当前位置: 仪器信息网 > 行业主题 > >

自动计数显微镜

仪器信息网自动计数显微镜专题为您提供2024年最新自动计数显微镜价格报价、厂家品牌的相关信息, 包括自动计数显微镜参数、型号等,不管是国产,还是进口品牌的自动计数显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动计数显微镜相关的耗材配件、试剂标物,还有自动计数显微镜相关的最新资讯、资料,以及自动计数显微镜相关的解决方案。

自动计数显微镜相关的论坛

  • 【求助】全自动显微镜和半自动显微镜有什么区别

    我公司想买一台显微镜用于清洁度检测,看了徕卡用于清洁度检测的用的是半自动的LEICA DM4000M显微镜,想知道半自动的显微镜与全自动的显微镜有什么区别,徕卡全自动的显微镜好像只有LEICA DM6000M,不知哪位能解释一下,最好能详细一些。

  • 清洁度显微镜,思贝舒全自动清洁度显微镜

    清洁度显微镜利用全进口三维扫描台,根据客户需求可配合国产金相显微镜或者进口金相显微镜,支持多种国内及国际标准:包括ISO4406、ISO4407、ISO16232、NAS1638、VDA19、GB/T 20082、GB/T 14039等;扫描过程包含全自动对焦和全自动图象拼接。对金属与非金属颗粒的判定提供最直接的参考数据和影像。同时可依据不同长宽比的设定对纤维与非纤维进行精确分类.全自动的检验分析过程:自动扫描整个试样(通常是滤纸)、自动拍照,颗粒自动识别、统计、分析。http://www.gzspecial.com/uploadfile/images/1(5).jpghttp://www.gzspecial.com/uploadfile/images/2.png自动清洁度检查系统技术规格: 一、支持多种检测标准   支持多种国内及国际标准:包括ISO4406、ISO4407、ISO16232、NAS1638、VDA19、GB/T 20082、GB/T 14039等;支持用户自定义评级标准;可以对纤维进行统计。系统定期更新最新标准。 二、自动统计与分析   系统自动识别颗粒、自动分析颗粒类别、自动统计颗粒参数。同时支持修改颗粒。提供多种统计分析工具:MAP图、颗粒列表、统计结果、直方图等。可以同时检查出不反光颗粒和反光颗粒(一般为金属颗粒)、纤维。 三、专业的清洁度检查报告   支持模板化报告生成模式,包含统计数据、评级、滤片全貌图、最大颗粒照片等信息。 四、高整合的自动系统  全面整合进口显微镜、进口数码设备、进口XYZ-3轴电动扫描台;项目化管理、流程化操作。 五、自动扫描  自动扫描整个视场。支持多种扫描方式:矩形区域、圆形区域等;满足各种不同标准、不同用户的检测需要,大大提高工作效率。 六、自动聚焦  支持多种聚焦模式:补偿聚焦、手动聚焦、EFI聚焦等。采用最新的聚焦算法,保证在试样不够平整的情况下也能得到清晰的图像。 七、自动拍照   自动拍照、照片自动保存,进度状态实时可见;照片信息存入数据库,方便查询;提供视场图片浏览功能,可以实现视场定位回溯、重新拍照等功能。想了解更多可查看http://www.gzspecial.com/jxxwj/qingjiedu-xianweijing.html

  • 金相显微镜自动评定晶粒度

    哪位经常用金相显微镜的软件自动评定晶粒度?奥氏体不锈钢还稍微好点,其他组织的试过吗?结果的重现性怎么样?跟比较法会有多大的差异?我用的是OLYMPUS GX51A显微镜。

  • 【转帖】无目镜显微镜-显微镜发展的一种新趋势

    无目镜显微镜-显微镜发展的一种新趋势http://www.zgny17.com/Upload/UploadPic/20103311102770.gif 列文虎克发明显微镜至今已经历了三百多年,光学显微镜随着人类科技的发展不断演化进步,功能不断增强。显微镜的放大倍率由初始的300倍左右到现在放大1000倍左右;从最初简单的明场观察方式发展出包括明场、暗场、偏振、荧光、相差、微分干涉差等多种观察方式;由简单的手动目视观察仪器演变为整合了拍照、摄像等多种功能的强大光学系统。 最近10年,随着数码摄影技术、信息技术和自动化技术的飞速进步,显微镜的演进除了在功能上的革新与发展之外,在外观、操作舒适性、操作自动化程度以及方便性方面也都有很大发展,显微镜的外观上出现了一些革命性的变化,性能上有了进一步的提高。其中,无目镜显微镜由于其人性化的设计特点,为用户提供舒适的观察姿势和完美的成像效果,日益为成为显微镜发展的一种新趋势。 目前,中国市场上的高端无目镜倒置显微镜以AMG EVOS系列产品为代表,包括 Nikon公司Coolscope 显微镜,Olympus公司的“智能生物导航仪”FSX100,leica推出的DMD108等,均采用无目镜设计,同时出现了英国VISION公司 LYNX无目镜体视显微镜及Mantis Elite体视显微镜等,AMG并于09年第三季度推出了荧光型无目镜显微镜,极大推动了无目镜显微镜的技术发展和应用空间。

  • 【分享】原子力显微镜技术资料(SPM/AFM)

    原子力显微镜技术资料主要特点 - 完全机动化的AFM,提供自动的laser-to-tip alignment以及快速启动。 - 低噪音光学记录系统。 - 真正意义上的非接触式扫描。- 高速大范围100x100x15um 扫描器 - 先进的闭环控制 - 数字模块化控制器 Measuring modes ●Contact AFM ●Semicontact AFM ●True Non-contact AFM ●LFM 原子力显微镜技术原子力显微镜技术原子力显微镜技术●Conductive AFM: ●Advanced MFM, Kelvin Probe, ●Capacitance and EFM ●Advanced nanolithography and nanomanipulation capabilities ●STM ●Tuning fork AFM ●3D scanning imaging.技术参数 ◆ Scanning range: 100um x 100um x 15um (+/-10%) ◆Scanning type: by sample ◆XY non-linearity: 0.03% ◆Z non-linearity: 0.1% ◆Noise: 0.1nm RMS in XY dimension in 200Hz bandwidth with capacitance sensors on 0.02nm RMS in XY dimension in 100Hz bandwidth with capacitancel sensors off l 0.04nm RMS Z capacitance sensor in 1000Hz bandwidth ◆Digital closed loop control: for X,Y,Z axes ◆XY resonance frequency: 7 kHz (unloaded) ◆Z resonance frequency: 15 kHz (unloaded) ◆Active elimination of XY phase lag, overshooting andl ringing results in fast scanning without any dynamic image distortion ◆Digital filtering of Z control signal at scanner resonant frequencies results in extremely short settling time ◆ Motorized sample positioning: range - 5x5mm, positioning resolution - 1um. [~117635~][~117636~]

  • 【分享】显微镜的故障

    1、显微阄粗调部分故障的排除  显微镜粗调的主要故障是自动下滑或升降时松紧不一。所谓自动下滑是指镜筒、镜臂或载物台静止在某一位置时,不经调节,在显微镜本身重量的作用下,自动地慢慢落下来的现象。其原因是镜筒、镜臂、载物台本身的重力大于静摩擦力引起的。解决的办法是增大静摩擦力,使之大于镜筒或镜臂本身的重力。  对于显微镜斜筒及大部分双目显微镜的粗调机构来说,当镜臂自动下滑时,可用两手分别握往粗调手轮内侧的止滑轮,双手均按顺时针方向用力拧紧,即可制止下滑。如不凑效,则应找专业人员进行修理。  显微镜镜筒自动下滑,往往给人以错觉,误认为是齿轮与齿条配合的太松引起的。于是就在齿条下加垫片。这样,显微阄镜筒的下滑虽然能暂时止住,但却使齿轮和齿条处于不正常的咬合状态。运动的结果,使得齿轮和齿条都变形。尤其是垫得不平时,齿条的变形更厉害,结果是一部分咬得紧,一部分咬得松。因此,这种方法不宜采用。  此外,由于显微镜粗调机构长久失修,润滑油干枯,升降时会产生不舒服的感觉,甚至可以听到机件的摩擦声。这时,可将机械装置拆下清洗,上油脂后重新装配。2、显微镜的微调部分故障排除  显微镜的微调部分最常见的故障是卡死与失效。微调部分安装在仪器内部,其机械零件细小、紧凑,是显微镜中最精细复杂的部分。显微镜的微调部分故障应由专业技术人员进行修理。没有足够的把握,不要随便乱拆。

  • 【原创】微生物细胞大小的测定和显微镜直接计数

    微生物细胞大小的测定和显微镜直接计数 目的 1.1 学习接目测微计的校正方法, 了解血球计数板的构造和计数原理 1.2 学习使用显微镜测微尺测定微生物细胞大小, 掌握用血球计数板测定微生物细胞总数 的方法。 2 原理 微生物细胞的大小是微生物分类鉴定的重要依据之一。微生物个体微小,必须借助于显微镜才能观察,要测量微生物细胞大小,也必须借助于特殊的测微计在显微镜下进行测量。 显微测微计由镜台测微计和目镜测微计两部分组成。后者可直接用于测量细胞大小。它是一块圆形玻片(图7—1),其中央有精确等分到度,测量时将其放在接目镜中的隔板上。由于目镜测微计所测量的是微生物细胞经过显微镜放大之后所成像的大小,刻度实际代表的长度随使用的目镜和物镜放大倍数及镜筒的长度而改变,所以,使用前须先用镜台测微计进行标定,求出某一放大率下,目镜测微计每一小格所代表的长度,然后用目镜测微计直接测被测对象的大小。镜台测微计是一块中央有精确刻玻片(图7—1),刻度的总长为lmm,等分为100小格,每小格长10um,专用于对目镜测微计进行标定的。 3 材料 3.1 器械 显微镜、目镜测微尺、镜台测微尺,载玻片、盖玻片、血球计算板、擦镜纸、吸水纸、玻片架、肾形盘、洗瓶、接种环、酒精灯、火柴、滴管。 3.2 菌种 培养48h的啤酒酵母斜面菌体和菌悬液。 3.3 革兰氏染液 4流程 4.1 置目测微计→置台测微计→标定目测微计→测菌体大小→记录结果→用毕擦拭干净 4.2 检查计数板→稀释样品→加样→计数→计算→清洗 5 步骤 5.1 微生物菌体大小的测定 5.1.1 目镜测微尺的校正 5.1.1.1 更换目镜镜头 更换目镜测微尺镜头(标记为PF);或者取下目镜上部或下部的透镜,在光圈的位置上安上目镜测微尺,刻度朝下,再装上透镜,制成一个目镜测微尺的镜头。 5.1.1.2 某一倍率下标定目镜刻度 将镜台测微尺置于载物台上,使刻度面朝上,先用低倍镜对准焦距、看清镜台测微尺的刻度后,转动目镜,使目镜测微尺与镜台测微尺的刻度平行,移动推动器使两尺重叠,并使二尺的左边的某一刻度相重合,向右寻找另外二尺相重合的刻度。记录两重叠刻度间的目镜测微尺的格数和镜台测微尺的格数(图7-1C)。 5.1.1.3 计算该倍率下目镜刻度 目镜测微尺每格长度=镜台测微尺格数/目镜测微尺格数xl0um 5.1.1.4 标定并计算其他放大倍率下的目镜刻度 以同样方法分别在不同倍率的物镜下测定目镜测微尺每格代表的实际长度。如此测定后的测微尺的长度,仅适用于测定时使用的显微镜以及该目镜与物镜的放大倍率。 5.1.2 菌体大小的测定 5.1.2.1 将啤酒酵母制成水浸片。 5.1.2.2 大小换算 将标本先在低倍镜下找到目的物,然后在高倍镜下用目镜测微尺测定每个菌体长度和宽度所占的刻度,即可换算成菌体的长和宽。 5.1.2.3 求平均值 一般测量微生物细胞的大小,用同一放大倍数在同一标本上任意测定l0一20个菌体后,求出其平均值即可代表该菌的大小。 5.2 用血球计数板测定微生物细胞的数量 5.2.1 检查血球计数板 取血球计数板一块,先用显微镜检查计数板的计数室,看其是否沾有杂质或干涸着的菌体,若有污物则通过擦洗、冲洗,使其清洁。镜检清洗后的计数板,直至计数室无污物时才可使用。 5.2.2 稀释样品 将培养后的酵母培养液振荡振摇混匀,然后作一定倍数的稀释。稀释度选择以小方格中的分布的菌体清晰可数为宜。一般以每小格内含4~5个菌体的稀释度为宜。 5.2.3 加样 取出一块干净盖玻片盖在计数板中央。用滴管取1滴菌稀释悬液注入盖玻片边缘,让菌液自行渗入,若菌液太多可用吸水纸吸去。静置5—10分钟。 5.2.4 镜检 待细胞不动后进行镜检计数。先用低倍镜找到计数室方格后,再用高倍镜测数。一般应取上下及中央五个中格的总菌数。计数时若遇到位于线上的菌体,一般只计数格上方(下方)及右方(左方)线上的菌体。每个样品重复3次。 5.2.5 计算 取以上计数的平均值,按下列公式计算出每毫升菌液中的含菌量。 菌体细胞数(cfu/mL)=小格内平均菌体细胞数%26#215 400%26#215 104%26#215 稀释倍数 5.2.6 清洗 计数板用毕后先用95%的形酒精轻轻擦洗,再用蒸馏水淋洗,然后吸干,最后用擦镜纸揩干净。若计数的样品是病原微生物,则须先浸泡在5%石炭酸溶被中进行消毒,然后再行清洗。清洗后放回原位,切勿用硬物洗刷。 图7-2 血细胞计数板 6 结果 6.1计算出目镜测微尺在低、高倍镜下的刻度值。 6.2 记录菌体大小的测定结果。 6.3 计算样品中酵母菌浓度。 7 思考 7.1 为什么随着显微镜放大倍数的改变,目镜测微计每格相对的长度也会改变?能找出这种变化的规律吗? 7.2 根据测量结果,为什么同种酵母菌的菌体大小不完全相同? 7.3 能否用血球计数板在油镜下进行计数?为什么? 7.4 根据自己体会,说明血球计数板计数的误差主要来自那些方面?如何减少误差? 8 附录 目镜测数尺有两种:一是特制的目镜镜头,镜片上刻有50等分或100等分的刻度,使用时直接安装在显微镜上,取代没有刻度的目镜镜头;另一种是一块直径大约17.5 mm的圆玻璃片,其中央刻有50等分或100等分的刻度(图7-1A),使用时将该玻璃片安装在原来的目镜镜头上即可。由于不同的显微镜放大倍数不同,既使同一显微镜在不同的目镜、物镜组合下其放大倍数也不同,故目镜测微尺每格实际表示的长度随显微镜放大倍数不同而异。也就是说,目镜测微尺上的刻度只代表相对的长度。因此在使用前须用镜台测微尺校正,以确定在一定放大倍数下目镜测微尺的每格长度。 血球计数板是一块特别的厚玻片,玻片中央分剖成两个平面,上面各刻有9区,中央一区为计数室,供计数用(图7-2A),此区的长和宽各为1mm。中央平面两侧有小沟,小沟外有两条突起的平台,平台比中央平面高0.1mm,因此计数室体积为0.1mm3,容积为10-4ml。通常计数室分为25个大格,每大格又分为16个小格,每小格容积为4%26#215 10-6ml,即lml菌液容积相当于400万个小格体积。因此只要将细胞悬液注人计算室,计算出一定数量小格的平均菌数即可算出每毫升的细胞数。

  • 生物显微镜:揭示生命微观世界的利器

    摘要:本文将对生物显微镜进行详细介绍,包括其原理、类型、应用领域以及未来发展趋势。生物显微镜是生命科学研究中不可或缺的工具,它让我们能够深入观察生命的微观世界,从而更好地理解生命的奥秘。一、生物显微镜的原理生物显微镜的工作原理基于光学成像技术,通过透镜组合将微小物体放大并呈现出清晰的图像。它主要由光源、物镜、目镜、载物台等部分组成。生物显微镜利用可见光或荧光等光源照射样品,通过物镜将样品放大,再经过目镜进一步放大,最后由观察者或相机捕捉到放大的图像。二、生物显微镜的类型[list=1][*]光学显微镜:利用可见光成像,适用于观察细胞结构、组织切片等样品。[*]荧光显微镜:利用荧光染料标记样品,通过激发荧光观察特定结构或分子。[*]共聚焦显微镜:通过激光扫描样品,实现三维层析成像,适用于观察厚样本。[*]超分辨显微镜:突破光学衍射极限,实现更高分辨率成像,如STED显微镜、PALM/STORM显微镜等。[/list]三、生物显微镜的应用领域[list=1][*]生命科学研究:观察细胞结构、分子定位、生物大分子互作等。[*]医学诊断:病理诊断、细胞学检查、病原微生物检测等。[*]环境科学:观察微生物、污染物等环境样品的形态和结构。[*]材料科学:观察纳米材料、复合材料等微观结构和性能。[/list]四、生物显微镜的未来发展趋势[list=1][*]高分辨率与高速成像:随着技术的不断进步,生物显微镜将实现更高的分辨率和更快的成像速度,为生命科学研究提供更多细节和动态信息。[*]多模态成像:将多种成像技术融合到一台显微镜中,如光学、荧光、拉曼等多种模态,以实现对样品的多角度、多层次观察。[*]智能化与自动化:AI和机器学习等技术的发展将推动生物显微镜的智能化和自动化进程,实现自动样品定位、图像分析等功能,提高研究效率和准确性。[*]非线性光学成像:利用非线性光学效应,如二次谐波生成、多光子激发等,实现无标记、无损伤的深层组织成像,为生物医学研究提供新的观察手段。[*]便携式与便携式显微镜:为了满足野外、临床等场景的实时观测需求,生物显微镜将朝着更小巧、便携的方向发展。[/list]总结:生物显微镜作为揭示生命微观世界的利器,在生命科学、医学、环境科学等领域发挥着重要作用。随着科技的不断进步和创新,生物显微镜的分辨率、成像速度和功能将不断提升,为探索生命奥秘提供更多可能性。在未来,我们有理由相信生物显微镜将继续为科学研究和应用领域带来更多的突破和成就。

  • 生物显微镜和工具显微镜的原理

    生物显微镜和工具显微镜又称工具制造用显微镜,是一种工具制造时所用高精度的二次元坐标测量仪。生物显微镜工具显微镜是利用光学原理将工件成像经物镜投射至目镜,即借着光线将工件放大成虚像,再利用装物台与目镜网线(eyepiece reticle)等辅助,以作为尺寸、角度和形状等测量工作,可作为检验非金属光泽的工件表面。生物显微镜工具显微镜仪器在立柱上装有一显微镜,放大倍率从10倍至100倍间等数种倍率,工具显微镜的测量系统光源( 灯炮 ) 通电后,光线依次经过二个透镜滤热镜 ( 片)、镜径薄膜、透镜、反射镜、装物台、物镜、反射镜、目镜等,工件与物镜间的距离,随着放大倍率和工件厚薄,可利用对焦旋钮调至理想位置。1、 生物显微镜工具显微镜将人眼瞄准,采集元素的个别点坐标,改为CCD摄像机自动采集元素图像,采集信息量增大,减少人工干预,操作效率提高。 2、生物显微镜工具显微镜软件数据处理结果除以数据表示外,增加了图形信息窗,处理的点、线、图、弧等元素展现在屏幕上,形象直观,条理清晰,避免出错,并且可以输出到AUTOCAD形成工程图。3、引进先进的英国RENISHAW钢带反射光栅系统代替原有的玻璃光栅系统,该系统信号优良,安装间隙大,外形小巧,发热量小,安装调试简单,抗污染,抗腐蚀能力强,耐震性好等众多优点,大大提高了系统的可靠性,是当今国际最先进的光栅系统之一。4、 生物显微镜和工具显微镜生物显微镜工具显微镜除X、Y坐标数字显示外,将测高坐标和分度头角度坐标也改成数显,实现了四坐标全数显化,这一改进对凸轮轴测量十分有益。5、用半导体激光器作为指向器,红色光点打在工件表面,用于快速确定测量部位,避免了因CCD视场面积小带来的找象困难,解决了目前图像系统的通病。引用:www.bsdgx.com

  • 最牛生物显微镜,还有谁?

    最牛生物显微镜,还有谁?

    [img=,400,513]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131659_01_3194653_3.png[/img]Edge-3D多功能Z轴叠合显微镜利用自动化Z轴叠合技术,使许多过去难以观察的样本变得轻而易举,并且能获得各目标在Z轴上的相对关系,较传统显微镜提供更多资讯。过去显微镜影像总是建立在景深极浅的2D影像上,由于近年来精密机械与电脑的发展,共轭焦显微镜首次做到了3D模型重建。然而共轭焦显微镜直到今天依然十分昂贵,非一般实验室所能负担。Edge-3D提供人人皆能负担的3D显微影像系统,不只利用自动Z轴叠合解决传统2D影像放大倍率与景深无法兼顾的问题,还能生成动态4D影像,清楚显示不同物件之间的位置关系,给您除了长景深影像以外的更多资讯。过去昂贵的3D模型重建现在也能轻易实现。另有一键3D图片建立功能,让您即使在纸本上也能轻易展示立体影像。[img=,398,232]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131701_03_3194653_3.png[/img][img=,690,500]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131701_01_3194653_3.jpg[/img] [img=,690,509]http://ng1.17img.cn/bbsfiles/images/2017/06/201706131701_02_3194653_3.jpg[/img]没话说效果图详细资料027-87870349

  • 生物显微镜相关知识

    生物显微镜相关知识一、应用领域 生物显微镜适用于生物细胞、各种血细胞、各种细菌、污水杂质等!二、主要功能/参数1.调焦机构: 粗微动同轴,三角钢柱导轨,带有手轮松紧调节和限位装置粗调22mm,微调0.002mm2.转换器:四孔内倾,钢珠定位 3.载物台:双层机械移动平台,双切片夹大小140×132mm,移动范围70×50mm 4.聚光镜:阿贝聚光镜,N.A.=1.25,可变光阑,聚光镜中心可调 5.电 源:开关电源,宽电压AC 100V-250V选配: 可选择配置工业相机:1. 分别有A系列的 A-700 (特点反应速度快) 2. V系列 V-130和V-200(特点:高清晰) 3. U系列 U-300 U-500 U-900 U-1400 (特点:高清晰画面、功能强大)在U系列里面可选择配置测量系统:分别分为三类:有基础版、中级版、专业版1.基础版:静态测量 可测实际物体的尺寸,面积,角度,弧度等。 具体请看相关资料。2.中级版:动态测量 具备基础版的所有功能,可以直接输出 WORD ,EXCE格式测量结果。3.专业版:动态测量 具备中级版的所有功能,可以自动统计数量, 自动抓去边缘,自动测量等。

  • 【分享】显微镜技术原理

    技术原理:微生物个体微小,用肉眼直接观察不到,必须借助显微镜才能观察到他的个体形态和细胞结构。在蛋白质结构等所需对物质的微观结构进行观察的研究中也都会用到各种显微镜。现有的各种显微镜基本上都是由物镜和目镜组成,目镜的焦距很短,目镜的焦距很长,目镜的作用是得到物体放大的实像,目镜的作用是将物镜放大的实像作为物体,进一步放大成虚像。显微镜将物体放大的总倍数是物镜放大倍数乘以目镜放大的倍数。这样虽然目镜和物镜放大的倍数有限,但是显微镜总放大倍数 就非常可观。 仪器结构和分类:普通光学显微镜是一种精密的光学仪器。早期的显微物镜仅由少数几块透镜组成,难于消除物像的像差和色差。近代的显微物镜已由一套精密磨制的透镜组成,已能较好地消除像差和色差,并能将物体放大1500~2000倍。普通光学显微镜的构造可分为两大部分:即机械装置和光学系统。这两部分很好地配合,才能充分发挥显微镜的作用。1.显微镜的机械装置 显微镜的机械装置包括镜座、镜筒、物镜转换器、载物台、推动器、粗动螺旋和微动螺旋等部件。(1)镜座:镜座是显微镜的基本支架,由底座和镜臂两部分组成。在其上部连接有载物台和镜筒,是用于安装光学放大系统部件的基础。 (2)镜筒:镜筒上接接目镜,下接转换器。形成接目镜与接物镜(装在转换器下)间的暗室。从镜筒的上缘到物镜转换器螺旋口之间的距离称为机械筒长。因为物镜的放大率是 对一定的镜筒长度而言的。镜筒长度的变化,不仅放大倍率随之变化,而且成像质量也受到影响。因此,使用显微镜时,不能任意改变镜筒长度。国际上将显微镜的 标准筒长定为160mm,此数字标在物镜的外壳上。(3)物镜转换器:物镜转换器上可安装3~4个物镜,一般是3个物镜(低倍、高倍、油镜),Nikon显微镜装有4个物镜。转动转换器,可以按需要 将其中的任何一个接物镜和镜筒接通,与镜筒上面的目镜构成一个放大系统。 (4)载物台:载物台中央有一孔,为光线通路。在台上装有弹簧标本夹和推动器。 (5)推动器:是移动标本的机械装置,由一横一纵两个推进齿轴和齿条构成。研究显微镜的纵横架杆上刻有刻度标尺,构成精密的平面坐标系。如需要重复观察已检查标本的某一 物像时,可在第一次检查时记下纵横标尺的数值,下次按数值移动推动器,就可以找到原来标本的位置。 (6)粗调螺旋:粗调螺旋用于粗放调节物镜和标本的距离,老式显微镜粗调螺旋向前扭,镜头下降接近标本。新近出产的显微镜(如Nikon显微镜)镜检时,右手向前扭动使载 物台上升,让标本接近物镜,反之则下降,标本远离物镜。(7)微调螺旋:用粗调螺旋只能粗放地调节焦距,难于观察到清晰的物像,因而需要用微调螺旋做进一步调节。微调螺旋每转一圈镜筒仅移动0.1 mm(100μm)。新近出产的研究显微镜的粗调螺旋和微调螺旋是共轴的。2.显微镜的光学系统显微镜的光学系统由反光镜,聚光器,物镜,目镜等组成,光学系统使标本物像放大,形成倒立的放大物像。

  • 关联光学和电子显微镜技术:2015值得期待的超越诺奖的新技术

    http://pic.biodiscover.com/files/2/rt/201501051032414604.jpg  在刚刚过去的2014年里,美国科学家Eric Betzig、William Moerner 和德国科学家Stefan Hell,因为对超高分辨率显微镜所做出的贡献,获得了诺贝尔化学奖。这一技术的意义在于突破了几个世纪以来光学显微镜的“衍射极限”。这些科学家们从不同途径“突破”了这一极限,使人们能够分辨相距少于200nm的两个物体。这类技术被统称为超高分辨率显微技术或纳米显微技术。  目前主要的超高分辨率技术包括:光激活定位显微技术PALM、随机光学重建显微技术STORM、受激发射损耗STED,结构照明显微技术SIM和RESOLFT。其中,PALM和STORM属于单分子定位显微技术。  专家们认为与荧光显微技术不同,电子显微镜(EM)能获得精确的结构信息,但是通过EM识别特殊蛋白是一个费力不讨好的工作,而且一般也不能定量。而通过衍射极限荧光成像的电子显微技术虽然获得的信息量大,但是无法达到几十纳米级别的分辨率。  超分辨率荧光成像技术现在已接近电子显微镜技术,不过这两者之间还是存在至少一个数量级的分辨率差异。如果能将这两者结合,提炼电子显微和超分辨率荧光显微的优点,也许能带给我们惊喜。  把这两种方法放在一起并不是件简单的事。首先样品准备需要能用于两种不同的方法,以最小的失真完成高质量成像。其次以两种模式获得的成像也必须能精确对齐,这样才能真正提供补充信息。  比如说来自美国NIH的一组研究人员为了将电镜EM与光激活定位显微技术PALM结合在一起,对细胞表面结构成果,研发出了一种样品准备的方法,这种方法基于嵌入式金纳米棒,能完成20 纳米分辨率的相关成像(Correlative super-resolution fluorescence and metal-replica transmission electron microscopy)。  此外这种关联技术还需要EM样品准备中合适的荧光标记,另外一篇文章中,来自加州理工学院的研究人员为了关联细菌细胞的PALM与冷冻电子层析成像,找到了能在冷冻条件下进行光开启的荧光蛋白,而且他们也成功阻止了冰晶体的形成。(Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography)  这就是关联光学和电子显微镜技术(Correlative Light and Electron Microscopy,CLEM),这种技术既有荧光显微镜FM的分子标记功能,又具有电子显微镜EM捕获超微结构细节的高分辨率。这一相关显微镜技术让细胞生物学家有可能理解生命大分子在细胞里的动态,得到其亚细胞结构的更多信息。  而这些相应的解决方法也将能帮助这种超分辨率技术快速发展,用于生物学研究。  推荐阅读  Super-resolution CLEM

  • 显微镜物镜转换器、粗调、微调的故障及解决方法

    显微镜物镜转换器的主要故障是定位装置失灵。一般是定位弹簧片损坏,如变形、断裂、失去弹性、弹簧片的固定螺钉松动等导致,更换新弹簧片时,暂不要把固定螺钉旋紧,先作光轴校正。等合轴以后,再旋紧螺丝。显微镜物镜若是内定位式的转换器,则应旋下转动盘中央的大头螺钉,取下转动盘,才能更换定位弹簧片,光轴校正的方法与前面相同。 显微镜粗调的主要故障是自动下滑或升降时松紧不一。导致显微镜粗调的主要原因是镜筒、镜臂、载物台本身的重力大于静摩擦力引起的。解决的办法是增大静摩擦力,使之大于镜筒或镜臂本身的重力。对于显微镜斜筒及大部分双目显微镜的粗调机构来说,当镜臂自动下滑时,可用两手分别握往粗调手轮内侧的止滑轮,双手均按顺时针方向用力拧紧,即可制止下滑。如不凑效,则应找专业人员进行修理。 显微镜的微调部分最常见的故障是卡死与失效。微调部分安装在显微镜内部,其机械零件细小、紧凑,是显微镜中最精细复杂的部分。显微镜的微调部分故障应由专业技术人员进行修理。没有足够的把握,不要随便乱拆。显微镜聚光器升降机构的主要故障也是自动下滑,直筒显微镜聚光器解决方法是一只手用双眼螺母扳手插入手轮端面上的双眼螺母内,另一只手用螺丝刀插入另一端的大头螺钉槽口内,用力旋紧即可制止下滑。

  • 【分享】工业显微镜使用故障及技术咨询

    专业技术人员凭借多年在OLYMPUS光学显微镜工作经验提供OLYMPUS工业显微镜售前技术配套咨询,及完美的售后服务.以及各类显微功能增加及改造.(现在显微镜的附件追加,功能增加,软件升级等服务)中国心

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 【讨论】光学显微镜升级为数码显微镜的方法

    【讨论】光学显微镜升级为数码显微镜的方法

    数码目镜数码目镜也称为显微相机,可以使现有的普通光学显微镜立刻升级为数码显微镜显微相机,是专门为普通光学显微镜图像数字化而开发设计的。她具有安装简便,通用性强、使用成本低廉、功能齐全、简单易用等特点。安装只需要2个步骤:1、取下原有的显微镜目镜,2、插入电子目镜替换原有目镜。即可通过USB线缆将显微镜下的图像传输至电脑进行实时显示,并可以随时抓怕冻结图像、录像、测量长度、角度、弧度、矩形面积及周长、不规则图形面积及周长、细胞计数、色彩分割、伪彩色还原、虚拟3D、图像边缘识别、傅立叶变换、光点测量及部分PS图像处理功能。可满足大多数专业应用。非常适合教师教学和装备数字化实验室、医学研究、工业生产(PCB线路版检查,IC质量控制)、医疗(病理切片观察)、食品(微生物菌落观察、计数)、科研、教育(教学、演示、学术交流)、公安(印章验证、弹头检测)等领域...... DCM系列显微相机从普教级到科学级有十几个型号,可以按照不同的要求,选择合适的配置。显微相机的光学接口为国际标准目镜尺寸,适用于任何目镜筒内径为23.2mm、30.0mm或者30.5mm的各类生物显微镜、体视显微镜、金相显微镜、荧光显微镜、偏光显微镜、熔点仪、硬度计等光学设备。另有C-Mount接口的专用型号,可配在标准的C接口上使用。显微相机的光学部分全部采用高透光率优质光学玻璃制成,比树脂镜头产品性能有极大的提高。组装车间装备有千级无尘,超高压静电除尘设备,并采用新型防尘结构,确保每件产品的优质效果。jacobxu7001@163.com[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911201009_185541_1734324_3.jpg[/img]

  • 显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 【分享】Nature推出显微镜专刊

    【分享】Nature推出显微镜专刊

    6月4日出版的《自然》杂志推出显微镜专刊——《显微镜》(Microscopy)。专刊说,显微镜是生物学家认识生命的窗口,近年来显微镜的发展揭示出了一些惊人的新观点。此次专刊描述了5大改变研究人员看待世界方式的显微镜,并探讨了收集和阐释显微图像所遇到的挑战。同期《自然》杂志还刊登社论——《显微奇迹》(Microscopic marvels),社论说,显微镜正在改变着生物学的外貌。研究人员如果想要成为新视觉的一部分,就应该进行创新和合作。http://ng1.17img.cn/bbsfiles/images/2011/05/201105252320_296140_1643453_3.jpg显微镜观察细胞生命活动是一件神奇的事,细胞内场景的直观图像描述是基因测序与生化分析等抽象数据所无法比拟的。这样就不难理解科学家迫切要求这个领域创新的愿望。本期《自然》杂志展示了5项显微镜领域的创新工作:从超高分辨率的光学显微镜(其分辨率可与电子显微镜匹敌)到较厚样品观察的电子显微镜(其样品厚度要求可与光学显微镜匹敌)。不过最新的成像仪器设备价格不菲。一种新款光学显微镜成本在50万美元以上,还不包括人员培训等成本。尽管研究组经常独自购置显微镜以图使用方便,但对于最尖端的成像仪器,生物学家可能不得不共享。部门、大学和基金组织需要成立专门机构由专人来负责共享仪器设备。与此同时,自动操作、计算机处理和图像再现是显微镜成像的核心技术,这意味着样品放置和科学家实际观察室是分离的,就可能导致一些不易察觉的误差。这样的话,科学家就要为解释显微镜图像数据多花心思。细胞生物学家与分子生物学家同样也要分享这些数据,一种较好的途径是仿照基因数据库建立图像数据库。《细胞生物学杂志》(The Journal of Cell Biology)已经建立了一个这样的数据库。同时,一些实验室也在着手其他应对之策,如研发小的低成本甚至是一次性的显微镜。科研人员希望加快高通量、自动化的显微镜研发,以便那些偶尔才使用显微镜的实验室较快获得数据。社论说,研究人员所构想的研究策略是走在前面的,其实验手段的探究亦有助于显微镜的进一步研发,如计算技术、标签技术和样品制备等。社论最后对研究人员提出期望,思考愈深,看到的越多。 http://www.nature.com/reviews/focus/microscopy/editorial/index.html

  • 显微镜技术交流

    各位老师、朋友、兄弟姐妹大家好: 我是OLYMPUS显微镜的,如果哪位使用OLYMPUS显微镜遇到什么问题可与我联系,本人愿意帮助您尽快解决问题,其它品牌的显微镜如果本人能帮上忙也可以!E-mail:Olympus.zzq@126.com[em61]

  • 【原创】推荐显微镜版版主

    注册ID:lilingxia三年金相应用经验一年显微镜管理现管理显微镜Zeiss全自动正立显微镜一台,lasertec扫描共聚焦显微镜和激光高温扫描共聚焦显微镜各一台。愿意加入版主,已经沟通好,请坛主再联系下。

  • 【分享】如何选购显微镜之显微镜供应商的正确选择

    相信很多显微镜采购者都还不是很清楚应该如何去选择适合的显微镜,而且我在平时也了解到很多客户一打电话进来,都会直接说要显微镜而没有很清楚自己要哪一种显微镜才是适合用的。针对这种情况,今天我倒想简单介绍一下在选购显微镜时应该如何去选择合适的供应商了。一、选择显微镜供应商时,您会遇到哪些风险?1 交货能力的风险。 2 货物质量控制的风险。 3 技术支持的风险。 4 售后服务的风险。对于显微镜的选购来说,好的供应商就是质量、售后、价格等一系列重要因素的保证。显微镜是经久耐用的精密光学仪器,其核心技术是光学技术和机械部位.这就要求有厂家有很强的技术实力和完善的售后服务. 现在市场上的显微镜的对外宣传的技术基本都一样,实际上质量相差很大,价格相差也大.有的甚至冒充著名厂家的牌子行骗.一个好的供应商能及时的交货,交出适合您使用的显微镜,能给您以质量和售后的保证,和这样的供应商合作无疑是愉快的,是一种享受。而一个不合适的供应商可能在产品价格上是低廉的,但是随之而来的就是产品供货时间的遥遥无期,产品质量的无保证,甚至连税票都无法出据,至于售后服务就更无法得到保障,而显微镜这种经久耐用的精密光学仪器的使用寿命是很长的,短则数年长则近十年,在这样长的时间内无售后保障将会给您带来一系列的麻烦和困扰。二:如何选择供应商?对供应商的考核方法,一般先就价格、品质、交货、协调等主要考核指标进行配分,比如价格占40%,品质占30%,交货占20%,协调占10%。建议现场考察,拿需要检测样品到公司来测试。俗话说"百闻不如一见",显微镜的种类很多,所以当自己选择显微镜的时候,最好是自己拿着样品在显微镜现场操作,亲自观看是否理想,是否可以满足要求。综合各个方面来决定。

  • 【原创】蔡康显微镜下的观察纤维细胞的微管分布-技术精华

    蔡康显微镜下的观察纤维细胞的微管分布-技术精华 目前显微镜观察微生物有:生物显微镜 蔡康高档显微镜 荧光显微镜 倒置显微镜 都可以观察研究微生物,请看下面阐述介绍 [img=340,340]http://www.zskp.org.cn/Article/UploadFiles/200803/2008030615471734.jpg[/img]一、目的要求  1.明确显微镜计数的原理。  2.学习使用血球计数板进行微生物计数的方法。  二、基本原理  利用血球计数板在显微镜下直接计数,是一种常用的微生物计数方法。此法的优点是直观、快速。将经过适当稀释的菌悬液(或孢子悬液)放在血球计数板载玻片与盖玻片之间的计数室中,在显微镜下进行计数。由于计数室的容积是一定的( 0.1mm2),所以可以根据在显微镜下观察到的微生物数目来换算成单位体积内的微生物总数目。由于此法计得的是活菌体和死菌体的总和,故又称为总菌计数法。  血球计数板,通常是一块特制的载玻片,其上由四条槽构成三个平台。中间的平台又被一短横槽隔成两半,每一边的平台上各刻有一个方格网,每个方格网共分九个大方格,中间的大方格即为计数室,微生物的计数就在计数室中进行。血球计数板构造如图Ⅷ-1。  计数室的刻度一般有两种规格,一种是一个大方格分成16个中方格,而每个中方格又分成25个小方格(图Ⅷ-2);另一种是一个大方格分成25个中方格,而每个中方格又分成16个小方格(图Ⅷ-1,C)。但无论是哪种规格的计数板,每一个大方格中的小方格数都是相同的,即16×25=400小方格,如图Ⅷ-2。  每一个大方格边长为1mm,则每一大方格的面积为1mm2,盖上盖玻片后,载玻片与盖玻片之间的高度为0.1mm,所以计数室的容积为0.1mm3。  在计数时,通常数五个中方格的总菌数,然后求得每个中方格的平均值,再乘上16或25,就得出一个大方格中的总菌数,然后再换算成1ml菌液中的总菌数。  下面以一个大方格有25个中方格的计数板为例进行计算:设五个中方格中总菌数为A,菌液稀释倍数为B,那么,一个大方格中的总菌数  因1ml=1cm3=1000mm3,      (即0.1mm3中的总菌数)为(A/5)*25*B=50000AB(个)  同理,如果是16个中方格的计数板,设五个中方格的总菌数为A',则   1ml菌液中总菌数=(A'/5)*16*10*1000*B'=32000A'B'(个)      三、器材  酿酒酵母菌悬液,血球计数板,显微镜,盖玻片,无菌毛细管。  四、操作步骤  1.稀释  将酿酒酵母菌悬液进行适当稀释,菌液如不浓,可不必稀释。  2.镜检计数室  在加样前,先对计数板的计数室进行镜检。若有污物,则需清洗后才能进行计数。  3.加样品  将清洁干燥的血球计数板盖上盖玻片,再用无菌的细口滴管将稀释的酿酒酵母菌液由盖玻片边缘滴一小滴(不宜过多),让菌液沿缝隙靠毛细渗透作用自行进入计数室,一般计数室均能充满菌液。注意不可有气泡产生。  4.显微镜计数  静止5分钟后,将血球计数板置于显微镜载物台上,先用低倍镜找到计数室所在位置,然后换成高倍镜进行计数。在计数前若发现菌液太浓或太稀,需重新调节稀释度后再计数。一般样品稀释度要求每小格内约有5—10个菌体为宜。每个计数室选5个中格(可选4个角和中央的中格)中的菌体进行计数。位于格线上的菌体一般只数上方和右边线上的。如遇酵母出芽,芽体大小达到母细胞的一半时,即作两个菌体计数。计数一个样品要从两个计数室中计得的值来计算样品的含菌量。  5.清洗血球计数板  使用完毕后,将血球计数板在水笼头上用水柱冲洗,切勿用硬物洗刷,洗完后自行晾干或用吹风机吹干。镜检,观察每小格内是否有残留菌体或其他沉淀物。若不干净,则必须重复洗涤至干净为止。  五、实验报告  1.结果  将结果记录于下表中。 A表示五个中方格中的总菌数; B表示菌液稀释倍数。  2.思考题  根据你实验的体会,说明用血球计数板计数的误差主要来自哪些方面?应如何尽量减少误差,力求准确?这是多年以来上海蔡康光学经历磨炼 得出的结果,也为研究人员带来的方便,为国家作出贡献.

  • 【分享】关于显微镜问题讨论帖

    问题: 想请教大家一个弱弱的问题:我将做一些有关细胞骨架蛋白表达情况的实验,拟采用免疫荧光技术。但是我不知道荧光显微镜和激光共聚焦显微镜在显示蛋白表达上有什么差别呢?是不是后者的观察结果会更清晰一些呢?目前我们实验室还没有激光共聚焦显微镜,那么能否在荧光显微镜下观察拍照,对结果是否有很大的影响呢? 1. 其实激光共聚焦显微镜就像CT一样,如果只是了解蛋白表达情况没有太大差别,当然其观察结果会更清楚。 2. 激光共聚焦显微镜就像细胞CT,把细胞的一个个层面都扫了一下,结果非常清晰,比荧光显微镜要清楚。荧光显微镜拍下来,细胞层叠比较多,看得不是太清楚。但是如果只是看细胞骨架蛋白表达情况,对结果没有有很大的影响。  源一:激光共聚焦显微镜原理:它是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。  同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具.精确地对光谱的本质进行分析,区分发射光谱高度重叠的不同标记的信号。  最重要的是,对于多色的荧光染色,它能彻底消除了荧光串色的影响,同时最大限度的减少了样品荧光信号的损失。这些都是一般光镜所不能达到的。

  • 【求助】倒置显微镜的技术参数

    本单位欲购买一台倒置显微镜(进口品牌),用于观察细胞等生物样品,并需要接数码相机;根据我这几天所查的资料,倒置显微镜应该是明视野透射式照明法的比较简单的显微镜,我理解没错吧?可是我不知道技术参数要求咋写,NA值最大为1.4,目前一般的显微镜能达到多少,NA值为多少就可满足日常检测的需要?还有其他关键参数的要求? 哪位高手给指点一下?我们的预算大约10万人民币,北京的先谢过 [em0713]

  • 【原创】普通生物显微镜可变成媲美共焦显微镜的高分辨率显微镜

    分子级高分辨率的激光扫描共焦显微镜和结构照明显微镜是在细胞生物学和其他相关领域强有力的研究工具,但是它们高昂的价格也使很多潜在用户望而却步。波士顿大学的科学家最近开发出一种显微新技术 (HiLo Microscopy),能够将普通的广域荧光显微镜变成可与激光扫描共焦显微镜和结构照明显微镜相媲美的高分辨率生物显微镜。这一技术包括一个简单的可以在均衡光源和结构光源之间自由转换的显微镜附件和一套功能强大的图像处理软件。该软件仅通过处理在均衡光源和结构光源条件下拍摄的两张分辨率不同的照片就可以得到全分辨率的三维图像。这一技术可用于任何现有的广域荧光显微镜,而成本大大低于激光扫描共焦显微镜和结构照明显微镜。由于成像机理简单,该技术的成像速度是常用的生物显微技术中最快的,而且操作简便,不受样本移动的影响。波士顿大学目前正在积极寻求企业合作,争取早日将这一突破性的技术推向市场。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制