当前位置: 仪器信息网 > 行业主题 > >

半导体器件的机械标准

仪器信息网半导体器件的机械标准专题为您提供2024年最新半导体器件的机械标准价格报价、厂家品牌的相关信息, 包括半导体器件的机械标准参数、型号等,不管是国产,还是进口品牌的半导体器件的机械标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半导体器件的机械标准相关的耗材配件、试剂标物,还有半导体器件的机械标准相关的最新资讯、资料,以及半导体器件的机械标准相关的解决方案。

半导体器件的机械标准相关的资讯

  • 第三代半导体材料与器件相关标准盘点
    第三代半导体材料主要是以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)等为代表的宽禁带半导体材料。与第一、二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.3eV),亦被称为高温半导体材料。从目前第三代半导体材料及器件的研究来看,较为成熟的第三代半导体材料是碳化硅和氮化镓,而氧化锌、金刚石、氮化铝等第三代半导体材料的研究尚属起步阶段。碳化硅(SiC)和氮化镓(GaN),被行业称为第三代半导体材料的双雄。基于第三代半导体的优良特性,其在通信、汽车、高铁、卫星通信、航空航天等应用场景中颇具优势。其中,碳化硅、氮化镓的研究和发展较为成熟。以SiC为核心的功率半导体,是新能源汽车充电桩、轨道交通系统等公共交通领域的基础性控件;射频半导体以GaN为原材料,是支撑5G基站建设的核心;第三代半导体在消费电子、工业新能源以及人工智能为代表的未来新领域,发挥着重要的基础作用。近年来,随着新能源汽车的兴起,碳化硅IGBT器件逐渐被应用于超级快充,展现出了强大的市场潜力,第三代半导体发展进入快车道。随着第三代半导体,特别是氮化镓和碳化硅的市场爆发,相关标准也逐渐出台。无规矩不成方圆,只有有了规矩,有了标准,这个世界才变得稳定有序!标准是科学、技术和实践经验的总结。为在一定的范围内获得最佳秩序,对实际的或潜在的问题制定共同的和重复使用的规则的活动,即制定、发布及实施标准的过程,称为标准化。为规范第三代半导体材料的发展,相关组织和机构也出台了一系列的标准。(以下第三代半导体标准只统计其作为宽禁带半导体材料的现行相关标准)碳化硅(SiC)碳化硅(SiC)材料是功率半导体行业主要进步发展方向,用于制作功率器件,可显着提高电能利用率。可预见的未来内,新能源汽车是碳化硅功率器件的主要应用场景。特斯拉作为技术先驱,已率先在Model 3中集成全碳化硅模块,其他一线车企亦皆计划扩大碳化硅的应用。随着碳化硅器件制造成本的日渐降低、工艺技术的逐步成熟,碳化硅功率器件行业未来可期。相关标准如下,标准号标准名称CASA 001-2018碳化硅肖特基势垒二极管通用技术规范CASA 003-2018p-IGBT器件用4H-SiC外延晶片CASA 004.1-20184H-SiC衬底及外延层缺陷 术语CASA 004.2-20184H-SiC衬底及外延层缺陷 图谱CASA 006-2020碳化硅金属氧化物半导体场效应晶体管通用技术规范CASA 007-2020电动汽车用碳化硅(SiC)场效应晶体管(MOSFET)模块评测规范CASA 009-2019半绝缘SiC材料中痕量杂质浓度及分布的二次离子质谱检测方法T/IAWBS 013-2019半绝缘碳化硅单晶片电阻率非接触测量方法T/IAWBS 012-2019碳化硅单晶抛光片表面质量和微管密度测试方法-共焦点微分干涉光学法T/IAWBS 011-2019导电碳化硅单晶片电阻率测量方法-非接触涡流法T/IAWBS 010-2019碳化硅单晶抛光片表面质量和微管密度检测方法-激光散射检测法T/IAWBS 008-2019SiC晶片的残余应力检测方法T/IAWBS 007-20184H碳化硅同质外延层厚度的红外反射测量方法T/IAWBS 006-2018碳化硅混合模块测试方法T/IAWBS 005-20186英寸碳化硅单晶抛光片T/IAWBS 003-2017碳化硅外延层载流子浓度测定汞探针电容-电压法T/IAWBS 002-2017碳化硅外延片表面缺陷测试方法T/IAWBS 001-2017碳化硅单晶DB13/T 5118-2019 4H碳化硅N型同质外 延片通用技术要求DB61/T 1250-2019 SiC(碳化硅)材料半导体分立器件通用规范GB/T 32278-2015 碳化硅单晶片平整度测试方法GB/T 30867-2014 碳化硅单晶片厚度和总厚度变化测试方法GB/T 30868-2014 碳化硅单晶片微管密度的测定 化学腐蚀法SJ/T 11501-2015 碳化硅单晶晶型的测试方法SJ/T 11503-2015 碳化硅单晶抛光片表面粗糙度的测试方法SJ/T 11504-2015 碳化硅单晶抛光片表面质量的测试方法SJ/T 11502-2015 碳化硅单晶抛光片规范SJ/T11499-2015 碳化硅单晶电学性能的测试方法SJ/T 11500-2015碳化硅单晶晶向的测试方法GB/T 31351-2014碳化硅单晶抛光片微管密度无损检测方法GB/T 30656-2014碳化硅单晶抛光片GB/T 30866-2014碳化硅单晶片直径测试方法氮化镓(SiC)氮化镓,是氮和镓的化合物,是一种直接能隙的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体激光器的条件下,产生紫光(405nm)激光。GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效应晶体管(MODFET)等新型器件。标准号标准名称CASA 010-2019GaN材料中痕量杂质浓度及分布的二次离子质谱检测方法T/IAWBS 013—2019半绝缘碳化硅单晶片电阻率非接触测量方法T/GDC 69—2020氮化镓充电器GB/T 39144-2020 氮化镓材料中镁含量的测定 二次离子质谱法GB/T 37466-2019氮化镓激光剥离设备GB/T 37053-2018 氮化镓外延片及衬底片通用规范GB/T 36705-2018 氮化镓衬底片载流子浓度的测试 拉曼光谱法GB/T 32282-2015 氮化镓单晶位错密度的测量 阴极荧光显微镜法GB/T 32189-2015 氮化镓单晶衬底表面粗糙度的原子力显微镜检验法GB/T 32188-2015 氮化镓单晶衬底片x射线双晶摇摆曲线半高宽测试方法GB/T 30854-2014 LED发光用氮化镓基外延片蓝宝石(Al2O3) 蓝宝石晶体属于人造宝石晶体,主要应用于制作LED灯的关键材料,也是应用于红外军事装置、卫星空间技术、高强度激光的重要窗口材料。蓝宝石晶体是一种氧化铝的单晶,又称为刚玉。蓝宝石已成为一种重要的半导体衬底材料。标准号标准名称SJ/T 11505-2015 蓝宝石单晶抛光片规范GB/T 35316-2017 蓝宝石晶体缺陷图谱GB/T 34612-2017 蓝宝石晶体X射线双晶衍射摇摆曲线测量方法GB/T 34504-2017 蓝宝石抛光衬底片表面残留金属元素测量方法GB/T 34213-2017 蓝宝石衬底用高纯氧化铝GB/T 34210-2017 蓝宝石单晶晶向测定方法GB/T 33763-2017 蓝宝石单晶位错密度测量方法SJ/T 11505-2015 蓝宝石单晶抛光片规范GB/T 31353-2014 蓝宝石衬底片弯曲度测试方法GB/T 31352-2014 蓝宝石衬底片翘曲度测试方法GB/T 31093-2014 蓝宝石晶锭应力测试方法GB/T 31092-2014 蓝宝石单晶晶锭GB/T 30858-2014 蓝宝石单晶衬底抛光片GB/T 30857-2014 蓝宝石衬底片厚度及厚度变化测试方法DB44/T 1328-2014 蓝宝石图形化衬底片测试技术规范GB/T 14015-1992 硅-蓝宝石外延片其他标准第三代半导体被广泛的应用于IGBT功率器件中和发光材料中,对此,我们盘点了宽禁带半导体、功率器件和光电子器件标准。标准号标准名称CASA 002-2021宽禁带半导体术语T/IAWBS 004-2017电动汽车用功率半导体模块可靠性试验通用要求及试验方法T/IAWBS 009-2019功率半导体器件稳态湿热高压偏置试验GB/T 29332-2012半导体器件 分立器件 第9部分:绝缘栅双极晶体管(IGBT)GB/T 36360-2018 半导体光电子器件 中功率发光二极管空白详细规范GB/T 36358-2018 半导体光电子器件 功率发光二极管空白详细规范GB/T 36357-2018 中功率半导体发光二极管芯片技术规范GB/T 36356-2018 功率半导体发光二极管芯片技术规范GB/T 36359-2018 半导体光电子器件 小功率发光二极管空白详细规范SJ/T 11398-2009 功率半导体发光二极管芯片技术规范SJ/T 11400-2009 半导体光电子器件 小功率半导体发光二极管空白详细规范SJ/T 11393-2009 半导体光电子器件 功率发光二极管空白详细规范现行SJ/T 1826-2016 半导体分立器件 3DK100型NPN硅小功率开关晶体管详细规范SJ/T 1834-2016 半导体分立器件 3DK104型NPN硅小功率开关晶体管详细规范SJ/T 1839-2016 半导体分立器件 3DK108型NPN硅小功率开关晶体管详细规范SJ/T 1833-2016 半导体分立器件 3DK103型NPN硅小功率开关晶体管详细规范SJ/T 1831-2016 半导体分立器件 3DK28型NPN硅小功率开关晶体管详细规范现行SJ/T 1830-2016 半导体分立器件 3DK101型NPN硅小功率开关晶体管详细规范SJ/T 1838-2016 半导体分立器件 3DK29型NPN硅小功率开关晶体管详细规范SJ/T 1832-2016 半导体分立器件 3DK102型NPN硅小功率开关晶体管详细规范IEC 60747半导体器件QC/T 1136-2020 电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法JB/T 8951.1-1999 绝缘栅双极型晶体管JB/T 8951.2-1999 绝缘栅双极型晶体管模块 臂和臂对需要注意的是,CASA和IAWBS属于团体标准、GB属于国家标准、DB是地方标准。仪器信息网为了更好地服务半导体行业用户,特邀请您参与问卷调研,麻烦大家动动小手完成问卷,参与即得10元话费!活动结束还将择优选择10名认真填写用户送出50元话费!!!http://a72wfu5hktu19jtx.mikecrm.com/zuXBhOy
  • 第三代半导体材料化学机械抛光(CMP)工艺的检测难点
    近年来随着5G通讯技术以及新能源汽车行业已成为当前投资热点,而5G基站和电动汽车都使用了功率半导体器件,开发出符合市场要求的功率半导体器件成了半导体行业的又一重要方向。以硅作为衬底的传统的半导体芯片因为材料本身的局限性已难满足要求,以碳化硅、氮化镓为代表的宽禁带第三代半导体材料具有击穿电场高、热导率高、电子饱和速率高、抗辐射能力强等优势,因此采用第三代半导体材料制备的半导体器件不仅能在更高的温度下稳定运行,适用于高电压、高频率场景,还能以较少的电能消耗,获得更高的运行能力。第三代半导体材料虽然具有很多优点,但是其加工难度也是极大的。以碳化硅为例,其硬度世界排名第三,莫氏硬度为13,仅次于钻石(15)和碳化硼(14);而且其化学稳定性高,几乎不与任何强酸或强碱发生反应。晶体碳化硅还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺,才能成为器件制造前的衬底材料。化学机械抛光(CMP)化学机械抛光(或化学机械平坦化)通常是使用专用抛光机在晶圆表面用抛光垫不断地旋转抛光并在过程中添加抛光液磨料以获得平坦光滑的衬底表面的工艺。为了获得均匀平坦的晶圆衬底,厚度监测作为常用的评价手段之一。但是第三代半导体材料由于硬度高,化学机械抛光的效率比较低,部分材料抛光过程的厚度变化甚至低于数十纳米常规的位移计等监测手段已经无法达到要求,而因为材料的特殊性一般也不会使用接触式或者破坏式的测量手段。大塚电子的SF-3系列膜厚计通过光干涉法原理,对晶圆界面之间干涉光信号进行计算从而获得晶圆的厚度信息。SF-3膜厚计 光干涉法由于采用了光学测量原理,SF-3系列膜厚计具有极高的频率5KHZ,因而可以对晶圆厚度进行在线实时监控;同时具有高精度以及可以有效避免晶圆翘曲对结果的影响。晶圆厚度实测CMP抛光液CMP抛光液作为化学机械抛光的辅助耗材,起到研磨腐蚀等作用,近年来CMP抛光液的国产化程度正在逐步提高。CMP抛光液的主要成分包括水、研磨颗粒(二氧化硅、金刚石、氧化铈、氧化锆)、氧化剂、分散剂等。不同的工艺步骤和不同的产品对CMP抛光液产品有不同的要求,通过对CMP抛光液的粒径监测、zeta电位监测可以评价CMP抛光液是否符合工艺要求以及在存储运输过程当中的稳定性。大塚电子ELSZ-neo系列纳米粒度zeta电位仪对抛光液的粒径和zeta电位检测均有大量应用。 ELSZ-neo以下考察了CMP抛光液在不同PH值的zeta电位,并记录了不同磨料的等电点(zeta电位为零),根据抛光液的粒径和zeta电位可以选择最优的PH值从而获得稳定的产品。晶圆清洗在晶圆的研磨和化学机械抛光处理以后,需要对晶圆进行清洗以避免污染物的附着。一些晶圆的颗粒污染物数量要求少于10个,然而由于静电作用力,颗粒污染物与晶圆在特定的PH值环境下容易吸附,颗粒污染物通常来源于抛光液当中研磨颗粒的残留。因此,评价晶圆表面和颗粒污染物的电性对于清洗工艺有重要作用。Zeta电位(Zeta potential)作为衡量固体电性或液体的稳定性的主要指标,通常使用电泳光散射法进行测量,然而在测量固体表面zeta电位时必须要充分考虑电渗作用的影响。(1)样品池内的粒子的电泳以负电荷的粒子为例,理想状态下粒子无论在cell 的什么位置,都以相同的速度向正电极侧电气泳动。(2)样品池内的电渗流通常cell(材质:石英)带有负电荷。所以,正电荷的离子、离子聚集在cell壁面附近,施加电场的话,壁面附近 正离子会往负极方向移动。Cell中心部为了补偿这个流动,产生相反方向的对流,这种现象叫做电渗流。(3)样品池内可观测粒子的电泳粒子分散在溶媒中,cell内粒子电气泳动的外观是算上这个电渗的抛物线状的流动。为此、cell内电气浸透流的速度为零的位置,即在静止面进行测定可以得出真正粒子的电泳速度,从而得出真实的泽塔电位值。大塚电子的ELSZ系列纳米粒度zeta电位仪使用了森岡本电渗校正专利,充分考虑了材料的电渗对电泳速度的影响。另外专用的平板样品池可选用电荷为0的涂层,并且使用中性的观测粒子,在不同PH值下测量不必考虑观测粒子电性带来的影响。大尺寸的平板样品池,可适用不同规格的晶圆测量实测应用时,通常会对晶圆表面和CMP抛光液的zeta电位同时进行测量。以下图为例,分别测量了硅晶圆(蓝色)和污染物粒子(红色)的zeta电位,在PH=4~8.5之间,晶圆表面与污染粒子的电性相反,因而污染粒子会依附在晶圆表面难以去除。总结大塚电子自1970年以来一直专业研究光学检测技术,秉承「多様性」「独創性」「世界化」的理念,大塚的光散射以及光干涉制品一直在包括FPD行业、半导体行业、新材料行业等专业领域占据领先地位。凭借对光学技术的深耕,大塚将继续为过国内客户提供专业的设备以及服务。
  • 全国半导体器件标准化技术委员会等5个技术委员会(分技术委员会)换届方案公示
    根据国家标准化管理委员会的批复,有关单位提出了全国半导体器件标准化技术委员会等5个技术委员会(分技术委员会)换届方案。为进一步听取各方意见,现将有关委员名单予以公示,截止日期2021年8月27日。如有不同意见,请在公示期间将意见反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:全国半导体器件标准化技术委员会等5个技术委员会换届方案公示反馈)。地址:北京市西长安街13号 工业和信息化部科技司邮编:100804联系电话:010-68205240公示时间:2021年7月27日-2021年8月27日附件:1.全国半导体器件标准化技术委员会第四届委员名单.docx 2.全国半导体器件标准化技术委员会半导体分立器件分技术委员会第四届委员名单.docx 3.全国电子设备用高频电缆及连接器标准化技术委员会第四届委员名单.docx 4.全国电子设备用高频电缆及连接器标准化技术委员会微波无源元件分技术委员会第四届委员名单.doc5.全国电子设备用高频电缆及连接器标准化技术委员会射频电缆分技术委员会第四届委员名单.docx工业和信息化部科技司2021年7月27日附件1全国半导体器件标准化技术委员会第四届委员名单技术委员会编号:SAC/TC78序号姓名委员会职务工作单位职务/职称1陈大纪主任委员中国电子技术标准化研究院副院长/高工2吴景峰副主任委员中国电子科技集团公司第十三研究所副所长/研究员级高工3张宏图副主任委员中国电子学会书记/研究员4崔波委员兼秘书长中国电子科技集团公司第十三研究所副总/研究员级高工5陈海蓉委员中国电子科技集团公司第十三研究所高级工程师6吴军民委员全球能源互联网研究院有限公司所长/研究员级高级工程师7王嘉蓉委员龙腾半导体股份有限公司技术质量部部长/高级工程师8胡 建委员江苏省半导体行业协会(江苏省集成电路产业技术创新联盟)副秘书长/副研究员9汪德文委员深圳市威兆半导体有限公司总经理/工程师10来萍委员工业和信息化部电子第五研究所副总工/高级工程师11杨勇峰委员河北圣昊光电科技有限公司董事长/工程师12罗海辉委员株洲中车时代半导体有限公司副总经理/教授级高级工程师13刘国友委员株洲中车时代电气股份有限公司副总工/教授级高级工程师14王东山委员北京智芯微电子科技有限公司正高级工程师15李振廷委员之江实验室高级工程师16蔚红旗委员西安电力电子技术研究所教授级高级工程师17俞梅委员中国航天标准化研究所研究员18秦舒委员华进半导体封装先导技术研发中心有限公司研究员级高级工程师19于大全委员厦门云天半导体科技有限公司研究员20张东徽委员安徽建筑大学数理学院讲师21钮应喜委员芜湖启迪半导体有限公司高级工程师22谢亮委员中国科学院半导体研究所中国电子技术标准化研究院高级工程师25副研究员26赵玉玲
  • Retsch高能球磨仪Emax机械合金法制备半导体合金
    文章摘要: 机械合金化(Mechanical Alloying,简称MA)是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。本文以硅锗合金和碲化铋半导体材料合金化制备实验为例,介绍了高能球磨仪Emax的使用方法和技术优势,对合金样品制备的应用有借鉴作用。 传统方法制备不锈钢类合金要求高温下进行熔融,如果需求量很小抑或无法熔融,机械合金法就是一个很好的替代方法,传统上会用行星式球磨仪来完成。上世纪60年代末,美国国际镍公司用机械合金法第一次制备成功耐高温镍铁合金并以此申请专利。机械合金研磨需要有强劲的动能把固体粉末结合在一起,行星式球磨仪产生的高能撞击可以提供所需能量。在研磨球的撞击和挤压下,细粉颗粒会发生塑性形变并且焊合在一起。所以机械合金法可以弥补传统高温熔融无法制备的样品的不足,并且可以制备更大自由度混合比的样品。热电合金材料硅(Si)和锗(Ge)都是最通用常见半导体材料—是光电电池和晶体管产业的基石。硅锗合金材料性质如带隙可以由改变硅和锗混合比例来调整。热电合金材料用于制造航天热偶发电机,保证了空间探索和试验设备的动力供应。在商用热电材料领域,碲化铋(Bi2Te3)因其热电效能转化率高,是研究最多的材料,被用来做半导体制冷元件。 高能球磨仪EmaxEmax的转速能达到每分钟2000转,特殊设计的跑道型研磨罐可以产出更大的粉碎能。结合了高速撞击力和密集摩擦力,高能球磨仪的强劲能量输入可以做快速纳米研磨实验和机械合金应用。跑道型的研磨罐和偏心轮运动方式,有效保证了样品的混合,样品最后不仅可以磨得很细,粒度分布范围也会变很窄。内置水冷管路可以快速带走样品子啊研磨中产生的热量,保护样品免受过高温度影响,从而可以不像行星式球磨仪一样需要间歇停转,大大提高研磨工作效率。如果有更严格的控温需要,Emax还可以外接冷水机,进一步降低研磨温度(最低工作温度不能低于5摄氏度)。 图1:研磨前样品XRD 分析结果 Si(红)Ge(绿)整个扫描范围从10-60°,可以看出Si和Ge晶面特征峰。图2:研磨5小时后XRD分析结果 可以看出晶面特征峰已经偏移和合并,机械合金化已有效果图3:研磨5,8,9小时后XRD分析结果 晶面特征峰值会有所变窄和迁移,显示5-6小时的反应后机械合金反应已经基本完成原来硅和锗的机械合金化反应用是用行星式球磨仪进行的,但是会有很多问题导致结果不尽如人意。行星式球磨仪需要至少80分钟才能把样品处理到可以进行机械合金化的初始细度,接下来即使用中低转速400转/分也会导致样品在研磨罐中结块,无法使用其全部能量来进行机械合金反应。另一个问题是研磨罐过热需要间歇,在整个13小时的反应时间中需要额外加入至少90分钟停止时间。而高能球磨仪Emax自带水冷功能,高速运行也无需间歇,没有样品结块的现象,同时还大大提高了反应效率。 图4: 图 5:Bi和Te机械合金反应 1小时后XRD分析结果 图4为球料比10:1 (体积比)图5为球料比5:1(体积比) 机械合金法制备硅锗合金硅锗合金比为SI 3.63克 Ge2.36克,用50ml碳化钨研磨罐,10mm碳化钨研磨球8个(球料比10:1)。硅料和锗料的原始尺寸为1-25mm和4mm。2000转/分20分钟后,样品已经微粉化无结块现象。接下来1200转/分 9个小时(每隔1小时中间间歇1分钟后反转样品以避免样品结块)。机械合金反应前20分钟样品做了XRD定性和定量分析,Si和Ge的特征峰值都可以很清晰地辨认出来,说明碳化钨球几乎没有产生摩擦效应。在整个反应过程中合金始终保持微粉化,Emax的温度没有超过30℃。经过9个小时的反应后,整个样品基本消除了不定形态,呈微晶状态。机械合金法制备碲化铋研究不同球料比(10:1或5:1)对反应的影响,50ml 不锈钢研磨罐, 10mm不锈钢研磨球 10个。 球料比10:1的罐子中加入2.09克Bi和1.91克Te。 球料比5:1的罐子中加入4.18克Bi和3.83克Te。800转/分 70分钟(每10分钟间歇1分钟并反转),结果做了XRD分析。在经过近1小时机械合金研磨,Bi和Te的特征峰都有明显可辨的偏移,显示化合物Bi2Te3开始形成。球料比10:1的样品形成速度比5:1的更快,因为5:1样品中Te的特征峰值强度更大,说明10:1样品中的Te反应地更多。合金反应继续1200转/分3小时后,没有样品结块。和原来用混合研磨仪1200转/分 6.5小时制备相比,高能球磨仪Emax只需要2-3个小时候就能轻松完成任务。
  • 862项标准获批,涉及半导体、化工检测和检测仪器等领域
    2020年12月25日,工信部发布《中华人民共和国工业和信息化部公告》,批准《霍尔元件 通用技术条件》等669项行业标准,批准《白云石标准样品》等76项行业标准样品,批准《高纯铝锭》等23项行业标准外文版,批准《75℃热稳定性试验仪校准规范》等94项行业计量技术规范。在669项标准中,多项标准涉及半导体行业(包括了半导体器件、半导体设备和半导体材料等方面)和多种化学品的检测。此外,94项行业计量技术规范涉及了热稳定性试验仪、便携式挥发性有机物泄漏检测仪、漆膜弯曲试验仪、漆膜附着力测定仪、直流辉光放电质谱仪、双联电解分析仪等多种分析检测仪器,相关标准如下:附件:23项行业标准外文版编号、名称、主要内容等一览表.doc94项行业计量技术规范编号、名称、主要内容等一览表.docx76项行业标准样品目录.docx669项行业标准编号、名称、主要内容等一览表.doc半导体相关标准(部分)标准号标准名称标准内容JB/T 9473-2020霍尔元件 通用技术条件本标准规定了霍尔元件的术语和定义、基本参数和符号、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于非集成的半导体霍尔元件。JB/T 9481-2020扩散硅力敏器件本标准规定了扩散硅力敏器件的术语与定义、分类与命名、要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于半导体扩散硅力敏器件。HG/T 5736-2020高纯工业品过氧化氢本标准规定了高纯工业品过氧化氢的分型、要求、试验方法、检验规则、标志、标签、包装、运输和贮存。本标准适用于高纯工业品过氧化氢。该产品主要用于太阳能光伏行业、液晶显示器件和半导体行业制程的清洗或刻蚀,以及其他对高纯过氧化氢有需求的行业。XB/T 515-2020钪铝合金靶材本标准规定了钪铝合金靶材的要求、试验方法、检验规则与标志、包装、运输、贮存及质量证明书。本标准适用于铸造法制得的钪铝合金靶材,主要用于半导体及光电等领域。QC/T 1136-2020电动汽车用绝缘栅双极晶体管(IGBT)模块环境试验要求及试验方法本标准规定了电动汽车用绝缘栅双极晶体管(IGBT)模块环境适应性要求和试验方法。本标准适用于电动汽车用IGBT模块,其他半导体器件模块可参考使用。SJ/T 11761-2020200mm及以下晶圆用半导体设备装载端口规范本标准规定了晶圆承载器与晶圆制造/检测设备之间的机械端口要求,主要包括晶圆承载器在设备上的位置和方向。本标准适用于加工直径200 mm及以下晶圆的半导体设备装载端口。SJ/T 11762-2020半导体设备制造信息标识要求本标准规定了半导体设备制造信息标识的术语和定义、设计和原则、使用及相应的综合标签库。半导体设备制造信息标识包括半导体制造设备选择、安装、使用和维护时需要的各种类型的技术和商业信息。信息类型包括操作手册/指南、安装手册、维护手册、维护计划、备件/零部件清单、维修/故障排除手册、发行说明、培训手册等。SJ/T 11763-2020半导体制造设备人机界面规范本标准规定了半导体制造设备人机界面的术语和要求。本标准适用于半导体制造设备。SJ/T 10454-2020厚膜混合集成电路多层布线用介质浆料本标准规定了厚膜混合集成电路多层布线用介质浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于与金、钯银导体浆料相匹配的厚膜混合集成电路多层布线用介质浆料。SJ/T 10455-2020厚膜混合集成电路用铜导体浆料本标准规定了厚膜混合集成电路用铜导体浆料的技术要求、试验方法、检验规则、包装、贮存及运输,适用于厚膜混合集成电路用铜导体浆料。化工检测相关标准(部分)标准号标准名称标准内容SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法 本标准规定了采用电感耦合等离子体发射光谱法(ICP-OES)测定聚乙烯和聚丙烯树脂中镁(0.10 mg/kg~50.00 mg/kg)、铝(0.20 mg/kg~100.00 mg/kg)、钙(0.40 mg/kg~130.00 mg/kg)、锌(0.50 mg/kg~200.00 mg/kg)、铬(0.10 mg/kg~3.00 mg/kg)、钛(0.10 mg/kg~6.00 mg/kg)等微量元素含量的方法。 本标准适用于粉末状、颗粒状聚乙烯和聚丙烯树脂。SH/T 1830-2020丙烯腈-丁二烯橡胶中壬基酚含量的测定 气相色谱-质谱法 本标准规定了采用气相色谱-质谱法测定丙烯腈-丁二烯生橡胶中壬基酚含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,壬基酚单组分含量最低检出限为1.4mg/kg。SH/T 1831-2020丙烯腈-丁二烯橡胶中游离丙烯腈含量的测定 顶空气相色谱法 本标准规定了采用顶空气相色谱法测定丙烯腈-丁二烯生橡胶中游离丙烯腈含量的方法。 本标准适用于丙烯腈-丁二烯生橡胶,游离丙烯腈含量最低检出限为1.8mg/kg。SH/T 1832-2020异戊二烯橡胶微观结构的测定 核磁共振氢谱法 本标准规定了采用核磁共振氢谱法测定异戊二烯橡胶(IR)中顺式1,4结构(cis-1,4)、反式1,4结构(trans-1,4)和3,4结构(3,4)含量的方法。 本标准适用于异戊二烯生橡胶。SH/T 1142-2020工业用裂解碳四 液态采样法 本标准规定了采取供分析用的工业用裂解碳四以及其他碳四液态烃类样品的设备和方法。 本标准适用于采取工业用裂解碳四及其他碳四液态烃类样品。SH/T 1482-2020工业用异丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用异丁烯纯度及烃类杂质的含量。 本标准适用于纯度大于98.00%(质量分数),丙烷、丙烯、异丁烷、正丁烷、反-2-丁烯、1-丁烯、顺-2-丁烯、丙炔、1,3-丁二烯、正戊烷、异戊烷等烃类杂质含量不小于0.0010%(质量分数)的工业用异丁烯测定。SH/T 1483-2020工业用碳四烯烃中微量含氧化合物的测定 气相色谱法 本标准规定了用气相色谱法测定工业用碳四烯烃中的微量含氧化合物含量。 本标准适用于工业用碳四烯烃中微量二甲醚、甲基叔丁基醚、甲醇和叔丁醇等含氧化合物的测定,其最低测定浓度为0.0001%(质量分数)。SH/T 1492-2020工业用1-丁烯纯度及烃类杂质的测定 气相色谱法 本标准规定了用气相色谱法测定工业用1-丁烯的纯度及其烃类杂质含量。 本标准适用于纯度不小于99.00% (质量分数),丙烷、丙烯、异丁烷、正丁烷、乙炔、反-2-丁烯、异丁烯、顺-2-丁烯等烃类杂质含量不小于0.001%(质量分数),丙二烯、丙炔含量不小于2mL/m3,1,3-丁二烯含量不小于10 mL/m3或0.001%(质量分数)的工业用1-丁烯试样的测定。SH/T 1549-2020工业用轻质烯烃中水分的测定 在线分析仪使用导则本标准规定了测定轻质烯烃气体中微量水分的在线分析仪的工作原理、一般特征、分析程序和结果报告等要求的指南。本标准适用于工业用轻质烯烃中水分的测定。SH/T 1763-2020氢化丁腈生橡胶(HNBR)中残留不饱和度的测定 碘值法 本标准规定了用韦氏(Wijs)试剂测定氢化丁腈生橡胶(HNBR)残留不饱和度(即碘值)的方法。 本标准适用于氢化丁腈生橡胶。SH/T1814-2020乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的测定 本标准规定了用分光光度法和电感耦合等离子体发射光谱法测定乙烯-丙烯共聚物(EPM)和乙烯-丙烯-二烯烃三元共聚物(EPDM)中钒含量的方法。 本标准适用于以齐格勒-纳塔型催化剂(铝-钒催化剂)生产的钒含量范围在0.5 µg/g~40 µg/g的乙丙橡胶。SH/T 3042-2020合成纤维厂供暖通风与空气调节设计规范 本标准规定了合成纤维(涤纶、锦纶、维纶、腈纶、氨纶)厂供暖、通风与空气调节设计的空气计算参数和设计要求。 本标准适用于新建、扩建和改建的合成纤维厂的生产厂房及辅助建筑物的供暖、通风与空气调节设计。SH/T 3523-2020石油化工铬镍不锈钢、铁镍合金、镍基合金及不锈钢复合钢焊接规范 本标准规定了铬镍不锈钢、铁镍合金、镍基合金、不锈钢复合钢的材料、焊接工艺评定、焊工考试、焊接工艺、焊接检验和焊后热处理要求。 本标准适用于石油化工、煤化工、天然气化工设备与管道的焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊。SH/T 3545-2020石油化工管道工程无损检测标准本标准规定了石油化工金属管道射线检测、超声检测、磁粉检测、渗透检测、衍射时差法超声检测、相控阵超声检测和便携式荧光光谱检测的工艺要求及质量评定。本标准适用于下列管道无损检测的质量评定:1)公称厚度为2 mm~100 mm的金属管道对接焊接接头、支管连接焊接接头的射线检测与质量评定;2)公称厚度大于或等于6 mm、外径大于等于108 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的超声检测与质量评定;3)铁磁性材料的表面和近表面缺陷磁粉检测与质量评定;4)表面开口缺陷的渗透检测与质量评定;5)公称厚度为16 mm~100mm、外径大于等于273 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的衍射时差法超声检测与质量评定;6)公称厚度3.5 mm~60 mm、外径大于等于57 mm的碳钢和非奥氏体合金钢制管道对接焊接接头的相控阵超声检测与质量评定;奥氏体不锈钢管道对接焊接接头的相控阵超声检测与质量评定按附录M的规定进行;7)金属材料(包括熔敷金属)中金属元素的便携式荧光光谱检测。行业计量技术规范(部分)技术规范编号技术规范名称技术规范主要内容JJF(石化)030-202075℃热稳定性试验仪校准规范本校准规范适用于爆炸品分类用的75℃热稳定性试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)031-2020固体氧化性试验装置校准规范本规范适用于固体氧化性试验装置的校准,不适用于氧化性固体重量试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)032-2020易燃固体燃烧速率试验装置校准规范本校准规范适用于易燃固体燃烧速率试验装置的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)033-2020便携式挥发性有机物泄漏检测仪(氢火焰离子法)校准规范本规范适用于量程小于50000µmol/mol的便携式挥发性有机物(VOCs)泄漏检测仪(氢火焰离子法)的校准,其他相似原理和用途的仪器校准可参照本规范。其主要内容包含本规范的适用范围、引用的技术文件、计量性能、校准条件、校准方法、校准结果、校准时间间隔和不确定度评定示例等。JJF(石化)034-2020石油化工产品软化点试验仪(环球法)校准规范本规范适用于环球法测定软化点的软化点试验仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)035-2020漆膜弯曲试验仪(圆柱轴)校准规范本规范的校准适用于测试漆膜圆柱弯曲试验时用的漆膜弯曲试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)036-2020漆膜附着力测定仪(划圈法)校准规范本规范的校准适用于测试漆膜划圈试验用的漆膜附着力试验仪。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定度评定示例等。JJF(石化)037-2020橡胶门尼黏度计校准规范本规范规定了橡胶门尼黏度计的计量特性、校准条件、校准用设备及校准方法。本规范适用于橡胶门尼黏度计的校准。JJF(石化)038-2020硫化橡胶回弹性试验机校准规范本规范规定了硫化橡胶回弹性试验机的计量特性、校准条件、校准用设备及校准方法。本规范适用于硫化橡胶回弹性试验机的校准。JJF(石化)039-2020橡胶阿克隆磨耗试验机校准规范本规范适用于橡胶阿克隆磨耗试验机的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。JJF(石化)040-2020橡胶压缩应力松弛仪校准规范本规范适用于橡胶压缩应力松弛仪的校准。其主要内容包括本规范的适用范围、引用的技术文件、计量特性、校准条件、校准项目和方法、校准结果的表示方法及不确定评定示例等。
  • 行业精英齐聚大连:第十五届中国半导体行业协会半导体分立器件年会成功召开
    2021年7月22日上午,由中国半导体行业协会主办,中国半导体行业协会半导体分立器件分会、大连市科学技术局、大连市工业和信息化局、专用集成电路重点实验室、元器件封装技术创新中心、河北省新型半导体材料重点实验室、河北普兴电子科技股份有限公司、中国电子科技集团公司第十三研究所承办的“第十五届中国半导体行业协会半导体分立器件年会暨2021年中国半导体器件技术创新及产业发展论坛”在大连富丽华酒店二楼多功能厅成功召开。会议邀请了工信部电子信息司、中国半导体行业协会等领导出席指导。会议现场中国半导体行业协会半导体分立器件分会秘书长 赵小宁 主持会议中国半导体行业协会执行秘书长 靳阳葆 致辞大连市人民政府副市长 张志宏 致辞中国电子科技集团公司第十三研究所副所长 蔡树军 致辞靳阳葆秘书长代表中国半导体行业协会对出席本次活动的嘉宾和来自全国各地的代表表示热烈的欢迎,对长期以来关心和支持集成电路产业发展的各位领导专家以及业界同仁们表示衷心的感谢。半导体产业是技术密集竞争激烈的战略性产业,具有产值巨大、创新性强的突出特点,是引领新一轮科技革命和产业变革的关键力量,也是未来全球经济的增长之路已经成为全球各国在高科技竞争的战略制高点。近年来,在行业主管部门的领导和产业界的共同努力下,集成电路产业的发展取得了长足的进步。产业政策不断完善,发现发展环境持续优化,产业规模持续增长。半导体分立器件作为半导体产业的基础和核心领域,近几年保持着稳定的增长势头,这主要得益于新能源汽车、工业机器人、通讯等前沿应用领域的快速发展,国内市场的增长势头十分强劲,并范围不断扩展,产业迸发出前所未有的活力。靳阳葆秘书长表示,本次相聚大连,希望能够搭建一个行业专家、学者、产业链上下游企业交流经验碰撞思想平台,为半导体分立器件企业的技术创新与发展注入新的动力。最后希望与会代表通过本次论坛有所收获。报告人:大连市科学技术局副局长 于晓丹 报告题目:大连市市情及科技创新情况推介大连是中国北方重要的港口、工业、金融和旅游城市,是东北之窗、京津门户,是东北亚国际航运中心、物流中心和金融中心。于晓丹表示,大连将建设国际一流科学城—大连英歌石科学城,服务国家战略、瞄准国际前沿、专注四大功能、引领科技发展,以完备高端的研发设施、创新空间、要素环境、场景供给和服务设施吸引顶尖人才团队集聚,以顶尖人才团队推进前沿性、战略性、颠覆性技术创新突破,以前沿技术落地转化培育壮大新兴产业、未来产业。报告人:中国电子科技集团公司原副总经理 赵正平报告题目:SiC电力电子学的产业化技术的创新发展以Si MOSFET\Si IGBT和二极管为代表的Si电力电子学,以其优良材料物质量、易于加工、低成本大规模生产和可靠性验证等特点,是电力电子的主导技术,虽然其仍在发展,但已经达到其材料的极限。赵正平表示,宽禁带半导体SiC\GaN已进入产业发展的高速期,6英寸SiC晶圆线将会成为主流,8英寸SiC晶圆将启动;在电力电子领域SiC MOSFET将主导,在适应SiC应用的领域降低制造成本。报告人:大连理工大学人工智能大连研究院院长 江贺报告题目:EDA软件高效测试技术研究 据介绍,大连理工大学人工智能大连研究院成立于2018年10月,是大连市政府与大连理工大学共建的新型研发机构。江贺表示,工业软件是智能制造之魂,支撑着工业企业的业务和应用,是工业生产提质增效的重要根据。报告详细介绍了各类EDA软件的测试技术与结果。报告人:西安电子科技大学教授 贾仁需报告题目:宽禁带半导体发展现状与展望随着经济不断发展,5G通信、智能物联网、智能无人平台,新能源汽车等新产业的蓬勃发展,对芯片提出了更高的要求,要求芯片能具有更高的频率、更低的功耗、更大集成度和更可靠的工作性能,因此以GaN、SiC为代表的“第三代半导体材料与芯片”快速进入产业化。贾仁需指出,宽禁带/超宽禁带半导体是全球高技术竞争的关键领域之一。我国政府高度重视,在“中国制造2025”、2035中长期科技规划、十四五计划中,均将其列为重点方向或前沿领域。报告人:电子科技大学集成电路研究中心主任 张波报告题目:功率半导体器件的国产化挑战 功率芯片是中国半导体产业崛起的突破口,但国内功率半导体行业缺乏大型(先进)的IDM企业,即使IDM企业大都缺乏先进制程的半导体工艺线,导致产品同质化严重,竞争力缺乏。谈到功率半导体器件的国产化挑战时,张波提出,功率半导体器件研制不仅要考虑器件特性,还要考虑应用环境,要根据应用去设计器件特性。报告人:大连海外华晟电子科技有限公司副总经理 刘啸报告题目:电子浆料在电子器件、基板及模块中的技术与应用 据介绍,电子材料主要为电子信息产业生产配套器件,具有品类多、质量高、用量精等特点。电子材料产品种类繁多,可应用于太阳能电池、集成电路、分立器件、LED、传感器、印刷电路板等领域。电子材料在电子信息产品的生产加工过程中发挥着重要的作用,其工艺水平的高低和产品质量好坏直接决定了元器件的性能,是世界各国为发展电子信息产业而优先开发的关键材料之。而电子浆料则是由悬浮在有机载体中的粉末状导电金属,无机或高分子粘结剂构成的固体颗粒或有机液体混合的体系。报告中,刘啸详细介绍了芯片封装银浆、MLCC电极浆料、电阻浆料、电感浆料等在电子器件、基板及模块中的技术与应用。报告人:大连华邦化学有限公司总经理 侯鹏报告题目:半导体终端气体纯化器的进展及应用氮、氢、氧、氩、氮等大宗气体广泛用于在半导体芯片生产的各个过程中,起到氛围保护、输送特气、参与反应等作用。半导体产业对气体纯度要求极高。气体中的氧、水、总烃等杂质,在生产过程中可能会以原子形态进入芯片结构中去,影响芯片质量。低浓度杂质将导致合格频率下降,高浓度杂质可能导致批量产品报废、损坏设备、引起安全事故。因此,气体纯化装置显得尤为重要。侯鹏在报告中详细介绍了该公司的气体纯化器的进展及应用。
  • 2024年4月份有483项标准将实施——涉及大量电力半导体、化工标准
    2024年4月份有483项标准将实施——涉及大量电力半导体、化工标准我们通过国家标准信息平台查询到,在2024年4月份将有483项与仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:在4月份新实施的标准中,与电力半导体相关的标准有175个,占据了36%,紧随其后的领域为化工塑料和农林牧渔食品类标准。在电力半导体实施的175个标准中,主要涉及核电厂、集成电路、蓄电池、光纤光缆、电工电子产品、低压开关设备、半导体器件、直流插头插座、火力发电厂等检测规程方面内容。而化工塑料新实施标准中,以化工产品及塑料制品标准,如氯化钡、氯化铁、氢氟酸及各类农药、塑料薄膜和薄片等质量要求。食品标准中我们需要关注的是“GB/T 44881-2023 食品生产质量控制与管理通用技术规范 ”和“GB/T 10343-2023 食用酒精质量要求 ”质量标准。在医药卫生标准中,“GB/T 43240-2023 毛发中 55 种滥用药物及代谢物检验 液相色谱 - 质谱法 ”和“GB/T 43241-2023 法庭科学 一氧化二氮检验 气相色谱 - 质谱法 ”法检标准值得关注。在4月份新实施的标准中,包含了多品类科学仪器,如:液相色谱-串联质谱仪 、气相色谱-质谱联用仪 、电感耦合等离子体质谱仪 、气相色谱仪 、原子荧光光谱仪 、声级计 等。具体2024年4月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(1个)GB 43067-2023 煤矿用仪器仪表安全技术要求 农林牧渔食品标准(57个)GB/T 43563-2023 盐碱地水产养殖用水水质 GB/T 19782-2023 中国对虾 GB/T 43173-2023 种鸡场鸡白痢沙门 菌 净化规程 GB/T 43170-2023 羊毛取样和试验规则 GB/T 43169-2023 马铃薯斑纹病菌检疫鉴定方法 GB/T 43167-2023 农药检测用标准硬水 GB/T 43166-2023 燕麦嗜酸菌西瓜亚种溯源检测方法 GB/T 43168-2023 生猪运输管理技术要求 GB/T 43163-2023 苜蓿黄萎病 菌 溯源检测方法 GB/T 43162-2023 欧洲 樱桃绕实蝇 检疫鉴定方法 GB/T 43160-2023 梨火疫病菌 检疫鉴定方法 GB/T 43158-2023 马铃薯黑胫 病菌检疫鉴定方法 GB/T 43159-2023 施马伦贝格病诊断技术 GB/T 6097-2023 棉纤维试验取样方法 GB/T 1601-2023 农药 pH 值的测定方法 GB/T 43157-2023 石蒜 绵 粉 蚧 检疫鉴定方法 GB/T 17494-2023 马传染性贫血诊断技术 GB/T 14825-2023 农药悬浮率测定方法GB/T 22910-2023 痒病诊断技术 GB/T 6439-2023 饲料中水溶性氯化物的测定 GB/T 43184-2023 软木原料含水率测定方法 GB/T 44881-2023 食品生产质量控制与管理通用技术规范 GB/T 20976-2023 软冰淇淋预拌粉质量要求 GB/T 25436-2023 茶叶滤纸 GB/T 19855-2023 月饼质量通则 DB2304/T 070—2023大豆田间机械化生产技术规程DB2304/T 069—2023油豆角绿色生产技术规程DB2304/T 068—2023马铃薯绿色生产技术规程DB2304/T 067—2023保护地番茄绿色生产技术规程DB52/T 1763-2023山桐子播种育苗技术规程DB52/T 1762-2023小果油茶栽培技术规程DB52/T 1761-2023油茶高干嫁接山茶技术规程DB52/T 1760-2023油茶主要栽培品种配置技术规程DB52/T 1759-2023望谟红球油茶栽培技术规程DB52/T 1758-2023威宁短柱油茶容器育苗技术规程DB52/T 1757-2023威宁短柱油茶苗木质量分级DB41/T 1772-2023番茄嫁接苗工厂化生产技术规程DB41/T 1147-2023黄瓜穴盘嫁接育苗技术规程DB41/T 2506-2023怀山药减氮增效施肥技术规程DB41/T 2494-2023漏斗型池塘养殖通用技术规范DB41/T 2493-2023淇河鲫繁养技术规范DB41/T 2492-2023菊花茶加工技术规程DB41/T 2491-2023柴胡生产技术规程DB41/T 2490-2023豫北小麦造墒节灌生产技术规程DB41/T 2489-2023冬小麦宽幅匀播栽培技术规程DB41/T 2485-2023夏玉米氮肥减施增效技术规程DB41/T 2483-2023芝麻枯萎病抗性鉴定技术规范DB41/T 2482-2023洋葱集约化穴盘育苗技术规程DB41/T 2481-2023塑料拱棚早春西瓜-秋延后辣椒栽培技术规程DB41/T 2480-2023小麦真菌毒素防控技术规程DB41/T 2479-2023花生田化学除草技术规程GB/T 43198-2023 食品包装用聚乙烯吹塑容器 GB/T 43195-2023 进口冷 链食品 追溯 追溯系统开发指南 GB/T 43197-2023 化妆品中禁用组分酸性红 73 和溶剂红 1 的测定 液相色谱 - 串联质谱法 GB/T 30307-2023 家用和类似用途饮用水处理装置 GB/T 26513-2023 润唇膏( 啫喱 、霜) GB/T 10343-2023 食用酒精质量要求 环境环保标准(19个)GB/T 43476-2023水生态健康评价技术指南GB/T 43474-2023江河生态安全评估技术指南GB/T 32165-2023节水型企业 发酵行业GB/T 26927-2023 节水型企业 造纸行业 GB/T 28714-2023 取水计量技术导则 GB/T 2423.56-2023 环境试验 第 2 部分:试验方法 试验 Fh :宽带随机振动和 导则 GB/T 2423.64-2023环境试验 第 2 部分:试验方法 试验 Fj :振动 长时间历程再现 GB/T 6881-2023 声学 声压法测定噪声源声功率级和声能量级 混响室精密法 DB11/ 208-2023加油站油气排放控制和限值DB11/ 207-2023油罐车油气排放控制和限值DB11/ 206-2023储油库油气排放控制和限值DB41/T 60002-2023农村黑臭水体治理技术规范DB41/T 2501-2023生态修复项目管理规程DB41/T 2500-2023地下水监测井洗井、修井技术规范DB41/ 2469-2023南四湖流域水污染物综合排放标准DB34/ 4542-2023南四湖流域水污染物综合排放标准GB/T 43230-2023 反渗透海水淡化产品水水质要求 DL/T 2666-2023变电站噪声仿真分析技术导则DL/T 2665-2023变电站厂界噪声排放测量方法 多重相干函数法医药卫生标准(44个)GB/T 43240-2023 毛发中 55 种滥用药物及代谢物检验 液相色谱 - 质谱法 GB/T 43241-2023 法庭科学 一氧化二氮检验 气相色谱 - 质谱法 GB/T 19258.2-2023 杀菌用紫外辐射源 第 2 部分:冷阴极低气压汞 蒸气 放电灯 GB/T 13797-2023 医用 X 射线管通用技术条件 GB/T 23527.1-2023 酶制剂质量要求 第 1 部分:蛋白酶制剂 WS/T 821—2023 托 育机构 质量评估标准 WS/T 364.17—2023 卫生健康信息数据元值域代码 第 17 部分 : 卫生健康管理 WS/T 364.16—2023 卫生健康信息数据元值域代码 第 16 部分:药品与医疗器械 WS/T 364.15—2023 卫生健康信息数据元值域代码第 15 部分 : 卫生健康人员 WS/T 364.14—2023 卫生健康信息数据元值域代码第 14 部分 : 卫生健康机构 WS/T 364.13—2023 卫生健康信息数据元值域代码第 13 部分 : 卫生健康费用 WS/T 364.12—2023卫生健康信息数据元值域代码第12部分:计划与干预WS/T 364.11—2023卫生健康信息数据元值域代码第11部分:医学评估WS/T 364.10—2023卫生健康信息数据元值域代码第10部分:医学诊断WS/T 364.9—2023 卫生健康信息数据元值域代码第 9 部分 : 实验室检查 WS/T 364.8—2023 卫生健康信息数据元值域代码第 8 部分 : 临床辅助检查 WS/T 364.7—2023 卫生健康信息数据元值域代码第 7 部分 : 体格检查 WS/T 364.6—2023 卫生健康信息数据元值域代码第 6 部分 : 主诉与症状 WS/T 364.5—2023 卫生健康信息数据元值域代码第 5 部分 : 健康危险因素 WS/T 364.4—2023 卫生健康信息数据元值域代码第 4 部分 : 健康史 WS/T 364.3—2023 卫生健康信息数据元值域代码 第 3 部分 : 人口学及社会经济学特征 WS/T 364.2—2023 卫生健康信息数据元值域代码第 2 部分 : 标识 WS/T 364.1—2023卫生健康信息数据元值域代码 第1部分:总则WS/T 363.17—2023卫生健康信息数据元目录 第17部分:卫生健康管理WS/T 363.16—2023卫生健康信息数据元目录 第16部分:药品与医疗器械WS/T 363.15—2023卫生健康信息数据元目录 第15部分:卫生健康人员WS/T 363.14—2023卫生健康信息数据元目录 第14部分:卫生健康机构WS/T 363.13—2023卫生健康信息数据元目录 第13部分:卫生费用WS/T 363.12—2023卫生健康信息数据元目录 第12部分:计划与干预WS/T 363.11—2023卫生健康信息数据元目录 第11部分:医学评估WS/T 363.10—2023卫生健康信息数据元目录 第10部分:医学诊断WS/T 363.9—2023卫生健康信息数据元目录 第9部分:实验室检查WS/T 363.8—2023卫生健康信息数据元目录 第8部分:临床辅助检查WS/T 363.7—2023卫生健康信息数据元目录 第7部分:体格检查WS/T 363.6—2023卫生健康信息数据元目录 第6部分:主诉与症状WS/T 363.5—2023卫生健康信息数据元目录 第5部分:健康危险因素WS/T 363.4—2023卫生健康信息数据元目录 第4部分:健康史WS/T 363.3—2023卫生健康信息数据元目录 第3部分:人口学及社会经济学特征WS/T 363.2—2023卫生健康信息数据元目录 第2部分:标识WS/T 363.1—2023卫生健康信息数据元目录 第1部分:总则YY/T 1064-2022 牙科学 牙科种植手术用钻头通用要求 YY/T 1043.1-2022 牙科学 非移动的牙科治疗机和牙科病人椅 第
  • 全国半导体照明电子行业测试标准发布
    1月24日,由中国电子技术标准化研究所、工业和信息化部半导体照明技术标准化工作组等联合主办的2010年全国半导体照明电子行业标准发布及宣传贯彻大会在广东省江门市召开,标志着我国LED产业发展进入一个新的历史时期。   工业和信息化部于2005年成立了半导体照明技术标准工作组。经过多年的努力,工作组在半导体照明材料、芯片技术、封装产品检验和测试方法上取得了突破性进展,并相继主持制定了9项行业标准。本次大会发布了这9项标准:《半导体光电子器件功率发光二极管空白详细规范》、《半导体发光二极管测试方法》、《氮化镓基发光二极管用蓝宝石衬底片》、《半导体发光二极管用荧光粉》、《功率半导体发光二极管芯片技术规范》、《半导体发光二极管芯片测试方法》、《半导体光电子器件小功率发光二极管空白详细规范》、《半导体发光二极管产品系列型谱》以及《LED照明名词术语》等。会上,有关专家分别对9项电子行业标准进行了详细讲解。   9项行业标准的发布与实施对规范半导体照明行业市场、完善现行制度、鼓励先进企业跨地区自由竞争、推动技术创新具有重要意义。同时有利于引导企业有序、按照标准进入市场,有利于推动我国半导体照明产业健康良性发展。   工业和信息化部、广东省、江门市等相关部门负责同志以及工业和信息化部半导体照明技术标准工作组成员单位、国内外半导体照明产业上下游厂商、研究机构的代表近400人出席了大会。
  • 填补国内空白,这项第三代半导体标准今日生效
    氮化镓,是氮和镓的化合物,是一种直接能隙的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体激光器的条件下,产生紫光(405nm)激光。GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。无规矩不成方圆,只有有了规矩,有了标准,这个世界才变得稳定有序!标准是科学、技术和实践经验的总结。为在一定的范围内获得最佳秩序,对实际的或潜在的问题制定共同的和重复使用的规则的活动,即制定、发布及实施标准的过程,称为标准化。而从今日开始,《氮化镓材料中镁含量的测定 二次离子质谱法》(标准号:GB/T 39144—2020)正式实施。这一标准由全国半导体设备和材料标准化技术委员会(SAC/TC203)与全国半导体设备和材料标准化技术委员会材料分技术委员会(SAC/TC203/SC2)共同提出并归口,并于2020年10月11日发布。本标准起草单位包括国电子科技集团公司第四十六研究所、北京聚睿众邦科技有限公司、东莞市中镓半导体科技有限公司、有色金属技术经济研究院和厦门市科力电子有限公司,主要起草人为马农农、何友琴、陈潇、刘立娜、何?坤、杨素心、闫方亮、杨丽霞、颜建锋、倪青青。这项标准规定了氮化镓材料中镁含量的二次离子质谱测试方法,适用于氮化镓材料中镁含量的定量分析,测定范围为不小于5×1014cm-3。其主要原理为在高真空(真空度优于10-6Pa)条件下,氧离子源产生的一次离子,经过加速、纯化、聚焦后,轰击氮化镓样品表面,溅射出多种粒子。将其中的离子(即二次离子)引出,通过质谱仪将不同质荷比的离子分 开,记录并计算样品中镁与镓的离子计数率之比,利用相对灵敏度因子定量分析并计算出氮化镓材料中的镁含量。氮化镓(GaN)材料中的镁(Mg)浓度的精确测定至关重要GaN材料是研制微电子器件、光电子器件的新型半导体材料,在其单晶材料的研制 过程中,掺杂剂Mg的含量对生长p型GaN有重要影响,所以对Mg浓度的精确测定至关重要。在实际集成电路制造中所需要的绝大多数半导 体材料中都会掺入一定数量的某种原子 ( 杂质) , 以便控制导电类型和导电能力。在高空穴载流子浓度 p 型 GaN 生长过程中,通常会掺入Mg元素。Mg 的掺杂量对高空穴载流子浓度p型GaN特性起决定作用,当Mg的掺杂量较小时,GaN∶Mg单晶膜呈现n型导电,得不到p型层 当Mg的掺杂量过大时,会形成与Mg有关的深施主,由于深施主的 补偿作用,得不到高空穴浓度的p型GaN。所以在GaN单晶的研制过程中,需要对掺杂剂Mg元素进行跟踪测试。 对于GaN中Mg元素的测试,此前并无官方发布的标准测试方法。由于GaN化学稳定性好,在室温下不溶于水、酸和碱,在热的碱溶液中以非常缓慢的速度溶解,而且有些GaN晶体是生长在其他衬底上的,所以不宜采用化学溶样法测试GaN晶体中杂质的含量。而在半导体材料中,杂质足以影响材料的性能,所以需要寻求一种能直接采用固体样品进样而且检测限足够低的测试方法。目前能满足这两个条件的只有二次离子质谱(SIMS)法和辉光放电质谱(GDMS)法,而GDMS法存在一定的弊端:GDMS法的扇形磁场检测器按原子质量顺序检测的特性使其在快速分析时受到限制,每个样品检测时间较长;虽然GDMS能在没有标样的情况下直接使用相对灵敏度因子进行定量,而不同仪器的元素相对灵敏度因子值是不 一样的,使检测结果不准确,所以要准确定量测定被测元素的含量,必须要有与样品一致的标准样品,以获得该类样品被测元素的相对灵敏度因子值,从而准确测定样品的杂质含量,但标准样品很难获得。SIMS法是一种分析固体材料表面组分和杂质的方法。它采用一次离子束轰击样品,分析溅射产生的正负二次离子,可以对样品进行质谱分析、深度剖析或二次离子成像分析。SIMS 不仅具有较宽的动态检测范围,而且具有很高的元素检测灵敏度以及在表面和纵深两个方向上的高空间分辨能力。最重要的是,SIMS法是一种非常直接的分析手段,可以直接测量掺杂元素的含量,基本上不受晶体掺杂情况的影响,因此成为现代微电子学中半导体材料质量控制不可缺少的分析工具。中电科领衔起草相关标准针对国家标准在氮化镓材料中镁含量测定方面的空白,根据《国家标准委关于下达2017年第四批国家标准制修订计划的通知》(国标委综合[2017]128号)的要求,由中国电子科技集团公司第四十六研究所负责制定了《氮化镓材料中镁含量的测定二次离子质谱法》,计划编号为20173544T469,要求完成时间2019年。据了解,当时中国电子科技集团公司第四十六研究所拥有两台二次离子质谱仪,是国内唯一家能够提供全面的二次离子质谱测试技术的单位,有丰富的操作、试验经验,可以为《氮化镓材料中镁含量的测定二次离子质谱法》标准的制定提供充分的验证报告。公司拥有批高素质的专业人才,曾制(修)订定二次离子质谱相关的标准10余项,有丰富的制(修)订标准的经验。2017年12月,本标准起草单位(中国电子科技集团公司第四十六研究所)组建了本标准起草工作组:起草工作组讨论并形成了制定本标准的工作计划及任务分工。2018年3月,起草工作组完成标准《氮化镓材料中镁含量的测定二次离子质谱法》的讨论稿2018年4月24日,全国半导体设备和材料标准化技术委员会材料分技术委员会在北京主持召开了《氮化镓材料中镁含量的测定二次离子质谱法》的第一次工作会(讨论会),提出了“前言中删除‘本标准为首次制定’等共9条修改意见”,形成了本标准的征求意见稿。2018年11月由全国半导体材料标准化分技术委员会组织,在福建省福州市召开《氮化镓材料中镁含量的测定二次离子质谱法》标准第二次工作会议(预审会)与会专家对标准资料从标准技术内容和文本质量等方面进行了充分的讨论。提出了扰因素5.1-5.7中表述应统一,描述形式应进行修改,如:5.1改为镁离子可能影响镁浓度的测试”等4条修改意见,形成了送审稿。2020年10月11日,《氮化镓材料中镁含量的测定二次离子质谱法》标准正式发布,并于今日实施生效。有奖调研仪器信息网为了更好地服务半导体行业用户,特邀请您参与问卷调研,麻烦大家动动小手完成问卷,参与即得10元话费!活动结束还将择优选择10名认真填写用户送出50元话费!!!http://a72wfu5hktu19jtx.mikecrm.com/zuXBhOy
  • 芯联集成“半导体器件的制备方法及半导体器件”专利获授权
    天眼查显示,芯联集成电路制造股份有限公司近日取得一项名为“半导体器件的制备方法及半导体器件”的专利,授权公告号为CN118073206B,授权公告日为2024年7月23日,申请日为2024年4月22日。背景技术半导体器件中的金属氧化物半导体(Metal Oxide Semiconductor,MOS)器件,因具有开关速度快、损耗小、可靠性高等优点,在诸如电源控制和驱动电路等领域得到越来越广泛的应用。例如,金属氧化物半导体器件中的横向扩散金属氧化物半导体(LaterallyDiffused Metal Oxide Semiconductor,LDMOS)器件,具有耐高压,大电流驱动能力以及低功耗的优点,而且容易与互补金属氧化物半导体器件工艺兼容,因此常用于射频功率电路和电源控制电路,以满足耐高压以及实现功率控制等方面的要求。功率集成电路高电压、大电流的特点常常要求金属氧化物半导体器件具有高击穿电压和低比导通电阻。场板技术是一种广泛应用的用于提高金属氧化物半导体器件的击穿电压的技术,但是目前结合场板技术的金属氧化物半导体器件的制作工艺较为复杂。因此如何在较好地提升金属氧化物半导体器件的击穿电压的同时,简化制作工艺是目前亟需解决的问题。发明内容本申请实施例涉及一种半导体器件的制备方法及半导体器件,属于半导体技术领域。半导体器件的制备方法包括:提供半导体材料层,半导体材料层中包括第一器件区,第一器件区中包括漂移区和体区;在部分漂移区的表面形成场氧化层;形成从场氧化层的表面延伸至漂移区的内部的至少一个第一沟槽;形成覆盖第一沟槽的内壁的第一介质层;在部分体区的表面形成栅介质层;形成填充于第一沟槽并延伸至部分场氧化层和栅介质层的表面的导电层;其中,位于第一沟槽中的导电层构成第一场板;位于第一场板和场氧化层的表面的导电层构成第二场板;位于栅介质层的表面的导电层构成栅电极层。如此,在有效提升器件击穿电压的同时使得器件的制备工艺较为简化。
  • 梅特勒-托利多携多款产品精彩亮相半导体分立器件分会年会
    近日,由中国半导体行业协会主办的“第十五届中国半导体行业协会半导体分立器件年会暨2021年中国半导体器件技术创新及产业发展论坛”在大连富丽华酒店二楼多功能厅成功召开。梅特勒-托利多(METTLER TOLEDO),作为全球领先的精密仪器及衡器制造商,在百年悠久发展历程中一直保持着技术和市场的领先性。如今,梅特勒-托利多提供的解决方案遍布实验室、工业及零售业(商业)的各个流程与环节,从高精度的微量分析到千吨以上的称重应用,梅特勒-托利多统一的团队、全球的服务网、完美的解决方案帮助全球用户增进效率、创造价值,轻松应对各种挑战。本次展会,梅特勒-托利多携多款产品亮相,吸引了相关人员的关注。超越系列滴定仪这款仪器具有高亮度和高分辨率的触摸屏终端,通过电缆与主机相连,可以随意地放在任何位置。直观的StatusLight™ (状态指示灯)功能以及显示屏可多角度调节,保证用户享受一个符合人体工程学和无视觉疲劳的工作环境。滴定辅助设备能够被滴定仪自动识别,减少用户的干预。重要的数据如电极校正结果或者滴定剂浓度能够自动保存在电极芯片和滴定管芯片上,使用时会自动传输至滴定仪,错误的滴定剂和电极是不可能被使用的。天平到滴定仪的无线数据传输避免了手动输入导致的抄录错误。样品数据保存在滴定杯的芯片内,避免了样品的混淆。通过配置容量法和/或库仑法卡尔费休套件,可以测定1ppm至100%的水分含量。该系统还可轻松再扩展pH电极板或电导率电极板,实现pH和电导率的同时测量和滴定。梅特勒-托利多ML-T 分析天平该智能天平采用符合人体工学设计,内置多项应用程序,电池供电,搬移方便,当然还有称量性能佳、坚固耐用的优点。 所有这些元件集于一身,其台面面积在同类产品中为最小!佩戴棉质、硅胶和橡胶手套也可对舒适的 4.5 英寸彩色触摸屏进行流畅操作。 直观的用户界面和大显示数字让您的日常任务变得舒适。内置的 LevelControl 水平控制功能在天平处于非水平时发出警告,并在屏幕上提供指导,帮助用户在最快的时间内将天平调至水平。带有FACT自动内部调节功能的优异的 MonoBloc 称重单元可提供始终如一的可靠结果。 内置过载保护确保天平保持较长的使用寿命。称量值会保持红色,直到样品净重超过预设的最低值。 用户可将自定义的最小称量值录入天平,从而提供额外的安全系数。QuickLock 快速锁定防风罩允许您在几秒钟内无需借助任何工具拆除所有部件。 光滑的表面和弧形边缘使清洁变得容易并且安全。提供 USB 主机、USB 设备、RS232 和可选蓝牙连接能力,连接无限制。 内置 PC Direct 功能允许轻松传输数据,无需额外的 PC 软件。数字平台秤 PowerDeck™ 新型PowerDeck™ 平台秤不仅采用坚固的设计,而且具有智能诊断功能和提供清晰的用户指引,确保称重过程顺畅、高效。当操作人员得到实时指引时,将能够获得优化、准确且高效的过程。 新型Powerdeck™ 平台秤可提供这种指引并且持久耐用,不仅可延长使用寿命而且可减少维护成本。pH分析仪这款PH分析仪由传感器、变送器和过程连接件组成,可满足用户的pH控制需求。梅特勒-托利多的在线pH分析仪在各种环境中提供准确的过程pH测量,从超纯水到生物反应器的卫生测量,再到脏污的化学品生产。使用数字智能传感器管理(ISM)技术的pH分析仪和ORP分析仪通过集成的预测性诊断帮助减少维护工作量。
  • 盘点半导体产业链上的行业协会/学会/产业联盟等社会团体
    半导体是许多工业整机设备的核心,普遍应用于计算机、消费类电子、网络通信、汽车电子等核心领域。半导体主要由四个组成部分组成:集成电路(约占81%),光电器件(约占10%),分立器件(约占6%),传感器(约占3%),因此通常将半导体和集成电路等价。集成电路按照产品种类又主要分为四大类:微处理器(约占18%),存储器(约占23%),逻辑器件(约占27%),模拟器件(约占13%)。半导体产业链分上中下三层:上游是基础支撑产业链,包括了材料、耗材、设备、辅助制造、EDA等,中游是核心制造产业链,芯片设计公司、芯片制造公司和封装测试公司,下游是终端应用产业链。据中国半导体行业测算,2020年我国集成电路销售收入达到8848亿元,平均增长率达到20%,为同期全球产业增速的3倍。半导体产业链面对复杂的产业链和巨大的市场规模,整合资源、加强行业交流显得尤为重要。由此,自发或政府组织建立了众多的半导体行业的社会组织(协会、学会、联盟、标准委员会等)。通过各种行业组织,成员之间可以更容易整合资源并加群交流,提高了行业整合效率,也有利于产业进步升级。为此,仪器信息网特对半导体产业链上的社会组织进行整理盘点,涉及半导体材料、设备、光刻工艺、封测、光电子器件、分立元器件等。(信息搜集自网络,仅供参考)从组织形式分类来看,本次盘点涉及的社会组织主要分为四类,包括行业协会、行业学会、产业联盟和标准化技术委员会。行业协会是指介于政府、企业之间,商品生产者与经营者之间,并为其服务、咨询、沟通、监督、公正、自律、协调的社会中介组织。行业协会是一种民间性组织,它不属于政府的管理机构系列,而是政府与企业的桥梁和纽带。行业学会是指各行业为研究某一行业及学科的人组成的学术团体、学术组织,包括各行业的各类学会。产业联盟是指出于确保合作各方的市场优势,寻求新的规模、标准、机能或定位,应对共同的竞争者或将业务推向新领域等目的,各有关企业和相关机构等成员单位之间结成的互相协作和资源整合的一种合作模式。标准化技术委员会是由国务院标准化主管部门根据工作需要,依法在一定专业领域内建立的从事标准化工作的技术工作机构。由生产、科研、教学、检验、用户等方面的专家、技术人员和管理人员组成。其主要任务是起草标准、审定标准。组织形式名称行业协会SEMI中国半导体行业协会中国电子专用设备工业协会中国电子信息行业联合会中国电子信息技术产业协会中国电子电路行业协会中国电子企业协会中国工业气体行业协会中国电子气生产与利用百人会中国电子材料行业协会半导体材料分会中国光学光电子行业协会光电器件分会中国光学光电子行业协会发光二极管显示应用分会中国光伏行业协会行业学会中国物理学会半导体物理专业委员会中国光学学会光刻技术专业委员会中国有色金属学会半导体材料学术委员会中国有色金属学会宽禁带半导体专业委员会中国电子学会真空电子学分会中国电子学会半导体与集成技术分会中国电子学会电子材料学分会中国电子学会电子制造与封装技术分会中国机械工程学会微纳制造技术分会中国光学工程学会微纳光电子集成技术专家委员会中国感光学会辐射固化专业委员会中国硅酸盐学会晶体生长与材料分会中国真空学会电子材料与器件专业委员会中国真空学会显示技术专业委员会中国微米纳米技术学会微纳米制造及装备分会产业联盟第三代半导体产业技术创新战略联盟(CASA)中国集成电路创新联盟集成电路材料产业技术创新联盟中国集成电路知识产权联盟全国印刷电子产业技术创新联盟中国电子化工新材料产业联盟国家半导体照明工程研发及产业联盟中国半导体照明/LED产业与应用联盟中国OLED产业联盟标准化技术委员会全国半导体设备和材料标准化技术委员会全国半导体器件标准化技术委员会全国集成电路标准化技术委员会(筹建中)全国平板显示器件标准化技术委员会中国电子技术标准化研究院中国电子工业标准化技术协会全国印制电路标准化技术委员会SEMISEMI (国际半导体产业协会) 是全球性的产业协会,致力于促进微电子、平面显示器及太阳能光电等产业供应链的整体发展。会员涵括上述产业供应链中的制造、设备、材料与服务公司,是改善人类生活质量的核心驱动力。自1970年至今,SEMI不断致力于协助会员公司快速取得市场信息、提高获利率、创造新市场、克服技术挑战。SEMI投入世界各大主要科技领域,在全球有14个办公室, 包括中国台湾(新竹)、中国大陆(上海、北京)、 日本(东京) 、韩国(首尔) 、新加坡、印度(邦加罗尔)、比利时(布鲁塞尔)、德国(柏林)、法国(格勒诺布尔) 、俄国(莫斯科), 和美国(圣荷西、奥斯汀、华盛顿)。其主要活动包含举办会议与展览、推动国际标准、公共政策、市场研究以及倡导产业环境、健康与安全(EHS)等议题。中国半导体行业协会中国半导体行业协会成立于1990年11月17日,是由全国半导体界从事集成电路、半导体分立器件、半导体材料和设备的生产、设计、科研、开发、经营、应用、教学的单位、专家及其它相关的支撑企、事业单位自愿结成的行业性的全国性的非营利性的社会组织。其下设有集成电路、半导体分立器件、半导体封装、集成电路设计、半导体支撑业和MEMS分会。中国电子专用设备工业协会中国电子专用设备工业协会(CEPEA)成立于1987年7月,是经中华人民共和国民政部批准登记注册取得社团法人资格的全国性工业行业协会。中国电子专用设备工业协会的登记管理机关是中华人民共和国民政部,党建领导机关是中国共产党中央国家机关工作委员会。电子专用设备行业是从事电子产品生产装备的研究、开发、生产的行业,到2019年12月25日止,中国电子专用设备工业协会共有183家会员单位(协会目前不设个人会员)。第三代半导体产业技术创新战略联盟(CASA)2015年9月9日,在国家科技部、工信部、北京市科委的支持下,由第三代半导体相关的科研机构、大专院校、龙头企业自愿发起筹建的“第三代半导体产业技术创新战略联盟”在北京国际会议中心举行了成立大会。中国有色金属学会宽禁带半导体专业委员会宽禁带半导体已成为全球高技术领域竞争战略制高点之一,近年来,我国该领域取得长足发展,但还缺少一个全国性的宽禁带半导体学会组织。为进一步推动我国宽禁带半导体领域的发展,加强交流与协同创新,作为全国MOCVD会议的主办单位,中国有色金属学会经研究批准,决定依托广东省科学院成立中国有色金属学会宽禁带半导体专业委员会。该专委会筹备工作得到了科技部、工信部、国家基金委以及业界的积极响应和大力支持,本专业委员会顾问由16位院士及康义理事长组成,专业委员会委员为64位,基本覆盖了我国宽禁带半导体领域相关高校科研院所、及主要企业的专业带头人。
  • 半导体领域国际标准提案立项论证评审召开
    2022年10月14日,中国电子技术标准化研究院组织召开了IEC TC47/SC47E、SC47F两项国际标准提案的立项论证评审会。国家市场监督管理总局标准创新管理司IEC联络处徐全平副处长出席会议并致辞,来自MEMS器件和光电器件等半导体领域的十余位专家代表参加了会议,会议由中国电子技术标准化研究院张玉芹主任主持。   徐全平副处长在致辞中表示,半导体器件是支撑信息技术产业发展的基石,两项新提案的提出体现了我国半导体器件蓬勃发展的态势和主动贡献中国智慧的大国担当,后续应继续加强培养复合型标准化人才,针对产业痛点提出具有先导性、独创性的国际提案,持续推动我国半导体产业高质量发展。   本次会议成立了由中国科学院空天信息创新研究院、中国计量科学研究院、京津冀国家技术创新中心、北京航天控制仪器研究所、浙江大学、上海芯物科技有限公司、北京智慧共享技术服务有限公司等单位的专家组成的评审组,来自北京大学和之江实验室的提案负责人就MEMS麦克风和CMOS成像气体传感器2项国际标准提案汇报了立项背景、目的意义以及标准主要技术内容,评审专家对提案论证报告、标准草案等内容进行了质询和讨论,一致同意提案立项申报,并给出了修改完善建议。   近年来,我国在半导体器件领域国际标准化工作节节攀升,电子标准院和中国电科十三所等国内相关技术对口单位将继续认真履行职责、主动担当,持续提升我国在国际标准化领域的影响力和话语权。
  • 建立电子元器件和集成电路交易平台,半导体产业也要“集采”了
    1月26日,国家发展改革委官网发布《关于深圳建设中国特色社会主义先行示范区放宽市场准入若干特别措施的意见》(以下简称“《若干特别措施》”)。《若干特别措施》提出要放宽和优化先进技术应用和产业发展领域市场准入,完善金融投资领域准入方式,创新医药健康领域市场准入机制,放宽教育文化领域准入限制,推动交通运输领域准入放宽和环境优化和放宽其他重点领域市场准入等六方面内容,共计24条措施。其中,在放宽和优化先进技术应用和产业发展领域市场准入方面,《若干特别措施》强调,创新市场准入方式建立电子元器件和集成电路交易平台。支持深圳优化同类交易场所布局,组建市场化运作的电子元器件和集成电路国际交易中心,打造电子元器件、集成电路企业和产品市场准入新平台,促进上下游供应链和产业链的集聚融合、集群发展。支持电子元器件和集成电路企业入驻交易中心,鼓励国内外用户通过交易中心采购电子元器件和各类专业化芯片,支持集成电路设计公司与用户单位通过交易中心开展合作。积极鼓励、引导全球知名基础电子元器件和芯片公司及上下游企业(含各品牌商、分销商或生产商)依托中心开展销售、采购、品牌展示、软体方案研发、应用设计、售后服务、人员培训等。支持开展电子元器件的设计、研发、制造、检测等业务,降低供应链总成本,实现电子元器件产业链生产要素自由流通、整体管理;优化海关监管与通关环境,在风险可控前提下,推动海关、金融、税务等数据协同与利用,联合海关、税务、银行等机构开展跨境业务,交易中心为入驻企业提供进出口报关、物流仓储服务,鼓励金融机构与交易中心合作,为企业提供供应链金融服务。鼓励市场主体依托中心开展采购,设立贸易联盟并按市场化运作方式提供国际贸易资金支持,汇聚企业对关键元器件的采购需求,以集中采购方式提高供应链整体谈判优势。支持设立基础电子元器件检测认证及实验平台,面向智能终端、5G、智能汽车、高端装备等重点市场,加快完善相关标准体系,加强提质增效,降低相关测试认证成本。(工业和信息化部、国家发展改革委、民政部、海关总署、商务部、人民银行、税务总局、市场监管总局、银保监会、外汇管理局等单位按职责分工会同深圳市组织实施)近年来,全球半导体产业“缺芯”情况严重,对全球产业发展业绩造成了较大的影响。自2020年下半年以来,市场就已频频传出缺货潮。2021年以来,半导体行业经历了前所未有的缺货潮和涨价潮,各大厂商纷纷发布涨价函。其中,部分品种涨幅甚至超过300倍。二级市场方面,涨价潮所带来的红利早已兑现。市场普遍预期,缺货要到2022年下半年才有望缓解。对此,工信部发言人表示,一方面,随着社会智能化程度的不断提升,芯片作为智能设备最关键的组成部分,需求在持续增长。另一方面,全球疫情蔓延,还有一些个别国家对他国企业进行无理的制裁和打压,都对全球半导体供应链造成了严重冲击。综合多种因素的叠加,也客观上造成了“缺芯”问题的出现。随着市场调节机制逐步发挥作用,以及在各级政府、汽车企业、芯片企业的共同努力下,汽车领域的芯片“缺芯”问题正在逐步缓解。但是我们也要看到,全球集成电路供应链稳定性依然面临着严峻的挑战,未来较长一段时期内,这种芯片供应将依然处于紧张状态。在“缺芯”潮下,电子元器件和集成电路产品价格暴涨严重影响了供应链,加大了下游企业的成本。面对此种情况,一方面要大力建设晶圆厂,另一方面也需要提升下游企业在供应链中的话语权。虽然此前各地政府已出台大量政策措施鼓励投资和建设晶圆厂等,但晶圆厂建设周期长,起效慢,远水解不了近渴。此次,《若干特别措施》的出台,鼓励建立电子元器件和集成电路交易平台,汇聚企业对关键元器件的采购需求,以集中采购方式提高供应链整体谈判优势。这将有助于提升供应链透明度,为下游企业提升采购效率,降低采购成本。【政策链接】:《关于深圳建设中国特色社会主义先行示范区放宽市场准入若干特别措施的意见(发改体改〔2022〕135号)》
  • 中微半导体入股志橙半导体 后者经营范围含半导体器件等
    9月10日,据企查查信息,深圳市志橙半导体材料有限公司(以下简称“志橙半导体”)发生工商变更,新增股东中微半导体设备(上海)股份有限公司。同时,志橙半导体的注册资本由1234.57万元人民币增加至1296.30万元人民币,增幅为5%。图片来源:企查查信息截图官网介绍称,志橙半导体成立于2017年12月26日,生产基地为全资子公司东莞市志橙半导体材料有限公司。该公司的经营范围包含电子元器件、半导体产品、化合物半导体产品、光学电子产品、太阳能产品、金属材料和金属化合物材料;半导体器件生产设备的销售、维修服务等。
  • 清纯半导体“半导体功率器件及其制备方法”专利公布
    天眼查显示,清纯半导体(宁波)有限公司“半导体功率器件及其制备方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263325A。背景技术功率半导体器件是电力电子装置中电能转换与电路控制的核心元器件,随着近年来新能源汽车、光伏、轨道交通、智能电网等产业的发展,市场对功率器件的需求迅速升温。第三代半导体SiC材料在禁带宽度、导热性能、临界击穿场强、电子饱和漂移速度上的优势明显,符合未来电力电子系统小型轻量化、高效一体化、安全可靠化的发展趋势。随着平面型SiC MOSFET技术的不断迭代,其元胞尺寸的缩减能力逐渐趋近极限,相较而言,沟槽型SiC MOSFET从结构上更小的元胞尺寸、更高的沟道密度等天然优势,注定是下一代SiC功率器件的发展趋势。对于沟槽型SiC MOSFET而言,反向阻断状态下,其底部栅氧的电场集中是制约其性能及可靠性的关键问题。发明内容本发明提供一种半导体功率器件及其制备方法,半导体功率器件包括:半导体衬底层;位于所述半导体衬底层一侧的漂移层;位于所述漂移层中的栅极结构;阱区,分别位于所述栅极结构两侧的漂移层中;在所述漂移层中围绕所述栅极结构的底面和部分侧壁的保护单元;所述保护单元包括:第一掺杂保护层,位于所述栅极结构部分底部的漂移层中;第二掺杂保护层,位于所述栅极结构的部分侧壁和部分底部的漂移层中,所述第一掺杂保护层的导电类型和所述阱区的导电类型相同且和所述第二掺杂保护层的导电类型相反,所述第二掺杂保护层的掺杂浓度大于所述漂移层的掺杂浓度,所述第二掺杂保护层和所述第一掺杂保护层构成PN结。提高了对栅介质层的保护。
  • 关于召开第三届“半导体材料、器件研究与应用”网络会议的通知
    半导体材料与器件是现代自动化、微电子学、计算机、通讯等设备仪器研制生产的基础材料及核心部件,具有专门的生产设备、工艺和方法,在现代各方面得到大量的研究和应用。作为现代信息技术产业的基础,半导体产业已成为社会发展和国民经济的基础性、战略性和先导性产业,是现代日常生活和未来科技进步必不可少的重要组成部分;伴随着全球科技逐渐进步,全球范围内半导体产业规模基本都保持着持续扩张态势。为加速国内半导体材料及器件发展,促进国内半导体材料与器件领域的人员互动交流,推动我国半导体行业的高质量发展。仪器信息网联合电子工业出版社将于2022年12月20-22日举办第三届“半导体材料与器件研究及应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点议题,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。一、主办单位仪器信息网 & 电子工业出版社二、会议时间2022年12月20日-12月22日三、会议形式线上直播,直播平台:仪器信息网3i讲堂平台本次会议免费参会,参会报名请点击会议官网:https://insevent.instrument.com.cn/t/Mia (内容更新中)或扫描二维码报名四、会议日程1.专场安排第三届“半导体材料、器件研究与应用”网络会议时间专场名称12月20日全天光电材料与器件12月21日全天第三代半导体材料与器件12月22日上午传感器与MEMS12月22日下午半导体产业配套材料2.详细日程(以会议官网最终日程为准)时间报告题目演讲嘉宾专场1:光电材料与器件(12月20日)9:30近红外吸收的非铅双钙钛矿肖立新(北京大学 教授)10:00待定待定10:30待定待定 (牛津仪器科技(上海)有限公司)11:00低维异质界面工程与器件王琳(南京工业大学先进材料研究院 教授)11:30午休午休音乐14:00GaN光电器件现有应用及未来发展方向张星星(江西兆驰半导体有限公司 芯片研发经理)14:30半导体产业链中的痕量元素分析解决方案应钰(安捷伦科技(中国)有限公司 原子光谱应用工程师)15:00面向高性能钙钛矿光伏器件的聚合物矩阵结构魏静(北京理工大学 特别副研究员)专场2:第三代半导体材料与器件(12月21日)9:00氮化镓增强型功率器件进展黄火林(大连理工大学 教授)9:30Epitaxial growth of thick GaN layers on Si substrates and the physics of carbon impurity杨学林(北京大学 正高级工程师)10:00待定待定(牛津仪器科技(上海)有限公司)10:30GaN电力电子器件研究进展赵胜雷(西安电子科技大学 副教授)14:00GaN功率器件及功率集成电路技术魏进(北京大学 研究员)14:30待定待定(布鲁克电子显微纳米分析仪器部)15:00聚焦离子束及飞秒激光微纳加工徐宗伟(天津大学精密测试技术及仪器国家重点实验室 副教授)15:30氮化物半导体的原子尺度晶格极性研究王涛(北京大学 高级工程师)专场3:传感器与MEMS(12月22日上午)9:30硅纳米线场效应传感器的制备及其生物检测研究魏千惠(有研工程技术研究院有限公司 科研主管)10:00待定待定10:30智能传感技术在电力设备中的应用/待定周渠(西南大学 教授)专场4:半导体产业配套材料(12月22日下午)14:00半导体行业用水概述孙秀敏(工业和信息化部电子第五研究所 副部长/高级工程师)14:30待定待定(威立雅水处理技术(上海)有限公司)15:00集成电路用水标准体系解读和检测方法介绍李春华(上海市计量测试技术研究院 集成电路产业中心主任/高工)五、参会方式1. 本次会议免费参会,参会报名请点击会议官网:会议官网:https://insevent.instrument.com.cn/t/Mia(内容更新中)或扫描二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容康编辑:15733280108,kangpcinstrument.com.cn2. 会议赞助周女士,19801307421,zhouhh@instrument.com.cn仪器信息网电子工业出版社2022年12月6日附:往届会议回顾1)第二届“半导体材料、器件研究与应用”网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/icsmd20212)第一届“半导体材料、器件研究与应用”网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/iCSMD2020
  • 技术线上论坛| 11月24日《半导体器件痕量有机污染分析--亚微米分辨红外拉曼同步测量系统》
    报告简介: 半导体器件,尤其是高密度的集成电路,常见的污染莫过于微粒和有机化学品污染。该类污染物常落于器件的关键部位并毁坏器件的功能成为致命缺陷。目前微粒的量度尺寸已经降到亚微米,这种亚微米的小尺寸污染检测与鉴别尚未有高效准确的表征手段。有机化学品污染以多种形式存在,如人的皮肤油脂,净化室空气,机械油,清洗溶剂等。如何在凹凸不平的集成电路微区里发现并鉴定有机化学品污染,提升器件良品率,已成为众多科研工作者的研究课题。传统的傅里叶变换红外光谱FTIR/QCL一直是半导体器件污染的常用表征手段,但该技术在关键问题的表征上存在一些局限性,例如空间分辨率(10-20 μm) 较差和对扫码预约观看报告时间:2021年11月24日 14:00 主讲人:赵经鹏 博士赵经鹏,博士,毕业于法国科研中心,主要研究方向为高分子聚合物及纳米材料物化性能表征等相关研究工作,在Quantum Design中国公司负责非接触亚微米分辨红外拉曼同步测量系统(mIRage)和台式X射线精细结构吸收谱(easyXAFS)等相关产品的技术支持及市场拓展等工作。技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 报名倒计时|第三届“半导体材料、器件研究与应用”网络大会全日程公布
    半导体材料与器件是现代自动化、微电子学、计算机、通讯等设备仪器研制生产的基础材料及核心部件,具有专门的生产设备、工艺和方法,在现代各方面得到大量的研究和应用。仪器信息网联合电子工业出版社将于2022年12月20-22日举办第三届“半导体材料与器件研究及应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点议题,邀请半导体领域相关研究、应用与检测专家、知名仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。同时,只要报名参会并将会议官网分享微信朋友圈积赞30个可以获得《2021年度科学仪器行业发展报告》(独家首发)一本,(兑奖方式见文末)报名参会进群还将获得半导体相关学习电子资料压缩包一份。会议同期,还有部分赞助厂商将抽取幸运观众,邮寄企业周边产品。一、主办单位仪器信息网 & 电子工业出版社二、会议时间2022年12月20日-12月22日三、会议形式线上直播,直播平台:仪器信息网 3i讲堂平台本次会议免费参会,参会报名请点击会议官网:https://insevent.instrument.com.cn/t/Mia或扫描二维码报名四、会议日程1.专场安排第三届“半导体材料、器件研究与应用”网络会议时间专场名称12月20日全天光电材料与器件研究与应用12月21日全天第三代半导体研究与检测技术12月22日上午传感器与、半导体产业配套材料研究与检测技术2.详细日程(以会议官网最终日程为准)时间报告题目演讲嘉宾专场1:光电材料与器件研究与应用(12月20日)9:30近红外吸收的非铅双钙钛矿肖立新(北京大学 教授)10:00半导体材料的力学及热性能评估 - Thermal analysis and beyond苏思伟(Waters -TA部门 TA仪器热分析高级技术专家)10:30牛津仪器显微分析技术在先进半导体材料表征中的应用王汉霄 (牛津仪器科技(上海)有限公司)11:00低维异质界面工程与器件王琳(南京工业大学先进材料研究院 教授)直播抽奖:5张30元京东卡11:30午休午休音乐14:00半导体材料发展与机遇慕容素娟(大话芯片 总编)14:30半导体产业链中的痕量元素分析解决方案应钰(安捷伦科技(中国)有限公司 原子光谱应用工程师)15:00面向高性能钙钛矿光伏器件的聚合物矩阵结构魏静(北京理工大学 特别副研究员)15:30低维钙钛矿发光材料与器件张晓宇(吉林大学 副教授)直播抽奖:5张30元京东卡专场2:第三代半导体研究与检测技术(12月21日)9:30氮化镓增强型功率器件进展黄火林(大连理工大学 教授)10:00如何利用牛津原子力显微镜评价化合物半导体质量刘志文 (牛津仪器科技(上海)有限公司)10:30Epitaxial growth of thick GaN layers on Si substrates and the physics of carbon impurity杨学林(北京大学 正高级工程师)11:00海洋光学微型光谱仪在半导体领域的应用卢坤俊(海洋光学 资深技术&应用专家)11:30GaN电力电子器件研究进展赵胜雷(西安电子科技大学 副教授)直播抽奖:5张30元京东卡12:00午休午休音乐14:00GaN功率器件及功率集成电路技术魏进(北京大学 研究员)14:30布鲁克新一代能谱仪及其在半导体样品上的应用陈剑锋(布鲁克(北京)科技有限公司 应用工程师)15:00聚焦离子束及飞秒激光微纳加工徐宗伟(天津大学精密测试技术及仪器国家重点实验室 副教授)15:30雷尼绍拉曼光谱技术的发展及其在半导体材料分析中的应用王志芳(雷尼绍(上海)贸易有限公司北京分公司 光谱产品部应用经理)16:00GaN半导体器件的仿真设计与制备研究张紫辉(河北工业大学 教授)16:30氮化物半导体的原子尺度晶格极性研究王涛(北京大学 高级工程师)直播抽奖:5张30元京东卡专场3:传感器与MEMS研究与应用(12月22日上午)9:30硅纳米线场效应传感器的制备及其生物检测研究魏千惠(有研工程技术研究院有限公司 科研主管)10:00智能传感技术在电力设备中的应用/待定周渠(西南大学 教授)10:30半导体行业用水概述孙秀敏(工业和信息化部电子第五研究所 副部长/高级工程师)11:00水纯度对半导体研究与应用的重要性沈熹(威立雅水处理技术(上海)有限公司)威立雅赞助周边奖品抽奖11:30集成电路用水标准体系解读和检测方法介绍李春华(上海市计量测试技术研究院 集成电路产业中心主任/高工)直播抽奖:5张30元京东卡五、参会方式1. 本次会议免费参会,参会报名请点击会议官网:会议官网:https://insevent.instrument.com.cn/t/Mia 或扫描二维码报名2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、兑奖方式:1) 直播间抽奖中奖后,凭借中奖截图凭证联系直播助手领奖;2) 分享朋友圈兑奖,凭借朋友圈点赞截图,联系主持人(微信号:15733280108)领取《2021年度科学仪器行业发展报告》七、会议联系1. 会议内容康编辑:15733280108,kangpcinstrument.com.cn2. 会议赞助周女士,19801307421,zhouhh@instrument.com.cn仪器信息网电子工业出版社2022年12月12日附:往届会议回顾1)第二届“半导体材料、器件研究与应用”网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/icsmd20212)第一届“半导体材料、器件研究与应用”网络会议会议官网: https://www.instrument.com.cn/webinar/meetings/iCSMD2020
  • 第三代半导体13项标准获得新进展!
    近日,第三代半导体产业技术创新战略联盟(CASA)官方微信消息,其标准化委员会(CASAS)公布了13项标准新进展,包括2项GaN HEMT动态导通电阻测试标准形成委员会草案、2项SiC单晶生长用等静压石墨标准征求意见、9项SiC MOSFET技术标准已完成征求意见稿的编制。01 2项GaN HEMT动态导通电阻测试标准形成委员会草案2024年7月25日,由浙江大学、浙江大学杭州国际科创中心牵头起草的团体标准T/CASAS 34—202X《用于零电压软开通电路的氮化镓高电子迁移率晶体管动态导通电阻测试方法》、T/CASAS 35—202X《用于第三象限续流的氮化镓高电子迁移率晶体管动态导通电阻测试方法》已形成委员会草案,两项标准委员会草案按照CASAS标准制定程序,反复斟酌、修改、编制而成。起草组召开了多次正式或非正式的专题研讨会,得到了很多CASAS正式成员的支持。委员会草案已经由秘书处邮件发送至联盟常务理事及理事单位。T/CASAS 34—202X《用于零电压软开通电路的氮化镓高电子迁移率晶体管动态导通电阻测试方法》描述了用于零电压软开通电路的氮化镓高电子迁移率晶体管(GaN HEMT)动态导通电阻测试方法。适用于进行GaN HEMT的生产研发、特性表征、量产测试、可靠性评估及应用评估等工作场景。可应用于以下器件:a)GaN增强型和耗尽型分立电力电子器件;b)GaN集成功率电路;c)以上的晶圆级及封装级产品。T/CASAS 35—202X《用于第三象限续流的氮化镓高电子迁移率晶体管动态导通电阻测试方法》描述了用于第三象限续流模式(包括硬关断和零电流关断)的氮化镓高电子迁移率晶体管(GaN HEMT)电力电子动态导通电阻测试方法。适用于进行GaN HEMT的生产研发、特性表征、量产测试、可靠性评估及应用评估等工作场景。可应用于以下器件:a)GaN增强型分立电力电子器件;b)GaN集成功率电路;c)以上的晶圆级及封装级产品。02 2项SiC单晶生长用等静压石墨标准征求意见由赛迈科先进材料股份有限公司牵头起草的标准T/CASAS 036—202X《碳化硅单晶生长用等静压石墨构件纯度测定辉光放电质谱法》、T/CASAS 048—202X《碳化硅单晶生长用等静压石墨》已完成征求意见稿的编制,该项标准征求意见稿按照CASAS标准制定程序,反复斟酌、修改、编制而成,起草组召开了多次正式或非正式的专题研讨会。根据联盟标准化工作管理办法,2024年7月25日起开始征求意见,截止日期2024年8月24日。征求意见稿已经由秘书处邮件发送至联盟成员单位;非联盟成员单位如有需要,可发邮件至:casas@casa-china.cn。T/CASAS 036—202X《碳化硅单晶生长用等静压石墨构件纯度测定辉光放电质谱法》规定了采用辉光放电质谱法测定等静压石墨构件纯度的方法,包括术语和定义、试验原理、试验环境、仪器设备、试剂与材料、试样、试验步骤、试验结果及试验报告。本文件适用于单个杂质元素含量范围为0.01mg/kg~5mg/kg的碳化硅单晶生长用等静压石墨构件纯度的测定,所述构件包括碳化硅单晶生长炉中的加热器、坩埚、籽晶托等内部构件。碳化硅粉体合成用加热器、坩埚等石墨热场部件,以及碳化硅外延生长用石墨基材的纯度测定可参考本文件。T/CASAS 048—202X《碳化硅单晶生长用等静压石墨》描述了碳化硅单晶生长用等静压石墨的技术要求、试验方法、检验规则、标识、包装、运输和贮存等。本文件适用于纯度要求达到5N5(质量分数99.9995%)以上的碳化硅单晶生长用或碳化硅粉体合成用等静压石墨,包括碳化硅单晶生长用加热器、坩埚、籽晶托等内部构件,以及碳化硅粉体合成用加热器、坩埚等石墨热场部件。03 SiC MOSFET 阈值电压等9项技术标准形成征求意见稿7月19日,T/CASAS 021—202X《SiC MOSFET阈值电压测试方法》等9项SiC MOSFET技术标准已完成征求意见稿的编制。其中,T/CASAS 033—20XX《SiC MOSFET功率器件开关动态测试方法》由闻泰科技股份有限公司、重庆大学、工业和信息化部电子第五研究所、浙江大学、泰克科技(中国)有限公司等联合提出。T/CASAS 033—20XX《SiC MOSFET功率器件开关动态测试方法》针对SiC MOSFET器件的开关动态特性,基于当前SiC半导体行业的市场需求,对SiC MOSFET器件进行特定测试电路下的脉冲测试,提案规定了测试所需要包含的设置条件、测试工具、测试项目以及计量方法等,包括:1、总则、规范性引用文件;2、术语、定义、文字符号;3、电路构成和测试要求;4、操作方法和测试流程;5、计量方法和评价方案;6、其他安全注意事项等技术性内容。
  • 微电子所在半导体器件物理领域获进展
    半导体器件存在缺陷态等无序因素,其载流子的输运往往表现为跃迁形式。半导体中的缺陷态种类较为复杂,准确认识并描述半导体器件中的载流子输运及宏观电学特性是本领域内的难点和重点。   低温下半导体器件所广泛表现出的非线性伏安(I-V)特性的具体物理原因是备受关注的话题之一。此前,多数研究将非线性I-V特性归因于电场对半导体材料中的电子跃迁速率的均匀调制效应。这一解释没有解决非线性输运的问题,反而引发了更激烈的争论。   中国科学院微电子研究所微电子器件与集成技术重点实验室刘明院士团队从理论方面提出了载流子的“集体输运效应”(collective transport)的物理机制。该理论认为外电场所导致的非均匀分布的渗流路径生长产生了collective transport效应,进而在器件尺度上导致非线性的I-V特性。在实验方面,该团队进一步在聚合物器件中,通过巧妙控制半导体的维度实现了对器件渗流阈值的控制,在此基础上通过对器件I-V非线性程度的控制直接证实了非线性输运来源于collective transport这一假设。该工作实现了关于上述话题互存争议的各种假设的统一,为发展操控半导体器件I-V特性的方法提供了理论依据。   相关研究成果以Collective Transport for Nonlinear Current-Voltage characteristics of Doped Conducting Polymers为题,发表在《物理评论快报》【Physical Review Letters 130, 177001 (2023)】上。a.collective transport模型,b.电场驱动渗流路径的形成,c.实验观测到维度控制的非线性输运,d.基于collective transport理论仿真维度控制的非线性输运。
  • 助力国家半导体产业发展!首届半导体材料及器件研究与应用网络会议 (iCSMD 2020)盛大来袭
    p   为面对国际、国内新形势,国家密集出台政策措施,推动中国半导体产业高质量发展。8月,国务院印发《新时期促进集成电路产业和软件产业高质量发展的若干政策》,明确提出鼓励半导体材料和装备产业。中国是全球第一大半导体市场、第二大半导体设备市场、第三大半导体材料市场。繁荣的市场和国家扶持政策,将促进半导体产业链转向国内, 进一步催生国内半导体行业实现自主可控的大潮,开启半导体材料国产化黄金期。中国半导体产业的发展,依赖于半导体材料(如硅和先进半导体材料、特种气体、光刻胶、封装材料等)和半导体器件的研究和发展,同样也离不开仪器设备、分析检测方法和标准的支撑。中国科学院半导体研究所、仪器信息网拟于2020年10月15日-16日联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020)”,聚焦半导体材料与器件的产业热点方向,组织2天的专业学术交流。本次网络会议旨在利用互联网技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。 br/ /p p   豪华专家阵容(仅展示部分专家,排序不分先后,可点击查看): /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 295px " src=" https://img1.17img.cn/17img/images/202009/uepic/c47b10d3-b1b9-415b-a4d3-65c83b3b35bb.jpg" title=" 专家阵容.png" alt=" 专家阵容.png" width=" 600" height=" 295" border=" 0" vspace=" 0" / /a /p p   赞助厂商速览(可点击查看详情): /p p style=" text-align: center " & nbsp a href=" https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 118px " src=" https://img1.17img.cn/17img/images/202009/uepic/57119024-8aa8-493e-b0ff-ff62e2fa560b.jpg" title=" 赞助单位.png" alt=" 赞助单位.png" width=" 600" height=" 118" border=" 0" vspace=" 0" / /a & nbsp /p p style=" text-align: left " a href=" https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target=" _self" 详细会议日程及【免费】报名链接: /a /p p style=" text-align: left " a href=" https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target=" _self" https://www.instrument.com.cn/webinar/meetings/iCSMD2020/ /a /p section data-role=" outer" label=" Powered by 135editor.com" section class=" _135editor" data-tools=" 135编辑器" data-id=" 97002" section style=" width:120px margin:10px auto " a href=" https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target=" _self" img src=" https://image2.135editor.com/cache/remote/aHR0cHM6Ly9tbWJpei5xbG9nby5jbi9tbWJpel9naWYvN1FSVHZrSzJxQzRVSDFMdUxpYkNhNUZYaWE1ZW9ZS012TGN2RHlFaWJ3ZHdTeGppYUhpY3BpY0FoU1NjTTA2M2txUm9JUTVZTTF0aGJpYXhTMjRrNGFpY3EwWWlha2cvMD93eF9mbXQ9Z2lm" data-ratio=" 0.3235294117647059" data-width=" 100%" data-w=" 544" style=" caret-color: red width: 100% display: block " / /a /section /section /section p br/ /p
  • LDMAS2021低维半导体电子/光电子器件分论坛成功举办
    近日,2021年第四届低维材料应用与标准研讨会(LDMAS2021)在北京西郊宾馆成功召开。会议吸引了低维材料与器件相关领域的400余名专家学者与企业代表出席,云端参会人数超过1万人。会议同期举办5个不同主题的分会场,仪器信息网编辑对“第2分论坛:低维半导体电子/光电子器件分论坛”进行了跟踪报道。该会场共安排了16个邀请报告和6个青年论坛报告,相继由北京大学集成电路学院研究员黄芊芊、中国科学院半导体所研究员赵德刚、中国科学院半导体研究所研究员薛春来、华中科技大学光学与电子信息学院/武汉光电国家研究中心副教授叶镭和北京化工大学教授邵晓红主持;内容精彩纷呈,得到与会观众的高度关注。以下为此分会场的部分报告集锦,以飨读者。报告题目:GaN 基材料与激光器报告人:中国科学院半导体所研究员 赵德刚氮化镓(GaN)材料被称为第三代半导体,GaN基激光器在激光显示、激光照明、激光加工等领域重要的应用价值,材料生长与器件工艺是基础和关键。在材料方面,赵德刚课题组提出了独特的MOCVD外延方法,生长出高质量的GaN材料,室温下电子迁移率超过1000 cm2/Vs,这是目前国际上公开报道的最好结果;发现并抑制了碳杂质对p-GaN材料的补偿效应,提出了少量掺氧的p型杂质激活方法,解决了p型掺杂问题;还发现了GaN材料“黄光峰”与碳杂质和刃位错紧密相关。在器件方面,利用碳杂质实现了良好的p-GaN欧姆接触特性;掌握了InGaN量子阱界面控制方和局域态调控方法,并生长出高质量的InGaN量子阱材料;研究了InGaN波导层的生长技术,有效抑制了表面V型坑缺陷的形成;提出了降低吸收损耗、抑制电子泄漏的多种激光器新结构,提高了器件性能,研究了激光器物理,发现了GaN基激光器失效机制。研制出我国第一只GaN基紫外激光器,目前连续功率输出920mW,进一步实现了366nm的GaN基紫外激光器电注入激射,并研制出室温连续激射功率6W的蓝光激光器。报告题目:基于低维硅材料的异质结构及其光电神经突触器件报告人:浙江大学教授 皮孝东由于基于传统的冯诺依曼架构的计算的发展面临着高功耗等瓶颈问题,新型计算如神经形态计算正受到人们越来越多的关注。在生物神经系统中,信号的传递都是通过神经突触实现的,因此模拟生物神经突触的神经突触器件成为了发展神经形态计算所必需的核心器件。生物神经系统中的信号主要是电信号,所以早期的研究人员主要研究电刺激-电输出的电子神经突触器件。然而,光电集成特别是硅基光电集成的发展表明,神经形态计算将来若能建立在光电集成的人工神经网络之上,其性能将比只依赖于电集成的更加卓越。这导致近年来研究人员考虑到将光信号引入神经突触器件中,制备光电神经突触器件,进而构建光电集成的人工神经网络。对于光电神经突触器件,如果它们基于硅,研究人员就有望充分利用硅成熟的器件制备和集成工艺,推动光电集成的神经形态计算的快速发展。报告中,皮孝东主要介绍近年来基于低维硅材料如硅量子点和硅纳米膜,与新型半导体材料如二维半导体材料、有机无机杂化钙钛矿、有机半导体等构建异质结构,制备光电神经突触器件,实现对一系列生物突触行为的模拟。报告题目:基于二维层状半导体的偏振光探测器报告人:中国科学院半导体研究所研究员 魏钟鸣近年来,二维材料由于其独特的光电性能而受到了广泛的关注。相比于零带隙的石墨烯,二维半导体材料如MoS2,WSe2等具有一定宽度的带隙,使其可以广泛应用于各种光电器件(包括存储器、探测器和晶体管等)。魏钟鸣课题组针对二维半导体及光电器件进行了长期的探索,围绕材料的设计、制备和器件应用已经取得一些进展,部分材料在场效应晶体管和光探测器等方面显示出较好的性能。作为一种特殊的光电器件,偏振光探测器在光通信、成像等领域有非常重要的应用,魏钟鸣在报告中主要针对新型二维半导体在偏振光探测方面的原型器件和工作机理进行汇报。发现具有二维层状堆积晶体结构和面内各向异性的GeSe与GeAs等材料表现出优异的偏振光探测性能,并且探测波段从可见区覆盖到红外区,这两种材料都在808 nm的短波近红外区获得最优性能。报告题目:高性能低维半导体器件报告人:北京大学微纳电子学系研究员 吴燕庆超薄二维材料体系具有丰富的能带结构与优异的电学特性,可用来实现高性能逻辑、射频与存储器件。其超薄体特性可在超短沟器件中有效抑制短沟道效应。基于二维材料体系的垂直范德华异质结可突破传统体材料异质结的结构限制,实现超越传统器件的功能,并大幅提升性能。纳米尺寸的短沟道器件以及与硅基工艺相兼容的二硫化钼晶体管具有优异的输出特性,其输出电流可超过1mA/µm。基于大面积生长工艺的双层二硫化钼射频晶体管的最大振荡频率峰值可达到23 GHz,基于柔性衬底的混频器也可工作在GHz频段。基于面内各向异性最佳输运方向,沟长为100 nm的黑磷晶体管室温驱动电流达到1.2 mA/ µm,20 K时进一步提高到1.6 mA/µm。室温下其弹道输运效率达到36%,在低温20 K时提高到79.4%。基于上述两种二维材料的范德华异质结可实现电压可调的可重构多值逻辑,并且在超浅垂直异质结中可实现超高整流比与开关比。因此基于范德华异质结的量子隧穿器件具有优异的特性和极大的潜力。此外,在基于超薄4nm的氧化铟锡半导体的短沟道器件中实现了开关比超越1010的超低功耗器件,最短沟长可以达到10nm,并且实现了相关的环振电路,振荡频率为氧化物半导体中最高。并实现了极高的反相器增益及射频增益。低维材料高性能电子器件可为未来后摩尔时代提供具有应用潜力的新一代电子器件。报告题目:低维半导体载流子动力学调控报告人:南京大学教授 王枫秋低维半导体是发展新一代微纳电子和光电子器件的重要技术路径。从微观层面操控低维半导体载流子及载流子激发态的基本性质(如迁移率、寿命、弛豫通道、极化率等),是提升器件宏观性能并发展新原理光电器件的关键。近年来,王枫秋课题组聚焦二维半导体、碳基材料及其异质结构,深入开展限域体系载流子弛豫机制和新型光电器件研究,主要代表成果:(1)提出系列具有普适性的载流子动力学调控策略,实现了两类重要体系载流子寿命宽谱、大范围调制,一项成果入选“2017中国光学十大进展”。(2)首创全碳异质薄膜光探测器结构,解决光电导增益和响应速度协同优化难题,率先实现“光学神经元”新概念器件。(3)发展了低维半导体超快光开关技术,突破宽波段覆盖和参数精控两大实用化技术瓶颈,多项指标保持世界纪录。报告题目:新型二维半导体在集成电路中的可行性和优势报告人:复旦大学研究员 包文中近年来作为学术界研究热点的二维材料,也逐渐引起了工业界的关注。最新的国际器件与系 统发展路线图(IRDS 2020)高度评价了二维半导体材料在未来集成电路中应用于叠层纳米片晶体管及其他新型能带调控器件的巨大潜力。在此背景下,包文中课题组在实现批量生长高质量晶圆级二维材料的基础上,系统性的发展了多个可实用的工艺新方法,包括有效的掺杂、金半接触和栅介质生长等分立工艺。在此基础上开创性的提出了二维材料工艺集成的新方法,从而开发了二维材料的集成电路成套流片工艺。结合器件紧凑模型和电路仿真优化,我们成功制作了传统的数字、模拟、存储电路;同时,还充分发挥二维材料的独特优势,提出多种开创性的器件结构。报告题目:硅/石墨烯宽光谱红外探测器报告人:浙江大学教授 徐杨徐杨课题组研究了一种用于中红外光电探测的宏观组装石墨烯(MAG)纳米膜/硅异质结。高结晶度的MAG通过氧化石墨烯的可扩展湿法组装,然后进行热退火制备,厚度可调(14-60 nm),尺寸可以达到2 英寸。MAG/Si肖特基二极管在室温下响应波段范围为1- 4 μm,具有高速响应(120-130 ns,4 mm2窗口)和高探测率(1.5 μm波长下为1011 Jones),其瞬态光电流性能优于单层石墨烯/硅光电探测器2个数量级以上。这种光电性能归功于MAG的优越优势(~ 40%的光吸收、~ 23 ps 的载流子弛豫时间、相对较低的功函数 (4.52 eV) 和高准平衡热载流子倍增增益)、原子尺度的异质结接触界面,以及来自硅的碰撞电离雪崩倍增增益(~102倍)。MAG提供了一个了解2D材料中的热载流子动力学的平台,也为探索新型室温下宽光谱碳硅融合的图像传感器提供了研究基础。报告题目:局域场调控红外探测器研究进展报告人:中科院上海技物所青年研究员 王鹏随着半导体技术的快速发展,光电探测技术取得了长足进步。其中,以Si、InGaAs、HgCdTe等为代表的传统半导体薄膜光电探测器以其成熟的集成技术与稳定的探测性能在商业化产品与国防军工等领域占据主导地位,且已广泛应用于地球观测、环境监测、目标识别、空间遥感等领域。目前,新一代光电探测技术正朝着高性能、大面阵、低噪声以及高工作温度等方向发展,对光电探测材料与器件提出了更高的要求。低维半导体材料表现出明显区别于经典体系的物性特征,载流子输运、光学跃迁等物理行为具有可控的量子特性,产生许多新颖的物理性质和效应,并以此形成的具有颠覆性意义的光电技术在性能指标上超越传统器件的理论极限,对现有红外探测体系是很好的补充。因此,不断深入和优化现有材料体系的同时,持续开展新材料、新结构的研究和开发,是光电探测器技术发展的必然要求。本次报告将围绕新一代红外探测器技术的发展需求,介绍当前研究现状,汇报我们在局域场调控红外探测器研制与新颖探测机理研究等方面进展。
  • 开启5G新时代——XPS成像技术在半导体器件中的应用
    近年来,中国已成为带动全球半导体市场增长的主要动力,随着5G商用牌照落地并在2019年11月份正式使用,会大大推动半导体芯片产业的发展。失效分析对于提高半导体产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。针对半导体器件局部失效分析,可以借助XPS成像技术及微区分析进行表征,岛津XPS配备专利技术的DLD二维阵列延迟线检测器,可以同时记录光电子的信号强度及其发射位置,亦可以在数秒的时间里获取完整的XPS谱图及高能量分辨的化学状态图像。小编带您一起来看看XPS成像技术在半导体器件中的应用实例吧! 实例一:引脚迹斑分析引脚是指从集成电路(芯片)内部电路引出与外围电路的接线,构成了芯片的接口。随着电子技术的发展,电路板上的器件引脚间距越来越小,器件排列更加密集,电场梯度更大,因此电路板对引脚的腐蚀也变得越来越敏感。如下为一故障铜引脚器件,在AXIS SUPRA仪器腔体显微镜下可看到有一处迹斑(直径~150μm),通过成像技术结合微区分析技术(见图1),可知在该区域额外出现了Cl元素,对比周围区域测试结果,推测该元素的存在是造成腐蚀的主要原因,此外O元素峰强也有所增加,说明该区域氧化现象更为显著。 图1 平行成像及选区测试结果实例二:“金手指”缺陷区域分析“金手指”是指电脑硬件如内存条上与内存插槽、显卡与显卡插槽之间等进行电信号传输的介质,金手指涂敷工艺不良或由于使用时间过长导致其表面产成了氧化层,均会导致接触不良,甚至造成器件报废。如下采用XPS分析结合平行成像技术对“金手指”区域及缺陷处进行测试,不同视场成像结果见下图2,亮度越高的区域表示Au元素含量越多。图2 不同视场下的“金手指”样品成像结果 对缺陷部位及显著存在Au元素部位分别进行小束斑选区分析,测试位置见下图3,由测试得到的全谱结果可知,两个区域均存在一定量的F元素;在图像中较亮区域测得结果中,Au元素为主要存在元素,表面C、O元素较少,而缺陷部位测试结果中则只具有少量的Au 4f信号,而C、O、N元素峰较为显著,推测该缺陷部位存在一定的有机物污染。 图3 “金手指”样品缺陷处微区分析结果 小 结选用XPS成像技术对半导体器件微区的表面元素进行分析,可以清楚地了解各元素在器件表面的分布情况,结合污染元素组成及化学状态进行有目的的原因排查,有助于对功能器件的质量控制和失效机制进行把控和解析,有效杜绝污染和器件失效发生,以达到不断对产品工艺和技术进行优化的目的。 撰稿人:崔园园 岛津/Kratos X射线光电子能谱仪AXIS SUPRA+ AXIS SUPRA+卓越的自动化技术● 无人值守自动进行样品传输和交换● 硬件自动化控制,实时监测谱仪状态和校准 AXIS SUPRA+超强的表面分析能力● 具有高性能XPS分析、快速平行化学成像分析、小束斑微区分析● 利用角分辨、高能X射线源、深度剖析可以实现从超薄到超厚的深度分析● 多种功能附件(惰性气体传输器、高温高压催化反应池等)和可拓展多种表面分析技术,如紫外光电子能谱(UPS),离子散射谱(ISS),反射电子能量损失谱(REELS),俄歇电子能谱和扫描俄歇电子显微镜(AES和SAM)等等 AXIS SUPRA+高效智能工作流程适合多用户环境● 高吞吐量、快速队列样品分析模式实现连续分析● AXIS SUPRA+采用的通用表面分析ESCApe软件系统使用户与谱仪的交互简单化和智能化,可以进行谱仪的控制、数据的采集和分析
  • 高可靠性人工突触半导体器件问世
    韩国科学技术研究院(KIST)神经形态工程中心研究团队宣布开发出一种能进行高度可靠神经形态计算的人工突触半导体器件,解决了神经形态半导体器件忆阻器长期存在的模拟突触特性、可塑性和信息保存方面的局限。研究成果近日发表在《自然通讯》杂志上。模仿人脑的神经拟态计算系统技术应运而生,克服了现有冯诺依曼计算方法功耗过大的局限。实现使用大脑信息传输方法的半导体器件需要一种能表达各种突触连接强度的高性能模拟人工突触装置。当神经元产生尖峰信号时,这种方法使用神经元之间传输的信号。KIST团队微调了活性电极离子的氧化还原特性,以解决阻碍现有神经形态半导体器件性能的小突触可塑性。研究团队在突触装置中掺杂和使用各种过渡金属,以控制活性电极离子的还原概率。研究发现,离子的高还原概率是开发高性能人工突触装置的关键变量。因此,研究团队将具有高离子还原概率的钛过渡金属引入现有的人工突触装置中。这保持了突触的模拟特性和生物大脑突触处的设备可塑性,大约是高电阻和低电阻之间差异的5倍。此外,他们开发了一种高性能的神经形态半导体,其效率大约提高了50倍。此外,由于掺杂钛过渡金属的高合金形成反应性,与现有的人工突触装置相比,信息保留率提高了63倍。此外,包括长期增强和长期抑郁的大脑功能可更精确地模拟。该团队使用开发的人工突触设备实现了人工神经网络学习模式,并尝试了人工智能图像识别学习。结果,与现有的人工突触装置相比,错误率降低了60%以上;此外,手写图像模式识别准确率提高了69%以上。研究团队通过这种改进的人工突触装置证实了高性能神经形态计算系统的可行性。
  • 明日开播!半导体材料、器件研究与检测技术系列讲座日程公布
    半导体产业作为现代信息技术产业的基础,已成为社会发展和国民经济的基础性、战略性和先导性产业,是现代日常生活和未来科技进步必不可少的重要组成部分。当前,全球半导体科技和产业的竞争愈演愈烈,各国围绕提升半导体领域竞争力,相继出台了一系列政策举措。半导体行业归根结底属于设备类行业,行业内素有“一代设备,一代工艺,一代产品”的说法。SEMI在SEMICON Japan 2022上发布了《2022年度总半导体设备预测报告》。报告指出,原设备制造商的半导体制造设备全球总销售额预计将在2022年创下1085亿美元的新高,连续三年创纪录,较2021创下的1025亿美元行业纪录增长5.9%。基于此,仪器信息网联合电子工业出版社于四、五月将启动“半导体主题月”活动。活动同期,仪器信息网与电子工业出版社特组织三场“半导体材料、器件研究与检测技术系列讲座”,旨在邀请领域内专家围绕相关论坛主题分享精彩报告,依托成熟的网络会议平台,为半导体产业从事研发、教学、生产的工作人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩的报告。点击图片直达会议页面一、主办单位仪器信息网 & 电子工业出版社二、举办时间2023年4月11-26日,每周一期三、会议日程半导体材料、器件研究与检测技术报告时间报告题目报告嘉宾单位职称4月11日:第三代半导体材料器件研究与检测技术14:00-14:40车规级功率器件标准AQG324深入解读邓二平合肥工业大学教授14:40-15:20碳化硅功率器件可靠性测试与研究进展田鸿昌陕西半导体先导技术中心有限公司副总经理/高级工程师4月18日:光电材料、器件研究与检测技术10:00-10:40热活化延迟荧光发光电化学池器件张保华广州大学教授10:40-11:20待定杨妍中国科学院微电子研究所研究员4月26日:传感器/MEMS研究与检测技术14:00-14:40MEMS无线智能温振传感器及应用王建国苏州捷研芯电子科技有限公司副总经理14:40-15:20待定刘凤敏吉林大学教授三、报告嘉宾四、参会指南1、点击会议页面链接报名;会议页面:https://insevent.instrument.com.cn/t/RUs2、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接;3、本次会议不收取任何注册或报名费用;4、会议联系人:3i讲堂—材料小周( 邮箱:zhouhh@instrument.com.cn;微信二维码如下,可加入会议交流群)会议联系人微信二维码
  • 国家重点研发计划“大尺寸氧化镓半导体材料与高性能器件研究”项目启动会召开
    9月4日,国家重点研发计划“新型显示与战略性电子材料”重点专项“大尺寸氧化镓半导体材料与高性能器件研究”项目启动会在杭州富阳顺利召开。   该项目由中国科学院上海光学精密机械研究所牵头,联合厦门大学、吉林大学、中国电子科技集团公司第五十五研究所、北京中材人工晶体研究院有限公司、复旦大学、电子科技大学、杭州光学精密机械研究所、杭州富加镓业科技有限公司多家单位协同攻关。   出席本次会议的专家有浙江大学杨德仁院士、长光华芯光电技术有限公司廖新胜正高级工程师、中国电子科技集团公司第四十六研究所林健研究员、中国科学技术大学龙世兵教授、电子科技大学罗小蓉教授、浙江大学盛况教授、中国航天科技集团公司第五研究院508所孙世君研究员、山东大学陶绪堂教授、中国科学院微电子研究所王鑫华研究员、中国科学院上海分院吴成铁研究员、南京大学叶建东教授、复旦大学周鹏教授。依托单位张龙副所长及项目和课题相关人员四十余人参会。杨德仁院士为本次会议专家组组长。   上海光机所副所长、杭州光机所理事长张龙研究员代表项目承担单位致欢迎词,感谢各位专家不辞辛劳,从全国各地来参加此次会议,并简要介绍了杭州光机所的总体情况。项目负责人齐红基研究员汇报了项目总体实施方案及各课题的研究内容、研究目标、实施方案等。   项目面向发展氧化镓基日盲紫外探测及功率电子器件的迫切需求,以解决氧化镓单晶衬底和外延薄膜缺陷与掺杂机制,微观电子结构、薄膜物性和器件性能构效关系等关键科学问题为基础,突破6英寸单晶热场设计、高质量外延膜生长、器件核心结构设计等关键技术,研制出新一代高性能氧化镓基功率及探测器件。   本项目的实施将打通氧化镓材料、外延到器件的全链路,研究成果有望逐步应用于电动汽车、光伏变电、舰艇综合电力、雷达探测、日盲紫外预警及环境监测等方向,对推动相关产业的技术创新、产业结构优化和经济发展具有积极的意义。同时也有助于打破国外相关技术封锁,提升我国在该领域日趋激烈的国际竞争中的地位,推动我国在宽禁带半导体领域的发展。   与会专家认真听取和充分论证了项目实施方案,并给予了充分肯定,对项目研究目标、研究内容及各课题间协调统筹、合作交流等方面提出了具有建设性的指导意见。专家组经过质询讨论后,一致同意通过项目实施方案论证。   会议期间,张龙副所长带领专家和项目组代表参观了杭州光机所。
  • 岛津NDI在半导体与元器件失效分析中的应用
    为推动我国无损检测技术发展和行业交流,促进新理论、新方法、新技术的推广与应用,仪器信息网定于2024年9月11-12日组织召开第三届无损检测技术进展与应用网络会议,邀请领域内科研、应用等专家老师围绕无损检测理论研究、技术开发、仪器研制、相关应用等方面展开研讨。期间,岛津企业管理(中国)有限公司高级应用工程师黄军飞将作报告《NDI在半导体与元器件失效分析中的应用》,介绍岛津NDI在半导体材料与元器件失效分析中的应用案例。本次会议于线上召开,欢迎大家参会交流!关于岛津NDI事业部岛津作为一家著名的测试仪器、医疗器械及工业设备制造厂商,于1909年开发出了日本历史上第一台商用医疗X光机。随着焊接技术的发展,客户中产生了用无损的方法检测钢管焊接的需求,岛津便将其引用到工业领域。1999年,岛津成功开发出日本第一台微焦点X射线CT系统。此后,又陆续推出了一系列X-ray检查装置和测量用X射线CT系统。例如,2023年推出台式X射线CT系统XSeeker 8000,2024年推出倾斜CT和透视一体机 XslicerSMX-6000。目前,岛津NDI拥有微焦点X射线透视检查装置 、微焦点X射线CT系统 、X射线测量CT系统等系列产品。
  • 分析仪器助力半导体腾飞——“半导体材料及器件研究与应用进展”主题网络研讨会成功举办
    p    span style=" font-family: & quot times new roman& quot " strong 2018年6月12日,“半导体材料及器件研究与应用进展”主题网络研讨会在仪器信息网“网络讲堂”栏目成功举办。本次会议旨在为全国在半导体及器件领域或有意在本领域从事研发、教学、生产的科技人员提供一个学术与技术交流的平台,以促进我国半导体材料及器件领域的科技创新和产业发展。 /strong /span /p p span style=" font-family: & quot times new roman& quot "   半导体材料(semiconductor material)是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。近年来半导体材料迅猛发展,特别是宽禁带化合物半导体在材料生长、器件与电路设计、制造工艺及其应用等方面具有最新进展。 /span /p p span style=" font-family: & quot times new roman& quot "   本次会议邀请了来自 span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " 华进半导体、赛默飞、雷尼绍、HORIBA、牛津、华东师范大学 /span 六家机构从事半导体研究及应用的专家学者,对目前科学仪器在半导体应用领域的研究进展进行了介绍了。各项报告内容简介如下: /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/9f4a0912-662e-44eb-a670-f31943137df6.jpg" title=" 先进封装工艺与可靠性-刘海洋.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i 华进半导体研发部高级工程师刘海燕介绍了数种半导体材料与部件的封装工艺及其各自特点,着重讲解了目前处于前沿领域的扇出型封装工艺,代表的类型有eWLB、INFO POP、大板级。华进半导体目前正在开发晶圆级、大板级扇出封装技术,现已制备出部分样品,并申请了相关专利。此外还补充介绍了Low k芯片封装工艺。华进公司的主要业务包括设计仿真、封装工艺、测试验证、技术转移等领域。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/460a9fdb-85d5-4566-a742-3dbbc89e87dd.jpg" title=" ICP-MS在半导体行业原材料及高纯化学品分析中的应用-朱中正.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "   span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i  赛默飞的应用工程师朱中正介绍了ICP MS(电感耦合等离子体质谱仪)在半导体行业的应用和最新进展。半导体行业中,对痕量金属元素进行常规且准确的分析是十分重要的工作。随着半导体器件尺寸的不断缩小,杂质的存在对其性能的影响逐渐增加。报告重点介绍了赛默飞公司的四级杆ICP-MS和SQ-ICP-MS的结构、工作机理、主要优势以及局限性。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/776571c0-f293-46a7-b115-c43a17856c0f.jpg" title=" 雷尼绍拉曼光谱技术在半导体领域的一些应用-王志芳.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " 雷尼绍的高级应用工程师王志芳介绍了雷尼绍公司的拉曼光谱在半导体领域的一些应用工作。她首先为观众进行了拉曼光谱基础知识的讲解,拉曼光谱具有无损无创、原位检测、快速简便的使用特点,可应用于材料科学、生命科学、分析科学等多个领域。在半导体领域,拉曼光谱可对SiC、GaN、MoS sub 2 /sub 等半导体材料进行性能表征,可检测的性能特征有:晶型分布鉴定、应力表征缺陷分析、鉴定和发现污染物、电子迁移率分布、块材生长过程等。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/d979950b-1148-45f7-8de4-41a3357cc646.jpg" title=" 光谱分析在半导体材料领域的应用-孙正飞.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "   i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) "  HORIBA公司仪器事业部的应用工程师孙正飞分享了光谱分析技术在半导体材料领域的应用,主要应用的分析手段有光致发光光谱、拉曼光谱、辉光放电GD、椭偏仪TF,并着重介绍了前两者的工作机理和应用方向。光致发光光谱可测定半导体材料的组分、识别其中的掺杂元素、测试材料/器件的发光效率、研究位错缺陷 拉曼光谱可分析半导体化学组成、结构、构象、形态、浓度、应力、温度、结晶度等特征。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/563d8427-33a1-40e8-ab1e-751277616320.jpg" title=" 能谱及EBSD在半导体行业中的应用-马岚.pptx.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i 牛津仪器纳米分析部的应用科学家马岚介绍了EDS能谱和EBSD(电子背散射衍射Electron Backscattered Diffraction)在半导体行业的应用。SEM-EDS可对样品进行成分检测、定性分析。针对扫描电镜及有窗能谱测试结果不准确的问题,提出了建议解决办法,通过对三种不同样品图像结果的分析,得出适当降低工作电压可提高电镜和能谱的空间分辨率。鉴于有窗能谱对10nm以下尺度空间分辨率的局限性,有窗能谱Extreme应运而生,在低电压下具有优良的表现。EBSD目前在半导体相关行业的应用还处于起步阶段,但由于其技术优势,会越来越多的应用在半导体的研发当中。可用于观测样品中晶粒的取向。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/b562f762-930a-494d-bec6-5ffda980fba0.jpg" title=" 相变存储器及存储材料-成岩.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " 华东师范大学电镜中心的成岩老师向观众分享了半导体存储领域的新秀—相变存储器,介绍了其发展、结构、原理、材料等研究内容。DRAM和Flash占据了存储器市场95%以上的份额,旧的存储器存在一定的性能缺陷以及存储速度和存储性能之间的矛盾,开发新型存储架构势在必行。IBM开发的SCM(Storage Class Memory)使用高速、非易失性、字节可访问、存储密度高的新型存储级内存介质构建外部大容量存储器,为计算机系统延续了数十年的内外存架构提供了新的选择,应用相变存储技术的PCRAM将高速、随机访问和非易失在同一存储介质上实现。透射电子显微镜可应用于对相变存储材料Ge sub 2 /sub Sb sub 2 /sub Te sub 5 /sub 的结构进行观测,发现其具有两级相变过程,可由非晶转变为面心立方结构,再转变为六方相结构。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/0881776f-607b-4fdd-8408-b0ca4a572b4e.jpg" title=" 赞助厂商.png" / /p p style=" text-align: center " strong span style=" font-family: & quot times new roman& quot " 赞助厂商 /span /strong /p p span style=" font-family: & quot times new roman& quot "   每场报告结束后,观众对报告内容踊跃提问和发言,老师也对观众们提出的部分问题进行了答疑,会议为关注和研究半导体材料应用的工作者们提供了一个交流和学习的良好平台。 /span /p
  • 亚微米分辨红外+拉曼同步测量技术——打破传统芯片/半导体器件失效分析局面
    前言芯片是科技领域核心技术,是电子产品的“心脏”,是“工业粮食”。在新一轮科技革命与产业变革背景下,大力推动高科技产业的创新发展对于抢占全球高科技领域制高点、增强产业发展优势和提高国际竞争力的战略作用更加凸显。 而如何解决芯片/半导体器件有机异物污染问题,成为众多科研工作者的研究难题。虽然元素和无机分析存在高空间分辨率技术,如SEM-EDX,但在微米和亚微米尺度上识别有机污染物一直是巨大挑战。在过去的几十年里,传统的傅里叶变换红外光谱FTIR/ QCL显微技术虽然得到了广泛的应用,但在关键问题上存在一些局限性,例如相对较差的空间分辨率(5-20 μm)和对仪器介绍图1. 设备及原理图 基于光学-光热技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage可实现远场红外+拉曼显微镜的同步测量,该技术具有非接触、免样品制备、亚微米分析等优点,已广泛应用于硬盘和显示器等器件的成分分析。mIRage扩展集成的同步拉曼显微镜,主要用于目标物的应变/应力、掺杂浓度、DLC等测试。获取的高质量反射模式光谱可以通过亚微米红外拉曼同步测量系统mIRage在商业数据库中进行光谱比对检索,终确定亚微米到微米的污染物成分。mIRage光谱的显著优势:1. 亚微米红外空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须制备样品;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索 的污染识别和控制对于把控制造过程以及高科技产品开发至关重要,随着愈发严格的标准和产品尺寸的缩小,识别较小的污染物变得越来越重要和困难。mIRage的先进光学光热红外(O-PTIR)技术的出现彻底改变了微电子器件微小缺陷的红外化学分析方法。mIRage的工作原理是用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,集成拉曼光谱仪后,mIRage系统可提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 精彩案例分享 在本文中,我们将介绍通过亚微米红外+拉曼同步测量技术对只有几微米尺寸的缺陷进行电子器件失效分析的研究,案例中的硬盘组件和显示组件由希捷技术提供。 图2为微电子器件免制样,原位测量数据。该案例展示了互补的、验证性的mIRage红外光谱和拉曼光谱的信息。尽管mIRage红外光谱是在反射模式下采集的,但它完全可以与FTIR/ATR数据库中的光谱相媲美。通过与KnowItAll(Wiley)红外光谱和拉曼光谱数据库进行比对,确定这种特殊的污染物可能是一种聚醚(缩醛)材料。污染可能源于研发过程中的异物,包括聚合物、润滑剂等。在此次测试中,mIRage获取的谱图与标准谱峰位重合度超过95%。图2. 左:可见图像显示6 µm缺损位置,右上:与标准数据库比对未知物质的红外光谱;右下:与数据库比对未知物质的拉曼光谱 在许多情况下,传统红外仪器可能会收到一些物质的影响无法直接接触到污染物。图3显示了金属薄膜下20 μm的黑色污染,从金属薄膜的白色圆形分层中可以看到,这是由于有缺陷的薄膜晶体管显示器突出造成的。传统的ATR显微镜的使用将受到薄膜存在的限制,阻碍直接接触污染粒子。此类样品可以通过mIRage进行光谱焦平面定位实现光谱检查,无需额外的样品制备或对粒子进行物理提取。特别是在1706 cm−1波段有强宽红外吸收带的存在,表明污染粒子可能是硫化的苯乙烯-丁二烯橡胶(SBR),已氧化形成羧酸。图3. 左上角:样品和测量的示意图;左下:光学图像缺陷;右:缺陷区域不同位置的mIRage红外光谱。颜色对应于光学图像上的标记。 结论综上所述,我们引进的革命性红外拉曼同步测量系统mIRage在显微红外方面取得了重大进展,如亚微米分辨率测量(~500 nm)、非接触模式测量(非ATR)、非破坏性和免样品制备、点线/面多模式分析、无任何色散/散射伪影以及提供数据库检索等。希捷科技选择mIRage系统是为了研究制造工艺和产品早期开发的污染改善问题。本文介绍的基本原理和实例表明mIRage在识别硬盘和相关精细电子行业的缺陷和污染方面有诸多优势。在红外显微光谱的重要发展领域中,mIRage技术具有颠覆性的潜力。而拉曼光谱仪的联用进一步拓展了它的能力,实现亚微米红外+拉曼显微镜同步测量(同一时间、同一点、同一空间分辨率),以提供互相印证的补充和确认信息。亚微米分辨红外拉曼同步测量系统mIRage的应用领域正在不断扩大,涵盖了聚合物、药学、司法鉴定、半导体器件缺陷分析、生命科学、环境地质、古生物等众多传统领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制