混凝土裂缝测深仪测试原理

仪器信息网混凝土裂缝测深仪测试原理专题为您提供2024年最新混凝土裂缝测深仪测试原理价格报价、厂家品牌的相关信息, 包括混凝土裂缝测深仪测试原理参数、型号等,不管是国产,还是进口品牌的混凝土裂缝测深仪测试原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合混凝土裂缝测深仪测试原理相关的耗材配件、试剂标物,还有混凝土裂缝测深仪测试原理相关的最新资讯、资料,以及混凝土裂缝测深仪测试原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

混凝土裂缝测深仪测试原理相关的仪器

  • HYLF-1裂缝宽度深度测试仪 裂缝综合测试仪 裂缝宽度深度测定仪 裂缝测宽测深仪HYLF-1混凝土裂缝宽度深度测试仪主要用于桥梁、隧道、混凝土路面等裂缝宽度、深度的精确检测。用户可以利用超声探头对裂缝深度进行测量。HYLF-1混凝土裂缝宽度深度测试仪测量宽度时程序自动扫描、捕获裂缝并在显示屏上实时显示裂缝的宽度数值,也可以对需要的裂缝进行拍照(裂缝照片中同时保存裂缝图像、宽度数据、刻度尺等图像信息),裂缝照片直接存储到PDA中,方便用户进一步的图像分析或打印存档。技术参数硬件平台:4.3寸真彩色触摸屏,wince正版系统裂缝宽度测量范围:0-8mm裂缝宽度精度:0.01mm裂缝深度测量范围:≤650mm裂缝深度精度:≤±10%存储容量大:可存储10 万个裂缝测点数据仪器供电:可充电式锂电池工作温度:-10℃~+50℃工作湿度:≤90%RH主机尺寸:230x158x50mm主机重量:≈660g
    留言咨询
  • 一、裂缝深度标准试块用途JJF 1334-2012混凝土裂缝宽度测量仪校准块用于测量深度(20~100)mm的混凝土裂缝深度测量仪的校准。混凝土裂缝深度测量仪标准块又名裂缝深度试块是用来校准裂缝测深仪用的,是按照国家校准规范严格定制,试块是采用高级精品混凝土经过多道工序精良制作而成,试块裂缝深度有20mm、30mm、50mm、70mm、100mm等,也可以按照客户要求精心定制。二、技术参数材质:C30、C35混凝土
    留言咨询
  • 混凝土裂缝深度检测仪TST-LF610的适用范围和特点: 适用范围 适用于混凝土或其他非金属表面裂缝深度的测试,也可以检测超声波在混凝土或其他非金属材料内的传播速度。符合标准 CECS 21:2000《超声法检测混凝土缺陷技术规程》 DB11/T637-2015《房屋结构安全鉴定标准》 GB50292-2015《民用建筑可靠性鉴定标准》产品特点 现场测试简单、快速、不需要人工判读声参量,直接显示裂缝深度; 测试速度快,精度高,误差≤5mm或实际缝深的2%-10%; 测试深度深:测试深度≤500mm; 全中文操作菜单:集测试、存储、查询和删除于一体; 功能强大的数据分析处理软件,提供WORD和EXCEL数据格式,方便用户数据分析; 锂电池供电,续航时间长,方便现场检测 专用刻度尺:仪器配备了专用的刻度尺,轻便实用,提高了测试效率;深度测试范围 ≤650mm 测试误差 ≤5mm或实际裂缝深度的2%~10% 传输方式USB数据存储量6000组测试数据供电方式锂电池主机尺寸23.5cm*14cm*5cm
    留言咨询

混凝土裂缝测深仪测试原理相关的方案

混凝土裂缝测深仪测试原理相关的论坛

  • 混凝土公路设计中的热膨胀系数

    混凝土公路设计中的热膨胀系数

    [color=#990000]摘要:本文编译自美国交通部联邦公路管理局的技术简报,该技术简报描述了混凝土的热膨胀系数(CTE),其在混凝土路面行为中的作用,以及如何确定混凝土路面设计和分析目的的建议。讨论了“力学-经验路面设计指南”中混凝土路面性能预测模型的敏感性。描述了用于确定或估算CTE的实验室测试和其他方法,并总结了来自“长期路面性能”对路面部分的岩心所进行CTE的实验室测试结果,提供实用的指导路线来确定或估算CTE,并在设计和建造混凝土路面时考虑CTE对混凝土板对温度变化响应的影响。[/color][color=#990000]关键词:热膨胀系数,混凝土测试,混凝土公路设计,力学-经验路面设计指南[/color][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#990000]1. 引言[/color][/b]  混凝土在温度升高时膨胀,在温度降低时收缩。衡量温度变化对混凝土体积变化的影响称为混凝土的热膨胀系数(CTE),定义为温度变化一度时单位长度变化量。混凝土路面混合物的CTE取决于骨料类型和饱和度。  由于粗骨料占混凝土体积的大部分,因此对混凝土CTE影响最大的因素是粗骨料的CTE。混凝土路面施工中常用的粗骨料类型中石英的CTE最高,其他常用粗骨料类型的CTE在很大程度上取决于其石英含量。根据所用骨料类型,混凝土CTE的典型值如表8-1所示。[align=center][color=#990000]表8-1 混凝土骨料类型的热膨胀系数(CTE)(LTPP标准日期版本25.0)[/color][/align][align=center][img=混凝土骨料类型的热膨胀系数,800,448]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251803468244_6004_3384_3.png!w900x505.jpg[/img][/align]备注1. 在LTPP标准数据25.0版本(2011年1月)中共提供了2991个CTE数据,由于骨料类型没有定义或主要骨料类型只提供了一个样品,其中628个数据无法使用,另外11个CTE异常数据并未包含在此数据表中。 粗骨料对CTE值的影响最大,但细骨料也是一个影响因素。天然砂通常含有高二氧化硅(高CTE),而制造的碎石灰石细骨料的CTE则较低。  水泥浆的CTE对水分含量非常敏感,但由于粗骨料的影响减弱使得混凝土的CTE较低(Powers和Brownyard,1947;Yeon等人,2009)。混凝土的CTE在相对湿度约70%时最高,当混凝土完全饱和时CTE会降低20~25%(美国陆军COE 1981)。[b][color=#990000]2. CTE如何影响混凝土路面行为变化[/color][/b]  混凝土响应温度变化时在体积上的改变是混凝土路面多种行为的起因,混凝土路面中每天和季节性温度循环变化导致衔接和裂缝的循环打开和关闭。为了使横向开裂最小化,使用具有高CTE的混凝土构造的连接路面可能需要比具有较低CTE的混凝土路面更短的接缝间距,这将增加初始建造的成本。  在白天,当混凝土路面的顶部比路面的底部更热时,混凝土将在路面的顶部膨胀而不是在底部。如果不限制这种不同的变形(通过横向接头处的销钉、纵向接头处的连杆或两者,以及路面自身的重量),则路面将向下卷曲。另一方面,如果沿着路面边缘限制路面的白天向下卷曲,结果将造成混凝土和销钉之间的支撑应力更高。  同样,在夜间,当混凝土路面顶部冷比路面底部更冷时,混凝土将在路面顶部收缩而不是在底部收缩。如果这种差异变形不受限制(通过横向接头处的销钉,纵向接头处的连杆或两者),则路面将向上卷曲。另一方面,如果沿着路面边缘限制路面的夜间向上卷曲,则结果将是混凝土和销钉之间的支撑应力更高。  如果路面下方的基层足够柔软,则路面可以向上或向下卷曲,并且仍然与路面中间的基层和沿其边缘保持完全接触,如果路面平坦且与基层完全接触,则由交通车辆载荷引起的应力将不会差别很大。然而,如果路面下方的基层足够坚硬,且当路面响应深度方向温度梯度而向上或向下卷曲时,一部分路面会卷曲而不与基层接触,由交通车辆载荷对路面引起的应力将大于路面平坦且与基层完全接触时的情况。这种向上卷曲在夜间尤其是一个问题,当路面边缘和拐角处的支撑减少将导致交通车辆荷载下边缘和拐角处的应力增加。  混凝土的CTE对连续钢筋混凝土路面(CRCP)的性能也有影响。CRCP中的钢含量设计为可以达到相当均匀的裂缝间距,并且是在约1~2米范围内。裂缝间距太短可能会增加冲孔的可能性,裂缝间隔过长可能会增加钢材断裂的可能性。如果混凝土的CTE高于钢设计中的假定(或隐含值),则可能无法实现所希望的裂缝间距和均匀性。因此,在设计阶段确定混凝土CTE(基于过去的经验或新测试)、调整设计以达到所需的性能水平并要求在施工期间验证CTE值就变得非常重要。[color=#990000][b]3. 热膨胀系数测试方法[/b][/color]  确定混凝土CTE的AASHTO测试方法是T 336-11。该实验室测试包括测量直径为10 mm的饱和混凝土芯材或圆柱体的长度变化,同时温度从10℃升至50℃然后将温度降低到10℃。混凝土样品和测量装置完全浸泡在水浴中以在测试期间保持混凝土的饱和度,虽然100%饱和度混凝土的CTE不如水分含量稍低时CTE,但实验室测试是在饱和样品上进行以便控制水分含量。来自两家供应商的CTE测试设备和安装在CTE测试设备中的混凝土样品如图8-1所示。[align=center][img=测试设备测量混凝土的CTE,900,298]https://ng1.17img.cn/bbsfiles/images/2019/03/201903251806355253_264_3384_3.png!w900x298.jpg[/img][/align][color=#990000][/color][align=center][color=#990000]图8-1 在FHWA混凝土实验室使用的测试设备测量混凝土的CTE[/color][/align]  在进行膨胀(加热)和收缩(冷却)段期间的测量时,需要对测量进行调整以考虑温度变化对测试设备本身的影响,通过计算两个测试段中每度温度变化的样品长度变化,并除以样品长度得到混凝土的CTE。必要时重复测试过程,直到在膨胀段和收缩段测试的CTE值相差在每度每百万分之0.3之内。然后将混凝土的CTE计算值确定为获得的两个连续CTE值的平均值,一个来自测试的膨胀段,一个来自测试的收缩段。  美国陆军工程兵团有一个类似的测试方法来确定混凝土的CTE(美国陆军COE 1981),该测试方法CRD-C 39-81指出测试在5~60℃的温度范围内进行。工程兵团测试方法指出,当混凝土试样的长度变化仅在两个温度点之间进行测量时,应报告单个CTE值,但是当在一系列不同温度下进行长度变化测量时,应给出CTE与温度的关系曲线,并应说明不同温度区间的CTE计算值。[b][color=#990000]4. 力学-经验公路设计指南推荐的测定热膨胀系数[/color][/b]  对于1级设计:此级别需要输入最高精度且被认为适用于最重要项目。力学-经验路面设计指南(MEPDG)建议对混凝土样品进行实验室测试以确定CTE(AASHTO 2008)。  许多国家已开始使用其典型骨料来描述其典型的普通水泥混凝土混合物,并将这些CTE值存储在数据库中。他们将根据项目位置将这些值用作CTE输入。通过定义,这些值不是1级输入,但它们是比2级或3级输入更真实的输入。  对于2级设计:此级别被认为适用于常规、实际项目。MEPDG建议将混凝土CTE估算为骨料和水泥浆的CTE值的平均值,相对于它们在混合物中的体积比例。  对于3级设计:此级别是需要输入精度最低的级别。MEPDG允许使用典型的CTE值。要使用的值应该是要在项目中使用的骨料类型制作的混凝土的典型值。表 81提供了从“长期路面性能(LTPP)”项目中实验室对芯材测试获得的混凝土CTE范围,应该注意的是,这些值是基于来自美国和加拿大的骨料。根据矿物的不同,这些CTE值可能在不同地区有显著差异。  MEPDG(ARA-ERES 2004)基于未校正的LTPP CTE数据和其他来源(Mindess和Young 1981 Kosmatka等2002 Jahangirnejad等2008 )还提供了不同类型骨料典型混凝土CTE信息。[b][color=#990000]5. CTE如何影响MEPDG的性能预测[/color][/b]  MEPDG将CTE确定为混凝土材料关键响应计算所需的输入参数之一,混凝土的CTE值对路面开裂的预测具有显著影响,并且在较小程度上对MEPDG的连接断裂具有影响(Malella等人,2005)。这两种危害都在MEPDG对路面不平整度预测中起着作用,较高的CTE值对应于更大的路面开裂预测量、更大的连接断裂和更大的路面不平整度。[b][color=#990000]6. CTE测试和MEPDG危害模型[/color][/b]  JCP新的力学-经验路面设计指南(MEPDG)模型是使用LTPP数据库开发的,使用的LTPP数据参数之一是混凝土CTE。由于发现用于原始混凝土路面危害模型开发的混凝土CTE数据是错误的(Crawford等人2010),当时使用的是AASHTO TP 60-00(AASHTO 2005)测试方法,使用此方法导致CTE测量值偏高。对于用于校准CTE测试框架的304不锈钢校准样品,TP 60试验方法推荐值为17.3×10-6/℃,但根据ASTM E 228测定的304不锈钢试样的CTE为15.0×10-6/℃,使用这些错误的CTE数据对于混凝土而言造成实际使用的混凝土CTE相同比例的偏低。  用于校准CTE测试框架的不锈钢校准样品CTE测试方法已在新的AASHTO T 336标准方法(AASHTO 2011; Tanesi等人2010)中得到颁布,使用新的测试方法测定的CTE值低于使用TP 60-00测试方法测定的CTE值。LTPP标准数据版本24.0及更高版本中的CTE值已经过校正,以符合T 336测试方法,并且是表8-1中报告的方法。  截至2011年8月,混凝土路面危害模型已纳入最近发布的(2011年7月)DARWin-ME?软件(包含MEPDG版本1.1危害模型),此版本软件是基于使用TP 60-00测试方法确定的CTE值。因此,建议Darwin ME用户使用未经修正的CTE值,如AASHTO于2008年出版的“力学-经验路面设计指南:实践手册”(临时版)表11-5中所列数据,或使用根据TP 60-00测试方法确定的CTE数据。如果使用T 336标准确定可用的CTE数据,则应调整CTE值以与DARWin-ME一起使用,方法是将校准棒假定的CTE(17.3×10-6/℃)与ASTM E 228测量304不锈钢校准样品的CTE值之间的差值相加,差值约为1.5×10-6/℃。[b][color=#990000]7. 推荐[/color][/b]  MEPDG提供了量化混凝土CTE对JCP和CRCP预测性能影响的机会,MEPDG对JCP路面裂缝的预测对所输入的CTE敏感,在较小程度上,MEPDG对连接断裂的预测也是如此。这两种危害都在MEPDG对路面不平整度的预测中起着作用。  鉴于MEPDG的几个混凝土路面危害模型对混凝土CTE输入的敏感性,对于1级设计,应通过对具有相同骨料类型和混合设计以及应用在路面结构中的圆柱体样品进行测试来确定CTE(使用AASHTO T 336-11测试方法)。  对于3级设计,应使用表8-1中提供的数据。这些数据是对LTPP混凝土路面的数百个芯材进行实验室测试后获得的平均CTE值,也是几个来源报告中的混凝土CTE的典型中间值。  如上所述,重要的是如果使用DARWin-ME软件(包含MEPDG 1.1版危害模型),如果使用AASHTO T 336方法确定这些值,则应对CTE值进行调整,否则直接使用表8-1中的CTE值。  [b][color=#990000]8. 参考文献[/color][/b]  American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” T 336-11, Washington, DC, 2011.   American Association of State Highway and Transportation Of?cials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, Interim Edition, Washington, DC, 2008, p. 120.   American Association of State Highway and Transportation Of?cials (AASHTO), “Standard Method of Test for Coef?cient of Thermal Expansion of Hydraulic Cement Concrete,” TP 60-00, Washington, DC, 2005.   ARA-ERES, Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37a, Final Report, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 2004.   Crawford, G., J. Gudimettla, and J. Tanesi, “Inter- laboratory Study on Measuring Coef?cient of Thermal Expansion of Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington, DC, January 2010.   Jahangirnejad, S., N. Buch, and A. Kravchenko, “A Laboratory Investigation of the Effects of Aggregate Geology and Sample Age on the Coef?cient of Thermal Expansion of Portland Cement Concrete,” presented at the Annual Meeting of the Transportation Research Board, Washington DC, January 2008.   Kosmatka, S. H., B. Kerkhoff, and W. C. Panerese, Design and Control of Concrete Mixtures, Engineering Bulletin EB001, 14th ed., Portland Cement Association, Skokie, IL, 2002.   Malella, J., A. Abbas, T. Harman, C. Rao, R. Liu, and M. I. Darter, “Measurement and Signi?cance of the Coef?cient of Thermal Expansion of Concrete in Rigid Pavement Design,” Transportation Research Record: Journal of the Transportation Research Board, No. 1919, 2005, pp. 38-46.   Mindess, S., and J. F. Young, Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ, 1981.   Powers, T. C., and T. L. Brownyard, “Studies of the Physical Properties of Hardened Cement Paste,” Proceedings of the American Concrete Institute, Vol. 43, 1947, p. 988.   Tanesi, J., G. L. Crawford, M. Nicolaescu, R. Meininger, and J. M. Gudimettla et al., “New AASHTO T336-09 Coef?cient of Thermal Expansion Test Method: How Will It Affect You?” in Transportation Research Record: Journal of the Transportation Research Board, No. 2164, pp. 52-57, 2010.   U.S. Army Corps of Engineers, “Test Method for Coef?cient of Linear Thermal Expansion of Concrete,” CRD-C 39-81, issued 1 June 1981.  Yeon, J. H., S. Choi, and M. C. Won. “Effect of Relative Humidity on Coef?cient of Thermal Expansion of Hardened Cement Paste and Concrete,” Transportation Research Record: Journal of the Transportation Research Board, No. 2113, 2009, pp. 83-91.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创】混凝土强度测试仪

    测试混凝土强度的新标准成熟度和导电率测试法全自动模式测试通过互联网和SMS,使得任何情况下测试数据都是可用的优点:更高效、简单和便宜系统非常简单:传感器测试温度和电导率,然后把测试的数据存储到数据箱中。在数据箱中,是一个GSM,通过GPRS可以很规律的将测试数据传输到中心服务器上。在该服务器上,运行软件,用户键入这些数据和一些项目数据,同时计算混凝土的强度值,当然所有的操作都进行存储。按下按钮,即可完成项目报告,并可以打印或是以电子文本的形式进行储存和传送。测试的数据也可以以Excel表格的形式或一个XML文件的形式进行下载,用于后续的处理。如果没有互联网怎么办?不需要:例如:当达到某一强度值,或发送一个SMS信息,同时包含有强度值是,该服务器还可以发送SMS给主管或其他相关人员。该系统计算强度的方式有两种:已知成熟度的情况下和已知电导率的情况。通过这种方式,可以确定最佳的混凝土强度值。系统是如何工作的?每个用户拥有自己的网页,可以安全的登录。在该网页上,他可以看到所有的他的项目以及测试点。网页和所有用户的数据都存储在荷兰最大的最安全的数据中心服务器上。数据服务器上有永久的数据备份。在项目开始时,用户登录到网站上,准备一个项目以及命名需要测试的点。键入使用的混凝土的很多的细节(包括C值),和使用的数据箱的数目。在建筑工地现场,对于每个测试点,一同安装数据箱和传感器。一旦打开数据箱,它将通过GPRS与服务器进行联通。配有的数据箱以及传感器,就可以测试混凝土的温度和电导率,在给定的时间,通过GPRS把数据传输到服务器上。数据箱中的温度值和电池的状态也一起传输。在服务器上,用户可以看到所有他的项目和测试点,并且可以追踪强度的发展情况。如果需要自动的发送强度数据SMS信息的话,在现场,也可以发送信息到相关人员。当测试已完成,数据箱已拆除,重新加载到下一个项目。传感器仍保留在混凝土中,以便可用来后期的进一步测试。快问快答:我的项目数据是否安全?  是安全的,用户名和密码仅仅可用于安全服务器。数据存储在多个计算机中心,对最佳的方式,并对数据进行永久的备份。在混凝土中,可在任何深度进行测试?  是的,测试可在任何深度进行。是否一个数据箱可连接几个传感器?  为了阻止长期在建筑施工现场弯曲存在的缺点和风险,一个传感器可连接到每个数据箱。但是如果有相对有利的价格,这个都不是问题。强度是如何确定的?  按照加权成熟度的方法来确定混凝土的强度。此外,也可以使用电导率。在未来可能使用这种方法较多。

  • 美国重大事故——美国混凝土热膨胀系数测试方法重大错误的验证和分析

    [color=#cc0000]摘要:针对路面混凝土热膨胀系数(CTE)测试,国内外普遍使用的测试方法AASHTO TP60因被发现由重大错误,后经过重大修改并由AASHTO T336所替代。本文将回顾发现AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[/color][color=#cc0000][/color][color=#cc0000]关键词:热膨胀系数,混凝土,路面混凝土设计,测试方法[/color][color=#cc0000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 引言[/b][/color]  随着我国基础建设的飞速发展,越来越多的公路路面采用了水泥混凝土,这主要是因为水泥混凝土具有高强度和高稳定性等优点,但路面板边缘过早破坏、面板开裂、横缝错台等危害一直困扰着道路工程界。大量研究发现混凝土的热膨胀系数(CTE)是影响路面水平裂缝以及其它危害发生的主要原因,CTE越大,路面越容易出现开裂和疲劳破坏。在近些几年中对CTE测试的兴趣显著增加,因为它被认为是用于混凝土路面设计最重要的输入参数之一。  有多种测试方法可用于测定混凝土的CTE,文献做了详细的综述介绍。纵观各种混凝土CTE测试方法,最广泛使用的是AASHTO TP60,它是所有混凝土CTE测试的基础,AASHTO TP60测试方法广泛使用的另外一个原因是其测量装置也可以被其它测试方法使用。  TP60的测量原理非常简单,它测量垂直放置在金属框架内的饱和混凝土样品的长度变化,该金属框架受特定温度变化的影响。控温水浴用于改变测试方法规定的温度范围,通过测量已知CTE的校准样品长度变化来消除框架的变形影响。  对于任何材料性能测试方法和测量装置的测量准确性考核和评价,一般都采用以下几种方式:  (1)测试可计量溯源的标准参考材料,测试结果与标准值比较;  (2)测试经更高等级测试设备验证过的参考材料,测试结果与参考值比较;  (3)多个实验室不同测试设备之间的比对测试。  美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)为了评估AASHTO TP60测试方法的准确性,采用了上述第二种方式,选择了几种参考材料并经第三方实验室采用更高等级的测试设备对参考材料CTE进行测量。在此评价过程中发现了使用了近十多年之久的AASHTO TP60存在着重大错误,并及时做出了修改,从而推出了新的测试方法AASHTO T336,但以往错误所带来的影响和后果非常严重,造成大面积的数据库和设计软件的修改等。  本文将回顾发现混凝土CTE测试方法AASHTO TP60中重大错误的整个过程,指出在制订TP60测试方法过程中存在的问题,提醒国内混凝土CTE测试机构和相关单位及时更改测试方法和相关设计数据,并对新的AASHTO T336测试方法提出进一步完善的建议,并为今后高温和低温环境下的混凝土热膨胀系数测试提供借鉴。[b][color=#cc0000]2. 参考材料[/color][/b]  为了评估AASHTO TP60测试方法和相应测试设备测量精度和测量重复性,以及实验室间的比对测试,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)准备了三种参考材料,这三种参考材料的CTE值范围基本都在TFHRC先前测试过的混凝土样品范围内。三种参考材料如下:  (1)氧化铝陶瓷:根据文献其CTE为5.5×10-6/℃。这种氧化铝陶瓷一种多孔陶瓷,在测试之前需要饱和。  (2)钛合金(Ti-6Al-4V):根据文献其CTE为9.2×10-6/℃。  (3)410不锈钢:根据文献其CTE为10.5×10-6/℃。[b][color=#cc0000]3. 参考材料热膨胀系数测试[/color][/b]  美国TFHRC首先使用自己实验室的两台不同的混凝土热膨胀系数测试设备,按照TP60方法对上述三种参考材料进行了测试,测试结果如表3-1所示。[align=center][color=#cc0000]表3-1 参考材料文献值和不同测试方法(AASHTO TP60和ASTM E228)结果[/color][/align][align=center][img=,600,324]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292225403071_943_3384_3.png!w900x487.jpg[/img][/align]  从表3-1可以看出,针对氧化铝陶瓷、钛合金和410不锈钢三种参考材料,采用AASHTO TP60测试方法测量得到的CTE值与文献报道值并不一致,它们普遍比文献值高约1×10-6/℃。  当发现测量值与文献值之间存在较大差异后,TFHRC首先认为造成这种差异的可能原因是氧化铝素瓷、钛合金和410不锈钢这些参考材料与文献报道的材料并不完全相同,或者在测试期间位移探测器(LVDT)受温度或湿气(或两者)变化的影响。[b][color=#cc0000]4. 第三方实验室测试[/color][/b]  上述三种参考材料测试结果与文献值的较大差异使得TFHRC决定选择独立的第三方实验室对CTE测试进行验证,参考样品被送到专门从事航天工业金属CTE测试的实验室进行了测试,测试按照ASTM E228测试方法(顶杆法)的修改版进行,以适应高度180mm、直径80mm或100mm样品和TP60中相同的温度范围10~50℃。除了发送新获得的参考材料外,用于校准FHWA手动测量装置和两台商业测量装置的几个304不锈钢校准样品也被送到此第三方实验室进行测试验证。  在ASTM E228测试方法中,顶杆法热膨胀仪用于测量线性热膨胀。测量样品和已知标准参考材料之间作为温度函数的膨胀差异,样品的膨胀是根据这种膨胀差异和标准膨胀来计算的。  表3-1显示了CTE文献值和TFHRC及第三方独立实验室获得的测量结果。可以看出,按照TP60在TFHRC获得的CTE结果远高于按照ASTM E228在第三方实验室的测量结果。按照TP60规定,三种304不锈钢校准样品(SS743、M1和M2)设定的热膨胀系数都为17.3×10-6/℃,所以采用TP60方法测试得到的CTE结果也都为17.3×10-6/℃。  从表3-1可以看出,根据TP60获得的结果远高于根据ASTM E228获得的结果。此外,除了304不锈钢校准样品外,第三方实验室报告的结果与文献值基本一致。而对于所有304不锈钢校准样品,第三方实验室报告的CTE测试结果都要明显低于17.3×10-6/℃。[b][color=#cc0000]5. 对比分析[/color][/b]  通过上述第三方实验室的对比测量,TFHRC终于认识到出现TP60测试结果较高的原因是:304不锈钢校准样品的CTE值可能在测试温度范围内设定(或选择)的并不正确。当发现这个灾难性的可能原因后,TFHRC感觉到了事态的严重性,这是因为无论是定制装置还是商用测量装置,所有执行AASHTO TP60和类似测试方法的实验室所使用的304不锈钢校准样品CTE值均为17.3×10-6/℃,如果发生错误则会带来大范围的影响。  根据TP60,如果用作校正系数所输入的304不锈钢校准样品CTE值不正确,则所测试材料的CTE值也不正确。作为验证,TFHRC使用了第三方CTE测试结果15.8×10-6/℃作为304不锈钢校准样品的CTE作为新的校正因子。使用新的校正因子,TFHRC重新计算了表3-1中报告的CTE,如表5-1所示。[align=center][color=#cc0000]表5-1 第三方实验室和TFHRC的CTE测量值比较,假设校准样品有两个CTE值[/color][/align][align=center][color=#cc0000][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292227254161_5379_3384_3.png!w900x289.jpg[/img][/color][/align]  从表5-1可以看出,当使用TP60建议的304不锈钢CTE默认值来计算校正系数时,氧化铝陶瓷、钛合金和410不锈钢的CTE高于预期,但是当使用由第三方实验室测量确定的304不锈钢CTE值计算校正系数时,获得的氧化铝陶瓷、钛合金和410不锈钢的CTE更接近预期值,与预期值的差异并不是由于温度或湿度变化对LVDT读数的影响。相反,这种较大差异主要是由于使用304不锈钢校准样品的不适当CTE值作为输入来计算校正因子,从而导致测量参考材料CTE的错误。[b][color=#cc0000]6. 第三方实验室再次测试[/color][/b]  为了进一步确认304不锈钢校准样品的CTE,TFHRC将校准样品送到另一家第三方独立实验室进行测试。由于发现此实验室虽然可以采用ASTM E228进行CTE 测量,但无法对高180mm、直径80mm或100mm的样品进行测量,因此送到此第二家第三方实验室的较小尺寸样品是将先前发送到第一家第三方实验室的样品进行了切短,切短后的样品尺寸约为51×51×6mm。该实验室在比以前实验室更宽的温度范围内(-40~300℃)测量了304不锈钢校准样品的CTE,结果如表6-1所示。[align=center][color=#cc0000]表6-1 两家第三方实验室的CTE测试结果比较(测试方法ASTM E228)[/color][/align][align=center][img=,600,192]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229073780_4938_3384_3.png!w900x289.jpg[/img][/align]  表6-1清楚地显示,从第二个独立实验室收到的结果与从第一个独立实验室获得的结果一致,观察到的微小差异可归因于可接受的测试系统误差。表6-1中显示的CTE测试结果表示在与TP60相同温度范围内的CTE值,并不包括第2个独立实验室使用的全温度范围。  图6-1显示了第二家独立实验室在测试期间使用的整个温度范围内的平均CTE。从中可以看出,CTE值随温度而变化在-40~300℃温度范围内呈现最稳定CTE的材料是钛合金。同样清楚的是,在300℃左右,304不锈钢样品的CTE试验结果接近17.3×10-6/℃的文献报道。[align=center][img=,600,354]https://ng1.17img.cn/bbsfiles/images/2019/03/201903292229413984_686_3384_3.png!w848x501.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图6-1 在宽温度范围内的平均CTE(参考温度为20℃)[/color][/align]  通过这次第二家第三方实验室的测试,进一步验证了TP60方法中存在的问题,从而推进了新型测试方法的建立。[b][color=#cc0000]7. AASHTO新旧标准之间的区别[/color][/b]  AASHTO TP60标准方法在2000年颁布,2009年发现了TP60存在重大问题,2010年在AASHTO TP60基础上颁布了新标准AASHTO T336。TP60方法与T336新方法的主要区别如下:  (1)第三方测试:虽然TP60在非强制性附录中指出304不锈钢的CTE为17.3×10-6/℃,但T336要求任何校准样品的CTE应由拥有ISO 9001或同等认证的实验室来确定。  (2)校准样品的CTE测定:CTE必须由第三方实验室测定,测试方法应采用ASTM E228或ASTM E289。此外,第三方实验室的CTE测定必须在与T336相同的温度范围内进行,即10~50℃。  (3)CTE证书:校准样品必须具有第三方实验室颁发的证书,包括所测样品品的批号。CTE必须在相同的样品上或同一批次的样品上测定,因为材料的CTE可能会随批次发现变化。  (4)力学经验路面设计指南(MEPDG)警示说明:在1.0版MEPDG软件中,模型的校准采用的是长效路面性能(LTPP)数据库中的CTE值,而这些CTE值则由TP60方法测试获得。由于根据TP60和T336获得的校准样品CTE值之间由很大差异,因此根据T336获得的CTE不应用作1.0版MEPDG软件的输入,以防止路面厚度的低估。[color=#cc0000][b]8. AASHTO新旧标准更替所带来的影响[/b]8.1. 对路面性能数据库的影响[/color]  目前的长效路面性能(LTPP)数据库中的CTE值是整个美国在10年期间对来自道路的数千个样芯采用TP60方法进行广泛测试的结果。在所测试的温度范围内如果假定校准样品的CTE不正确,那么LTPP数据库中的所有CTE值都高于预期温度范围内的实际CTE值,需要全部进行相应调整。  由于发现了校准样品的CTE差异,美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)已经努力反算所有测试结果,用特定的CTE值代替17.3×10-6/℃用于每台热膨胀测试设备的校准样品。[color=#cc0000]8.2. 对力学经验路面设计指南的影响[/color]  美国一致将CTE确定为力学经验路面设计指南(MEPDG)中用于设计混凝土路面最重要输入或分类为极其敏感的输入参数,混凝土的CTE决定了影响整个路面设计的路面卷曲应力、贴合移动和荷载传递效率的大小。在连续钢筋混凝土路面中,CTE决定了裂缝间距和裂缝宽度,这些会影响裂缝荷载传递效率并影响最终冲孔。  由于MEPDG中的各种不同模型使用的都是来自LTPP数据库的CTE数据,因此需要根据校正数据调整这些模型(使用校准样品的正确CTE)。由于MEPDG软件中的当前模型是基于LTPP数据库中错误的较高CTE值,因此无论是通过模型的全局重新校准还是通过局部校准过程,只有在模型重新校准后,才能使用正确的较低CTE值。如果没有解决这个问题,它可能会对预测的设计厚度产生负面影响。[color=#cc0000]8.3. 其他影响[/color]  许多机构已经开始在MEPDG实施之前表征其典型混合物的材料特性,存储在这些数据库中的CTE值仍然有效。但是,这些CTE记录值需要根据校准样品的假定CTE值和根据ASTM E228获得的CTE值的差异进行调整。如上所述,这些经过调整的CTE值仅在模型重新校准后才能用于MEPDG软件的设计。  美国一些州已经开发了基于MEPDG和CTE的典型路面设计和设计表。在这种情况下,一旦重新校准MEPDG,应根据需要对表格进行验证和更改。[b][color=#cc0000]9. AASHTO T336的改进[/color][/b]  2010年颁布的AASHTO T336已经实施了将近十年,尽管AASHTO T336在这些年的实施中已经取得了很大成就,但基于广泛的测试应和研究经验,还是需要进一步的改进和完善。美国联邦公路管理局(FHWA)的Turner-Fairbank高速公路研究中心(TFHRC)对改进给出了如下建议:  (1)校正因子:T336已经提出了确定校正因子的程序,然而它是测试方法中的非强制性附录内容。由于必须确定校正因子,因此应将其移至标准文本中进行强制性执行。此外,在当前的T336中,没有提供关于校准样品的讨论。为了获得准确结果,建议校准样品的长度与待测混凝土样品长度相差在2mm范围内。校准样品的直径应该是合适的直径,以牢固地放在框架的支撑按钮上。  (2)解决水位问题:当受控温度水浴中的水位影响CTE时,尤其是在测试期间水位发生变化或者在混凝土测试期间水位与校准期间的水位不同时。这是因为当水位改变时,框架和浸没或暴露于环境空气的LVDT轴的长度将改变。因此,根据TFHRC研究,水位偏离上次校准水位以下不应超过13mm。  (3)设备验证。使用LVDT与水接触并在高温下,电子设备会受到影响。为了验证LVDT和整个设备操作的正常运行,建议每月通过测试已知CTE的参考样品(校准样品除外)来验证设置。参考样品的CTE值应至少为5×10-6/℃,与校准样品的CTE值不同。它将确保读数始终良好,因为能很容易的发现任何差异。  建议参考样品应由非腐蚀、非氧化、无孔和非磁性的材料组成,此外,在10~50℃温度范围内,其导热系数应接近混凝土的导热系数。与校准样品的CTE相同,参考材料的CTE应由独立的实验室测定。在研究中发现钛合金(Ti-6Al-4V)是比较合适的材料,如图61所示,其CTE值在整个温度范围内始终比较稳定,变化幅度小。  验证后,如果发现参考样品CTE与认证值相差超过0.3×10-6/℃,则应采用T336中描述的程序再次确定修正系数。  (1)LVDT的校准:目前的T336需要一个千分尺来校准LVDT。然而,它没有提供任何校准指导,也没有提供校准频率。每6个月进行一次校准就足够了。  (2)样品末端条件:混凝土样品的末端条件可能是某些试验误差的来源。T336应提供有关最低要求的指导。建议采用AASHTO T 22-07对抗压强度样品的相同要求。  (3)待测样品数量。不应根据单个测试结果确定混合物的CTE,应提供有关待测样品数量的指导。据推测,至少要测试两个样品并报告平均值,以表征混合物。[b][color=#cc0000]10. 分析和建议[/color][/b]  通过上述路面混凝土热膨胀系数(CTE)测试中测试方法AASHTO TP60重大问题发现和新测试方法AASHTO T336制订的全过程回顾,我们从以下几方面做出了分析,并给出相应的建议:  (1)采用参考样品(或标准参考材料)对测试方法和测试设备进行考核甚至定期自校、多个实验室之间的比对测试,以及多种测试方法之间的比对测试等,这些都是材料物理性能测试工作中标准测试方法制订和实施的必要手段和过程,是保障测试准确性和稳定性的重要措施,在以往热膨胀系数标准测试方法(如ASTM E228等)的制订和实施过程中,都是按照以上过程进行实施。令人费劲的是美国在AASHTO TP60测试方法的制订和实施过程中明显缺少这些重要环节,此测试方法的制订和推广应用非常不严谨甚至不严肃,否则也不会发生AASHTO TP60在颁布十多年后才发现存在严重缺陷的重大问题。  (2)尽管AASHTO T336针对校准样品规定要在有资质的第三方实验室采用ASTM E228或ASTM E289在10~50℃范围内进行CTE测试,并没有规定样品的尺寸大小、控温精度和温度变化形式等细节,而这些细节同样会在ASTM E228或ASTM E289的测试过程中带来较大误差。如一些采用ASTM E228方法的热膨胀仪,测温热电偶为热电偶,那么在10~50℃范围内仅热电偶带来的温度测量误差就会达到10%。另外在样品温度变化形式上,采用台阶式还是线性形式的升降温方式,也会给CTE测量带来很大不同,如果采用线性升降温形式,往往会使样品内外存在温度梯度,而台阶式升降温形式则会使得样品在恒温阶段达到整体温度均匀。  (3)尽管AASHTO T336在校准样品的CTE值准确性上得到了改进,纠正了AASHTO TP60中校准样品CTE值的错误,但CTE测试的装置并没有丝毫改变,测量装置还是基于校准样品来保证测量的准确性,整体设计思路并没有变。而从CTE测试的基本原理出发,几乎所有目前比较常用的CTE标准测试方法,除了采用校准样品(基线扣除法)来保证测量准确性之外,更有效的手段是降低测量装置自身热变形对样品CTE测量的影响,如ASTM E228顶杆法中采用热膨胀系数较低的石英(约0.53×10-6/℃),或热膨胀系数更低的钛石英(0.06×10-6/℃)来作为样品支架。但在AASHTO T336方法中,还在沿用AASHTO TP60方法使用金属杆做样品固定支架,有些混凝土热膨胀仪已经做了改进,采用CTE约为1×10-6/℃的殷钢做样品固定支架。采用较大CTE的金属杆做样品固定支架,因为测试温度范围比较小,基本上能满足目前路面混凝土CTE的测试需求。但对于高温和低温环境下使用的混凝土CTE测试,再采用金属杆做样品固定支架则明显会带来巨大误差。因此,今后AASHTO T336方法的改进,首先要考虑样品固定支架采用膨胀系数低的材料。  (4)无论是AASHTO TP60,还是AASHTO T336方法,混凝土样品CTE的测试温度范围都在10~50℃。在这样接近室温的条件下,样品和水浴的温度变化似乎对位移探测器的影响并不大,在上述两种方法中也没对位移探测器的热防护做出规定。但在高温和低温环境条件下,位移探测器的热防护问题则显着尤为凸出,样品温度的大范围变化势必会给固定位移探测器的机械结构带来热变形。同样,基于更严谨和更准确的目的,建议在AASHTO T336增加上对位移探测器的热防护,尽可能减少长时间50℃水浴温度对位移探测器固定装置的影响。[b][color=#cc0000]11. 参考文献[/color][/b]  (1)李清海, 姚燕, 孙蓓. 水泥基材料热膨胀性能测试方法发展现状. 新型建筑材料, 2007, 34(6):10-12.  (2)黄杰, 吴胜兴, 沈德建. 水泥基材料早期热膨胀系数试验系统现状研究. 结构工程师, 2010, 26(4):160-166.  (3)Tanesi J, Crawford G L, Nicolaescu M, et al. New AASHTO T336-09 Coefficient of Thermal Expansion Test Method: How Will It Affect You?. Transportation Research Record, 2010, 2164(1): 52-57.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

混凝土裂缝测深仪测试原理相关的耗材

  • 混凝土嵌入式引伸计配件
    混凝土嵌入式引伸计配件在混凝土浇筑时就直接埋入混凝土中,提供100%的混凝土结构监测。混凝土嵌入式光纤引伸计配件特点良好的安全性不受温度浮动影响可用于高温高压应用不受横场应力影响不受微波,EMI和RFI影响不需要维护校准终身不飘逸混凝土嵌入式光纤引伸计配件应用高压应用辐射应用潜艇或潜水器应用爆炸环境评估 从低温到高达250摄氏度均可应用
  • 锚定光纤引伸计配件
    锚定光纤引伸计配件为混凝土和岩石基础工程提供简单有效的监测。监测老旧建筑或混凝土结构或岩石结构随时间的变化是锚定引伸计的有效应用。 锚定光纤引伸计配件采用坚固合金制造,可用于恶劣环境,也可用于高压,辐射,EMI或微波辐射环境,甚至用于海洋环境,如混凝土码头,海岸,码头,海洋平台等,不受时间和温度漂移,不需要维护和校准,可用于几十年的预埋监测,可用于监测单裂缝或混凝土裂缝群。 锚定光纤引伸计配件特点 良好的安全性 不受温度浮动影响 可用于高温高压应用 不受横场应力影响 不受微波,EMI和RFI影响 不需要维护校准 终身不飘逸 锚定光纤引伸计配件应用 高压应用 辐射应用 潜艇或潜水器应用 爆炸环境评估 从低温到高达250摄氏度均可应用
  • Kestrel? 4300气象追踪仪
    【Kestrel? 4300气象追踪仪,美国NK4300手持式气象站,简单介绍】建筑专业人士已使用Kestrel测量,多年来以监测工作地的天气。更知准确的当地天气条件,是工人很重要的设备安全,为确保了良好的效果与过程一样,表面涂层和混凝土浇筑。现在NK已与业界专家开发出定制的Kestre建筑专业人士混凝土仪器装备。新的Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪),NK的最新专业Kestrel测量,测量和显示蒸发率,这个功能有相对湿度,温度和风速。蒸发率是一个重要的环境指标,具体承【Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)详细说明】Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)建筑专业人士已使用Kestrel测量,多年来以监测工作地的天气。更知准确的当地天气条件,是工人很重要的设备安全,为确保了良好的效果与过程一样,表面涂层和混凝土浇筑。现在NK已与业界专家开发出定制的Kestre建筑专业人士混凝土仪器装备。新的Kestrel4300建造天气跟踪仪,NK的最新专业Kestrel测量,测量和显示蒸发率,这个功能有相对湿度,温度和风速。蒸发率是一个重要的环境指标,具体承办使用,以确保他们避免塑性收缩裂缝昂贵的混凝土设施。塑性收缩裂缝发生时,表面的混凝土干涸太快和收缩前有充足时间抗裂。以前,建筑工头已使用了Kestrel测量来衡量有关情况,然后参照美国混凝土学会图表,以计算蒸发率。新的Kestrel4300施工天气跟踪是为他们而工作!用户简单地进入混凝土温度(可利用红外线或探针温度计),4300计算蒸发率瞬间。除了蒸发率,Kestrel4300,仍是坚固耐用完美的所有建造用途的天气工具,测量和记录下列有关天气情况而正确这些工人和设备的操作。 Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)许多建设需要申请文件的要求为了取得快速而容易的数据,与Kestrel接口和相应的软件。利用4300的1800个数据点日志和文件,在适当的条件下,然后用Kestrel介面上传存储数据,以一台电脑长期贮存,深入分析和详细的图表。 Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)测量蒸发率最大精度时,测量混凝土温度通过红外或探针温度计,输入混凝土温度进入Kestrel,和定位单位面临的风, 20英寸以上的混凝土。遮荫Kestrel的热敏电阻(温度传感器),以不要直接暴露于阳光下。为获得最佳的精度,用Kestrel的便利平均模式,以平均蒸发率推荐超过6-10秒。 Kestre的迷你三脚架是一个优秀的伴侣,为4300它测量15吋高,定位Kestrel 4300 20英寸以上的混凝土。 Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)每一个Kestrel是单独校准,NIST-可追踪标准,并且还带有一个免费合格证。个别NIST的证书重新调整也可以使用。Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)蒸发率相对湿度当前,最高和平均风速温度露点气压热应力指数湿球温度风冷海拔海拔密度Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)特色 防水和能漂浮背光为低光照条件数据记录器(自动和手动) 可定制的数据存储-1 800个数据点多功能三线展示方便,平均每场模式数据图表湿度传感器,可以重新在该领域与我们的相对湿度校准试剂盒。 使用者可自行更换叶轮Flip-top叶轮盖上传到电脑(可选接口) 5种语言(英文,法文,西班牙文,德文,意大利文) 美国专利号5783753和5939645和6257074 Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)Kestrel? 4300气象追踪仪(美国NK4300手持式气象站建造天气跟踪仪)参数传感器  检测范围   分辨率 响应时间(T90秒)  O2    0-30%VOL   0.1%    15  LEL   0-100%LEL    1%    15  CO    0-500ppm   1ppm    20  H2S    0-100ppm   0.1ppm   25  SO2    0-20ppm    0.1ppm   15  NO    0-250ppm   1ppm    20  NO2    0-20ppm    0.1ppm   25  Cl2    0-10ppm    0.1ppm   60  HCN    0-100ppm   1ppm    60  PH3    0-5ppm    0.1ppm   60  NH3    0-50ppm    1ppm    60  VOC    0-199ppm    0.1ppm   10  VOC    200-1999ppm  1ppm    10 可以配置的产品型号如下: PGM-50Q/PGM50Q PGM-50/PGM50 PGM-2400/PGM2400 PGM-54/PGM54 PGM-7800/PGM7800 PGM-7840/PGM7840 PGM-2000/PGM2000 PGM-1600/PGM1600

混凝土裂缝测深仪测试原理相关的资料

混凝土裂缝测深仪测试原理相关的资讯

  • 混凝土热物理参数测定仪行标编制工作启动
    近日,由中国建筑科学研究院主编的行业标准《混凝土热物理参数测定仪》编制工作正式启动。   《混凝土热物理参数测定仪》标准的制定可以规范混凝土热物理参数测定仪的性能、生产和使用,充分保障该仪器产品的先进性、准确性、可靠性,进而确保混凝土热物理参数试验测定的一致性和可信性。该标准对大体积混凝土温度裂缝控制和研究、充分利用材料的绝热能力降低能耗以及推进节能环保和绿色建筑的应用将起到积极的作用。
  • 【盛瀚】混凝土外加剂,想说爱你不容易
    青岛盛瀚色谱混凝土,简称为“砼(TóNG)”,混凝土材料在建筑工程中发挥着重要作用。混凝土外加剂是混凝土的重要组成部分,已经成了现代混凝土必不可缺的主要材料之一,对提升混凝土性能和质量起到了很大的作用,为混凝土工程的质量做出了巨大贡献,可以说是大功臣一个。而建筑工程中经常出现的一种现象就与混凝土添加剂有关——钢筋锈蚀。原因在于:为了有效提升混凝土的强度,人们会在混凝土中加入大量的钢筋,而混凝土中的氯离子(主要来源于外加剂)会与钢筋发生化学反应,造成钢筋锈蚀并释放气体,最终促使混凝土发生膨胀而出现裂纹,影响混凝土的外观与强度。混凝土外加剂,想说爱你还真是不容易。 因此,对混凝土外加剂中的氯离子的检测具有十分重要的意义。GB/T 8077-2012《混凝土外加剂匀质性试验方法》中提出两种检测氯离子含量的方法:电位滴定法、离子色谱法。因离子色谱法操作较简单,本文主要介绍后者。离子色谱法是液相色谱分析方法的一种,样品溶液经阴离子色谱柱分离,溶液中的阴离子F-、CL-、SO42-、NO3-被分离,同时被电导池检测,从而测定溶液中氯离子峰面积或峰高。离子色谱法优势:? 仲裁法,数据结果更权威? 操作简单:过滤、进样即可? 一针进样,可以同时分离多种离子:氯离子、硫酸根等GB 8076-2008 《混凝土外加剂》中指出,氯离子含量检测不超过生产厂控制值(生产厂应在相应的技术资料中明示产品匀质性指标的控制值)。标准中没有明确界定氯离子含量,具体指标由生产厂商自定。由青岛盛瀚自主研发生产的CIC-D100型离子色谱仪,抑制型电导法测定混凝土外加剂中的氯离子,方法简单,数据准确。实验结果显示:混凝土外加剂共进样217针,阴离子抑制器仍保持运行正常。确定该方法测试对抑制器等耗材无损伤。建议现阶段所使用的部分混凝土减水剂、防水剂、防冻泵送剂等都或多或少含有氯离子,所以为了消除或降低含氯外加剂对混凝土造成的不良影响,建议在使用含氯外加剂后及时向混凝土中掺入适量的阻锈剂。依据化学原理可知,氯离子在氧气、水分充足的环境下与铁的化学反应更加激烈,所以应当避免在露天混凝土中掺入含有氯离子的外加剂,如此方能最为有效地保障混凝土的质量。
  • 2009 MTS岩石及混凝土测试技术研讨会圆满召开
    2009年6月23日,MTS 2009岩石及混凝土测试技术研讨会在中科院武汉岩土所圆满召开。 这是MTS公司首次在中国地区召开的关于岩石及混凝土测试方面的技术讲座,共有来自中国地震局、北京科技大学、清华大学、上海交通大学等近70位岩石及混凝土测试方面的专家参加了本次技术研讨会。 会上,MTS中国区销售经理王爽先生代表MTS致辞,对大家长期以来对MTS的支持和厚爱表示衷心的感谢,并期待MTS在今后与广大用户能够共同发展,成为大家可信赖的试验帮手。 会上,中科院寒区旱区环境与工程研究所、成都理工大学、武汉理工大学,武汉岩土所的专家们就青藏铁路冻土路基稳定性试验、5.12特大地震中公路隧道的破坏特征及防震启示、先进土木工程材料的研究与进展、新型岩石力学测试方法等课题与广大用户进行了探讨交流。MTS系统公司的林志强先生,Greg Pence 先生也介绍了MTS最新的岩石力学及混凝土测试方面的技术和方法,并和与会的技术人员进行了交流。会后,与会人员参观了武汉岩土所的MTS设备试验室,整个研讨会反响热烈,取得了预期的效果。 在今后的工作中,MTS公司将继续致力于把优异的测试技术带给中国客户。 MTS中国公司

混凝土裂缝测深仪测试原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制