当前位置: 仪器信息网 > 行业主题 > >

半干转膜仪的工作原理

仪器信息网半干转膜仪的工作原理专题为您提供2024年最新半干转膜仪的工作原理价格报价、厂家品牌的相关信息, 包括半干转膜仪的工作原理参数、型号等,不管是国产,还是进口品牌的半干转膜仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半干转膜仪的工作原理相关的耗材配件、试剂标物,还有半干转膜仪的工作原理相关的最新资讯、资料,以及半干转膜仪的工作原理相关的解决方案。

半干转膜仪的工作原理相关的资讯

  • 实验型冻干机的工作原理和应用
    实验型冻干机的工作原理和应用 随着科学技术的不断进步,各种新型实验仪器也层出不穷,其中实验型冻干机就是一种近年来应用越来越广泛的一种实验室设备。该产品可以将溶液、材料等在低温下冷冻成固体,然后在真空环境下将其中的水分蒸发掉,从而得到干燥的样品。下面我们来详细了解一下该产品的工作原理和应用。  一、工作原理  实验型冻干机的工作原理是利用制冷技术和真空技术相结合,将待处理物质在低温下冷冻成固体,然后在真空环境下对其进行加热升温,使其从固体状态变为液体状态,最后通过蒸发除去其中的水分,从而得到干燥的样品。具体步骤如下:  1. 预冻:将待处理物质放入该产品的容器中,然后在低温环境下进行预冻,使其变成固体状态。  2. 冻干:将预冻后的物质放入该产品的干燥室中,然后在真空环境下进行加热升温,使其从固体状态变为液体状态。此时,被冻结的水分会逐渐蒸发掉。  3. 重复以上步骤直至完成干燥过程。  二、应用  该产品广泛应用于生物医药、化学化工、食品等领域。以下是几个具体的应用案例:  1. 生物药品生产:该产品可以用于生物药品的生产过程中,如生产血浆、疫苗等。通过冻干处理,可以保证生物药品的质量和稳定性。  2. 化学试剂制备:该产品可以用于化学试剂的制备过程中,如制备氨基酸、维生素等。通过冻干处理,可以使化学试剂长期保存并且方便使用。  3. 食品加工:该产品可以用于食品加工过程中,如制作汤圆、饼干等。通过冻干处理,可以使食品保持原有的口感和营养成分。 冻干机冷冻干燥机LGJ-18N普通型亚星仪科主要特点:1、本机采用进口压缩机制冷,制冷迅速,冷阱温度低。2、冷阱开口大,无内盘管,带样品预冻功能,无需低温冰箱;3、采用7寸真彩触摸液晶屏控制系统,操作简单方便,且功能强大,作为人机界面,中文(英文)可转换界面,以曲线和数字形式显示工作时间、冷凝器温度、样品温度、真空度,并记录干燥曲线;。4、工业嵌入式操作系统,ARM9核心控制电路设计,32M内存128M FLASH,操作响应速度快,存储数据量大。本机可存储多次冻干数据,FAT32文件系统,EXCEL文件存储,可存储一个月以上测量数据128M FLASH,并配置USB通讯接口,实验数据U盘一键提取。 5、控制系统自动保存冻干数据,并能以实时曲线和历史曲线的形式查看,整个冻干过程清晰明了。6、干燥室采用无色透明一次注塑成型聚碳干燥室,耐腐蚀、不易碎、无粘接、透明度高、密闭性强、样品清楚直观,可观察冻干的全过程。7、真空泵与主机连接采用国际标准KF快速接头,简洁可靠。 总之,实验型冻干机作为一种新型的实验室设备,其应用领域越来越广泛,为企业提高产品质量和降低成本提供了有力的支持。
  • 泡罩药板密封性测试仪的工作原理
    泡罩药板密封性测试仪的工作原理在医药包装、食品封装等领域,产品的密封性能直接关系到其保质期、安全性和使用效果。因此,对包装材料的密封性进行准确、高效的检测显得尤为重要。泡罩药板密封性测试仪,作为一种采用色水法原理的检测设备,凭借其直观、可靠的检测方式,在行业内得到了广泛应用。本文将详细介绍基于色水法原理的泡罩药板密封性测试仪的工作原理、操作流程及其在评估试样密封性能中的关键作用。一、工作原理泡罩药板密封性测试仪MFY-05S通过模拟包装物在特定条件下的压力变化,检测其密封完整性。其核心在于利用色水(常选用亚甲基蓝溶液以增强观察效果)作为介质,在真空室内形成一定深度的水层。当测试样品置于该水层之上,并对真空室进行抽真空操作时,样品内外形成显著的压力差。这一压力差促使空气(如果存在泄漏通道)从样品内部通过潜在泄漏点逸出,并在释放真空后,通过观察样品形状的恢复情况及色水是否渗入样品内部,来评估其密封性能。二、济南三泉中石的MFY-05S泡罩药板密封性测试仪操作流程准备阶段:首先,向真空室中注入适量的清水,并加入适量的亚甲基蓝溶液,搅拌均匀,使水呈现明显的蓝色,便于后续观察。同时,将待测样品按照测试要求放置在真空室上方的指定位置。抽真空过程:启动真空泵,对真空室进行抽气,直至达到预设的真空度。在此过程中,随着真空度的增加,样品内外压力差逐渐增大,可能存在的微小泄漏通道将被放大,使得空气或气体从样品内部向外逸出。保压与观察:在达到所需真空度后,保持一段时间(根据测试标准设定),以便充分观察样品在压力差作用下的反应。此时,若样品密封良好,则形状基本保持不变,色水不会渗入;若存在泄漏,则可能观察到样品形状发生变化,且色水会沿泄漏路径渗入样品内部。释放真空与评估:释放真空室内的真空状态,恢复至常压。仔细观察样品表面是否有色水渗入痕迹,以及样品形状的恢复情况。根据观察结果,结合测试标准,判定样品的密封性能是否符合要求。三、济南三泉中石的MFY-05S泡罩药板密封性测试仪优势与应用直观性:色水法的应用使得泄漏现象一目了然,无需复杂的数据分析即可快速判断样品的密封性能。高效性:测试过程简单快捷,提高检测效率。 广泛适用性:不仅适用于泡罩药板包装,还可用于其他类型包装材料的密封性检测,如瓶盖、软管等。总之,济南三泉中石的MFY-05S泡罩药板密封性测试仪以其独特的色水法原理,为包装材料的密封性检测提供了一种高效、直观且可靠的解决方案。
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 碳达峰碳中和计量标准检测认证研究工作专班成立!
    碳达峰碳中和计量标准检测认证研究工作专班第一次会议召开 按照碳达峰碳中和工作领导小组办公室有关要求,为推进碳达峰碳中和有关重大问题研究和落实,近日,市场监管总局组建了碳达峰碳中和计量标准检测认证研究工作专班(以下简称工作专班),并在北京召开工作专班第一次全体会议和各工作小组会议。 会议强调,计量、标准、检验检测、认证认可是国家质量基础设施的重要组成部分,也是实现碳达峰碳中和目标任务的重要基础支撑,组建碳达峰碳中和计量标准检测认证研究工作专班,对于推进碳达峰碳中和有关重大问题研究和任务落实具有重要意义。会议要求全面贯彻习近平生态文明思想,按照碳达峰碳中和工作领导小组有关要求,加强碳达峰碳中和相关计量、标准、检测、认证工作研究,充分发挥科研院所、高校、行业学协会和企业等专家智库作用,坚持目标导向和问题导向,深入分析计量、标准、检测等工作在支撑碳达峰碳中和目标实现中所面临的难点和重大需求,针对问题和需求逐条逐项分析研判,提出相应工作举措,尽快形成研究成果,并加快推动相关措施落实落细。 国家发展改革委、工业和信息化部、生态环境部、住房和城乡建设部、市场监管总局、国家统计局、国家林草局相关业务司局有关同志,相关科研院所、高校、行业协会和企业共计40余名专家代表参加会议。
  • 无机碳去除器(ICR)的工作原理与应用建议
    分析仪在测量总有机碳(Total Organic Carbon,TOC)时,都必须处理无机碳(Inorganic Carbon,IC)。IC是指CO2、HCO3-、CO32-里的碳。IC的来源包括溶解的石灰石和从空气中吸收的二氧化碳。几乎所有的样品水中都含有有机碳和无机碳,它们统称为总碳(Total Carbon,TC)。总碳(TC)=有机碳(TOC)+ 无机碳(IC)当样品中也含有无机碳时,分析仪就无法单独测量有机碳,因此大多数TOC分析仪就测量样品中的TC和IC,然后相减,差值即为TOC。总碳(TC)- 无机碳(IC)实测值 实测值= 有机碳(TOC)计算值TOC分析仪也可以先吹除无机碳,然后再测量碳含量,测量结果不含无机碳。此时测得的总碳即为样品的TOC。该 测 量 值 也 称 为 “ 不 可 吹 除 有 机 碳(Non-Purgeable Organic Carbon,NPOC)”。TC = TOC = NPOC有些TOC分析仪既可以测量IC,又可以去除IC,从而给操作员很大的灵活性,可以根据样品中的IC含量来选择操作方法。当样品中的IC小于TOC时,分析仪无需去除IC即可测得准确结果。分析仪可以直接测量IC,然后用TC减去IC,即得到TOC。但当IC较高且TOC较低时(例如,IC=10倍TOC),如果不去除或降低IC,则TOC测量结果就会变得不稳定。在下面的示例中,仪器测量TC和IC以计算TOC,TC和IC都很高(IC是TC的组成部分),测量TC和IC的仪器误差在最终TOC计算值中占有很大比例。如果在进行分析前,先去除或降低IC,就能提高仪器的分析性能。例如,样品中含100 ppb TOC和1900 ppb IC。我们假设仪器测量TC和IC的准确度为2%。一种情况是不去除IC,另一种情况是将IC降到100 ppb(见表1)。在IC较高、TOC较低的情况下,去除或降低IC能够提高仪器的分析性能。一般来说,在使用Sievers TOC分析仪时,如果IC高出TOC预期值的10倍以上,我们建议降低或去除IC。去除和降低IC的方法有些TOC分析仪用气体来吹扫样品,以去除IC,而剩下的碳就是需要测量的有机碳。吹扫样品是去除IC的有效方法,但需要考虑以下几个问题:❶ 吹扫气体的纯度(以免气体中的有机物污染样品)。❷ 挥发性有机物的流失。❸ 如果不能100%去除IC,则留下的IC可能被报告为TOC,从而给分析系统带来误差。❹ 吹扫气体会增加成本、提高维护要求、延长样品制备和分析时间。❺ 在EPA TOC方法415.3(“确定水源和饮用水的总有机碳含量和254 nm的特定紫外吸光度”)中,USEPA规定20分钟的吹扫时间,气体流量为100-200毫升/分钟,确保将IC含量降到最低,以测量TOC。在实践中,吹扫时间通常为3-10分钟,具体时间可以根据仪器生产厂的建议和样品的特性而定。表1. 去除和未去除IC的示例计算显示了对TOC结果的影响_未去除IC去除 IC实际TC2000 ppb200 ppb测得TC(有2%误差)1960-2040 ppb196-204 ppb实际IC1900 ppb100 ppb测得IC(有2%误差)1862-1938 ppb98-102 ppb可能的算得TOC22-178 ppb94-106 ppbSievers技术采用无需气体的ICR(无机碳去除器)来降低IC含量。该方法已获得专利,并获USEPA批准用于合规监测。ICR的工作原理在去除IC时,ICR首先酸化样品,以将IC全都变成CO2的形式。酸化之前,IC以离子形式和非离子形式存在。离子形式包括碳酸盐和碳酸氢盐,非离子形式为CO2。离子形式和非离子形式的含量比例取决于pH值。酸化样品可以将IC全都转化为CO2,以方便将其吹除。CO2 → HCO3- → CO32-低 ← pH 值 ← 高当分析仪探测到连接无机碳去除器(ICR)时,会自动进行样品酸化,所使用的酸剂同正常TOC分析时使用的酸剂相同,因而无需添加其他试剂。样品酸化之后,会流过ICR中能渗透CO2的脱气模块。ICR还配有真空泵,用于将脱气模块外部抽成真空,以去除样品中的无机碳(CO2)。内置的化学捕集器先“净化”通过脱气模块的空气,去除空气中的全部有机物,以免污染样品。IC的去除率可达95-99%。无需百分之百去除IC,因为Sievers TOC分析仪会测量剩余的IC,然后用TC减去IC得到TOC。IC含量被大大降低,从而提高了仪器的分析性能。这种降低或去除IC的方法有以下优点。❶ 无需吹扫气体,因而成本较低,去除IC的过程更简单。❷ 样品脱气同样品分析直接连在一起,因而无需花额外时间来降低或去除IC。❸ 此 过 程 使 挥 发 性 有 机 碳(VOC , VolatileOrganic Carbon)的流失降低到最少。进水中流失的VOC会降低进水和出水之间的TOC去除率的计算值。❹ 此过程由分析仪自动完成,无需人员手动操作。如果无需去除IC,操作员可以用ICR的开启和关闭设置来绕过ICR,方便地转换到正常监测模式。应用建议当IC含量超过TOC的10倍时,应考虑使用ICR。常见的应用包括监测原始地表水和地下水。有时,降低或去除IC也有利于监测成品饮用水。对于在线连续监测的应用,应对所有样品启用ICR,并保持ICR的运行。ICR安装在Sievers M系列实验室型、便携式、在线型TOC分析仪的机箱内部,环保效果最佳,使用方便,占据空间小。◆ ◆ ◆联系我们,了解更多!
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • ​深圳三思纵横试验机|粉末压实密度仪:解析工作原理与应用领域
    在材料科学、化工、制药等众多领域中,粉末材料的处理与测试是不可或缺的一环。粉末压实密度仪作为一种专用的测试设备,在粉末材料的压实密度测量中发挥着至关重要的作用。本文深圳三思纵横试验机小编将探讨粉末压实密度仪的工作原理、应用领域以及未来发展趋势,大家一起来看下吧。一、粉末压实密度仪的工作原理粉末压实密度仪的工作原理主要基于粉末在受到外力作用下的压实过程。测试时,将一定量的粉末样品置于压实模具中,通过施加压力使粉末颗粒重新排列、相互接触并发生一定的塑性变形,从而达到压实效果。压实密度仪通过测量压实前后粉末的体积变化,并结合样品的质量信息,计算得出粉末的压实密度。二、粉末压实密度仪的应用领域粉末压实密度仪广泛应用于多个领域,尤其在材料科学、化工、制药等行业具有重要地位。1、材料科学领域粉末压实密度仪可用于评估粉末材料的可压性、流动性和成型性能,为材料制备和加工工艺的优化提供数据支持;2、化工领域粉末压实密度仪可用于测定催化剂、吸附剂等粉末材料的压实密度,为反应器的设计和操作提供重要参数;3、制药行业粉末压实密度仪可用于评估药物粉末的堆密度和压实性,为药物制剂的制备和质量控制提供有力保障。三、粉末压实密度仪的未来发展趋势随着科学技术的不断进步和应用需求的日益增长,粉末压实密度仪正朝着更加智能化、高精度和多功能化的方向发展。1、智能化与自动化未来的粉末压实密度仪将更加注重智能化和自动化的发展。通过引入先进的传感器和控制系统,实现测试过程的自动化操作和数据的实时采集、处理与分析。此外,智能化的粉末压实密度仪还将具备自我诊断和维护功能,提高设备的稳定性和可靠性;2、高精度化随着材料科学和制药等领域的不断发展,对粉末压实密度的测量精度要求也越来越高。因此,粉末压实密度仪将不断提高测量精度,采用更先进的测量技术和算法,以满足更精细的测试需求;3、多功能化除了基本的压实密度测量功能外,未来的粉末压实密度仪还将具备更多的测试功能。如可同时测量粉末的粒度分布、比表面积、孔隙率等参数,为研究者提供更全面的材料性能信息。此外,还可通过集成其他测试模块,实现一站式测试服务,提高测试效率和便捷性;4、绿色化与环保在环保意识日益增强的背景下,粉末压实密度仪的绿色化设计将成为未来的发展趋势。通过优化设备结构、采用环保材料和节能技术,降低设备在运行过程中的能耗和排放,实现可持续发展。三思纵横粉末压实密度仪作为粉末材料测试领域的重要工具,其原理、应用和发展趋势均体现了科技进步和市场需求的推动。随着技术的不断创新和市场的不断拓展,三思纵横粉末压实密度仪将在更多领域发挥重要作用,为材料性能评估、质量控制以及工艺优化提供有力支持。未来,我们可以期待三思纵横粉末压实密度仪在性能、功能和智能化方面取得更大的突破,为科研和工业生产带来更多便利和价值。
  • 热失重分析仪:工作原理、设备构成及实验流程
    热失重分析仪是一种重要的材料表征工具,它能够提供有关材料性质的重要信息,如热稳定性、分解行为和反应动力学等。本文将介绍热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容。上海和晟 HS-TGA-101 热失重分析仪热失重分析仪主要利用样品在加热过程中质量的损失来分析其热性质。仪器通过高精度的称量装置,实时监测样品在加热过程中的质量变化,并将质量信号转化为电信号。这些电信号进一步被数据采集装置转化为可分析的数据,从而得到样品的热失重曲线。热失重分析仪的主要组成部分包括称量装置、加热装置和数据采集装置。称量装置负责样品的质量测量,要求具有极高的精度和稳定性;加热装置则为样品提供加热环境,要求具备可调的加热速率和温度范围;数据采集装置则负责将质量信号转化为电信号,并进行进一步的数据处理和输出。实验流程一般包括以下几个步骤:首先,将样品放置在称量装置中并设置加热装置参数;然后开始加热,同时数据采集装置开始工作;在加热过程中,持续观察并记录样品的质量变化;最后,通过数据处理软件对数据进行处理和分析。在实验过程中,需要注意安全事项。首先,要确保实验室内有良好的通风系统,避免长时间处于高温环境下;其次,要随时观察样品的状态变化,避免发生意外情况;最后,在实验结束后,要对设备进行及时清洗和维护,确保设备的正常运行。数据分析是热失重分析仪的重要环节。通过对热失重曲线的分析,可以得出样品的热稳定性、分解行为和反应动力学等方面的信息。通过对这些数据的处理和分析,可以得出样品在不同条件下的性能表现,为材料的优化设计和改性提供理论支持。综上所述,热失重分析仪是一种重要的材料表征工具,它可以提供有关材料性质的重要信息。通过了解热失重分析仪的工作原理、设备构成、实验流程以及数据分析等方面的内容,我们可以更好地理解和应用这一技术。热失重分析仪在材料科学、化学、生物学等领域具有广泛的应用价值,对于科研工作者来说具有重要的意义。
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • 十部委联合印发《医疗机构废弃物综合治理工作方案》 疫情之下如何转危为机?
    p  2019年底,新冠肺炎疫情在我国肆虐,这场危机给中国经济发展造成一定的困难是肯定的事实,但我们也应该看到,危机中蕴含着新的发展机遇。/pp  面对这场危机,全国的医疗工作者们为了战胜疫情做出了巨大的努力和牺牲,在全国抗疫的号召下,科研工作者和环保人也纷纷响应,加入这一场艰巨的狙击战。除了救治病人的第一战场外,医疗废物、医疗废水、医疗区各类垃圾的处理成为了至关重要的第二战场。/pp  医疗机构废弃物管理是医疗机构管理和公共卫生管理的重要方面,也是全社会开展垃圾分类和处理的重要内容。2003年“非典”的爆发充分暴露出我国医疗废物处置能力不足的短板。在多方压力下,我国开始了加速建设医疗废物处置设施的阶段,而新冠肺炎疫情更是助力医疗废物处置设施的建设驶上快车道。/pp  近日,国家卫生健康委、生态环境部、国家发展改革委、工业和信息化部、公安部、财政部、住房城乡建设部、商务部、市场监管总局、国家医保局十部委联合印发了《医疗机构废弃物综合治理工作方案》。《方案》共包括8个方面:一是做好医疗机构内部废弃物分类和管理,二是做好医疗废物处置,三是做好生活垃圾管理,四是做好输液瓶(袋)的回收利用,五是开展医疗机构废弃物专项整治,六是保障各项措施落实,七是做好宣传引导,八是开展总结评估。/pp  值得多加注意的是,《方案》中提出:span style="color: rgb(255, 0, 0) "各省份全面摸查医疗废物集中处置设施建设情况,要在2020年底前实现每个地级以上城市至少建成1个符合运行要求的医疗废物集中处置设施 鼓励发展医疗废物移动处置设施和预处理设施,为偏远基层提供就地处置服务 通过引进新技术、更新设备设施等措施,优化处置方式,补齐短板,大幅度提升现有医疗废物集中处置设施的处置能力,对各类医疗废物进行规范处置等内容。/span/pp  医疗废物可分为感染性废物、病理性废物、损伤性废物、药物性废物、化学性废物五类。医疗废弃物处理产业链上端主要是医院产生的医疗废弃物,中游包括设备提供商和工程承包商,下游需求方主要为运营商,我国主要是通过建设医疗废物处置中心来就近完成医疗废物的无害化处理。/pp  在技术方面,目前我国的医疗废物处理技术主要包括:焚烧法、高温蒸汽灭菌法、化学消毒法、微波消毒法、安全填埋法、等电子体法、热解气化法等,其中焚烧法、高温蒸汽灭菌法最为常用。高温蒸汽灭菌法被认为是处理医疗废弃物的首选技术,其基本原理是利用高温蒸汽遇冷释放的潜热将病原微生物和病菌蛋白质凝固变性,实现灭菌效果,进行该方法后需进一步填埋或焚烧 我国提倡发展非焚烧的医疗废物处理技术,主要原因为焚烧法虽然适用于所有类型的医疗废物,但其焚烧过程中产生的二噁英等物质若处理不当,易造成严重的二次污染,但由于医疗废物产生量,处理成本以及技术发展等多方面因素制约,我国的医疗废物处置技术仍旧以焚烧为主。焚烧法虽然适用于所有类型的医疗废物,但其焚烧过程中产生的二噁英等物质若处理不当,易造成严重的二次污染。span style="color: rgb(255, 0, 0) "新技术的发展迫在眉睫。/span/pp  附:/pp style="text-align: center "  strongspan style="font-size: 18px "医疗机构废弃物综合治理工作方案/span/strong/pp  医疗机构废弃物管理是医疗机构管理和公共卫生管理的重要方面,也是全社会开展垃圾分类和处理的重要内容。为落实习近平总书记关于打好污染防治攻坚战的重要指示精神,加强医疗机构废弃物综合治理,实现废弃物减量化、资源化、无害化,针对当前存在的突出问题,借鉴国际经验,特制定本方案。/pp  一、做好医疗机构内部废弃物分类和管理/pp  (一)加强源头管理。医疗机构废弃物分为医疗废物、生活垃圾和输液瓶(袋)。通过规范分类和清晰流程,各医疗机构内形成分类投放、分类收集、分类贮存、分类交接、分类转运的废弃物管理系统。充分利用电子标签、二维码等信息化技术手段,对药品和医用耗材购入、使用和处置等环节进行精细化全程跟踪管理,鼓励医疗机构使用具有追溯功能的医疗用品、具有计数功能的可复用容器,确保医疗机构废弃物应分尽分和可追溯。(国家卫生健康委牵头,生态环境部参与)/pp  (二)夯实各方责任。医疗机构法定代表人是医疗机构废弃物分类和管理的第一责任人,产生废弃物的具体科室和操作人员是直接责任人。鼓励由牵头医疗机构负责指导实行一体化管理的医联体内医疗机构废弃物分类和管理。实行后勤服务社会化的医疗机构要落实主体责任,加强对提供后勤服务组织的培训、指导和管理。适时将废弃物处置情况纳入公立医疗机构绩效考核。(国家卫生健康委负责)/pp  二、做好医疗废物处置/pp  (一)加强集中处置设施建设。各省份全面摸查医疗废物集中处置设施建设情况,要在2020年底前实现每个地级以上城市至少建成1个符合运行要求的医疗废物集中处置设施 到2022年6月底前,综合考虑地理位置分布、服务人口等因素设置区域性收集、中转或处置医疗废物设施,实现每个县(市)都建成医疗废物收集转运处置体系。鼓励发展医疗废物移动处置设施和预处理设施,为偏远基层提供就地处置服务。通过引进新技术、更新设备设施等措施,优化处置方式,补齐短板,大幅度提升现有医疗废物集中处置设施的处置能力,对各类医疗废物进行规范处置。探索建立医疗废物跨区域集中处置的协作机制和利益补偿机制。(省级人民政府负责)/pp  (二)进一步明确处置要求。医疗机构按照《医疗废物分类目录》等要求制定具体的分类收集清单。严格落实危险废物申报登记和管理计划备案要求,依法向生态环境部门申报医疗废物的种类、产生量、流向、贮存和处置等情况。严禁混合医疗废物、生活垃圾和输液瓶(袋),严禁混放各类医疗废物。规范医疗废物贮存场所(设施)管理,不得露天存放。及时告知并将医疗废物交由持有危险废物经营许可证的集中处置单位,执行转移联单并做好交接登记,资料保存不少于3年。医疗废物集中处置单位要配备数量充足的收集、转运周转设施和具备相关资质的车辆,至少每2天到医疗机构收集、转运一次医疗废物。要按照《医疗废物集中处置技术规范(试行)》转运处置医疗废物,防止丢失、泄漏,探索医疗废物收集、贮存、交接、运输、处置全过程智能化管理。对于不具备上门收取条件的农村地区,当地政府可采取政府购买服务等多种方式,由第三方机构收集基层医疗机构的医疗废物,并在规定时间内交由医疗废物集中处置单位。确不具备医疗废物集中处置条件的地区,医疗机构应当使用符合条件的设施自行处置。(国家卫生健康委、生态环境部、交通运输部、地方各级人民政府按职责分工负责)/pp  三、做好生活垃圾管理/pp  医疗机构要严格落实生活垃圾分类管理有关政策,将非传染病患者或家属在就诊过程中产生的生活垃圾,以及医疗机构职工非医疗活动产生的生活垃圾,与医疗活动中产生的医疗废物、输液瓶(袋)等区别管理。做好医疗机构生活垃圾的接收、运输和处理工作。(国家卫生健康委、住房城乡建设部按职责分工负责)/pp  四、做好输液瓶(袋)回收利用/pp  按照“闭环管理、定点定向、全程追溯”的原则,明确医疗机构处理以及企业回收和利用的工作流程、技术规范和要求,用好用足现有标准,必要时做好标准制修订工作。明确医疗机构、回收企业、利用企业的责任和有关部门的监管职责。在产生环节,医疗机构要按照标准做好输液瓶(袋)的收集,并集中移交回收企业。国家卫生健康委要指导地方加强日常监管。在回收和利用环节,由地方出台政策措施,确保辖区内分别至少有1家回收和利用企业或1家回收利用一体化企业,确保辖区内医疗机构输液瓶(袋)回收和利用全覆盖。充分利用第三方等平台,鼓励回收和利用企业一体化运作,连锁化、集团化、规模化经营。回收利用的输液瓶(袋)不得用于原用途,不得用于制造餐饮容器以及玩具等儿童用品,不得危害人体健康。商务部要指导地方做好回收企业确定工作。工业和信息化部要指导废塑料综合利用行业组织完善处理工艺,引导行业规范健康发展,培育跨区域骨干企业。(国家卫生健康委、商务部、工业和信息化部、市场监管总局、地方各级人民政府按职责分工负责)/pp  五、开展医疗机构废弃物专项整治/pp  在全国范围内开展为期半年的医疗机构废弃物专项整治行动,重点整治医疗机构不规范分类和存贮、不规范登记和交接废弃物、虚报瞒报医疗废物产生量、非法倒卖医疗废物,医疗机构外医疗废物处置脱离闭环管理、医疗废物集中处置单位无危险废物经营许可证,以及有关企业违法违规回收和利用医疗机构废弃物等行为。国家卫生健康委、生态环境部会同商务部、工业和信息化部、住房城乡建设部等部门制定具体实施方案,明确部门职责分工。市场监管总局、公安部加强与国家卫生健康委、生态环境部的沟通联系,强化信息共享,依法履行职责。各相关部门在执法检查和日常管理中发现有涉嫌犯罪行为的,及时移送公安机关,并积极为公安机关办案提供必要支持。公开曝光违法医疗机构和医疗废物集中处置单位。(国家卫生健康委、生态环境部牵头,商务部、工业和信息化部、住房城乡建设部、市场监管总局、公安部参与,2020年底前完成集中整治)/pp  六、落实各项保障措施/pp  (一)完善信息交流和工作协同机制。建立医疗废物信息化管理平台,覆盖医疗机构、医疗废物集中贮存点和医疗废物集中处置单位,实现信息互通共享。卫生健康部门要及时向生态环境部门通报医疗机构医疗废物产生、转移或自行处置情况。生态环境部门要及时向卫生健康部门通报医疗废物集中处置单位行政审批情况,面向社会公开医疗废物集中处置单位名单、处置种类和联系方式等。住房城乡建设(环卫)部门要及时提供生活垃圾专业处置单位名单及联系方式。商务、工业和信息化部门要共享有能力回收和利用输液瓶(袋)等可回收物的企业名单、处置种类和联系方式,并及时向卫生健康部门通报和定期向社会公布。医疗机构要促进与医疗废物集中处置单位、回收企业相关信息的共享联动,促进医疗机构产生的各类废弃物得到及时处置。建立健全医疗机构废弃物监督执法结果定期通报、监管资源信息共享、联合监督执法机制,相关部门既要履行职责,也要积极沟通,全面提升医疗机构废弃物的规范管理水平。(国家卫生健康委、生态环境部牵头,商务部、工业和信息化部、市场监管总局、公安部、住房城乡建设部参与)/pp  (二)落实医疗机构废弃物处置政策。综合考虑区域内医疗机构总量和结构、医疗废物实际产生量及处理成本等因素,鼓励采取按床位和按重量相结合的计费方式,合理核定医疗废物处置收费标准,促进医疗废物减量化。将医疗机构输液瓶(袋)回收和利用所得列入合规收入项目。符合条件的医疗废物集中处置单位和输液瓶(袋)回收、利用企业可按规定享受环境保护税等相关税收优惠政策。医疗机构按照规定支付的医疗废物处置费用作为医疗成本,在调整医疗服务价格时予以合理补偿。(国家发展改革委、财政部、税务总局、国家医保局、国家卫生健康委按职责分工负责)/pp  七、做好宣传引导/pp  统筹城市生活垃圾分类和无废城市宣传工作,充分发挥中央主要媒体、各领域专业媒体和新媒体作用,开展医疗废物集中处置设施、输液瓶(袋)回收和利用企业向公众开放等形式多样的活动,大力宣传医疗机构废弃物科学分类、规范处理的意义和有关知识,引导行业、机构和公众增强对医疗机构废弃物处置的正确认知,重点引导其对输液瓶(袋)回收利用的价值、安全性有更加科学、客观和充分的认识。制修订相关标准规范时,要公开听取各方面意见,既广泛凝聚社会共识,也做好知识普及。加大对涉医疗机构废弃物典型案件的曝光力度,形成对不法分子和机构的强力震慑,营造良好社会氛围。(国家卫生健康委、生态环境部、住房城乡建设部、商务部、工业和信息化部按职责分工负责,中央宣传部、中央网信办、公安部参与)/pp  八、开展总结评估/pp  相关牵头部门要于2020年底前组织对各牵头工作进行阶段性评估,2022年底前完成全面评估,对任务未完成、职责不履行的地方和有关部门进行通报,存在严重问题的,按程序追究相关人员责任。根据评估情况,适时启动《医疗废物管理条例》修订工作。(国家卫生健康委、生态环境部、国家发展改革委、住房城乡建设部、商务部、工业和信息化部、司法部等按职责分工负责)/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2a4a0f8a-7436-4f85-ab28-560024b04a59.jpg" title="绿· 仪社.jpg" alt="绿· 仪社.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加“绿· 仪社”为好友 了解更多环境监测市场信息!/spanbr//p
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 气质联用仪的基本原理
    p style="line-height: 1.5em " 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。br//pp style="line-height: 1.5em "  strong基本应用/strong/pp style="line-height: 1.5em "  气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。/pp style="line-height: 1.5em " strong GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。/strong/pp style="line-height: 1.5em "  strong一、色谱部分/strong/pp style="line-height: 1.5em "  色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。/pp style="line-height: 1.5em " strong 二、气质接口/strong/pp style="line-height: 1.5em "  气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。/pp style="line-height: 1.5em "  strong三、质谱仪部分/strong/pp style="line-height: 1.5em "  质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。/pp style="line-height: 1.5em "  strong1.离子源/strong/pp style="line-height: 1.5em "  离子源的作用是接受样品产生离子,常用的离子化方式有:/pp style="line-height: 1.5em "  strong电子轰击离子化/strong(electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。/pp style="line-height: 1.5em "  strongEI特点:/strong/pp style="line-height: 1.5em "  ⑴结构简单,操作方便。/pp style="line-height: 1.5em "  ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。/pp style="line-height: 1.5em "  ⑶所得分子离子峰不强,有时不能识别。/pp style="line-height: 1.5em "  本法不适合于高分子量和热不稳定的化合物。/pp style="line-height: 1.5em "  strong化学离子化/strong(chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。/pp style="line-height: 1.5em "  strongCI特点/strong/pp style="line-height: 1.5em "  ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。/pp style="line-height: 1.5em "  ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。/pp style="line-height: 1.5em "  strong场致离子化/strong(fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。/pp style="line-height: 1.5em "  strong场解吸离子化/strong( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。/pp style="line-height: 1.5em "  strong负离子化学离子化/strong(negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。/pp style="line-height: 1.5em "  strong2.质量分析/strong/pp style="line-height: 1.5em "  其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有:/pp style="line-height: 1.5em "  strong四极杆质量分析器(quadrupoleanalyzer)/strong/pp style="line-height: 1.5em "  原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。/pp style="line-height: 1.5em "  strong扇形质量分析器/strong/pp style="line-height: 1.5em "  磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。/pp style="line-height: 1.5em "  特点:分辨率低,对质量同、能量不同的离子分辨较困难。/pp style="line-height: 1.5em "  strong双聚焦质量分析器/strong(double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。/pp style="line-height: 1.5em "  strong离子阱检测器(iontrap detector)/strong/pp style="line-height: 1.5em "  原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。/pp style="line-height: 1.5em "  检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。/pp style="line-height: 1.5em "  strong真空系统/strong/pp style="line-height: 1.5em "  由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵/pp style="line-height: 1.5em " strong 主要性能指标/strong/pp style="line-height: 1.5em "  气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。/pp style="line-height: 1.5em "  质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。/pp style="line-height: 1.5em "  分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。/pp style="line-height: 1.5em "  灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。/pp style="line-height: 1.5em "  质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。/pp style="line-height: 1.5em "  扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。/pp style="line-height: 1.5em "  质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。/pp style="line-height: 1.5em "  动态范围决定了气质联用仪的检测浓度范围。/pp style="line-height: 1.5em "  strong测定方法/strong/pp style="line-height: 1.5em "  strong总离子流色谱法(totalionization chromatography,TIC)/strong--类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。/pp style="line-height: 1.5em "  strong选择性离子监测(selectedion monitoring,SIM)/strong--对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。/pp style="line-height: 1.5em "  strong质谱图/strong--为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。/ppbr//p
  • NACHT纳赫特讲解高速离心机工作原理
    订购优质的德国NACHT(纳赫特)离心机,德国Fevik(菲维科)冻干机等产品,请致电杰懋万得福(中山)生物科技有限公司.质量上乘,价格公道,为广大用户提供专业的实验室仪器设备解决方案.离心机是什么?高速离心机的工作原理什么?今天小编就来给大家科普一下离心机的小知识。离心机是一种能把液体与固体颗粒或者是液体与液体中的混合物分组分离的机械。高速离心机则属于常规实验室用的离心机,其广泛应用于生物,化学,医药等科研教育领域和生产部门 ,非常适用于微量样品的快速分离合成。离心机主要用于将悬浮液中的固体颗粒和液体分离开;或者是将乳浊液中两种依据密度不同,又互不融合的液体划分开,(比如说可以从牛奶中分离出奶油);它也可以用来排除潮湿物中的液体水分,例如用洗衣机甩干湿的衣服;其中具有特殊的超速管式分离机还能够分离不同密度空气中的气体混合物;利用不同密度分子或粒度大小的固体颗粒在液体中下沉和降落速度不同的特点性能,有的沉降离心机甚至可以对固体的颗粒按密度或粒度进行等级划分。其实离心机就是利用了转子高速旋转而产生的一股强大的离心力,从而加速液体中颗粒的下沉和降落速度,再把样品中拥有各自不同属性沉降系数和浮力密度的物质分离开,这就是离心机的工作原理。高速离心机的型号大小、种类也比较多,价格较贵,选购时应根据工作使用需求进行多方衡量确定。离心机的型号确定后,就是选购什么样的离心转头和内胆。最需要考虑的就是根据就是原有的样品容量及离心的首要条件。离心脱水设备的最主要部件是内胆,电动机通过皮带带动内胆高速旋转产生很大的离心力,水分因此通过内胆上的小孔被甩出去,被收集后统一排出。所以关于内胆材质的选择上也要进行多方的筛选。对于转头的选择上,并不是追求越全越好的,且转头转速的价格相差也大,种类很多,因为一个离心机有两个转头又互相配合,所以应有离心机允许的高转速的转头。有两台离心机的单位可考虑转头型号互补以节省一定资金。离心机的管理也是非常的重要。高、超速离心机要求按期进行检查维修,使用者也应实验状态及维修仔细详尽的记录使用情况,从而保证离心机的后续安全使用。高、低速离心机由于操作过程相对简单,可以通过自主阅读说明书,大量练习离心机操作规程后能独自使用。而超速离心机因为内部的结构复杂,工作程序也较繁多,一旦出现不当的行为容易发生事故,特别是对离心转头更应该小心认真的保养、使用。 免责声明:所载内容来源互联网等公开渠道,我们对文中观点保持中立,仅供参考,交流之目的。转载的稿件版权归原作者和机构所有,如有侵权,请告知我们删除。
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 从原理入手!让我们走进这款WIGGENS红外加热板
    红外线加热板具有操作模式多样化、简单,耐腐蚀,清洁容易等特点,可应用于农业、土壤、环保、食品、科研院所、大专院校等实验、化验室,用于样品加热、烘烤、消化、赶酸等工作。红外线加热的原理:利用物体对光的吸收。红外线的传热形式是辐射传热,由电磁波传递能量。在远红外线照射到被加热的物体时,一部分射线被反射回来,一部分被穿透过去。当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体吸收远红外线,这时,物体内部分子和原子发生“共振”——产生强烈的振动、旋转,而振动和旋转使物体温度升高,达到了加热的目的。WIGGENS红外线加热板SLK 1/2/2-T产品介绍* WIGGENS 红外线加热板采用微晶玻璃面板 (Glass Ceramic), 表面光滑 , 无 细孔 , 不易磨损 , 抗化学腐蚀 , 清洁容易, 导热效率高, 均匀度好, 可以承受热震700℃剧烈温度变化, 大幅度满足实验室快速加热与安诠考虑的双重要求* SLK1 / SLK2 红外线加热板具有 24 段温度设定 ,飞梭式设定旋钮 ,大屏幕液晶显示设定温度及实际温度* 旋钮定时功能,设定工作时间及实际工作时间大屏幕液晶显示,工作状态一目了然,可以定时:0-1800s* SLK2-T 可以外接温度传感器,直接控制待加热液体的温度, 控制温度范围: +40~+300℃;温度控制稳定性: ±2℃ ~±5℃ ( 决定于待加热液体物化性质及容器材质形状)* 前面板顶部导流槽设计,确保意外情况下液体不会浸入前面板电源部分茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多WIGGENS产品,Welcome to consult~
  • 色度测定仪工作原理及仪器维护
    工作原理仪器使用 220V、100W,色温为 2750±50K 的内磨砂乳壳灯泡为标准光源。光源光经由乳白色玻璃片和日光滤色 33 玻璃片滤色后,所得到的标准光的光谱特性类似于自然光。标准光经由平面反射镜,棱镜组成二条平行光束,其大小形状完全相同,分别均匀地照射在标准色盘的颜色玻璃片上和比色管的试样上。标准色盘上有 26个 Ø14光孔,其中 25顺序装有(1~25)色号的标准颜色玻璃片,第 26孔为空白,色盘安装在仪器右侧由手轮转动。试验时用于选择正确的标准颜色。比色管为内径 Ø32毫米,高(120~130)mm的无色平底玻璃管。比色管由仪器顶部的小盖位置放入。观察目镜由凹镜和分隔栅组成,在目镜中可同时看到二个半圆色,其左边的为试样颜色。其右边的为标准色颜色,光学目镜具有光线调节和调焦能力,使用方便。仪器的维护1,光学目镜系统,已经调焦和光线调节正确,使用时不宜多动,如需调整需专业人士调整,或返修厂家。2,标准颜色玻璃片每隔半年,须用 SH/T0168规定的标定比色液作校验一次如发现色片颜色与相当色号的比色液颜色相差达一个色号时,应更换新的色盘或送请制造厂重新标定。3,请勿随意拆卸目镜。4,目镜表面附着脏物,影响观察,客户只能做简单处理,将目镜从仪器上取下,倒放在干净的平台上,用洁净的洗耳球,轻吹目镜表面,如问题未解决,必须返厂处理,或请专业人员进行清理。相关仪器ENDBT-0168石油产品色度测定仪符合SH/T0168-92标准,可与GB6540的16个色号相对应,适用于测定润滑油及其他石油产品的颜色。测定时将欲测定的石油产品试样注入比色管内,然后与标准色片相比较就可以确定其色度色号。仪器特点1、仪器由标准色盘、观察光学镜头、光源、比色管组成2、采用磨砂乳壳灯泡为发光源3、光源经滤色后能分别均匀照射在标准色盘的颜色玻璃片和比色管4、光学目镜具有光线调节和调焦能力,使用方便技术参数比色管内径:Φ32mm 高:120~130mm环境温度:5℃~40℃相对湿度:≤85%电源电压:交流220V±10% 50Hz±10%功率消耗:500W标准色盘:26个Φ14光孔, 25个分别顺序装有1-25色号的标准颜色玻璃片,26孔为空白。色 度: 1~25号外形尺寸:400mm×320mm×295mm仪器重量:21kg
  • 干血斑分析技术进展与应用——基于干血斑的蛋白质分析技术
    干血斑(Dried Blood Spot, DBS)是一种微量血液采集、干燥和储存的生物采样技术。该技术由Robert Guthrie于1963年首次应用于新生儿苯丙酮尿症(PKU)筛查[1]。相比于临床检验中常用的液态血液基质,干血斑技术具有采血量少、操作简便、一般不需冷冻或冷藏、储存和运输成本低等优点,已应用于新生儿疾病筛查、流行病学样本分析、药物研发等领域。将干血斑应用于蛋白质研究,拓宽了蛋白质分析研究的生物样本采集形式,具有很好的临床研究和实际应用价值。本文重点讨论两种常见干血斑蛋白质分析技术及应用。1. 基于干血斑的蛋白分析技术1.1 酶联免疫吸附分析法原理:酶联免疫吸附分析法(ELISA)是指将可溶性的抗原或抗体结合到聚苯乙烯等固相载体上,利用抗原抗体特异性结合,进行免疫反应的定性和定量分析,具有灵敏、特异、及易于自动化操作等特点。根据免疫识别和信号输出方式的不同,ELISA可以分为双抗体夹心法、直接免疫竞争法和非直接免疫竞争法等。实验材料及分析仪器:研究人员可通过购买固相载体、抗体或抗原进行包被制备ELISA试剂盒或购买市售试剂盒。酶联免疫吸附测定试剂盒已成为实验中不可缺少的工具,目前国内外Elisa试剂盒生产厂家很多,如上海酶联生物、Abcam、BioVision等,科研人员可根据研究需求选择高质量的试剂盒品牌,以提升分析效率及结果有效性。干血斑处理:以干血斑HIV分析为例:用HIV阴性混合血液样本对阳性混合血液样本进行梯度稀释后,以固定体积点样至干血斑收集卡,室温下干燥。采用干血斑打孔设备获得一定直径的干血斑样片,用300 μL PBST(0.05% Tween20)室温静置洗脱,洗脱液经酶标仪测定样本吸光度值(OD值)。分析和结果处理:以标准曲线样品的浓度为横坐标,以测得的OD值为纵坐标,根据不同类型ELISA本身的特点拟合标准曲线(如竞争法和夹心法可以采用四参数拟合回归方程),选择R值大于0.99的拟合方式,并根据标准曲线计算样品浓度。分析仪器:酶标仪(MicroplateReader)即酶联免疫检测仪,是对酶联免疫检测(EIA)实验结果进行读取和分析的专业仪器。酶标仪可分为普通酶标仪和多功能酶标仪,普通酶标仪的主要功能一是充当分光光度计的角色,二是基于免疫反应的ELISA分析,价格相对较低;多功能酶标仪可实现吸光度、荧光强度、时间分辨荧光、荧光偏振和化学发光等多种检测模式拓展,满足生化分析、免疫检测、细胞研究、药物筛选和机制探索等众多领域检测需要。目前酶标仪市场常用的仪器品牌进口的有:伯腾、帝肯、美谷分子、珀金埃尔默和赛默飞等;国产的有:安图生物、奥盛和闪谱等。1.2 基于质谱技术的蛋白质分析技术基于质谱(Mass Spectrometry, MS)技术的蛋白质分析方法具有高通量、自动化程度高、分离能力强等特点,已逐渐成为蛋白质分析和鉴定的重要技术。原理:蛋白酶将样本中的蛋白质消化成肽段混合物,可采用鸟枪法(Shotgun)对蛋白组进行全谱分析,在最小限度分离蛋白质的同时实现复杂混合物中成千上万种蛋白质的鉴定和定量;或用液相色谱法(Liquid Chromatography, LC)对酶解肽段进行分离,经基质辅助激光电离(MALDI)或电喷雾电离(ESI)等软电离技术将其离子化,带电蛋白质离子通过质量分析器将具有特定质荷比的肽段离子分离,然后经检测器分析。质谱技术与干血斑技术的结合为蛋白质组学研究和蛋白生物标志物筛选提供了强有力手段。图1 基于质谱技术的蛋白质组学分析流程[2]样本处理:采用干血斑打孔设备获得一定直径的干血斑样片,转移至EP管中,加入少量水后用组织研磨器或匀浆机快速、彻底破碎干血斑样片,剧烈摇晃试管。后续处理与常规样本的蛋白提取相似:加入蛋白裂解液(如SDS、SDC、RIPA等),冰上裂解约半小时(辅以震荡),低温、高转速离心后取上清,得干血斑蛋白提取物。分析和结果处理:蛋白质组学数据分析和结果处理包括:①应用数据库搜库对蛋白进行鉴定并相对定量分析,借助如主成分分析、相关性分析、聚类分析等方法掌握数据的整体情况;②对蛋白的生物学功能进行注释,例如GO功能注释、KEGG注释等;③通过蛋白的生物学功能或参与的信号通路可以进一步筛选与研究目标相关的蛋白进行后续的分析。分析仪器:蛋白质组学分析主要使用高分辨液质联用系统进行。可进行蛋白质组学分析的液质联用系统目前以进口为主,常见仪器主要有布鲁克、赛默飞、沃特世和SCIEX的Q-TOF、Q-Orbitrap、Q-Trap质谱仪等。2. 干血斑蛋白分析应用实例分享2.1 采用ELISA法分析干血斑中HIV抗体1996年美国食品药品监督管理局(FDA)批准了以干血斑为载体的样本邮寄传递检测模式,并证明其可作为传统检测模式的良好补充,极大地推动了干血斑技术在传染性疾病分析中的应用。在我国,全国艾滋病检测技术规范(2020年修订版)第二章第4部分“常规HIV抗体或HIV抗体抗原联合检测方法”中指出:ELISA试验可使用血液(包含血清、血浆和干血斑)或尿液样本检测HIV抗体,也可联合检测HIV抗体抗原,说明干血斑在基于ELISA技术的HIV抗体检测中是可代替血浆、血清的生物样本基质,具有广阔的应用前景。近年来,相关专家多推荐受检者使用HIV自主采样包,根据说明采集干血斑样本,匿名寄至专业实验室,通过电话等方式获取结果。图2 RDA Spot公司的干血斑自主采样包(包含一次性采血针,消毒湿巾,样本采集卡,使用说明书及用于运输的特殊包装)图片来源:https://www.rdaspot.com/2.2 基于质谱技术的干血斑蛋白质组学分析研究人员建立了应用Thermo UltiMate 3000 RSLCnano纳升液相色谱联合Q Exactive HF-X质谱技术的干血斑蛋白质组学分析方法,并于2020年在Journal of Proteome Research中报道了该项工作[3]。由于全血中含有较多可溶性蛋白(如血红蛋白、白蛋白、纤维蛋白原等),研究人员为克服干扰、提高分析灵敏度,采用碳酸钠沉淀法(SCP)成功去除干血斑中可溶性蛋白并富集目标分析物疏水性蛋白。采用基于数据非依赖采集模式(DIA)的蛋白质组学分析方法,进行EMBL-EBI(针对人类蛋白GO功能分析的综合注释数据库)蛋白组学搜库分析,通过限定质谱扫描范围和延长离子累积时间等提高了分析方法的检测灵敏度。该研究最终在健康受试者干血斑样本中鉴定到1977种蛋白质,其中包含585种疾病相关蛋白。3. 小结与展望干血斑是一种先进的血液采集及保存技术,具有操作简单、对人体损伤小、便于运输和储存等优势,在临床快检中受到关注。干血斑技术与蛋白质研究的结合将有效推动蛋白质研究成果临床转化。随着分析技术的发展和相关研究的不断深入,前处理自动化仪器、高通量分析仪器和成熟的蛋白分析流程将成为干血斑蛋白质分析的有力工具,干血斑蛋白质分析定将在蛋白质分析中发挥重要作用,为高通量诊断、差异蛋白分析和疾病生物标志物挖掘等拓展新的技术平台。参考文献:[1] R. Guthrie, & Susi, A., A Simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants., Pediatrics, 32 (1963) 338–343.[2] B. Kuster, M. Schirle, P. Mallick, R. Aebersold, Scoring proteomes with proteotypic peptide probes, Nature Reviews Molecular Cell Biology, 6 (2005) 577-583.[3] D. Nakajima, Y. Kawashima, H. Shibata, T. Yasumi, M. Isa, K. Izawa, R. Nishikomori, T. Heike, O. Ohara, Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics, Journal of proteome research, 19 (2020) 2821-2827.
  • 超声波明渠流量计的工作原理是什么
    超声波明渠流量计的工作原理是什么?根据流体力学原理可知:明渠内的流量越大,液位越高;流量越小,液位越低。另外,一般明渠内水流量大小还与渠道的横截面积、坡度、粗糙度有关。如果在渠道内安装几何尺寸和堰板材料固定的量水堰槽后,流量与液位就建立了确定的对应关系。这样量水堰槽就把流量测量转成了易于实现的水位测量。常用的量水堰槽种类有三角堰、矩形堰和巴歇尔堰槽三种(见图 1)。根据流体力学原理可知:明渠内的流量越大,液位越高;流量越小,液位越低。另外,一般明渠内水流量大小还与渠道的横截面积、坡度、粗糙度有关。如果在渠道内安装几何尺寸和堰板材料固定的量水堰槽后,流量与液位就建立了确定的对应关系。这样量水堰槽就把流量测量转成了易于实现的水位测量。常用的量水堰槽种类有三角堰、矩形堰和巴歇尔堰槽三种(见图 1)。简言之,水力学法测量流量的原理为:首先测量出量水堰槽内水流的液位,再根据“水位-流量”的水力学关系公式,求出流量。
  • 微生物气溶胶浓缩器工作原理怎样使用
    青岛路博的马德我不敢说我们的产品一定如何但我敢说,我们的服务一定真诚只要您有需要,我们有能力,一定让您满足 我们的产品不仅仅您看到的这条,还有许多对于环保的器材,有关环保的仪器仪表您有需要,尽管联系公司名称:青岛路博环保科技有限公司地址:青岛市城阳区金岭工业园锦宏西路与微生物气溶胶浓缩器是基于虚拟冲击浓缩法原理 ,为解决低浓度微生物气溶胶采集问题而研制的一种具有微生物气溶胶前置浓缩功能、且与标准微生物采样器配套的新型仪器,旨在提供一种高效率生物浓缩器,为微生物污染的检测和研究提供支持。 本产品符合标准《GB/T 18204.5-2013 公共场所卫生检验方法 第5部分:集中空调通风系统》和卫生行业标准《WS 394-2012 公共场所集中空调通风系统卫生规范》要求,采集集中空调送风,检测其中的嗜肺军团菌。采集流量大,使需要的粒子短时间浓缩到采样器中,避免长时间采样带来的生物活性损失,提高采样器的现场实用性。 主要技术指标:l 总气路流(50~130)L/min可调,允许误差±5%;l 接生物采样器(采样瓶)后浓缩气路流量(5~15)L/min可调,允许误差±5%;l 总气路流量及浓缩气路流量重复性误差±2%l 输入气路负载能力(接分离器):≥2KPal 浓缩气路负载能力:≥50KPal 对于3um以上生物粒子的捕集效率大于80%,理论浓缩比1:10。l 定时功能:1秒-99小时59分59秒l 双路同时采集l 流量手动调节l 备可升降云台,可根据现场情况调节采样头高度3米(或4米选配) 青岛路博建业有限公司是一家集环保科研、设计、生产、维护、销售和系统集成为一体的综合性高科技企业。我们不仅有的销售团队,还有专业的技术团队和售后服务人员,为你的购买使用提供一站式服务。为什么选路博1.路博有自己的工厂,有专业的技术团队,保证产品质量。2.路博有的销售团队和售后服务,一年质保,终身维护,可以视频教授产品使用方法或现场指导。3.厂家直销,没有中间商赚差价,保护客户利益.
  • 环境监测工作40年现逆转 新格局诞生势在必然
    日前,国务院办公厅印发《生态环境监测网络建设方案》。计划到2020年,全国生态环境监测网络要基本实现环境质量、重点污染源、生态状况监测全覆盖。但是,面对当前生态文明建设的新形势和新要求,还需以解决当前环境监测工作中的顽疾作为突破口,加快推进生态环境监测网络建设改革。    环境监测工作40年现逆转 新格局诞生势在必然    国务院办公厅日前印发《生态环境监测网络建设方案》(以下简称《方案》),对今后一个时期我国生态环境监测网络建设做出了全面规划和部署。《方案》提出,要形成全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局。    经过近40年的发展,我国环境监测工作已经逐渐摆脱依靠“耳、鼻、口”,实现了从手工到自动,从粗放到精准,从分散封闭到集成联动,从现状监测到预测预警的转变。而随着生态环境监测网络建设的启动,环境监测工作中沉疴已久的顽疾也有望得到根治。    环境监测工作40年实现逆转    根据《方案》提出的主要目标:到2020年,全国生态环境监测网络要基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络。简而言之,就是要“全面做到说清生态环境质量及变化趋势、说清污染排放状况、说清潜在的生态环境风险”。    “当前,全国环保系统按照空气质量新标准建成了发展中国家最大的空气质量监测网,所有地级以上城市都按照新的空气质量标准开展了PM2.5在内的6项主要空气污染物监测,并实时发布监测信息。同时,水环境监测网络不断完善,县域生态环境质量监测、空气质量预报预警和颗粒物源解析等工作也取得了重大进展。尤其2012年环境一号C星成功发射,并与环境一号A/B星3星组网,形成了环境卫星‘2+1’星座,实现了2~3天对全国覆盖一次的遥感监测能力,初步建成了天地一体化监测系统。”环保部相关负责人介绍,经过近40年的发展建设,我国环境监测工作已经改变了靠“眼睛看、鼻子闻、耳朵听”的落后面貌,建成了较为完善的生态环境监测网络并及时向人民群众发布各类监测信息。    但是,面对当前生态文明建设的新形势和新要求,我国生态环境监测事业发展还存在网络范围和要素覆盖不全,建设规划、标准规范与信息发布不统一,信息化水平和共享程度不高,监测与监管结合不紧密,监测数据质量有待提高等突出问题,难以满足生态文明建设需要,影响了监测的科学性、权威性和政府的公信力。因此,加快推进生态环境监测网络建设改革,解决影响生态环境监测网络建设的突出问题迫在眉睫。    环境监测顽疾成改革突破口    由此可以判断,生态环境监测网络建设将以解决当前环境监测工作中的顽疾作为突破口。    第一,针对当前我国生态环境监测存在部门间环境监测网络规划布局不统一,技术规范、评价方法不统一,数据缺乏可比性等问题,方案明确,要统一生态环境监测建设规划、标准规范。具体做法是由环保部门会同有关部门统一规划、整合优化环境质量监测点位,建设涵盖大气、水、土壤、噪声、辐射等要素,布局合理、功能完善的全国环境质量监测网络。同时,统一相关环境要素的布点、监测和评价技术标准规范,并根据工作需要及时进行修订完善,以增强各部门生态环境监测数据的可比性。    第二,针对当前国务院有关部门之间、地方之间以及地方与中央之间监测数据集成联网与共享不足,环境监测信息发布渠道不统一等问题,方案提出加快生态环境监测信息传输网络与大数据平台建设,将国务院相关部门和各地的生态环境监测数据进行联网共享,大力加强数据资源的开发与应用。并依法建立统一的生态环境监测信息发布制度,实现生态环境监测数据统一发布。    第三,针对当前监测与监管结合不紧密、对追究各级政府和企业相关生态环境保护责任支撑不足的问题,《方案》提出要充分利用生态环境监测结果考核问责政府环保责任落实情况,建立监测与执法相结合的快速响应体系,实现监测与监管有效联动。    第四,针对当前各级政府、企业、社会的环境监测事权划分不够清晰,存在责任落实不到位、监测数据受行政干预的现象,方案主张明晰生态环境监测事权与责任。    提出,各级环保部门主要承担生态环境质量监测、重点污染源监督监测、环境执法监测、环境应急与预报预警等职能。环保部适度上收生态环境质量监测事权,以准确掌握、客观评价全国生态环境质量总体状况。    地方各级环保部门相应上收生态环境质量监测事权。    值得注意的是,方案提出大力推动环境监测社会化服务,积极培育生态环境监测市场,明确提出开放服务性监测市场,并在基础公益性监测领域积极推进政府购买服务。同时,要求环保部制定相关政策和办法,有序推进环境监测服务社会化、制度化、规范化。    第五,针对实际工作中,部分生态环境监测机构不能严格履职、监测质量不高以及责任追究不到位等突出问题,《方案》将加强对各类生态环境监测机构的监管。    首先,各级相关部门所属生态环境监测机构、从事环境监测设备运营维护的机构、社会环境监测机构及其负责人对监测数据的真实性和准确性负责。其次,环保部要依法建立健全对不同类型生态环境监测机构及从事环境监测设备运营维护机构的监管制度,制定环境监测数据弄虚作假处理办法等规定。各级环保部门要加大监测质量核查巡查力度,加强对各类生态环境监测机构监测业务活动的监管,严肃查处故意违反环境监测技术规范,篡改、伪造监测数据的行为。(来源:中电新闻网)
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 浅析电化学型气体传感器的工作原理和检测方法
    p  要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。/ppstrong1.电化学型气体传感器的结构/strong/pp  电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。/pp  电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。/ppstrong2.电传感器工作原理/strong/pp  电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。/ppstrong表1 各种电化学式气体传感器的比较/strong/ptable cellspacing="0" cellpadding="0" border="1"tbodytr class="firstRow"td style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"种类/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"现象/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"传感器材料/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"特点/span/strong/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"恒电位电解式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"气体扩散电极,电解质水溶液/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"通过改变气体电极,电解质水溶液,电极电位等可测量CO、Hsub2/subS、HOsub2/sub、SOsub2/sub、HCl等/span/p/td/trtrtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子电极式/span/strong/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电极电位变化/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子选择电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量NHsub3/sub、HCN、Hsub2/subS、SOsub2/sub、COsub2/sub等气体/span/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电量式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量Clsub2/sub、NHsub3/sub、Hsub2/subS等/span/p/td/trtrtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质式/span/strong/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"测定电解质浓度差产生的电势/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"适合低浓度测量,需要基准气体,耗电,可测量COsub2/subsub、/subNOsub2/sub、Hsub2/subS等/span/p/td/tr/tbody/tablep表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。/pp2.1 恒电位电解式气体传感器/pp  恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示:/pp    I=(nfADC)/ σ/pp  式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。/pp  在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。/pp  自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、Nsubx/subOsubY/sub(氮氧化物)、Hsub2/subS检测仪器等产品。这些气体传感器灵敏度是不同的,一般是Hsub2/subS NO NOsubb/sub Sq CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。/pp  以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如Hsub2/subS、NO、NOsubb/sub、Sq、HCl、Clsub2/sub、PHsub3/sub等,还能检测血液中的氧浓度。/pp2.2离子电极式气体传感器/pp  离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。/pp  现以检测NHsub3/sub传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NHsub4/subsup+/sup,同时水也微弱离解,生成氢离子Hsup+/sup,而NH4sup+/sup与Hsup+/sup保持平衡。将传感器侵入NHsub3/sub中,NHsub3/sub将通过隔膜向内部渗透,NHsub3/sub增加,而Hsup+/sup减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NHsub3/sub浓度。除NHsub3/sub外,这种传感器海能检测HCN(氰化氢)、Hsub2/subS、Sq、C0sub2/sub等气体。/pp  离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。/pp2.3电量式气体传感器/pp  电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。/pp  现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成Hsup+/sup,在两铂电极间加上适当电压,电流开始流动,后因Hsup+/sup反应产生了Hsub2/sub ,电极间发生极化,发生反应,其结果,电极部分的Hsub2/sub被极化解除,从而产生电流。该电流与Hsub2/sub浓度成正比,所以检测该电流就能检测Clsub2/sub浓度。除Clsub2/sub外,这种方式的传感器还可以检测NHsub2/sub、Hsub2/subS等气体。/ppstrong3.传感器的检测/strong/pp  电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NOsub2/sub、Osub2/sub、SOsub2/sub等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。/pp  综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。/p
  • 一个在实验室搬砖的人,为什么需要诗歌、音乐和绘画?
    p  本文作者 乔纳· 雷尔在哥伦比亚大学主修神经科学。大学时曾在诺贝尔奖获得者神经学家埃里克· 坎德尔的实验室工作过。负责过《连线》、《科学美国人》Mind Matter博客、美国全国公共广播电台的广播实验室(Radiolab)的编辑工作,曾为《纽约客》、《自然》、《种子》、《华盛顿邮报》以及《波士顿环球报》撰过稿。他自己的博客Frontal Cortex也受到极高的赞誉。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/58d3ae17-e0ff-4388-a69c-482e985c0067.jpg" title="图1.png" width="600" height="395" border="0" hspace="0" vspace="0" style="width: 600px height: 395px "//pp  strong黑孔雀,1950/strong/ppstrong  亚历山大· 考尔德/strong/pp  这个动态雕塑是用艺术表现大脑特定区域功能的生动实例,考尔德的这个作品艺术化地预见了一个叫做V5的脑区中的细胞的生理功能。V5区的细胞对于动作和方向有特异性的反应。从远处看,这个动态雕塑的各个部分像大小不同的静止的点,然而当雕塑动起来时,雕塑的每个部分只能引起V5区内一类神经细胞的反应,因为这些神经细胞只对雕塑的这个部分的运动方向敏感。——塞米尔?赛琪(Semir Zeki),神经学家,伦敦大学学院 & #169 Christie’s Images/Corbis/pp  上世纪20年代早期,尼尔斯· 玻尔(丹麦物理学家,因对于原子结构与旧量子论的研究做出的基础性贡献而荣获1922年诺贝尔物理学奖)还在就物质的结构问题苦思不已。之前的物理学家认为,原子的内部结构应该就像一个微型的太阳系,原子核是太阳,电子像行星一样绕着原子核转。这就是关于原子结构的经典理论。/pp  但那时,玻尔已经开始研究电子辐射,他认为只有一个新的模型才能解释他的发现。电子的活动看起来与经典理论格格不入。正如玻尔所言:“到原子这个级别时,只能用诗的语言来表达了。”一般的文字已无法描述他的数据。/pp  玻尔一直痴迷于立体派画作。历史学家亚瑟· 米勒(美国剧作家,玛丽莲· 梦露的第三任丈夫。他以剧作《推销员之死》、《熔炉》而闻名)曾回忆道,玻尔的书房里摆满了抽象静物画,他还乐于向访客阐释他对这种艺术的理解。对于玻尔来说,立体派的魅力在于它将物质的确定性击个粉碎,向人们展示出万事万物中包含的裂隙,让物质的实体性变成一种超现实的暧昧不明。/pp  玻尔非凡的洞察力在于,他相信看不见的电子的世界实际上是立体派的。1923年的时候,德布罗意(法国物理学家。1929年因发现了电子的波动性,以及他对量子理论的研究而获诺贝尔物理学奖)已经证明电子具有波粒二象性。但玻尔坚称,电子所具有的形态取决于人类如何观察它们。也就是说,电子和想象中的“迷你行星”完全不同,它们更像一把被毕加索解构了的吉他,一团由画笔勾勒出的朦胧不明之物,只有在你盯着它看时才能赋予它意义。/pp  一般人很难想象抽象艺术作品能够影响科学史,立体派艺术看起来和现代物理学毫无关系。当我们想到科学过程时,脑海里总会浮现出一些特定的词语,比如客观性、实验、事实等。科学论文常常使用被动语态,这让我们觉得科学描绘的世界是现实世界的完美镜像。然而,绘画作品可以非常深刻,但它们往往都不刻画真实的事物。/pp  以上观点将科学看作是衡量一切事物的唯一标尺,这实际上基于一条未予明说的假设:艺术总是随着时尚潮流循环往复,科学知识则不断线性递增。人们认为科学史的发展应该遵循一条简单的等式,即时间+数据=掌握知识。我们相信,总有一天科学能解决所有的事。/pp  但是科学的实际历程却并不那么简单。我们对“真实”知道的越多(比如量子力学还有神经起源),“真实”的悖论就越发明显。正如小说家弗拉基米尔· 纳博科夫(俄裔美国作家,同时也是文体家、批评家、翻译家、诗人、以及鳞翅目昆虫学家,《洛丽塔》的作者)所言,“一个人科学做得越好,就越发觉得科学玄之又玄。”/pp  我们可以看看物理学史。物理学家曾不止一次认为他们搞清了宇宙是怎么回事。他们总以为,除了一些模糊的细节以外,宇宙的基本结构已经一清二楚了。然而相对论的横空出世将这种天真幻想一举粉碎,从本质上改变了经典理论中时间与空间的关系。接着,海森堡测不准定律出现,量子物理超现实一般地揭开自己的面纱。弦理论学家开始尝试调和从未如此南辕北辙的理论学派,还提出了11维理论。科学家还是搞不懂暗物质。现代物理学家对宇宙增加了这么多了解,但还是有太多搞不明白的地方。最终,一些科学家公开地表示了自我怀疑:人类是否真的有理解宇宙的能力?/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/dd550949-c54b-4e84-9f3c-a2b27ebfbb3e.jpg" title="图2.png" width="600" height="370" border="0" hspace="0" vspace="0" style="width: 600px height: 370px "//pp strong D小调第七交响曲,Op.70,1885/strong/ppstrong  安东宁· 德沃夏克(ANTONÍ N DVO?Á K)/strong/pp  大脑额叶的某个叫布罗德曼44区(Brodmann Area 47)的地方,专门预测口语、符号语言和音乐中按照时间顺序发生的事件。当预测符合实际时,神经回路就得到奖励和加强 当预测与实际不符时,另一个叫做前扣带回的脑区就被激活,并接手处理与预期不符的事件。德沃夏克第七交响曲的尾章,就是对神经回路如管弦乐一般的精妙配合进行艺术探索的佳作。部伟大作品的尾声将听众已经习惯的音乐片段的顺序进行了巧妙的置换,让我们既感受惊讶,又享受到了神经系统的奖赏。而在下一次听到类似音乐的时候,我们就会从片段式的记忆中提取这些感知。——丹尼尔?列维丁,神经科学家,麦吉尔大学/pp  我们再来看一看神经科学。仅仅在几十年前,科学家们就提出了关于“搭桥原理”(the bridging principle)的各式假说。“搭桥原理”是解释神经活动如何创造出“意识”的主观体验的神经事件。他们提出了不同种类的“桥”,从大脑皮层的40赫兹振荡,到微管中的量子相干性,不一而足。这些据称就是能将大脑之“水”酿造成意识之“酒”的生物过程。/pp  然而现在,再也没有人探讨这种所谓的“搭桥原理”了。尽管神经科学在对大脑细节的研究上不断取得重大进展,发现我们不过是由一些激酶和突触的化学活动构成的奇怪回路而已,这些进展却让一个问题变得越来越难以忽视:我们并不能体验到细胞层面的生理细节。真相总是充满讽刺:只有一个现实是科学无法再分解的,那就是我们唯一所知的现实。/pp  现代科学的瓶颈在于,我们无法将所有事情统一起来,产生一个普适的理论。我们的未知之物并没有减少很多,在很多情况下反而增加了。最基础的科学被奥秘所笼罩。并不是我们不知道答案,而是我们不知道该问什么问题。/pp  许多基础科学都遇到过这样的问题,比如物理和神经科学。物理学家研究“现实”的基本构造,即那些定义我们的物质世界的看不见的定律和粒子。神经科学家们研究的是我们对这个世界的感知。为了研究人这种动物,他们将大脑层层剖析。这两种科学向最古老也是最宏大的谜团发出了追问:到底何为万物?我们到底是谁?/pp  在我们揭开谜底之前,科学必须摆脱现有的桎梏。该怎么做呢?我给出的答案很简单:科学需要艺术。我们在实证过程中,需要给艺术家留出一席之地,我们需要重新发现玻尔在立体派绘画中看到的东西。目前科学遇到的限制很明显地说明,科学和艺术之间的割裂,不仅是一个会让鸡尾酒会上的聊天冷场的学术问题,而是一个实用主义的问题,一个会让科学止步不前的问题。如果我们想要得到终极问题的答案,就必须要在科学和艺术间搭起一座桥梁。通过倾听艺术的智慧,科学可以获得更多的灵感,而这恰恰是科学进步之源。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/b7d492c9-7c26-46ab-a628-155ee7c81bcc.jpg" title="图3.png"//pp  strong相对论,1953/strong/ppstrong  莫里茨· 埃舍尔/strong/pp  我相信,理解世界与观察世界之间有很多相似之处,人眼的视错觉可以达到什么程度,是对人脑的认知错觉可以达到什么程度的最精致譬喻。当你第一次看到埃舍尔的《相对论》这幅画时,你不会觉得有什么问题。但是当你细看时,你会突然意识到你看到的东西是不可能存在的。这幅画的每一个部分都是自洽的,然而它们拼凑起来却成为了一个不可能存在的整体。埃舍尔的作品展示的是,我们的大脑能对我们实施高明的骗术——即被我们叫做“现实”的神经魔术秀。——丹尼尔?吉伯(Daniel Gilbert),心理学家,哈佛大学 & #169 2007 The M.C. Escher Company-Holland./pp  自20世纪初登台以来,神经科学成功地做到了与大脑“密不可分”。科学家将我们的知觉还原为一系列独立的神经回路。他们采集了正在“思考”的大脑皮层的图像,计算离子通道的形状,将其拆解到亚原子层面。/pp  虽然我们搜集了这么多关于“物质”的知识,但我们对这些“物质”所创造出来的东西却几乎一无所知。我们知道突触,却不了解自己。实际上,还原论的逻辑暗示,自我意识只是一种精巧的错觉,只是额叶皮层发射神经电信号时附带的反应。机器并没有灵魂,有的只是机械震动。你的大脑包含一千亿个带电细胞,但是其中任何一个都不是你,也对你一无所知。实际上,你根本不存在。大脑只是物质的无穷回归而已,可以还原成一堆冰冷的物理定律。/pp  这种“还原法”的问题在于,它拒绝承认的,恰恰是它应该解决的那个谜。神经科学非常擅长自下而上地拆解人的思维,但剖析自我意识需要的是自上而下的方法。正如小说家理查德?鲍威尔斯(当代美国小说家,创作主题常关照现代科技产生的影响)所言,“如果我们只是通过突触来认识世界,那么我们又是怎么知道突触的呢?”神经科学的吊诡之处在于,它惊人的进步恰恰暴露了其研究范式的局限性,即还原论并不能解释意识的出现。人类的许多体验无法用神经科学的现有方法解释。/pp  人类体验的世界就是艺术的世界。小说家、画家和诗人所采撷的瞬间无法被简化、被解剖、或是能被一个科学术语缩略词的活动所表征。艺术家努力捕捉的是生命的原貌。正如弗吉尼亚· 伍尔夫(现代主义与女性主义的先锋。最知名的小说包括《达洛维夫人》、《到灯塔去》、《雅各的房间》、《奥兰多》等)所言,小说家的任务是“体察平凡的一天中的某条一闪而过的平凡的思想& #823(追溯)看上去无关而支离破碎的表象下的模式,这是每幅画面或每个事件给意识留下的痕迹的模式。”她试图用内心的语言来描述意识。/pp  神经科学还没能领会这种第一人称的视角带来的好处。它所采用的还原论方法不会将“我”置于观察的中心。它还在苦苦思索“感质”(quale,一个描述所有感官现象的哲学用词。最早由20世纪初的美国哲学家Clarence Irving Lewis提出)的问题。像伍尔夫这样的艺术家已经研究了“涌现现象”(emergent phenomena,是一个复杂系统中由简单的构成单元间的互动所造成的复杂现象,为复杂系统重要特征)好几个世纪了,并且收集了大量关于意识之谜的知识。他们构造出了关于人类意识的优美模型,这些模型将生活中的细节精炼成散文和故事情节,成功地表现出人类体验的风貌。这就是这些艺术家的作品长盛不衰的原因——因为这些作品给人的感觉是真实的。而这些作品之所以给人以真实的感觉,是因为它们抓住了“真实”的某个层面,而这却是还原论所欠缺的。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/cc1abafc-df62-4e2e-b1d5-70eee65b6020.jpg" title="图4.png"//pp  strong《岩间圣母》中的天使头像习作,1483年左右/strong/ppstrong  列奥纳多· 达· 芬奇/strong/pp  对我来说,这幅铅笔素描习作是证明科学与艺术相互呼应的绝妙例证。科学和艺术都力求通过简单而经济的方式,来代表与表达某一个对象的内在真实。我创作的等式和图表并不比达芬奇笔下的这位女性更为真实。他的这幅画让我们知道画家能够挣脱画笔的限制而到达的境界。寥寥几笔,这位仙子仿佛要脱纸而出,直视你的灵魂。为了抓住宇宙的本质,我必不能将我的等式和现实混为一谈,自然的真理会从我的等式中升华,从数学中脱壳而出变为有血有肉的生命。——克利福德?约翰逊(Clifford Johnson),物理学家,南加州大学 & #169 Alinari Archives/Corbis/pp  神经科学家如果认真地研究这些艺术创作,就可以更好地理解他们想要解析的事物的整体特征。在你解构什么东西前,最好知道它是怎么整合起来的。从这点上讲,艺术为科学提供了一个蕴藏丰富的数据库,科学从中得以窥见它的盲区。如果神经科学想要了解一些脑皮层术语之外的东西——发现意识的神经连结、发现自我的起源,或者找到主观性存在的细胞,那就必须对于这些高级精神事件有一套深刻的理解,现今的科学方法无法突破这一限制。/pp  神经科学需要新的方法,那种并不是自下而上的,而是能够对精神进行复杂表征的方法。有时候,整体还是用整体的方式来理解比较好。威廉· 詹姆士(美国哲学家与心理学家,美国心理学之父)再次首先意识到了这点。在他那本发表于1890年的巨著《心理学原理》的前八章中,他描述了用第三人称的视角来做研究的实验心理学家的心理。然而到了第九章他笔锋一转,用了“意识流”这个名字来起标题,还“警告”读者:“我们现在开始从心灵内部来研究心理。”/pp  通过这句像现代派小说一样极端的简句,詹姆士试图转换心理学的研究主题。管他知觉也好,突触也好,他不承认任何将精神拆分为基本单元的科学方法。他认为这些科学方法是还原论的,忽视了真正的现实。/pp  然而现代科学并没有沿着詹姆士指引的路走下去。在《心理学原理》发表之后,“新心理学”诞生了。这个严密的学派并不接受詹姆士的含糊其辞的描述,而是要将一切无法被测量的东西从心理学中清除出去。比如,对于体验的研究就从实验室中消失了。/pp  但艺术家们依然用他们的方式来演绎复杂的意识。他们从不因为“体验”这个东西难以表述而回避它。他们一头扎入意识的茫茫大海。在这方面,没有人做得比詹姆斯· 乔伊斯(爱尔兰作家和诗人,20世纪最重要的作家之一。代表作包括《都柏林人》、《一个青年艺术家的画像》、《尤利西斯》以及《芬尼根的守灵夜》)更好了。在《尤利西斯》中,乔伊斯试图把握意识的现在时态。小说并不是通过作者的“上帝视角”,而是通过那些角色“本人”的视角来撰写的。在布鲁姆、史蒂芬还有茉莉(布鲁姆、史蒂芬还有茉莉均为《尤利西斯》中的人物)思考美与死、床上的鸡蛋、还有数字八的时候,我们就在无声地偷听他们的内心自白。用乔伊斯的话来说,这就是“思想的浓汤”,注上标点前的心灵,写在纸上的意识流。《尤利西斯》可以说接过了威廉· 詹姆士的衣钵。/pp  同样地,痴迷于鸦片的塞缪尔· 泰勒· 柯勒律治(英国诗人、文评家,英国浪漫主义文学的奠基人之一。以《古舟子咏》一举成名)早在大脑科学出现前就写下了探讨“思考过程中心灵的自我体验”的诗作。或者拿视觉艺术来说吧,神经科学家塞米尔?赛琪曾经写道:“艺术家(画家)在某种意义上就是神经科学家,他们用他们自己独有的方式来研究大脑。”莫奈的《干草垛》之所以吸引人,原因就在于他对色彩的感知有着独到的理解。波洛克的滴画之所以让我们产生共鸣,是因为它们激活了视觉皮层的一些特定回路。这些画家从相反的角度操纵了大脑,他们发现了能够吸引眼球的视觉规律。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/c181a68f-4f3c-4e56-bc90-0262aa83aacb.jpg" title="图5.png"//pp strong 8号作品,1939-1942/strong/ppstrong  皮特· 蒙德里安/strong/pp  蒙德里安在研究“关于形状的永恒真理”时,直线成为了他的个人标签。他相信直线是所有形状的基本成分。许多年后,生理学家发现了“方向选择性细胞”,那是对直线有选择性反应的细胞,并被认为是形状知觉的基石。当图像与偏好朝向越来越远时,方向选择性细胞的反应就会越来越弱 当图像与偏好朝向正交时,细胞反应完全消失。——塞米尔?赛琪,神经学家,伦敦大学学院 & #169 Kimbell Art Museum/Corbis/pp  当然了,科学对于以上论点的标准反应是:艺术对于科学研究来说太混乱、太不精确了 美学不代表真理,莫奈只是运气好 小说是虚构的,是实证的对立面。如果艺术不能被画成散点图或者压缩成变量的话,根本就不值一提。但是混乱性不正是人类精神的本质吗?我们的内在体验不就是充斥着跳跃性、非逻辑性和无法言说的感觉吗?从这点上说,小说的杂陈性和绘画的抽象性就像一面能反射出我们自己镜子。正如诗评人蓝道· 杰瑞所言,“正是艺术中的矛盾,而非逻辑的、有条理的归纳才能象征我们,我们的世界和我们自己都充满着矛盾。”/pp  任何关于精神的科学模型都不完备,除非它包括了精神中无法被还原的东西。科学当然应该遵从严格的方法论,依赖实验数据和可检验性,但是科学也可以通过额外的“输入”受益。艺术家们带有艺术特色的假设可以启发重要的科学问题。如果科学不能从整体性的角度来研究大脑,科学理论就会和我们对自身的观感脱节。/pp  神经科学自然认为它并没有内在的局限。有一天,会有科学家能够解释人类意识的问题 搭桥原理终会被解答 人类最后会发现,体验问题只是另一个物质问题——这样的科学乐观主义可能是对的,只有时间才能证明。在这儿需要指出,并不是所有科学家都如此乐观。艾弗拉姆· 诺姆· 乔姆斯基(美国哲学家、语言学家、认知学家、逻辑学家、政治评论家。他的生成语法为20世纪理论语言学研究做出重要贡献)曾说,“极有可能某人会猜测,我们从小说中学到的人类生活和个性会比科学心理学中学到的要多。”不管怎么说,想要解开被大卫· 查默斯(澳大利亚哲学家、认知学家,美国文理科学院院士)称为“最难解的意识问题”,就需要一种新的科学方法,一种能够汲取艺术中的智慧的方法。从一方面讲,我们是能创造梦境“东西” 从另一方面讲,我们也只不过是一团“东西”。如果把科学或艺术分开来看,任何一个都无法解决意识的问题,因为真相是多样的。/pp  乍看之下,物理和艺术的距离似乎特别遥远。物理理论是从晦涩的等式和超级超导对撞机的亚原子残骸中提炼出来的。物理理论坚持认为,我们对于现实的直觉实际上是错的,是感觉虚构出来的。艺术家依赖于想象,而现代物理学则超越了想象。就像《哈姆雷特》表达的那样,天底下的东西(暗物质、夸克、黑洞)是无法想象的。如此奇特的宇宙只能被发现,不能被想象。/pp  但是物理学的超现实本质正是艺术家能帮得上忙的地方。科学的确已经发展到人类无法理解的地步了。正如理查德· 费曼(美国物理学家。1965年诺贝尔物理奖得主)所言,“与小说家不同,我们的想象力已经文思枯竭,别说去想象不存在的东西了,就连去理解存在的东西都十分困难。”这就是不能理解两位数维度的弦理论,或是平行宇宙可能性的人类心理的赤裸裸的写照。我们的心智是在一个简单的世界中演化出来的,物质是确定的,时间是向前流动的,世界只有三个维度。而当我们进入与生俱来的直觉之外的领域时,隐喻就变成了救星。这就是现代物理的讽刺所在:一方面人类探寻真相的最根本的形式,另一方面,除了它们的数学表达式以外,人类无法理解这些基本原理。我们理解宇宙的方式只有类比。/pp  因此,物理的历史充满了隐喻的跃进。爱因斯坦在思考运行中的列车时顿悟了相对论。亚瑟· 爱丁顿(英国天体物理学家、数学家,是第一个用英语宣讲相对论的科学家)将宇宙的膨胀比喻为一个充气的气球。詹姆斯· 克拉克· 麦克斯韦(苏格兰数学物理学家。提出了麦克斯韦方程组,实现了物理学自艾萨克· 牛顿后的第二次统一)将磁场看作是空间中的小漩涡,并把它们叫做“涡流”。宇宙大爆炸就像是宇宙中的鞭炮。而被困在宇宙“炼狱”中的薛定谔的猫则阐明了量子力学的悖论。而且,似乎没有软管就很难理解弦理论。/pp  这些科学明喻似乎过分简单了,但是它们的意义非常深远。物理学家、小说家阿兰· 莱特曼(麻省理工学院人文教授,畅销书《爱因斯坦的梦》的作者)写道:“科学中的隐喻不仅仅有教育功能,还能启发科学发现。在做科学研究的时候,就算文字和等式不会有超出字面的引申意义,不去进行物理类比,不在心中画图,不去想象弹跳的球和摇摆的钟摆是不可能的。”隐喻的力量在于它能让科学家具体地想象抽象概念,去理解数学等式之外的含义。总之,我们所知的世界规定了我们思想的世界。/pp  但是一味依赖隐喻也有风险,因为任何隐喻都不完美。如托马斯· 品钦(美国作家,以晦涩复杂的后现代主义小说著称,几度获得诺贝尔文学奖提名)所言,“隐喻既可以把你推近真相,也可以把你推近谎言,取决于你在什么位置。”宇宙的弦或许像一根软管,但它毕竟不是。宇宙也不是气球。当我们把日常语言与理论挂钩时,等式的纯洁性就被玷污了。用类比的方式来思考就如同行走在一条叫“正确性”的钢丝上。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/66ba5755-c2e7-45b4-b589-073f0c13730b.jpg" title="图6.png"//pp strong 街上的夫妇,1887/strong/ppstrong  查尔斯· 安格朗/strong/pp  人类的两眼在水平方向上存在视距偏差。视觉系统利用这点来计算景深。当眼睛盯住一个物体的时候,它的图像在每个视网膜上的位置是一样的。包含许多相似物体的视域会在双眼中留下相似的图像。这些图像有时能被双眼正确匹配,那么人就会看到扁平的画面 有时某只眼中的图像在另一只眼中被错配,那么人就会看到景深不同的画面。我认为印象派和后印象派时期的艺术家搞明白了这点。他们称能够通过营造假的立体视线索来画出空气,这就是一种操纵景深知觉的手法。因此当你用双眼而非单眼观看安格朗的画作时,它们看上去就像是立体的。——玛格丽特?利文斯敦,神经科学家,哈佛大学 & #169 The Bridgeman Art Library/Getty Images/pp  这就是现代物理需要艺术的原因。一旦我们认可了隐喻对科学的重要性,就可以思考如何让这些隐喻变得更好。诗人当然是隐喻高手,他们的艺术力量在于饱含着意象的格律。含糊的感受被他们变成了贴切的形象。20世纪的许多伟大物理学家,如爱因斯坦、费曼、玻尔等,都以思维的浪漫性著称,而这并不是巧合。这些声名显赫的科学家借用他们的隐喻本事来参透别人参不透的东西,所以铁路成了相对论的隐喻,水滴成了原子核的隐喻。诗人可以加速科学进程,帮助科学家将隐喻更新换代。或许我们可以发明比软管更好的隐喻。或许一个明喻就能够解开暗物质之谜。正如弦理论学家布莱恩· 葛林(美国著名的理论物理学家与超弦理论家。《宇宙的琴弦》的作者)所写,艺术能够“撼动我们的感官,让它明白到底什么才是真实的”,倒逼科学想象力的进步。/pp  但是还有一种方法能够让艺术家为宇宙对话带来新鲜元素——他们可以让科学隐喻变得有血有肉。如果一个抽象的等式能够变成实物的话,物理学家就可以从不同的角度来探究数学的意义。拿里查· 塞拉(美国的极简主义雕塑家和录影艺术家,以用金属板组合而成的大型作品闻名)的雕塑来说吧。他的金属迷宫让我们能够亲身参与到物理理论中,让我们可以用全新的方式来想象时空的曼妙曲线。而立体主义中破碎的图形也起到了同样的功能,它们和当时的前沿物理之间产生了卓有成效的对话。毕加索虽然看不懂非欧几里德几何学的等式,但却决意用他的画作来展现关于时空的新思潮。一个世纪后,物理学家还在引用他的支离破碎的静物画来象征现代物理学。抽象艺术让我们对那些费解的思想多少有了些理解。/pp  现在是时候让科学和艺术间的对话变成科学方法的标准配置了。我们的大学可以开设“面向物理学家的诗歌”课。但是为了让我们更好地理解理论的延伸,让科学隐喻超越隐喻的限制也是很有必要的。艺术画廊应摆满能让人联想起令人错愕的弦理论、还有EPR佯谬(爱因斯坦-波多尔斯基-罗森佯谬,以佯谬的形式,针对量子力学的哥本哈根诠释而提出的早期重要批评)的作品。所有的理论物理系都应该请一个常驻艺术家。对普通人来说,现代物理看上去总是太飘渺、太不切实际,它的假设看上去太离奇以至于毫无意义。而艺术则可将物理拉回我们感官所熟知的世界。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201510/noimg/c595bb94-c538-443f-8b3f-41da865d636c.jpg" title="图7.png"//pp strong 悲剧,1903/strong/ppstrong  巴勃罗· 毕加索/strong/pp  长久以来,艺术家就知道色彩和光影是两回事。景深(三维)知觉、运动知觉以及空间组织都是由视觉系统中的子系统来分别控制的。而这三个系统都是“色盲”,只能看到黑白灰。它们是视觉系统中比较原始的部分。在缺乏明暗对比的情况下,一个人是无法分辨景深或者动作的。人们能够看到毕加索的《悲剧》这幅作品的景深的原因是,这幅画除了用色独具匠心之外,明暗也恰到好处。——玛格丽特?利文斯敦,神经科学家,哈佛大学 & #169 Francis G. Mayer/Corbis/pp  艺术家的反馈也可以让神经科学受益。小说家能够在他们的作品中模拟关于意识的最新理论。如果某个理论无法让角色变得生动,那么这个理论就行不通。(比如,伍尔夫就是弗洛伊德理论的早期批评家之一。她批评他的理论把“活生生的人物变成了医学案例”。)画家可以探索最新的视觉皮层理论。舞蹈家可以帮科学家搞清楚身体和情绪之间的联系。通过聆听艺术的智慧,科学和艺术之间可以产生对话,科学甚至可以变成艺术的一支。从另一方面来说,通过艺术对科学理论和想法的诠释,科学可以从全新的角度审视自身。/pp  创造了“二元文化”这个耳熟能详的词汇的小说家查尔斯· 珀西· 斯诺,提出一个解决科学艺术之间分歧的简单方法。他认为,我们需要“第三种文化”,它能够打破科学家和艺术家之间的“交流障碍”。如果能让作家知道热力学第二定律,科学家阅读莎士比亚,那么双方都会从中受益。/pp  现在就有一种这样的第三种文化,但是它和斯诺的构想不一样。斯诺认为第三种文化应基于科学和艺术之间的对话,而现实中的第三种文化却完全变为科学家对公众的演说。如第三种文化奠基者约翰· 布罗克曼所言,“传统意义上的‘科学’已变成‘公众文化’& #823科学只是新闻而已。”当然,摆脱媒体,直接向公众诠释数据的科学家是值得褒扬的。构成第三种文化的许多科学家增长了公众对前沿科学的理解。从达尔文到葛林,从史迪芬· 平克(美国实验心理学家、认知科学家和科普作家。著有多部畅销科普书籍)到爱德华· 奥斯本· 威尔森(美国昆虫学家和生物学家。以他对生态学、进化论和社会生物学的研究而闻名),这些科学家不仅科研做得好,还能写出漂亮的散文。他们给了我们许多启示。/pp  但是科学和艺术之间如何合作呢?我们是否准备永远生活在这种文化断层中?如果我们想要统一人类知识的话,就必须先搞一场新运动,这运动必须超越科学和艺术的界限,将两者联系起来。而这场运动的前提(可能是第四种文化)就是科学和艺术无法独立存在。这场运动的目标就是培养一个正反馈回路,让科学和艺术不断相互促进。科学和艺术不应互相排挤、互相忽视、或者选择性地互相关注,而应对对方起到切实的影响。如此一来,旧世界的智力隔阂就会消失 神经科学会收获新工具,用以解决棘手的意识问题 现代物理则能够优化它的隐喻系统。艺术将会变成科学灵感的泉源。/pp  这场运动能让我们对真理有更广泛的理解。目前,科学被认为是真理的唯一来源。但是那些不能用缩略词还有等式表达的东西却被轻视,被看作是华而不实的虚构作品、科学事实的对立面。/pp  但是科学无法独自解决它提出的宏大问题。通过将两者融合,我们能够通过实用性而非出处来评价我们的知识。这篇小说/实验/诗篇告诉了我们关于自身的什么道理?它是如何让我们理解我们是谁,宇宙又是由什么构成的?它处理的是什么样的难题,它解决了吗?如果我们的心胸足够开阔,那么就能够发现诗歌和画作都能推动实验和理论的进步。艺术会让科学变得更好。/pp  但在这之前,科学和艺术必须纠正一些坏习惯。首先,人文学科必须与科学真诚协作。亨利· 詹姆斯(作家,哥哥是知名心理学家威廉· 詹姆斯)曾将作家视为能包容一切的人。艺术家必须听从这种建议,不要忽略科学对现实的激动人心的刻画。/pp  同时,科学必须意识到,它描绘的现实并不是唯一的。没有任何一种知识能够独断专行。如卡尔· 波普尔(哲学家,美国哲学家巴特利称为“哲学史上第一个非证成批判主义哲学”)所说:“我们必须要摒弃‘知识有终极来源’的想法。我们必须承认,所有的知识都带有人的特征,都掺杂着人类的错误、偏见、梦想和希望。我们能做的就是不断追寻真理,即使真理遥不可及。”人类对于科学真理的探索源远流长、荆棘满路却永不止步。如果我们想要得到终极问题——我们是谁,何为万物——的答案,科学和艺术都是必不可少,相辅相成的。/pp  原文链接:/pp  a href="http://seedmagazine.com/content/article/the_future_of_science_is_art/" _src="http://seedmagazine.com/content/article/the_future_of_science_is_art/"http://seedmagazine.com/content/article/the_future_of_science_is_art//a/p
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
  • 小小游戏揭秘GE TOC仪工作原理
    6月25日,GE TOC小游戏正式上线,小小游戏为您展示GE TOC仪内部的大秘密,点击此处,开始游戏!GE Sievers系列总有机碳(TOC)分析仪具备两大基本功能,第一, 首先通过UV灯氧化技术将水中的总有机碳充分氧化,生成CO2;第二,测试新产生的CO2,以测量水中总有机碳含量,用于表征水中有机物的含量,这是水质的重要指标之一。Sievers系列TOC分析仪区别于其他品牌TOC仪的关键在于:检测新生成的CO2时,Sievers TOC分析仪采用了薄膜电导率检测技术。Sievers薄膜电导率检测技术使用了选择性气体渗透薄膜,只有氧化产生的CO2能通过这层薄膜进入检测舱。从而防止酸、碱和含卤素等杂原子化合物的干扰,因此相比直接电导率法,Sievers薄膜电导率检测法减少了检测中的“假正”现象,提供了无比优异的选择性、灵敏度、稳定性、精确度和准确度。看完文字介绍,再玩一下GE TOC的小游戏吧,更形象地了解一下GE TOC仪的原理!若无法正常显示,点击此处开始游戏!
  • 了解微型空气质量监测站的工作原理与优势
    微型空气质量监测站是一种小巧、便携式的空气质量检测设备,可以实时监测环境中的有害气体和颗粒物,为人们的生活和环境提供重要的监测和预警数据。本文将介绍微型空气质量监测站的工作原理和优势。一、工作原理微型空气质量监测站通常由传感器、数据采集系统、数据处理系统和控制部分组成。其中,传感器用于检测空气中的有害气体和颗粒物,数据采集系统将传感器采集到的数据传输到数据处理系统中,数据处理系统对数据进行处理和存储,控制部分则负责监测和控制传感器的工作状态。具体而言,微型空气质量监测站的工作原理如下:1. 传感器:传感器是微型空气质量监测站的核心部分,用于检测空气中的有害气体和颗粒物。传感器通常采用化学传感器或气相色谱传感器等,可以检测出苯、甲苯、氨、氮氧化物、二氧化碳、颗粒物等有害物质。2. 数据采集系统:数据采集系统将传感器采集到的数据传输到微型空气质量监测站的电脑或手机等设备中,通常采用USB接口或蓝牙传输技术。数据可以通过各种数据管理软件进行存储和分析,以便人们随时了解空气质量的变化情况。3. 数据处理系统:数据处理系统对采集到的数据进行处理和存储,通常采用各种数据分析软件进行建模和模拟,以便人们更加准确地了解空气质量的变化趋势和影响因素。数据处理系统还可以提供各种报告和图表,方便人们了解空气质量的详细信息。4. 控制部分:控制部分负责监测和控制传感器的工作状态,包括传感器的选择、更换、校准和检测等,以确保微型空气质量监测站的准确性和可靠性。二、优势微型空气质量监测站具有以下几个优势:1. 便携性:微型空气质量监测站小巧轻便,可以随时随地携带,方便人们进行空气质量监测和预警。2. 高精度:微型空气质量监测站采用高精度的传感器和数据分析软件,可以实时监测环境中的有害气体和颗粒物,提供高精度的监测数据。3. 实时性:微型空气质量监测站可以实时监测空气质量,为人们提供及时的空气质量预警。4. 方便性:微型空气质量监测站的数据可以通过各种数据管理软件进行存储和分析,方便人们了解空气质量的变化情况。5. 可靠性:微型空气质量监测站采用高品质的传感器和可靠的控制技术,可以确保其准确性和可靠性。综上所述,微型空气质量监测站是一种小巧、便携式的空气质量检测设备,可以实时监测环境中的有害气体和颗粒物,为人们的生活和环境提供重要的监测和预警数据。
  • 真空干燥箱:工作原理、特点、技术参数及使用方法
    真空干燥箱是一种常用的实验室设备,它通过降低环境气压和升高温度,快速有效地去除样品中的水分和溶剂。由于其具有干燥速度快、干燥效果好、使用方便等优点,真空干燥箱在科研、制药、化工、食品等领域得到了广泛应用。本文将介绍真空干燥箱的工作原理、特点、技术参数及使用方法等方面的知识。真空干燥箱的工作原理是利用真空泵将箱体内的空气抽出,降低气压,同时加热样品以促进水分和溶剂的蒸发。这种干燥方法可以在较低的温度下实现,从而避免了高温对样品的损害。此外,真空干燥还可以有效地防止氧化和污染,提高干燥效果和样品质量。上海和晟 HS-DZF-6021-MT 无油真空干燥箱真空干燥箱的优点包括:干燥速度快、效率高;可降低样品在高温下变质的可能性;可避免空气中的氧气对样品产生氧化作用;可减少能源消耗,因为可以在较低的温度下实现干燥。然而,真空干燥箱也存在一些不足之处,例如:需要定期维护和保养;对样品形状和大小有一定限制;不能干燥所有类型的样品。真空干燥箱的技术参数包括真空度、温度和湿度等。真空度指的是箱体内的气压,一般分为低真空、高真空和超高真空三种。温度是控制样品干燥速度的重要因素,可根据样品的特性和需要进行调节。湿度则表示箱体内的水分含量,对于某些样品需要严格控制湿度以避免水分的引入。使用真空干燥箱时,需按照以下步骤进行操作:将样品放入干燥箱内,并将干燥箱密封;连接真空泵并启动设备;调整真空度和温度等参数以满足样品干燥需求;记录干燥时间和观察干燥效果;干燥完成后,关闭设备并取出样品。在使用过程中,需要注意以下几点:真空干燥箱应放置在平稳的工作台上,避免震动和高温;使用前需检查设备的密封性能和管道连接是否良好;根据样品的特性和要求合理设置真空度和温度等参数;如果出现异常情况,应立即关闭设备并检查故障原因;定期对真空干燥箱进行维护和保养,保证其长期稳定运行。总之,真空干燥箱是一种高效的实验室设备,可快速有效地去除样品中的水分和溶剂。在使用过程中,应按照操作规程正确使用和维护保养设备,以保证其正常运行和使用寿命。同时,还需要注意安全问题,避免意外情况的发生。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制