[/size][size=14px]离子阱和其它非扫描质谱仪离子阱质谱仪的原理类似于四级杆质谱仪。不同于过滤式的四级杆质谱仪,离子阱和功能更强的离子回旋(ICR)质谱仪一样,将离子存储在三维空间中。在饱和之前,离子阱或回旋加速器将选定离子射出以进行检测。在离子阱范围内,可实现一系列实验分析,裂解目标离子,通过形成的碎片,以准确的确定前体离子。[/size][size=14px][/size][size=14px]RF电压产生的电场作用于排列成"三明治"几何构形(端盖相对的端盖电极)离子阱的两电极之间的空间。扫描RF电压,改变某离子的固有频率使其逸出。有时动态范围不宽。[/size][size=14px][/size][size=14px]离子阱对捕获存储离子的有限体积和容量,限制了该种质谱的使用范围,尤其对于复杂基质中的样品。[/size][size=14px][/size][size=14px]离子阱质谱仪于1980年推出,但是早期这类质谱仪采用内部电离,具有一定的局限性,限制了其在很多领域的应用。仅当出现外部电离技术后,这类质谱仪才得到了越来越广泛的使用。[/size][size=14px][/size][size=14px]多级碎裂的能力,从一个被测物中可衍生出更多结构信息(即,碎裂-碎片离子-选择-特定片段-碎裂,并重复这一过程)被称为MSn。[/size][size=14px][/size][size=14px]GC色谱峰不够宽,不允超过一个碎裂过程的进行(MS/MS或MS2)。离子阱质谱仪的MS/MS分析或裂解是根据时间,而不是空间,与四级杆和扇形磁场相同。因此,离子阱不能用于某些MS/MS分析,比如中性丢失和前体离子的比较。[/size][size=14px][/size][size=14px]而且,在离子阱质谱仪的MS/MS图谱中,低质量端约1/3母离子m/z的碎片离子丢失,这是离子阱设计本身造成的结果。为了抵消这一损失,一些制造商通过软件加宽扫描要求弥补了这一损失。加宽扫描要求在数据采集时转换工作参数。[/size][size=14px][/size][color=#ff4c41][size=14px]离子阱的设计设置了前体质荷比(m/z)和最低俘获碎片离子之间的比率上限,通常称为"三分之一规则"。[/size][/color][size=14px]例如,一个m/z1500的母离子,其m/z500以下的碎片离子检测不到,这大大限制了多肽的人工测序分析。当太多离子进入离子阱的空间,由于空间电荷效应,动态范围受到限制。制造商已经开发了自动扫描技术,在离子进入离子阱之前,能够对离子进行计数,或门控制允许离子进入的数量。在大量背景离子共存目标离子很少时,仍然会遇到困难。因为功能设计类似,杂交型串联质谱仪吸收了四级杆和离子阱两方面的长处,提高了灵敏度,并可以进行快速实验分析,实现两种质谱仪单独使用不能实现的功能。[/size][size=14px][/size][size=14px]这种质谱仪有时称为线性离子肼(或Q-TRAPs)。[/size][size=14px]线性离子阱质谱仪离子阱体积的增加(与三维离子阱相比),提高了动态的范围。[/size][size=14px]离子阱质谱仪不能像四级杆质谱仪那样扫描,因此使用单离子监测(SIM)或单离子记录(SIR)技术不能像四级杆和扇形质谱仪那样提高离子阱的灵敏度。[/size][size=14px][/size][size=14px]快速傅里叶变换离子回旋加速器(FTICR)具有极高的质量测量能力,能够分辨紧密靠近的质量。[/size][size=14px]虽然对大多数应用还不可行,但是14.5特斯拉的磁场能够取得超过350万的分辨率,因此能够区分质量相差小于单个电子质量的化合物。[/size][size=14px]回旋加速器采用恒定磁场,通过静电平衡作用捕获离子。[/size][size=14px]RF电压脉冲引起轨道离子运动,然后,在轨道上运动的离子在捕获单元的检测板上产生一微弱信号(离子轨道频率)。[/size][size=14px]该频率与离子的m/z成反比,信号强度与单元中该m/z离子的数量成比例。[/size][size=14px][/size][size=14px]在非常低的气压下,回旋加速器能够保持恒定的离子轨道,这样在长时间里,都能够进行超高分辨率的测量。[/size][size=14px]持续非共振,辐射(SORI)是在傅立叶变换离子回旋共振质谱技术中使用的CID技术。[/size][size=14px]在回旋加速运动中压力增加,离子被加速,引起碰撞,得到离子碎片。[/size][size=14px]离子裂解后,压力减小,恢复高真空,以分析碎片离子。[/size][size=14px]TOF质谱仪[/size][size=14px]TOF质谱仪已开发多年,因其快速、准确的电子组件和现代的电离技术(如ESI),已成为很多现代研究工作的基础。TOF质谱仪能提供准确的质量测量,误差范围是分子真实质量的几个ppm。TOF质谱仪为时间分散质量分析仪,使用时以线性方式,或需静电网格和透镜(作为反射板)的辅助。当以反射式操作时,分辨率增加,且无灵敏度的显著损失,或不需要增加飞行管(或漂移管)的大小。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234487.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]TOF分析通过脉冲加速一组离子到达检测器。离开离子源后,每个离子从"推进"电得到一个相同的电荷或电势,离子被加速射进超低压管。因为所有带类似电荷的离子具有相同的动能(动能=mv2,m为离子质量,v是速度),在撞击到检测器前,较低质量的离子具有较高的速度和更小的间隔。[/size][size=14px][/size][size=14px]因为质量、电荷和动能决定了离子到达检测器的时间,离子的速度可表示为v=d/t=(2KE/m)1/2。离子通过指定的距离(d)的时间(t)取决于质荷比(m/z)。[/size][size=14px][/size][size=14px]因为每次"电压推动"后,TOF测量的是所有质量数,所有相对于扫描型质谱仪,TOF质谱仪可得到非常高的灵敏度。[/size][size=14px][/size][size=14px]如今,四级杆MS系统常规扫描速度为每秒10000Da(或原子质量单位)。因此一次全扫描,即使持续时间短的一次扫描(例如,1秒钟的LC或GC峰),在每秒内捕获每个离子的次数达不到10次或更多。TOF质谱仪检测器记录离子轰击检测板的数目,轰击彼此间隔时间为纳秒级。[/size][size=14px][/size][size=14px]当直接与扫描质谱仪(比如四级杆)相比较,TOF的分辨率扩宽了动态范围,提供更高的分辨率。总的来说,当检测复杂混合物中的目标被测物时,四级杆类的仪器更灵敏感,通常是更好的定量工具。[/size][size=14px]一些仪器,像离子阱,具有组合功能,但直到杂交型质谱仪出现前,没有单个质谱仪表现出全方位的高效性能。[/size][size=14px][/size][size=14px]早期的MALDI-TOF的设计加快了离子离开离子源。[/size][size=14px]该技术分辨率相对低,准确性有限。[/size][size=14px]延迟提取技术(DE)是为MALDI-TOF质谱仪开发的一项技术,在离子形成后,加速离子在进入飞行管之前冷却"并聚焦离子大约150纳秒。[/size][size=14px]与未冷却的离子相比,冷却的离子具有较低的动能分布,当冷却离子进入TOF分析器时,降低离子时间展宽,结果增加了分辨率和准确度。[/size][size=14px]DE对大分子成效不显著(例如,蛋白质30000Da)。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234488.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]适合的指定条件下(比如,无基质干扰),当选择扫描模式工作时,TOF比串联四级杆的灵敏度高很多倍,因为TOF不用‘扫描',不会牺牲"占空比"。[/size][size=14px][/size][size=14px]最后咱们聊一聊上文提到的杂交技术。[/size][size=14px]"杂交"适用于各种质谱仪设计,杂交技术是现存技术的集成,比如双聚焦、扇形磁场和近来的"前端"回旋加速的离子阱。最值得注意的一种杂交方式是四级杆飞行时间(QTOF)质谱仪,将TOF质谱仪和四级杆质谱仪组合在一起。这种是几种性能特征的最佳组合:准确的质量检测、裂解分析的功能以及高质量的定量分析。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234489.jpeg?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px][/size][size=14px]串联质谱技术的进一步发展,产生了离子迁移率测量和分离相结合的串联质谱技术技术。离子迁移率质谱法(或IMMS法,通常缩写为‘IMS')是基于多种因素的组合来区分离子的技术,这些因素包括:离子大小、形状、电荷和质量。IMMS通常在机场和手持领域的元件中使用,可对迁移率已知的小分子实现快速(20毫秒)检测:例如某些毒品和炸药的检测。当采用更高位的质谱仪,IMMS提供正交分离(对LC和MS),以及一些独特功能,包括:[/size][size=14px]- 分离异构体、同重化合物和构象异构体(从蛋白质到小分子),测定其平均转动碰撞横截面。- 增强复杂化合物的分离(通过MS或LC/MS),引起峰容量增加和样品清洁度的增加(离子的物理分离,尤其是化学噪音和干扰目标分析物的离子)。- 在结构分析研究中,通过CID/IMMS、IMMS/CID或CID/IMMS/CID等性能获得更多有用信息。[/size][size=14px][/size][size=14px]在所有的3个分析方案中,高效离子迁移率和串联质谱法的组合有助于克服分析中存在的问题,其它分析方法,包括传统的质谱分析法或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]测试设备,可能也无法解决这些现存的问题。[/size][size=14px][/size][size=14px]结尾引用H.H.Hill Jr.等人的评论文章,比较各种类型的离子迁移率,各种被测物应用离子迁移率的益处。目前在质谱分析中,应用的4种离子迁移率分离方法:- 漂移时间离子迁移率质谱法(DTIMS)- 吸入离子迁移率质谱法(AIMS)- 差异迁移率质谱法(DMS),也称为不对称场波形离子迁移率质谱(FAIMS)- 行波离子迁移率质谱(TWIMS)[/size][size=14px]按照作者的观点,"DTIMS能提供最高的IMS分辨力,它是仅有的(IMMS)能够直接测量截面碰撞的方法。AIMS是低分辨的迁移率分离方法,但是它只能连续监测离子。DMS和FAIMS具有连续的离子监测能力,以及正交离子迁移率分离的功能,能够实现高分离选择性。TWIMS是一种新(IMMS)方法,其分辨能力相对低,但具有较好的灵敏度,能很好地与商品化的质谱仪工作结合。"[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234490.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]用彩球表示的,不同迁移率的无差异离子被俘获、累积,然后释放到T-波离子迁移率分离(IMS)装置中。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234491.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]一旦释放进入T-波区域,行波波形驱动离子通过中性缓冲气(通常是0.5毫巴的氮气),按照离子迁移率分离离子。[/size][align=center][img]https://file.jgvogel.cn/134/upload/resources/image/234492.png?x-oss-process=image/resize,w_700,h_700[/img][/align][size=14px]离子迁移与MS联用,也应用在生物分子[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]结构的研究。Pringle等(在此引用)应用杂交型四级杆-行波离子迁移分离器-正交加速TOF质谱仪,考察了一些肽和蛋白离子的迁移率分离。将从行波(TWIMS)分离设备上获取的离子迁移率数据与使用其它类型迁移率分离器获取的数据比较表明:"当迁移率特点类似时,新的杂交技术的质谱仪提供的迁移率分离不影响质谱仪的基本灵敏度。该功能在显著分析水平上有利于样品迁移率的研究[/size]

  • 扫描电子显微镜原理

    课程内容提纲 第一部分:扫描电镜第一章:扫描电镜1.1 慨论1.2扫描电镜原理1.3扫描电镜结构1.4扫描电镜的分辨率1.5扫描电镜图像的形成第二章:高分辨扫描电子显微镜2.1 场发射扫描电子显微镜2.2 SE和BSE之差做为信号的方式2.3 工作距离2.4 使用强磁物镜的方式第三章:扫描电子显微镜的实践3.1 扫描电子显微镜的操作3.2 扫描电子显微镜图像的毛病3.3 扫描电子显微镜的保养3.4 扫描电子显微镜的安装条件3.5 扫描电子显微镜的验收与维护3.6小结第四章:计算机图像演示第二部分:能谱分析第一章、引 言第二章、EDS系统的工作原理1.系统概述2.吸收和处理过程3.计数率的考虑4.谱仪的分辨率第三章、X 射线的产生和与物质的相互作用1.萤光产额2.连续辐射的产生3.莫塞莱定律X射线定性分析4.X射线的吸收5.二次发射(萤光)第四章、X射线测量第五章、能量定性分析1.检出限2.探测器的效率3.空间分辨率3.谱仪分辨率4.伪峰(“artifact”peaks)5.定性分析结果的表示方法第六章、电子显微镜的操作及其参数的选择1.加速电压2.电子源3.孔径光栏选择4.镜筒的合轴5.样品/探测器的几何条件第七章、定 量 分 析1.脉冲计数统计误差2.块状试样的定量分析第八章、能谱的定性和定量分析的方法与步骤1.定性分析概述2.定量分析概述第九章、能谱失真与杂散幅射 1.谱峰的失真2.背底的失真3.杂散辐射第十章、能谱的验收与维护第三部分:实际操作

  • 扫描电镜的特点结构及工作原理

    扫描电镜的特点结构及工作原理扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进了各有关学科的发展。一.扫描电镜的特点和光学显微镜及透射电镜相比,扫描电镜具有以下特点:(一)能够直接观察样品表面的结构,样品的尺寸可大至120mm×80mm×50mm。(二)样品制备过程简单,不用切成薄片。(三)样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。(四)景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。(五)图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。(六)电子束对样品的损伤与污染程度较小。(七)在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。

  • 离子迁移谱技术在快速检测有毒有害物中的应用

    背景:离子迁移谱(ion mobility spectrometry,IMS),也叫做离子迁移率谱,它并不是最近才开发的新技术,而是由Cohen和Karasek两位科学家于20世纪70年代初提出,最初是作为实验室分析化学技术发展起来的。因为它以离子漂移时间的差别来进行离子的分离定性,借助类似于色谱保留时间的概念,所以起初又被称为等离子体色谱。近年来,这一技术日臻完善,已被应用在多个领域,其中包括各国军事领域的化学战剂监测,各级安全部门的爆炸物监测,海关和机场人口安检部门对毒品、麻醉剂等违禁物品的监测以及环境监测部门对有毒有害气体的监测。随着应用范围的拓宽,IMS技术引起了世界各国专家的研究兴趣,因此使得这一技术不断得到更新和发展,同时它是当今世界最先进的舰用化学战剂侦检系统。对于中国来说,由于此技术开发起步晚和发达国家技术保护,与国外同类产品相比相对落后,无法区分各类型和精度较差,误差和故障率高。目前,离子迁移谱(IMS)技术已经跃升至“快速检测有毒有害物的十大技术”之首,主要应用于食品安全、农药残留物、爆炸物、毒品、化学毒剂的检测以及环境监测。所以此技术21世纪初商业化后,得到了广大科研者的认同,我相信不久将来其必将成为快速检测行业的必备仪器。优势:可以提供更快的速度和降低运营成本的高效液相色谱法相当的性能。此外, IMS无需使用有机溶剂,相关的分离过程中的溶剂处置成本也为零。IMS更加绿色环保,替代了高效液相色谱法。独特的样品引入系统,完全消除交叉污染,并在几秒钟内实现真正意义上的快速分析。它是集速度,特异性和灵敏度的理想应用。IMS具有体积小,探测能力强,快速准确检测的特点。其对环境要求不高,无须使用有机溶剂即可达到液相色谱的分离效果。除实验室快速筛查外,现场无需任何调试即可快速进入工作状态,其紧凑的仪器结构和资本运营成本低的优势非常适合质量安全风险评估中心的实验室和现场快速分析(如农,兽药残留物、非法添加物及水质污染的机动式检测)。IMS基本上涵盖所有的高效液相色谱法或高效液相色谱-质谱分析的化合物分析方法,其分析效率更高,样品前处理更加简单。以下是液相离子迁移谱HRIMS相对于传统液相分析系统的优势应用功能:1.超越分子物理分离,提供额外的化学信息给出了未知分子的近似分子量;提供有关分子三级结构的信息;2.对高效液相色谱法的正交技术分析色谱灵敏的分子;分析没有吸收的分子;最佳异构体的分离;(特别适合同分异构体及热不稳定性化合物与记性化合物的分离分析)3.与高效液相色谱法相比有投资资本,但运营成本大大节约,消耗在减少通过过滤空气分离;不需要洗脱溶剂;减少日常维护需要的费用;不要购买HPLC色谱柱;4.绿色技术不需要溶剂流动相辅助,节约溶剂处理费用,仅需少量的空气或氮气;

  • 【求助】请问有没有使用过德国GRIMM公司的SMPS(扫描电迁移颗粒粒径分析仪)

    【求助】请问有没有使用过德国GRIMM公司的SMPS(扫描电迁移颗粒粒径分析仪)

    实验室刚弄了一套SMPS(DMA+CPC)(德国GRIMM公司,5400系列)用来测量气溶胶发生器产生的气溶胶直径的,但是不太会使用。不知道有没有人使用过这个东西指点指点啊~~~DMA的进气口在进空气的时候没有问题,但是接上气溶胶发生器的出口管时DMA就会报警提示“检查气体进样”,不知道DMA的进气口是不是有流量或者压力限制呢,要命的是这个公司有中国的网站却没有中国的联系电话~~

  • 【培训】扫描电镜SEM和能谱仪EDAX的使用技巧

    http://www.rac.ceprei.com/dongtai_details.asp?category_id=55&news_Id=231扫描电镜SEM和能谱仪EDAX的使用技巧 2005-7-1 课程对象电子工艺工程师 品质工程师 管理工程师 质检人员师资介绍:施明哲, 高级工程师,二十多年来主要从事扫描电子显微镜、X射线能量谱仪和波谱仪的操作、应用研究工作。在电子光学和真空技术方面有丰富的工作经验,在会议和刊物上发表了十多篇专业水平较高的文章,并参与编写《半导体失效机理及分析》一书。参与的科研工作曾多次获得所一等奖、二等奖;《VLSI失效分析技术》获国防科学技术二等奖。培训时间:05年9月12日~16日培训地点:电子五所院内培训费用:4000元/人.五天培训证书 中国赛宝实验室可靠性研究分析中心培训证书课时安排:日期 时间 授课内容9月12日 9:00-12:00 扫描电镜理论学习 14:00-17:00 同上9月13日 8:30-12:00 同上 14:00-17:00 同上9月14日 8:30-12:00 扫描电镜演示与答疑 14:00-17:00 能谱仪理论学习9月15日 8:30-12:00 同上 14:00-17:00 同上9月16日 8:30-12:00 同上 14:00-17:00 能谱仪演示与答疑联系人:韩越,李华 电话:020-87236986 传真:020-87237185网址:www.rac.ceprei.com EMAIL: han@ceprei.com培训报名表单位名称 专业领域 参加课程 联系人工作部门/职位联系电话传真Email参加人数 备注 说明:1,请详细填写报名表格,发传真或Email给我们。2,收到您的报名表后,本中心客户代表会致电给您进一步确认培训细则。3,现场以现金或支票方式支付1)费用包括:培训费、资料费、证书费、午餐费2)时间安排 报到:9月12日上午8:00~8:304,食宿自理,需要在广州住宿的客户,我室可以帮忙联系酒店:电子五所招待所:020-87237064 标准双人间:168元/天. 普通三人间:118元/天.课程内容提纲 第一部分:扫描电镜第一章:扫描电镜1.1 慨论1.2扫描电镜原理1.3扫描电镜结构1.4扫描电镜的分辨率1.5扫描电镜图像的形成第二章:高分辨扫描电子显微镜2.1 场发射扫描电子显微镜2.2 SE和BSE之差做为信号的方式2.3 工作距离2.4 使用强磁物镜的方式第三章:扫描电子显微镜的实践3.1 扫描电子显微镜的操作3.2 扫描电子显微镜图像的毛病3.3 扫描电子显微镜的保养3.4 扫描电子显微镜的安装条件3.5 扫描电子显微镜的验收与维护3.6小结第四章:计算机图像演示第二部分:能谱分析第一章、引 言第二章、EDS系统的工作原理1.系统概述2.吸收和处理过程3.计数率的考虑4.谱仪的分辨率第三章、X 射线的产生和与物质的相互作用1.萤光产额2.连续辐射的产生3.莫塞莱定律X射线定性分析4.X射线的吸收5.二次发射(萤光)第四章、X射线测量第五章、能量定性分析1.检出限2.探测器的效率3.空间分辨率3.谱仪分辨率4.伪峰(“artifact”peaks)5.定性分析结果的表示方法第六章、电子显微镜的操作及其参数的选择1.加速电压2.电子源3.孔径光栏选择4.镜筒的合轴5.样品/探测器的几何条件第七章、定 量 分 析1.脉冲计数统计误差2.块状试样的定量分析第八章、能谱的定性和定量分析的方法与步骤1.定性分析概述2.定量分析概述第九章、能谱失真与杂散幅射 1.谱峰的失真2.背底的失真3.杂散辐射第十章、能谱的验收与维护第三部分:实际操作

  • 【分享】扫描电镜与能谱仪使用技巧培训

    扫描电镜SEM和能谱仪EDAX的使用技巧主办单位: 中国赛宝实验室可靠性研究分析中心培训时间:2007年10月15日-18日培训费用:4000元/人.四天(含培训费、证书费、资料费、正餐费)( 每单位两人以上可有折扣)培训证书: 中国赛宝实验室可靠性研究分析中心培训证书课程对象:电镜操作工程师 电子工艺工程师 品质工程师 管理工程师 质检人员培训报名中心:报名电话:020-87236986-212 传真:020-87237185Email:xiongey@ceprei.com 联系人:熊小姐【主讲专家】施明哲, 中国赛宝实验室(信产部电子第五研究所)可靠性研究分析中心高级工程师,三十年来主要从事扫描电子显微镜、X射线能量谱仪和波谱仪的操作、应用研究工作。是当前扫描电镜行业广泛知名的专家,在电子光学和真空技术方面有丰富的工作经验,在会议和刊物上发表了十多篇专业水平较高的文章,并参与编写《半导体失效机理及分析》一书。参与的科研工作曾多次获得所一等奖、二等奖;获国家级技术进步二等奖二次,三等奖一次。课时安排:日期时间授课内容10月15日8:30-12:00扫描电镜理论学习14:00-17:0010月16日8:30-12:0014:00-17:00扫描电镜演示与答疑10月17日8:30-12:00能谱仪理论学习14:00-17:0010月18日8:30-12:0014:00-17:00能谱仪演示与答疑课程内容提纲 第一部分:扫描电镜第一章、扫描电镜1.1 慨论1.2扫描电镜原理1.3扫描电镜结构1.4扫描电镜的分辨力1.5扫描电镜图像的形成第二章、高分辨扫描电子显微镜2.1 场发射扫描电子显微镜2.2 SE和BSE之差做为信号的方式2.3 工作距离2.4 使用强磁物镜的方式第三章、扫描电子显微镜的实践3.1 扫描电子显微镜的操作3.2 扫描电子显微镜图像的毛病3.3 扫描电子显微镜的保养3.4 扫描电子显微镜的安装条件3.5 扫描电子显微镜的验收与维护3.6小结第四章:电镜图像演示及答疑第二部分:能谱分析第一章、引 言第二章、EDS系统的工作原理1.系统概述2. 吸收和处理过程3.计数率的考虑4.谱仪的分辨力第三章、X 射线的产生和与物质的相互作用1.萤光产额2.连续辐射的产生3.莫塞莱定律X射线定性分析4.X射线的吸收5.二次发射(萤光)第四章、X射线测量第五章、能量定性分析1.检出限2.探测器的效率3.空间分辨力3.谱仪分辨力4. 伪峰(“artifact”peaks)5.定性分析结果的表示方法第六章、电子显微镜的操作及其参数的选择1.加速电压2.电子源3.孔径光栏选择4.镜筒的合轴5.样品/探测器的几何条件第七章、定量分析1.脉冲计数统计误差2.块状试样的定量分析第八章、能谱的定性和定量分析的方法与步骤1.定性分析概述2.定量分析概述第九章、能谱失真与杂散幅射 1.谱峰的失真2.背底的失真3.杂散辐射第第十章、能谱的验收与维护第三部分:实际操作及答疑[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=65572]报名表[/url][color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 【原创】扫描电镜SEM和能谱仪EDAX的使用技巧研讨班

    信息产业部电子第五研究所(中国赛宝实验室)将举办《扫描电镜SEM和能谱仪EDAX的使用技巧研讨班》。欢迎大家参加《扫描电镜SEM和能谱仪EDAX的使用技巧研讨班》课程对象电镜操作人员 电子元器件失效分析工程师 电子工艺工程师 品质工程师师资介绍:施明哲, 高级工程师,二十多年来主要从事扫描电子显微镜、X射线能量谱仪和波谱仪的操作、应用研究工作。在电子光学和真空技术方面有丰富的工作经验,在会议和刊物上发表了十多篇专业水平较高的文章,并参与编写《半导体失效机理及分析》一书。参与的科研工作曾多次获得所一等奖、二等奖;《VLSI失效分析技术》获国防科学技术二等奖。培训时间:06年9月18日——22日培训地点:电子五所院内培训费用:4000元/人.五天培训证书 中国赛宝实验室可靠性研究分析中心培训证书课时安排:日期时间授课内容9月18日9:00-12:00扫描电镜理论学习14:00-17:009月19日8:30-12:0014:00-17:009月20日8:30-12:00能谱仪理论学习14:00-17:009月21日8:30-12:0014:00-17:009月22日8:30-12:00扫描电镜/能谱仪演示与答疑14:00-17:00扫描电镜/能谱仪实际操作与典型照片讲解联系方式:联系人:韩越,李华 电话:020-87236986 传真:020-87237185网址:www.rac.ceprei.com EMAIL: han@ceprei.com培训报名表单位名称专业领域参加课程联系人工作部门/职位Email联系电话传真参加人数备注说明:1,请详细填写报名表格,发传真或Email给我们。2,收到您的报名表后,本中心客户代表会致电给您进一步确认培训细则。3,现场以现金或支票方式支付1)费用包括:培训费、资料费、证书费、午餐费,食宿自理。2)时间安排 报到:9月18日上午8:00—9:004,需要在五所招待所住宿的客户,可以联系:020-87237064,标准双人间:168元/天。课程内容提纲 第一部分:扫描电镜第一章:扫描电镜1.1 慨论1.2扫描电镜原理 1.3扫描电镜结构1.5扫描电镜的分辨率1.6扫描电镜图像的形成第二章:高分辨扫描电子显微镜2.1 场发射扫描电子显微镜2.2 SE和BSE之差做为信号的方式2.3 工作距离 2.4 使用强磁物镜的方式第三章:扫描电子显微镜的实践3.1 扫描电子显微镜的操作3.2 扫描电子显微镜图像的毛病3.3 扫描电子显微镜的保养3.4 扫描电子显微镜的安装条件3.5 扫描电子显微镜的验收与维护3.6小结第四章:计算机图像演示第二部分:能谱分析第一章、引 言第二章、EDS系统的工作原理1.系统概述2.吸收和处理过程3.计数率的考虑4.谱仪的分辨率第三章、X 射线的产生和与物质的相互作用1.萤光产额2.连续辐射的产生3.莫塞莱定律 X射线定性分析4.X射线的吸收5.二次发射(萤光)第四章、X射线测量第五章、能量定性分析1.检出限2.探测器的效率3.空间分辨率3.谱仪分辨率4.伪峰(“artifact”peaks)5.定性分析结果的表示方法第六章、电子显微镜的操作及其参数的选择1.加速电压2.电子源3.孔径光栏选择4.镜筒的合轴5.样品/探测器的几何条件第七章、定 量 分 析1.脉冲计数统计误差2.块状试样的定量分析: 第八章、能谱的定性和定量分析的方法与步骤1.定性分析概述2.定量分析概述第九章、能谱失真与杂散幅射 1.谱峰的失真2.背底的失真3.杂散辐射第十章、能谱的验收与维护第三部分:实际操作

  • 【原创大赛】扫描电子显微镜原理与应用

    【原创大赛】扫描电子显微镜原理与应用

    植物中某些组织在发育早期非常的小,肉眼无法辨别它的表面结构,一般的光学显微镜也无法满足观察需求,这个时候就需要高分辨率的扫描电子显微镜来帮助植物科研工作者来揭开这些微小组织器官的面纱,把真实表面结构展现给大家。扫描电子显微镜是怎样的工作原理,和其他显微镜的差别在哪里,它为何能有如此高的“分辨率”呢?这些都得从他的工作原理说起。扫描电子扫描电子显微镜(Scanning Electron Microscope),简写为SEM,它是由电子光学技术、真空技术、精细机械结构以及现代计算机控制技术等共同组成。在加速高压作用下,由电子枪发射的电子经电子光学系统(由聚光镜和物镜组成)聚集成束照射到样品表面,对样品进行逐行扫描,从样品表面反射出多种电子,包括二次电子、饿歇电子、反射电子、X射线等,其中二次电子为SEM主要采集信号,通过检出器采集,再经视频放大形成图象信号,经显示器显示成直观的图象信息。相对于光学显微镜而言,SEM具有放大倍数高、分辨率高、成像清晰、立体感强、样品制备简单等诸多优点。1938年第一部扫描电子显微镜就研发成功了,不过直到1965年第一部商用SEM才出现。现在,扫描电子显微镜在植物方面可以对分阶段连续取得的样品进行细胞发生和发育学方面的微观动态研究。除了在植物方面应用,SEM还被广泛应用与动物、医学、化学、物理、地质、机械等多个行业。不少研究者和厂家从二次电子图像分辨率,放大倍数,适用性等方面努力提高SEM的性能,满足人们对SEM的需求。http://ng1.17img.cn/bbsfiles/images/2015/07/201507121833_555080_3023439_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507121834_555081_3023439_3.jpg

  • 【原创大赛】给大家分享分享:我对扫描电镜的一点认识

    【原创大赛】给大家分享分享:我对扫描电镜的一点认识

    因为工作的原因,我在数月前接触到了扫描电镜这种高深昂贵的仪器;但因为大学时的荒废与疏忽,不得已工作后又拿起了课本,开始普及一下自己对扫描电镜原理、技术知识的了解。下文是我数月来学习扫描电镜的一点总结,可能会有一些言语上的不严谨,仅供大家批评指正啦!因为目前我的学习还不够彻底,并没有洋洋洒洒写很多,只是就扫描电镜的原理、结构、分类等谈了谈自己的一点初步了解,欢迎大家一起讨论交流。http://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gif由于光具有波动性,其衍射现象限制了光学显微镜分辨本领的进一步提高,所以观察尺度在200nm以下的物体几乎是光学显微镜不可逾越的鸿沟,这时就需要波长更短的发射源来观察物体。于是,科学家们便发明了电子显微镜,扫描电子显微镜便是其中一种。一、扫描电镜基本原理http://ng1.17img.cn/bbsfiles/images/2011/12/201112201030_339611_2284317_3.jpg 扫描电镜原理示意图如上图所示,由顶端的电子枪发射一束电子,成为电子源;该电子源在加速电压、第一及第二聚光镜、物镜的作用下,缩小成一束狭细的电子束并聚焦在样品面上,然后在偏转线圈的作用下,在样品表面形成相似于电视机上的扫描光栅,由此激发出多种电子信号。在这些电子信号中,二次电子是最基本和最主要的成像信号,其强弱随样品的表面形貌和组成元素的不同而有所变化。最后,二次电子信号被探测器收集后,经转换、放大处理后,最终成像在显示系统上,这样即获得反映样品表面各种特征的三维图像。二、扫描电镜基本结构一般来说,扫描电镜的主要结构可分为电子光学系统、样品室、真空系统、成像系统4大部分。(1)、电子光学系统主要由电子枪,电磁透镜、扫描线圈等部分组成。其中,作为信号激发源的电子枪主要有三种:钨灯丝电子枪、场发射电子枪和六硼化镧电子枪,目前市场中常见的主要是钨灯丝电子枪与场发射电子枪两种。(2)、顾名思义,样品室是用来盛放检测样品的,内部设有样品台及信号检测器。随着样品检测需求的增多,样品室的功能也越来越多,如样品可在其中作平移、转动,还能够观察在加热、制冷条件下的样品形貌变化。(3)、真空系统是扫描电镜工作的一个最基本的保障,真空系统出现故障,则整个设备便处于瘫痪状态。目前,扫描电镜一般要求保持10-4-10-5Torr的真空度,常采用涡轮分子泵或油扩散泵进行抽真空。(4)、成像系统是用来观察样品表面形貌的重要部分;如上面所述,二次电子信号是扫描电镜最常用的成像信号,但目前背散射电子、X射线等电子信号也逐渐成为扫描电镜用于观察样品形貌的重要信息来源。三、扫描电镜主要分类若按电子枪材料分类,扫描电镜可以分为钨丝枪扫描电镜、场发射扫描电镜、六硼化镧枪扫描电镜。其中,六硼化镧枪扫描电镜最为少见,目前仅用于某些特定领域。而在钨灯丝和场发射的基础上,又逐渐出现了高低真空扫描电镜、低电压扫描电镜、超大样品室扫描电镜、台式小型扫描电镜、环境扫描电镜等各种功能的扫描电镜。目前市场中的扫描电镜主要供应商包括FEI、日本电子、日立高新、德国蔡司、安捷伦科技、日本岛津、欧洲TESCAN、英国CamScan、中科科仪(目前唯一一家国产扫描电镜供应商)。自我感觉哈,论技术而言,FEI的技术是最好的;但论销量来说,日本电子与日立高新应该是最多的。四、扫描电镜应用浅析扫描电镜集成了电子光学技术、真空技术、精细机械以及计算机控制技术,是用于研究表面微观世界的一种全能电子光学仪器。凭借其在分辨率(可高达0.01nm以下)、放大倍率(5到20万倍)、景深等方面的巨大优越性,扫描电镜目前已成为科学研究和工业生产中表征微观器件的重要手段和主要工具,在材料学、生物学、医学、半导体集成电路、刑事侦查、灾害鉴定等领域得到了广泛的应用。http://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09511.gif至于具体的应用实例,我看原创大赛中的原创照片都不错,而且目前我还没有太多的上机经验与实验照片,所以具体的应用实例就不再班门弄斧了。

  • 离子迁移谱分辨率如何提高?

    请问离子迁移谱在分辨率指标方面,目前国际上、国内分别做到什么水平?现在主流的提高离子迁移谱分辨率的方法是什么?

  • 【原创】中国赛宝实验室~扫描电镜与能谱仪使用技巧培训

    扫描电镜SEM和能谱仪EDAX的使用技巧主办单位: 中国赛宝实验室可靠性研究分析中心培训时间:2007年10月15日-18日培训费用:4000元/人.四天(含培训费、证书费、资料费、正餐费)( 每单位两人以上可有折扣)培训证书: 中国赛宝实验室可靠性研究分析中心培训证书课程对象:电镜操作工程师 电子工艺工程师 品质工程师 管理工程师 质检人员培训报名中心:报名电话:020-87236986-212 传真:020-87237185Email:xiongey@ceprei.com 联系人:熊小姐【主讲专家】施明哲, 中国赛宝实验室(信产部电子第五研究所)可靠性研究分析中心高级工程师,三十年来主要从事扫描电子显微镜、X射线能量谱仪和波谱仪的操作、应用研究工作。是当前扫描电镜行业广泛知名的专家,在电子光学和真空技术方面有丰富的工作经验,在会议和刊物上发表了十多篇专业水平较高的文章,并参与编写《半导体失效机理及分析》一书。参与的科研工作曾多次获得所一等奖、二等奖;获国家级技术进步二等奖二次,三等奖一次。课时安排:日期时间授课内容10月15日8:30-12:00扫描电镜理论学习14:00-17:0010月16日8:30-12:0014:00-17:00扫描电镜演示与答疑10月17日8:30-12:00能谱仪理论学习14:00-17:0010月18日8:30-12:0014:00-17:00能谱仪演示与答疑课程内容提纲 第一部分:扫描电镜第一章、扫描电镜1.1 慨论1.2扫描电镜原理1.3扫描电镜结构1.4扫描电镜的分辨力1.5扫描电镜图像的形成第二章、高分辨扫描电子显微镜2.1 场发射扫描电子显微镜2.2 SE和BSE之差做为信号的方式2.3 工作距离2.4 使用强磁物镜的方式第三章、扫描电子显微镜的实践3.1 扫描电子显微镜的操作3.2 扫描电子显微镜图像的毛病3.3 扫描电子显微镜的保养3.4 扫描电子显微镜的安装条件3.5 扫描电子显微镜的验收与维护3.6小结第四章:电镜图像演示及答疑第二部分:能谱分析第一章、引 言第二章、EDS系统的工作原理1.系统概述2. 吸收和处理过程3.计数率的考虑4.谱仪的分辨力第三章、X 射线的产生和与物质的相互作用1.萤光产额2.连续辐射的产生3.莫塞莱定律X射线定性分析4.X射线的吸收5.二次发射(萤光)第四章、X射线测量第五章、能量定性分析1.检出限2.探测器的效率3.空间分辨力3.谱仪分辨力4. 伪峰(“artifact”peaks)5.定性分析结果的表示方法第六章、电子显微镜的操作及其参数的选择1.加速电压2.电子源3.孔径光栏选择4.镜筒的合轴5.样品/探测器的几何条件第七章、定量分析1.脉冲计数统计误差2.块状试样的定量分析第八章、能谱的定性和定量分析的方法与步骤1.定性分析概述2.定量分析概述第九章、能谱失真与杂散幅射 1.谱峰的失真2.背底的失真3.杂散辐射第第十章、能谱的验收与维护第三部分:实际操作及答疑

  • 【已应助】扫描电镜技术及其应用>

    扫描电镜技术及其应用出版社:厦门大学 作 者:郭素枝 开 本:16开 ISBN:7561525192 页 数:169 出版日期:2006-02-01 第1版 第1次印刷 导 语 本书是作者根据多年来从事扫描电镜技术工作及制样技术的实践经验,并结合扫描电镜技术的最新进展和一些典型的应用实例,以及为研究生讲授《生物电子显微技术》和《仪器分析》课程中“扫描电镜技术及其应用”所用讲义的基础上编写而成的。作者认为,本书的出版可为应用扫描电镜技术研究的科研人员提供具有实用价值的参考资料,也可为各个学科的教学、科研人员参考使用。此外,本书还可作为研究生、本科生的教材。 目 录 第一章 扫描电镜概述第一节 发展背景一、光学显微镜的极限分辨率二、扫描电镜的研制历程第二节 扫描电镜的类型及其展望一、扫描电镜类型介绍二、展望第二章 扫描电镜的用途第一节 在生命学科中的应用一、植物学二、动物学三、医学四、占生物学五、考古学第二节 在其他基础学科中的应用一、材料学二、物理学三、化学第三节 在工业中的应用一、半导体工业二、陶瓷工业三、化学工业四、石油工业五、食品科学第三章 扫描电镜的工作原理和结构第一节 工作原理和主要结构一、工作原理二、主要结构第二节 扫描电镜成像原理和成像过程一、成像原理三、扫描电镜的特点第三节 影响扫描电镜图像形成和图像质量的因素一、影响图像形成的因素二、影响图像细节清晰的因素三、影响图像反差的因素第四章 扫描电镜的使用第一节 扫描电镜的操作一、电镜启动二、样品的安装三、观察条件的选择四、观察图像的操作方法第二节 扫描电镜图像常出现的质量问题一、产生的原因二、损伤三、污染四、放电第五章 扫描电镜微区成分分析技术第一节 概述第二节 X射线波谱分析一、波谱仪的基本原理和分析特点二、波谱仪的结构和工作原理三、检测中常见的问题四、X射线波谱的注释五、分析方法第三节 X射线能谱分析一、能谱仪的基本原理和分析特点二、能谱仪的结构和工作原理三、能谱仪的操作要点四、能谱仪伪峰的识别五、能谱MCS分析模式六、能谱仪和波谱仪的比较第四节 X射线荧光谱分析一、分析原理和分析特点二、在样品室中X射线源的结构三、分析条件的选择第五节 X射线成分分析技术的应用一、在生物学领域中的应用二、在材料科学中的应用三、特殊试样的应用第六节 扫描电镜成分分析技术的发展前景第六章 样品的常规制备方法第一节 对样品处理的要求一、研究样品表面要处理干净二、研究样品必须彻底干燥三、非导体样品的导电处理四、保护样品研究面五、要求标记物要有形态第二节 取样、清洗、固定一、取样二、粗样清洗三、样品固定第三节 脱水一、脱水剂二、脱水的原理与要求三、脱水方法第四节 干燥一、干燥要求二、干燥方法第五节 粘样一、粘样的目的二、粘贴样品的材料三、注意事项第六节 样品的导电处理一、金属镀膜法二、导电染色法第七章 扫描电镜的暗室技术第一节 暗室概况一、暗室设计与设备要求二、暗室的工作内容三、暗室技能四、暗室常用的药品及其性能、作用五、安全灯的选用和控制第二节 底片的冲洗工艺一、D-76和D-72显影液配方二、定影液配方三、显影与定影的原理四、胶卷的冲洗程序五、胶卷冲洗中常出现的问题六、冲洗胶卷时应注意的事项七、底片的保存及注意事项第三节 照片的冲洗工艺一、照片的冲洗程序二、正确曝光是保证照片质量的关键三、影响印放的正确曝光的因素四、影响显影效果的主要因素第四节 底片和照片缺陷的处理技术一、提高底片和照片的反差二、底片减薄三、底片加厚第五节 实验废液处理一、废液的收集二、废液的处理三、废液处理的注意事项第八章 扫描电镜图像计算机处理和储存技术第一节 计算机处理图像一、二次电子图像的计算机处理过程二、二维图像的计算机处理三、计算机进行图像的三维重构四、图像识别技术五、计算机的图像处理语言第二节 计算机储存图像一、计算机储存图像的特点二、全自动图像处理技术第九章 不同试样的制备方法介绍第一节 生物样品制备技术一、孢子的固定二、酵母的固定三、原生动物的固定四、植物组织的特殊固定方法五、单固定快速脱水法六、鱼类细胞单固定半程序微波辐射法七、贴壁培养细胞的单固定氯化金染色法八、血细胞制样方法九、血细胞E花环样品制备十、明胶膜收集游离细胞的制样方法十一、单细胞藻类的制样方法十二、菌落制样方法十三、细菌液体培养物制样方法十四、真菌熏蒸制样方法十五、酵母菌苯乙烯割断扫描电镜观察十六、原生质体的制样方法十七、染色体的制样方法十八、植物花粉粒的制备技术十九、叶表皮制样方法二十、木材立方体扫描样品制备技术二十一、植物材料的冷冻割断制备技术二十二、动物器官的制样技术二十三、线虫扫描电镜样品的制备二十四、池塘底泥中轮虫冬卵的扫描电镜观察二十五、鱼类耳石日轮超微结构的扫描电镜观察二十六、肾结石的扫描电镜观察二十七、扫描电镜连续观察长毛发的方法二十八、针插或乙醇浸泡标本的样品制作二十九、扫描电镜样品的导电法三十、包埋与非包埋切片的样品处理方法三十一、免疫扫描电镜方法第二节 非生物样品制备技术一、块状导电样品制备二、粉末样品制备三、土壤试样的制备四、显示三维物理结构的制样技术五、斜剖金相面技术六、蚀坑技术主要参考文献

  • 请教质谱全扫描原理的问题

    在学习GCMS的时候,了解到他的fullscan原理是对一个选择的区间进行周期性扫描,相当于从最小的m/z到最大的m/z在一个周期内扫描一遍,同理四级杆电压也是周期性变化的,所以就只能有一部分离子通过四级杆到达检测器,大部分的离子被四级杆给过滤掉了。在学习[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS的时候,又了解到了一种新的模式,四级杆处于离子全通模式,所有的离子全部通过四级杆到达检测器,获取一级质谱。这看似跟fullscan一样的效果,却又完全不同的原理。请大神解答,理解的有没有问题?

  • 各种仪器分析的基本原理、谱图表示方法、获得的信息——牛人总结,留着备用

    紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法 IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力 谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线 提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法 PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法 GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:高聚物的平均分子量及其分布热重法 TG 分析原理:在控温环境中,样品重量随温度或时间变化 谱图的表示方法:样品的重量分数随温度或时间的变化曲线 提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析 DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析 DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线 提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析 TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化 谱图的表示方法:样品形变值随温度或时间变化曲线 提供的信息:热转变温度和力学状态动态热―力分析 DMA 分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化 谱图的表示方法:模量或tgδ随温度变化曲线 提供的信息:热转变温度模量和tgδ透射电子显微术 TEM 分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等扫描电子显微术 SEM 分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等原子吸收 AAS 原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 电感耦合高频等离子体 ICP(Inductive coupling high frequency plasma) 原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 X-ray diffraction ,x射线衍射即XRD X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 满足衍射条件,可应用布拉格公式:2dsinθ=λ 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 高效毛细管电泳(high performance capillary electrophoresis,HPCE) CZE的基本原理 HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。 MECC的基本原理 MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。 扫描隧道显微镜(STM) 扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子

  • 做扫描电镜测试不要钱

    扫描电子显微镜是(Scanning ElectronMicroscope,SEM)是20 世纪30 年代中期发展起来的一种多功能的电子显微分析仪器。由于扫描电镜的放大倍数范围宽,图像分辨率高,景深好,立体感强,制样简单,对样品的损伤和污染小,配备了能谱仪可同时进行元素成分分析。因此,扫描电镜已广泛地应用于物理、化学、地质、地理、生物、医学、材料等学科以及电子、化工、冶金、陶瓷、建筑等工业中各种材料、样品、器件的形貌、结构和无机元素成分分析。在失效分析实验室,扫描电镜是不可或缺的分析设备,因为失效分析经常要进行断口分析及异物分析。扫描电镜检测项目和内容形貌分析:观察各种材料或生物样品的微观形貌,可以达到纳米尺度的无损观察。结构分析:观察各种陶瓷、岩石、土壤等样品的粒径、晶界、空隙及其相互关系,检查金属内部是否有微小缺陷。断口分析:确定金属材料的断裂性质。断裂性质是金属断裂分析的第一步,决定了后续的原因分析方向。粒度分析:确定颗粒样品的粒径及其元素组成。定性分析:分析固体样品中存在的各个元素名称。定量分析:测定样品中存在的各个元素的浓度。扫描电镜是非常精密的仪器,结构复杂,要想得到能充分反映物质形貌、层次清晰、立体感强和分辨率高的高质量图像仍然是一件非常艰难的事情。那么,究竟有哪些因素会导致扫描电镜的成像有偏差呢?特别是您的样品涉及到薄膜、半导体和器件、合成纤维、溅射或氧化薄膜、高分子材料等,更是要选择好的扫描电镜。

  • 电喷雾离子源原理-离子迁移搬运机理的应用探讨

    电喷雾离子源原理-离子迁移搬运机理的应用探讨

    [align=center][b][font=黑体]电喷雾离子源原理与离子迁移搬运机理的应用探讨[/font][/b][/align][align=center][font=宋体]罗杰鸿[/font][sup]1*[/sup][/align][align=center](1.[font=宋体]广东安纳检测技术有限公司,[/font][font=宋体]广东[/font][font=宋体]广州[/font]510000)[/align][b][font=宋体]摘要[/font]: [/b][font=宋体]自从[/font][font=宋体]电喷雾现象被发现,对于以[/font]ESI[font=宋体]为代表的软电离现象中,物质如何带电荷依然存在着争论。科学家们从不同的角度描述了这一个过程,但现今的理论依然无法完全解释众多的实验现象。同时,由于理论的不成熟,制约了软电离在技术方面的应用,比较直接地表现为,理论的缓慢发展,制约了离子源的设计与研制工作,使得离子源从实验室走向商业化遇上了不少的瓶颈。本文通过简述现有的离子源原理,并对离子迁移搬运机理的应用进行了探讨和展望。[/font][b][font=宋体]关键词[/font]:[/b] [font=宋体]电喷雾现象;[/font][font=宋体]离子源理论;离子源的设计;商业化;[/font][b][font='Times New Roman',serif]The principle of ionspray ion source -- Application of ion migrate and transport mechanism[/font][/b][align=center]Luo Jiehong[sup]1*[/sup][/align][align=center](1.Guangdong Anna testing co, ltd[font=宋体],[/font] Guangzhou510000[font=宋体],[/font] China)[/align][b]Abstract:[/b]Since the discovery ofelectrospray spray phenomenon, there is still a debate about how to chargesubstances in the soft ionization phenomenon represented by ESI. Scientistshave described this process from different perspectives, but the current theorystill cannot fully explain many experimental phenomena. At the same time, dueto the immaturity of the theory, the application of soft ionization intechnology is restricted, which is directly reflected in the slow developmentof the theory, which restricts the design and development of the ion source,and makes the ion source meet many bottlenecks from the laboratory tocommercialization. In this paper, the principle of existing ion sources isbriefly described, and the application of ion migration and transportationmechanism is discussed and prospected.[b]Key words[/b]: electric spray phenomenon Ion source theory Design of ionsource Commercialization 1913[font=宋体]年,著名英国物理学家汤姆逊采用一台简陋的抛物线装置研究[/font] “[font=宋体]正电[/font]”[font=宋体]射线,非有意之中诞生了质谱学。[/font]1917[font=宋体]年,电喷雾物理现象被发现(一个伟大的发现,可是当时并非为了在质谱仪器上使用),人们使用静电喷雾法进行喷漆、燃料物化、静电乳化等。区别于[/font]EI[font=宋体]等高能量碰撞使得物质带电的硬电离模式,电喷雾带电等模式被称为软电离模式。[/font][font=宋体]自从学者们发明电喷雾离子源[/font]ESI[font=宋体]以来,其气相离子形成的机理一直争论了很长一段时间[/font][1-9][font=宋体]。其中,离子蒸发机理[/font](IEM )[font=宋体]、带电残基机理[/font](CRM)[font=宋体]、链弹射理论[/font](CEM)[font=宋体]是比较常见的气相离子形成机理。最近,基于相关实验结果,笔者等提出[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]的机理[/font][10][font=宋体]。本文对近年来关于离子源原理的研究工作进行简述,并对离子迁移搬运机理的应用进行探讨和展望。[/font][b]1 [font=宋体]电喷雾离子源的基本原理[/font][/b][font=宋体]电喷雾离子源[/font]ESI[font=宋体]利用电场产生带电液滴,经过各种作用最终实现待测物质的分子离子化。待测物质能够成功地实现电喷雾离子化,一般经过几个步骤[/font][11][font=宋体]:形成带电液滴、液滴变小、最后形成气相离子。带电液滴形成过程、带电液滴变小过程已经得到相关实验的验证,但怎样形成气相离子,受限于缺乏精密仪器,依然存在着争论。对于最后步骤,学者们从不同的角度去说明这个过程[/font][11-12][font=宋体],[/font]IEM[font=宋体],[/font]CRM[font=宋体],[/font]CEM[font=宋体]等三个理论,有一定的适用范围,也能应用于解释一些的实验现象,但依然存在许多实验现象无法应用这些理论来解释。[/font][b]1.1 [font=宋体]朱一心的实验与理论[/font] [/b]IEM[font=宋体],[/font]CRM[font=宋体],[/font]CEM[font=宋体]是比较常见的几种观点,许多论文已经详细讲述这些原理[/font][1-9][font=宋体]。[/font]IEM[font=宋体],[/font]CRM[font=宋体],[/font]CEM[font=宋体]等理论,至今也无法解释以下两个问题:[/font]1[font=宋体]、为什么电喷雾离子源中存在多电荷现象,尤其是蛋白质电荷分布近似于高斯分布[/font]? 2[font=宋体]、为什么电喷雾离子源存在离子抑制现象[/font]? [font=宋体]而且,在解释热裂解测定,负离子模式测定等常见的实验现象中,也存在着一定的困难。[/font][font=宋体]朱一心等认为,根据电磁场理论,介质在电场中,正负电荷是以成对的形式存在的,不可能形成正负离子分离,在电极的同一端更不可能产生正、负离子分离的现象,因此并不认为多余的电荷是来自于液滴[/font][13,14][font=宋体]。通过其研制的一款新型离子源[/font](Coanda Effect ESI Source)[font=宋体]进行实验分析,朱一心等[/font][14][font=宋体]提出并证明:电喷雾离子化过程中的质子来自于[/font]Taylor Cone[font=宋体]外的气氛,离子化室的氛围是影响电喷雾离子化过程的重要因素,通过有效控制离子化室的氛围,可以提高分析物分子离子化的效率。[/font][b]1.2 “[font=宋体]离子迁移搬运[/font]”[font=宋体]的机理[/font][/b][font=宋体]朱一心等认为质子来源于泰勒锥外的空气中,而实际上,我们常用离子加合进行待测物测定[/font][15][font=宋体],离子加合,例如铵根离子加合,其中的铵根离子,来源于通过在流动相添加乙酸铵,可以看出,大部分情况下,质子等加合离子是来源于流动相的。常见的钠离子、钾离子等正离子加合,空气中一般不存在钠离子、钾离子等,离子源的负离子模式测定或者热裂解测定,更是不需要任何的质子来源。[/font][font=宋体]笔者长期从事离子加合测定和热裂解测定,结合笔者的相关研究内容[/font] [16-18][font=宋体],笔者等提出[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]的机理。新机理表述归纳为三点。[/font][font=宋体]首先,在离子源里,通过各种脱溶剂作用,在毛细管尖端周围空间迅速形成存在大量的[/font]H[sup]+[/sup][font=宋体]、[/font]NH[sub]4[/sub][sup]+[/sup][font=宋体]、[/font]Ac[sup]-[/sup][font=宋体]、[/font]Cl[sup]-[/sup][font=宋体](加三氯甲烷等)、[/font]NO[sub]2[/sub][sup]-[/sup][font=宋体](添加含[/font]NO[sub]2[/sub][sup]-[/sup][font=宋体]离子的物质)、[/font]Na[sup]+[/sup][font=宋体]等加合离子[/font][font=宋体]的流动相蒸气[/font]-[font=宋体]氮气辅助气氛围。这些条件,为离子在空气中的迁移提供了电泳条件。假设当毛细管电压为正时,检测器电压看作负,加合离子在这样含有流动相蒸汽的脱溶剂气氛围中发生迁移。[/font][font=宋体]而此时流动相里的待测物在相似的脱溶剂条件下形成裸露的分子。在一定温度下,这些裸露的分子有可能进一步裂解成离子,发生迁移后被测定,如灭菌丹[/font][10][font=宋体]。热裂解测定需要离子源达到一定的温度,对离子源有一定的要求。[/font][font=宋体]最后,[/font]H[sup]+[/sup][font=宋体]、[/font]NH[sub]4[/sub][sup]+[/sup][font=宋体]等加合离子,与不带电荷的裸露小分子通过氢键、范德华力、离子键等作用力结合在一起,发生迁移而到达质谱检测器。加合离子和裂解产生的离子(包括热裂解产生的离子,负离子模式产生的离子)是迁移的主体,是实际上产生迁移物质,它们充当着[/font]“[font=宋体]搬运工[/font]”[font=宋体]的角色,通过作用力,它们能够把蛋白质等待测物质迁移到质谱。示意图如图[/font]1[font=宋体]所示。[/font][font=宋体]离子迁移搬运机理可以简述为:假设当毛细管为正,而质谱检测器为负时,由流动相、脱溶剂气或者空气等提供电泳条件。此时,[/font]H[sup]+[/sup][font=宋体]、[/font]NH[sup]4+[/sup][font=宋体]等加合离子发生迁移,当它们迁移的时候,通过作用力,把裸露的小分子或者蛋白质搬运到质谱检测器。搬运的对象可以是裸露的小分子或者蛋白质,也可以是团簇小溶剂,也可以是空气中的小分子物质。[/font][font=宋体]迄今为止,软电离技术关于物质如何带电这个现象的解释,强调的是物质是如何带电荷,但离子迁移搬运理论指出,并不是物质带电荷,而是电荷带物质,迁移的中心是电荷,而不是待测物质,电荷才是真正迁移的主体。同时[color=black]我们认为[/color][/font][font=宋体][color=black],[/color][/font][font=宋体]电荷带物质的[/font][font=宋体][color=black]原理同样适用于与[/color][/font][color=black]ESI[/color][font=宋体][color=black]类似的化学电离[/color][/font][color=black](Chemical ionization, CI)[/color][font=宋体][color=black]。[/color][/font][align=center][img=,639,181]https://ng1.17img.cn/bbsfiles/images/2022/12/202212151536523466_4523_3237657_3.png!w690x196.jpg[/img][/align][align=center][font=宋体]图[/font]1 “[font=宋体]离子迁移搬运[/font]”[font=宋体]机理示意图[/font][/align][align=center]Fig. 1 Schematic diagram of "ion migrate andtransport" mechanism [/align][b][color=black]2[/color][font=宋体]多电荷现象、离子抑制现象的初步解释[/font][/b][font=宋体]利用[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]机理对离子源的某些实验现象,例如多电荷现象、离子抑制现象等等,进行初步的解释。蛋白质在结构紧凑时,内部形成内核,加合离子只能结合在其外部的位点,而当蛋白质结构展开时,加合离子能够结合其链条上的位点,从而产生不同的多电荷现象。[/font]“[font=宋体]离子迁移搬运[/font]”[font=宋体]机理可以对多电荷的电荷分布现象进行初步解释,当迁移一定的距离时,对于一定分子量的大分子,需要一定量的加合离子,通过其相互作用力,使得其实现向离子源的迁移,但当加合离子数量过多的时候,相互之间的排斥力增大,因此,蛋白质的多电荷呈现中间高,两端低的类似于高斯分布现象。从原理进行推论,能够检测到的蛋白质的电荷分布,与接口到检测器之间的距离有关,与形成的加合离子数目有关(加合离子数目与接口的氧化还原反应等因素有关,与流动相添加的物质有关),与蛋白质的结构有关。辅助气氛围中含有一定数量的加合离子,不同分析物会竞争结合这些加合离子,从而出现离子抑制现象。[/font][b][color=black]3 [/color][font=宋体][color=black]离子源设计思路的探讨[/color][/font][/b][color=black] [/color][font=宋体][color=black]上世纪[/color][/font][color=black]60[/color][font=宋体][color=black]年代,[/color][/font][color=black]Dole[/color][font=宋体][color=black]等研制了第一台采用电喷雾现象的质谱仪,并用于分析了聚苯乙烯大分子,但仍然不能测定蛋白质[/color][/font][color=black][5][/color][font=宋体][color=black]。之后[/color][/font][color=black], Fenn[/color][font=宋体][color=black]等[/color][/font][color=black][21][/color][font=宋体][color=black]发现了[/color][/font][color=black] Dole[/color][font=宋体][color=black]所设计的离子源存在的问题,修正了离子源喷针和端板之间的距离[/color][/font][color=black], [/color][font=宋体][color=black]从而降低了喷针电压。自从[/color][/font][color=black]1917[/color][font=宋体][color=black]年以来,软电离模式(主要为电喷雾,[/color][/font][color=black]CI[/color][font=宋体][color=black])中物质如何带电成为了一个争论不休的领域,其一定程度上制约了科学家们研制新的离子源。[/color][/font][font=宋体][color=black]待测物质能够被检测,一般情况下采用三种方式。[/color][/font][color=black]1. [/color][font=宋体][color=black]电场、热、光等物理因素直接裂解待测物质,产生离子,例如灭菌丹测定[/color][/font][20][font=宋体][color=black]。[/color][/font][color=black]2.[/color][font=宋体][color=black]电场、热、光等物理因素通过各种反应,产生待测物质的单电子离子。[/color][/font][color=black]3.[/color][font=宋体][color=black]通过不同的方式产生加合离子,再与待测物质结合后,产生迁移而被测定。现今主流离子源设计一般采用以上三种方式。[/color][/font][color=black] “[/color][font=宋体][color=black]离子迁移搬运[/color][/font][color=black]”[/color][font=宋体][color=black]机理指出,以质子为代表的加合离子是否来源于流动相并不是最重要的,关键的问题是怎样形成含有加合离子的电泳条件,对于辅助气氛围是否含有流动相及其对灵敏度的影响,有待进一步研究。提高离子源的分子离子化率,怎样使得待测物质分子离子化率的效率更高,响应值更高,依然是现今离子源研制的一项重要工作,也是蛋白质组学最大的技术瓶颈之一[/color][/font][color=black][22][/color][font=宋体][color=black]。[/color][/font][color=black] [/color][b][color=black]4 [/color][font=宋体][color=black]质谱仪等其它部件研制思路的探讨[/color][/font][color=black] [/color][/b][color=black] [/color][font=宋体]从原理进行推论,[color=black]我们认为,待测物质在加上加合离子后,加合离子与待测物质之间存在[/color]一定的作用力,而待测物质在被搬运的过程中,经过质谱仪等各个核心部件时,如果作用力不够强或者受到的外力过大,可能导致加合离子与待测物质分离。因此,[/font][color=black]“[/color][font=宋体][color=black]离子迁移搬运[/color][/font][color=black]”[/color][font=宋体][color=black]机理有望应用于液相质谱的其它部件的研制上。[/color][/font][b]5 [font=宋体]总结与展望[/font] [/b][font=宋体]本文提出,软电离技术的基本原理并不是物质带电荷,而是电荷带物质,迁移的中心是电荷,而不是待测物质,电荷才是真正迁移的主体。[/font][font=宋体]离子源原理的研究,对于离子源的设计与研制有着重要的作用,理论的发展,为解决当前离子源设计上的问题提供了良好的发展基础。当前离子源的设计与研制,在某些问题的解决上发展缓慢[/font][23-25][font=宋体]。离子源理论发展的缓慢,制约了离子源的设计与研制工作,使得离子源从实验室走向商业化遇上了不少的瓶颈。因此,发展离子源的理论具有重要意义,将是未来研究的重要方向。[/font][b][font=宋体]参考文献:[/font][/b][1] [font=宋体]赵霞[/font],[font=宋体]步芬[/font],[font=宋体]邹丽敏[/font],[font=宋体]李博[/font].[font=宋体]电喷雾解吸质谱及其应用[/font][J]. [font=宋体]价值工程[/font], 2012, 31(02): 326-328.[2] [font=宋体]张维冰,高方园,关亚风,张玉奎[/font]. [font=宋体]电喷雾离子源中样品离子化能量转移理论的初探[/font][J]. [font=宋体]色谱,[/font]2014[font=宋体],[/font]32(04): 395-401.[align=left][3] Cech N B,Enke C G. Practicalimplications of some recent studies in electrospray ionization fundamentals.[J].Mass spectrometry reviews,2001,20(6).362-387.[/align][align=left][4] Iribarne J V[font=宋体],[/font]Thomson B A[font=宋体].[/font]On the evaporation ofsmall ions from charged droplets[J]. The Journal of Chemical Physics[font=宋体],[/font]1976[font=宋体],[/font]64(6):2287-2294.[/align][align=left][color=black][back=white][5] [/back][/color][color=black][back=white]Dole[/back][/color][font=宋体][color=black][back=white],[/back][/color][/font][color=black][back=white]Malcolm. Molecular Beams of Macroions[J]. Journal of ChemicalPhysics[/back][/color][font=宋体][color=black][back=white],[/back][/color][/font][color=black][back=white]1968[/back][/color][font=宋体][color=black][back=white],[/back][/color][/font][color=black][back=white]49(5):2240.[/back][/color][/align][align=left][6] Iavarone A T,Williams E R.Mechanism of charging and supercharging molecules in electrosprayionization.[J]. Journal of the American Chemical Society[font=宋体],[/font]2003[font=宋体],[/font]125(8)[font=宋体],[/font]2319-2327.[/align][align=left][7] Ahadi E[font=宋体],[/font]Konermann L.Modelingthe behavior of coarse-grained polymer chains in charged water droplets: implications for the mechanism ofelectrospray ionization[J]. J Phys Chem B[font=宋体],[/font]2011[font=宋体],[/font]116: 104-112[color=black][back=white].[/back][/color][/align][align=left][8] Konermann L[font=宋体],[/font]Rodriguez A D[font=宋体],[/font]Liu J . On the Formationof Highly Charged Gaseous Ions from Unfolded Proteins by ElectrosprayIonization[J]. Analytical Chemistry[font=宋体],[/font]2012[font=宋体],[/font]84(15):6798-6804.[/align][align=left][9] [font=宋体]裴继影[/font],[font=宋体]侯壮豪[/font].[font=宋体]质谱电喷雾离子源中电化学与电晕放电氧化还原反应的研究进展[/font][J].[font=宋体]分析测试学报[/font],2018,37(12):1508-1513.[/align][align=left][10] [font=宋体]罗杰鸿[/font]. [font=宋体]电喷雾离子源原理的一些理论探讨[/font][J].[font=宋体]广东化工,[/font]2020[font=宋体],[/font]47(13):78-79.[/align][align=left][11] [font=宋体]高方园,张维冰,关亚风,张玉奎[/font]. [font=宋体]电喷雾离子源原理与研究进展[/font][J].[font=宋体]中国科学[/font]:[font=宋体]化学,[/font]2014[font=宋体],[/font]44(07):1181-1194.[/align][align=left][12][font=宋体]张维冰,高方园,关亚风,张玉奎[/font]. [font=宋体]电喷雾离子源中样品离子化能量转移理论的初探[/font][J]. [font=宋体]色谱,[/font]2014[font=宋体],[/font]32(04):395-401.[/align][align=left][13]de la Mora J F. Electrosprayionization of large multiply charged species proceeds via Dole’s chargedresidue mechanism[J]. Anal Chim Acta. 2000 406:93-104.[/align][align=left][14][font=宋体]朱一心[/font],Georgia Dolios,Rong Wong,[font=宋体]张玉奎[/font]. [font=宋体]电喷雾离子化过程中的质子来源分析[/font][C]. [font=宋体]中国化学会、国家自然科学基金委员会[/font].[font=宋体]中国化学会第二届全国质谱分析学术报告会会议摘要集[/font].[font=宋体]中国化学会、国家自然科学基金委员会[/font]:[font=宋体]中国化学会[/font],2015:175.[/align][align=left][15]Richard B. Cole,Junhua Zhu.Chloride anion attachment in negative ion electrospray ionization mass spectrometry[J].Rapid Communications in Mass Spectrometry,1999,13(7),607-611.[/align][align=left][16][font=宋体]罗羚丰[/font],[font=宋体]罗杰鸿[/font].[font=宋体]液相质谱测定中离子加合应用的一些研究[/font][J].[font=宋体]食品安全导刊[/font],2019(17):72.[/align][align=left][17][font=宋体]李健文[/font],[font=宋体]罗杰鸿[/font].[font=宋体]液相质谱中离子加合现象与原位化学反应测定研究进展[/font][J].[font=宋体]广东化工[/font],2019,46(07):134-135.[/align][align=left][18] [font=宋体]刘纲勇[/font],[font=宋体]罗杰鸿[/font],[font=宋体]黄锦波[/font].[font=宋体]液相质谱测定非极性或弱极性物质的研究进展[/font][J].[font=宋体]广州化学[/font],2020,45(01):60-65.[/align][align=left][19] [font=宋体]农有全[/font],[font=宋体]罗杰鸿[/font].[font=宋体]液相质谱原位化学反应测定研究进展[/font][J].[font=宋体]广东化工[/font],2020,47(10):151-152.[/align][align=left][20] [font=宋体]汤祝华,梁晓涵,王海灵,等[/font]. [font=宋体]超高效液相色谱串联质谱测定苹果中灭菌丹残留量[/font][J]. [font=宋体]热带农业科学,[/font] 2018[font=宋体],[/font]38(12):99-102.[/align][align=left][21]Yamashita M, Fenn JB.Electrospray ion source. Another variation on the free-jet theme. J Phys Chem,1984, 88: 4451–4459.[/align][align=left][22][font=宋体]朱一心[/font],[font=宋体]吕婷婷[/font],[font=宋体]葛林泽[/font]. [font=宋体]一种应用于质谱仪的电喷雾离子源及质谱分析方法[/font][P]. [font=宋体]浙江省:[/font]CN105304451B,2017-06-16.[/align][align=left][23][font=宋体]李宝强[/font],[font=宋体]张众垚[/font],[font=宋体]孔景临[/font],[font=宋体]张琳[/font],[font=宋体]郭成海[/font],[font=宋体]李翠萍[/font].[font=宋体]敞开式离子化质谱技术研究进展[/font][J].[font=宋体]质谱学报[/font],2020,41(03):221-235.[/align][align=left][24][font=宋体]贺玖明[/font],[font=宋体]李铁钢[/font],[font=宋体]何菁菁[/font],[font=宋体]罗志刚[/font],[font=宋体]再帕尔[/font][font=宋体]阿不力孜[/font].[font=宋体]常压敞开式离子化质谱技术研究进展[/font][J].[font=宋体]分析测试学报[/font],2012,31(09):1151-1160.[/align][align=left][25][font=宋体]丁薛璐[/font],[font=宋体]段忆翔[/font].[font=宋体]等离子体常压解吸离子源质谱[/font][J].[font=宋体]中国科学[/font]:[font=宋体]化学[/font],2014,44(05):672-679.[/align]

  • 用于化学分析的土壤的粒径有什么要求?

    用于化学分析的土壤的粒径有什么要求?我在实验室条件下做石油类污染物在土壤中的迁移情况,采集过来的土壤是否还需要处理,用处理后的土壤测得的数据能否说明自然条件迁移情况?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制