功率补偿仪的工作原理

仪器信息网功率补偿仪的工作原理专题为您提供2024年最新功率补偿仪的工作原理价格报价、厂家品牌的相关信息, 包括功率补偿仪的工作原理参数、型号等,不管是国产,还是进口品牌的功率补偿仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合功率补偿仪的工作原理相关的耗材配件、试剂标物,还有功率补偿仪的工作原理相关的最新资讯、资料,以及功率补偿仪的工作原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

功率补偿仪的工作原理相关的仪器

  • Parr 功率补偿反应量热仪 适用范围:1、实时验证反应是否完成;2、研究影响反应机理和动力学的因素;3、建立维持有效的过程条件所需的冷却功率。 通用配置:1、带恒温循环浴的夹套反应釜;2、补偿加热器,配备有稳压电源;3、Parr 4871过程控制器可控制和协调系统的整体操作。
    留言咨询
  • 安科瑞 王志彬 1、概述1.1 谐波的产生 电力系统中理想的电压、电流波形都是频率为50Hz的正弦波,但是非线性电力设备 (大功率可控硅、变频器、UPS、开关电源、中频炉等)的广泛应用产生了大量畸变的谐波电流,谐波电流耦合在线路上产生谐波电压。对非正弦的畸变电流作傅立叶级数分解,其中频率与工频相同的分量为基波,频率是基波频率整数倍的分量为谐波。谐波是电能质量的重要指标。1.2 谐波的危害● 谐波使公用电网中的元件产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,甚至引起火灾。● 谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等;使变压器局部严重过热;使电容器、电缆等设备过热、绝缘老化、寿命缩短,以致损坏。● 引起电网谐振,使得谐波电流放大几倍甚至数十倍,会对系统,特别是对电容器和与之串联的电抗器形成很大的威胁,经常使电容器和电抗器烧毁。● 谐波会导致继电保护,特别是微机综合保护器与自动装置误动作,造成不必要的供电中断和生产损失。谐波还会使电气测量仪表计量不准确,产生计量误差,给用电管理部门或电力用户带来经济损失。● 临近的谐波源或较高次谐波会对通信及信息处理设备产生干扰,轻则产生噪声、降低通信质量、计算机无法正常工作,重则导致信息丢失,使工控系统崩溃。1.3 有源电力滤波器产品效益● 使谐波指标满足国家标准,避免供电部门罚款或中断供电;● 降低变压器损耗;● 减少谐波污染,降低谐波对自动控制装置、电能计量装置、继电保护装置的干扰,保证供配电系统安全稳定运行;● 避免谐波过电压和谐波过电流对电气设备的危害,延长设备使用寿命;● 节能降耗,提高功率因数,节约电费,避免罚款。1.4 执行标准 GB/T14549-1993 《电能质量:公用电网谐波》 GB/T15543-2008 《电能质量:三相电压不平衡度》 GB/T12325-2008 《电能质量:供电电压偏差》 GB/T12326-2008 《电能质量:电压波动和闪变》 GB/T18481-2001 《电能质量:暂时过电压和瞬态过电压》 GB/T15945-2008 《电能质量:电力系统频率偏差》 GB17625.1-2012 《电磁兼容 限值 谐波电流发射限值》 GB/T15576-2008 《低压成套无功功率补偿装置》 2、产品介绍2.1 工作原理 ANAPF系列有源电力滤波器并联在含谐波负载的低压配电系统中,能够对动态变化的谐波电流进行快速实时的跟踪和补偿。其原理为:ANAPF系列有源电力滤波器通过CT采集系统谐波电流,经控制器快速计算并提取各次谐波电流的含量,产生谐波电流指令,通过功率执行器件产生与谐波电流幅值相等方向相反的补偿电流,并注入电力系统中,从而抵消非线性负载所产生的谐波电流。 图2-1 ANAPF有源电力滤波器原理图 2.2 产品特点● DSP+FPGA全数字控制方式,具有极快的响应时间,先进的主电路拓扑和控制算法,精度更高、运行更稳定;● 一机多能,既可补谐波,又可兼补无功,可对2~31次谐波进行全补偿或指定特定次谐波进行补偿;● 具有完善的桥臂过流保护、直流过压保护、装置过温保护功能;● 模块化设计,体积小,安装便利,方便扩容;● 采用7英寸大屏幕彩色触摸屏以实现参数设置和控制,使用方便,易于操作和维护;● 输出端加装滤波装置,降低高频纹波对电力系统的影响;● 多机并联,达到较高的电流输出等级;● 拥有自主品牌技术。2.3 主要技术参数表2-1 ANAPF有源电力滤波器技术参数 2.4 产品型号及说明 3、产品应用3.1 容量计算方法谐波是由非线性设备产生的,而每种设备的实际工作状态都不同。因此实际谐波电流需采用专门设备进行测量,考虑到设备的技术及经济性,设计谐波治理装置的额定谐波补偿电流应略大于系统谐波电流。由于谐波电流本身的测量与计算比较复杂,况且在设计时往往很难采集到足够的电气设备使用中的谐波数据,可以根据下列公式估算谐波电流进行选型。3.1.1 根据负载额定电流和行业类型选型 3.1.2 根据变压器容量和行业类型选型 3.1.3 根据快速选型表查表选型 查表步骤: 步骤1:确定变压器容量和变压器负载率(一般在0.6~0.8); 步骤2:根据变压器负载率确定表2、表3或表4; 步骤3:确定电流总谐波畸变率(THDi)(表1中THDi值为参考值,仅在估算谐波电流时使用); 步骤4:根据变压器容量及THDi参考值确定相应的谐波电流值; 步骤5:考虑到一定的裕量,选择相应容量的ANAPF有源电力滤波器。注:表1~表4参见附录1。3.2 选型示例 上海某工厂办公大楼变压器容量为250KVA,变压器负载率为0.8,主要负载为节能灯、变频空调和电梯等,属于办公楼宇。 变压器容量为250KVA; 变压器负载率为0.8; 负载类型属于办公楼宇,根据表1估算THDi为30%; 查表4可得估算谐波电流值为83A; 如果根据公式(2)计算,结果是一样的; 考虑到一定的裕量,选择100A的ANAPF有源电力滤波器。3.3 治理方式分类与说明 电能质量监测与治理系统针对不同的场合可选择不同的治理方案,一般有集中治理、局部治理和就地治理三种技术方案。 (一)集中治理 集中治理上图示例 本案例是在变电所低压电容柜中设置无功补偿,同时在配电前端设置有源电力滤波器,采用集中治理的方式抑制谐波。 集中治理适用于单台设备谐波含量小,但数量庞大、布局分散的场合,比如办公大楼(个人电脑、节能灯、变频空调、电梯等),虽然单台设备的电流小,谐波含量低,但整栋大楼的总电流大,总谐波电流也大。 (二)局部治理局部治理上图示例 本案例是在变电所低压电容柜中设置无功补偿,同时在局部谐波源前端设置有源电力滤波器,采用局部治理的方式抑制谐波。 局部治理适用于谐波源集中在某一条或几条馈出支路的配电系统,比如医院的精密仪器、UPS电源等,虽然单台设备的电流小,谐波含量低,但为防止其他设备产生的谐波对其干扰,采用局部谐波治理。 (三) 就地治理上图示例 本案例是在变电所低压电容柜中设置无功补偿,同时在主要谐波源的前端设置有源电力滤波器,采用就地治理方式的抑制谐波。 就地治理适用于谐波源比较明确且单台设备谐波含量较大的配电系统,比如大型商业区的景观照明、影剧院的可控硅调光设备、工业区的变频器调速设备等,单台设备电流大、谐波含量高、谐波电流大,为防止谐波电流影响其他用电设备,采用就地治理。 4 应用案例4.1 ANAPF在数据机房的应用▲ 项目背景: 常熟智慧城市是一个市民卡信息中心,其中包括大型数据机房,对电能质量要求非常高;为了提高供电可靠度,采用大量的UPS作为设备电源,机房内还包含空调设备、照明设备等。此类电力电子设备皆属于非线性负载,在使用过程中会产生大量谐波并注入系统中,主要以5次、7次为主;如果不进行谐波治理,对电网造成严重的污染,也影响机房中其他敏感设备,比如导致通信数据错误,甚至瘫痪、中断,降低了配电系统的安全性、可靠性。▲ 治理方案: 根据以往测量经验进行谐波分析与估算,谐波主要由UPS和一些非线性直流电源产生,供电系统由2台800kVA变压器及其一台800kW发电机组成,采用集中治理方案,在每台变压器下加装300A有源电力滤波器,由两台150A并机实现,型号为ANAPF150-380/BGL,来自动跟踪补偿负载产生的谐波电流,保证整个系统安全可靠运行。▲ 治理效果: 图4-1治理之前A、B、C、N相电流波形和电流频谱 由图可以看出,治理前,N线电流较大,3次、5次、7次等谐波频次含量较大;治理后,N线电流明显降低、各次谐波电流得到有效抑制,提高了供电系统的稳定性,消除了谐波对通信系统影响的危害,收到了良好的运行效果。▲ 安装现场:图4-2 安装现场4.2 ANAPF在办公楼宇的应用▲ 项目背景: 珠海横琴口岸项目是临时边检大楼的新建项目,为边检部门电气设备提供可靠电力支持,对电能质量要求较高;用电设备主要是大功率UPS、LED显示屏、空调、照明和报检大厅动力设备等,会产生大量谐波,其谐波主要包括3、5、7、9次;不进行合理治理,将对其他电气设备产生危害,如:大量的3次谐波造成中线过热甚至发生火灾;大量谐波造成变压器局部严重过热;继电保护发生误动作等。▲ 治理方案: 根据以往测量经验进行谐波分析与估算,谐波主要由UPS和一些非线性直流电源产生,该项目有1#、2#两个配电站,1#配电站有2台800kVA的变压器,2#配电站有2台1000KVA的变压器,分别采用集中治理方案,在每台变压器下加装ANAPF系列有源电力滤波器,由于安装空间有限,选择我司壁挂式有源电力滤波器进行嵌入式安装,1#配电站中#1和#2变压器下安装型号均为ANAPF75-380/BBL,2#配电站中#1和#2变压器下安装均为2台型号为ANAPF60-380/BBL的有源电力滤波器并机使用,保障了整个供电系统的稳定性。▲ 治理效果: 图4-4治理之后电流波形和各次谐波电流畸变率 治理前电流波形发生畸变,三相电流畸变率分别为10.8%、11.1%、12.5%;在加装ANAPF系列有源电力滤波器后电流波形趋向正弦波,各次谐波得到有效抑制,电流畸变率明显降低,三相电流畸变率降至4.0%、4.1%、4.4%。▲ 安装现场: 4.3 ANAPF在工业领域的应用▲ 项目背景: 合肥日立建机是日立建机集团在中国的生产基地,其主要负载是变频器、电焊机和中频炉等,这类负载属于中污染设备,使用时电流变化很快,无功需求大,传统无功柜跟不上负载变化速度,导致功率因数很低,造成无功罚款;同时又会产生大量谐波流入电网中,谐波电流在线路上流动会产生压降,使得电压也畸变严重,致使一些精度高的生产设备不能正常运行,影响公司的生产,导致产品质量下降,给客户带来严重的经济损失。▲ 治理方案: 该项目共有6台变压器,均采用集中治理方案,在变压器的出线侧加装ANAPF系列有源电力滤波器,型号为:ANPF200-380/BGL,既可补偿谐波又可补偿部分动态无功。同时,建议在变频器的进线端加装输入电抗器,用来滤除部分变频器谐波,以达到更好的治理效果。▲ 治理效果: 由图4-5和图4-6可以看出,治理前,电流波形失真十分严重,三相电流畸变率分别为21.3%、25.0%、28.0%,主要以5次、7次、11次等符合6n±1次特性的谐波为主,功率因数约0.83左右,会造成无功罚款;加装ANAPF系列有源电力滤波器后,电流波形已经趋向正弦波,三相电流畸变率分别为2.6%、2.6%、2.6%,主要频次谐波得到有效抑制,功率因数也都到很明显的提高。此次谐波治理,电网质量得到明显改善,有效地保护了生产线上设备的正常运行。 ▲ 安装现场: 4.4 ANAPF在港口码头的应用▲ 项目背景: 江阴港港口的主要谐波源是门机、行车和一些办公设备,门机在运行时需要大量无功,且电流冲击大,波动很快,产生大量的谐波电流,功率因数很低,造成无功罚款;传统的纯容无功补偿装置已经不能解决这些电能质量问题,不及时治理,甚至会对无功柜产生危害,使得电容寿命降低,更换频繁。▲ 治理方案: 因现场非线性负载(经检测,主要为起重机回路)多,且具有地域分散,冲击电流大的特点,易采用集中治理方式,在每个变电站进行谐波治理。采用无功功率补偿和谐波治理综合方案可兼顾无功补偿和谐波治理功能,该方案利用现有无功补偿控制柜,减少用户改造投入成本,将ANAPF系列有源电力滤波装置并联到配电系统中,一方面可有效抑制谐波放大,保护电容器,而装置的检修与日常维护只需从电网中切除,不影响现场的正常运营。▲ 治理效果: 由图4-7和图4-8可以看出,治理前,电流波形失真十分严重,呈现典型的M型,三相电流畸变率分别为18.3%、25.1%、32.5%,主要以5次、7次谐波为主;加装ANAPF系列有源电力滤波器后,电流波形已经趋向正弦波,三相电流畸变率分别为2.6%、2.6%、2.6%,主要频次谐波得到有效抑制,电网质量得到明显改善,有效地保护了其他电气设备。 ▲ 安装现场: 4.5 ANAPF在商业中心的应用 ▲ 项目背景: 无锡恒隆广场属于大型商业建筑,主要负载是中央空调、电梯和照明设备等,由于变频器高效的节能性,使用大量变频器驱动这些设备,但同时会产生大量3次、5次、7次等谐波电流。谐波电流在线路上流动产生压降,使得电压也跟着畸变,电压畸变率超过国标限值,供电质量相当糟糕,影响其他用电设备的正常使用,现场会出现灯具闪烁的现象。▲ 治理方案: 无锡恒隆广场该配电系统中共有2台2000KVA的变压器,均采用集中治理方案,在变压器的出线侧加装400A的ANAPF系列有源电力滤波器,使用2台200A并机实现,型号为:ANPF200-380/BGL。▲ 治理效果:图4-9治理前电流波形图4-10治理后电流波形 从图4-9和图4-10可看出,治理前电流波形发生畸变,出现多出锯齿状;治理后电流波形明显得到改善,趋向标准正弦波,电能质量达到很大提高,给用电带来保障。▲ 现场安装:
    留言咨询
  • 饲料水分测定仪工作原理,冠亚快速水分仪:冠亚饲料水分测定仪具有温度设定、微调温度补偿及自动控制等功能,采用目前国际通用的热解原理研制而成的新一代固含量测定仪器。引进进口自动称重显示系统,人性化系统操作,无需特珠培训,自动校准功能、自动测试模式,取样、干燥、测定一机化操作。应变式混合气体加热器,短时间内达到加热功率,在高温下样品快速被干燥,测定精度高、时间短、无耗材、操作简便,不受环境、时漂、温漂因素影响,无需辅助设备等优点。适用:液体、浆体、膏体、粉体、颗粒、块状等食品一般形态检测,同时特制的加热系统对含糖高和含油高的样品能够全面迅速的干燥。仪器全自动检测一机操作,使用简单测试精准快捷。饲料水分测定仪工作原理,冠亚快速水分仪特点: 1、体积小,重量轻,结构紧凑2、测试时间短,几分钟即可完成实验 3、全自动模式,确保测试精准4、效率高,无需安装、调试、培训,操作简单,一键测试5、分别可显示:水分含量%、样品初值、终值、测定时间、恒重时间、起始温度、工作温度等数据6、颗粒、粉末一体操作7、不受环境、温湿度影响,无需辅助设备和耗材8、工作过程无毒无辐射,环保方便 饲料水分测定仪工作原理,冠亚快速水分仪技术参数1、称重范围:0-60g可调试测试空间为3-5cm2、水分测定范围:0.01-**JK称重系统传感器3、样品质量要求:0.1-90g4、加热温度范围:起始-205℃加热方式:可变混合式加热微调自动补偿温度15℃5、水分含量可读性:0.01%6、显示参数:7种红色数码管独立显示模式7、双重通讯接口:RS 232(打印机) RS 232(计算机)8、外型尺寸:380×205×325(mm)9、电源:220V±10%10、频率:50Hz±1Hz11、净重:3.7Kg
    留言咨询

功率补偿仪的工作原理相关的方案

  • 使用功率补偿式 DSC对药物多晶型 进行高分辨表征
    PerkinElmer公司生产的功率补偿型DSC 8500既可以提供药物多晶型测试所需要的极高灵敏度,又可以提供非常卓越的分辨率。对于药物研发和生产行业来说,多晶型检测都是非常重要的,因为多晶型现象对于有效成分进入血液循环的速率有很大的影响,也会影响到药物的储存期。功率补偿式DSC的小炉体设计可以提供很快的响应时间,从而确保对热转变过程进行很好地检测和分辨。在本研究中,功率补偿型DSC可以揭示特定药物的多晶型性质,而高性能的热流型DSC仪器无法检测到该样品的多晶型现象(结晶过程)。
  • PerkinElmer:使用功率补偿式DSC对药物多晶型进行高分辨表征
    由于多晶型现象既对于有效成分进入血液循环的速率有很大的影响,又会影响到药物的储存期,因此多晶型检测是非常重要的。PerkinElmer公司生产的功率补偿型DSC 8500既可以提供药物多晶型测试所需要的极高灵敏度,又可以提供非常卓越的分辨率。其的小炉体设计可以提供很快的响应时间,从而确保对热转变过程进行很好地检测和分辨。在本研究中,功率补偿型DSC可以揭示特定药物的多晶型性质,而高性能的热流型DSC 仪器无法检测到。
  • 使用功率补偿式DSC表征曲奇饼干中的脂肪
    食品中所含脂肪的性质特点使得用DSC对其进行完整表征需要较高的灵敏度和分辨率。本研究采用功率补偿式DSC测试了三种不同夹心的曲奇饼干中所含的脂肪,得到了非常好的测试结果。结果证明,功率补偿式DSC的快速响应能力可以提供最高的分辨率,可以检测曲奇饼干夹心层脂肪多晶形式产生的多个熔融峰,这对于表征食品所含脂肪的多晶熔融转变过程是非常关键的,也为食品脂肪的完整表征、质量保证、产品稳定性和加工过程控制提供了重要数据。

功率补偿仪的工作原理相关的论坛

  • ARC功率因数自动补偿控制仪的原理及其应用

    ARC功率因数自动补偿控制仪的原理及其应用安科瑞 蔡昀羲摘 要:介绍了基于ATMEGA16的高精度低压无功功率补偿器。该控制器采用数字检测电路来获取电网电压与电流的相位差,从无功补偿的原理出发,设计控制器的软硬件。使该系统在应用中实现了对电网功率因数的及时补偿和实时监测,适用于目前企业用户进行无功功率补偿。关键词:功率因数;无功补偿;单片机  随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有:  (1) 相序自动识别  (2) 电压、电流、功率因数采样与显示  (3) 过压解除、欠流封锁,从而保护电容器及避免循环投切  (4) 采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切  (5) 所有的工作参数都可以通过面板按键设定,包括投入门限、切除门限、过压保护门限、欠电流封锁门限、投切延时时间一、 工作原理  采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。  由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。  在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia  则有Ua=Usin(ωt),Ub=Usin(ωt+120º),Uc=Usin(ωt+240º),  从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90º)  若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc的角度为90º;  若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º-φ;  若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º+φ  在我们的ARC功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua的角度为360º。在实际检测中,假设我们检测到Ia滞后Ubc的角度为α,根据以上的分析得知:  若180ºα270º,则电路为容性负载,COSφ=COS(270º-α)  若α=270º,则电路为感性负载,COSφ=1  若270ºα360º,则电路为感性负载COSφ=COS(α-270º)  为方便用户接线,若用户将电压Ubc接成了Ucb,或将Ia的输入接反,根据以上的推断,我们同样可得到:  若0ºα90º,则电路为容性负载,COSφ=COS(90º-α)  若α=90º,则电路为感性负载,COSφ=1  若90ºα180º,则电路为感性负载COSφ=COS(α-90º)http://www.acrel.cn/cn/download/common/upload/2011/02/25/16149c0.jpg图1 电压、电流向量二、 硬件的设计  控制器的CPU采用ATMEL的ATMEGA16-8L,此单片机工作电压范围宽(2.7 - 5.5V),最高工作频率为8MHz;芯片内部具有16k字节的Flash程序程序存储器,512 字节的EEPROM,1K字节的片内SRAM;8路10 位ADC;一个可编程的串行USART,具有独立片内振荡器的可编程看门狗定时器;两个具有独立预分频器和比较器功能的8 位定时器/ 计数器 ;一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器。显示芯片采用南京沁恒公司生产的键盘、显示专用芯片CH451S,CH451S最大能驱动8为数码管,且不需外加驱动就能直接驱动LED数码管,大大减小了印板尺寸,单片机的采用SPI模式,只需3线(片选CS、时钟CLK、数据输入DIN),因本系统未用CH451S的键盘功能,所以CH451S的DOUT引脚不用。Ubc的电压信号经过电阻限流进入2mA/2mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC0,作为电压显示信号,另一路经过零比较后进入单片机中断口INT0;同样Ia的电流信号经5A/5mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC1,作为电流显示信号,另一路经过零比较后进入单片机定时器门控端ICP引脚。http://www.acrel.cn/cn/download/common/upload/2011/02/25/1626rm.jpg图2 ATMEGA16外部引脚 http://www.acrel.cn/cn/download/common/upload/2011/02/25/16215ld.jpg图3 输入信号处理三、 软件的设计  因整个系统对电压、电流采样的精度要求不高,我们直接用CPU的10位A/D对电压、电流的信号进行A/D转换,转换的结果一方面供显示的需要,另一方面作为过压与欠流的比较信号。我们将INT0设置为上升沿产生异步中断,ICP设置为上升沿触发输入捕捉。当INT0产生中断时,16位计数器开始以内部恒定的频率开始计数,直到下一中断的产生。在计数的同时,当TCP上有上升沿脉冲时,即将16位计数器已计得的数据放入到捕捉寄存器中。当一个采样周期结束时,计数器中得数据(N)即为外部交流信号的一个周期基数, 捕捉寄存器中数据(n)电流Ia滞后电压Ubc的基数,将(n/N)*360º即为角度,根据上面的原理就可判断在同一周波中时电压超前电流还是电流超前电压,同时还可得出超前或滞后的角度,将此数据进行查表即可得到功率因数。  为了避免对电容器组中的某一组进行频繁的投切,平衡每一组电容器的工作时间,延长整个系统的使用寿命。我们对电容器的投切采用先投入的优先切除,先切除的优先投入的原则,我们在单片机的RAM中开辟了一空间,用于记录每组电容器的投入与切除时间,然后进行排序,将已工作时间最长的作为优先切除对象,将切除时间最长的作为优先投入对象。  当三相交流的负载回路电流非常小时,会产生投切振荡的现象。也就是说控制系统投入一组电容器会产生过投,切除一组电容器又会产生投入不足,控制器就会产生重复的投切现象。为避免此想象的发生,我们设置了欠电流锁定,当电流值小于此数值时,系统将停止对电容器的投切动作,维持已投入的电容器工作。  在工作过程中,若采样到的电压数据大于设定的过压保护值时,控制器将逐步切除已投入的电容器,若发现超过设定的保护值的10%时,则一次性切除所有已投入的电容器,保护电容器。  以上的技术现已应用于本公司的ARC功率因数自动补偿控制仪中,经测试运行,系统工作稳定、各项指标达到了国家标准的要求,现已初步投放市场。

  • ARC功率因数自动补偿控制仪的原理及其应用

    摘 要:介绍了基于ATMEGA16的高精度低压无功功率补偿器。该控制器采用数字检测电路来获取电网电压与电流的相位差,从无功补偿的原理出发,设计控制器的软硬件。使该系统在应用中实现了对电网功率因数的及时补偿和实时监测,适用于目前企业用户进行无功功率补偿。Abetted:This article introduces reactive power compensator based on ATMEGA16 controlling with high precision. It measures excess phase of voltage and current by using digital circuit, Based on the reactive compensation theorem, The software and hardware of the controller is deigned.By using the system a timely compensation and real-time monitnring of the power factor in electricity network are possible, It is mainly used to compensate reactive power in present factories and mines.关键词:功率因数;无功补偿;单片机  随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有:  (1) 相序自动识别  (2) 电压、电流、功率因数采样与显示  (3) 过压解除、欠流封锁,从而保护电容器及避免循环投切  (4) 采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切  (5) 所有的工作参数都可以通过面板按键设定,包括投入门限、切除门限、过压保护门限、欠电流封锁门限、投切延时时间一、 工作原理  采样三相电源中一线电流(如A线)与另外两线的电压(如BC线)之间的相位差,通过一定的运算,得到当前电网的实时功率因数。此功率因数与设定的投入门限和切除门限比较,在整个投切延时时间内,若在投切门限以内,则不予动作;若小于投入门限,则另投入一组电容器;若大于切除门限或发现功率因数为负时,则切除一组已投入的电容器。再经过投切延时时间,重复比较与投切,直到当前的功率因数达到投切门限以内。在投切过程中,若发现检测到的电压大于设定的过压保护门限,则按组切除所有已投入的电容;当检测到的电压超过设定的过压保护门限的10%时,则一次性切除所有已投入的电容,用以保护电容器。在投切时若发现检测到的电流小于欠电流封锁门限,则停止投切动作,避免系统出现循环投切现象。  由于在三相供电中有不同接线方法,不同的接线方法对功率因数的算法也不一样,因此我们规定ARC系列功率因数自动补偿控制仪的电流取自三相供电中的A线,电压取自BC间的线电压,同时为减少现场接线的复杂度,我们在程序中对相位进行自动判别。  在三相供电中,我们假设三相的相电压分别为Ua、Ub、Uc,A线电流为Ia  则有Ua=Usin(ωt),Ub=Usin(ωt+120º),Uc=Usin(ωt+240º),  从而得到BC间的线电压为Ubc=Ub-Uc= Usin(ωt-90º)  若A线负载为纯阻性,则A线电流Ia与A线电压Ua同相,Ia超前Ubc的角度为90º;  若A线负载为感性,则A线电流Ia滞后A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º-φ;  若A线负载为容性,则A线电流Ia超前A线电压Ua角度为φ(0º≤φ≤90º),Ia超前Ubc的角度为90º+φ  在我们的ARC功率因数自动补偿控制仪中,为了计算的方便,我们电流相位的采样为电压采样的第二个周期,即若没有相位差Ia滞后Ua的角度为360º。在实际检测中,假设我们检测到Ia滞后Ubc的角度为α,根据以上的分析得知:  若180ºα270º,则电路为容性负载,COSφ=COS(270º-α)  若α=270º,则电路为感性负载,COSφ=1  若270ºα360º,则电路为感性负载COSφ=COS(α-270º)  为方便用户接线,若用户将电压Ubc接成了Ucb,或将Ia的输入接反,根据以上的推断,我们同样可得到:  若0ºα90º,则电路为容性负载,COSφ=COS(90º-α)  若α=90º,则电路为感性负载,COSφ=1  若90ºα180º,则电路为感性负载COSφ=COS(α-90º)二、 硬件的设计  控制器的CPU采用ATMEL的ATMEGA16-8L,此单片机工作电压范围宽(2.7 - 5.5V),最高工作频率为8MHz;芯片内部具有16k字节的Flash程序程序存储器,512 字节的EEPROM,1K字节的片内SRAM;8路10 位ADC;一个可编程的串行USART,具有独立片内振荡器的可编程看门狗定时器;两个具有独立预分频器和比较器功能的8 位定时器/ 计数器 ;一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器。显示芯片采用南京沁恒公司生产的键盘、显示专用芯片CH451S,CH451S最大能驱动8为数码管,且不需外加驱动就能直接驱动LED数码管,大大减小了印板尺寸,单片机的采用SPI模式,只需3线(片选CS、时钟CLK、数据输入DIN),因本系统未用CH451S的键盘功能,所以CH451S的DOUT引脚不用。Ubc的电压信号经过电阻限流进入2mA/2mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC0,作为电压显示信号,另一路经过零比较后进入单片机中断口INT0;同样Ia的电流信号经5A/5mA的隔离变换器后分为两路,一路进入模拟绝对值处理电路送入单片机的A/D转换口ADC1,作为电流显示信号,另一路经过零比较后进入单片机定时器门控端ICP引脚。三、 软件的设计  因整个系统对电压、电流采样的精度要求不高,我们直接用CPU的10位A/D对电压、电流的信号进行A/D转换,转换的结果一方面供显示的需要,另一方面作为过压与欠流的比较信号。我们将INT0设置为上升沿产生异步中断,ICP设置为上升沿触发输入捕捉。当INT0产生中断时,16位计数器开始以内部恒定的频率开始计数,直到下一中断的产生。在计数的同时,当TCP上有上升沿脉冲时,即将16位计数器已计得的数据放入到捕捉寄存器中。当一个采样周期结束时,计数器中得数据(N)即为外部交流信号的一个周期基数, 捕捉寄存器中数据(n)电流Ia滞后电压Ubc的基数,将(n/N)*360º即为角度,根据上面的原理就可判断在同一周波中时电压超前电流还是电流超前电压,同时还可得出超前或滞后的角度,将此数据进行查表即可得到功率因数。  为了避免对电容器组中的某一组进行频繁的投切,平衡每一组电容器的工作时间,延长整个系统的使用寿命。我们对电容器的投切采用先投入的优先切除,先切除的优先投入的原则,我们在单片机的RAM中开辟了一空间,用于记录每组电容器的投入与切除时间,然后进行排序,将已工作时间最长的作为优先切除对象,将切除时间最长的作为优先投入对象。  当三相交流的负载回路电流非常小时,会产生投切振荡的现象。也就是说控制系统投入一组电容器会产生过投,切除一组电容器又会产生投入不足,控制器就会产生重复的投切现象。为避免此想象的发生,我们设置了欠电流锁定,当电流值小于此数值时,系统将停止对电容器的投切动作,维持已投入的电容器工作。  在工作过程中,若采样到的电压数据大于设定的过压保护值时,控制器将逐步切除已投入的电容器,若发现超过设定的保护值的10%时,则一次性切除所有已投入的电容器,保护电容器。  以上的技术现已应用于本公司的ARC功率因数自动补偿控制仪中,经测试运行,系统工作稳定、各项指标达到了国家标准的要求,现已初步投放市场。

  • 无功功率补偿的意义

    一、为什么要进行无功功率补偿?  从无功功率(http://www.vfe.cc/NewsDetail-378.aspx)的作用可知,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率,如果电网中的无功功率过低,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。  当电网线路中供给的无功功率远远满足不了负荷的需要时,我们就需要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是我们所说的无功功率补偿。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。二、无功功率补偿的原理 电网输出的功率包括两部分:一是有功功率;二是无功功率。直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能。电流在电感元件中作功时,电流超前于电压90度。而电流在电容元件中作功时,电流滞后电压90度。在同一电路中,电感电流与电容电流方向相反,互差180度。如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理。三、无功功率补偿的方式1、集中补偿:装设在企业或地方总变电所6~35KV母线上,可减少高压线路的无功损耗,而且能提高本变电所的供电电压质量。2、分散补偿:装设在功率因数较低的车间或村镇终端变、配电所的高压或低压母线上。这种方式与集中补偿有相同的优点,但无功容量较小,效果较明显。3、就地补偿:装设在异步电动机或电感性用电设备附近,就地进行补偿。这种方式既能提高用电设备供电回路的功率因数,又能改变用电设备的电压质量。四、无功功率补偿的作用  无功补偿的主要作用就是提高功率因数以减少设备容量和功率损耗、稳定电压和提高供电质量,在长距离输电中提高输电稳定性和输电能力以及平衡三相负载的有功和无功功率。无功补偿可以收到下列的效益:  1、根据用电设备的功率因数,可测算输电线路的电能损失。通过现场技术改造,可使低于标准要求的功率因数达标,实现节电目的。   2、采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。   3、无功补偿,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量,稳定设备运行。   4、减少电力损失,一般工厂动力配线依据不同的线路及负载情况,其电力损耗约2%--3%左右,使用电容提高功率因数后,总电流降低,可降低供电端与用电端的电力损失。  5、改善供电品质,提高功率因数,减少负载总电流及电压降。于变压器二次侧加装电容可改善功率因数提高二次侧电压。   6、延长设备寿命。 改善功率因数后线路总电流减少,使接近或已经饱和的变压器、开关等机器设备和线路容量负荷降低,因此可以降低温升增加寿命(温度每降低10°C,寿命可延长1倍)   7、最终满足电力系统对无功补偿的监测要求,消除因为功率因数过低而产生的罚款。  8、无功补偿可以改善电能质量、降低电能损耗、挖掘发供电设备潜力、无功补偿减少用户电费支出,是一项投资少,收效快的节能措施。  9、无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的。

功率补偿仪的工作原理相关的耗材

  • SC温度仪表补偿导线
    SC温度仪表补偿导线由上海书培实验设备有限公司提供,SC温度仪表补偿导线,产品规格齐全,质量优质,欢迎新老客户来电咨询采购。SC温度仪表补偿导线产品规格:产品名称规格长度(m)分度号价格(元)SC温度仪表补偿导线2x1.0经济型95米/卷S289SC温度仪表补偿导线2x1.5经济型95米/卷S323SC温度仪表补偿导线2x1.0国标型95米/卷S442SC温度仪表补偿导线2x1.5国标型95米/卷S493SC温度仪表补偿导线2x2.5国标型95米/卷S800SC温度仪表补偿导线2x1.0高温玻纤95米/卷S578SC温度仪表补偿导线2x1.5高温玻纤95米/卷S629SC温度仪表补偿导线2x2.5高温玻纤95米/卷S830SC温度仪表补偿导线2x1.0高温氟塑料95米/卷S680SC温度仪表补偿导线2x1.5高温氟塑料95米/卷S780SC温度仪表补偿导线2x2.5高温氟塑料95米/卷S950SC温度仪表补偿导线2x1.0内屛蔽95米/卷S527SC温度仪表补偿导线2x1.5内屛蔽95米/卷S578SC温度仪表补偿导线2x2.5内屏蔽95米/卷S889SC温度仪表补偿导线选择说明:SCHF4B高温国标型:材料:铜-铜镍。绝缘层内铁氟龙带绕包+外层玻璃纤维编织。适合高温环境下精度要求高的场合使用。SC国标型:材料:铜--铜镍 、适合距离长、精度要求高的场合使用。SC经济型:材料:镀铜合金--铁合金 、适合距离短、精度要求不高的场合使用。SCP内屏蔽国标型:材料:铜-铜镍(中间加金属屏蔽层)、适合距离长、需要抗电磁干扰的场合使用。补偿导线注意事项: 一:屏蔽补偿导线为了提高热电偶连接线的抗干扰性,可以采用屏蔽补偿导线。对于现场干扰源较多的场合,效果较好。但是一定要将屏蔽层严格接地,否则屏蔽层不仅没有起到屏蔽的作用,反而增强干扰。二:使用长度因为热电偶的信号很低,为微伏级,如果使用的距离过长,信号的衰减和环境中强电的干扰偶合,足可以使热电偶的信号失真,造成测量和控制温度不准确,在控制中严重时会产生温度波动。根据我们的经验,通常使用热电偶补偿导线的长度控制在15米内比较好,如果超过15米,建议使用温度变送器进行传送信号。温度变送器是将温度对应的电势值转换成直流电流传送,抗干扰强。三: 接点连接与热电偶接线端2个接点尽可能近一点,尽量保持2个接点温度一致。与仪表接线端连接处尽可能温度一致,仪表柜有风扇的地方,接点处要保护不要四: 布线 补偿导线布线一定要远离动力线和干扰源。在避免不了穿越的地方,也尽可能采用交叉方式,不要平行。
  • K型热电偶补偿导线
    K型热电偶补偿导线 型  号: TT-K-30-SLE 品  牌: 美国OMEGA 价  格: 基本货期: K型热电偶补偿导线TT-K-30-SLE主要技术指标: 测温范围:-200--260℃,表层耐温范围:-276--+260℃ K型热电偶补偿导线TT-K-30-SLE详细技术指标: 介 绍: 测温范围:-200--260℃,表层耐温范围:-276--+260℃ 主要性能:线芯直径为2*0.255mm,负极:红(镍-铬),正极:白(镍-铝合金),绝缘材料:聚四氟乙烯,单位:每卷1000英尺 特点:外表绝缘层为聚四氟乙烯,具有耐水性,耐磨性,柔软度良好,极高精度,多用于线路板制造,电脑,显示器,无尘设备,电子元器件等行业的精密温度测试.   K型系列详细参数 Insulation AWG No. Model Number Type Wire Insulation   Max. Temp   Nominal Size Wt.&dagger lb/1000' Conductor Overall ° F ° C Ceramic** 14 XC-K-14 Solid Nextel Ceramic Nextel Ceramic 2000 1090 .140 x .200 38 20 XC-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .135 x .190 16 20 XT-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .105 x .155 15 20 XL-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .095 x .135 14 24 XC-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .115 x .175 12 24 XT-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .088 x .132 11 24 XL-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .078 x .11610 Vitreous Silica* 20 XR-K-20 Solid Refrasil Refrasil 1600 870 .115 x .180 14 Silica* 14 XS-K-14 Solid Silica Silica 2000 1090 .140 x .200 3520 XS-K-20 Solid Silica Silica 1800 980 .105 x .155 12 24 XS-K-24 Solid Silica Silica 1600 870 .088 x .132 10 High Temp. Glass** 20 HH-K-20 Solid High Temp. Glass High Temp. Glass 1300 704 .060 x .105 9 24 HH-K-24 Solid High Temp. Glass High Temp. Glass 1300 704 .055 x .090 5 Glass 20 GG-K-20 Solid Glass Braid Glass Braid 900 482 .060 x .095 9 20 GG-K-20S 7 x 28 Glass Braid Glass Braid 900 482 .060 x .100 9 24 GG-K-24 Solid Glass Braid Glass Braid 900 482 .050 x .080 5 24 GG-K-24S 7 x 32 Glass Braid Glass Braid 900 482 .050 x .085 5 26 GG-K-26 Solid Glass Braid Glass Braid 900 482 .045 x .075 4 28 GG-K-28 Solid Glass Braid Glass Braid 900482 .045 x .070 3 30 GG-K-30 Solid Glass Wrap Glass Braid 900 482 .045 x .070 3 36 GG-K-36 Solid Glass Wrap Glass Braid 900 482 .045 x .070 2 Teflon® Glass 30 TG-K-30 Solid PFA Glass Braid 500 260 .034 x .047 2 36 TG-K-36 Solid PFA Glass Braid 500 260 .028 x .038 2 40 TG-K-40 Solid PFA Glass Braid 500 260 .026 x .035 2 Teflon® Neoflon PFA (HighPerformance) 20 TT-K-20 Solid PFA PFA 500 260 .068 x .116 11 20 TT-K-20S 7 x 28 PFA PFA 500 260 .073 x .126 11 22 TT-K-22S 7 x 30 PFA PFA 500 260 .065 x .133 9 24 TT-K-24 Solid PFA PFA 500 260 .056 x .093 6 24 TT-K-24S 7 x 32 PFA PFA 500 260 .063 x .102 6 30 TT-K-30&dagger &dagger Solid PFA PFA 500 260 .024 x .040 2 36 TT-K-36&dagger &dagger Solid PFA PFA 500260 .019 x .030 2 40 TT-K-40&dagger &dagger Solid PFA PFA 500 260 .017 x .026 2 Teflon® Neoflon FEP 20 FF-K-20 Solid FEP FEP 392 200 .068 x .11611 24 FF-K-24 Solid FEP FEP 392 200 .056 x .092 6 Polyvinyl 24 PR-K-24 Solid Polyvinyl (Rip Cord) 221 105 .050 x .086 5 24 PP-K-24S 7 x 32 Polyvinyl (Polyvinyl) 221 105 .080 x .130 5 ^线轴和线的重量入到整数磅 (不包括包装材料). ^^Overall color clear *护套和导体上有分度号颜色线 **护套和正极线有分度号颜色线 相关技术文章 · 工业热电偶型式、基本参数及尺寸介绍 · 热电偶种类及其工作原理 · 热电偶的结构形式 · 热电偶入门知识· 热电偶的正确使用 · 传感器的技术参数详解 · 常用热电偶 · 热电偶常见故障及处理 · 电化学知识解释热电偶工作原理 · 热电偶如何选择 · 热电偶基础知识 · 热电偶的选择与安装 · 比较热电偶和热电阻的区别 · 热电偶冷端的温度补偿
  • 800nm色散补偿光栅对脉冲展宽器
    800nm色散补偿光栅对脉冲展宽器800nm色散补偿光栅对包含两个透射光栅,用于在800nm波长处的光纤色散补偿。 PS-800应用:可以将脉冲展宽器放置在光纤前面,以补偿超短脉冲的光纤色散,以便光纤输出端的脉冲具有与入射脉冲展宽器之前大致相同的脉冲宽度。脉冲展宽器引入一个负色散值,用于补偿800 nm波长处长度介于2 m和5 m之间的标准光纤色散。 为了调整脉冲展宽器的色散,可以微调两个透射光栅之间的距离。局限: 该PS-800仅补偿二阶色散,不能补偿三阶色散。因此使用衍射光栅的光纤色散补偿不完整。例如,脉冲宽度为100fs的光脉冲经过脉冲展宽器和2m光纤,光纤末端脉冲宽度约为120fs。光纤中的脉冲能量必须限制在一个较低值以避免导致较长脉冲的非线性效应。因此,在脉冲重复频率为?100 MHz的情况下,光纤中的平均光功率必须保持在10 mW以下。 规格参数:波长: ~ 800 nm 光纤色散补偿长度:2 m and 5 m输入:自由空间输出:自由空间,可配合准直器使用透射率: 70 %尺寸:12 cm x 8 cm x 4 cm (LXHXW) 可根据客户的需求,将PS-800预先调整好光纤长度在1.5米至5米之间的色散补偿。更多产品:1、太赫兹光电导天线2、飞秒光纤激光器

功率补偿仪的工作原理相关的资料

功率补偿仪的工作原理相关的资讯

  • 使用功率补偿型DSC对药物多晶型进行高分辨表征
    前言物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。许多结晶药物都存在多晶型现象,同一药物的不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响药物的稳定性、生物利用度及疗效,此现象在口服固体制剂方面表现得尤为明显。药物多晶型现象是影响药品质量与临床疗效的重要因素之一。因此,对存在多晶型的药物进行研发以及审评时,应对其晶型分析予以特别关注。多晶型药物中的不同晶型的热力学稳定性不同,不稳定晶型的熔融温度可能显著低于热力学稳定的晶型;而一种晶型熔融后可能结晶形成另一种更稳定的晶型。对于很多药物材料来说,多晶型现象的存在是非常重要的,因为在服用药物后,它们对血液循环中有效成分的摄取,以及药物保质期等方面会产生重大影响。同一药物的某种晶型可能比其它晶型更易溶解或摄取,其释放时间也会有所不同,并可以通过一定类型和水平的特定多晶型来进行控制。另外,某些晶型的储存期可能更长;随着时间的变化,易于溶解的晶型可能转变为不易溶解的晶型,从而导致药物活性的改变。中国药典通则《9015药品晶型研究及晶型质量控制指导原则》中明确说明,当固体药物存在多晶型现象,且不同晶型状态对药品的有效性、安全性或对质量可产生影响时,应对原料药物、固体制剂、半固体制剂、混悬剂等中的药物晶型物质状态进行定性或定量控制。在“药品晶型质量控制方法”一节中,明确晶型种类相对鉴别方法为粉末X射线衍生 (PXRD)、红外光谱 (IR)、拉曼光谱 (Raman)、差式扫描量热 (DSC)、热重 (TG)、毛细管熔点 (MP)、光学显微 (LM)、偏光显微 (LM) 和固体核共振 (ssNMR) 等9种方法。其中,TG方法中新增的热重与质谱联用 (TG-MS) 可以实现不同晶型药品在持续加热过程中的失重量和失重成分以及结晶溶剂和其它可挥发性成分的定性、定量分析。中国药典通则《0981结晶性检查法》规定固态药物的结晶性检查可采用偏光显微镜法、粉末X射线衍射法和差示扫描量热法 (DSC)。其中新增的DSC法可实现对晶态物质的尖锐状吸热峰或非晶态物质的弥散状 (或无吸热峰) 特征进行结晶性检查。当相同化合物的不同晶型固体物质状态吸热峰位置存在差异时,亦可采用DSC法进行晶型种类鉴别。DSC 测量的是加热、冷却或等温条件下样品吸收和释放的热流信号。《化学仿制药晶型研究技术指导原则》(试行)结合我国仿制药晶型研究的现状并参考国外监管机构相关指导原则起草制定,阐明仿制药晶型研究过程中的关注点,涉及的晶型包括无水物、水合物、溶剂合物和无定型等。指导原则明确了可使用热分析法 (如DSC和TG) 和光谱法 (如IR和Raman) 作为药物晶型表征方法和晶型确证方法;晶型控制参照《中国药典》相关通则 (《9015药品晶型研究及晶型质量控制指导原则》和《0981结晶性检查法》) 对晶型进行定性和/或定量分析。珀金埃尔默DSC 8500采用独一无二的功率补偿型设计,测量真实的热流信号。相互独立的轻质双炉体设计,使得 DSC 8500既可以提供药物多晶型测定所需要的极高灵敏度,又可以提供非常卓越的信号分辨率。同时,由于功率补偿型DSC的小炉体设计,提供了快速升降温的可能,从而可以在测试中通过快速升温,抑制低温晶型熔融后的重结晶,进而得到真实的各晶型比例。珀金埃尔默DSC产品,除了在药物晶型研究上的优势,在药物分析与研究方面,还具有如下优势:1灵敏度高,可灵敏检测蛋白变性的微量放热;2量热准确度高,特别适合药品纯度检测;3专利的调制技术,可研究晶型的可逆和不可逆转变;4铂金炉体,特别适用于药物的易分解特性;DSC 8500差式扫描量热仪极高的灵敏度,可以检测很弱的晶型转变过程或者含量很低的晶型成分卓越的分辨率,可以更好地分离多种晶型的熔融峰最快的加热和冷却速率 (最高可达750°C/min)使用铂面电阻测温技术 (PRT) 测量样品温度,准确性和重现性优于热电偶非常稳定的基线性能具备StepScan DSC技术,可以直接分离可逆与不可逆的热过程或热转变最大程度遵从21 CFR Part 11法规实验1某药物材料DSC测试测试条件升温速率:3℃min-1/10℃min-1;样品质量:~3mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:90℃~170℃实验2卡马西平多晶型DSC测试图5 不同升温速率下卡马西平DSC测试结果
  • 2019年度重点新材料首批次应用保险补偿试点工作拟补助项目公示
    p style=" text-align: justify text-indent: 2em " 新材料是指新出现的具有优异性能或特殊功能的材料,或是传统材料改进后性能明显提高或具有新功能的材料,融入了当代众多学科先进成果的新材料产业是支撑国民经济发展的基础产业,是高技术产业的发展先导和重要内涵,逐渐成为促进经济快速增长和提升企业及地区竞争力的源动力。 /p p style=" text-align: justify text-indent: 2em " 我国对新材料的研究和开发高度重视,在政策上给予鼓励,以促进新材料产业发展。2020年4月27日,工业和信息化部原材料工业司公示了2019年度重点新材料首批次应用保险补偿试点工作拟补助项目: /p p style=" text-align: justify text-indent: 2em " 根据《工业和信息化部办公厅 银保监会办公厅关于开展2019年度重点新材料首批次应用保险补偿机制试点工作的通知》(工信厅联原函〔2019〕248号),现将2019年度重点新材料首批次应用保险补偿机制试点工作拟补助项目进行公示,请社会各界监督。 /p p style=" text-align: justify text-indent: 2em " 公示时间:2020年4月27日-2020年5月6日 /p p style=" text-align: justify text-indent: 2em " 邮箱:xcl@miit.gov.cn /p p style=" text-align: justify text-indent: 2em " 传真:010-66012138 /p p style=" text-align: justify text-indent: 2em " 附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/202004/attachment/af4c4745-4d69-4a35-9178-b5f4daf972d6.pdf" title=" 2019年度重点新材料首批次应用保险补偿试点工作拟补助项目清单.pdf" style=" font-size: 12px color: rgb(0, 102, 204) " 2019年度重点新材料首批次应用保险补偿试点工作拟补助项目清单.pdf /a /p p style=" text-align: center " strong 2019年度重点新材料首批次应用保险补偿试点工作拟补助项目清单 /strong br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/5ebdaf55-9642-4965-ae36-904f0cffd439.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/b8da35f1-ada9-44cc-9d9c-e0c3e505eb45.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/68c4a617-eedd-4904-8479-62ae8637c838.jpg" title=" 3.PNG" alt=" 3.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/82b29574-7f27-4e38-9c5c-6b1e4485d3b8.jpg" title=" 4.PNG" alt=" 4.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/36329ac9-1ede-4f78-9341-e13b26a92a95.jpg" title=" 5.PNG" alt=" 5.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/a5ed30c8-20d2-47a8-a865-fff2db21fc96.jpg" title=" 6.PNG" alt=" 6.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/5d6cff09-f219-4dc9-8a77-829323b0174f.jpg" title=" 7.PNG" alt=" 7.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/af93aaa5-6abd-4323-845a-36c03ecd88ca.jpg" title=" 8.PNG" alt=" 8.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/995f5cdb-9d41-46af-9dc4-3e4bdf280425.jpg" title=" 9.PNG" alt=" 9.PNG" / /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/1b6d2dc6-dc77-47ae-aed4-5386edf23c0d.jpg" title=" 10.PNG" alt=" 10.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7c75f533-c71f-4c36-97d0-6593c2469d81.jpg" title=" 11.PNG" alt=" 11.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7ccae389-0e13-447b-bae8-b33178d10a92.jpg" title=" 12.PNG" alt=" 12.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/a6df7e35-45d6-4b65-93d3-521eb522b636.jpg" title=" 13.PNG" alt=" 13.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c131dfa9-3660-4228-a099-a5797b50316d.jpg" title=" 14.PNG" alt=" 14.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/4a5b7ed0-c35e-4c4a-b1c0-1c9bc85db5cb.jpg" title=" 15.PNG" alt=" 15.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/558f94c8-5d4f-4e73-b113-8e054f1f641e.jpg" title=" 16.PNG" alt=" 16.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/51d1a61f-8f25-4725-9be0-53c1d350b088.jpg" title=" 17.PNG" alt=" 17.PNG" / /p
  • 南京“谁保护谁受益、谁污染谁补偿”生态补偿法10日施行
    不进行土地开发,保留了湿地、森林、农田原貌,今后这样因生态保护需要失去经济效益的土地所有单位和个人,将得到经济补偿。《南京市生态保护补偿办法》(以下简称《办法》)日前正式下发,并将于本月10日起施行。  生态补偿是以保护和可持续利用生态系统服务为目的,以经济手段为主调节相关者利益关系的制度安排。《办法》明确,我市将对因承担重要生态保护区域及其他生态保护责任使经济发展受到一定限制的有关组织和个人给予补偿。补偿坚持谁受益、谁补偿,按照统筹分配、统一拨付、分类管理的原则实施,建立受益者付费、保护者得到合理补偿的运行机制。  针对不同的生态保护区域有不同的补偿办法,可以开展生态补偿的主要有四类生态保护区域,分别是生态红线保护区域、耕地、生态公益林和水利风景区。每个区域的生态补偿标准不一样,其中实际种植水稻的区域,除了生态补偿之外,另给予补偿120元/亩年 国家级水利风景区补偿标准为不超过200万元/年、省级水利风景区补偿标准为不超过100万元/年。生态保护补偿标准一般3年调整一次。  《办法》还提出,拓展多元化生态保护补偿方式,推进横向生态保护补偿,鼓励受益区与保护生态区、流域下游与上游通过资金补偿、对口协作、产业转移、人才培训、共建园区等方式建立横向补偿关系。  生态保护补偿资金应当用于生态环境保护、生态经济发展、生态修复、生态工程建设和补偿集体经济组织成员等,不得用于考察、旅游、接待及购置交通工具等“三公”行政管理支出。  环保部门认为,明确生态补偿机制对我市生态保护工作意义重大,“这是首次明确了生态红线保护区域的生态补偿措施,这是真正把生态红线区域保护从 ‘图’上落实到了‘地’上。”市环保局一位人士说,没有生态补偿办法,生态红线保护区域就很难落到实处,青山绿水就很难原封不动地保存下去。同时,《办法》还对耕地、林地等区域明确了生态补偿办法和标准,谁保护谁受益、谁污染谁补偿,通过经济杠杆保护生态,这才是生态保护最直接有效的方法。

功率补偿仪的工作原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制