当前位置: 仪器信息网 > 行业主题 > >

山梨醇和甘露醇的液相检测

仪器信息网山梨醇和甘露醇的液相检测专题为您提供2024年最新山梨醇和甘露醇的液相检测价格报价、厂家品牌的相关信息, 包括山梨醇和甘露醇的液相检测参数、型号等,不管是国产,还是进口品牌的山梨醇和甘露醇的液相检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合山梨醇和甘露醇的液相检测相关的耗材配件、试剂标物,还有山梨醇和甘露醇的液相检测相关的最新资讯、资料,以及山梨醇和甘露醇的液相检测相关的解决方案。

山梨醇和甘露醇的液相检测相关的资讯

  • 玩转这5种缓冲液赋形剂让您的实验得心应手!
    话题介绍什么是赋形剂?对于寻找能够稳定早期开发生物制品的缓冲液的预配方研究人员来说,缓冲液的优化不能仅局限于缓冲液的pH值和盐浓度的变化。赋形剂作为缓冲液的添加剂,即使在缓冲液优化的早期预制剂阶段,赋形剂的添加对长期稳定候选生物制剂有很大帮助,因此是制剂评估的关键因素。但每一类赋形剂都以不同的方式协助稳定生物制剂——无论是单克隆抗体还是疫苗抗原。下面跟随小编,一起来了解一些最重要的生物制剂辅料,以及它们如何提高制剂的稳定性。1. 辅助剂辅助剂能够产生更强的免疫反应,对疫苗尤其重要。他们通常是可以增强免疫反应的单独的小分子生物制剂。2. 表面活性剂表面活性剂有助于降低溶液的表面张力,使疏水分子更容易保持溶解状态。聚山梨醇酯80或聚山梨醇酯20是常见的表面活性剂。3. 氨基酸氨基酸是一种特殊的赋形剂,用于帮助稳定蛋白质分子上的自由电荷。它们是一种有助于降低带电分子之间跨蛋白质吸引力的方法,而不会使盐浓度过高。通常用于这项工作的氨基酸有精氨酸、脯氨酸、甘氨酸、组氨酸和蛋氨酸。精氨酸、脯氨酸和甘氨酸也有助于调节最终制剂的粘度。4. 糖类糖类作为是非常实用的构象稳定剂,对抗体尤其有效。它们为冻干产品提供冻干保护,并对生物分子的溶剂化具有有益的作用。蔗糖是添加到缓冲液中最常见的糖之一,但也会使用甘露醇、山梨醇和海藻糖。5. 多元醇多元醇与糖类似,是增强生物制品热稳定性的稳定分子。它们还充当“膨胀剂”以保持蛋白质的整体三维结构,这在冻干过程中尤为重要。甘油是用于增强稳定性的非常常见的多元醇,除此之外也会使用甘露醇和山梨醇。总结如何快速精准的筛选赋形剂? 如您所见,有许多不同类型的赋形剂有助于提高生物制剂的长期稳定性,从而提高其进入临床的机会。需要特别注意的是,您构建的每种治疗药物都会有不同的表现,所以针对每种候选药物,进行多种赋形剂筛选以确定哪种赋形剂能够为您的治疗药物带来最大的稳定性是至关重要的。 那么问题来了,我们到底应该如何精准且快速高效的完成海量的赋形剂筛选呢?作为实验室里必不可少的王牌仪器,拥有PR Panta蛋白稳定性分析仪无疑是非常有助于预配方领域的上游研究人员评估缓冲剂成分,以及研究如何提高其疗法稳定性的核心设备。它可以提供低检测限的多种稳定性参数、高分辨率数据均有助于加快缓冲液优化的过程。PR Panta蛋白稳定性分析仪(点击图片 查看更多)如需了解PR Panta蛋白稳定性分析仪如何协助您的候选生物制剂获得成功,欢迎联系我们获得更多信息。
  • 谈“糖”色变的时代,测糖珀金埃尔默有“谱”
    01NEWS新闻背景 元气森林的“0糖”风波当现在的媒体都把含糖食品和饮料,与肥胖、龋齿、心脏病(高血压、高血脂)、糖尿病等一系列健康问题联系在一起时,谈“糖”色变也就成为必然的结局。近日,不少年轻人喜欢的饮料品牌元气森林,因旗下乳茶产品涉嫌虚假宣传一事发布致歉声明。元气森林声称没有说清楚“0蔗糖”和“0糖”的区别,引发了误解。据澎湃新闻网等媒体报道,日前该元气森林已经对产品进行了修正升级:包装从原来的“0蔗糖、低脂肪”改为“低糖、低脂肪”。02NEWS关于“糖”的几个信息食品中“0蔗糖”和“0糖”的区别在哪?市面上标的无糖饮料和食品等于“0糖”吗?无糖饮料为什么喝起来还是甜的,珀金埃尔默在此收集了一些信息。#01“0蔗糖”≠“0糖”糖类是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为“碳水化合物”。蔗糖属于二糖,只是庞大糖类家族中的一份子,除了蔗糖,还有白砂糖、玉米糖浆、麦芽糖、葡萄糖、乳糖、果糖等。元气森林乳茶中有奶,而奶中含有丰富乳糖,所以所谓的“0糖”并不是无糖,只是不含蔗糖而已。#02无糖食品≠“0糖”根据我国《预包装食品营养标签通则》的规定,食品中的糖含量少于0.5g/100g(固体)或100mL(液体),即可标注为“无糖食品”。无糖食品≠“0糖”,而是包括了不含糖或糖的总量不超过5‰的食品。#03“无糖”产品≠不甜无糖食品为了更好的口感,往往采用代糖来代替蔗糖,其甜度是白糖的几十倍甚至数百倍。代糖主要以下几类:代糖糖醇天然甜味剂人工甜味剂山梨醇甘草安赛蜜甘露醇甜菊苷纽甜乳糖醇罗汉果苷糖精麦芽糖醇索马甜三氯蔗糖木糖醇叶甜素爱德万甜赤藓糖醇非洲奇异蛋白阿斯巴甜… … … … … … 内容参考:《营养功能成分应用指南》普遍使用的代糖人工甜味剂,不参与人体代谢,提取成本很低,甜度高,如:安赛蜜与阿斯巴甜、三氯蔗糖等,每种人工合成甜味剂也都有最大耐受量和使用范围,违规使用会对人体健康造成危害。近年来天然提取的“代糖”出现,以”甜菊糖苷”、“赤藓糖醇“等为代表,相对人工甜味剂,这类产品保留了不参与代谢、低热量、口感好等优点,同时有具备更高的安全性和稳定性。03NEWS摄入“糖”要有度,减糖大趋势糖类的益处不胜枚举,首先可供给人体热量消耗,维持日常各项生理活动,其次糖还是构成人体诸多组织的重要成分,目前面临的问题是近年来中国人对糖的消耗量居高不下,使其成了影响健康的重要因素。目前我国人均每日添加糖(主要为蔗糖即“白糖”、“红糖”等)摄入量约30g(世界卫生组织推荐人均每日添加糖摄入不超过25g),其中儿童、青少年摄入量问题值得高度关注,因此国家提倡减糖。《健康中国行动(2019~2030年)》明确提倡城市高糖摄入人群减少食用含蔗糖饮料和甜食,选择天然甜味物质和甜味剂替代蔗糖生产的饮料和食品。2021年最新发布的的婴幼儿配方食品标准中也要求婴儿和较大婴儿配方食品不应使用果糖、蔗糖。 04NEWS添加“糖”要有数食品”糖”相关的检测标准一览为了减少添加糖的摄入,需要对食品中的蔗糖果糖等进行测定,保证添加的含量符合标准要求。食品选择天然甜味物质和甜味剂来替代糖,这时候需要对代糖物质进行检测,保证食品的安全。目前国家检测标准中与食品”糖”相关的检测标准主要如下:GB 5009.7-2016食品安全国家标准 食品中还原糖的测定GB 5009.8-2016食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定GB 5009.255-2016食品安全国家标准 食品中果聚糖的测定GB 5009.279-2016食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定GB 5413.5-2010食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖的测定GB 22255-2014食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定SN/T 3854-2014出口食品中天然甜味剂甜菊糖苷、甜菊双糖苷、甘草酸、甘草次酸的测定 高效液相色谱法05NEWS测 “糖” 珀金埃尔默有“谱”紫外可见光谱仪珀金埃尔默能够提供从食品中传统糖类到甜味剂和天然提取代糖的一系列检测方案。珀金埃尔默的紫外可见光谱,可以对饮料中的糖含量进行检测,方法依据糖和3,5二硝基水杨酸(DNSA)反应生成有色物质来进行。近红外光谱珀金埃尔默的近红外光谱采用结合积分球附件以漫反射方式,可以对液体咖啡中的糖进行快速检测。液相色谱珀金埃尔默的液相色谱配上蒸发光散射检测器(ELSD)可以对食品中的阿拉伯糖、木糖、果糖、甘露糖、葡萄糖、蔗糖、麦芽糖和赤藓糖醇等进行检测。珀金埃尔默的液相色谱配备包括紫外检测器或者PDA可以对食品中的人工甜味剂如糖精、阿巴斯甜进行检测。液相色谱-串联质谱珀金埃尔默的液相色谱-串联质谱可以对食品中人工合成甜味剂进行检测,确保其使用安全。其中典型如白酒甜蜜素。详细应用请扫码获取
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》
    各相关单位: 根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了食品安全国家标准《动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法》。现公开征求意见,如有修改意见,请于2022年5月1日前反馈至全国兽药残留专家委员会办公室。 联系人:张玉洁 联系电话:010-62103930 E-mail:syclyny@163.com地址:北京中关村南大街8号科技楼206邮编:100081      附件: 1. 动物毛发中克仑特罗、莱克多巴胺、沙丁胺醇和苯乙醇胺A残留量的测定 液相色谱-串联质谱法(征求意见稿) 2. 食品安全国家标准征求意见表 全国兽药残留专家委员会办公室2022年4月1日
  • 离子色谱出击药用辅料中糖类物质检测
    原料是药物的核心,是制剂中的有效成分,而药用辅料作为“配角”也是药品中必不可少的一部分。药用辅料作为药物制剂基础材料和重要的组成部分,绝大多数占药品百分之九十以上的比例,除了赋形、充当载体、提高稳定性外,还具有增溶、助溶、缓控释等重要功能,同时也是会影响到药品的质量、安全性和有效性的重要成分。2020版中国药典四部药用辅料收载 335种,其中新增65种、修订212种。重点增加制剂生产常用药用辅料标准的收载,完善药用辅料自身安全性和功能性指标, 逐步健全药用辅料国家标准体系, 促进药用辅料质量提升, 进一步保证制剂质量。在药用辅料中,常常使用亲水性较强的水溶性辅料作为保湿剂、填充剂和黏合剂等,例如山梨醇、木糖醇、麦芽糖醇、乳糖、果糖、木糖、海藻糖、蔗糖、麦芽糖、壳聚糖、聚葡萄糖、阿拉伯半乳聚糖、淀粉等糖类物质。这些糖类物质药用辅料的测定可采用液相色谱示差折光检测和离子色谱脉冲安培检测。其中,离子色谱脉冲安培检测法(IC-PAD),在糖类物质药用辅料的检测中具有多种优势: 1.专用糖分析色谱柱对糖类物质具有很好的保留和分离效果;2.脉冲安培检测器(PAD)对糖类物质具有特异性响应和高灵敏度;3.无需衍生即可直接检测,重复性好;4.单双糖、低聚糖、多聚糖、糖醇、氨基糖、酸性糖均可进行检测。Dionex™ ICS-6000多功能高压离子色谱仪实际案例分析以舒血宁注射液中山梨醇的测定为例,围观离子色谱在糖类物质辅料检测中的优异表现吧! 舒血宁注射液由银杏叶或银杏叶提取物经加工制成的灭菌水溶液。辅料由山梨醇、95%乙醇、甲硫氨酸组成,具有扩张血管,改善微循环的作用,该产品用于缺血性心脑血管疾病,冠心病,心绞痛,脑栓塞,脑血管痉挛等。ICS-6000赛默飞ICS-6000多功能高压离子色谱仪,配置特有的CarboPac MA1糖醇分析色谱柱,脉冲安培检测器,氢氧化钠(NaOH)溶液等度淋洗,仅需0.4 μL小体积进样即可检测mg/L级别山梨醇,无需衍生化,灵敏度高,分离度和重复性好。 山梨醇在25~1250 mg/L范围内具有you秀的线性,相关系数R2>0.999。25 mg/L山梨醇标准溶液连续进样6针,保留时间重复性为0.03%,峰面积重复性为0.6%。样品前处理简单,舒血宁注射液经纯水稀释,过OnGuard II RP柱后即可直接进样分析。25 mg/L 山梨醇标准溶液谱图25 mg/L 山梨醇标准溶液连续6针进样重复性CarboPac MA1色谱柱分离常见糖醇和单双糖 滑动查看更多除糖醇外,离子色谱脉冲安培检测法(IC-PAD)还可以测定单双糖和聚糖等药用辅料,同样具有无需衍生化,灵敏度高,重复性好的特点。IC-PAD测定常见单双糖1-岩藻糖;2-鼠李糖;3-阿拉伯糖;4-半乳糖;5-葡萄糖;6-蔗糖;7-木糖;8-果糖;9-乳糖IC-PAD测定乳糖玉米淀粉共处理物有关物质 滑动查看更多此外,赛默飞ICS-6000多功能高压离子色谱仪,双系统配置电导检测器和脉冲安培检测器,即可实现糖类物质辅料含量和有关物质,以及氯化物、硫酸盐、亚硝酸盐、氯乙酸等常见离子的同时测定,节省时间和仪器成本,一举多得! zui后为大家总结了中国药典中离子色谱相关标准方法和推荐色谱柱,实用干货!!!向下滑动查看更多
  • 不负所托,全心为您,默克又添四个登记备案辅料
    各位药企的研发,采购的同仁们,还在为寻找高品质小众辅料发愁么,还在为供应商资质的难题担忧么?默克药用原辅料不负所托,再次帮您安排的明明白白。 在半个多月的时间里,连续成功注册了四个产品: 苯甲酸苄酯:货号101806 备案号F20200000061甘氨酸(颗粒):货号103669 备案号F20200000036甘氨酸(晶体):货号100590 备案号F20200000037氯化钠:货号137017 备案号F20200000063 以上四个产品均已可向客户出具授权信。 其中,101806 苯甲酸苄酯,是广泛用于油性和非水性的,口服及注射制剂的防腐剂/抑菌剂,在酸性条件下效果最佳。 103669 甘氨酸(颗粒),作为蛋白质保护剂,缓冲剂广泛应用于高风险应用中,为解决甘氨酸晶体自结块的问题(固有性质,与环境湿度无关),进行了预制粒,确保使用过程中的便利。针对甘氨酸常用于高风险制剂或工艺,故控制其内毒素<2.0 IU/g,需氧菌总数(TAMC)≤10 CFU/g,霉菌/酵母菌总数(TYMC)≤10 CFU/g。 100590 甘氨酸(晶体)的指标与用途与甘氨酸颗粒,仅形态为晶体状,未作预制粒处理。 137017氯化钠作为辅料在制剂中使用时,可用作致孔剂、渗透剂、张度剂,广泛应用于固体/液体/半固体制剂中,为降低在高风险制剂或工艺中应用的风险,故控制其内毒素<2.5 IU/g,需氧菌总数(TAMC)≤10^2 CFU/g,霉菌/酵母菌总数(TYMC)≤10^2 CFU/g。 默克药用辅料登记备案动态更新 目前默克可以提供授权信(LOA)的药用辅料(截至2020年05月)下表为正在进行登记备案资料准备的默克药用辅料,同时还有更多药用辅料在申报计划中,如有其他药用辅料需要登记备案支持,可与默克员工联系。根据国家药监局2019年第56号文:《关于进一步完善药品关联审评审批和监管工作有关事宜的公告》,以下是默克可以豁免登记备案的药用辅料清单(可豁免的品种包括但不限于附录3中提及的品种,只要是属于豁免类别即可)。默克药用原辅料产品:为您提供逾400种药用辅料,满足小分子与大分子药物在固体,半固体与液体制剂应用中的多种要求,主要产品涵盖了:药用级无机盐,药用级有机溶剂,低内毒素产品线,甘露醇系列产品,聚乙烯醇系列产品,山梨醇系列产品,PLA/PLGA系列产品,聚乙二醇系列产品,合成磷脂类产品等。同时提供包括叶酸类产品在内的一系列目录原料药,关键原料药中间体与高活性药物的定制合成服务,抗体偶联药物(ADC)的全工艺流程定制生产服务。 默克通过提供高品质的药用级物料,全面的应用技术与法规支持,及持续不懈地对医药行业的投入与关注,助力医药企业的快速研发与高效生产。
  • 中关村量子生物农业产业技术创新战略联盟发布《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》 (征求意见稿)
    各有关单位、相关专家:由北京农学院、北京中农弘科生物技术有限公司、河北弘科荣达生物技术有限公司、安琪酵母股份有限公司、安徽东方新新生物技术有限公司、北京大北农科技集团股份有限公司、中国农业大学、铁骑力士食品有限责任公司共同起草的团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》已完成征求意见稿。根据《中关村量子生物农业产业技术创新战略联盟团体标准管理办法》的有关要求,现公开广泛征求意见。请各有关单位和专家认真审阅团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见稿及编制说明,并于2023年9月25日前将《征求意见表》反馈给联系人。同时欢迎与该项团体标准有关的高等院校、科研机构、相关企业、行业从业者等加入本标准的研制工作,若有意参与该项团体标准研制工作请与中关村量子生物农业联盟联系。联系人:刘运平联系方式:15011406045电子邮箱:uabi2007@163.com 中关村量子生物农业产业技术创新战略联盟2023年8月25日关于征求《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)意见的通知.pdf1.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿).pdf2.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)编制说明.pdf3.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见表.docx
  • 工艺优化:ControLyo®控制成核技术对散装材料冻干研究
    冻干过程中,冻结阶段冰核形成是一个随机过程,会导致产品冻结不均匀。样品通常在很宽的温度范围内成核,产生不同大小的冰晶,和不同的冰晶结构,导致干燥速度不同,*导致外观不同。高质量的冻干产品取决于层板温度、腔室压力和时间等明确可控的关键工艺参数(CPP)。随着工艺转移到大规模生产,这些参数可能需要优化,特别是产品容器发生变化时。 批量冻干通常使用金属托盘,其传热与普通西林瓶不同,具有较高的污染风险,多次重复使用以及灭菌在金属内的应力会导致托盘翘曲,传热效果发生改变。此外,散装托盘边缘样品可能与中心样品冻结的时间和温度不同,导致散装盘内出现不同尺寸的冰晶结构。CONTROLYO按需成核技术(NODT),是一项创新技术,在冻干机内冷冻期间,使用惰性气体对腔室进行加压和减压,以促进均匀成核。装载完成之后加压,待产品在设定的层板温度下稳定后减压,以产生瞬时的、均匀的冰核。在减压之后,通常在-5°C的温度下长时间保持,使冰晶缓慢生长,因此允许较大的冰晶尺寸产生。ControLyo VS 常规冷冻方法研究散装托盘中不同材料的冻干过程,将ControLyo与常规冷冻方法进行比较。对晶体材料和和无定型配方进行了研究。晶体材料由甘露醇、USP(浓度为40 mg/mL)组成,无定型态由蔗糖、NF(浓度为40 mg/mL)组成。具体实验在100级(A级)环境中用0.22微米过滤器过滤溶液。将溶液分配到四个不锈钢托盘中,每个托盘的体积为2L。在4层层板(30×60cm)中试冻干机(SP Hull Model 8FS15C)中进行冷冻干燥。在不锈钢散装盘内不同位置以及托盘外部均放置热电偶测量产品温度。采用Controlyo工艺和常规冷冻工艺分别进行。这两个工艺,装载关闭腔门后,均在5°C搁板温度和大气条件下平衡。采用Controlyo工艺,在5°C下使产品达到平衡后,进行惰性气体吹扫。将系统加压至27.2psia并减压至17.2psia,同样进行二次吹扫。在第二次吹扫后,将腔室加压至33.2psia,并将搁板冷却至-3℃平衡4小时。由于溶液中测得的产品温度高于-3℃,因此将目标搁板温度调节至-5℃,以使产品温度在-3℃或更低的温度下达到平衡。保持1小时后,从33.2psia瞬间减压至16.2psia,促进成核,搁板温度在-5℃保持7小时促使冰晶生长。01 初次研究在最初的研究中,使用保守的一次干燥参数,以便直接比较结晶溶质甘露醇与无定型态溶质蔗糖的干燥。两种不同的冷冻技术在完成甘露醇一次干燥的时间上几乎没有差异。然而,不同的冷冻技术对蔗糖制剂的干燥结果有显著影响。02 第二项研究在第二项研究中,采用不同的一次干燥参数对甘露醇和蔗糖制剂进行试验。此一次干燥条件比*项研究的条件明显更激进,对不同组分的样品进行相同关键工艺参数CPP的研究,研究组分的影响。 图1:常规冷冻成核(不同温度下的随机成核) 图2:Controlyo成核(同时发生成核)热电偶迹线描述了常规冻结中成核的随机性质和ControLyo过程中的瞬时成核(如图1和图2所示)。成核事件是一个放热过程,释放的热量导致热电偶传感器读数瞬时增加,*接近层板温度。在常规冷冻过程中,成核随机发生,热电偶显示成核发生在不同的温度和时间下。控制成核技术中,当系统减压时,热电偶立即记录到同时成核的过程。需要认识到传感器只测量托盘的某些区域,可能不能代表托盘全部。 图3:蔗糖-常规冷冻(约72小时完成一次干燥) 图4:蔗糖–Controlyo(约59小时完成一次干燥)在一次干燥阶段,使用热电偶传感器记录产品温度,以帮助确定一次干燥的终点。当使用控制成核技术时,蔗糖制剂一次干燥提前13小时结束(如图3和图4所示)。甘露醇制剂,无论使用何种冷冻技术和CPP,一次干燥时间仅有轻微的变化。在这些研究中,皮拉尼/电容压力计的数据判断初级干燥结束。ControLyo 技术优势对两种配方的成核均匀性、冷冻干燥行为和成品属性进行了观察和比较。01 缩短一次干燥时间对蔗糖配方进行不同干燥条件的研究,采用Controlyo工艺,由于升华速率增加,缩短了一次干燥时间。在Controlyo技术允许形成较大的冰晶,可能是由于过冷减少,成核温度较高,允许冰晶缓慢生长。过冷被定义为平衡凝固点与溶液中冰晶首次形成时的温度之间的差值。当冰升华时,较大的晶体产生较大的孔,导致更大的路径,因此水蒸气穿过升华前沿上方的干燥层的阻力较小。这导致蔗糖干燥速率的显著差异。Controlyo技术将升华干燥的时间从67小时缩短到50小时。尽管发现蔗糖基配方在一次干燥时间上存在显著差异,但甘露醇基配方的表现并不相同。在使用保守CPP进行的初步研究中,传统冷冻和ControLyo冷冻的升华速率几乎没有差异。在使用激进性CPP的后续研究中,完成一次干燥的时间从20小时减少到16小时。02 蛋糕外观通过蔗糖和甘露醇冷冻干燥生产的冻干饼的物理外观在常规和控制成核策略之间有所不同。ControLyo产生了一致的蛋糕结构和外观。两种处理方法在甘露醇的外观上差异不大。然而,蔗糖蛋糕的外观有显著差异:未经控制的冷冻蛋糕上的裂缝更少,从托盘的一侧延伸到另一侧(图5)。当使用ControLyo时,蛋糕上的裂缝更宽,更均匀(如图6所示)。 图5:蔗糖非受控冷冻 图6:Sucrose Controlyo03 水分含量用库仑卡尔费休滴定法测定残余水分。结果显示,与标准方法相比,通过ControLyo处理的甘露醇的水分含量分别从0.5%到0.1% w/w。有趣的是,蔗糖的结果正好相反。不受控冷冻方案的蔗糖平均结果为2.41% w/w, ControLyo材料的平均结果为2.89% w/w。较高的蔗糖残留水分含量可能是由于表面面积减少,因此在二次干燥过程中解吸率降低。不太激进的二次干燥条件也会影响*的残留水分含量。*结论很明显,ControLyo影响散装材料的干燥行为和成品属性。这些影响包括缩短一次干燥时间,改变蛋糕外观,以及创造更一致和均匀产品的可能性。传统冷冻和ControLyo之间的差异程度也受到代表不同类型产品(结晶和无定型)的配方特性的影响。此外,配方特定成分的CPP对使用ControLyo进行控制成核的成功至关重要。需对每种特定配方进行对比研究,以量化ControLyo技术应用的相对效益。Controlyo控制成核技术SP Scientific提供的Lyostar冻干机仅需运行一个遁环即可自动摸索和开发冻干工艺。结合冻干PAT技术使漫长复杂的工艺摸索变得简单快捷有效。 PAT技术——Smart 全自动工艺开发技术,Controlyo控制成核技术,TDLAS实时水蒸汽测量技术。Controlyo控制成核技术在相同的温度下,以瞬间减压的方式在同一时间让所有小瓶瞬间成核,在较高的温度下成核,产生更大、更均匀的晶体尺寸,使干燥更加一致。● 提高批次均匀性;● 无引入污染或外来物质的风险;● 增加冻干产品的蒸汽通道尺寸,进而减少干燥层的阻力;● 加快主干燥过程;● 减少产品复水时间;● 改善冻干产品的外观。LYO INNOVATION莱奥德创冻干科技,赋能创新Lyo technology enables innovation 关于莱奥德创:上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多肽、脂质体、IVD、食品等领域。依托与合作伙伴美国SP Scientific和英国Biopharma Group的紧密合作,掌握先进的冻干理念与技术,使用*的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Mission :莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision :做冻干工艺的创新者,为生物医药开发提供*制剂产品解决方案。
  • 中关村量子生物农业联盟批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》团体标准
    各会员及相关单位:根据《中关村量子生物农业产业技术创新战略联盟团体标准管理办法》的规定,现批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》为中关村量子生物农业产业技术创新战略联盟团体标准,编号为T/QBAA 001—2023,本标准于2024年1月1日起实施,现予以公告。中关村量子生物农业产业技术创新战略联盟2023年12月31日关于批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》团体标准的公告.pdf
  • 液相色谱应用:完善制备纯化过程
    概述制备色谱(Prep-LC)以其高分离效率,重现性和低溶剂消耗而闻名,是一种纯化技术。来自中国的色谱专家团队应用了传质动力学建模和吸附等温线,以改善该技术的缺点之一,即超载导致的非线性,这是纯化工艺发展的重要问题。保持直率对于药物提取,纯化仍然是一个巨大的挑战,因为结构相似的化合物可以共存于基质中,特别是对于从生物发酵或多肽合成中获得的药物而言。Prep-LC广泛用作分离和纯化技术,但是由于过载导致的非线性(用于提高通量)对于开发高效的纯化过程一直存在问题。为了克服这个问题,来自中国西南医科大学的一组研究人员选择了羟基酪醇(与橄榄果和叶片中橄榄苦苷水解产生的其他成分同时生成)作为模型化合物,用于系统地开发纯化方法。甲醇和乙醇用作有机改性剂,并在三种商用色谱柱C8TDE,C18ME和C18TDE上确定了最佳流速。曲线用van Deemter方程拟合,并对A,B和C项进行了全面分析。然后研究了吸附等温线,并提出了最合适的基于制备液相色谱的羟基酪醇纯化方法。纯化方法的开发与优化使用Shimadzu Prominence-i9(LC-2030)系列仪器进行HPLC分析,该仪器配备有脱气器,低压梯度仪,混合器,自动进样器和柱箱,并与UV检测器相连。在配备P680A泵,低压梯度仪,带有500μL样品定量环的手动进样器,TCC 100柱温箱和PDA 100检测器的Dionex P680A系列仪器上进行馏分收集。色谱条件为5%甲醇或乙醇水溶液。进样量5μL 柱温40°C 检测波长为280 nm。使用三根色谱柱(C8TDE,C18ME和C18TDE)在0.1至1.5 mL/min的15种不同流速下以0.1 mL/min的增量比较羟基酪醇的传质动力学。为了精确确定变量对等效于理论塔板(HETP)的高度的影响,使用van Deemter方程,Gidddings方程,Horvath和Lin方程以及Knox方程计算了羟基酪醇的传质动力学。 van Deemter方程的三个项,即涡流扩散(A项;由于固定相色谱柱的存在而导致的峰展宽,与流动相的速度无关),分子扩散(B项)和传质阻力(C项) ),确定了三列中的两种有机改性剂。随后研究了吸附等温线,以探讨溶质在固定相和流动相之间处于平衡状态的分布。将浓度较高的羟基酪醇(10–160mmol/L)的标准溶液泵入C18TDE色谱柱,并记录穿透时间。在这项工作中,发现在5%甲醇-水条件下C8TDE和C18ME色谱柱的最佳线速度为6.37 mm/s(0.3 mL/min),在5%乙醇条件下为4.24 mm/s(0.2 mL/min)。以水为流动相。对于C18TDE色谱柱,发现5%甲醇-水的最佳线速度为14.85 mm/s(0.7 mL/min),而5%乙醇-水的最佳线速度为4.24 mm/s(0.2 mL/min)。发现C18TDE柱是最高效的色谱柱,传质动力学分析表明,乙醇是分离羟基酪醇的合适溶剂,因为带有甲醇流动相的B项极其敏感,因此在改变其他条件时很难稳定其性能。由于C18TDE的最小A项以及可接受的B和C值,因此它是最佳选择。因此,选择C18TDE和乙醇纯化羟基酪醇是因为这种组合对变化不敏感,具有最佳的A,B和C项,并且符合Langmuir等温线模型。羟基酪醇已成功纯化,样品量为1.6%,回收率为90.98%,纯度为98.01%,以5%乙醇-水为流动相,采用了优化的分馏方法,流速为0.2 mL/min。动力学使其线性在制备型液相色谱中,传质动力学建模和吸附等温线的使用证明对开发和优化羟基酪醇纯化方法非常有帮助。此方法应适用于其他制药和生物技术产品的纯化。未来将如何在行业中采用这种方法将是很有趣的。(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)根据下列两篇文章编写1. Nonlinear behavior in preparative liquid chromatography: A method-development case study for hydroxytyrosol purificationPublished:Dec 22, 2020Author: Ruting Xiao2. LEGO MINDSTORMS fraction collector: A low-cost tool for a preparative high-performance liquid chromatography systemPublished:Dec 20, 2020Author: Marco Caputo
  • 血清(浆)类固醇激素液相色谱-串联质谱检测质量保证专家共识发布
    液相色谱-串联质谱(LC-MS/MS)在人体血清(浆)类固醇激素检测中展现出优于传统免疫学方法的特异性高、分析测量范围宽、多标志物同时检测等特点,已成为国际内分泌学领域相关疾病实验室诊断的首选方法。目前,国内医学实验室开展血清(浆)类固醇激素LC-MS/MS检测多参考已发表学术论文和仪器厂家说明书提供的通用操作和检测程序。然而,血清(浆)类固醇激素LC-MS/MS检测的技术难度大,临床实验室检验人员大多数缺少质谱领域专业培训和实践经验,而通用程序缺乏针对性和实操性,尤其我国尚无针对该检测程序和质量保证的系统性文件,导致实验室间检测结果存在较大差异,阻碍了该技术的临床应用。为规范我国血清(浆)类固醇激素LC-MS/MS检测,共识从检验前、中、后程序及其质量保证进行详细说明,并提出针对性建议,为实验室开展该检测项目提供参考,以推动我国血清(浆)类固醇激素LC-MS/MS检测的临床应用和结果一致性。  类固醇激素是一类具有环戊烷多氢菲母核的脂肪烃化合物,根据化学结构及生理功能可分为肾上腺皮质激素(糖皮质激素、盐皮质激素)、性激素(雌激素、雄激素、孕激素)及维生素D [ 1 ] ,在人体生长发育、能量代谢、免疫调节、生育功能调节等方面发挥重要作用。血清(浆)类固醇激素异常与先天性肾上腺皮质增生(congenital adrenal hyperplasia,CAH)、原发性醛固酮增多症、库欣综合征、多囊卵巢综合征(polycystic ovary syndrome,PCOS)、儿童发育延迟或性早熟等多种内分泌疾病密切相关 [ 2 ] ,因此其检测广泛应用于多种内分泌疾病的临床研究、诊断以及健康评估。传统免疫学方法尽管自动化程度高,但特异性相对不足,且线性范围窄,难以实现精准检测。液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)具备特异性高、分析测量范围宽等性能优势,且能在短时间内同时准确测定多种类固醇激素及中间代谢产物,是目前精准、全面定量分析血清(浆)类固醇激素的首选方法 [ 3 , 4 ] 。  尽管已有众多研究报道多种类固醇激素的LC-MS/MS检测,包括方法开发和优化 [ 5 , 6 ] 、生物参考区间建立 [ 7 ] 等,国外已有针对血清(浆)雄激素、雌激素LC-MS/MS检测程序的指南 [ 8 ] ,国内有LC-MS/MS临床应用通用建议共识及25羟-维生素D和雄激素LC-MS/MS检测的共识 [ 9 , 10 , 11 ] ,但依然缺乏涵盖检验前、中、后阶段的LC-MS/MS检测操作程序和质量保证的指南和共识。基于此,为规范我国血清(浆)类固醇激素LC-MS/MS检测,中国质谱学会临床质谱专家委员会组织专家参阅国内外相关文献并结合临床应用经验,面向医学实验室临床质谱检验人员,针对肾上腺皮质激素和性激素LC-MS/MS分析全流程的质量保证进行详细说明并提出建议,为实验室开展血清(浆)类固醇激素检测项目提供参考,以推动我国血清(浆)类固醇激素检测的临床应用和结果一致性,提升我国类固醇激素异常相关疾病的精准诊断能力。  01血清(浆)类固醇激素LC-MS/MS检验前质量保证  (一)标本采集  人体类固醇激素浓度受多种因素影响,包括昼夜节律、生理周期、采血体位和药物等,应根据临床具体需求和激素水平影响因素,制定合理采样流程,并推荐给标本采集人员和患者。例如:皮质醇分泌通常在清晨6:00—8:00达到峰值浓度,因此峰值监测推荐清晨采集患者血液标本 连续监测则采样时间点应相对固定 [ 12 ] 醛固酮仰卧位采血比直立位采血检测结果低50% [ 13 ] 女性患者进行血清(浆)雌激素检测时需明确卵泡期、黄体期等信息,对于无规律月经周期女性,需明确绝经(特别是早绝经)原因,如自然绝经、外科手术、辐射、药物作用等 [ 14 , 15 ] 。  含有分离胶的促凝管中存在睾酮干扰峰,且分离胶可吸收类固醇激素,标本体积和储存时间也可不同程度影响检测结果 [ 16 ] 。新生儿CAH二级筛查中,EDTA采血管可导致17α-羟孕酮、雄烯二酮及11-脱氧皮质醇的LC-MS/MS检测结果偏高,造成假阳性 [ 17 ] 。另外,更换采血管品牌或批号也可能影响待测物色谱峰分离度,应制定包括峰分离度、保留时间漂移范围等色谱参数的可接受标准,以监测潜在干扰峰的影响强弱及变化。  建议1 针对有昼夜和/或周期节律的类固醇激素,实验室应根据其临床预期用途,指导患者和采血人员选择合适的采血时机,例如清晨采血检测皮质醇、睾酮水平,卵泡期采血检测雌激素水平。推荐采用不含分离胶的血清(浆)采血管采集标本,新生儿二级CAH筛查推荐采用肝素抗凝剂采血管。  (二)标本保存和运输  实验室应根据类固醇激素质谱检测的标本保存条件及检测频率进行标本的稳定性验证 [ 18 ] 。标本稳定性验证实验应至少包括环境温度、冷藏和/或冷冻条件下的稳定性,如果标本存在冻存后复查的可能,还需考察反复冻融对标本稳定性的影响。另外,标本采集、运输及前处理阶段的稳定性也需进行评估。标本稳定性实验均需使用新鲜血清(浆),通过比较新鲜采集和保存后的血清(浆)标本检测结果评估其稳定性。  如果实验室根据参考文献报道或试剂说明书设置标本保存条件,需包含明确的稳定性、标本类型、类固醇激素浓度、保存温度范围、保存时间以及保存后标本浓度较新鲜标本的变化百分比。为确保标本保存后类固醇激素检测结果“稳定”或“无明显变化”,需明确测量程序、含量计算程序及含量变化的可接受范围。如果这些信息缺失,实验室应自行建立标本稳定性的可接受条件。  建议2 实验室应根据标本保存的实际需求,使用新鲜标本对来自文献报道或试剂说明书的标本稳定性进行验证,或自建稳定性可接受的标本保存条件。建议血清(浆)标本中类固醇激素稳定保存的条件及时间见 表1 。  02 血清(浆)类固醇激素LC-MS/MS检验质量保证  (一)标本前处理  标本前处理方法取决于待测物的理化性质、灵敏度要求和分析方法。其目的是将待测物从血清(浆)及其他潜在干扰物质中分离、提取、纯化,并实现对待测物的浓缩。大多数糖皮质激素(如17α-羟孕烯醇酮、17α-羟孕酮、11-脱氧皮质醇、皮质醇、可的松)和盐皮质激素(如孕烯醇酮、孕酮、脱氧皮质酮、皮质酮)为疏水结构,均可与相应转运蛋白结合存在于血液中,游离形式约占1%。但血液中,约50%醛固酮以游离形式存在。睾酮和雌二醇与白蛋白结合力弱,与性激素结合球蛋白(sex hormone binding globulin,SHBG)结合力强,2%~4%睾酮呈游离形式,60%~75%睾酮与SHBG结合,20%~40%睾酮与白蛋白结合 [ 1 ] 。平衡透析可去除血中结合型类固醇激素进而检测游离型激素水平,但测量程序要求更高的灵敏度。如果结合型类固醇在水解前无法被直接检测,则需水解后进行检测,并明确结合型类固醇是否完全水解,且水解步骤不会导致类固醇降解,如硫酸雌酮在提取之前需通过水解酶获得游离型雌酮。亲脂性性激素(雄烯二酮、睾酮、双氢睾酮、雌酮、雌二醇、雌三醇)较亲水性性激素(硫酸脱氢表雄酮、硫酸雌酮)在血液中浓度低,因此亲脂性性激素的LC-MS/MS测量程序通常需要更复杂的标本前处理以消除基质干扰并浓缩待测物以达到理想的定量限(limit of quantification,LOQ)。  血清(浆)类固醇激素LC-MS/MS检测的标本前处理流程通常包括:(1)取等量临床标本、标准品、质控品和基质空白 (2)加入内标物 (3)提取 (4)纯化 [ 19 ] 。对易氧化的类固醇激素,前处理时需尽可能避免发生氧化以防待测物降解及产生干扰物。例如,在样品浓缩时使用惰性气体(如氮气),而非加热真空离心浓缩。去除可能干扰检测或影响前处理的物质后,宜将分析物转移到液相色谱流动相洗脱溶剂中,保持初始浓度比例,以备后续分析。推荐使用与待测物具有相似结构和离子化性质的同位素标记物(或结构类似物)作为类固醇激素LC-MS/MS检测内标物,例如氘代或 13C标记的类固醇。通过比较已知浓度内标物与待测物的信号,校正样本前处理、色谱分离、离子化过程及基质效应所产生的误差。类固醇激素的同位素内标物大多为商品化试剂,如无商品化试剂,应优先选择使用非内源性但与待测物结构类似的合成类固醇作为内标物,并确保内标物与待测物具有相同或相近保留时间。内标物的相对分子质量应至少比相应待测物大3,氘代或 13C标记数量控制在7,化学纯度应≥98%,同位素内标物纯度≥97%。  内标物需加入到所有校准品、质控品和待测标本中,且应在提取或纯化步骤之前或同时加入。加入内标物后需静置足够长的时间(通常15~30 min)以平衡内标物与结合蛋白的相互作用,抵消因蛋白结合导致的检测浓度偏低,如睾酮和睾酮-d 3需30 min完成平衡(22 ℃)。内标物的质谱信号强度应在不同分析批次中保持稳定,平衡时间不足可能会导致内标物信号强度不稳定。  建议3 使用与待测物有相同理化性质的商品化同位素标记物作为类固醇激素LC-MS/MS检测内标物( 表2 ),浓度设置在校准曲线的中浓度或医学决定水平附近,实验室应制定内标物信号强度波动的批间可接受范围。  血液中存在的大量蛋白质、多肽、小分子化合物等可引起LC-MS/MS的离子源和检测器饱和,导致离子抑制或分辨率不足,干扰检测结果。因此,LC-MS/MS分析前应提取待检测物,去除无机化合物(如盐)、蛋白质、脂质(如甘油三酯)和磷脂等物质的干扰,提高检测灵敏度、重复性和稳定性。  LC-MS/MS分析标本的提取方法包括蛋白沉淀(protein precipitation,PPT)、液液萃取(liquid-liquid extraction,LLE)、固相萃取(solid-phase extraction,SPE)等。PPT利用蛋白沉淀剂使蛋白变性沉淀,离心后直接取上清液进行检测,不适用于含量较低或有蛋白结合特性的类固醇激素。LLE利用溶剂的相似相溶原理,将目标化合物从液体混合物中分离出来,因操作繁琐且需要消耗大量有机溶剂,故临床常用固相支撑液液萃取(supported liquid extraction,SLE)替代传统LLE,降低有机溶剂消耗。而SPE采用固体颗粒色谱填料(通常填充于小柱型装置中)对样品不同组分进行化学分离,较SLE具有更优的去磷脂干扰能力,是类固醇激素标本提取的首选方法,但也具有操作步骤多、成本高等缺点。针对类固醇激素的不同极性,脂溶性激素通常选择亲脂基团填料的SPE方法萃取待测物,非脂溶性激素选择亲水基团或阴阳离子交换填料的SPE方法萃取待测物。为进一步去除与待测物共同洗脱的干扰物,可联合LLE和SPE,或吹干提取物后用不同溶剂重新提取。其中,通过高效液相色谱(high performance liquid chromatography,HPLC)可在线进行SPE,以减少手工操作,节省时间和人力成本,但目前尚无多种类固醇激素在线SPE提取解决方案。也有通过使用单个或多个提取柱串联色谱柱,如提取/上样柱、一次性SPE柱、二维色谱,提高色谱分离效率和检测灵敏度,使血清(浆)标本无需或只需经简单蛋白沉淀处理即可进行分析。  建议4 根据待测类固醇激素理化性质及测量灵敏度要求推荐使用SLE或SPE标本提取方法。  (二)类固醇激素LC-MS/MS定量分析  LC-MS/MS通过结合HPLC的高效分离浓缩能力与三重四极杆质谱的高特异性和高灵敏度定量性能,准确测量标本中浓度极低、理化性质相似的类固醇激素,其特异性较免疫学分析明显提高。  1. HPLC分离:HPLC是一种基于待测物在固定相和流动相中具有不同分配系数的分离技术。通常使用对非极性分子具有高亲和力的非极性固定相(如 18C、五氟苯基等)色谱柱分离类固醇激素 [ 20 ] ,通过流动相极性变化将吸附于色谱柱上的类固醇激素重新溶于流动相,从而实现逐步洗脱分离。通过开发精密的流动相梯度洗脱程序和使用适合的色谱柱可以分离结构非常相似的类固醇激素及其代谢物,包括一些同分异构体(如21-脱氧皮质醇、11-脱氧皮质醇)。通过依次洗脱标本中所有待测物,降低检测信号的复杂度,分离组分信号随时间出现一组近似高斯分布的色谱峰群,生成检测信号强度随时间变化的色谱图。另外,流动相中通常加入挥发性添加剂(如0.01 mol/L甲酸铵、0.1%甲酸),其浓度不应超过0.5%,以增强化合物离子化,而不应含非挥发性流动相添加剂。色谱柱可选择粒径较小的分离柱,实现短时间内更好的分离效果,也可根据文献综合选择。色谱柱应在寿命期限内使用,并根据检测量、峰型、保留时间、分离度、柱压等参数判断是否需要更换。实验室应做好色谱柱的日常维护,在每日检测结束后进行日常冲洗程序,并最终将色谱柱保持在95%及以上的甲醇或乙腈中,尽可能地延长色谱柱的使用寿命及使用质量。  建议5 为有效分离结构相似的类固醇激素及其代谢产物,推荐实验室使用 18C或五氟苯基填料,色谱柱粒径≤3 μm,有机相梯度洗脱程序:0.5~4.0 min,40%~55% 4.0~6.5 min,55%~75% 6.5~7.5 min,75%~99%。  2. 串联质谱检测:类固醇激素LC-MS/MS测量程序使用的离子源主要包括电喷雾电离(electrospray ionization,ESI)和大气压化学电离(atmospheric pressure chemical ionization,APCI)。在常规临床检测中,醛固酮、皮质醇、11-脱氧皮质醇、21-脱氧皮质醇、可的松、睾酮、孕酮、17α-羟孕酮、皮质酮、雄烯二酮、脱氢表雄酮可采用ESI或APCI离子源。与ESI相比,APCI离子源温度更高,脱溶剂更充分,因此基质效应更小。然而,APCI更适用极性较小的类固醇激素,如3β-羟基-5-烯类固醇 [ 21 ] ,在需同时检测多个类固醇激素的临床应用中具有局限性。  类固醇激素分子经离子源电离后进入三重四极杆质量分析器,根据质荷比进行分离,并采用多反应监测(multiple reaction monitoring,MRM)或选择反应监测(selected reaction monitoring,SRM)模式采集数据。最终借助质量分析器选择特定母离子和子离子,通过母离子/子离子对和各分析物及内标物的色谱图及峰面积对目标化合物进行定量。不同仪器,其离子对信息及检测参数并不完全相同,每个化合物通常选择2个离子通道分别作为定性离子和定量离子通道( 表3 )。基于定性离子、化合物极性及内标物分离峰综合判断目标化合物的分离峰。  建议6 类固醇激素LC-MS/MS检测选择ESI或APCI离子源,采用MRM或SRM模式,应在性能验证时优化质谱参数。  3. LC-MS/MS测量程序性能验证和/或确认:测量程序的性能要求取决于其预期临床用途、待测类固醇激素生物学变异及仪器灵敏度水平。如检测女性、儿童血清睾酮,测量程序的灵敏度需要达到0.02 ng/ml 同时检测浓度差异大的多个分析物,如雌二醇、雌酮、雄烯二酮,需验证测量程序对每个分析物的分析性能是否满足临床需求。值得注意的是,由于血清(浆)类固醇激素LC-MS/MS测量程序包含的人工操作步骤多,各实验室环境条件、仪器设备配置、人员水平相差大,因此即使实验室使用商品化试剂盒(Ⅰ、Ⅱ类),也应进行性能确认或验证。LC-MS/MS测量程序性能验证和/或确认程序可参考共识 [ 22 ] 或美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)C62-A [ 23 ] ,并根据生物变异、临床指南、政策法规等设定性能验证中每项参数的可接受标准。  (三)类固醇激素LC-MS/MS测量程序的分析性能指标  类固醇激素相关疾病的临床诊断对检测指标及灵敏度有不同需求,实验室应综合临床需求及仪器灵敏度确定LC-MS/MS测量程序分析性能。  1.肾上腺皮质激素:皮质醇是最主要的肾上腺皮质激素(约占75%~95%),血液中总皮质醇、游离皮质醇水平及昼夜节律变化常用于辅助诊断原发性和继发性肾上腺功能不全、库欣综合征、艾迪生病。正常成人清晨血清总皮质醇浓度通常在20~50 ng/ml,经平衡透析后的游离皮质醇浓度约占总皮质醇5%,可更准确反应皮质醇水平及节律,推荐检测血清(浆)游离皮质醇(LOQ≤1 ng/ml)。皮质醇联合17α-羟孕酮、雄烯二酮常用于筛查11-羟化酶或21-羟化酶缺乏型CAH。大多数(约90%)CAH由21-羟化酶基因变异导致,患者血清雄烯二酮水平通常升高5~10倍,17α-羟孕酮水平升高幅度更大,而皮质醇水平较低或无法检测。不同年龄、性别人群17α-羟孕酮及雄烯二酮水平差异较大,推荐实验室检测17α-羟孕酮(LOQ≤0.1 ng/ml),检测区间上限设定在参考区间上限10倍以上 [ 24 ] 。  硫酸脱氢表雄酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮常用于已排除11-羟化酶、21-羟化酶缺乏型CAH,及确认3β-羟基类固醇脱氢酶缺乏和17α-羟化酶缺乏型CAH。在非常罕见的17α-羟化酶缺乏症中,雄烯二酮、所有雄激素前体(17α-羟孕烯醇酮、17α-羟孕酮、硫酸脱氢表雄酮)、睾酮、雌酮、雌二醇和皮质醇水平降低,而盐皮质激素(孕酮、11-脱氧皮质酮和18-羟皮质酮)水平明显升高。醛固酮是典型的盐皮质激素,常用于辅助诊断原发性醛固酮增多症(如肾上腺肿瘤、肾上腺皮质增生)和继发性醛固酮增多症(如肾血管疾病、盐耗竭、钾负荷、肝硬化腹水、心力衰竭、妊娠、Bartter综合征),以上情况醛固酮水平通常可升高10~100倍。因此,建议醛固酮LOQ≤0.02 ng/ml,检测区间上限设定在参考区间上限100倍( 表4 )。  2.雄激素:LC-MS/MS较易检测正常成年男性雄激素水平,但对低雄激素水平人群,如女性、儿童以及性腺功能减退的男性,则要求测量程序具有更高的灵敏度。对成年女性,睾酮水平通常用于评估由肾上腺合成异常和PCOS导致的高雄激素血症及相关的女性多毛症、月经紊乱、不孕等疾病。对儿童,睾酮水平通常用于评估外生殖器性别模糊、性早熟或发育延迟,以及用于CAH的诊断。建议女性或儿童的睾酮测量程序LOQ≤0.02 ng/ml,并需配置高灵敏度LC-MS/MS系统,并对样品进行离线或在线前处理,如LLE、SPE或多个提取步骤结合(如PPT结合SPE) [ 8 ] 。  双氢睾酮以及双氢睾酮/睾酮比值可用于诊断雄激素缺乏症、监测雄激素替代治疗或5α-还原酶抑制剂疗效,建议采用双氢睾酮非衍生化法LC-MS/MS检测(LOQ≤0.05 ng/ml)。雄烯二酮还可用于诊断和评估女性高雄激素血症、多毛症、不孕症,儿童性早熟、发育延迟、CAH,以及肾上腺、性腺肿瘤。在CAH、女性高雄激素血症等疾病中,雄烯二酮水平明显升高,但在3β-羟基类固醇脱氢酶缺乏症、17α-羟化酶缺乏症及类固醇合成急性调节蛋白缺乏症等罕见病及2岁以下儿童中,其水平较正常成人明显降低,建议其LOQ≤0.02 ng/ml。雄烯二酮检测的子离子与睾酮子离子具有相同的质荷比,因此实验室需验证睾酮和雄烯二酮的色谱分离度。  脱氢表雄酮和硫酸脱氢表雄酮除联合肾上腺皮质激素用于CAH辅助诊断以外,还可用于鉴别诊断肾上腺功能不全或亢进。与性激素联合可用于区分肾上腺功能初现与性早熟,诊断儿童CAH和女性PCOS。儿童脱氢表雄酮水平较低(通常1~8岁儿童2 ng/ml),为了准确诊断儿童肾上腺功能初现、性早熟,建议脱氢表雄酮LOQ≤0.02 ng/ml,硫酸脱氢表雄酮LOQ≤30 ng/ml。  3.雌激素:对低浓度雌激素的准确检测可用于儿童性发育延迟或性早熟的评估,以及绝经后女性乳腺癌发病风险或芳香酶抑制剂治疗效果评估。非衍生化前处理,ESI负离子模式下检测雌二醇、雌酮及雌三醇建议LOQ≤0.01 ng/ml [ 25 ] 。硫酸雌酮在体内的浓度是雌二醇和雌酮的10~50倍,且半衰期较长,因此可用于雌激素水平状况评估。  建议7 实验室应根据临床需求、待测类固醇激素生物学变异及仪器灵敏度水平,建立分析性能满足要求的类固醇激素LC-MS/MS测量程序( 表4 )。  (四)类固醇激素LC-MS/MS测量程序的质量保证  1. 量值溯源:量值溯源是通过一条具有明确不确定度的不间断传递链,使测量结果的量值能够与规定的参考标准(国家或国际计量标准)联系起来 [ 28 ] 。类固醇激素量值的可溯源性是实现实验室间测量结果一致的基础,即同一标本在不同时间和地点采用不同测量程序得到准确测量结果。实验室应参考国际标准化组织(International Organization for Standardization,ISO)17511文件及中国合格评定国家认可委员会关于测量结果的计量溯源性文件要求建立计量溯源链,核心要素包括被测物、参考物质、校准及赋值程序、测量结果验证 [ 28 ] 。  实验室应参考国际临床化学和检验医学联合会/国际纯粹与应用化学联合会文件明确被测物属性,包括分析物特性(如化学形式)、测量基质、单位等 可通过检验医学溯源联合委员会网站或国家标准物质资源共享平台查询参考物质信息,并优先选择具有明确溯源信息的参考物质(如有证参考物质)作为校准品。对无有证参考物质的类固醇激素,实验室应参考CLSI EP30评估校准品的特性、纯度、均一性、稳定性及互通性并制定相关评估程序 [ 29 ] 。  需明确的是,计量溯源链本身并不直接保证测量结果的准确性和一致性,溯源链中每次量值传递都会新增测量不确定度,测量的准确度和不确定度也可能在使用新校准品或仪器大修后改变,实验室应通过检测校准品、参加能力验证计划或实验室间比对,明确测量程序的正确度和精密度。  建议8 实验室应优先选择具有明确溯源信息的类固醇激素参考物质作为校准品,建立计量溯源链。  2. 校准:校准是确定或校正质谱仪检测信号强度与待测物浓度之间的相关性。通常将校准物质加入到经活性炭处理、不含待测类固醇激素的单一来源或混合血清(浆)基质中以制备一系列稀释校准品。类固醇激素LC-MS/MS测量程序性能验证、更换试剂或校准物批号后,需确定每个分析批校准曲线的斜率、截距和相关系数的可接受标准。每个分析批都需进行校准,如果一个分析批包含的样品很多,校准品可在分析批不同位置进样,并监测每个校准品检测值与理论值的偏倚,以明确在大样本量分析中的校准漂移情况。  校准确认是采用与检测临床标本相同的测量程序,分析在报告范围内已知待测物浓度的标本或商品化室间质量评价(external quality assessment,EQA)质控物以确认仪器或检测系统的校准,验证正在使用的校准曲线在检测患者标本时依然有效。建议在变更标准品批次后、确认不同分析批之间的校准有效性时,开展校准确认。校准确认品应与实际患者标本相同或具有相似的性质,并与患者标本进行相同的前处理。与患者标本基质不同的质控品和校准品不可作为校准确认品。  建议9 实验室应对每个分析批进行校准,并监测每个校准品浓度检测值与理论值的偏倚。  3. 室内质量控制:血清(浆)类固醇激素LC-MS/MS测量程序室内质控的难点是获取与患者标本基质相近且稳定性好的质控品。对于多组分分析的血清(浆)类固醇激素LC-MS/MS测量程序,应优先选择生产质控严格、稳定性明确,并同时包含多个待测组分的商品化质控品。使用经处理的血清(浆)、冻干或合成基质质控品的一个明显缺点是,因与患者标本基质不完全相同而产生不同的质谱响应。而未添加分析物的患者血清(浆)质控品可能在评估测量程序性能时比经过处理的质控品更可靠。如通过将类固醇纯溶液标准品添加入基质制备质控品,用于制备质控品的类固醇标准品批号及基质应有别于制备校准品的类固醇标准品及基质。另外,实验室可使用低、中、高浓度的单个或混合患者样本作为质控品。为了保证质控结果解读的一致性,质控样品应大批量制备,分装储存,并明确质控品的储存稳定性及与患者标本基质的一致性。  实验室应自行确定质控物靶值及最大允许不精密度( 表4 ),将质控物放置在每一分析批内和分析批间的不同位置检测,以监测测量程序的批内、批间漂移情况。可参考《临床检验定量测定室内质量控制 WS/T641-2018》 [ 30 ] 建立测量程序的质控方案和失控规则(如1 3 s 、3 2 s 等),以及失控后处理措施,如分析批内质控不合格,应复测标本。  建议10 实验室应优先选择质量可靠、与患者标本基质一致的质控物,确定质控物靶值及最大允许不精密度,建立质控方案、失控规则和处理措施。  4. 分析批设置:血清(浆)类固醇激素LC-MS/MS测量一般分批进行,分析批的长度取决于系统校准稳定性和成本效益。一个典型的分析批应包含校准品、质控品、患者样本、空白样品、校准确认品(用于验证校准曲线的有效性,非必需)。实验室通过校准曲线、质控和校准确认监测每个分析批的有效性。当检测量大于2×96个时,建议每检测批次(96个/批次)都包含校准品、质控品和空白样本。实验室应确定并文件化血清(浆)类固醇激素LC-MS/MS测量程序的分析批长度 [ 31 ] 。  建议11 实验室应根据血清(浆)类固醇激素LC-MS/MS测量系统的稳定性和成本效益确定分析批的长度,并通过校准曲线、质控和校准确认监测每个分析批的有效性。  5. 能力验证/室间质量评价:由于血清(浆)类固醇激素LC-MS/MS检测程序标准化不足,基于分组数据进行测量结果一致性评估的EQA计划价值有限。正确度验证计划可同时监测测量程序的正确度和一致性,实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心正确度验证计划,如卫生健康委临床检验中心组织的类固醇激素正确度验证。正确度验证计划使用经最少程序处理的临床样本,通过参考方法对类固醇激素定值后,用于评估参评实验室LC-MS/MS测量程序的正确度和量值溯源性。对无正确度验证和室间质量评价计划的类固醇激素LC-MS/MS检测项目,实验室需定期(如2次/年)进行实验室间比对,并应优先选择通过ISO15189认可的实验室,以保证实验室间结果的一致性。  建议12 实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心组织的类固醇激素检测能力验证计划,无能力验证计划的项目需定期(2次/年)进行实验室间比对。  (五)数据收集及分析  实验室应建立患者样品、空白样品、校准品和质控品的数据处理、峰积分的标准操作程序,并在每一次临床检测中保持一致。数据处理软件应带有审核追踪功能可查询每个样品的数据处理方法。  1. 校准曲线接受原则:以校准品/内标物浓度比值为 X轴、分析物/内标物响应比值为 Y轴,构建校准曲线,将每个患者样品、质控品和空白样品的分析物/内标物响应比值代入校准曲线方程计算被测物浓度。分析患者标本时使用的校准曲线回归方法应与进行测量程序性能验证时使用的方法保持一致,大多数情况采用线性回归。如果校准曲线数据方差不同质(不同浓度点差异不同),推荐使用1/ x或1/ x 2权重回归分析以使低浓度校准点的偏倚在可接受范围。实验室应通过观察每个校准浓度点的相对偏差或总相对偏差选择合适的权重分析方法。  血清(浆)类固醇激素LC-MS/MS测量程序性能验证应明确校准曲线可接受标准:使用校准曲线计算出的校准品浓度与理论浓度之间偏倚可接受范围为85%~115%(LOQ浓度点:80%~120%)。确定校准曲线斜率和截距的可接受标准,计算相关系数、确定其接受范围(通常需0.99),并应用于常规分析的评估。校准曲线的可接受标准应与测量程序性能(如准确度)匹配。  建议13 血清(浆)类固醇激素LC-MS/MS测量校准曲线计算的校准品浓度与理论浓度之间偏倚的可接受范围推荐设置为85%~115%(LOQ浓度点:80%~120%)。  2. 色谱峰积分:应在类固醇激素LC-MS/MS常规检测中通过优化积分参数完成色谱峰的自动积分,以尽量避免操作人员手动积分导致的不一致性。通常使用3倍LOQ浓度类固醇激素样品的色谱峰优化自动积分参数。对色谱峰进行平滑处理可提升积分准确性,仪器背景杂质信号过高或色谱峰采集数据点不足可导致色谱峰不够平滑。但色谱峰过度平滑会导致峰形变宽和丢失细节,如将肩峰平滑进待测物的色谱峰,将影响待测物定量结果准确性。对于采样率较慢的系统,可使用成组平滑方法减小背景杂质信号的影响。经验性色谱峰平滑参数应在所有样品分析中保持一致。  建议14 应尽量通过优化积分参数完成每个待测类固醇激素的色谱峰自动积分,避免手动积分,实际标本检测需统一峰积分、平滑参数。  3. 色谱峰核查:在类固醇激素LC-MS/MS测量程序性能验证时,应建立色谱峰保留时间、背景杂质信号强度、峰形和峰分辨率的核查规则。理想的色谱峰是对称的且基线分离完整。如果一个分析批内有样品色谱峰基线分离不完整、峰形变宽或裂分,排除管路连接不正确的原因,应考虑更换色谱柱。实验室必须核查色谱峰的保留时间以确保待测物分析峰的正确积分,并在标准操作流程中明确保留时间的最大允许漂移范围,分析批间的变化应不超过±2.5%。样品中分析物色谱峰的保留时间应与校准品的保留时间一致。实验室可采用人工核查色谱峰,也可通过在仪器控制软件中设置色谱峰核查参数自动完成。如果使用自动色谱峰核查,实验室需验证自动核查参数及流程的有效性,同时明确需人工介入核查的情况。  建议15 实验室应建立每个待测类固醇激素的色谱峰保留时间、背景杂质信号强度、峰形、峰分辨率的核查规则和允许范围。  4. 内标峰面积核查:通过计算每个类固醇激素LC-MS/MS检测样品内标峰面积与校准品平均峰面积的比值确定每个样品的内标峰面积回收率。内标回收率用于校正分析物提取回收率,每个样品内标峰面积不同是可接受的,但在性能验证时应建立样品之间内标峰面积变动的最大可接受范围。样品内标峰面积回收率出现明显降低提示前处理效率低或存在其他可导致离子抑制的干扰物或存在干扰内标定量离子对的杂质峰。对于内标峰面积比前后样品少2/3或50%的样品,应复检。明显升高的回收率提示内标峰包含干扰峰,也需复检。可通过内标峰面积随进样量变化作图,识别过低或过高的回收率。  建议16 实验室应日常监测每个待测类固醇激素的内标峰面积在标准品、质控物及标本间的波动,建立内标峰面积波动的最大可接受范围。  5. 定性离子对监测:类固醇激素LC-MS/MS常规检测中,一个离子对用于定量分析(定量离子对),另一个离子对用于定性分析(定性离子对)。定性离子对用于分析物定性,在识别样品干扰物中发挥重要作用。定量离子对峰面积与定性离子对峰面积的比值在不同样品间应保持一致,如果发生变化则提示存在干扰物质。如果无法检出定量或定性离子对则提示样品中不存在该分析物或存在干扰物,应进一步分析原因。应同时评估分析物和内标物的定量离子对/定性离子对比值。定性离子对应在整个测量区间有稳定的响应,避免使用脱水分子、脱乙酰基、脱甲基或加合物的子离子设置定性离子对。测量程序性能验证时应建立定量/定性离子对比值差异的可接受范围(如±30%),并在每一个样品检测中予以监测。  建议17 实验室应日常监测每个待测类固醇激素的定量/定性离子对峰面积比值在标准品、质控物及标本间的波动,并设置最大可接受范围。  03 血清(浆)类固醇激素LC-MS/MS检验后质量保证  1.数据存储:实验室应保存血清(浆)类固醇激素LC-MS/MS分析产生的完整原始数据和处理数据,包括测量程序使用的色谱和质谱参数设置、每个离子对的色谱和质谱数据等,必要时使用独立系统备份数据。  2.参考范围:由于抗原抗体非特异性反应及与LC-MS/MS测量结果的偏差,采用免疫法建立的类固醇激素参考范围一般不适用于LC-MS/MS测量程序,然而我国目前尚未建立公认统一的类固醇激素LC-MS/MS检测参考范围,实验室可参考CLSI EP28针对目标检测人群验证国外权威机构建立的参考范围 [ 32 ] ,不同类固醇激素需按性别、年龄和/或月经周期分组,例如绝经前妇女的雌二醇、雌酮和雌三醇的浓度因月经周期或妊娠阶段的不同而有较大差异。  建议18 实验室可针对目标检测人群验证国外权威机构建立的类固醇激素LC-MS/MS参考范围,推荐建立中国人群的参考范围。  3.结果解读及报告:肾上腺皮质激素代谢终产物醛固酮和皮质醇浓度增高分别和醛固酮增多症和皮质醇增多症(库欣综合征)密切相关 17α-羟孕烯醇酮、17α-羟孕酮及其雄激素代谢产物(如脱氢表雄酮、雄烯二酮)水平的异常往往与女性PCOS、高雄激素血症及性发育异常等内分泌疾病相关 绝经后女性雌二醇检测是乳腺癌发病风险评估的关键 对女性和青春期前儿童体内睾酮的检测是鉴别儿童性早熟、女性高雄激素血症和PCOS的关键 对峰谷游离皮质醇的准确检测可有效辅助诊断库欣综合征 对17α-羟孕酮、雄烯二酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮的准确检测是确定CAH亚型的重要依据。此外,血清(浆)类固醇激素检测结果的解读应基于目标患者或人群的基本信息,如性别、年龄、生理期、昼夜节律及立卧位等,对结果解读具有重要参考意义。因此,实验室应为类固醇激素质谱检测的目标人群建立个性化的结果解读规则。为了报告的准确性,类固醇激素结果的解读还应结合类固醇代谢通路和临床初步诊断。  建议19 实验室应结合患者临床信息、方法性能、临床预期用途、类固醇代谢通路解读和报告血清(浆)类固醇激素LC-MS/MS检测结果。  血清(浆)类固醇激素LC-MS/MS检测在精确评估类固醇激素水平、诊断类固醇激素失衡相关疾病(如CAH、肾上腺功能不全、高雄激素血症等)、监测治疗效果中发挥着越来越重要的作用。本共识对血清(浆)类固醇激素LC-MS/MS检测全流程进行了详细说明,包括标本采集、保存、运输及前处理的检验前过程,LC-MS/MS定量分析方法、分析性能指标、质量保证、数据收集及分析的检验中过程,以及数据存储、参考范围、结果解读及报告的检验后过程,并提出19项针对性建议供实验室参考。本共识旨在规范我国血清(浆)类固醇激素LC-MS/MS检测程序,提升其检测质量和结果一致性,推动其临床应用。  执笔人:李霖(四川省医学科学院 四川省人民医院临床医学检验中心),蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),郭玮(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科)  专家组成员(以姓氏拼音排序):曹正(首都医科大学附属北京妇产医院检验科),戴锦娜(中国医科大学附属第一医院检验科),俸家富(绵阳市中心医院检验科),郭启雷(山东英盛生物技术有限公司),郭玮(复旦大学附属中山医院检验科),郭晓兰(川北医学院附属医院检验科),黄庆[陆军军医大学附属大坪医院(陆军特色医学中心)检验科],蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),蒋廷旺(常熟市第二人民医院转化医学科),柯江维(江西省儿童医院医学检验科),李霖(四川省医学科学院 四川省人民医院临床医学检验中心),李卿(上海市临床检验中心参考测量实验室),李水军(上海市徐汇区中心医院中心实验室),李艳妍(吉林大学第一医院检验科),廖璞(重庆市人民医院检验科),刘华芬(杭州凯莱谱精准医疗检测技术有限公司),刘靳波(西南医科大学附属医院医学检验科),卢丽萍(中国医科大学附属盛京医院检验科),闵迅(遵义医科大学附属医院医学检验科),倪君君(和合诊断集团研究院),聂滨(宜宾市第二人民医院检验科),潘柏申(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科),王成彬(解放军总医院检验科),王书奎(南京医科大学附属南京医院医学检验科),夏勇(广州医科大学附属第三医院检验科),徐元宏(安徽医科大学第一附属医院检验科),张传宝(国家卫生健康委临床检验中心生化室),张华(贵州省人民医院检验科),赵蓓蓓(金域医学临床质谱检测中心)
  • 同仁堂花粉片被指非法添加 或致肾衰
    2012年下半年以来,同仁堂花粉片就被指添加剂使用不当和非法添加……  能消疲劳、除便秘、缓四肢酸痛 又可除粉刺,还能对糖尿病、心脑血管疾病、肿瘤、前列腺炎有辅助治疗作用……如此功效堪比“灵丹妙药”。而北京同仁堂总统牌破壁蜂花粉片就号称有这些功能。作为一种同仁堂近年来重点推销的产品之一,它的宣传造势也吸引了不少消费者关注。然而,2012年下半年以来,该产品就被指添加剂使用不当和非法添加,受到质监、工商等部门的查处,甚至连卫生部也明确指出其使用的相关添加剂属非法添加。  同仁堂在这几款保健品中究竟使用了什么添加剂?是否会对人体造成伤害?羊城晚报记者就此展开了调查。  投诉:三款产品均含甘露醇  近日,家住广州天河区的孟先生花了2451元,从广州天河城、同仁堂专卖店等地买了几款北京同仁堂总统牌破壁蜂花粉片,准备自己食用或送给朋友。然而,当买回来之后,他在网上查询发现,这些产品中含有非法添加药物成分甘露醇,不符合食品安全国家标准。孟先生随后向同仁堂方面提出了退货和赔偿要求,但却未得到对方的正面回复。  孟先生提供的三款包装各异的产品包括北京同仁堂总统牌破壁蜂荷花花粉片、茶花花粉片和油菜花花粉片。包装都十分精美,但规格不尽相同,有250片的大瓶装,也有60片的小瓶装。三款产品的主要成分除了花粉不同外,另一主要成分都是乳清蛋白。然而,这三款产品都含有相同的食品添加剂:甘露醇和硬脂酸镁。  孟先生告诉记者,他之所以一下子买这么多产品,是受到推销员及网上这些产品的相关介绍及神奇功能的影响。“当时推销员的对茶花粉的功能介绍是:可防止动脉硬化和肿瘤,亦有清头目、除烦渴、化痰、消食、利尿、深层排毒、消脂减肥、润肠通便之功效 荷花粉则可以清心、益肾、涩精、止血等 油菜花粉更是能很好地预防和治疗男性青壮年常见的前列腺炎等。”  正是基于对同仁堂的信任,加上被产品功能介绍所诱惑,他才下决心买了这么多,没想到却含有非法添加药物成分。  卫生部:不能用于食品添加  甘露醇到底是什么?记者查阅《中国药典》发现,甘露醇是作为一种脱水药物,常用于临床医学使用。南方医科大学珠江医院许兆忠教授介绍,甘露醇在医药上是良好的利尿剂,同时也可用于降低颅内压、眼内压,也可用作药片的赋形剂及固体、液体的稀释剂。  羊城晚报记者查阅食品安全国家标准GB2760-2011《食品添加剂使用标准》发现,该标准中没有名称为“甘露醇”的食品添加剂。对此,孟先生认为,由北京同仁堂健康药业股份有限公司食品分公司生产的“总统牌破壁蜂花粉片”,明显存在非法添加药物的违法行为。  孟先生告诉羊城晚报,在他要求退货时,同仁堂方面曾辩称,他们在产品添加剂中所标注的“甘露醇”是“D-甘露糖醇”,可作为食品添加剂使用。对此,孟先生随即向卫生部进行了书面咨询,卫生部否定了同仁堂的说法。孟先生向记者展示了卫生部在2012年8月29日出具的一份咨询答复信,信中明确写道:“甘露醇不同于D-甘露糖醇,甘露醇不能作为食品添加剂使用。”  专家:长期服用或致肾衰心衰  甘露醇应用不当会否对人体造成伤害?  对此,广东省第二人民医院一位不愿公开姓名的教授指出,甘露醇进入血液后,因不易从毛细血管渗入组织,从而使血浆渗透压增高,促进组织间液的水分向循环系统渗透,同时也间接地促进细胞内的水分向细胞外转移,从而引起组织脱水。  武警广东总队医院陈少文教授介绍,作为一种高渗性的组织脱水剂,甘露醇在临床上广泛应用于治疗脑水肿,预防急性肾衰,治疗青光眼,加速毒物及药物从肾脏的排泄。但长期大剂量的应用或应用不当可引起许多毒副作用。  那么,到底会出现哪些毒副作用?2003年度的《中华医学研究杂志》和2009年度的《中国现代药物应用》的相关论文曾先后进行了详细的分析。  据介绍,甘露醇副作用首先是对肾脏的影响。长期大剂量的使用可引起渗透性肾病,临床上出现少尿、血尿、蛋白尿及血尿素氮、肌酐升高等肾脏损害,甚至发生急性肾衰 其次是对心脏的影响。对于心功能不全的病人可诱发心衰、心律失常等 另外,甘露醇对静脉也有损害,会激活炎性介质和有丝分裂素———活化蛋白激酶(MAPKS),直接引发血管内皮细胞的凋亡。  专家介绍,甘露醇在临床治疗过程中也出现过一些神经系统的症状,如癫痫发作、脑血栓形成、精神失常、急性手足抽搐症、晕厥、惊厥等不良反应。专家指出,研究及临床数据表明,小剂量地、合理地、短期地应用甘露醇,可起脱水利尿作用,对需要的患者是有益的。但如果加入食品中,让普通消费者长期服用,其后果必然是弊多利少。  相关链接  滥用“硬脂酸镁” 重庆开出“罚单”  孟先生对同仁堂的投诉,还包括其涉嫌超范围滥用“硬脂酸镁”食品添加剂。事实上,早在孟先生投诉之前,重庆也有市民对相关产品进行了投诉,也是因为其中含有“硬脂酸镁”。根据我国《食品添加剂使用标准》,硬脂酸镁作为食品添加剂,只能添加到“食品分类号04.01.02.08的蜜饯凉果,食品分类号05.0的可可制品、巧克力和巧克力制品以及糖果”。  孟先生查询了北京同仁堂健康药业股份有限公司食品分公司的所有产品名称,都没有“糖果”类产品,由此他认为同仁堂擅自违反食品安全国家标准,滥用了食品添加剂硬脂酸镁。  据悉,2012年10月,重庆市质监、工商部门明确指出:“总统牌破壁蜂花粉片(茶花粉)的标签上标注使用硬脂酸镁食品添加剂不符合食品安全标准。”并对相关单位作出了处罚决定。  羊城晚报记者经多方努力找到了重庆市质监、重庆市工商部门所开出的相关处罚文书:2012年10月25日,重庆市工商局沙坪区分局给重庆商社新世纪(9.50,-0.10,-1.04%)百货连锁经营有限公司凯瑞商都的《责令改正通知书》(沙工商双责字[2012]10号)中指出:“总统牌破壁蜂花粉片(茶花花粉)”的标签上标注使用硬脂酸镁食品添加剂不符合食品添加剂安全标准,上述行为违反了《中华人民共和国食品安全法》第二十八条(十一)项的规定,构成了销售不符合食品安全标准的食品行为,根据《中华人民共和国行政处罚法》第二十三条的规定,现责令你单位改正违法行为。  据了解,此“罚单”开出后,该类产品在重庆全面下架。  广州多家百货 相关产品已下架  总统牌破壁蜂花粉片在广州销售情况如何?羊城晚报记者近日走访广州多家曾销售该产品的商店发现,有关总统牌破壁蜂花粉片都已下架。  农林下路同仁堂专卖店售货员告诉记者,一个月前公司突然通知涉及有添加甘露醇、硬脂酸镁的所有花粉片全部停售下架。“过去一直卖得很好,(通知)很突然,我们也不知道是怎么回事。”  在广东天河城百货,售货员对该产品下架的解释是“产品要更新”。  在广百百货,有关总统牌破壁蜂花粉片的宣传画依然贴在显眼的位置,但在专柜中已找不到该产品的踪影。  推荐检测机构  广东省微生物分析检测中心  中国广州分析测试中心
  • 你的冻干饼够坚固吗?——使用Micropress来研究冻干饼强度对产品的影响
    40多年来,对不稳定样品采用冻干剂型一直是制药界的共识。然而,这带来了一些挑战,得到完美且坚固的冻干饼外观就是其中之一——这决定了样品是否可以承受冷冻干燥后的运输和保存等过程。目前主要对冻干蛋糕进行定性分析以确定蛋糕外观是否稳定,但这样的分析得到的结果比较主观,无法提供进一步分析所需要的数据。 图1:定性分析结果合格的冻干饼(左为甘露醇,右为葡聚糖)如图1所示,葡聚糖和甘露醇这两种截然不同的赋形剂可用作冻干制剂中的填充剂或热稳定剂。冷冻干燥后,葡聚糖和甘露醇都会产生白色的饼状物,并且看起来结构相似,很可能在生产后通过质量控制的目视检查。然而,含有这些赋形剂的冻干蛋糕可能具有非常不同的物理特性,这可能会影响蛋糕在运输后的外观,以及它们的复原速度。因此需要一小批来提供关于冷冻干燥产品在运输过程中保持稳定的概率的定量数据。1、MicroPressMicroPress提供关键数据 图2:MicroPress冻干饼强度定量分析仪MicroPress是一种可以原位定量测定冻干饼强度和物理特性的仪器。通过设置参数和分析方法,MicroPress将能够分析您的冻干饼结构。这允许对您的产品进行快速有效的批量筛选,节省大量时间和人员成本。使用MicroPress可以在不到一分钟的时间内完成冻干饼的定量分析。MicroPress能够提供关键数据,说明所生产的产品是否能够在从制造现场到临床现场甚至到当地药房的潜在破坏性过程中幸存下来。虽然 MicroPress 分析会在冻干饼表面留下一个小凹痕,但仍可用于其他类型的分析如Karl-Fischer和DSC,以提供更多信息。2、如何使用MicroPress分析冻干饼?如表1所示,根据浓度对样品溶液进行区分,并稀释到100ml水中。容器为6ml玻璃小瓶,每个小瓶填充2ml:样品浓度配方编号甘露醇10mg/ml120mg/ml230mg/ml3葡聚糖10mg/ml420mg/ml530mg/ml6 表1:配方详情列表这些小瓶采用如表2中所示的方法进行冷冻干燥。所有样品均使用相同的一组参数进行分析,使所有样品充分预冻并尽可能增大结晶的尺寸,然后再进行初级干燥步骤。在初级干燥阶段,降低压力以促进冰的升华,从而更快地干燥产品。所有样品都放在冻干机的同一托盘上,以控制干燥过程中出现的变量。预冻程序StepTemp(℃)Time(min)Vacuum(mTorr)Ramp/Hold1205OffH2-40120OffR3-40120OffH干燥程序StepTemp(℃)Time(min)Vacuum(mTorr)Ramp/Hold1-4600100H20801006302700100H4204050R52072050H 表2:冻干程序详情列表所有样品均使用MicroPress上的相同参数设置进行分析(见表3)。MicroPress采用人性化的软件设计,参数设置简单,随时可根据需要进行更改。阶段速度(mm/s)压头延伸10定位0.1*次挤压0.05第二次挤压4停止- 表3:MicroPress运行程序延伸阶段以10mm/s的速度将压头移动到预估冻干饼高度的5mm以内;定位阶段找到蛋糕的顶部;一旦检测到顶部,就会开始挤压冻干饼,然后记录施加在冻干饼上的力。从图3(左)可以看出,3%葡聚糖显示出弹性特性,这个特性由减压阶段从40%应变返回到18%应变的曲线得到证明。图3(右)描绘了3%甘露醇冻干饼的*结果,它显示了与3%葡聚糖非常不同的图表。右图显示了一个易碎的饼体,它无法承受太大的压力。 图3:3%葡聚糖(左)与3%甘露醇(右)在MicroPress中的分析图像甘露醇的浓度从1%增加到2%的过程中,杨氏模量(Youngs Modulus)从最弱到最强增加了近10倍(图4左)。但从3%甘露醇的强度并不比2%高 ,相反3%甘露醇冻干饼的平均杨氏模量降低了,但相比2%浓度的标准偏差有所增加,样本之间的差异变得更大。图4右显示提升葡聚糖浓度的结果是得到了比甘露醇强得多的冻干饼,且葡聚糖的浓度从1%到3%,冻干饼的杨氏模量增加了107%,发生变形所需的力倍增。由于蛋糕的整体强度超过了MicroPress 的测量范围,无法确定其能承受的*应力。然而,这可以通过更小直径的压头来解决,以确保能达到被测量冻干样品的*应力。 图4:不同浓度的甘露醇(左)和葡聚糖(右)得到的平均杨氏模量结果从以上结果可以看出,MicroPress能够确定蛋糕的杨氏模量和冻干饼在结构破坏前所能承受的*应力。上述的结果表面,对于塑造更好的冻干饼外观,甘露醇的性能不及葡聚糖。杨氏模量和*应力也与冻干配方中赋形剂的浓度相关——浓度越高,冻干饼越结实。甘露醇相对缺乏稳定性和强度可能与许多因素有关,比如冻干饼的孔径和多态性。 图5. 由MicroPress记录并分析的各个样品的强度数据结论MicroPress清楚地定量分析了冻干样品的强度和物理特性。它的分析过程可以得到更精确的冻干饼强度数据,因此更确定冻干样品在整个运输和处理过程中保持外观和性能稳定。这些结果证实甘露醇使用甘露醇作为赋形剂来增加蛋糕强度可能并不是一个理想的选项。
  • 【瑞士步琦】喷雾干燥技术制备裸 siRNA 干粉吸入剂
    喷雾干燥技术制备裸 siRNA 干粉吸入剂自从 RNA 干扰(RNAi)在 20 多年前被发现以来,利用这种基因沉默机制来治疗疾病引起了科学家的关注。小干扰 RNA(siRNA) 是一类双链 RNA 分子,长度为 20-25 个碱基对,类似于 miRNA,并且在 RNAi 途径内操作。它干扰了表达与互补的核苷酸序列的特定基因的转录后降解的 mRNA,从而防止翻译。因此它们可以被设计成沉默任何特定蛋白质的表达,通过 RNA 干扰沉默基因治疗各种呼吸系统疾病,这已在动物和临床研究中得到了广泛的研究。siRNA 是一种亲水性、带负电荷的大分子,不能穿透生物膜,需要一个递送载体来促进细胞摄取,以便 siRNA 在细胞中发挥其基因沉默作用。在许多体内研究中,siRNA 与递送载体结合,并通过静脉给药,递送载体可保护 siRNA 免受核酸酶降解和血清蛋白结合。对于呼吸系统的局部效应,吸入是一种有利的给药途径。在酶活性最低的作用位点可以实现高药物浓度,其非侵入性提高了患者的依从性并降低了总治疗成本。肺部给药带来的另一个吸引点是,可能不需要专门的给药载体,而且裸 siRNA 可获得令人满意的基因沉默效果,这一点已在一些研究中得到证实。但关于 siRNA 的研究中,使用液体气溶胶的研究相对较多,干粉可吸入制剂研究较为有限,本篇文献中科学家重点研究了将裸 siRNA 以及和不同分散载体如甘露醇和L-亮氨酸通过喷雾干燥进行制剂来考察 siRNA 制备干粉可吸入制剂的可能性。 1实验材料和方法表1 显示采用超纯水溶解制备甘露醇、L-亮氨酸、 HSDNA 和 siRNA 水溶液,所有溶液的总溶质浓度均为 1.5% w/v。仪器参数:BUCHI Mini Spray Dryer B-290 & B-296 形成闭环模式加热温度80℃,吸气率为90%(干燥气流约35m3/h),进料速率 1.4ml/min,雾化气体流量 742L/h。双流体喷嘴,喷冒孔径 1.5mm。料液进行雾化干燥,得到的干燥粉末通过旋风分离器收集到玻璃小瓶中,粉末样品收集后室温下保存在带硅胶的干燥器中。将各粉体通过凝胶阻滞试验、粒度检测、SEM、XPS、PXRD 和 HPLC 等方式进行物理化学表征。▲ BUCHI 喷雾干燥仪 B-290 & 296 2结果表2 通过激光衍射测量粉末的粒度,2% siRNA 的体积直径较大,范围为 2.6-8.0um,可见随着配方中 L-亮氨酸含量的增加,粉末的粒径减小。▲ BUCHI Mini Spray Dry B-290 & 296图1 采用凝胶阻滞试验检测喷雾干燥后 siRNA 的结构完整性。所有三种粉体中的 siRNA 均保持完整,喷雾干燥后未观察到降解。图2 采用 HPLC 色谱检测结果与凝胶阻滞测定结果一致,从喷雾干燥后造粒粉体中获得的 siRNA 光谱和喷雾干燥前的相应料液中获得的光谱几乎相同(峰重叠)。图3 通过 SEM 观察粉体形态,无亮氨酸粉末显示相对光滑的表面球形,随着亮氨酸的增加,颗粒表面变粗糙,球形变差。当含有甘露醇和L-亮氨酸等质量制剂时,颗粒坍缩,失去球形。 3结论在这项研究中,香港大学和悉尼大学的科学家首次使用喷雾干燥技术将 siRNA 的裸形式配制成可吸入的干粉。研究了 siRNA 与甘露醇和 L-亮氨酸共混合后进行喷雾干燥造粒,过去没有 siRNA 载量 >2% w/w 的吸入型 siRNA 粉剂(含递送载体)的报道。同时 siRNA 经喷雾干燥后,即使没有通常用于络合或封装保护的 siRNA 的递送载体,也能成功保持其完整性;siRNA 粉末呈结晶状,残余水分低,这是稳定配方的关键特征,但含水量都在 5%以下,说明喷雾干燥具有良好的工艺可行性。最后掺入 L-亮氨酸富集在颗粒表面,显著促进了粉末的分散性,改善了 siRNA 粉末的雾化效果。并通过X射线光电子能谱检测,结果表明,L-亮氨酸在颗粒表面富集,作为分散增强剂,能够有效促进粉末的分散。再检测的不同 siRNA 配方中,含 50% w/w L-亮氨酸的 siRNA 表现出最佳的空气动力学性能,其高发射分数(EF)约为 80%,适度的细颗粒分数(FPF)约为 45%,对于干粉吸入剂具有很好实际参考意义。更重要的是,通过凝胶阻滞试验和 HPLC 评估,成功地保留了 siRNA 的完整性,确保了药物的活性!使用瑞士步琦喷雾干燥技术,可以轻松获得 1-5um 粒径的粉末颗粒,同时瑞士步琦提供低温条件下温和干燥生物制剂样品的多种解决方案,全新喷雾干燥仪 S-300 具有样品温度多重监控和保护工艺设计,保护您的珍贵样品,如需咨询相关内容更多干燥产品信息,请联系我们! 4文献来源Inhaled powder formulation of naked siRNA using spray drying technology with L-leucine as dispersion enhancer
  • 中关村量子生物农业产业技术创新战略联盟立项《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准
    各有关单位:根据国家标准化管理委员会、民政部关于印发《团体标准管理规定》(国标委联[2019]1号)的规定和《中关村量子生物农业产业技术创新战略联盟团体标准管理办法(试行)》的有关要求,由北京农学院牵头申报的《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准经联盟标准化工作委员会及相关专家评审,符合立项条件,现批准立项。请各起草单位按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定和要求,严把质量关,加强组织协调,增强本标准的适用性和有效性,确保标准高质量,按期完成标准编制工作。同时欢迎与本标准有关的高校、科研机构、相关企业、使用单位等加入本批标准的起草制定工作。有意参与标准起草制定工作的请与联盟秘书处联系。联系人:刘运平,电话:15011406045电子邮箱 :uabi2007@163.com通讯地址:北京市海淀区苏家坨镇翠湖南路澄湾街19号院。中关村量子生物农业产业技术创新战略联盟2023年04月26日
  • 安谱公司推出乳制品中苯甲酸、山梨酸检测方法及配套耗材
    苯甲酸为无色、无味片状晶体。是食品工业中常见的一种防腐保鲜剂,但乳制品中不允许添加。一般情况下,苯甲酸被认为是安全的。但对包括婴幼儿在内的一些特殊人群而言,长期摄入苯甲酸也可能带来哮喘、荨麻疹、代谢性酸中毒等不良反应。乳制品中不允许添加苯甲酸,乳制品中除酸奶制品外,其他按规定不得检出苯甲酸。国标《含乳饮料》(GB/T 21732-2008)的要求,&ldquo 苯甲酸的指标不能超过标准0.03毫克/千克&rdquo 。而近期发表在国际期刊的一片文献中的研究数据指出,从2006-2007年广州市场上的80%的奶粉样品中检测出苯甲酸,含量从0.51mg/kg到110mg/kg不等。 山梨酸也是一种常见的防腐剂和食品添加剂,广泛地用于食品、饮料、酱菜、烟草、医药、化妆品、农产品、饲料等行业中。 我司可以提供乳制品中检测苯甲酸、山梨酸的整套耗材,其中有色谱柱、CNW Poly-Sery MAX混合型阴离子交换SPE小柱、苯甲酸标准品(附COA一份),及其他相关耗材。货号名称品牌规格报价(RMB)CDEZ-AP-001N#苯甲酸 标准品进口1g160.00CDEZ-AP-013N#山梨酸 标准品进口1g160.00LAEQ-1815004605#CNWSIL C18 液相色谱柱CNW150x4.6mm,5um2950.00LAEQ-1825004605#CNWSIL C18 液相色谱柱CNW250x4.6mm,5um3150.00SBEQ-CA3379 CNW Poly-Sery MAX混合型阴离子交换SPE小柱 CNW 50支/盒 1200.00CFBO-080923乙酸铅国产500g90.00CFDL-11599-500G乙酸铵,ACS, 97.0% min进口500g455.00SCAA-204#有机相针式滤器25mm*0.22umAnpel100只/包 230.00QBAA-002012#2ml无针注射器国产100只/包90.00 a)苯甲酸、山梨酸标准品:标样浓度:40ug/ml 色谱柱:CNWSIL C18, 250× 4.6mm,5&mu m (LAEQ-1825004605)柱温:30℃流动相:甲醇:0.02M乙酸铵缓冲溶液=10:90进样量:20&mu Lb)奶粉样品中苯甲酸、山梨酸加标(CNW Poly-Sery MAX SPE小柱净化)c)奶粉样品(空白)(未经SPE净化)更多相关信息,敬请联系:上海安谱科学仪器有限公司上海市斜土路2897弄50号海文商务楼507室 200030Tel:021-54890099 Fax:021-54248311Email: shanpel@anpel.com.cnhttp://www.anpel.com.cn/Chi/NewsView.aspx?NewsID=71&Type=0
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2--- _10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8~2.8表5:甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响在10 mM缓冲液中,甘氨酸浓度越高,pH值变化越明显,另外通过用同步X射线衍射法监测溶质结晶程度,磷酸盐缓冲液对甘氨酸结晶具有浓度依赖性抑制作用,20%W/V甘氨酸和50-200mM缓冲液,缓冲液浓度越高,抑制作用越强,并且在-20℃进行退火处理,能够增强甘氨酸的结晶度。pH的改变能够引起蛋白凝聚,可以通过降低缓冲液浓度,使用不结晶的缓冲液,通过蛋白,糖来抑制缓冲液结晶,并且某些蛋白本身就具有pH缓冲的功能(Pikal-Cleland et al., J. Pharm. Sci. 2002;Varshney et al., Pharm. Res. 2007;Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel. 2020 Sundarmurathi and Suryanarayanan, J. Phys. Chem. B. 2011 Gokarnet al., J. Pharm. Sci. 2008)。 03.总结 冻干配方成分之间具有复杂的相互作用,某些组分可以通过改变其他组分的相行为来影响其功能性,必须正确选择配方中赋形剂的浓度,使得每种成分能够维持其*的物理形态,发挥应有的功能性。评论抽免费礼品活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • 中量元素水溶肥料行标发布
    农用中元素水溶肥料等行标通过审定,相关行业发展迎契机。日前,国家化肥质量监督检验中心审定完成了农业用中量元素水溶肥料等农业行业标准。2012年12月24日,农业部予以颁布。农业部发布《中量元素水溶肥料》等50项标准中华人民共和国农业部公告第1878号  《中量元素水溶肥料》等50项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准。其中,《中量元素水溶肥料》和《缓释肥料 登记要求》两项标准自2013年6月1日起实施 《农业用改性硝酸铵》、《农业用硝酸铵钙》、《肥料 三聚氰胺含量的测定》、《土壤调理剂 效果试验和评价要求》、《土壤调理剂 钙、镁、硅含量的测定》、《土壤调理剂 磷、钾含量的测定》、《缓释肥料 效果试验和评价要求》和《液体肥料 包装技术要求》等8项标准自2013年1月1日起实施 其他标准自2013年3月1日起实施。  特此公告。  附件:《中量元素水溶肥料》等50项农业行业标准目录  农 业 部  2012年12月24日附件:《中量元素水溶肥料》等50项农业行业标准目录序号项目编号标准名称替代1NY 2266-2012中量元素水溶肥料2NY 2267-2012缓释肥料 登记要求3NY 2268-2012农业用改性硝酸铵4NY 2269-2012农业用硝酸铵钙5NY/T 2270-2012肥料 三聚氰胺含量的测定6NY/T 2271-2012土壤调理剂 效果试验和评价要求7NY/T 2272-2012土壤调理剂 钙、镁、硅含量的测定8NY/T 2273-2012土壤调理剂 磷、钾含量的测定9NY/T 2274-2012缓释肥料 效果试验和评价要求10NY/T 2275-2012草原田鼠防治技术规程11NY/T 2276-2012制汁甜橙12NY/T 2277-2012水果蔬菜中有机酸和阴离子的测定 离子色谱法13NY/T 2278-2012灵芝产品中灵芝酸含量的测定 高效液相色谱法14NY/T 2279-2012食用菌中岩藻糖、阿糖醇、海藻糖、甘露醇、甘露糖、葡萄糖、半乳糖、核糖的测定 离子色谱法15NY/T 2280-2012双孢蘑菇中蘑菇氨酸的测定 高效液相色谱法16NY/T 2281-2012苹果病毒检测技术规范17NY/T 2282-2012梨无病毒母本树和苗木18NY/T 2283-2012冬小麦灾害田间调查及分级技术规范19NY/T 2284-2012玉米灾害田间调查及分级技术规范20NY/T 2285-2012水稻冷害田间调查及分级技术规范21NY/T 2286-2012番茄溃疡病菌检疫检测与鉴定方法22NY/T 2287-2012水稻细菌性条斑病菌检疫检测与鉴定方法23NY/T 2288-2012黄瓜绿斑驳花叶病毒检疫检测与鉴定方法24NY/T 2289-2012小麦矮腥黑穗病菌检疫检测与鉴定方法25NY/T 2290-2012橡胶南美叶疫病监测技术规范26NY/T 2291-2012玉米细菌性枯萎病监测技术规范27NY/T 2292-2012亚洲梨火疫病监测技术规范28NY/T 1151.4-2012农药登记卫生用杀虫剂室内药效试验及评价 第4部分:驱蚊帐29NY/T 2061.3-2012农药室内生物测定试验准则 植物生长调节剂 第3部分:促进/抑制生长试验 黄瓜子叶扩张法30NY/T 2061.4-2012农药室内生物测定试验准则 植物生长调节剂 第4部分:促进/抑制生根试验 黄瓜子叶生根法31NY/T 2293.1-2012细菌微生物农药 枯草芽孢杆菌 第1部分:枯草芽孢杆菌母药32NY/T 2293.2-2012细菌微生物农药 枯草芽孢杆菌 第2部分:枯草芽孢杆菌可湿性粉剂33NY/T 2294.1-2012细菌微生物农药 蜡质芽孢杆菌 第1部分:蜡质芽孢杆菌母药34NY/T 2294.2-2012细菌微生物农药 蜡质芽孢杆菌 第2部分:蜡质芽孢杆菌可湿性粉剂35NY/T 2295.1-2012真菌微生物农药 球孢白僵菌 第1部分:球孢白僵菌母药36NY/T 2295.2-2012真菌微生物农药 球孢白僵菌 第2部分:球孢白僵菌可湿性粉剂37NY/T 2296.1-2012细菌微生物农药 荧光假单胞杆菌 第1部分:荧光假单胞杆菌母药38NY/T 2296.2-2012细菌微生物农药 荧光假单胞杆菌 第2部分:荧光假单胞杆菌可湿性粉剂39NY/T 2297-2012饲料中苯甲酸和山梨酸的测定 高效液相色谱法40NY/T 1108-2012液体肥料 包装技术要求NY/T 1108-200641NY/T 1121.9-2012土壤检测 第9部分:土壤有效钼的测定NY/T 1121.9-200642NY/T 1756-2012饲料中孔雀石绿的测定NY/T 1756-200943SC/T 3402-2012褐藻酸钠印染助剂44SC/T 3404-2012岩藻多糖45SC/T 6072-2012渔船动态监管信息系统建设技术要求46SC/T 6073-2012水生哺乳动物饲养设施要求47SC/T 6074-2012水族馆术语48SC/T 9409-2012水生哺乳动物谱系记录规范49SC/T 9410-2012水族馆水生哺乳动物驯养技术等级划分要求50SC/T 9411-2012水族馆水生哺乳动物饲养水质
  • 【315曝光:饲料中的喹乙醇】看睿科检测解决方案!
    今年央视315爆出一些饲料企业瞒天过海地往饲料中非法添加各种“禁药”--喹乙醇,饲料原料表隐瞒喹乙醇等非法添加剂的问题,而且这种现象并非个例。什么是“喹乙醇”喹乙醇是1965年由德国人以邻硝基苯胺为原料合成的一种抗菌促生长剂。研究发现,大剂量的喹乙醇可能引起动物出现急性中毒、蓄积毒性以及亚慢性中毒等,进而影响人类健康。喹乙醇又称喹酰胺醇,商品名为倍育诺、快育灵,由于喹乙醇有中度至明显的蓄积毒性,对大多数动物有明显的致畸作用,对人也有潜在的三致性,即致畸形,致突变,致癌。因此喹乙醇在美国和欧盟都被禁止用作饲料添加剂。《中国兽药典》(2005版)也有明确规定,喹乙醇被禁止用于家禽及水产养殖。fig.1 喹乙醇结构式本文参考《农业部2086号公告-5-2014饲料中卡巴氧、乙酰甲喹、喹烯酮和喹乙醇的测定液相色谱-串联质谱法》,建立了利用高通量全自动固相萃取仪(Reeko Fotector Plus)结合液相色谱/质谱检测饲料中喹乙醇的方法。检测方法仪器、耗材Reeko Fotector Plus 高通量全自动固相萃取系统;液相色谱-质谱联用仪(Agilent LC 1260-MS 6410);Reeko AutoEVA-60全自动平行浓缩仪;Reeko AH-30全自动均质器;HLB固相萃取柱(200 mg, 6 mL, Oasis)或相当甲醇,乙腈(TEDIA色谱纯);无水硫酸钠(优级纯),盐酸(优级纯)样品制备准确称取饲料(1 g-2 g,市售),以及相同质量的基质空白,分别放置于50 mL聚丙烯离心管中。加入0.1 甲酸-乙腈溶液10 mL,采用Reeko AH-30全自动均质器均质30 s,另取一离心管放置清洗刀头液 3800 r/min离心5 min,收集上清液。残渣加入清洗刀头液进行再一次提取(10 mL),3800 r/min离心5 min,合并两次提取液。取上清液5 mL放置于Reeko AutoEVA-60全自动平行浓缩仪进行富集,40℃条件下氮吹浓缩至2 mL,加入0.1 mol/L磷酸二氢钾溶液4 mL,涡旋振荡溶解残留物。将上述样品液放置于Reeko Fotector Plus高通量全自动固相萃取仪样品架上,通过WIFI连接,软件控制仪器进行固相萃取。依次以5 mL甲醇和5 mL水活化HLB固相萃取柱(200 mg, 6 mL, Oasis),以2 mL/min 的速度进行上样,然后以5 mL盐酸(0.02 mol/L)和 5 mL 5%甲醇淋洗。用5 mL甲醇洗脱,收集洗脱液,在AutoEVA-60全自动平行浓缩仪上氮吹浓缩至近干,加入10 %乙腈溶液定容至1 mL,涡旋振荡后过0.22 μm有机滤膜过滤,液相色谱-质谱/质谱联用仪(LC/MS/MS)上机测试。 固相萃取净化条件 Reeko Fotector Plus 高通量全自动固相萃取仪Reeko Fotector Plus 运行程序Reeko AutoEVA-60 全自动平行浓缩仪Reeko AutoEVA-60 运行程序液相色谱/质谱联用仪条件MRM参数 结果与讨论为了验证该方法的回收率,本实验向空白饲料(2 g)中加入上述喹乙醇标品进行加标回收验证(n=4)。测试结果如下表所示,喹乙醇的回收率在82.1%-95%之间,说明该方法能够很好地运用于饲料中喹乙醇检测。表. 空白饲料中喹乙醇标品加标回收率及RSD值(40 μg/kg)总结1、Reeko AH-30均质器能够自动对样品进行均质,清洗刀头等操作,解放实验人员的双手,节省实验人员的宝贵时间; 2、Reeko AutoEVA-60全自动平行浓缩仪能够自动浓缩,针的液面追随系统能够让你的浓缩过程省时、省气;3、Reeko Fotector Plus高通量全自动固相萃取仪能够自动的完成整个固相萃取流程,从活化到上样,清洗样品瓶,洗脱一步到位,省时省事;4、Reeko Fotector Plus高通量全自动固相萃取仪采用全自动操作,固相萃取过程中可以排除操作带来的误差,能够获得手动固相萃取无法达到的RSD水平; 5、Reeko Fotector Plus高通量全自动固相萃取仪能够实现高通量处理,最多一天能够处理180个样品,真正为批量检测提供帮助。
  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB 30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
  • 药用辅料质量观察丨聚山梨酯80(吐温80)中多脂肪酸检测
    药用辅料问题近几年困扰了国内的药物制剂生产企业,辅料质量控制引起了监管机构和生产企业的重视。在药典四部辅料品种里对理化检验的指标有具体要求,岛津和合作伙伴开展了辅料检测相关的研究,这里跟大家分享一个案例:聚山梨酯80中多脂肪酸检测。 聚山梨酯80,又名吐温80,是一种非离子型表面活性剂,系油酸酸山梨坦和环氧乙烷聚合而成的聚氧乙烯20油酸山梨坦。因为聚山梨酯80对亲脂性药物有较好的助溶作用,因此常被用作注射剂及口服液的增溶剂或乳化剂,是一种常用的药物制剂辅料。聚山梨酯80通常为混合物,其分子结构中脂肪酸部分的组成大多不同,以油酸为主要成分,同时还含有其他脂肪酸,如肉豆蔻酸、棕榈酸、棕榈油酸、硬脂酸、亚油酸、亚麻酸等。近年来,在临床应用中出现了一些安全性问题的报道,如过敏、溶血等不良反应。研究表明,副作用的产生可能跟聚山梨酯80的纯度有关,而测定脂肪酸的组成在一定程度上反映了聚山梨酯80的纯度。 2015版中国药典增加了聚山梨酯80要求,2020版中国药典沿用, “聚山梨酯80”品种下有脂肪酸含量要求:肉豆蔻酸(≤5.0%)、棕榈酸(≤16.0%)、棕榈油酸(≤8.0%)、硬脂酸(≤6.0%)、亚油酸(≤18.0%)、亚麻酸(≤4.0%),与EP、BP等要求一致。 ?Nexis GC-2030气相色谱仪 参考《中国药典》中碱催化三氟化硼/甲醇衍生化前处理方法,遵照药典规定的气相色谱条件,应用岛津Nexis GC-2030(FID)气相色谱仪建立了聚山梨酯80中脂肪酸组成的测定方法,并对市场上的三个聚山梨酯80产品进行了测定。 混合对照品溶液色谱图 (0.1 mg/mL)(上图按出峰顺序:1、肉豆蔻酸甲酯,2、棕榈酸甲酯,3、棕榈油酸甲酯,4、硬脂酸甲酯,5、油酸甲酯,6、亚油酸甲酯,7、亚麻酸甲酯) 按照中国药典前处理方法,在选定的分析条件下,测定三个聚山梨酯80样品中的脂肪酸组成,结果如表5所示。油酸含量越高,表明聚山梨酯80的纯度越高。这三个产品中油酸含量从40%-77%不等,而药典要求油酸含量不低于58.0%,产品C不满足药典要求。 三个聚山梨酯80产品的脂肪酸组成测定结果结论 聚山梨酯80中油酸的含量与其纯度直接相关,通过气相色谱法对聚山梨酯80中脂肪酸进行检测,实验结果有效地反应其中的脂肪酸组成和含量,可用于药品辅料的质量控制,进而降低临床用药的风险。
  • 技术前沿|冻干过程中微塌陷如何影响冻干产品的强度?
    之前我们在《干货分享 | 冻干样品配方的关键温度的测量》中,就已经聊到过关键温度对于冻干工艺的重要性。在冷冻干燥过程中,产品应保持在其关键温度以下,如玻璃化转变温度(Tg’),共晶点(Teu)和塌陷温度(Tc),以确保一个安全和稳健的循环,并减少产品冷冻干燥后出现的有害缺陷的风险。缺陷可能包括但不限于产品内的物理塌陷或微塌陷、活性丧失和高水分含量。微塌陷程度是最具挑战性的量化缺陷之一,许多配方由于药物活性丧失而在*个周期失效。一、如何量化微塌陷程度?MicroPress 微压力冻干饼分析仪 MicroPress 微压力冻干饼分析仪是一款由Biopharma公司完全开发的创新仪器,用于量化低密度材料中的原位微观缺陷,特别是在所有冻干产品中。例如,甘露醇经常用于配方中,它具有较高的关键温度,可以掩盖具有明显较低关键温度的产品的塌陷。葡萄糖的关键温度在-41℃左右,当与甘露醇结合时,如果干燥超过关键温度,就会塌陷。然而,由于甘露醇的膨胀性,该混合物尽管可能存在结构缺陷,但一旦冷冻干燥,就具有良好的外观。在保持甘露醇浓度不变的同时,可以通过改变葡萄糖的浓度来确定微塌陷的程度和饼状结构的影响。通常, 由于高温,用来冷冻干燥这种溶液的循环不会使葡萄糖足够冷冻干燥,因此可能会发生塌陷。相反,甘露醇会干燥足够的量来保持蛋糕的结构。然而, 由此产生的,看似不明显的微观的塌陷,会影响复水性,以及药物本身的稳定性和活性。以下是结合使用了MicroPress 微压力冻干饼分析仪的具体实验方法。二、具体实验方法1、配方溶液制备样品溶液的制备方法见表1。所有化学品均来自Sigma Aldrich。使用6ml西林瓶灌装2ml。表1:起始溶液的浓度2、样品冷冻干燥这些小瓶用表2所示的方法冷冻干燥。预冻让所有的样品被冷冻,使晶体尺寸增加,样品进入下一个阶段干燥。在干燥阶段,压力降低,使冰升华,干燥产品。所有样品都放置在冻干机的同一个托盘上,以控制干燥过程中的可见变量。 表2:在SP Scientific冷冻干燥机上使用的冻干工艺3、MicroPress测量与分析所有的样品都在MicroPress上使用相同的一组参数进行分析 ,通过用户友好的软件设计,参数很容易设置,并可以更改以适应任何要求。参数设置情况见表3。表3:MicroPress测试阶段及相应的速度Extend阶段的速度为10mm/s,与估计的蛋糕高度的距离在5mm以内。Seek阶段找到蛋糕的顶部,一旦感觉到力,Compress阶段开始,然后记录施加在蛋糕上的力。4、结果分析下表4显示了从配方分析获得的结果。配方1具有最高的杨氏模量,因此是最强的蛋糕。表4:获得的3种配方的强度结果● 配方1的平均杨氏模量为0.969 kPa,配方1中最强的值为图1中的橙色。该蛋糕的杨氏模量为1.246 kPa,*应力为17.600 kPa;● 图1中的另外两条曲线分别表示配方2 (灰色) 和配方3 (蓝色) 。配方2的杨氏模量为0.473 kPa,*应力为7 kPa;● 配方3(蓝色)看似比配方2(灰色)有一个更高的*应力,实际上真正的*应力在应变51%左右,杨氏模量为0.017 kPa,*应力为2.660 kPa,是所有被分析的蛋糕中最弱的。 图1:使用MicroPress分析的三种配方图(配方1-橙色,配方2-灰色,配方3-蓝色)三、关于实验的讨论表4中为本次实验中获得的数据。甘露醇/葡萄糖样品溶液中的葡萄糖浓度越高,蛋糕的强度就越弱。传统的甘露醇被用作赋形剂,已知它对许多配方的关键温度有积极 的影响。然而,这可能掩盖了一个配方可能具有的一些关键温度。葡萄糖的塌陷温度为-41.0℃,当甘露醇冻干时,塌陷在甘露醇支架上。这种蛋糕看起来很结实, 眼见的外观良好,但当用扫描电镜或类似的技术分析时 ,晶格看起来更“湿润”,孔隙更宽。当用MicroPress分析时,增加葡萄糖浓度对材料强度的影响是非常明显的。蛋糕内的葡萄糖越多,物质强度就会减弱。当使用冷冻干燥显微镜(FDM)或差示扫描量热法(DSC)进行分析时,发现样品往往只显示甘露醇的结晶和熔化,而甘露醇有着强大的外部结构,掩盖了葡萄糖的玻璃化转变。关键温度分析只揭示了甘露醇的熔化,因此当产品冻干保持样品在-10℃以下,葡萄糖在主体材料中塌陷。因此, 由于葡萄糖的关键温度较低,甘露醇通常能够在标准的初级干燥条件下很好地干燥,而葡萄糖则不能。此外,当配方中的葡萄糖浓度增加时,蛋糕内的微塌陷程度增加,从而产生较弱的蛋糕。在储存或运输过程中,有微塌陷的材料更容易损坏或减少活性成分。四、*结论传统上,冻干样品的质量是由一些定性技术来确定的,包括;视觉评估,复水时间,与参考文献相比的外在强度,水分含量。然而,这是一种主观的分析,数据的质量可能取决于操作者的经验。Biopharma公司开发了这种压痕技术 ,并将其应用于冻干蛋糕,以减少主观性,并提供冻干产品的定性数据,以确定样品中是否存在产品缺陷。 配方中每个成分的关键温度与配方的整体关键温度同样重要,冻干产品在一个看似安全的温度会导致弱蛋糕由于冻干期间结构减弱和微塌陷影响蛋糕的强度。一旦材料被冻干,MicroPress可以用来测试得到的蛋糕的物理特性,以及它们是否在整体强度的所需参数范围内。在MicroPress上分析的蛋糕还可以使用卡尔-费休法测试水分含量, 如果需要玻璃化转变温度或熔点温度也可以使用mDSC进行测试。一旦确定了冻干样品的初始曲线,可以改变配方,增加其它辅料,这可能会影响冻干蛋糕强度。如表4所示,增加材料的浓度并不一定会增加蛋糕的强度。因此,如果在运输过程中发现蛋糕破裂或破碎的问题,则应进行轻微的改变,或包含或排除一种或多种辅料可能是有益的。
  • Workshop|走进默克药用原辅料应用实验室开放日,分享药物显微技术
    扫描电镜技术的出现使得微观组织形貌变得清晰化、可视化。扫描电镜具有分辨率高,景深大的优点,对不平坦的微观表面也能进行细微、清晰的观察。它已经成为现阶段材料研究中不可缺少的分析设备之一。 默克开放日研讨会 2021 年 7 月 20 日,飞纳电镜受邀参与默克药用原辅料上海应用服务实验室的开放日研讨会。本次活动默克分享了创新型辅料在增溶与缓释技术中的应用,以及默克高品质直压和湿法制粒规格甘露醇的特点。同时飞纳电镜也为制剂研发人员呈现了甘露醇颗粒以及片剂在微观形貌视觉上的对比体验。 会上由默克技术经理陆振举先生为大家分享了《Parteck@MXP 在热熔挤出领域的应用》,郑娣女士分享了《Parteck@SRP80 在缓释制剂中的应用》,朱子健先生分享了《默克高品质甘露醇介绍》,由飞纳电镜技术总监张传杰先生为大家分享了《扫描电镜的基本原理及其在固体制剂的应用》。在下午的实验操作环节,飞纳电镜在现场被用于展示默克高品质直压甘露醇的多孔结构,以及默克 Delta 晶型甘露醇在湿法制粒前后结构上的变化。通过现场的对比测试,默克高品质辅料卓越的性能在飞纳电镜的镜头下得到了充分的展示。 Parteck@MXP 在热熔挤出领域的应用介绍 扫描电镜的基本原理及其在固体制剂的应用介绍 飞纳电镜操作体验环节 扫描电镜下的药物分析 喷雾干燥甘露醇 下左图为默克直压用喷雾干燥甘露醇 M200,右为其他品牌对应型号的喷雾干燥甘露醇。可以发现,默克甘露醇疏松多孔的结构更为明显均匀,而对照组的甘露醇表面则大部分较为光滑无孔。 正是此粉体学特征,保证了默克甘露醇的孔隙率较高,可压性更好,并且这种多孔结构能够帮助水分快速进入片芯,从而改善片剂崩解和药物溶出。同时,均匀而密集的空隙,也保障了低剂量药物均已的含量均匀度。 湿法制粒甘露醇 默克研发的全球唯一市售的 Delta 晶型甘露醇,下图左为湿法制粒前的 Delta M 甘露醇,右为制粒后的 Delta M 甘露醇(已转化为 Beta 型甘露醇)。 制粒后的 Delta 甘露醇相对于制粒前,呈现出疏松多孔的结构,经过测定,其比表面积也有了数倍的增加。这一特性也给制得的颗粒带来可压性,崩解 / 溶出快的特点。 直压甘露醇片剂 下图左为使用默克直压甘露醇 Parteck M200 制备的片剂,右为使用其他品牌直压甘露醇制备的片剂,压片主压力均为 10KN,片中 400mg。M200 片剂的硬度为 190N,另一品牌的片剂硬度为 140N。通过扫描电镜(SEM)图谱可清晰看到,使用 M200 制备的片剂表面孔隙较多,意味着 M200 仍有很大的压缩空间。而使用另一品牌产品制备的片剂表面孔隙较少,进一步压缩的空间较小。同时也验证了甘露醇粉末的测试结果,由于 M200 超大的比表面积,使其具有优异的可压性。 在药物研发的整个流程中,电镜都起到了不可替代的作用。从植物性、动物性、矿物性生药的鉴别和质量检测,到药物对疾病的作用机理研究,甚至现阶段最先进的纳米药物的研发都离不开电镜的辅佐。随着电镜技术的持续改进,扫描电镜在未来医药领域势必更加重要,为世界医疗领域做出更大的贡献。
  • 【瑞士步琦】冷冻干燥歧管配置如何进行冻干终点判定
    冷冻干燥歧管配置如何进行冻干终点判定对于一个冷冻干燥工艺,准确找到冻干终点是精准控制冻干工艺成本的重要衡量。通常判定冻干终点有三种方式:温度差、压力差和压力升高,其中较常用的判定方法是通过测定样品和加热隔板间的温度差(差值 1℃)来判断是否达到初级干燥(或次级干燥)的终点。利用温度差方式判定所需要的配置有可控温加热隔板和样品温度探头,这就使得冻干机必须选择干燥箱体式结构,以保证这两个重要配件的具备。但当我们使用歧管加冻干挂瓶进行干燥时,则另外压力差或压力升高的方法进行冻干终点判定。下面我们就对这两种判定方法进行分析,帮助使用者通过视觉控制来评判样品的干燥过程,精准地结束冷冻干燥,从而缩短处理时间得到可靠的干燥结果。 1所需仪器和样品步琦无极限冷冻干燥机Lyovapor&trade L-300 Pro外置电容和皮拉尼压力计1000mL 圆底烧瓶-50℃ 实验室冰箱甘露醇(97.0-102.0 %)去离子水 2实验过程取 4 个圆底烧瓶(1000 mL),每个烧瓶中装有 150mL 浓度为 50mg/mL 甘露醇溶液装有甘露醇溶液的烧瓶都放入 -50℃ 的冰箱,冷冻 24 小时在完成 Lyovapor&trade L-300 的调节步骤后,进行目标压力 0.200 mbar 的真空测试。不同的测量技术决定了外部压力表之间的偏移值冻干方法为初级干燥(持续 24 小时,压力 0.200 mbar)和可忽略的次级干燥(持续 1 分钟,0.200 mbar)。在初级干燥阶段将压差和压力升高方法编程中均设置为“激活”从冰箱中取出已完全冷冻的烧瓶,连入 Lyovapor&trade L-300歧管上,设定压力为 0.200 mbar,且每个样品瓶内压力均可达到该值判定冻干终点的试验,按照下 表1 设置压力差和压力升高测定。表1:利用冻干机 Lyovapor&trade L-300 冷冻干燥 50 mg/mL 甘露醇溶液,其方法编程中终点测定的详细设置。压力差测试设置极限压力为 0.050mbar,测试时间 30 分钟。该试验在冷冻干燥过程开始时直接开始。对于压力升高测试,压力限制设置为 0.060mbar,测试时间 30 秒。第一次升压试验在冷冻干燥开始 12 小时后进行,每 60 分钟重复一次。3测试结果当压力设定在 0.200mbar 时,电容压力计测量的实际压力平均为 0.230mbar。在干燥过程中,实验室的温度和冷冻干燥机的环境温度平均为 20.1℃。图1 显示了甘露醇溶液在连接到歧管圆底烧瓶中冷冻干燥时的压力。皮拉尼计测得的值比电容压力计测得的值高约 1.6 倍(绿色为电容压力计,红色为皮拉尼压力计)。图1:图1 中两个压力表数值之间的数学差值显示在下 图2 中。随着干燥的进行,皮拉尼压力计的值逐渐接近电容压力计的测量值。47.6 小时后,压差低于 0.05mbar 的设定值,达到压差试验的标准(图2)。从皮拉尼和电容计压力曲线的峰值可以看出,在干燥过程中完成的压力上升测试(图1)。在干燥结束时,升华过程中最初的高压上升(峰值)大幅下降。干燥时间 49.9 小时,达到升压试验标准。作为比较,建议干燥时间为 24 小时。图2:4测试结论通过试验说明过程分析技术(PAT)在冷冻干燥过程实时监控中具有高适用性。具体而言,该研究探索了利用监测干燥室压力,并结合设置压力差和压力升高测试进行自动终点判定来估计干燥时间,无需在干燥过程中对样品进行残余水分含量分析。实验表明,这种综合方法能够控制冻干过程的时间,同时提供一种跟踪冷冻干燥运行质量及结果的方法。该综合方法可以防止干燥过程过早停止。此外,该研究通过使用 Lyovapor&trade L-300 冷冻干燥机,搭配皮拉尼和电容压力计,建立了在歧管配置中样品跟踪和终点判定的可行方法。
  • 【瑞士步琦】冻干工艺精准操控,Lyovapor™ L-300实现全自动终点判定
    冻干工艺精准操控Lyovapor&trade L-300实现全自动终点判定冻干应用”1简介冷冻干燥是一个独立的过程,在这个过程中实时分析样品是比较困难的,特别是检测其残余水分含量。工艺优化,特别是获得干燥和稳定产品所需的工艺时间,通常依赖于反复试验的方法。在本文中,使用了不同过程分析技术的组合来确定实验室冷冻干燥机(Lyovapor&trade L-300)中甘露醇溶液一次和二次干燥的终点。在加热隔板上使用西林瓶,通过对样品参数的原位测量间接跟踪干燥过程,可以在运行的冷冻干燥循环中即时调整过程时间。它有助于根据产品所需的残余水分含量更快地优化参数。此外,这些分析技术为监测过程的再现性提供了必要的工具。2实验设备Lyovapor&trade L-300 Pro, BÜ CHI Labortechnik AG电容和皮拉尼压力计,Pt 1000 热电偶冷冻干燥瓶,标称体积 10.0 mL, Schott AGLyo 三角橡胶塞,Wheaton陶瓷板磁力搅拌器硼硅玻璃烧杯和量筒分析天平(精度±0.1 mg)实验室 -50°C 冷冻柜3试剂和耗材甘露醇 97,0 - 102,0 Ph. Eur. , USP, VWR Chemicals (25311.366) 去离子水4实验流程4.1 实验部分制备 100mg /mL 甘露醇去离子水溶液。使用容量分配移液管将甘露醇溶液装入120个冷冻干燥瓶(每瓶 5.0 mL)。在每个小瓶上放置一个三脚橡胶塞,以便在冷冻干燥过程中去除水蒸气。一个 Pt 1000 热电偶被放置在两个制备的冷冻干燥小瓶的“中心底部”。在室温下,将这些小瓶放在两个铝制框架的冷冻干燥隔板上(每个架子 60 个小瓶)。在每个隔板上,一个装有热电偶的小瓶被直接放置在隔板的中心。热电偶连接到各自的隔板上。隔板插入到 Lyovapor&trade L-300 的金属支架上。一个空的冷冻干燥隔板被放置在上层,西林瓶包括隔板,以确保两个样品隔板接收到同样的热量。将包含隔板和样品瓶的支架转移到 -50°C 的冷冻室预冻 24 小时。4.2 方法编程冷冻干燥按照表1设定的隔板温度、真空度和时间运行。表1. 详细的 Lyovapor&trade L-300 冷冻干燥工艺用于 50 mg/mL 甘露醇溶液的西林瓶冷冻干燥步骤_1234阶段加载初级干燥次级干燥持续时间_4h12h1h20min6h隔板温度℃-4020204040加热梯度℃/min_0.2500.250压力 mbar_0.10.10.10.1初级干燥采用温差试验、压差试验(比较压力测量)和升压试验三种自动终点试验。表2.初级干燥阶段终点确定的设置温差试验压差试验升压试验极限:1.0℃极限:0.05mbar极限:0.06mbar试验时长:30min试验时长:30min试验时长:30s*开始时间:12h*开始时间:12h**开始时间:11h55min__重复时长:60min**是否继续:是**是否继续:是**是否继续:是是否通知:是是否通知:是是否通知:是* 开始时间的值表示在初级干燥的程序阶段结束之前的测试开始。** 如果所有测试都成功,将自动启动第二阶段,并继续进行干燥过程。其中,温度和压差测试直接从初级干燥阶段的第 2 步开始(见表2)。升压测试的压力极限设置为 0.060 mbar,测试时间为 30 秒。第一次升压试验在初级干燥第 2 步进行 5 分钟后进行,每 60 分钟重复一次。表3. 次级干燥阶段终点确定设置温差试验压差试验极限:1.5℃极限:0.05mbar试验时长:30min试验时长:30min*开始时间:6h*开始时间:6h**是否继续:是**是否继续:是是否通知:是是否通知:是*时间,从干燥阶段结束开始。**如果所有测试都成功,将自动启动下一阶段(封塞、保持),并进行干燥过程。其中,在温差和压差测试中,测试时间设置为 30 分钟,从步骤 4 开始直接开始测试。5实验结果5.1 温差试验图1 和 图2 为小瓶甘露醇样品冷冻干燥的温度和压力曲线。在图1中显示了两个隔板上样品温度。热电偶测得初级干燥主要部分的产物温度在 -7℃ 左右。随着水分含量和升华速率的降低,产品温度升高,在初级干燥结束时达到隔板温度。经过16.0小时的干燥时间,达到了温差试验的标准。▲ 图1. 隔板(红色),样品 Pt 1000(蓝色,蓝绿色)和 Lyovapor&trade L-300 冰冷凝器(粉红色)的温度测量。相应的,在设定冷凝器压力为 0.100 mbar 时,电容式压力计测得的干燥室内实际压力平均值为 0.150 mbar,如 图2 所示。在冰升华过程中,由依赖气体的皮拉尼压力计获得的压力值比电容压力计测量的压力值大约1.6倍。随着冰含量和升华速率的降低,皮拉尼压力计的压力值接近电容压力计的测量值。▲ 图2. 外部电容(绿色)压力计和皮拉尼(红色)压力表以及内部压力计(黄色)测量的压力。▲ 图3. 电容式(绿色)压力计与皮拉尼式(红色)压力计的计算压差如 图2 所示。图3 显示了从两个外部压力表(皮拉尼压力计减去电容压力计)的值计算得出的数值差异。在大约15.5小时的干燥时间后,达到了压差测试的标准。升压试验结果如图1和图2所示。在皮拉尼和电容式压力计的曲线(图2)中可以看出,尽管中间阀关闭,干燥室内的压力上升是由于水蒸气的持续升华造成的。在冰升华过程中,最初的高压上升值在初级干燥结束时大幅下降(棕色尖峰)。初级干燥 16.3 小时后达到升压试验标准。相应的,从设定的隔板温度曲线可以看出图1中升压试验的时间点。每次进行升压试验时,架子的加热在试验期间自动暂停。由于最后一次初级干燥终点测试在 16.3 小时后成功,因此与最初设定的初级干燥时间相比,样品干燥状态的自动检测将初级干燥阶段延长了 0.3 小时(见 表1)。随着升压试验的完成,所有设定终点试验均顺利完成,冻干循环自动进入次级干燥阶段。这种原位跟踪防止了在所有冰升华之前过早过渡到二次干燥阶段。所有三种测试对终点的估计时间大致相似,约为 15.5 至 16.3 小时。在次级干燥阶段,从产品中去除未冻水导致皮拉尼计记录的压力值在干燥时间约 18 小时(红色曲线)增加,如 图2 所示。除水后,总干燥时间 22.5 小时,压力曲线接近电容式压力计测量值,满足压差试验标准。23.1 小时后,隔板温度曲线与样品温度曲线符合,温差试验也成功完成(见 图1)。最后,在冷冻干燥过程结束时,干燥循环自动进入保持阶段。在应用西林瓶冷冻干燥工艺中获得了具有可接受视觉外观的干粉。▲ 图4. 装有甘露醇的最终冻干瓶6实验结论本申请说明探讨了过程分析技术(PAT)在冷冻干燥过程中的适用性,重点是监测干燥室压力和样品温度,以评估样品的干燥状态。研究表明,这些过程分析技术与压差、压升和温度测试的自动端点确定设置相结合,可以在不中断样品水分含量分析过程的情况下估计实际干燥时间。通过防止过早过渡到下一个干燥阶段,如次级干燥或保持,提出的方法提高了工艺效率。这些端点测试的集成有助于干燥过程的精确控制和可靠性,从而获得所需的产品属性,如最佳干燥度和视觉外观。研究结果确定了在Lyovapor&trade L-300冷冻干燥机中使用单独或联合终点测试来准确确定终点的有效性。7参考文献本文档是与 TH Kö ln 的 Heiko Schiffter 教授合作创建。
  • 化妆品相关检验标准上新了,您准备好了吗?
    化妆品相关检验标准上新了,您准备好了吗?关注我们,更多干货和惊喜好礼 数据来源:中商情报网近年来,我国人均可支配收入持续提高,追求高质量生活成为时尚,在消费升级与颜值经济的带动下,化妆品消费迅速崛起。2019年我国化妆品行业整体市场容量达到4777.20亿元,预计2019-2024年年均复合增长率将达到11.6%,我国已成为全球第1大化妆品消费国。在本行业蓬勃发展的同时,一些负面新闻却不绝于耳。 针对化妆品安全问题,我国相继出台了多项监管政策。日前,国家药品监督管理局对2015版《化妆品安全技术规范》做了4项修订,3项新增。本期飞飞跟大家一同分享《规范》中zui新修订的《化妆品中硼酸和硼酸盐检测方法》。 硼在化妆品中以硼酸、硼酸盐和四硼酸盐的形式存在,具有一定的抗菌防腐功能。但如不慎吸入或被创口吸收,可引起急性中毒,出现恶心、腹泻等症状,严重者还会出现昏厥、肾衰竭甚至死亡。因此,化妆品中的硼酸和硼酸盐的含量受到严格监管。以下是中国和欧盟关于化妆品中硼酸的监管限量要求:表 1 中国和欧盟关于化妆品中的硼酸监管要求(点击查看大图) 此方法修订的一大亮点是将操作繁琐、分析误差大的甲亚胺-H分光光度测定方法改为灵敏度高、抗干扰强的离子色谱法,同时增加了离子色谱-电感耦合等离子体质谱法进行结果确认。技术点解析,且听飞飞娓娓道来。 先来一览标准中使用的离子色谱条件: 色谱柱:IonPac ICE Borate (9 mm ×250 mm)离子排斥分析柱,或等效色谱柱;抑制器:排斥型阴离子微膜抑制器(ACRS-ICE 500 9 mm),或等效抑制器;淋洗液:3 mmol/L甲烷磺酸+60 mmol/L甘露醇;化学抑制再生液:25 mmol/L四甲基氢氧化铵+15 mmol/L甘露醇;淋洗液流速:1.0 mL/min;再生液流速:1.0 mL/min;柱温:30 ℃;进样量:25 µL;检测器:化学抑制型电导检测器。 + + + + 条件中所用的是甲磺酸的酸性淋洗条件,在酸性条件下(~pH2.6),硼酸盐会以硼酸(H3BO3)的形式存在,这也是中国和欧盟规范中提到zui大允许浓度要以硼酸计的原因。例如,四硼酸钠(Na2B4O7)会与强酸甲磺酸(CH3SO3H)立即发生反应,产生硼酸。此外,在酸性条件下,硼酸和甘露醇(C6O6H14)会形成一个稳定的一价阴离子配合物,从而使得它更容易被电导检测。因此,方法中选用甲磺酸作为淋洗液分离硼酸,而甘露醇被加入淋洗液中可进一步提高待测物在离子排斥条件中的检测灵敏度。 图 1 四硼酸盐、硼酸和甘露醇在酸性条件下的反应(~pH2.6,3mM MSA)(点击查看大图) 独特分离选择性 排斥型离子色谱法中强酸性离子化合物因Donnan排斥作用,不能在色谱柱上保留而基本在死体积洗脱。弱酸性离子化合物由于质子化作用,可以穿过Donnan膜进入固定相,解离度越低的物质越容易进入固定相,其保留值也就越大。因此,离子排斥色谱法是解决弱酸性硼酸和强酸性离子分离的有效方式。但是化妆品组成复杂,常添加苹果酸、柠檬酸,丙三醇调节基体的pH值和赋予产品保湿功能,在普通排斥色谱柱上干扰硼酸的测定。《规范》中使用了对硼酸具有独特选择性的排斥色谱柱——IonPac ICE borate。在选定色谱条件下,能有效消除柠檬酸、丙三醇等物质的干扰。图 2 某样品及加标样品中硼酸的分离检测谱图(点击查看大图) 专属抑制检测模式 电导检测器提供一个分析硼酸灵敏和易用的方法。ACRS-ICE 500 Suppressor有效降低了甲磺酸淋洗液的背景电导,抑制产物是一种比酸淋洗液电导更低的盐;同时为了得到电导检测响应,保持硼酸以硼酸和甘露醇阴离子配合物的形式。对于IonPac ICE抑制反应,可总结如下:用于再生液中的甘露醇,尽管没有直接参与抑制反应,但它可保持其穿过抑制器膜的平衡,对于降低抑制噪音十分必要。 完善的样品前处理 化妆品基体复杂,前处理过程是不可缺少的。对于硼酸和可溶性硼酸盐,《规范》中采用水或甲醇-水的提取方法,再经RP柱净化后测试。对于硼酸和硼酸盐总量测定,处理过程是将碳酸钠溶液加入到称量好的样品中,转移至高温炉,经充分灰化后,再用盐酸溶液溶解灰分,用水稀释定容后,经Ag柱、H柱处理。 以上所用离子色谱分析耗材,您选对了吗?(点击查看大图) 多种检测方式 赛默飞可提供quan方位的色谱质谱仪器分析平台,离子色谱与电感耦合等离子质谱联用技术在元素形态价态分析方面具有无可比拟的优势,目前已成为该应用方向首xuan的检测技术。因为电感耦合等离子质谱具有卓yue的检测灵敏度和抗基体干扰能力,《规范》中将这一联用技术做为结果确认分析方法。 今天关于新标准的技术解析,您都Get到了吗? 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 81项食品安全国家标准详解(理化检测、微生物检验、辐照食品鉴定)
    1月9日傍晚,卫计委发布了127项食品安全国家标准。涉及到多个类别,食品580将各个标准的替代情况及主要变化分为两部分。此部分为理化检测、微生物检验、辐照食品鉴定类,共涉及81项标准。  微生物检验  食品微生物学检验标准共发布15项。  GB 4789.1-2016 食品安全国家标准 食品微生物学检验 总则  实施日期:2017-6-23  替代情况:代替GB4789.1-2010《食品微生物学检验 总则》  主要变化:  增加了附录A,微生物实验室常规检验用品和设备 —修改了实验室基本要求  修改了样品的采集  修改了检验  修改了检验后样品的处理  删除了规范性引用文件  GB 4789.2-2016 食品安全国家标准 食品微生物学检验 菌落总数测定  实施日期:2017-6-23  替代情况:代替GB4789.2-2010《食品微生物学检验 菌落总数测定》  GB 4789.3-2016 食品安全国家标准 食品微生物学检验 大肠菌群计数  实施日期:2017-6-23  替代情况:代替GB4789.3-2010《食品微生物学检验 大肠菌群计数》、GBT4789.32-2002《食品卫生微生物学检验 大肠菌群的快速检测》和SNT0169-2010《进出口食品中大肠菌群、粪大肠菌群和大肠杆菌检测方法》大肠菌群计数部分。  主要变化:  增加了检验原理  修改了适用范围  修改了典型菌落的形态描述  修改了第二法平板菌落数的选择  修改了第二法证实试验  修改了第二法平板计数的报告  GB 4789.4-2016 食品安全国家标准 食品微生物学检验 沙门氏菌检验  实施日期:2017-6-23  替代情况:代替GB4789.4-2010《食品微生物学检验 沙门氏菌检验》、SN0170-1992《出口食品沙门氏菌属(包括亚利桑那菌)检验方法》、SNT2552.5-2010《乳及乳制品卫生微生物学检验方法 第5部分:沙门氏菌检验》。  主要变化:  修改了检测流程和血清学检测操作程序  修改了附录A 和附录B  GB 4789.6-2016 食品安全国家标准 食品微生物学检验 致泻大肠埃希氏菌检验  实施日期:2017-6-23  替代情况:代替GBT4789.6-2003《食品卫生微生物学检验 致泻大肠埃希氏菌检验》  主要变化:  增加了术语和定义、缩略语  增加了血清学试验中H 抗原鉴定  增加了PCR确认试验  增加了附录A  修改了设备和材料  修改了培养基和试剂  修改了检验程序  修改了血清学试验中致泻大肠埃希氏菌所包括的O 抗原群  删除了肠毒素试验  GB 4789.10-2016 食品安全国家标准 食品微生物学检验 金黄色葡萄球菌检验  实施日期:2017-6-23  替代情况:代替GB4789.10-2010《食品微生物学检验 金黄色葡萄球菌检验》、SNT0172-2010《进出口食品中金黄色葡萄球菌检验方法》、SNT2154-2008《进出口食品中凝固酶阳性葡萄球菌检测方法 兔血浆纤维蛋白原琼脂培养基技术》  主要变化:  试验用增菌液统一为7.5%氯化钠肉汤  GB 4789.12-2016 食品安全国家标准 食品微生物学检验 肉毒梭菌及肉毒毒素检验  实施日期:2017-6-23  替代情况:代替GBT4789.12-2003《食品卫生微生物学检验 肉毒梭菌及肉毒毒素检验》  主要变化:  增加了PCR鉴定方法  增加了结果与报告  增加了附录A  修改了设备和材料  修改了培养基和试剂  修改了检验程序  规范了样品制备过程  修改了操作步骤中增菌和分离培养部分试验方法  GB 4789.16-2016 食品安全国家标准 食品微生物学检验 常见产毒霉菌的形态学鉴定  实施日期:2017-6-23  替代情况:代替GBT4789.16-2003《食品卫生微生物学检验 常见产毒霉菌的鉴定》  主要变化:  增加了检验程序  增加了黑曲霉、炭黑曲霉、棒曲霉、红曲霉等产毒菌种  修改了标准名称  修改了设备和材料  修改了培养基和试剂  修改了各菌种形态描述  修改了附录A  删除了黄绿青霉、岛青霉、皱褶青霉、产紫青霉、红青霉等菌种  删除检索表原附录B、附录C、附录D  GB 4789.30-2016 食品安全国家标准 食品微生物学检验 单核细胞增生李斯特氏菌检验  实施日期:2017-6-23  替代情况:代替GB4789.30-2010《食品微生物学检验 单核细胞增生李斯特氏菌检验》。  主要变化:  增加了“第二法 单核细胞增生李斯特氏菌平板计数法”  增加了“第三法 单核细胞增生李斯特氏菌MPN 计数法”  修改了范围  GB 4789.34-2016 食品安全国家标准 食品微生物学检验 双歧杆菌检验  实施日期:2017-6-23  替代情况:代替GB4789.34-2012《食品微生物学检验 双歧杆菌的鉴定》  主要变化:  增加了双歧杆菌的计数方法  增加了MRS培养基  修改了标准的适用范围  修改了附录B为可选项  GB 4789.35-2016 食品安全国家标准 食品微生物学检验 乳酸菌检验  实施日期:2017-6-23  替代情况:代替GB4789.35-2010《食品微生物学检验 乳酸菌检验》、SNT1941.1-2007《进出口食品中乳酸菌检验方法 第1部分:分离与计数方法》  主要变化:  增加了乳酸菌总数计数培养条件的选择及结果说明  修改了改良MRS培养基成分  修改了平板计数的接种方法和接种量  GB 4789.36-2016 食品安全国家标准 食品微生物学检验 大肠埃希氏菌O157H7NM检验  实施日期:2017-6-23  替代情况:代替GBT4789.36-2008《食品卫生微生物学检验大肠埃希氏菌O157:H7/NM 检验》  主要变化:  修改了标准的范围  修改了设备和材料  修改了培养基和生化反应的文字描述  删除“第二法免疫磁珠捕获法的原理”  删除“第三法全自动酶联荧光免疫分析仪筛选法”  删除“第四法全自动病原菌检测系统筛选法”  GB 4789.40-2016 食品安全国家标准 食品微生物学检验 克罗诺杆菌属(阪崎肠杆菌)检验  实施日期:2017-6-23  替代情况:代替GB4789.40-2010《食品微生物学检验 阪崎肠杆菌检验》、SNT1632.1-2013《出口奶粉中阪崎肠杆菌(克罗诺杆菌属)检验方法 第1部分:分离与计数》。  主要变化:  修改了可疑菌落的挑取数量  GB 4789.42-2016 食品安全国家标准 食品微生物学检验 诺如病毒检验  实施日期:2017-6-23  替代情况:代替SNT1635-2005《贝类中诺沃克病毒检测方法 普通RT-PCR方法和实时荧光RTPCR方法》。  主要变化:  标准检测范围从“贝类”扩增为“食品”  修改“操作步骤”  增加“质量控制要求”,可参见附录C  删除“普通RT-PCR方法”  GB 4789.43-2016 食品安全国家标准 食品微生物学检验 微生物源酶制剂抗菌活性的测定  实施日期:2017-6-23  新发布  食品通用理化检测  此次共发布52项食品通用理化检测标准。   GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定  实施日期:2017-6-23  替代情况:代替 GB5009. 5-2010《食品安全国家标准 食品中蛋白质的测定》、GBT14489.2-2008《粮油检验植物油料粗蛋白质的测定》、GBT15673-2009 《食用菌中粗蛋白含量的测定》、GBT5511-2008《谷物和豆类 氮含量测定和粗蛋白质含量计算 凯氏法》、GBT9695.11-2008《肉与肉制品 氮含量测定》和 GBT9823-2008《粮油检验 植物油料饼粕总含氮量的测定》  主要变化:  增加附录 A 蛋白质折算系数。  GB 5009.6-2016 食品安全国家标准 食品中脂肪的测定  实施日期:2017-6-23  替代情况:代替 GBT5009. 6-2003《食品中脂肪的测定》、GBT9695. 1-2008 《肉与肉制品 游离脂肪含量测定》、GB5413.3 -2010《食品安全国家标准 婴幼儿食品和乳品中脂肪的测定》、GBT9695.7-2008《肉与肉制品 总脂肪含量测定》、GBT14772-2008《食品中粗脂肪的测定》、GBT5512-2008《粮油检验 粮食中粗脂肪含量测定》、GBT15674-2009 《食用菌中粗脂肪含量的测定》、GBT22427. 3-2008 《淀粉总脂肪测定》、GBT10359-2008《油料饼粕 含油量的测定 第1部分:己烷(或石油醚)提取法》  主要变化:  修改了肉制品、淀粉的酸水解及抽提步骤  增加了碱水解法、盖勃法  GB 5009.8-2016 食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.8-2008《食品中蔗糖的测定》、 GBT18932.22-2003 《蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖含量的测定方法 液相色谱示差折光检测法》、GBT22221-2008《食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 高效液相色谱法》  主要变化:  增加了部分样品前处理  GB 5009.9-2016 食品安全国家标准 食品中淀粉的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.9-2008 《食品中淀粉的测定》、GBT5514-2008 《粮油检验 粮食、油料中淀粉含量测定》、GBT9695.14-2008 《肉制品 淀粉含量测定》  主要变化:  增加了低含量样品测定操作  增加了试剂空白测定  修改了第一法中的计算公式  增加了第三法 肉制品中淀粉含量测定  GB 5009.22-2016 食品安全国家标准 食品中黄曲霉毒素B族和G族的测定  实施日期:2017-6-23  替代情况:代替GBT5009.22-2003《食品中黄曲霉毒素B1 的测定》、GBT5009.23-2006《食品中黄曲霉毒素B1、B2、G1、G2的测定》、GB5009.24-2010《食品安全国家标准食品中黄曲霉毒素M1和B1的测定》、GBT23212-2008《牛奶和奶粉中黄曲霉毒素B1、B2、G1、G2、M1、M2的测定 液相色谱-荧光检测法》、GBT18979-2003《食品中黄曲霉毒素的测定 免疫亲和层析净化高效液相色谱法和荧光光度法》、SN0339-1995《出口茶叶中黄曲霉毒素B1检验方法》、SNT1664-2005《牛奶和奶粉中黄曲霉毒素M1、B1、B2、G1、G2含量的测定》、SNT1101-2002《进出口油籽及粮谷中黄曲霉毒素的检验方法》、SN0637-1997《出口油籽、坚果及坚果制品中黄曲霉毒素的检验方法 液相色谱法》、SNT1736-2006《进出口蜂蜜中黄曲霉毒素的检验方法 高效液相色谱法》、NYT1286-2007《花生黄曲霉毒素B1的测定 高效液相色谱法》。  主要变化:  根据GB2761—2011的要求,增加了方法的适用范围  增加了同位素稀释液相色谱-串联质谱法为第一法  增加了高效液相色谱-柱前衍生法为第二法  增加了高效液相色谱-柱后衍生法为第三法  修改了酶联免疫法,并将方法名称更改为酶联免疫吸附筛查法  增加了免疫亲和柱以及酶联免疫试剂盒质量判定要求与方法  修改了测定组分为黄曲霉毒素B族和G族化合物  GB 5009.24-2016 食品安全国家标准 食品中黄曲霉毒素M族的测定  实施日期:2017-6-23  替代情况:代替 GB5413.37-2010《食品安全国家标准 乳和乳制品中黄曲霉毒素M1的测定》、GB5009.24-2010《食品安全国家标准食品中黄曲霉毒素M1和B1的测定》、 GBT23212-2008《牛奶和奶粉中黄曲霉毒素B1、B2、G1、G2、M1、M2的测定高效液相色谱法-荧光检测法》和 SNT1664-2005《牛奶和奶粉中黄曲霉毒素 M1、B1、B2、 G1、G2含量的测定》  主要变化:  增加了方法适用范围   增加了对黄曲霉毒素 M 2 的检测   修改了酶联免疫法,并修改第三法名称为酶联免疫吸附筛查法   修改了液相色谱 - 质谱联用法   修改了液相色谱法的前处理方法   删除了免疫层析净化荧光分光度法。  GB 5009.25-2016 食品安全国家标准 食品中杂色曲霉素的测定  实施日期:2017-6-23  替代情况:代替 GBT5009. 25-2003 《植物性食品中杂色曲霉素的测定》和SNT2483-2010《进出口粮谷中柄曲霉素含量检测方法 液相色谱法》  主要变化:  增加了液相色谱 - 串联质谱法  增加了液相色谱法  GB 5009.26-2016 食品安全国家标准 食品中N-亚硝胺类化合物的测定  实施日期:2017-6-23  替代情况:代替GBT5009.26-2003 《食品中N-亚硝胺类的测定》  主要变化:  将原方法中的填充色谱柱修改为毛细管色谱柱  将原方法中的气相色谱高分辨质谱仪修改为气相色谱质谱仪  GB 5009.27-2016 食品安全国家标准 食品中苯并(a)芘的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.27-2003 《食品中苯并(a)芘的测定》、GBT22509-2008 《动植物油脂苯并(a )芘的测定 反相高效液相色谱法》、SCT3041-2008《水产品中苯并( a )芘的测定 高效液相色谱法》和 NYT1666-2008 《肉制品中苯并( a )芘的测定 高效液相色谱法》  主要变化:  修改了方法的适用范围  修改了样品前处理方法  删除了荧光分光光度法与目测比色法  GB 5009.28-2016 食品安全国家标准 食品中苯甲酸、山梨酸和糖精钠的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.29-2003《食品中山梨酸、苯甲酸的测定》和 GBT5009.28-2003《食品中糖精钠的测定》、GBT23495-2009 《食品中苯甲酸、山梨酸和糖精钠的测定 高效液相色谱法》、GB21703-2010《食品安全国家标准 乳和乳制品中苯甲酸和山梨酸的测定》、SNT2012-2007《进出口食醋中苯甲酸、山梨酸的检测方法 液相色谱法》、SBT10389-2004《肉与肉制品中山梨酸的测定》  主要变化:  增加了“多点校正”方法制作标准曲线  修改了样品前处理方法  删除了气相色谱法中填充柱色谱柱分离的内容  增加了气相色谱法中毛细管色谱柱分离的内容  GB 5009.32-2016 食品安全国家标准 食品中9种抗氧化剂的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.32-2003 《油脂中没食子酸丙酯(PG)的测定》和 GBT23373-2009 《食品中抗氧化剂丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)与叔丁基对苯二酚( TBHQ)的测定》  主要变化:  增加了抗氧化剂的种类  增加了方法的适用范围  增加了液相色谱法、气相色谱法、液相色谱串联质谱法和气相色谱质谱联用法  GB 5009.33-2016 食品安全国家标准 食品中亚硝酸盐与硝酸盐的测定  实施日期:2017-6-23  替代情况:代 替 GB5009.33-2010 《食品中亚硝酸盐与硝酸盐的测定》、NYT1375-2007《植物产品中亚硝酸盐与硝酸盐的测定 离子色谱法》、NYT1279-2007 《蔬菜、水果中硝酸盐的测定 紫外分光光度法》、 SNT3151-2012 《出口食品中亚硝酸盐和硝酸盐的测定 离子色谱法》  主要变化:  合并原第二法、第三法为第二法  增加了蔬菜、水果中硝酸盐的测定的紫外分光光度法  GB 5009.36-2016 食品安全国家标准 食品中氰化物的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.36-2003 《粮食卫生标准的分析方法》的 4.4 氰化物、 GB/T5009.48-2003《蒸馏酒与配制酒卫生标准的分析方法》的 4.7 氰化物和 GBT8538-2008《饮用天然矿泉水检验方法》的4.45氰化物  GB 5009.82-2016 食品安全国家标准 食品中维生素A、D、E的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.82-2003《食品中维生素A和维生素E的测定》、GB5413.9-2010 《婴幼儿食品和乳品中维生素 A、D、E的测定》、GBT9695.26-2008 《肉与肉制品 维生素A 含量测定》、GBT9695.30-2008 《肉与肉制品 维生素E含量测定》、NYT1598-2008 《食用植物油中维生素E组分和含量的测定 高效液相色谱法》  主要变化:  增加了“食品中维生素 E 的测定 正相高效液相色谱法”  增加了“食品中维生素 D 的测定 液相色谱 - 串联质谱法”  增加了“食品中维生素 D 的测定 高效液相色谱法”  修改了“食品中维生素 A 和维生素 E 的测定 反相高效液相色谱法”  修改了维生素 E 异构体的反相色谱分离条件,可同时分离测定 4 种生育酚异构体  删除了苯并芘内标定量法,改用外标法定量  删除了“比色法”测定维生素 A  GB 5009.83-2016 食品安全国家标准 食品中胡萝卜素的测定  实施日期:2017-6-23  替代情况:代替 GB5413.35-2010《婴幼儿食品和乳品中β -胡萝卜素的测定》、GBT5009.83-2003 《食品中胡萝卜素的测定》和 NYT82.15-1988 《果汁测定方法β -胡萝卜素的测定》  主要变化:  增加了普通食品的前处理方法  增加了需要区分 α - 胡萝卜素、β - 胡萝卜素的色谱条件  修改了胡萝卜素的结果表达  GB 5009.85-2016 食品安全国家标准 食品中维生素B2的测定  实施日期:2017-6-23  替代情况:代替GBT5009.85-2003 《食品中核黄素的测定》、GBT9695.28-2008 《肉与肉制品维生素B2 含量测定》、GBT7629-2008 《谷物中维生素 B2 测定》和 GB5413.12-2010 《婴幼儿食品和乳品中维生素B2的测定》  主要变化:  增加了高效液相色谱法  删除了微生物法  GB 5009.87-2016 食品安全国家标准 食品中磷的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.87-2003 《食品中磷的测定》、GB5413.22-2010 《食品安全国家标准 婴幼儿食品和乳品中磷的测定》、GBT22427.11-2008 《淀粉及其衍生物磷总含量测定》、GBT9695. 4 -2009 《肉与肉制品 总磷含量测定》、GBT18932.11-2002 《蜂蜜中钾、磷、铁、钙、锌、铝、钠、镁、硼、锰、铜、钡、钛、钒、镍、钴、铬含量的测定方法 电感耦合等离子体原子发射光谱(ICP-AES )法》、GBT23375-2009 《蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定》、NYT1018-2006 《蔬菜及其制品中磷的测定》、NYT1738-2009 《农作物及其产品中磷含量的测定 分光光度法》、SNT0446-1995《出口乳制品中磷的检验方法》、SNT0801.2-2011《进出口动植物油脂 第 2 部分:含磷量检测方法》中磷的测定方法。  主要变化:  删除重量法  GB 5009.89-2016 食品安全国家标准 食品中烟酸和烟酰胺的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.89-2003 《食品中烟酸的测定》、 GB5413.15-2010 《婴幼儿食品和乳品种烟酸和烟酰胺的测定》和GBT9695.25-2008 《肉与肉制品 维生素PP含量测定》  主要变化:  调整了试剂顺序和格式  修改并细化了适用于不同食品种类的前处理方法(第一法)  增加了标准溶液浓度校正方法(第二法)  重新评估了检出限,增加了定量限  GB 5009.90-2016 食品安全国家标准 食品中铁的测定  实施日期:2017-6-23  替代情况:代替 GB5413.21-2010 《食品安全国家标准 婴幼儿食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定》、GBT23375-2009 《蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定》、GBT5009.90-2003《食品中铁、镁、锰的测定》、GBT14609-2008 《粮油检测 谷物及其制品中铜、铁、锰、锌、钙、镁的测定火焰原子吸收光谱法》、GBT18932.12-2002 《蜂蜜中钾、钠、钙、镁、锌、铁、铜、锰、铬、铅、镉含量的测定方法 原子吸收光谱法》、GBT9695.3-2009 《肉与肉制品 铁含量测定》、NYT1201-2006 《蔬菜及其制品中铜、铁、锌的测定》中铁含量测定方法  主要变化:  增加了微波消解、压力罐消解和干法消解  增加了电感耦合等离子体发射光谱法  增加了电感耦合等离子体质谱法  删除分光光度法  GB 5009.92-2016 食品安全国家标准 食品中钙的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.92-2003 《食品中钙的测定》、GB5413.21-2010 《食品安全国家标准 婴幼儿食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定》、GBT23375-2009 《蔬菜及其制品中铜、铁、锌、钙、镁、磷的测定》、GBT14609-2008 《粮油检验 谷物及其制品中铜、铁、锰、锌、钙、镁的测定 火焰原子吸收光谱法》、GBT14610- 2008 《粮油检验谷物及制品中钙的测定》、GBT9695.13-2009 《肉与肉制品 钙含量测定》和 NY82.19-1988 《果汁测定方法 钙和镁的测定》中钙的测定方法  主要变化:  增加了微波消解、压力罐消解  修改了火焰原子吸收光谱法和 EDTA 滴定法  增加了电感耦合等离子体发射光谱法  增加了电感耦合等离子体质谱法  GB 5009.96-2016 食品安全国家标准 食品中赭曲霉毒素A的测定  实施日期:2017-6-23  替代情况:代替 GBT23502-2009 《食品中赭曲霉毒素A的测定 免疫亲和层析净化高效液相色谱法》、GBT25220-2010 《粮油检验 粮食中赭曲霉毒素A的测定 高效液相色谱法和荧光光度法》、GBT5009.96-2003 《谷物和大豆中赭曲霉毒素A的测定》、SNT1746-2006 《进出口大豆、油菜籽和食用植物油中赭曲霉毒素A的检验方法》、SNT1940-2007 《进出口食品中赭曲霉毒素A的测定方法》和 SN0211-1993 《出口粮谷中棕曲霉毒素A的检验方法》  主要变化:  增加了第三法免疫亲和层析净化液相色谱 - 串联质谱法和第四法酶联免疫吸附测定法  增加了适用范围并优化了提取方法  删除了免疫亲和柱层析净化荧光光度法  GB 5009.111-2016 食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定  实施日期:2017-6-23  替代情况:代替GB/T5009.111-2003《谷物及其制品中脱氧雪腐镰刀菌烯醇的测定》、GB/T23503-2009《食品中脱氧雪腐镰刀菌烯醇的测定 免疫亲和层析净化高效液相色谱法》、SN/T1571-2005《进出口粮谷中呕吐毒素检验方法 液相色谱法》。  主要变化:  增加了方法的适用范围  增加了食品中脱氧雪腐镰刀菌烯醇乙酰化衍生物的测定  增加了同位素稀释液相色谱-串联质谱法  增加了固相萃取柱净化的前处理方式  增加了免疫亲和柱净化-高效液相色谱法  增加了商业化免疫亲和柱评价技术参数要求  GB 5009.118-2016 食品安全国家标准 食品中T-2毒素的测定  实施日期:2017-6-23  替代情况:代替GBT5009.118-2008《谷物中T-2毒素的测定》、GBT23501-2009《食品中T-2毒素的测定 免疫亲和层析净化高效液相色谱法》、SNT1771-2006《进出口粮谷中T-2毒素的测定免疫亲和柱-液相色谱法》、SNT2676-2010《进出口粮谷中T-2毒素的检测方法 酶联免疫吸附法》  主要变化:  增加了适用范围   增加了直接ELISA 法二。  GB 5009.124-2016 食品安全国家标准 食品中氨基酸的测定  实施日期:2017-6-23  替代情况:代替GBT5009.124-2003《食品中氨基酸的测定》。  主要变化:  扩大了适用范围   增加了方法的检出限和定量限   修改了结果计算的公式。  GB 5009.128-2016 食品安全国家标准 食品中胆固醇的测定  实施日期:2017-6-23  替代情况:代替GBT5009.128-2003《食品中胆固醇的测定》、GBT22220-2008《食品中胆固醇的测定 高效液相色谱法》和GB/T9695.24-2008《肉与肉制品 胆固醇含量测定》。  主要变化:  增加了气相色谱法作为第一法,高效液相色谱法作为第二法 比色法改为第三法  修改了GB/T9695.24—2008气相色谱法的前处理方法中提取溶剂、无水乙醇的添加量和定容体积  GB 5009.137-2016 食品安全国家标准 食品中锑的测定  实施日期:2017-6-23  替代情况:代替GBT5009.137-2003《食品中锑的测定》。  主要变化:  样品前处理增加了压力罐消解法   还原剂增加了硫脲-抗坏血酸。  GB 5009.149-2016 食品安全国家标准 食品中栀子黄的测定  实施日期:2017-6-23  替代情况:代替GB5009.149-2003《食品中栀子黄的测定》。  主要变化:  原标准第一法高效液相色谱法测定栀子苷修改为高效液相色谱法测定藏花素和藏花酸   改进了样品前处理分析方法   扩大了方法适用范围   删除了第二法 薄层色谱法。  GB 5009.150-2016 食品安全国家标准 食品中红曲色素的测定  实施日期:2017-6-23  替代情况:代替GBT5009.150-2003《食品中红曲色素的测定》。  主要变化:  增加了高效液相色谱法测定红曲色素,可准确定量   扩大了方法的适用范围   改进了样品前处理分析方法   删除了薄层色谱法。  GB 5009.154-2016 食品安全国家标准 食品中维生素B6的测定  实施日期:2017-6-23  替代情况:代替GBT5009.154-2003《食品中维生素B6 的测定》、GB5413.13-2010《婴幼儿食品和乳品中维生素B6 的测定》。  主要变化:  增加了高效液相色谱法。  GB 5009.158-2016 食品安全国家标准 食品中维生素K1的测定  实施日期:2017-6-23  替代情况:代替GBT5009.158-2003《蔬菜中维生素K1 的测定》和GB5413.10-2010《婴幼儿食品和乳品中维生素K1 的测定》。  主要变化:  增加了高效液相色谱-荧光检测法   增加了液相色谱-串联质谱法   删除了高效液相色谱-紫外检测法。  GB 5009.168-2016 食品安全国家标准 食品中脂肪酸的测定  实施日期:2017-6-23  替代情况:代替GBT 5009.168-2003《食品中二十碳五烯酸和二十二碳六烯酸的测定》、GBT22223-2008《食品中总脂肪、饱和脂肪(酸)、不饱和脂肪(酸)的测定 水解提取-气相色谱法》、GB5413.27-2010《婴幼儿食品和乳品中脂肪酸的测定》、GBT9695.2-2008《肉与肉制品 脂肪酸测定》、GBT17376-2008《动植物油脂 脂肪酸甲酯制备》、GBT17377-2008《动植物油脂脂肪酸甲酯的气相色谱分析》、SNT2922-2011《出口食品中EPA 和DHA 的测定气相色谱法》、NYT91-1988《油菜籽中油的芥酸的测定 气相色谱法》。  主要变化:  增加了内标法和归一化法  修改了原标准中的色谱柱,将玻璃柱改为毛细管色谱柱  GB 5009.185-2016 食品安全国家标准 食品中展青霉素的测定  实施日期:2017-6-23  替代情况:代替GBT5009.185-2003《苹果和山楂制品中展青霉素的测定》、NYT1650-2008《苹果及山楂制品中展青霉素的测定 高效液相色谱法》、SNT2008-2007《进出口果汁中棒曲霉毒素的检测方法 高效液相色谱法》和SNT2534-2010《进出口水果和蔬菜制品中展青霉素含量检测方法液相色谱-质谱/质谱法与高效液相色谱法》和SNT1859-2007《饮料中棒曲霉素和5-羟甲基糠醛的测定方法 液相色谱-质谱法和气相色谱-质谱法》中展青霉素部分。  主要变化:  增加了同位素稀释-液相色谱-串联质谱法  增加了液相色谱法  扩大了适用范围  删除了薄层色谱法  GB 5009.189-2016 食品安全国家标准 食品中米酵菌酸的测定  实施日期:2017-6-23  替代情况:代替GBT5009.189-2003《银耳中米酵菌酸的测定》。  主要变化:  修改了适用范围  修改了试样制备,增加了固相萃取  增加了高效液相色谱条件  增加了附录A  规定了方法检出限和定量限  删除了薄层色谱法  GB 5009.191-2016 食品安全国家标准 食品中氯丙醇及其脂肪酸酯含量的测定  实施日期:2017-6-23  替代情况:代替GBT5009.191-2006《食品中氯丙醇含量的测定》、GBT18782-2002《调味品中3- 氯-1,2-丙二醇的测定》、SNT0548.1-2002《出口酱油中1,3-二氯-2-丙醇和2,3-二氯-1-丙醇的检验方法》。  主要变化:  第二法增加D5-2-MCPD、D5-2,3-DCP作为内标物质,将净化步骤由手填硅藻土层析柱净化改为硅藻土小柱净化   删除第三法   增加气相色谱-质谱法测定食品中氯丙醇脂肪酸酯含量的检测方法。  GB 5009.208-2016 食品安全国家标准 食品中生物胺的测定  实施日期:2017-6-23  替代情况:代替GBT5009.208-2008《食品中生物胺含量的测定》、GBT20768-2006《鱼和虾中有毒生物胺的测定 液相色谱-紫外检测法》、SNT2209-2008《进出口水产品中有毒生物胺的检测方法高效液相色谱法》,及GBT5009.45-2003《水产品卫生标准的分析方法》中组胺检测部分。  主要变化:  增加了分光光度法  增加了章鱼胺  修改了酒类和醋酱油的测定  修改了流动相和洗脱梯度  修改了样品前处理方法  适用范围删除了乳制品  GB 5009.222-2016 食品安全国家标准 食品中桔青霉素的测定  实施日期:2017-6-23  替代情况:代替GBT5009.222-2008《红曲类产品中桔青霉素的测定》、SNT2426-2010《进出口粮谷中桔霉素含量检测方法 液相色谱法》和SNT2916-2011《出口食品中桔霉素的测定方法 免疫亲和柱净化-高效液相色谱法》。  主要变化:  增加了净化步骤  增加了适用范围  GB 5009.262-2016 食品安全国家标准 食品中溶剂残留量的测定  实施日期:2017-6-23  替代情况:代替 GBT5009.37-2003 《食用植物油卫生标准的分析方法》中“4.8 溶剂残留测定”,GBT5009.117-2003 《食用豆粕卫生标准的分析方法》中“ 6 溶剂残留的测定”   主要变化:  修改了溶剂残留的分析方法  修改了标准曲线的绘制方法  修改了结果的计算公式  GB 5009.263-2016 食品安全国家标准 食品中阿斯巴甜和阿力甜的测定  实施日期:2017-6-23  替代情况:代替 GBT22253-2008 《食品中阿力甜的测定》、GBT22254-2008 《食品中阿斯巴甜的测定》  主要变化:  增加了适用范围  GB 5009.264-2016 食品安全国家标准 食品乙酸苄酯的测定  实施日期:2017-6-23  替代情况:代替 GBT21914-2008 《茶饮料中乙酸苄酯的测定 气相色谱法》  主要变化:  增加了定量限  GB 5009.265-2016 食品安全国家标准 食品中多环芳烃的测定  实施日期:2017-6-23  替代情况:代替GBT5009.48-2003《蒸馏酒与配制酒卫生标准的分析方法》、GBT15038-2006《葡萄酒、果酒通用分析方法》和GBT394.2-2008《酒精通用分析方法》中甲醇的测定方法。  主要变化:  修改了标准的适用范围  修改了气相色谱的测定条件  删除了原标准方法中的比色法。  GB 5009.266-2016 食品安全国家标准 食品中甲醇的测定  实施日期:2017-6-23  替代情况:代替 GB/T5009. 48-2003《蒸馏酒与配制酒卫生标准的分析方法》、 GB/T15038-2006 《葡萄酒、果酒通用分析方法》和 GB/T394.2-2008 《酒精通用分析方法》中甲醇的测定方法  主要变化:  修改了标准的适用范围  修改了气相色谱的测定条件  删除了原标准方法中的比色法  GB 5009.267-2016 食品安全国家标准 食品中碘的测定  实施日期:2017-6-23  替代情况:代替 GB5413.23-2010 《婴幼儿食品和乳品中碘的测定》、SCT3010-2001 《海带中碘含量的测定》、WS302-2008 《食物中碘的测定 砷铈催化分光光度法》  主要变化:  修改了氧化还原滴定法的试样制备和前处理方法   增加了氧化还原滴定法的检出限。  GB 5009.268-2016 食品安全国家标准 食品中多元素的测定  实施日期:2017-6-23  替代情况:代替 GB5413.21-2010 《婴幼儿食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定》的第二法、GBT23545-2009 《白酒中锰的测定 电感耦合等离子体原子发射光谱法》、GBT23374-2009 《食品中铝的测定 电感耦合等离子体质谱法》、GBT18932.11-2002 《蜂蜜中钾、磷、铁、钙、锌、铝、钠、镁、硼、锰、铜、钡、钛、钒、镍、钴、铬含量的测定方法 电感耦合等离子体原子发射光谱(ICP-AES )法》、 SNT0856-2011 《进出口罐头食品中锡的检测方法》的第二法、 SNT2208-2008 《水产品中钠、镁、铝、钙、铬、铁、镍、铜、锌、砷、锶、钼、镉、铅、汞、硒的测定 微波消解-电感耦合等离子体-质谱法》、 SN/T2056-2008 《进出口茶叶中铅、砷、镉、铜、铁含量的测定 电感耦合等离子体原子发射光谱法》、SN/T2049-2008 《进出口食品级磷酸中铜、镍、铅、锰、镉、钛的测定 电感耦合等离子体原子发射光谱法》、SNT2207-2008 《进出口食品添加剂 DL- 酒石酸中砷、钙、铅含量的测定 电感耦合等离子体原子发射光谱法》、NYT1653-2008 《蔬菜、水果及制品中矿质元素的测定 电感耦合等离子体发射光谱法》  主要变化:  增加了电感耦合等离子体质谱法作为第一法  修改电感耦合等离子体发射光谱法作为第二法  修改了适用范围  修改了试样制备部分内容  修改了试样消解部分内容  增加了方法检出限及定量限  GB 5009.269-2016 食品安全国家标准 食品中滑石粉的测定  实施日期:2017-6-23  替代情况:代替 GB/T21913-2008 《食品中滑石粉的测定》  主要变化:  增加了微波消化方法进行试样处理的内容。  GB 5009.270-2016 食品安全国家标准 食品中肌醇的测定  实施日期:2017-6-23  替代情况:代替 GB5413.25-2010《食品安全国家标准 婴幼儿食品和乳品中肌醇的测定》  主要变化:  增加了食品的检出限和定量限   修改了方法的适用范围   修改了试样制备和样品前处理方法   修改了精密度。  GB 5009.271-2016 食品安全国家标准 食品中邻苯二甲酸酯的测定  实施日期:2017-6-23  替代情况:代替 GBT21911-2008《食品中邻苯二甲酸酯的测定》和 SNT3147-2012《出口食品中邻苯二甲酸酯的测定》  主要变化:  增加了邻苯二甲酸二烯丙酯和邻苯二甲酸二异壬酯两种目标化合物  增加了同位素内标法定量作为第一法  修改了前处理方法  修改了方法的检出限  GB 5009.272-2016 食品安全国家标准 食品中磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇的测定  实施日期:2017-6-23  替代情况:代替GBT21493-2008 《大豆磷脂中磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇的测定》和NYT1798-2009《植物油脂中磷脂组分含量的测定 高效液相色谱法》  主要变化:  统一了标准曲线范围。  GB 5009.275-2016 食品安全国家标准 食品中硼酸的测定  实施日期:2017-6-23  替代情况:代替 GBT21918-2008 《食品中硼酸的测定》  主要变化:  删除了第二法 电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法   增加了适用范围   增加了定量限   修改了检验结果表述。  GB 5009.276-2016 食品安全国家标准 食品中葡萄糖酸-δ -内酯的测定  实施日期:2017-6-23  替代情况:代替 GBT9695.17-2008 《肉与肉制品 葡萄糖酸-δ -内酯含量的测定》  主要变化:  增加了第一法的检出限、定量限  修改了 5.1 中试样制备的方法  增加了“第二法 高效液相色谱法”  GB 5009.277-2016 食品安全国家标准 食品中双乙酸钠的测定  实施日期:2017-6-23  替代情况:代替GBT23383-2009 《食品中双乙酸钠的测定 高效液相色谱法》  主要变化  修改了标准的适用范围  GB 5009.278-2016 食品安全国家标准 食品中乙二胺四乙酸的测定  实施日期:2017-6-23  替代情况:代替SNT1018-2001 《出口食品罐头中乙二胺四乙酸含量检验方法》  主要变化:  增加了标准适用范围  增加了复合调味料中乙二胺四乙酸二钠钙的检测方法  GB 5009.279-2016 食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定  实施日期:2017-6-23  替代情况:代替GBT22222-2008 《食品中木糖醇、山梨醇、麦芽糖醇的测定 高效液相色谱法》  主要变化:  修改了样品前处理方法  增加了第二法高效液相色谱 - 蒸发光散射检测法  增加了食品中赤藓糖醇的检测  特定食品理化检测  共发布10项特定食品理化检测,包括乳制品、天然矿泉水、玉米、贝类、水产品等。  GB 5413.30-2016 食品安全国家标准 乳和乳制品杂质度的测定  实施日期:2017-6-23  替代情况:代替 GB5413.30-2010 《食品安全国家标准 乳和乳制品杂质度的测定》  主要变化:  增加了杂质度过滤板技术要求  简化了附录 A 的检验步骤,并将附录中测量杂质损失量修改为测量杂质残留量  将附录 B 中的杂质度参考标准板制作修改为液体乳和乳粉类两种标准板制作方法  重新确定了杂质组成成分及颗粒度的大小。  GB 8538-2016 食品安全国家标准 饮用天然矿泉水检验方法  实施日期:2017-6-23  替代情况:代替 GBT8538-2008《饮用天然矿泉水检验方法》、GBT5009.167-2003《饮用天然矿泉水中氟、氯、溴离子和硝酸根、硫酸根含量的测定》  主要变化:  GB/T8538-2008 中附录 A 饮用天然矿泉水中多种元素的检验方法列入第11项  GB/T8538-2008中附录B硫化物的检验方法列入第50项  GB/T8538-2008中附录B磷酸盐的检验方法列入第51项  GB/T8538-2008中附录B氚的检验方法列入第53项  GB/T8538-2008中4.2采集和保存列入附录B  删除了GB/T8538-2008中附录B菌落总数的检验方法  删除了GB/T8538-2008中4.18.2 锌试剂-环已酮分光光度法  删除了GB/T8538-2008 中 4. 20. 3 催化示波极谱法涉及镉的检测,以及 4. 21. 3 镉的催化示波极谱法  删除了GBT5009. 167-2003 中高效液相色谱法  GB 5009.273-2016 食品安全国家标准 水产品中微囊藻毒素的测定  实施日期:2017-6-23  替代情况:代替 SNT2678-2010《进出口淡水产品中微囊藻毒素的检测方法 酶联免疫吸附法》  主要变化:  增加了液相色谱 - 串联质谱法。  GB 5009.274-2016 食品安全国家标准 水产品中西加毒素的测定  实施日期:2017-6-23  替代情况:代替 SNT3038-2011 《出口海产品中西加毒素的检测 小鼠生物法》和 SNT3869-2014 《出口水产品中雪卡毒素的测定》  主要变化:  保留小鼠生物法为第一法,增加液相色谱 - 串联质谱法为第二法。  GB 5009.198-2016 食品安全国家标准 贝类中失忆性贝类毒素的测定  实施日期:2017-6-23  替代情况:代替GBT5009.198-2003《贝类 记忆丧失性贝类毒素软骨藻酸的测定》、SNT1070-2002《进出口贝类中记忆丧失性贝类毒素检验方法》、SNT1867-2007《进出口贝类中软骨藻酸的检测方法 液相色谱-串联质谱法》、SNT2663-2010《贝类中失忆性贝类毒素检验方法 酶联免疫吸附法》。  主要变化:  修改了固相萃取条件  改变了流动相  增加了酶联免疫吸附法  增加了液相色谱-串联质谱法  GB 5009.261-2016 食品安全国家标准 贝类中神经性贝类毒素的测定  实施日期:2017-6-23  替代情况:代替SNT1573-2013 《出口贝类中神经性贝类毒素检验方法 小鼠生物法》  GB 5009.209-2016 食品安全国家标准 食品中玉米赤霉烯酮的测定  实施日期:2017-6-23  替代情况:代替GBT5009.209-2008《谷物中玉米赤霉烯酮的测定》、GBT23504-2009《食品中玉米赤霉烯酮的测定 免疫亲和层析净化高效液相色谱法》、GBT21982-2008《动物源食品中玉米赤霉醇、β -玉米赤霉醇、α -玉米赤霉烯醇、β -玉米赤霉烯醇、玉米赤霉酮和玉米赤霉烯酮残留量检测方法 液相色谱-质谱/质谱法》、SNT1745-2006《进出口大豆、油菜籽和食用植物油中玉米赤霉烯酮的检验方法》、SNT1772-2006《进出口粮谷中玉米赤霉烯酮的测定 免疫亲和柱-液相色谱法》。  主要变化:  增加了适用范围  增加了荧光光度法作为第二法  增加了固相萃取柱净化液相色谱-质谱法作为第三法  GB 5009.212-2016 食品安全国家标准 贝类中腹泻性贝类毒素的测定  实施日期:2017-6-23  替代情况:代替GBT5009.212-2008《贝类中腹泻性贝类毒素的测定》、SCT3024-2004《腹泻性贝类毒素的测定 生物法》、SNT2269-2009《进出口贝肉中大田软海绵酸的检测 液相色谱-串联质谱法》、SNT2131.2-2010《进出口贝类腹泻性贝类毒素检验方法 第2 部分:小鼠生物法》、SNT1996-2007《贝类中腹泻性贝类毒素检验方法 酶联免疫吸附法》、SNT2131.1-2008《进出口贝类腹泻性贝类毒素检测方法 第1部分:荧光磷酸酶抑制法》。  主要变化:  增加了酶联免疫吸附法  增加了液相色谱-串联质谱法  GB 5009.213-2016 食品安全国家标准 贝类中麻痹性贝类毒素的测定  实施日期:2017-6-23  替代情况:代替GBT5009.213-2008《贝类中麻痹性贝类毒素的测定》、GBT23215-2008《贝类中多种麻痹性贝类毒素含量的测定 液相色谱-荧光检测法》、SCT3023-2004《麻痹性贝类毒素的测定生物法》、SN0352-1995《出口贝类麻痹性贝类毒素检验方法》、SNT1735-2006《进出口贝类产品中麻痹性贝类毒素检验方法 高效液相色谱法》和SNT1773-2006《进出口贝类中麻痹性贝类毒素检验方法 酶联免疫吸附试验法》。  主要变化:  增加了酶联免疫吸附法  增加了液相色谱-串联质谱法  GB 5009.206-2016 食品安全国家标准 水产品中河豚毒素的测定  实施日期:2017-6-23  替代情况:代替GBT23217-2008《水产品中河豚毒素的测定 液相色谱-荧光检测法》、GBT5009.206-2007《鲜河豚鱼中河豚毒素的测定》和SNT1569.2-2013《出口河豚鱼中河豚毒素检测方法 第2部分:小鼠生物法》。  主要变化:  增加了净化步骤  修改了酶联免疫吸附法  辐照食品鉴定   GB 21926-2016 食品安全国家标准 含脂类辐照食品鉴定 2-十二烷基环丁酮的气相色谱-质谱分析法  实施日期:2017-6-23  替代情况:代替GBT21926-2008《辐照含脂食品中2-十二烷基环丁酮测定 气相色谱/质谱法》。  主要变化:  改进了硅胶柱层析法。  GB 31642-2016 食品安全国家标准 辐照食品鉴定 电子自旋共振波谱法  实施日期:2017-6-23  替代情况:代替NYT1573-2007《辐照含骨类动物源性食品的鉴定-ESR法》、NYT2211-2012《含纤维素辐照食品鉴定 电子自旋共振法》和SNT2910.1-2011《出口辐照食品检测方法 第1部分:电子自旋共振波谱法》。  主要变化:  增加了“电子自旋共振”和“电子自旋共振波谱”的科学定义  优化了“电子自旋共振波谱仪”的使用条件  GB 31643-2016 食品安全国家标准 含硅酸盐辐照食品的鉴定 热释光法  实施日期:2017-6-23  替代情况:代替NYT1207-2006《辐照香辛料及脱水蔬菜热释光鉴定方法》和NYT1390-2007《辐照新鲜水果、蔬菜热释光鉴定方法》。  主要变化:  增加了“热释光”科学定义  增加了样品前处理和热释光测量过程的注解  GB 23748-2016 食品安全国家标准 辐照食品鉴定 筛选法  实施日期:2017-6-23  替代情况:代替GBT23748-2009《辐照食品的鉴定 DNA 彗星试验法 筛选法》、NYT2214-2012《辐照食品鉴定 光释光法》和SNT2910.2-2011《出口辐照食品的鉴别方法 第2部分:单细胞凝胶电泳法》。  主要变化:  增加了两种筛选方法:光释光法和微生物学筛选法  增加了DNA 彗星试验法的限制性说明
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 食药监总局颁布104项医疗器械行业标准
    近日,国家食品药品监督管理总局颁布了《金属双翼阴道扩张器》等104项医疗器械行业标准(其中强制性标准31项,推荐性标准73项)和《硅橡胶外科植入物通用要求》等两项医疗器械行业标准修改单,这是总局成立以来第一次颁布医疗器械标准。  与以往相比,这次颁布的标准首次在公告中标明了标准适用条件和基本情况简介等,使公告的内容更加充实,便于更快捷地掌握标准的概况和应用范围。关于批准发布YY0006-2013《金属双翼阴道扩张器》等104项医疗器械行业标准的公告  YY0006-2013《金属双翼阴道扩张器》等104项医疗器械行业标准已经审定通过,现予以公布,自2014年10月1日起实施。其标准编号、名称、适用范围如下:  一、强制性行业标准(共31项)  (一)YY0006-2013《金属双翼阴道扩张器》  本标准适用于金属双翼阴道扩张器,该产品供妇产科扩张阴道、检查子宫颈、冲洗阴道和一般手术用。本标准规定了金属双翼阴道扩张器的结构型式、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准不适用于一次性使用的阴道扩张器。  (二)YY0045-2013《普通产床》  本标准适用于普通产床,该产品供一般妇产科手术、检查用。本标准规定了普通产床的型式与基本尺寸、要求、试验方法、检验规则、标志、使用说明书、包装、运输和贮存。  (三)YY0091-2013《子宫颈扩张器》  本标准适用于子宫颈扩张器,该产品供妇产科扩张子宫颈口用。本标准规定了子宫颈扩张器的结构型式与材料、技术要求、试验方法、检验规则、标志、包装、运输和贮存。本标准不适用于一次性子宫颈扩张器。  (四)YY0092-2013《子宫颈活体取样钳》  本标准适用于供咬切宫颈组织作病理切片用的子宫颈活体取样钳。本标准规定了子宫颈活体取样钳的结构型式与材料、要求、试验方法、检验规则、标志、包装、运输和贮存。  (五)YY0109-2013《医用超声雾化器》  本标准适用于利用超声波对液态药物进行雾化的医用超声雾化器,该产品主要供吸入治疗,也可用于环境的空气加湿。本标准规定了医用超声雾化器的技术要求、试验方法、检验规则、标志和使用说明书。  (六)YY0154-2013《压力蒸汽灭菌设备用弹簧全启式安全阀》  本标准适用于整定压力不大于0.4MPa,公称通径大于或等于8mm的压力蒸汽灭菌设备用弹簧全启式安全阀。该安全阀供设计压力不大于0.4MPa,灭菌温度在115℃~150℃范围内的压力蒸汽灭菌设备使用。本标准规定了压力蒸汽灭菌设备用弹簧全启式安全阀的术语和定义、分类和标记、要求、试验方法、检验规则、标志、使用说明书、包装、运输、贮存和供货。  (七)YY0336-2013《一次性使用无菌阴道扩张器》  本标准适用于一次性使用的无菌阴道扩张器,该产品供妇产科检查用。本标准不适用于手术用的阴道扩张器。本标准规定了一次性使用无菌阴道扩张器产品的结构型式与基本尺寸、要求、试验方法、检验规则、标志、包装、使用说明书、运输、贮存和灭菌失效期的要求。  (八)YY0570-2013《医用电气设备第2部分:手术台安全专用要求》  本标准规定了用于常规、外科/医疗过程的患者支撑台即手术台的安全要求。无论这种手术台是否具有电气部件,包括传动装置。传动装置是指在载有或不载有患者的情况下,预期用于移动手术台面的运动装置。手术台面可相对于手术台底座(或基座)运动,也可连同底座一起运动。这种传动装置用于带有可拆卸台面的手术台的台面相对于手术台底部(或基座)的传动。本标准不适用于患者牙科椅、检查椅和沙发、诊断和治疗设备的患者支撑系统、手术台加热毯、患者转移设备、输送台和床、病床、野外手术台。  (九)YY0571-2013《医用电气设备第2部分:医院电动床安全专用要求》  本标准规定了预期用于医疗监护下成年患者的诊断、治疗或监护的医院电动床及附件的安全要求。本标准不适用于患者牙科椅、检查椅和沙发、诊断和治疗设备的患者支撑系统、手术台加热毯、患者转移设备、输送台和床、病床、野外手术台。  (十)YY0600.4-2013《医用呼吸机基本安全和主要性能专用要求第4部分人工复苏器》  本标准规定了适用于所有年龄段的便携式的人工复苏器(通常称为简易呼吸器、简易呼吸球)的专用要求,用于为呼吸不充分人员提供肺通气。对于婴儿、儿童用人工复苏器则根据体重范围和其对应的大致年龄来标识。本标准不适用于电动复苏器、气动复苏器。  (十一)YY0635.1-2013《吸入式麻醉系统第1部分:麻醉呼吸系统》  本标准适用于由制造商提供或组装的,或由用户在制造商的指导下装配的麻醉呼吸系统,也包含对循环吸收组件、排气阀、吸入和呼出阀的要求,及在一些设计中组成吸入式麻醉系统的麻醉呼吸系统部件的要求。  (十二)YY0637-2013《医用电气设备放射治疗计划系统的安全要求》  本标准适用于放射治疗计划系统的设计、制造、安装和使用等方面。  (十三)YY0875-2013《直线型吻合器及组件》  本标准适用于消化道重建、脏器切除手术中缝合组织器官的残端和切口的直线型吻合器及组件。  (十四)YY0876-2013《直线型切割吻合器及组件》  本标准适用于消化道重建、脏器切除手术中吻合、离断和切除组织器官的直线型切割吻合器及组件。  (十五)YY0877-2013《荷包缝合针》  本标准适用于供消化道手术或痔疮手术时作荷包成型用的荷包缝合针。  (十六)YY0881-2013《一次性使用植入式给药装置专用针》  本标准规定了一次性使用植入式给药装置专用针(包括输液针和注射针)的要求,以保证与植入式给药装置和输注装置相适应。本标准为专用针所用材料的性能及其质量规范提供了指南。本标准不涉及专用针防针刺安全要求。本标准的第3章至第8章中8.1和8.3给出了专用针的质量规范。  (十七)YY0885-2013《医用电气设备第2部分:动态心电图系统安全和基本性能专用要求》  本标准规定了适用于由动态记录仪和回放设备组成(两者均可包括分析功能)的动态心电图系统的专用安全要求。能连续分析心电图、提供连续或者部分记录的设备或系统,均适用于本标准的安全要求。无论设备或系统是否具有完整的重新分析功能,记录单元和分析单元是否独立,记录和分析是否能够同时进行,设备后系统采用何种存储媒介,均在本标准的范围内。由GB10793-2000《医用电气设备第2部分:心电图机安全专用要求》和GB9706.25-2005《医用电气设备第2-27部分:心电监护设备安全专用要求》所覆盖的医用电气设备以及不能对心电图进行连续记录和分析的设备不在本标准的范围内。  (十八)YY0893-2013《医用气体混合器独立气体混合器》  本标准规定了预期连接到医用气体供应系统的医用独立气体混合器的要求。  (十九)YY0896-2013《医用电气设备第2部分:肌电及诱发反应设备安全专用要求》  本标准规定了用于侦测和分析与神经和肌肉活动(该神经和肌肉活动可能是自发的,也可能由电或其他刺激激发)相关的生物电势的医用电气设备的安全专用要求 规定了用于侦测和分析诱发刺激(刺激可能是电击、触碰、听觉、视觉、嗅觉等)产生的生物电势的医用电气设备的安全专用要求。  (二十)YY0897-2013《耳鼻喉射频消融设备》  本标准适用于包括相关附件在内,预期利用耳鼻喉射频消融电极将频率为200kHz~5MHz的射频能量传递到耳鼻喉部位的粘膜下靶组织,对其进行消融治疗的耳鼻喉射频消融设备。本标准不适用于高频电灼设备。  (二十一)YY0898-2013《毫米波治疗设备》  本标准适用于利用30GHz~300GHz(波长1mm~10mm)频段的电磁波,通过辐射照射方式,以非热效应治疗疾病的毫米波治疗设备。  (二十二)YY0899-2013《医用微波设备附件的通用要求》  本标准适用于为完成治疗目的,与医用微波设备配合使用的附件,通常包括输出线缆、转接器、辐射器、热凝器、穿刺测温针等。  (二十三)YY0900-2013《减重步行训练台》  本标准适用于由减重吊架和步行训练台组成的医用电力传动康复设备。减重吊架用于辅助患者减轻部分体重的装置,主要由悬吊带和支架组成 步行训练台为患者进行步行训练的辅助装置,通常由电力驱动工作。  (二十四)YY0901-2013《紫外治疗设备》  本标准适用于在医疗实践中利用有效波长在200nm~400nm的紫外线〔通常情况下,紫外线分为以下三个波段:UVA(400nm~320nm)、UVB(320nm~275nm)、UVC(275nm~200nm)〕对人体进行照射治疗的紫外治疗设备。本标准不适用于仅用于照射器械和材料的紫外消毒或杀菌设备、光固化机、紫外激光设备、紫外光敏治疗设备、紫外血液内照射设备。  (二十五)YY0902-2013《接触式远红外理疗设备》  本标准适用于将波长在3&mu m~25&mu m的红外光谱区的能量,通过工作面对患者相关病症进行物理治疗的设备。本标准不适用于辐照方式治疗的远红外设备。  (二十六)YY0903-2013《脑电生物反馈仪》  本标准适用于脑电生物反馈仪,该产品为由视听信息刺激和激发患者产生脑波信息,并依据脑波信息产生新的视听信息刺激患者,如此循环,以调节改善患者的大脑机能达到辅助治疗目的的仪器。  (二十七)YY0904-2013《电池供电骨组织手术设备》  本标准适用于由电池供电,提供机械动力实施骨组织手术的医疗器械。本标准不适用于气动装置的骨组织手术设备、网电源供电的骨组织手术设备、牙科的同类设备。  (二十八)YY0970-2013《含动物源材料的一次性使用医疗器械的灭菌液体灭菌剂灭菌的确认与常规控制》  本标准规定了使用液体化学灭菌剂对全部或部分含有动物源性材料的一次性使用医疗器械灭菌的开发、确认、过程控制和监视的要求。本标准不适用于人体来源的材料。本标准不涉及用于控制整个生产阶段的质量保证体系、病毒灭活确认的方法。本标准不包括医疗器械中灭菌剂残留量的水平。  (二十九)YY1023-2013《子宫颈钳》  本标准适用于子宫颈钳,该产品供妇产科手术时牵拉固定子宫颈用。本标准规定了子宫颈钳的结构型式、技术要求、试验方法、检验规则、标志、包装、运输和贮存等要求。  (三十)YY1024-2013《输卵管提取钩》  本标准适用于供妇科施行结扎输卵管手术时作提取输卵管用的输卵管提取钩。本标准规定了输卵管提取钩的结构型式及材料、要求、试验方法、检验规则、标志、包装、运输和贮存。  (三十一)YY1139-2013《心电诊断设备》  本标准适用于以下心电诊断设备:(1)直接记录的心电图机 (2)用在其他医疗设备(如患者监护仪、除颤仪、压力测试设备)中的心电图机,只要这些设备具有心电图诊断功能 (3)心电图机能通过电缆、电话、遥测或存储媒介显示远程的患者信号,只要这些设备具有心电图诊断功能。这些设备遵守整个系统的输出-输入关系的功能方面的性能要求。  二、推荐性行业标准(共73项)  (一)YY/T0073-2013《泪囊牵开器》  本标准适用于泪囊手术时牵开切口软组织暴露泪囊用的泪囊牵开器。本标准规定了泪囊牵开器的型式和材料、要求、试验方法、标志、包装、运输和贮存等要求。  (二)YY/T0077-2013《喉钳通用技术条件》  本标准适用于喉部钳取、咬切组织或异物用的喉钳类产品。  (三)YY/T0093-2013《医用诊断X射线影像增强器》  本标准适用于标称入射视野为15cm(6in)、23cm(9in)、30cm(12in)、33cm(13in)和40cm(16in)的装有图像缩小型X射线影像增强管的增强器,包括单视野及多重视野。该类产品主要用于与医用诊断X射线设备的配套使用,实现图像的转换。本标准规定了医用诊断X射线影像增强器的要求、试验方法、检验规则、标志、使用说明书、包装、运输和贮存。本标准不适用于平板型或其他类型的增强器。  (四)YY/T0094-2013《医用诊断X射线透视荧光屏》  本标准适用于将医用X射线转换成可见光的荧光屏。本标准规定了医用诊断X射线透视荧光屏的术语、要求、试验方法、检验规则、标志、标签、使用说明书、包装、运输和贮存。  (五)YY/T0095-2013《钨酸钙中速医用增感屏》  本标准适用于X射线摄影中使用的增感屏。本标准规定了钨酸钙中速医用增感屏的术语、要求、试验方法、检验规则、标志、标签、使用说明书、包装、运输和贮存。  (六)YY/T0157-2013《压力蒸汽设备用弹簧式放气阀》  本标准适用于设定压力不大于0.4MPa,公称通径大于或等于8mm的压力蒸汽灭菌设备用弹簧式放汽阀,该放汽阀供设计压力不大于0.4MPa,灭菌温度在115℃~150℃范围内的蒸汽灭菌设备使用。本标准规定了压力蒸汽灭菌设备用弹簧式放汽阀的分类和标记、要求、试验方法、检验规则、标志、使用说明书、包装、运输和贮存。  (七)YY/T0158-2013《压力蒸汽灭菌设备用密封垫圈》  本标准适用于设计压力不大于0.4MPa,设计温度在115℃~150℃范围内的压力蒸汽灭菌设备用密封垫圈。本标准规定了压力蒸汽灭菌设备用密封垫圈的分类、要求、试验方法、检验规则、标志、使用说明书、包装、运输和贮存。  (八)YY/T0180-2013《眼睑拉钩》  本标准适用于眼科检查时作拉开眼睑之用的眼睑拉钩。本标准规定了眼睑拉钩的型式和材料、要求、试验方法、标志、包装、运输和贮存等要求。  (九)YY/T0181-2013《输卵管提取板》  本标准适用于供妇产科施行结扎手术时作提取输卵管用的输卵管提取板。本标准规定了输卵管提取板的结构形式与材料、要求、试验方法、检验规则、标志、包装、运输和贮存。  (十)YY/T0182-2013《宫内节育器取出钩》  本标准适用于宫内节育器取出钩,该产品供妇产科取出宫内节育器(环)之用。本标准规定了宫内节育器取出钩的结构型式、要求、试验方法、检验规则、标志、使用说明书、包装、运输和贮存等要求。  (十一)YY/T0183-2013《宫内节育器放置叉》  本标准适用于宫内节育器放置叉,该产品供妇产科放置&Omicron 形、宫腔形及类似的宫内节育器和校正节育器位置之用。本标准规定了宫内节育器放置叉的结构形式、要求、试验方法、检验规则、标志、使用说明书、包装、运输和贮存。本标准不适用于一次性宫内节育器放置叉。  (十二)YY/T0296-2013《一次性使用注射针识别色标》  本标准规定了公称外径从0.3mm~3.4mm的一次性使用注射针识别用色标,适用于正常壁、薄壁和超薄壁的针以及不透明颜色和半透明颜色。  (十三)YY/T0567.1-2013《医疗保健产品的无菌加工第1部分:通用要求》  本标准规定了关于经过无菌加工的医疗保健产品的制造过程的开发、确认和日常控制的流程、程序和执行步骤的一般要求以及指南。本标准涵盖关于整个无菌加工的总体要求和指南。其他部分则规定了关于过滤、冻干、在线清洗、在线灭菌和隔离系统的各种专用/专门流程和方法的特定要求及准则。  (十四)YY/T0608-2013《医用X射线影像增强器电视系统通用技术条件》  本标准适用于采用医用X射线影像增强器的用于X射线透视的医用X射线影像增强器电视系统。本标准规定了医用X射线影像增强器电视系统有关的术语和定义、要求及试验方法。  (十五)YY/T0865.3-2013《超声水听器第3部分:40MHz以下超声场用水听器的特性》  本标准适用于采用压电敏感元件,设计用于测量超声设备产生的脉冲和连续波超声场的水听器、用于在水中进行测量的水听器、配接或未配接前置放大器的水听器。本标准规定了相关的水听器特性要求。  (十六)YY/T0869-2013《医疗器械不良事件类型和原因的编码结构》  本标准规定了描述医疗器械不良事件的编码结构的要求。本编码预期为医疗器械用户、制造商和管理当局使用。  (十七)YY/T0870.1-2013《医疗器械遗传毒性试验第1部分:细菌回复突变试验》  本标准规定了医疗器械/材料细菌回复突变试验方法。本标准推荐使用平板掺入法。  (十八)YY/T0870.2-2013《医疗器械遗传毒性试验第2部分:体外哺乳动物染色体畸变试验》  本标准规定了医疗器械/材料体外哺乳动物细胞染色体畸变试验方法。  (十九)YY/T0870.3-2013《医疗器械遗传毒性试验第3部分:用小鼠淋巴瘤细胞进行的体外哺乳动物细胞基因突变试验》  本标准规定了使用小鼠淋巴瘤细胞株(L5178YTK+/-3.7.2C)进行医疗器械/材料体外哺乳动物细胞基因突变试验的方法。本标准推荐的试验方法为微孔板法。  (二十)YY/T0871-2013《眼科光学接触镜多患者试戴接触镜的卫生处理》  本标准为接触镜制造商提供了指南,以便制造商撰写相关信息并提供给眼睛护理专业人员对多患者试戴的软性和硬性透气性(RGP)接触镜进行卫生处理。  (二十一)YY/T0872-2013《输尿管支架试验方法》  本标准规定了评价其两端带固定装置的一次性使用输尿管支架特性的仲裁试验方法,这些支架为短期应用于将尿液从肾脏引流至膀胱。这类支架的直径通常为3.7Fr~14.0Fr,长度为8㎝~30㎝,由硅橡胶、聚氨酯和其他聚合物制成,分非无菌供应医院灭菌后使用,和无菌供应一次性使用两种供应形式。该产品会有长期留置(超过30天)的情况,但并不常见,本标准不适用于长期留置的输尿管支架,也不适用于非输尿管应用(如肾造口术和回肠造口术)的输尿管支架。由于医院的灭菌设备、灭菌过程对支架特性产生的影响存在差异性,所以本标准也不适用于非无菌输尿管支架。  (二十二)YY/T0873.1-2013《牙科旋转器械的数字编码系统第1部分:一般特征》  本标准用于阐明牙科旋转器械及其附件的数字编码系统,并就其解释和用法给予说明。  (二十三)YY/T0874-2013《牙科学旋转器械试验方法》  本标准规定了牙科旋转器械例如车针、切盘、抛光器械、金刚石器械和研磨器械的尺寸特征、颈部强度以及表面粗糙度的测量方法。本标准未包括牙科用旋转器械所使用材料特性的测试方法,本标准不适用于牙根管器械。  (二十四)YY/T0878.1-2013《医疗器械补体激活试验第1部分血清全补体激活》  本标准给出了医疗器械体外全补体激活作用的试验方法,本方法适用于固态样品。本标准中,&ldquo 血清&rdquo 和&ldquo 补体&rdquo 可通用,意指将血清用作补体来源。本标准中未涉及单一补体成分的功能、修饰或消耗以及来源于血浆的补体。  (二十五)YY/T0879.1-2013《医疗器械致敏反应试验第1部分小鼠局部淋巴结试验(LLNA)放射性同位素掺入法》  本标准给出了医疗器械/材料致敏试验的检测方法。本标准预期为豚鼠致敏试验提供一个替代性方法,尤其适用于只接触完好皮肤的医疗器械/材料。然而,当评定金属材料或用于深部组织或损伤表面医疗器械产品/材料的致敏反应时,仍然推荐使用豚鼠致敏试验。本标准只适用于能浸入皮肤的低分子量化学物,该吸收的化学物或代谢物可结合于大分子物质,如蛋白质以形成免疫原性复合物。  (二十六)YY/T0880-2013《一次性使用乳腺定位丝及其导引针》  本标准规定了一次性使用乳腺定位丝及其导引针的要求。本标准不适用于可自动操作的乳腺定位装置以及可以重新收回和重新定位的乳腺定位丝。  (二十七)YY/T0882-2013《麻醉和呼吸设备与氧气的兼容性》  本标准适用于麻醉和呼吸设备,如医用气体管道系统、减压器、终端、医用供应单元、挠性连接、流量计装置、麻醉工作站和呼吸机。  (二十八)YY/T0883-2013《蒸汽渗透测试用过程挑战装置及指示物系统》  本标准规定了带有真空阶段(预真空)的蒸汽灭菌器进行蒸汽渗透测试用的过程挑战装置及指示物系统的技术要求,并规定了与技术要求相对应的试验方法。本标准所指的蒸汽渗透测试是基于GB8599-2008和YY0646-2008的规定。本标准适用的过程挑战装置及指示物系统包括多孔负载过程挑战装置及指示物系统和空腔负载过程挑战装置及指示物系统。  (二十九)YY/T0884-2013《适用于辐射灭菌的医疗保健产品的材料评价》  本标准提供了评价医疗保健产品(包括包装)的组成材料,包括高分子材料、金属、陶瓷/玻璃及其他材料对辐射灭菌加工的适宜性的程序和信息,为选择和鉴定医疗保健产品和包装的材料提供指南。  (三十)YY/T0886-2013《一次性使用宫内节育器放置器通用要求》  本标准适用于含铜宫内节育器配套使用的放置器。本标准规定了宫内节育器放置器的术语与定义、结构型式、要求、试验方法、检验规则、包装和标志。本标准不适用于校正宫内节育器的位置或其他用途或型式的宫内节育器放置器。  (三十一)YY/T0887-2013《放射性粒籽植入治疗计划系统剂量计算要求和试验方法》  本标准适用于放射性粒籽植入治疗计划系统的剂量计算。本标准规定了放射性粒籽植入治疗计划系统的剂量计算要求和试验方法。  (三十二)YY/T0888-2013《放射治疗设备中X射线图像引导装置的成像剂量》  本标准适用于放射治疗设备中X射线图像引导装置。本标准规定了放射治疗设备中X射线图像引导装置的成像剂量试验方法和对随机文件的要求。  (三十三)YY/T0889-2013《调强放射治疗计划系统性能和试验方法》  本标准适用于具有高能X射束剂量计算功能的调强放射治疗计划系统。该系统用于设计患者的调强放射治疗计划。本标准规定了调强放射治疗计划系统的术语、定义、性能要求和试验方法。如果系统具有调强放射治疗外其他放射治疗技术的计划设计功能,还应符合相应的标准。  (三十四)YY/T0890-2013《放射治疗中电子射野成像装置性能和试验方法》  本标准适用于放射治疗中以医用电子加速器的辐射束作为辐射源的电子射野成像装置。本标准规定了电子射野成像装置的性能要求和试验方法。  (三十五)YY/T0891-2013《血管造影高压注射装置专用技术条件》  本标准适用于血管造影高压注射装置。本标准规定了血管造影高压注射装置术语与定义、组成、要求和试验方法。  (三十六)YY/T0892-2013《医用诊断X射线管组件泄漏辐射测试方法》  本标准适用于非电容放电式高压发生装置中管组件加载状态下泄漏辐射的测试。本标准规定了医用诊断X射线管组件泄漏辐射测试的术语和定义、测试方法。  (三十七)YY/T0894-2013《医用电气设备近距离放射治疗用剂量仪器基于井型电离室的仪器》  本标准规定了井型电离室及配套测量组件的性能和某些结构要求,用于测定一个量,如对给定类型的源进行适当校准后,用于近距离放射治疗光子的辐射场中的空气比释动能率强度或参考空气比释动能率,或者光子和&beta 辐射场中在某一深度处水吸收剂量。  (三十八)YY/T0895-2013《放射治疗计划系统的调试典型外照射治疗技术的测试》  本标准适用于放射治疗计划系统(以下简称RTPS)在投入临床使用前对外照射高能光子束治疗技术的调试测试。本标准规定了RTPS调试中典型的外照射治疗技术的测试方法。  (三十九)YY/T0905.2-2013《牙科学场地设备第2部分:压缩机系统》  本标准适用于牙科空气压缩机系统。本标准给出了用于向牙科治疗机、牙科器械和牙科技工室提供压缩空气源的压缩机单元的性能和试验方法。压缩机单元包括压缩机头、空气储气罐、空气干燥器系统、冷凝水阀门、压力开关、阀门、管道、配件。本标准还给出牙科用空气、配件、管路和阀门等压缩机单元的使用环境规范管理指南。本标准仅适用于压缩空气主管路连接点以前的部分。  (四十)YY/T0906-2013《B型超声诊断设备性能试验方法配接腔内探头》  本标准适用于超声标称频率在1.5MHz~15.0MHz范围内,配接腔内探头的B型超声诊断设备。本标准规定了配接腔内探头B型超声诊断设备的术语和定义、测试条件以及试验方法。  (四十一)YY/T0907-2013《医用无针注射器-要求与试验方法》  本标准适用于在临床和相关医疗环境下的患者个人使用的一次或多次使用的无针注射器的安全、性能和试验要求。  (四十二)YY/T0908-2013《一次性使用注射用过滤器》  本标准适用于一次性使用注射用过滤器(以下简称过滤器),过滤器与注射器具配套使用,应用于临床治疗中肌肉注射、静脉注射药物,以及向液体瓶内添加药物等,用于过滤药液中的不溶性微粒。本标准规定了一次性使用注射用过滤器的分类和标记、材料、物理要求、化学要求、生物要求、标志和包装。  (四十三)YY/T0909-2013《一次性使用低阻力注射器》  本标准适用于麻醉穿刺包的器械配套使用或高粘度药物注射的手动注射器。本标准规定了一次性使用低阻力注射器的定义、术语、要求、试验方法、包装、标识。  (四十四)YY/T0910.1-2013《医用电气设备医用影像显示系统第1部分:评价方法》  本标准适用于可以以灰阶值在彩色或灰阶影像显示系统〔如阴极射线管(CRT)显示器、平板显示器、投影系统〕上显示单色影像信息的医用影像显示系统。本标准适用于用于诊断(为做出临床诊断进行的医学影像解释)或观察(出于医学目的观察医学影像而不是提供医学影像解释)目的的医用影像显示系统,因此对影像质量有特殊的要求。本标准描述了用于测试医用影像显示系统的试验方法。本标准的范围单指可以用目视判断或者使用普通试验设备的试验方法。借助这些设备可以进行的更先进的或者更量化的影像显示系统测量方法超出了本标准的范围。头部固定的影像显示系统和用于确定定位的影像显示系统及用于操作这些系统的影像显示系统不包含在本标准范围内。本标准不包括定义验收试验及稳定性试验的要求或者稳定性试验频率的要求。  (四十五)YY/T0969-2013《一次性使用医用口罩》  本标准适用于覆盖使用者的口、鼻及下颌,用于普通医疗环境中佩戴、阻隔口腔和鼻腔呼出或喷出污染物的一次性使用口罩。本标准不适用于医用防护口罩、医用外科口罩。本标准规定了一次性使用医用口罩的技术要求、试验方法、标志、使用说明书、包装、运输和贮存。  (四十六)YY/T1014-2013《牙探针》  本标准规定了牙探针的尺寸、性能要求和试验方法。  (四十七)YY/T1142-2013《医用超声设备与探头频率特性的测试方法》  本标准适用于工作在连续波、准连续波或脉冲波状态的各类医用超声设备与探头。本标准规定了频率范围在0.5MHz~15MHz内的医用超声设备与探头频率特性的测试方法与相关参数的计算方法。  (四十八)YY/T1196-2013《氯测定试剂盒(酶法)》  本标准适用于氯(CL)测定试剂盒(酶法)的质量控制。本标准规定了试剂盒的技术要求,包括方法学原理、要求、试验方法、标签、使用说明、包装、运输和贮存。  (四十九)YY/T1197-2013《丙氨酸氨基转移酶(ALT)测定试剂盒(IFCC法)》  本标准适用于丙氨酸氨基转移酶(ALT)测定试剂盒(IFCC法)的质量控制,该产品用于体外定量测定人体血清或血浆中丙氨酸氨基转移酶的活性。本标准适用于医学实验室进行丙氨酸氨基转移酶(ALT)项目定量检验所使用的体外诊断试剂(盒)。本标准规定了试剂盒的技术要求,包括术语和定义、分类和命名、要求、试验方法、标签、使用说明、包装、运输和贮存。  (五十)YY/T1198-2013《天门冬氨酸氨基转移酶测定试剂盒(IFCC法)》  本标准适用于天门冬氨酸氨基转移酶(AST)测定试剂盒(IFCC法)的质量控制,该产品用于体外定量测定人体血清或血浆中天门冬氨酸氨基转移酶的活性。本标准适用于医学实验室进行天门冬氨酸氨基转移酶(AST)项目定量检验所使用的体外诊断试剂(盒)。本标准规定了试剂盒的技术要求,包括术语和定义、分类和命名、要求、试验方法、标签、使用说明、包装、运输和贮存。  (五十一)YY/T1199-2013《甘油三酯测定试剂盒(酶法)》  本标准适用于甘油三酯(TG)试剂盒(酶法)的质量控制,该产品用于体外定量测定人体血清或血浆中甘油三酯(TG)的活性。本标准适用于医学实验室进行甘油三酯(TG)试剂盒项目定量检验所使用的体外诊断试剂(盒)。本标准规定了试剂盒的技术要求,包括术语和定义、分类和命名、要求、试验方法、标签、使用说明、包装、运输和贮存。   (五十二)YY/T1200-2013《葡萄糖测定试剂盒(酶法)》  本标准适用于葡萄糖试剂盒(酶法),该试剂盒在临床检验中用于定量分析血清、血浆、尿液、脑脊液等体液中的葡萄糖浓度。本标准规定了试剂盒的技术要求,包括术语和定义、分类和命名、要求、试验方法、标签、使用说明、包装、运输和贮存。  (五十三)YY/T1201-2013《尿素测定试剂盒(酶偶联监测法)》  本标准适用于尿素氮(BUN)测定试剂盒(酶偶联监测法)的质量控制。本标准规定了试剂盒的技术要求。  (五十四)YY/T1202-2013《钾测定试剂盒(酶法)》  本标准适用于钾(K)测定试剂盒(酶法)的质量控制,该产品用于体外定量测定人体血清或血浆中钾的活性。本标准适用于医学实验室进行钾项目定量检验所使用的体外诊断试剂(盒)。本标准规定了试剂盒的技术要求,包括术语和定义、分类和命名、要求、试验方法、标签、使用说明、包装、运输和贮存。  (五十五)YY/T1203-2013《钠测定试剂盒(酶法)》  本标准适用于钠(Na)测定试剂盒(酶法)的质量控制。本标准规定了试剂盒的技术要求,包括方法学原理、要求、试验方法、标签、使用说明、包装、运输和贮存。  (五十六)YY/T1204-2013《总胆汁酸测定试剂盒(酶循环法)》  本标准适用于总胆汁酸测定试剂盒(酶循环法)的质量控制,该产品用于体外定量测定人体血清或血浆中总胆汁酸量。本标准适用于医学实验室进行总胆汁酸项目定量检验所使用的体外诊断试剂(盒)。本标准规定了试剂盒的技术要求,包括术语和定义、分类和命名、要求、试验方法、标签、使用说明、包装、运输和贮存。  (五十七)YY/T1205-2013《总胆红素测定试剂盒(钒酸盐氧化法)》  本标准规定了总胆红素试剂盒(钒酸盐氧化法)的技术要求,包括方法学原理、要求、试验方法、标签、使用说明、包装、运输和贮存。本标准适用于总胆红素试剂盒(钒酸盐氧化法)的质量控制。  (五十八)YY/T1206-2013《总胆固醇测定试剂盒(氧化酶法)》  本标准规定了总胆固醇测定试剂盒(氧化酶法)的技术要求,包括术语和定义、分类和命名、要求、试验方法、标签、使用说明、包装、运输和贮存。本标准适用于医学实验室定量检验所使用的单试剂或双试剂的液体型总胆固醇测定试剂盒(氧化酶法)的质量控制,该产品用于体外定量测定人体血清或血浆中总胆固醇的量。  (五十九)YY/T1207-2013《尿酸测定试剂盒(尿酸酶过氧化物酶偶联法)》  本标准规定了尿酸测定试剂盒(尿酸酶过氧化物酶偶联法)的技术要求,包括要求、试验方法、标签、使用说明、包装、运输和贮存。本标准适用于尿酸测定试剂盒(尿酸酶过氧化物酶偶联法)的质量控制,该产品用于体外定量测定人体血清中的尿酸含量。  (六十)YY/T1208-2013《硫代硫酸盐-柠檬酸盐-胆盐-蔗糖(TCBS)琼脂培养基》  本标准规定了TCBS琼脂培养基的质量指标、检验方法、使用说明、标志、标签、包装、运输和贮存。本标准适用于TCBS琼脂培养基,用于弧菌的分离。  (六十一)YY/T1209-2013《BCYE琼脂培养基》  本标准规定了BCYE琼脂培养基的质量指标、检验方法、使用说明、标志、标签、包装、运输和贮存。本标准适用于BCYE琼脂培养基,用于军团菌属细菌的分离培养。  (六十二)YY/T1210-2013《麦康凯山梨醇琼脂培养基》  本标准规定了麦康凯山梨醇琼脂培养基的质量指标、检验方法、使用说明、标志、标签、包装、运输和贮存。本标准适用于麦康凯山梨醇琼脂培养基,用于肠出血性大肠埃希菌(EHEC)O157:H7的分离。  (六十三)YY/T1211-2013《甘露醇高盐琼脂培养基》  本标准规定了甘露醇高盐琼脂培养基的质量指标、检验方法、使用说明、标志、标签、包装、运输和贮存。本标准适用于甘露醇高盐琼脂培养基,主要用于金黄色葡萄球菌的分离。  (六十四)YY/T1212-2013《庆大霉素琼脂基础培养基》  本标准规定了庆大霉素琼脂基础培养基的质量指标、检验方法、使用说明、标志、标签、包装、运输和贮存。本标准适用于庆大霉素琼脂基础培养基,用于霍乱弧菌的分离。  (六十五)YY/T1213-2013《促卵泡生成素定量标记免疫分析试剂盒》  本标准适用于促卵泡生成素定量标记免疫分析试剂盒,包括酶标记、化学发光标记、时间分辨荧光标记等。  (六十六)YY/T1214-2013《人绒毛膜促性腺激素定量标记免疫分析试剂盒》  本标准适用于人绒毛膜促性腺激素定量标记免疫分析试剂盒,包括酶标记、化学发光标记、时间分辨荧光标记等。  (六十七)YY/T1215-2013《丙型肝炎病毒(HCV)抗体检测试剂盒(胶体金法)》  本标准适用于丙型肝炎病毒(HCV)抗体检测试剂盒(胶体金法、胶体硒法、胶乳法等快速检测试纸条试剂盒)。该试剂盒用于定性检测人全血、血清或血浆中的丙型肝炎病毒(HCV)抗体,临床上用于辅助诊断丙型肝炎病毒感染。     (六十八)YY/T1216-2013《甲胎蛋白定量标记免疫分析试剂盒》  本标准适用于进行甲胎蛋白定量测定的标记免疫分析试剂盒,包括以酶标记、化学发光标记、时间分辩荧光标记等标记方法为捕获抗体,以微孔板、管、磁颗粒、微珠和塑料珠等为载体包被抗体,定量测定甲胎蛋白的免疫分析测定试剂盒。  (六十九)YY/T1217-2013《促黄体生成素定量标记免疫分析试剂盒》  本标准适用于促黄体生成素定量标记免疫分析试剂盒,包括酶标记、化学发光标记、时间分辨荧光标记等。  (七十)YY/T1218-2013《促甲状腺素定量标记免疫分析试剂盒》  本标准适用于促甲状腺素定量标记免疫分析试剂盒,包括酶标记、化学发光标记、时间分辨荧光标记等。  (七十一)YY/T1219-2013《胰酪胨大豆肉汤培养基》  本标准规定了胰酪胨大豆肉汤培养基的配方、要求、试验方法、标识、标签、使用说明书、包装、运输和贮存。本标准适用于胰酪胨大豆肉汤培养基,用于普通需氧菌、苛养菌和真菌的培养。  (七十二)YY/T1220-2013《肌酸激酶同工酶(CK-MB)诊断试剂(盒)(胶体金法)》  本标准规定了肌酸激酶同工酶(CK-MB)诊断试剂(盒)(胶体金法)的术语和定义、技术要求、试验方法、检验和判定、标识、标签、使用说明书、包装、运输和贮存。本标准适用于肌酸激酶同工酶(CK-MB)诊断试剂(盒)(胶体金法)。该试剂用于体外定性检测人血清或血浆中肌酸激酶同工酶(CK-MB)的活性。  (七十三)YY/T1221-2013《心肌肌钙蛋白1诊断试剂(盒)(胶体金法)》  本标准规定了心肌肌钙蛋白I(cTnI)诊断试剂(盒)(胶体金法)的术语和定义、技术要求、试验方法、检验和判定、标识、标签、使用说明书、包装、运输和贮存。本标准适用于心肌肌钙蛋白I(cTnI)诊断试剂(盒)(胶体金法)。该试剂用于定性检测人血清或血浆中的cTnI,临床上用于急性心肌梗塞(AMI)和不稳定心绞痛(UA)等病情监测和治疗预后的辅助诊断。  特此公告。  国家食品药品监督管理总局  2013年10月21日
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制