当前位置: 仪器信息网 > 行业主题 > >

固定污染源氯化氢标准

仪器信息网固定污染源氯化氢标准专题为您提供2024年最新固定污染源氯化氢标准价格报价、厂家品牌的相关信息, 包括固定污染源氯化氢标准参数、型号等,不管是国产,还是进口品牌的固定污染源氯化氢标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合固定污染源氯化氢标准相关的耗材配件、试剂标物,还有固定污染源氯化氢标准相关的最新资讯、资料,以及固定污染源氯化氢标准相关的解决方案。

固定污染源氯化氢标准相关的资讯

  • 生态环境部发布《固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)》等4项国家生态环境标准
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《固定污染源废气 一氧化碳和氯化氢连续监测技术规范》等4项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2024年4月22日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646263  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)  3.《固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)》编制说明  4.环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)  5.《环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)》编制说明  6.环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)  7.《环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)》编制说明  8.水质 水温的测定 传感器法(征求意见稿)  9.《水质 水温的测定 传感器法(征求意见稿)》编制说明  生态环境部办公厅  2024年3月18日  (此件社会公开)
  • 涉及固定污染源废气等4项国家生态环境标准征求意见稿首次发布
    近日,生态环境部编制了《固定污染源废气 一氧化碳和氯化氢连续监测技术规范》、《环境空气气态污染物(氨、硫化氢)连续自动监测技术规范》、《环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法》、《水质 水温的测定 传感器法》等4项国家生态环境标准征求意见稿,公开征求意见,2024年4月22日截止。一、固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)本标准为首次发布。本标准规定了固定污染源废气 CO、HCl 和相关废气参数连续监测系统的组成和功能、技术性能、监测站房、安装、技术指标调试检测、技术验收、日常运行维护、质量保证和质量控制以及数据审核和处理的有关要求。本标准适用于排污单位固定污染源废气排放口一氧化碳(CO)、氯化氢(HCl)连续监测系统的安装、验收、运行和管理。本标准主要起草单位:中国环境监测总站、浙江省生态环境监测中心。点击原文:固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿).pdf《固定污染源废气 一氧化碳和氯化氢连续监测技术规范(征求意见稿)》编制说明.pdf二、环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)本标准为首次发布。本标准规定了环境空气气态污染物(氨、硫化氢)连续自动监测系统的原理与组成、安装、调试、试运行、验收、日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于环境空气气态污染物(氨、硫化氢)连续自动监测系统的安装、调试、试运行、验收、日常运行维护、质量保证和质量控制、数据有效性判断等。本标准主要起草单位:中国环境监测总站、上海市环境监测中心。标准编制组主要成员:钟 琪、薛 瑞、张杨、王强、李跃武、赵瑞峰、高 松、李铭煊、梁国平、金丹点击原文:环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿).pdf《环境空气气态污染物(氨、硫化氢)连续自动监测技术规范(征求意见稿)》编制说明.pdf三、环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)本标准为首次发布。本标准规定了环境空气气态污染物(氨、硫化氢)连续自动监测系统的原理与组成、技术要求、性能指标和检测方法。本标准适用于环境空气气态污染物(氨、硫化氢)连续自动监测系统的设计、生产和检测。本标准主要起草单位:中国环境监测总站、上海市环境监测中心。标准编制组主要成员:张 杨、薛 瑞、钟琪、王强、李跃武、李铭煊、赵瑞峰、高松、梁国平、金丹点击原文:环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿).pdf《环境空气气态污染物(氨、硫化氢)连续自动监测系统技术要求及检测方法(征求意见稿)》编制说明.pdf四、水质 水温的测定 传感器法(征求意见稿)本标准为首次发布。本标准规定了使用接触式温度传感器测定水温的方法。本标准适用于地表水、地下水、生活污水、工业废水和海水水温的测定。测定范围为-5 ℃~45 ℃。本标准主要起草单位:中国环境监测总站。本标准验证单位:安徽省生态环境监测中心、江苏省环境监测中心、科邦检测集团有限公司、辽宁省生态环境监测中心、宁夏回族自治区生态环境监测中心、山西省生态环境监测和应急保障中心(山西省生态环境科学研究院)、江苏省苏力环境科技有限责任公司、承德市环境监控中心。编制组主要成员:李文攀、许秀艳、蔡 熹、武中波、白雪、李凤梅、阮家鑫、吴萌萌、刘京、孙宗光点击原文:《水质 水温的测定 传感器法(征求意见稿)》编制说明.pdf水质 水温的测定 传感器法(征求意见稿).pdf附:征求意见单位名单.pdf
  • 解读 HJ 57-2017 《固定污染源废气 二氧化硫的测定 定电位电解法》新标准
    一、简述为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境、保障人体健康、规范固定污染源废气中二氧化硫的测定方法。环境保护部于2017年11月28日批准发布了HJ 57-2017《固定污染源废气 二氧化硫的测定 定电位电解法》标准,并于2018年1月1日起实施。自标准实施之日起,原《固定污染源排气中二氧化硫的测定 定电位电解法》(HJ/T 57-2000)废止。本标准首次发布于2000年,原标准起草单位为中国环境监测总站。本次为第一次修订,由环境保护部环境监测司和科技部标准司组织制订,修订的主要内容如下:1、明确了方法的检出限和测定下限;2、增加了术语和定义;3、明确了干扰及消除的要求;4、补充了试剂和材料、仪器和设备的要求;5、增加了精密度和准确度的内容;6、增加了质量保证和质量控制的内容,规定了注意事项。二、HJ 57-2017《固定污染源废气 二氧化硫的测定 定电位电解法》标准解读标准修订项目记实2013年2月,环境保护部办公厅印发了《关于开展2013年度国家环境保护标准项目实施工作的通知》(环办函[2013]154号),下达了《固定污染源废气 二氧化硫的测定 定电位电解法》(修订HJ/T57 -2000)标准制订任务,项目承担单位为中国环境监测总站。2014年2月,武汉天虹公司作为仪器设备单位参加了环境保护部标准司组织的标准开题论证会;2014年7月-9月,武汉天虹携烟气分析仪参与了方法验证预实验和现场测试方法验证实验;2014年12月,中国环境监测总站组织6家标准验证单位,其中武汉天虹烟气分析仪作为验证仪器参与标准方法验证;2016年9月至2017年6月,武汉天虹分别受邀参加中国环境监测总站组织的该标准的初审和复审工作。新标准对干扰及消除的要求:干扰及消除 特测气体中的颗粒物、水分和三氧化硫等在易在传感器渗透膜表面凝结并造成传感器损坏,影响测定;应采用滤尘装置、除湿装置、滤雾器等进行滤除,消除影响。 氨、硫化氢、氯化氢、氟化氢、二氧化氮等对样品测定会产生一定的干扰,可采用磷酸吸收、乙酸铅棉吸附、气体过滤器滤除等措施减小干扰。 一氧化碳干扰显著,测定样品时须同时测定一氧化碳浓度。一氧化碳浓度不超过50μmol/mol时,可用本标准测定样品。一氧化碳浓度超过50μmol/mol时,二氧化硫测定仪初次使用前,应开展一氧化碳干扰试验(参见附录A);在干扰试验确定的二氧化硫浓度最高值和一氧化碳浓度最高值范围内,可本标准测定样品。武汉天虹是国内最早一批研制定电位电解法烟气分析仪的厂家之一。除较早期仪器设备外,客户选用武汉天虹的烟气分析仪均具备交叉干扰消除功能。只要客户配置的烟气分析仪具备一氧化碳测量功能,该分析仪均具备一氧化碳对二氧化硫传感器的干扰消除功能。 武汉天虹环保系列烟尘烟气分析仪TH-880F微电脑烟尘平行采样仪TH-880W(触摸屏)微电脑烟尘平行采样仪TH-880W(无线型)微电脑烟尘平行采样仪TH-990FIII智能烟气分析仪 新标准《附录A 一氧化碳干扰试验——动态混气矩阵试验法》一氧化碳干扰试验——动态混气矩阵试验法 稀释配气装置 可对二氧化硫、一氧化碳、氮气等标准气体动态配气;至少具备3个输入通道,1个输出通道;以质量流量控制各输入和输出通道的气体流量,其中输入通道的质量流量计量程应不低于5L/min输出通道的质量流量计量程应不低于10L/min,精度均应达到或优化±2%。 武汉天虹环保出品的TH-2008M动态气体发生器仪器特点:1、采用7寸全触摸彩屏;2、中英文菜单式操作界面,操作简单;3、具有近百种程序段和序列段设置,可灵活预设仪器标定的各种参数;4、具有温度压力自动补偿功能;5、可查询程序段和序列段的设置;6、具备RS232、RS485、USB等数据传输和拷贝功能;7、进口高精度质量流量计,3路配气通道,可扩充配气通道;8、可选配交直流两种供电模式,适用于户外现场使用。HJ 57-2017新标准CMA资质认证 现场验证实景图片: 一、定电位电解法传感器测试SO2消除CO干扰的方法消除干扰方法的原理矩阵试验法 对多种气体的相互干扰采用矩阵方法,计算出相互干扰的系数输入仪器,从而消除相互间的干扰。特点:计算准确,测量准确性高。仪器在进行交叉干扰标定时步骤较多,每种标准气体及不同浓度均要使用,需配置稀释配气装置配置传感器满量程范围内的所需混合标气。如果污染气体超传感器量程或有未知污染物将可能出现误差。
  • 检测氯化氢及卤化氢的仪器如何使用?
    氯化氢及卤化氢检测的仪器如何使用?HCl固定污染源排放中重要的污染物之一,需要进行有效的监测和控制。检测HCl存在以下难度1.湿度大:经过湿法脱硫和湿式除尘器之后的烟气,通常为70℃左右的湿度饱和或接近饱和的气体,这就需要在检测时全程无冷点加热,避免形成冷凝水,从而避免由HCl溶于水而导致的损耗。2.含量低:固定污染源排放气体中HCl的含量通常为几个ppm甚至更低,这就需要高精度的设备进行测量。3. 烟气组分的复杂性:固定污染源烟气是一个复杂的混合物,其中包含多种气体成分。同时监测多种组分的浓度,如HCl、SO2、NOx、NH3等,需要高度选择性的检测方法,以区分和准确测量每种组分。为此,我们推荐您使用以下三种原理设备进行HCl的检测,可以有效应对上述问题并且实现精确测量。一 T690型可调谐半导体激光吸收光谱原理(TD-LAS)分析仪 仪器特点:1.高度订制根据具体的应用场景可以分为壁挂式、19英寸机架式以及便携式三种模式;2.高精度和高灵敏度:仪器采用高分辨率的“指纹光谱”进行气体分析,其高灵敏度使得仪器可以检测到极低浓度的气体组分,甚至在ppb(十亿分之一)或更低的水平上进行精确测量。3.高选择性 “指纹光谱”“指纹光谱”是指气体分子在特定波长范围内的吸收光谱特征。每种气体都具有独特的吸收线和波长,就像每个人都有独特的指纹一样,因此被称为“指纹光谱”。这种特异性识别使得仪器在复杂气体混合物的分析中非常有优势,它可以精确测量低浓度的NH3气体,并排除其他干扰物质的影响,确保数据的准确性和可靠性。4.实时监测和快速响应: TDLAS气体分析仪具有快速响应时间,能够实时监测气体浓度的变化。5.免维护: TDLAS分析仪内置参考光路信号,通过与参考信号进行比对,可以实现实时的校准和补偿,消除光源波动和光路漂移对测量结果的影响。 二 F950型傅立叶变换红外光谱原理(FTIR)烟气分析仪仪器特点1.高度订制根据具体的应用场景可以分为壁挂式、19英寸机架式以及便携式三种模式 2. 全谱范围检测:F950型FTIR气体分析仪可以检测包含HCl在内的几乎所有气体成分。它能够覆盖广泛的波数范围从红外到远红外,使您能够分析多种气体成分。 3. 高灵敏度和检测限:F950型FTIR仪器具有5米长的光路以及0.5cm-1超高光谱分辨率,这使得仪器具备出色的灵敏度和低检测限,同时具备高选择性和低干扰。它可以检测到非常低浓度的气体,甚至在ppb级别下进行精确测量。 4. 宽量程和高精度:F950型FTIR气体分析仪具有宽广的检测量程,从10ppb到100%。这意味着它可以适应不同浓度范围的气体分析需求,从极低浓度的痕量气体到高浓度的纯气体。 5. 实时监测和快速响应:F950型FTIR气体分析仪具有快速的响应时间和实时监测能力。它能够实时获取气体成分的数据,并提供即时的监测结果。 6.免维护:设备还具备自动校准功能,实现零维护。更重要的是主机重量仅有14KG,作为便携式设备使用时非常易于携带。详细信息请点击这里:F950型傅立叶变换红外光谱分析仪 三 化学法——EPA方法26A准确性:该方法经过标准化和验证,具备较高的测量准确性和可靠性,可以满足环境监测的要求。灵敏度:方法26A可检测烟气中较低浓度的HCl,通常在几毫克每立方米(mg/m³ )至几百毫克每立方米(mg/m³ )的范围内。可靠性:该方法已广泛应用于燃煤电厂等大气排放源的HCl监测,并且经过多年实际应用验证,具备较好的可靠性和稳定性。合规性:EPA方法26A是符合环境法规和排放标准的监测方法,可用于评估燃煤电厂的HCl排放是否符合规定的限值要求。 如您对上方仪器内容感兴趣,可通过仪器信息网联系我们
  • 众瑞仪器发布ZR-D21A型 废气氯化氢采样装置新品
    详细介绍产品简介ZR-D21A型废气氯化氢采样装置适用于采集固定污染源废气中的氯化氢或者盐酸雾,广泛应用于环保、卫生、劳动、安监、军事、科研、教育等部门。执行标准HJ 548-2016 《环境空气和废气氯化氢的测定硝酸银容量法》HJ 549-2016 《环境空气和废气氯化氢的测定离子色谱法》 技术特点整套设备为组合式设计:采样管、颗粒物过滤器、吸收瓶、温控浴、流量计量等功能体有机组合,结构紧凑,轻巧便携。采样管芯管、滤膜夹采用聚四氟乙烯,钛合金等耐蚀材料。采样管、滤膜夹具有恒温功能。适应多种取样瓶的种类。创新点:1、整套设备为组合式设计:采样管、颗粒物过滤器、吸收瓶、温控浴、流量计量等功能体有机组合,结构紧凑,轻巧便携。 2、采样管芯管、滤膜夹采用聚四氟乙烯,钛合金等耐蚀材料。 3、吸收瓶的工作空间设置有循环水浴/冰水浴/空气浴/热气浴四种方式,适应全国范围的高温、常温、严寒等多种工况的采样。 4、吸收瓶恒温浴与颗粒干扰物过滤器恒温箱一体设计,电接口、放水接口、温度设定显示等所有人机交互位于一个操作面,不转身即可全部操控。 ZR-D21A型 废气氯化氢采样装置
  • 北京印发新版《北京市固定污染源自动监控管理办法》
    p   北京市生态环境局近日印发了新修订的《北京市固定污染源自动监控管理办法》,此办法从总则、自动监测设备的安装、运行管理、数据使用以及违法行为认定等方面详细规定了北京市行政区域内固定污染源水污染物和大气污染物排放自动监控系统的监督管理。新修订的办法自2019年1月1日起实施。 /p p   对于监测数据提出了严格要求,传输的自动监测数据与现场监测数据偏差大于1%,即视为未保证大气或水污染物排放自动监测设备正常运行。 /p p   全文如下: /p p style=" text-align: center "   北京市固定污染源自动监控管理办法 /p p    strong 第一章 总则 /strong /p p   第一条 为加强污染源监管,根据《中华人民共和国环境保护法》《中华人民共和国水污染防治法》《中华人民共和国大气污染防治法》《北京市水污染防治条例》《北京市大气污染防治条例》《污染源自动监控管理办法》和《污染源自动监控设施现场监督检查办法》等法律法规和有关规定,结合本市实际,制定本办法。 /p p   第二条 本办法适用于北京市行政区域内固定污染源水污染物和大气污染物排放自动监控系统的安装、运行和监督管理。 /p p   第三条 本办法所称自动监控系统,由排污单位的自动监测设备和生态环境行政主管部门的监控设备组成。 /p p   自动监测设备安装在固定污染源现场,包括用于监控、监测污染物排放的仪器,流量(速)计、采样装置、生产或治理设施运行记录仪、数据采集传输仪等仪器、仪表、传感器、视频监控、污染源排放过程(工况)监控等,自动监测设备及其配套辅助设施是污染防治设施的组成部分。 /p p   生态环境行政主管部门的监控设备通过通信传输线路与现场端自动监测设备联网,包括用于对固定污染源实施自动监控的信息管理平台、计算机机房硬件等监控设备。 /p p   第四条 本办法所称自动监测数据,是指排污单位安装使用的自动监测设备产生的实时数据及其累计数据、统计数据等。 /p p   排污单位应当按照国家和本市有关规定安装使用自动监测设备,与生态环境行政主管部门监控设备联网,并保证自动监测设备正常运行,对自动监测数据的真实性和准确性负责。 /p p   第五条 排污单位自动监测设备的安装和运行维护经费由排污单位自筹 生态环境行政主管部门监控设备的建设安装、运行维护经费由生态环境行政主管部门编报预算申请。 /p p   第六条 污染源自动监测设备的生产者和销售者,应当保证其生产和销售的污染源自动监测设备符合国家规定的标准。 /p p   第七条 任何单位和个人都负有保护自动监控系统的义务,并有权对闲置、拆除、破坏自动监测设备以及擅自改动自动监测设备参数和数据等不正常使用自动监控系统的行为进行举报。 /p p    strong 第二章 自动监测设备的安装 /strong /p p   第八条 列入《北京市大气污染物排放自动监控计划》和《北京市应当安装水污染物排放自动监测设备的重点排污单位名录》的排污单位,应当按照国家和本市的相关标准、规范和文件的要求,安装、配备污染物排放自动监测设备,并与生态环境行政主管部门的监控设备联网。 /p p   第九条 排污单位应当在下列排放口安装自动监测设备: /p p   (一)按照已发布的相关行业排污许可证申请与核发技术规范、自行监测技术指南和相关排放标准等文件要求筛选出的主要废气有组织排放口 /p p   (二)按照已发布的相关行业排污许可证申请与核发技术规范、自行监测技术指南和相关污染物排放标准等文件要求筛选出的废水排放口 /p p   (三)已核发排污许可的单位,排污许可证中载明的应实施自动监测的排放口 /p p   (四)排污单位通过相关行业排污许可证申请与核发技术规范、自行监测技术指南和相关排放标准等文件筛选后,仍难以确定纳入的排放口范围的,可以在专家论证基础上,通过“一厂一策”方式,制定排放口自动监测技术方案。技术方案应满足相关法律法规和标准的要求,具备合理性和可行性。被监测排放口的污染物年排放量,应不低于该项污染物全部有组织年排放量的65%。 /p p   第十条 安装、配备污染物自动监测设备的监控项目应当符合下列规定: /p p   (一)锅炉废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等),其中使用天然气的可以暂不监测二氧化硫和颗粒物 /p p   (二)固定式燃气轮机的废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等),其中使用天然气的可以暂不监测二氧化硫和颗粒物 /p p   (三)固定式内燃机机组的废气排放口,监测项目至少包含氮氧化物、一氧化碳以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等) /p p   (四)垃圾焚烧炉和危险废物焚烧设施的废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物、一氧化碳、氯化氢以及相关工艺参数(包括烟气温度、压力、流速或流量、湿度、含氧量和炉膛内温度等) /p p   (五)冶金、建材行业及其他工业炉窑等的废气排放口,监测项目至少包含二氧化硫、氮氧化物、颗粒物以及相关烟气参数(包括温度、压力、流速或流量、湿度、含氧量等),其中使用天然气的可以暂不监测二氧化硫和颗粒物 /p p   (六)产生挥发性有机物的生产设施,其废气排放口监测项目至少包含非甲烷总烃和相关废气参数(包括温度、压力、流速或流量、湿度等)。排放标准中规定需要按含氧量折算污染物排放浓度的,还应监测含氧量 /p p   (七)小时处理能力大于8万立方米(含8万立方米)的废气污染物治理设施,还应在废气进入治理设施前,对相应监测项目进行监测。同时,安装污染源排放过程(工况)监控系统,监控生产、排放及治理设施的关键参数。监控项目至少包含表征生产负荷的参数、污染物处理用原料输送泵电流、污染物处理用原料供应量、脱硫岛pH值、除尘器运行信号等 /p p   (八)集中污水处理设施的废水排放口,监测项目至少包含化学需氧量、氨氮、pH值和流量。纳入国家或者本市规定的氮、磷重点排放行业的排污单位还应当监测总氮和(或)总磷两项污染物 /p p   (九)设计日处理能力大于1万吨(含1万吨)的集中污水处理设施,还应监测进水的化学需氧量、氨氮、pH值和流量。同时,安装污染源排放过程(工况)监控系统,监控相关生产、排放及治理设施的关键参数。监控项目至少包含鼓风机电流、鼓风量、曝气设备运行状况、曝气池溶解氧浓度、污泥浓度和剩余污泥流量等 /p p   (十)排污许可证或者其他法律、法规和标准规定的情形。 /p p   第十一条 污染源自动监测设备的安装应当满足下列要求: /p p   (一)自动监测设备应当选用符合国家有关环境监测和计量规定的设备 /p p   (二)自动监测设备的安装和调试应当符合污染源自动监测设备现场端建设技术规范等标准和要求 /p p   (三)自动监测数据的采集和传输应当符合有关污染源自动监控(监测)系统数据传输标准 /p p   (四)排污单位应在完成自动监测设备安装和调试工作后10个工作日内申请与生态环境行政主管部门联网,并如实提供单位名称、地址、排污口名称、监测和监控项目、排放标准等信息 /p p   (五)排污单位应在自动监测设备满足技术规范要求的验收条件并与生态环境行政主管部门联网后3个月内,按照建设项目竣工环境保护验收管理相关法律法规的规定,组织完成验收工作,验收合格后5个工作日内向所在区生态环境行政主管部门登记备案。验收具体项目和要求,按照自动监测相关技术规范执行 /p p   (六)其他相关技术规范、标准的要求。 /p p   第十二条 排污单位更换自动监测设备,或者出现采样位置变更、设备核心部件更换等重大变化的,应当重新进行验收,并报所在区生态环境行政主管部门登记备案。 /p p    strong 第三章 自动监测设备的运行管理 /strong /p p   第十三条 排污单位对自动监测设备的运行和维护,应当遵守以下规定: /p p   (一)自动监测设备的操作人员应当按照国家相关规定,经培训考核合格、持证上岗 /p p   (二)自动监测设备应当按照有关标准、规范与生态环境行政主管部门监控设备联网,及时准确地传输监控信息和数据 /p p   (三)自动监测设备的操作和运营维护应当符合有关标准和技术规范,符合仪器设备厂商提供的运维手册或者使用说明书 /p p   (四)自动监测设备应当按照有关标准、规范定期校准,定期开展手工比对校验 设备所需的试剂、标准物质和质控样,应注明制备单位、制备人员、制备日期、物质浓度和有效期限等重要信息 /p p   (五)自动监测设备应每半年至少开展一次比对监测,比对监测结果应符合相关技术规范要求。若采取委托监测的形式,应委托具备检验检测机构资质认定证书的环境监测机构开展 /p p   (六)自动监测设备因故障不能正常监测、采集、传输数据的,应当于发生故障后12小时内向生态环境行政主管部门报告,并在5日内恢复正常运行。停运期间,排污单位应当采用手工监测的方式对污染物排放状况进行监测,并向生态环境行政主管部门报送手工监测数据,每天不少于4次,间隔不得超过6小时。排污单位自行开展手工监测的,其实验室建设运行应当符合国家和本市相关标准 若采取委托监测的形式,应当委托具备检验检测机构资质认定证书的环境监测机构开展 /p p   (七)自动监测设备需要进行更换的,应当至少提前5日向生态环境行政主管部门报告,设备更换时间不得超过5日,期间应当采用手工监测的方式对污染物排放状况进行监测,并向生态环境行政主管部门报送手工监测数据,每天不少于4次,间隔不得超过6小时。排污单位自行开展手工监测的,其实验室建设运行应当符合国家和本市相关标准 若采取委托监测的形式,应当委托具备检验检测机构资质认定证书的环境监测机构开展。确因特殊原因无法在5日内完成设备更换的,最长不超过30日 /p p   (八)排污单位任意连续90日内自动监测数据有效传输率应当达到90%以上 /p p   (九)排污单位应建立污染源自动监测设备运行、维护、管理制度和记录台账 自动监测历史数据应保存5年以上、污染源排放过程(工况)监测历史数据应保存1年以上 /p p   (十)其他标准、技术规范等规定的要求。 /p p    strong 第四章 自动监测数据的使用 /strong /p p   第十四条 排污单位排放污染物过程中,自动监测设备正常运行情况下产生的自动监测数据,可以作为生态环境行政主管部门实施监督管理的依据。自动监测数据与其他有关证据共同构成证据链后,可以用于环境行政处罚。 /p p   第十五条 自动监测数据用于判定污染物排放浓度超标时,排污许可证、相关行业排污许可证申请与核发技术规范、国家及本市污染物排放标准明确规定使用小时均值、日均值(24小时均值)或者其他数据类型的,从其规定 没有明确规定的,水污染物排放浓度是否超标以日均值判定,大气污染物排放浓度是否超标以小时均值判定。排污单位或者其委托的自动监测运营单位,依据有关标准、规范对异常、缺失数据进行修约补遗的,人工修约补遗数据不作为判定超标或达标的依据。 /p p   第十六条 自动监测数据用于计算排放量时,人工修约补遗数据可作为计算污染物排放量的依据。 /p p   第十七条 同一时段的生态环境行政主管部门委托开展的现场监测数据与排污单位自动监测数据不一致,现场监测数据符合法定的监测标准和监测方法的,以现场监测数据作为优先证据使用,作为判断污染物排放是否达标、自动监测设备是否正常运行的依据。 /p p    strong 第五章 违法行为的认定 /strong /p p   第十八条 有下列行为之一的,视为未按照规定安装大气或水污染物排放自动监测设备: /p p   (一)排污单位未按照《北京市大气污染物排放自动监控计划》或《北京市应当安装水污染物排放自动监测设备的重点排污单位名录》以及相关技术标准和规范的要求,安装污染物排放自动监测设备并与生态环境行政主管部门联网的 /p p   (二)排污单位使用未通过验收的大气或水污染物排放自动监测设备的。 /p p   第十九条 有下列行为之一的,视为未保证大气或水污染物排放自动监测设备正常运行: /p p   (一)自动监测设备因故障不能正常监测、采集、传输数据时,未于12小时内向生态环境行政主管部门报告或者未在5日内恢复正常运行的 /p p   (二)传输的自动监测数据与现场监测数据不一致,数据偏差大于1%的 /p p   (三)生产工况、污染治理设施运行与自动监测数据相关性异常的 /p p   (四)违反技术规范要求对仪器、试剂进行变动操作的 /p p   (五)自动监测设备所需的试剂、标准物质和质控样,未注明制备单位、制备人员、制备日期、物质浓度和有效期限等重要信息 未按要求开展比对监测,或者使用的标准物质、质控样的实验结果不符合技术指标的 /p p   (六)任意连续90日内自动监测数据有效传输率低于90%的 /p p   (七)其他不正常运行自动监测设备的情况。 /p p   第二十条 排污单位自动监测历史数据保存低于5年或污染源排放过程(工况)监测历史数据保存低于1年的,视为未保存自动监测原始监测记录。 /p p   第二十一条 排放污染物超过国家或者地方规定的污染物排放标准,或者超过重点污染物排放总量控制指标的,可以依照《中华人民共和国水污染防治法》第八十三条第(二)项或者《中华人民共和国大气污染防治法》第九十九条第(二)项的规定处理。 /p p   第二十二条 不按照规定公开大气污染物自动监测数据的,可以依照《中华人民共和国大气污染防治法》第一百条第(四)项的规定处理。 /p p   第二十三条 排污单位通过自动监测数据弄虚作假,骗取环保电价、税收减免等各种优惠的,生态环境行政主管部门可以通报有关部门,取消相关优惠。 /p p   第二十四条 违反技术规范要求,对污染源自动监控系统功能进行删除、修改、增加、干扰,造成污染源自动监控系统不能正常运行,或者对污染源自动监控系统中存储、处理或者传输的数据和应用程序进行删除、修改、增加的操作,构成违反治安管理行为的,生态环境行政主管部门可以依据《中华人民共和国治安管理处罚法》第二十九条的规定移送公安部门处理 涉嫌构成犯罪的,移送司法机关依照《中华人民共和国刑法》第二百八十六条或第三百三十八条追究刑事责任。 /p p    strong 第六章 附则 /strong /p p   第二十五条 储油库、加油站、油烟产生单位等固定污染源大气污染物自动监测设备的安装、验收、运行维护等具体要求另行发布。 /p p   第二十六条 本办法由北京市生态环境局负责解释。 /p p   第二十七条 本办法自2019年1月1日起施行。原《北京市固定污染源自动监控管理办法》同时废止。 /p
  • 青岛众瑞-固定污染源超低排放解决方案
    政策背景为了控制燃煤火电污染,国内针对火电污染物的排放标准提出了更加严格的要求。2014年9月,国家发改委、环境保护部、国家能源局联合发布《煤电节能减排升级与改造行动计划(2014-2020年)》,提出到2020年,东部地区现役的机组通过改造基本达到燃气轮机组排放限值的要求,烟尘、SO2、NOx排放浓度分别不高于10mg/m3、35mg/m3、50mg/m3,完成超低排放改造。与此同时,多个省份陆续发布了燃煤电厂大气污染物地方标准,无一例外的将“超低排放”写入了排放限值。据统计,目前公布大气污染地方标准的省份有5个,分别是河南、河北、上海、山东、浙江。这些地方标准除了规定烟尘、SO2、NOx排放浓度外,也将汞及其化合物的排放限值 30μg/m3写入到了标准中。监测难点解决方案烟尘采样→采样头组装《固定污染源废气低浓度颗粒物测定重量法》征求意见稿中要求颗粒物采样前后对一体化采样头整体称量,采样头组装要求整体密封效果良好。众瑞ZR-L03型自动滤膜压紧器,操作简便,装配过程一键完成。烟尘采样装置ZR-3260D型低浓度自动烟尘烟气综合测试仪配备高负载、低噪声大流量抽气泵,可有效克服颗粒物滤膜法采样相对于滤筒采样存在阻力大的问题,配合ZR-D09ET型高湿低浓度烟尘采样管(钛合金材质),可实现超低浓度颗粒物的采样功能。烟气分析ZR-3211型便携式紫外烟气综合分析仪,采用紫外光谱差分吸收技术(DOAS)测量固定污染源排放中的SO2、NO、NO2等气体浓度,测量精度高,不受烟气中水蒸气影响,特别适合高湿低硫工况,配合ZR-D05BT型烟气预处理器使用,可实现超低工况烟气的采样和分析功能。烟气汞采样部分省份将汞及其化合物的排放限值也写入到了地方标准中,众瑞研发生产的ZR-3700A型烟气汞综合采样器和ZR-3701型烟气总汞采样器,配合相应的采样管可实现分价态汞、气态总汞及颗粒态汞的监测。颗粒态汞和气态汞:ZR-3701烟气总汞采样系统从烟气中等速取样,取样管线的温度维持在120℃以上,以防止烟气中的汞(尤其是气态二价汞)在取样管线上凝结。烟气样品依次经过采样管、过滤器和冰浴吸收瓶箱(三个氯化钾吸收瓶、一个双氧水/硝酸吸收瓶、三个高锰酸钾/硫酸吸收瓶)。烟气样品中的颗粒态汞被过滤器(玻璃纤维滤筒)捕集,气态二价汞被前三个吸收瓶捕集,气态零价汞被后四个吸收瓶捕集。颗粒物上的汞在热解或消解之后采用冷原子吸收分光光度法进行测定,吸收液中的汞被还原后使用冷原子吸收分光光度法进行测定。气态汞:ZR-3700A烟气汞综合采样器兼配湿法HJ543-2009和干法EPA 30B两种采样要求1. 废气中的汞被酸性高锰酸钾溶液吸收并氧化形成汞离子,汞离子被氯化亚锡还原为原子态汞,用载气将汞蒸气从溶液中吹出带入测汞仪,用冷原子吸收分光光度法测定。2. 通过ZR-3700A烟气汞综合采样器,从固定污染源以低流量、恒速抽取定量体积废气,使废气中气态汞有效富集在吸附管中经过碘或其它卤素及其化合物处理的活性炭材料上。采用直接热裂解原子吸收法或者其它分析方法测定吸附管中二段分隔活性炭材料中汞的含量和采样体积,计算出气态汞浓度。质控方案ZR-5410A便携式气体、粉尘、烟尘采样仪综合校准装置,内置罗茨流量计,流量直读,一套设备即可满足对空气采样器、颗粒物采样器、烟尘测试仪的流量、压力标定。
  • 生态环境新标准!事关固定污染源废气测定!
    近日,生态环境部发布2021年第80号公告,推出两项生态环境标准,并准予发布。其中《固定污染源废气 气态污染物(SO2、NO、NO2、CO、CO2)的测定 便携式傅立叶变换红外光谱法》(HJ1240-2021)将于2022年6月1日起实施。谱育科技研制的EXPEC 1680便携式傅立叶红外分析仪参与了上海市环境监测中心组织的标准方法验证工作。EXPEC 1680便携式傅立叶红外分析仪+产品介绍EXPEC 1680是基于不同气体在红外光谱范围内不同特征吸收的特性,采用傅立叶红外分光原理和多元分辨校正方法,实现气体的定性、定量测量。仪器可用于燃煤/燃气电厂、垃圾焚烧厂以及钢铁厂等固定污染源烟气监测,也可用于环境空气中无机气体、部分有机气体的现场快速应急监测。高性能具有仪器便携性的同时,拥有高分辨率,波长范围宽的特点,其结构紧凑、可靠,适用于现场监测。高可靠性充分考虑实际使用工况,拥有更宽的温度、湿度的适用范围,保证户外现场的正常使用。高集成度仪器内置采样系统,实现自动温控,实现远程控制、连锁保护。自带北斗+GPS双定位系统,自动记录数据采集点信息,可溯源。高交互性仪器拥有8.4寸可视化触摸系统,仪器状态一目了然。内部集成了WIFI模块,极大地增强了仪器的通讯功能,实现了较远距离的通讯能力。全程伴热系统样品从采样系统至仪器内部气体室,全程均匀保温,温度可测、可控。防止冷凝水的产生,避免了气体成分在监测过程中的损失。多组分分析快速扫描得到全谱吸收光谱,可同时获取无机气体,有机气体的吸收峰,进行定性定量。EXPEC 1630在线式傅立叶红外分析仪+产品介绍EXPEC 1630是傅立叶红外分析仪的在线型仪器,采用高温伴热工作模式和长光程耐腐蚀气体池,用于超低排放、温室气体监测、危废/垃圾焚烧等固定污染源废气排放CEMS系统。具有数据高保真、设备低维护的特点。应用场景(1)危废/垃圾焚烧烟气排放监测,可测HCl、HF等多个因子;(2)污染源温室气体(CO2、CH4、N
  • 英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选
    在当今这个快速发展的时代,环境保护已经成为全球共同关注的焦点。而环保监测,作为确保环境质量的重要手段,其意义愈发凸显。在众多环境污染物中,氯化氢(HCl)因其强烈的腐蚀性和对生态环境可能造成的严重损害,成为环保监测中不可忽视的对象。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。例如,氯化氢进入大气后,会形成酸雨,对植被和建筑物造成损害;进入水体后,会改变水体的酸碱度,影响水生生物的生存;进入土壤后,会破坏土壤结构,影响农作物的生长。评估环境质量:通过对环境中氯化氢浓度的监测和测试,可以直观地了解环境质量状况,为环保决策提供科学依据。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选预警和防控:当氯化氢浓度超过一定阈值时,环保监测系统可以发出预警,提醒相关部门及时采取措施进行防控,防止环境污染事件的发生。指导治理:通过对氯化氢来源的追踪和分析,可以指导相关部门采取针对性的治理措施,减少氯化氢的排放,改善环境质量。英国Alphasense HCL-D4传感器:环保监测中氯化氢检测之良选评估治理效果:在采取治理措施后,通过再次对环境中氯化氢浓度的监测和测试,可以评估治理效果,为后续的环保工作提供参考。随着全球环境问题的日益严重,环保监测的重要性愈发凸显。在众多环境污染物中,氯化氢(HCl)因其对生态环境可能造成的严重损害而备受关注。因此,对氯化氢进行准确、高效的监测成为环保工作中不可或缺的一环。英国Alphasense公司推出的氯化氢传感器HCL-A1(或类似型号HCL-D4),为环保监测提供了强有力的技术支持。氯化氢是一种无色、有刺激性气味的气体,具有强腐蚀性。它广泛存在于工业废气、废水和垃圾焚烧等过程中,若未经妥善处理排放到环境中,将对大气、水体和土壤造成不同程度的污染。通过对氯化氢的监测和测试,可以评估环境质量、预警和防控环境污染、指导治理以及评估治理效果。这对于保护我们共同的家园——地球具有重要意义。英国Alphasense作为气体传感器领域的佼佼者,其推出的氯化氢传感器HCL-A1(或类似型号HCL-D4)具有以下特点:高灵敏度:该传感器具有较高的灵敏度,能够快速响应环境中的氯化氢浓度变化。快速响应:响应时间短,能够迅速捕捉到氯化氢的排放情况,为预警和防控提供及时信息。高分辨率:传感器具有较高的分辨率,能够精确测量出环境中氯化氢的浓度,为评估环境质量提供准确数据。稳定性好:传感器采用先进的技术和材料,具有良好的稳定性和可靠性,能够在恶劣环境下长时间稳定运行。电化学盐酸气体传感器氯化氢气体传感器HCL-D4的主要参数如下:灵敏度:100~200nA/ppm,这意味着传感器对氯化氢浓度变化具有高度的敏感性。响应时间:≤250s,传感器能够迅速响应并捕捉到氯化氢的排放情况。分辨率:PID传感器、VOC传感器请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ 获取进口传感器详细资料。
  • 2项固定污染源废气原子吸收检测标准征求意见
    关于征求《固定污染源废气 铅的测定 火焰原子吸收分光光度法》等2项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定《固定污染源废气 铅的测定 火焰原子吸收分光光度法》等2项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2011年4月15日前反馈我部。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   联系人:环境保护部环境标准研究所 武婷 王宗爽   联系电话:(010)84924935   附件:1.征求意见单位名单      2.《固定污染源废气 铅的测定 火焰原子吸收分光光度法》(征求意见稿)      3.《固定污染源废气 铅的测定 火焰原子吸收分光光度法》(征求意见稿)编制说明      4.《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》(征求意见稿)      5.《固定污染源废气 铍的测定 石墨炉原子吸收分光光度法》(征求意见稿)编制说明   二○一一年三月二十四日
  • 生态环境部公开征求《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》等5项国家生态环境标准意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法》等5项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2024年1月20日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)  3.《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》编制说明  4.固定污染源废气 氯甲基甲醚和二氯甲基醚的测定 气相色谱法(征求意见稿)  5.《固定污染源废气 氯代甲基醚和二氯甲基醚的测定 气相色谱法(征求意见稿)》编制说明  6.固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)  7.《固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)》编制说明  8.环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)  9.《环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)》编制说明  10.环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)  11.《环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)》编制说明  生态环境部办公厅  2023年12月15日  (此件社会公开)
  • 天津市就《生活垃圾焚烧大气污染物排放标准》征求意见 为首次发布
    日前,天津市发布了《生活垃圾焚烧大气污染物排放标准》(征求意见稿),该标准为天津市强制地标,主要由天津市生态环境监测中心起草。  标准中规定了颗粒物,二氧化硫,氮氧化物,一氧化碳,氯化氢,氨,汞及其化合物,镉、铊及其化合物,锑、砷、铅、铬、钴、铜、锰、镍及其化合物以及二噁英类的排放限值。  按照相关要求,本标准未做规定的,执行GB18485中有关规定。未列出的污染控制项目执行国家及天津市相关标准。国家及天津市相关标准严于本标准时,执行国家及天津市相关标准。环境影响评价文件要求严于本标准时,按照批复的环境影响评价文件执行。涉及的检测方法如下表所示:序号污染物项目方法标准名称标准编号1颗粒物固定污染源排气中颗粒物测定与气态污染物采样方法GB/T 16157固定污染源废气 低浓度颗粒物的测定 重量法HJ 8362二氧化硫固定污染源废气 二氧化硫的测定 定电位电解法HJ 57固定污染源废气 二氧化硫的测定 非分散红外吸收法HJ 629固定污染源排气中二氧化硫的测定 碘量法HJ/T563氮氧化物固定污染源废气 氮氧化物的测定 非分散红外吸收法HJ 692固定污染源废气 氮氧化物的测定 定电位电解法HJ 693固定污染源排气中氮氧化物的测定 紫外分光光度法HJ/T 42固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光 度法HJ/T 434一氧化碳固定污染源废气 一氧化碳的测定 定电位电解法HJ 973固定污染源排气中氧化碳的测定 非色散红外吸收法HJ/T445氯化氢固定污染源废气 氯化氢的测定 硝酸银容量法HJ 548环境空气和废气 氯化氢的测定 离子色谱法HJ 549固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法HJ/T276氨环境空气和废气 氨的测定 纳氏试剂分光光度法HJ 5337汞固定污染源废气 汞的测定 冷原子吸收分光光度法(暂行)HJ 543固定污染源废气 气态汞的测定 活性炭吸附/热裂解原子吸收分光光度法HJ 9178 镉、锑、砷、铅、铬、钴、铜、锰、镍空气和废气 颗粒物中铅等金属元素的测定 电感耦合等 离子体质谱法HJ 657空气和废气 颗粒物中金属元素的测定 电感耦合等离子 体发射光谱法HJ 7779镉大气固定污染源 镉的测定 火焰原子吸收分光光度法HJ/T 64.1大气固定污染源 镉的测定 石墨炉原子吸收分光光度法HJ/T 64.210砷环境空气和废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法(暂行)HJ 54011铅固定污染源废气 铅的测定 火焰原子吸收分光光度法(暂行)HJ 538固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 68512镍大气固定污染源 镍的测定 火焰原子吸收分光光度法HJ/T 63.1大气固定污染源 镍的测定 石墨炉原子吸收分光光度法HJ/T 63.213铊空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法HJ 65714二噁英类环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法HJ 77.2附:生活垃圾焚烧大气污染物排放标准(征求意见稿).pdf
  • 关于固定污染源低浓度颗粒物测定方法标准,你应该知道的几件事
    p    span style=" color: rgb(0, 112, 192) " 为什么要针对低浓度颗粒物测定制定一个新标准? /span /p p   目前,许多地方已根据政府工作报告中提出的“推进燃煤电厂低浓度排放改造”要求,确定了相关规定,明确颗粒物排放不得高于 10 mg/m3,某些省份规定不得高于 5 mg/m3。 /p p   我国现阶段颗粒物监测方法采用GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》,在颗粒物浓度较低、烟气湿度较大的情况下,此方法易造成监测结果不准确,主要原因是:(1)沉积在采样嘴及采样管前段的颗粒物无法回收,导致结果偏低 (2)在湿烟气情况下长时间采样容易造成滤筒纤维损失或破损,产生的误差降低颗粒物采样准确度。 /p p   为解决这些问题,满足现行污染源排放的监测需求,总站制定了《固定污染源废气 低浓度颗粒物测定 重量法》标准。 /p p    span style=" color: rgb(0, 112, 192) " 低浓度颗粒物方法标准的技术路线是什么? /span /p p   标准的技术路线为“烟道内过滤-恒温恒湿平衡-整体称重”。 /p p   烟道内过滤,就是在烟道或烟囱内对颗粒物进行等速采样,并将颗粒物截留在位于烟道或烟囱内的过滤介质上的方法。目前国际上主要有烟道内过滤和烟道外过滤两种方式,和烟道内过滤比,烟道外过滤存在仪器结构复杂,方法检出限高,现场工作量较大的缺点。 /p p   恒温恒湿平衡,就是样品在采样前后要在温度20± 1℃、湿度50± 5% RH的状况下稳定后称量,和以往的冷却干燥称量方式相比,恒温恒湿平衡可以有效减少称量波动,提高称量的稳定性。 /p p   整体称重,就是将滤膜封装在金属采样头内采样,并将采样头整体在采样前后进行称量的方式。这种方式能有效避免滤膜破损,并保证沉积在采样嘴及采样管前段的样品得到回收。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/c5fe7ff7-4aee-43fc-9f79-1fb023f4b0ec.jpg" title=" 微信图片_20170706105924.png" / /p p style=" text-align: center " 整体式采样头结构图 /p p    span style=" color: rgb(0, 112, 192) " 这个标准的方法检出限是多少? /span /p p   当采样体积为 1 m3(标准状态下的干废气)时,本标准方法检出限为 1.0 mg/m3。 /p p    span style=" color: rgb(0, 112, 192) " 什么是测量系列? /span /p p   本标准提出了测量系列的概念,测量系列指在工况基本相同、污染处理设施保持稳定运行的条件下,在同一采样平面内进行的一系列测量。也即是说,测量系列内的样品,采集时的锅炉和污染处理设施运行是基本相同的。 /p p    span style=" color: rgb(0, 112, 192) " 什么是全程序空白?它有什么意义? /span /p p   本标准提出了全程序空白的概念,全程序空白指除采样过程中采样嘴背对气流不采集废气外,其它操作与实际样品操作完全相同获得的样品。 /p p   采样全程序空白时,采样嘴应背对废气气流方向,采样管在烟道中放置时间和移动方式与实际采样相同。全程序空白应在每次测量系列过程中进行一次,并保证至少一天一次。为防止在采集全程序空白过程中空气或废气进入采样系统,必须断开采样管与采样器主机的连接,密封采样管末端接口。 /p p   全程序空白是一种质控措施,是衡量样品在测定过程中是否受到污染的一种手段。任何低于全程序空白增重的样品均无效。全程序空白增重除以对应测量系列的平均体积不应超过排放限值的10%。另外,颗粒物浓度低于方法检出限时,对应的全程序空白增重应不高于 0.5 mg,失重应不多于 0.5 mg。 /p p    span style=" color: rgb(0, 112, 192) " 什么是同步双样?同步双样的意义是什么? /span /p p   本标准提出了同步双样的概念,可作为衡量测定是否准确的一种质控措施。同步双样是指固定污染源颗粒物测量过程中,使用同一测量系列(使用同一采样孔采样时)或在同一时间使用两个对称的测量系列(使用不同的采样孔时)得到的两个样品。 /p p   也就是说,同步双样的两个样品在采集过程中的任何时刻均处于大致相同的位置(同一采样孔)或烟气状态基本相同、对于烟道采样平面基本对称的位置(不同采样孔)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/632eeb9a-5c45-4487-9709-3c4efa06f35d.jpg" title=" 微信图片_20170706105930.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201707/insimg/3746759c-aebf-4554-acf4-fc2c9109524d.jpg" title=" 微信图片_20170706105934.jpg" / /p p style=" text-align: center " strong 采样头现场安装 /strong /p
  • 《固定污染源挥发性有机物综合排放标准》强制性地方标准9月1日实施
    广东省市场监督管理局、广东省生态环境厅联合发布省级地方标准《固定污染源挥发性有机物综合排放标准》(DB44/ 2367-2022)(以下简称《标准》)(点击下载原文),《标准》规定了固定污染源挥发性有机物有组织排放、无组织排放、企业厂区内及边界污染的控制要求、监测和实施与监督要求。适用于现有工业固定污染源挥发性有机物排放管理,以及新建、改建、扩建项目的环境影响评价、环境保护设施设计、竣工环境保护验收、排污许可证核发及其投产后的挥发性有机物排放管理。在国家和我省现有的大气污染物排放标准体系中,凡是无行业性大气污染物排放标准或者挥发性有机物排放标 准控制的污染源,应当执行本《标准》。国家或我省发布的行业污染物排放标准中对VOCs无组织排放控制未做规定的,应执行本《标准》中无组织排放控制要求。《标准》重点内容如下:
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法——HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 碳中和目标下,盘点近年来实施的大气污染物排放标准及相应检测仪器
    “加强生态文明建设,确保实现2030年前二氧化碳排放达到峰值、2060年前实现碳中和的目标。”为了实现蓝天愿景,兑现对全世界的减排承诺,自2021年起,一系列规划和阶段性目标都会陆续落地,围绕“碳中和”这个核心风向标,更大力度推动节能减排,应对气候变化带来的挑战。我国碳达峰、碳中和愿景与美丽中国建设目标高度协同,应尽快构建新一代大气污染防治科学体系。政策把“治标和治本很好地结合起来”,并特别指出“大气污染物与温室气体要协同减排”。专家们认为加快能源转型变革对深度融合大气污染防治和气候变化应对至关重要,“十四五”期间,大气环境治理更不能放松,特别是在碳中和目标下。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治环境污染,改善环境质量,生态环境部对之前相关标准进行了修订,将加油站在卸油、储存、加油过程,油品运输过程以及储油库储存、收发油品过程中油气排放控制要求、监测和监督管理要求进行了单独的规定,相应大气污染物排放标准已于2021年4月1日正式实施。为促进农药制造工业、铸造工业以及陆上石油天然气开采工业的技术进步和可持续发展,出台了相应工业大气污染物排放控制要求、监测和监督管理要求,同时对温室气体甲烷的排放提出了协同控制要求。相应大气污染物排放标准已于2021年1月1日正式实施。涂料、油墨及胶黏剂工业、制药工业以及VOCs无组织排放的相应大气污染物排放标准是在2019年发布并实施。无机化学工业污染物排放标准、合成树脂工业污染物排放标准、石油化学工业污染物排放标准和石油炼制工业污染物排放标准,这四项标准是在2015年发布并实施,目前仍未分离出单独的大气污染物排放标准,但其中涵盖了相应工业大气污染物排放控制要求。近年来实施的大气污染物排放标准(发布稿)标准号标准名称发布日期实施日期GB 20952-2020加油站大气污染物排放标准2020-12-312021-04-01GB 20951-2020油品运输大气污染物排放标准2020-12-312021-04-01GB 20950-2020储油库大气污染物排放标准2020-12-312021-04-01GB 39728-2020陆上石油天然气开采工业大气污染物排放标准2020-12-242021-01-01GB 39727-2020农药制造工业大气污染物排放标准2020-12-242021-01-01GB 39726-2020铸造工业大气污染物排放标准2020-12-242021-01-01GB 37824-2019涂料、油墨及胶粘剂工业大气污染物排放标准2019-05-252019-07-01GB 37823-2019制药工业大气污染物排放标准2019-07-292019-07-01GB 37822-2019挥发性有机物无组织排放控制标准2019-05-252019-07-01GB 31573-2015无机化学工业污染物排放标准2015-05-152015-07-01GB 31572-2015合成树脂工业污染物排放标准2015-05-152015-07-01GB 31571-2015石油化学工业污染物排放标准2015-05-152015-07-01GB 31570-2015石油炼制工业污染物排放标准2015-05-152015-07-01标准引用了下列文件或其中的条款涉及到了分析仪器,未来这些仪器将是重中之重。GB/T 14669 空气质量 氨的测定 离子选择电极法GB/T 14678 空气质量 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法GB/T 15264 环境空气 铅的测定 火焰原子吸收分光光度法GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法HJ/T 27 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法HJ/T 30 固定污染源排气中氯气的测定 甲基橙分光光度法HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法HJ/T 38 固定污染源排气中非甲烷总烃的测定 气相色谱法HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法HJ/T 42 固定污染源排气中氮氧化物的测定 紫外分光光度法HJ/T 43 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法HJ/T 56 固定污染源排气中二氧化硫的测定 碘量法HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法HJ/T 67 大气固定污染源 氟化物的测定 离子选择电极法HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法HJ 57 固定污染源废气 二氧化硫的测定 定电位电解法HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法HJ 533 环境空气和废气 氨的测定 纳氏试剂分光光度法HJ 539 环境空气 铅的测定 石墨炉原子吸收分光光度法HJ 549 环境空气和废气 氯化氢的测定 离子色谱法HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法HJ 584 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸-气相色谱法HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法HJ 629 固定污染源 废气二氧化硫的测定 非分散红外吸收法HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法HJ 657 空气和废气 颗粒物中铅等金属元素的测定 电感耦合等离子体质谱法HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法HJ 685 固定污染源废气 铅的测定 火焰原子吸收分光光度法HJ 688 固定污染源废气 氟化氢的测定 离子色谱法HJ 692 固定污染源废气 氮氧化物的测定 非分散红外吸收法HJ 693 固定污染源废气 氮氧化物的测定 定电位电解法HJ 732 固定污染源废气 挥发性有机物的采样 气袋法HJ 734 固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法HJ 777 空气和废气 颗粒物中金属元素的测定 电感耦合等离子体发射光谱法HJ 1006 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法HJ 1131 固定污染源废气 二氧化硫的测定 便携式紫外吸收法HJ 1132 固定污染源废气 氮氧化物的测定 便携式紫外吸收法
  • 浙江省市场监管局发布省地方标准《固定污染源废气 氯气的测定 离子色谱法》
    浙江省市场监督管理局拟批准发布《固定污染源废气 氯气的测定 离子色谱法》长江三角洲区域地方标准,根据《浙江省标准化条例》的规定,现将拟批准发布的报批文本予以公示,公示期2023年5月9日至2023年5月16日。有关单位和个人如有意见建议,可通过来信、来电、来访等形式,向浙江省市场监管局标准化处反映。单位反映的意见建议请加盖单位公章,个人反映的请署真实姓名。逾期不再接受意见建议。联系地址:浙江省杭州市莫干山路77号(省市场监管局标准化处),联系电话:0571-89761453,传真:0571-89761453,电子邮件:zjbz2012@126.com。附件: 《固定污染源废气 氯气的测定 离子色谱法》(公示稿).pdf2023年5月9日
  • 环保部征求固定污染源废气、水质相关国标意见
    关于征求《固定污染源废气 二氧化硫的测定 非分散红外吸收法》等三项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《固定污染源废气 二氧化硫的测定 非分散红外吸收法》等3项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究提出书面意见,并于2010年7月30日前反馈我部。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1.征求意见单位名单   2.《固定污染源废气 二氧化硫的测定 非分散红外吸收法》(征求意见稿)   3.《固定污染源废气 二氧化硫的测定 非分散红外法》(征求意见稿)编制说明   4.《固定污染源废气 挥发性有机物的测定 气相色谱—质谱法》(征求意见稿)   5.《固定污染源废气 挥发性有机物的测定 气相色谱—质谱法》(征求意见稿)编制说明   6.《水质 苯胺类化合物的测定 气相色谱—质谱法》(征求意见稿)   7.《水质 苯胺类化合物的测定 气相色谱—质谱法》(征求意见稿)编制说明   二○一○年六月二十一日
  • 8项国家生态环境标准正式发布,完善相关污染物排放监测工作
    为支撑相关污染物排放标准实施与新污染物治理等工作,近期,生态环境部发布了《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)等8项国家生态环境标准,所有标准均2024年7月1日起实施。一、环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范 (HJ 1327—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准主要起草单位:中国环境监测总站、上海市环境监测中心、江苏省南京环境监测中心和河南省生态环境监测和安全中心。本标准规定了环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于采用热学-光学校正法或热学-光学衰减法的环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测系统。二、环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(HJ 1328—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准主要起草单位:中国环境监测总站、河南省生态环境监测和安全中心、河北省石家庄生态环境监测中心、上海市环境监测中心和江苏省南京环境监测中心。本标准规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。本标准适用于采用离子色谱法的环境空气颗粒物(PM2.5)中水溶性离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg+、Ca2+)连续自动监测系统。三、 环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(HJ 1329—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准主要起草单位:中国环境监测总站、江苏省南京环境监测中心、河南省生态环境监测和安全中心和上海市环境监测中心。本标准规定了环境空气颗粒物(PM2.5)中无机元素连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断等技术要求。本标准适用于采用能量色散 X 射线荧光光谱法的环境空气颗粒物(PM2.5)中无机元素连续自动监测系统,适用目标元素参见附录 A。四、 固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法(HJ 1330—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源废气中 NH3和 HCl 的便携式傅立叶变换红外光谱法。本标准主要起草单位:中国环境监测总站、重庆市生态环境监测中心、浙江省生态环境监测中心。本标准验证单位:上海市环境监测中心、山东省生态环境监测中心、福建省环境监测中心站、浙江省绍兴生态环境监测中心、浙江省台州生态环境监测中心、杭州谱育检测有限公司。本标准规定了测定固定污染源废气中 NH3和 HCl 的便携式傅立叶变换红外光谱法。本标准适用于固定污染源有组织排放废气中 NH3和 HCl 的测定。NH3、HCl 的方法检出限均为1mg/m3,测定下限均为4mg/m3。五、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准主要起草单位:中国环境监测总站、山东省生态环境监测中心、江苏省南京环境监测中心、山东建筑大学。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心、山东微谱检测技术有限公司。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式催化氧化-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气总烃(以甲烷计)、甲烷的检出限为均为0.4mg/m3,测定下限均为1.6mg/m3。六、 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准主要起草单位:中国环境监测总站、江苏省南京环境监测中心、山东省生态环境监测中心、新疆维吾尔自治区昌吉生态环境监测站。本标准验证单位:上海市环境监测中心、福建省厦门环境监测中心站、西安市环境监测站、内蒙古自治区环境监测总站、广西壮族自治区生态环境监测中心、辽宁省沈阳生态环境监测中心。本标准规定了测定固定污染源废气中总烃、甲烷和非甲烷总烃的便携式气相色谱-氢火焰离子化检测器法。本标准适用于固定污染源有组织排放废气中总烃、甲烷和非甲烷总烃的测定。本方法测定固定污染源有组织排放废气中总烃(以甲烷计)、甲烷的检出限均为0.2mg/m3,测定下限均为0.8mg/m3。七、水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1333—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准主要起草单位:国家环境分析测试中心、生态环境部对外合作与交流中心和中国环境科学研究院。本标准验证单位:浙江省生态环境监测中心、广东省生态环境监测中心、湖北省生态环境监测中心站、江苏省泰州环境监测中心、山东省分析测试中心和中持依迪亚(北京)环境检测分析股份有限公司。本标准规定了测定水中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于地表水、地下水、生活污水、工业废水和海水中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acid and perfluorooctanesulfonate, PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate, PFOA)的测定。取样量为0.5L,定容体积为1.0ml,进样体积为5.0μl 时,PFOS(以对应酸的浓度计)的方法检出限为0.6ng/L,测定下限为2.4ng/L,PFOA(以对应酸的浓度计)的方法检出限为0.5ng/L,测定下限为2.0ng/L。八、土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法(HJ 1334—2023)本标准为首次发布。本标准自 2024 年 7 月 1 日起实施。本标准规定了测定土壤和沉积物中直链全氟辛基磺酸及其盐类、直链全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准主要起草单位:国家环境分析测试中心、生态环境部对外合作与交流中心和中国环境科学研究院。本标准验证单位:浙江省生态环境监测中心、广东省生态环境监测中心、湖北省生态环境监测中心站、江苏省泰州环境监测中心、山东省分析测试中心和中持依迪亚(北京)环境检测分析股份有限公司。本标准规定了测定土壤和沉积物中全氟辛基磺酸及其盐类、全氟辛酸及其盐类的同位素稀释/液相色谱-三重四极杆质谱法。本标准适用于土壤和沉积物中直链全氟辛基磺酸及其盐类(perfluorooctanesulfonic acidandperfluorooctanesulfonate,PFOS)、直链全氟辛酸及其盐类(perfluorooctanoic acid and perfluorooctanoate,PFOA)的测定。取样量为2g,试样定容体积为1.0ml,进样体积为5.0μl 时,PFOS(以对应酸的浓度计)的方法检出限为 0.4μg/kg,测定下限为1.6 μg/kg;PFOA(以对应酸的浓度计)的方法检出限为0.5μg/kg,测定下限为2.0μg/kg。附:1、环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范 (HJ 1327—2023).pdf2、环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(HJ 1328—2023).pdf3、环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(HJ 1329—2023).pdf4、固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法(HJ 1330—2023).pdf5、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法(HJ 1331—2023).pdf6、固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法(HJ 1332—2023).pdf7、水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释_液相色谱-三重四极杆质谱法(HJ 1333—2023).pdf8、土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释_液相色谱-三重四极杆质谱法(HJ 1334—2023).pdf《环境空气颗粒物(PM2.5)中有机碳和元素碳连续自动监测技术规范》(HJ 1327-2023)、《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》(HJ 1328-2023)、《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范》(HJ 1329-2023)等3项标准与采用实验室手工分析方法的现行标准相比,3项标准具有自动化程度高、干扰因素较少等优点,可用于指导我国颗粒物组分自动监测工作的开展,推动环境空气细颗粒物浓度持续下降。《固定污染源废气 氨和氯化氢的测定 便携式傅立叶变换红外光谱法》(HJ 1330-2023)与现行相关监测标准相比,具有灵敏度高、抗干扰能力强等优点,可用于现场快速监测,支撑《大气污染物综合排放标准》(GB 16297-1996)、《玻璃工业大气污染物排放标准》(GB 26453-2022)等标准实施及环境监管执法工作。《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》(HJ 1331-2023)、《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式气相色谱-氢火焰离子化检测器法》(HJ 1332-2023)等与现行相关监测标准相比,具有自动化程度高、抗干扰能力强等优点,可用于现场快速监测,支撑《石油炼制工业污染物排放标准》(GB 31570-2015)、《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824-2019)等标准实施及碳监测评估试点工作。《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1333-2023)、《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》(HJ 1334-2023)等填补了水、土壤和沉积物中相关分析方法标准空白。
  • 新增紫外法 固定污染源废气氮氧化物/二氧化硫的测定标准征求意见
    p   近日,生态环境部印发《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》和《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》两项国家环境保护标准。两项标准均为首次发布。 /p p   对于两项标准中提到的氮氧化物以及二氧化硫的危害,我们不得不知。 /p p   随着工业及交通运输等事业的迅速发展,特别是煤和石油的大量使用,将产生的大量有害物质如二氧化硫、氮氧化物、一氧化碳等排放到大气中,当其浓度超过环境所能允许的极限并持续一定时间后,就会改变大气特别是空气的正常组成,破坏自然的物理、化学和生态平衡体系,从而危害人们的生活、工作和健康。 /p p   在自然界中含硫物质及硫元素在燃烧过程中都能产生二氧化硫(SO sub 2 /sub )形成大气污染。但与自然源相比,造成大气污染的硫氧化物,主要来自有色金属冶炼(例如:铜、锌、铅的粗炼等)和硫酸制造以及化石燃料(煤、石油等)燃烧过程等人为排放。SO sub 2 /sub 对人及植物的危害很大:如SO sub 2 /sub 进入血液能破坏酶的活动,损害肝脏;当大气中SO sub 2 /sub 的浓度为400μmol/mol时会使人呼吸困难,机体免疫受到明显抑制等。其危害程度与SO sub 2 /sub 的浓度和暴露时间有关。 /p p   作为公认的三种主要的大气污染物(即烟尘、二氧化硫、氮氧化物)中的两种,氮氧化物以及二氧化硫受到人们的高度关注,其测定方法也尤为重要。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201909/attachment/362996a1-700a-4877-8dff-8e4d8c50ec04.pdf" target=" _self" title=" 2.pdf" textvalue=" 固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201909/attachment/b702ec86-7a68-4506-8bb7-e733479c70bd.pdf" target=" _self" title=" 3.pdf" textvalue=" 《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》编制说明.pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》编制说明.pdf /span /a /p p   本标准为首次发布。 /p p   本标准规定了测定固定污染源废气中氮氧化物的紫外吸收法。 /p p    strong img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / /strong a href=" https://img1.17img.cn/17img/files/201909/attachment/bfd6ebec-432b-4d6d-91ba-e76376bdbc12.pdf" target=" _self" title=" 4.pdf" textvalue=" 固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿).pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿).pdf /span /a /p p span style=" color: rgb(0, 112, 192) "    /span img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201909/attachment/f78ec9f0-393a-47f2-94f0-bc6067f9e48a.pdf" target=" _self" title=" 5.pdf" textvalue=" 《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》编制说明.pdf" style=" text-decoration: underline color: rgb(0, 112, 192) " span style=" color: rgb(0, 112, 192) " 《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》编制说明.pdf /span /a /p p   本标准为首次发布。 /p p   本标准规定了测定固定污染源废气中二氧化硫的紫外吸收法。 /p p   与现行有效的定电位电解和非分散红外吸收方法相比,紫外吸收法具有预热时间快、分析精度高、抗干扰能力强等优势,对我国固定污染源中二氧化硫测定的技术体系是一个良好的补充。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201909/uepic/aa06461c-44b7-4514-958f-41f82d8f7d68.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更过环境监测精彩资讯! /span br/ /p
  • 保障装置安全,提高生产效益——中盐安徽红四方电化车间“氯化氢中游离氯”分析项目
    项目背景  中盐安徽红四方股份有限公司是中国盐业股份有限公司控股,合肥市工业投资控股公司参股组建的化工企业,位于安徽省合肥市循环经济示范园。经过五十多年的发展,形成了以煤化工、盐化工、精细化工、化工新材料和新能源为核心的多元化产业新格局。目前拥有10余家子公司,总资产130亿元。  电化车间生产的氯化氢气体中含有微量氯, 当氯含量超标时,将会严重影响下游VCM合成工段的安全性,所以合成炉出口氯化氢中的游离氯,成为了监控的重点目标。厂区概览图项目概述  2014年2月,中盐安徽红四方股份有限公司携手聚光科技(杭州)股份有限公司(以下简称“聚光科技”),新上了氯化氢总管出口的氯化氢中的游离氯监测项目,为装置的安全和工艺的精确控制保驾护航。项目仪表选用聚光科技专为氯碱行业氯化氢合成炉出口——氯化氢中游离氯监测而开的OMA-3010 Cl2&HCl分析仪。  本项目包括两台OMA-3010 Cl2&HCl分析仪,采用二选一的联锁方式,任何其中一台分析仪测得游离氯超标时,将启动下游氯乙烯合成装置的紧急停车系统。分析系统取样口来源于氯化氢合成出口总管,对样气中的氯化氢浓度和游离氯含量进行监测。项目建设  OMA-3010 Cl2&HCl分析仪是聚光科技针对氯碱行业特别推出的解决方案。该系统采用OMA-3000系列在线紫外光纤光谱分析仪和高耐腐预处理系统,可同时分析工业过程气中的微量Cl2和高浓度HCl,且支持自动Cl2双量程切换,能在高腐蚀性环境中长期稳定的工作。 项目现场图项目价值  聚光科技OMA-3010 Cl2&HCl分析仪投用四年多来,系统工作稳定,仪器测量值与实验室人工分析偏差≤1%,尤其是游离氯检测灵敏,不仅保障生产装置的安全,防止Cl2含量超标与C2H2发生剧烈反应导致爆炸;还为工艺的优化提供了良好的支持,提高了H2利用率和HCl合成率,优化HCl与C2H2原料气配比。同时,大大减少了仪器自身的维护量和正常的备品备件消耗量。
  • 【MH3300】固定污染源超净排放综合解决方案从未如此简单
    导读:“MH3300型 烟气烟尘颗粒物浓度测试仪”集烟尘直读、烟尘采样、烟气直读、烟气采样四大功能于一体。一台主机,多重功能,助您高效完成固定污染源废气监测任务! 攀爬烟囱的过程中,您还在为携带笨重的设备而烦恼吗?执行监测任务的过程中,您还在为繁杂的管路连接而烦恼吗?站在采样断面上,您有没有想过用一台主机完成多项监测任务?您的烦恼,我们来解决!“MH3300型 烟气烟尘颗粒物浓度测试仪”集烟尘直读、烟尘采样、烟气直读、烟气采样四大功能于一体。一台主机即可完成多项监测任务! 作为新一代固定污染源超净排放综合解决方案,明华MH3300采用高度集成化设计思想,烟尘烟气可同步采样或测量,可选配多种采样管,实现一机多用的目的。针对污染源烟尘颗粒物,本设备可实现重量法采样及β射线吸收法颗粒物浓度直读两种功能。针对污染源烟气污染物,本设备可完成基于电化学测量法、溶液吸收法的多种污染物的浓度测量。一、烟尘直读(β射线法):1、选配: MH3091型 烟尘采样测试探头2、执行标准: 山东省地方标准《固定污染源废气 颗粒物的测定 β射线法》征求意见稿3、产品特点: 1)采用β射线吸收法质量测量原理,测量结果不受颗粒物形状、颜色、燃料性质等特性影响; 2)适用于颗粒物浓度低于5mg/m3超低排放检测标准;满足颗粒物浓度低于1mg/m3的超净排放检测要求; 3)钛合金采样管全程加热,重量轻,耐腐蚀,可拆卸设计,携带方便; 4)具有自主知识产权的滤带传动检测技术,一卷滤膜可满足几十次测量; 5)采用安全、稳定的C14放射源,满足*豁免标准。二、烟尘采样(重量法):1、选配: MH3090T型 低浓度烟尘采样管2、执行标准: HJ 836-2017《固定污染源废气 低浓度颗粒物的测定 重量法》 GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》3、产品特点: 1)采用高负载、大流量烟尘采样泵,流量范围(10~100)L/min; 2)可以满足颗粒物浓度低于5mg/m3的超低排放检测要求; 3)钛合金智能采样管,重量轻、耐腐蚀、自损耗低、性能稳定,加热温度可自动调节。三、烟气直读(电化学法)1、执行标准: HJ 57-2017 《固定污染源废气 二氧化硫的测定 定电位电解法》 HJ 973-2018《固定污染源废气 CO的测定 定电位电解法》2、产品特点: 1)气体交叉干扰修正算法,具有CO对SO2的自动修正功能; 2)配置抗H2干扰的CO传感器,数据更精确。四、烟气采样(溶液吸收法)1、选配: 3011型 烟气采样管2、执行标准: HJ 75-2017《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》 GB/T16157-1996《固定污染源排气中颗粒物测定与气态污染物采样方法》3、产品特点: 1)皮托管平行法,可自动测量、跟踪烟气流速,流量范围(0.1~2.0)L/min; 2)采样管具有加热、除尘、过滤等功能。 目前,“MH3300型 烟气烟尘颗粒物浓度测试仪”已在国内多个典型固定污染源废气监测现场完成现场验证,因其携带方便,一机多用,性能稳定,测量结果准确等特点得到客户一致好评。如果您还想了解更多,请点击查看明华“MH3300型 烟气烟尘颗粒物浓度测试仪”产品详情。
  • 山东省地方标准《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》发布实施
    2020年4月3日,山东省地方标准DB37/T 3922《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 便携式催化氧化-氢火焰离子化检测器法》正式颁布啦! 从2017年到2020年,历经三年多的时间,经过大量实验室和现场验证,对于固定源废气总烃、甲烷和非甲烷总烃指标的测定在原HJ38-2017方法标准的基础上引入了便携式现场直读方法。 此方法标准的出台对于山东省非甲烷总烃的现场测定实现了有法可依,对于已出台的山东省挥发性有机物排放标准体系(共7个部分)提供了非甲烷总烃指标的现场方法支撑,同时可用于在线仪器的现场比对和应急保障等各方面现场工作。山东省地方标准DB37/T 392201标准制订的重要内容标准明确规定了对于固定污染源废气 总烃、甲烷和非甲烷总烃的测定使用氢火焰离子化检测器(FID)法,对于甲烷的分离使用催化氧化的方法,根据大量现场验证,适用于绝大多数的工况现场要求。标准同时明确了适用范围、仪器结构组成、监测频率、结果计算方式、质控措施以及使用注意事项等方面的具体要求。02构建了新的指标体系,有法可依结构组成:采用FID检测器+催化氧化单元+定量环方式进样;监测频率:按分钟计算测量数据,取连续 5 min~15 min 测定数据的平均值,作为一次测量值;结果计算:明确标准状态下废气中的质量浓度表示;质控措施:要求测试前后用标气验证示值误差等指标,且要求每半年检查仪器的催化效率,须达到90%以上。03现场工作要符合以下需求标准对仪器现场工作所需要的气源——燃烧气、标气和除烃空气均做出明确规定。其中燃烧气氢气纯度需达到99.999%,须以安全形式存储;标气必须为有证可溯源甲烷/丙烷等气体等等;同时作为现场直读仪器,标准要求仪器同屏显示总烃和甲烷的数值,具备显示实时数据和曲线、查询历史 数据功能,具有远程数据传输功能和现场打印功能等等。青岛环控设备有限公司的POLLUTION PF-300便携式甲烷、总烃和非甲烷总烃测试仪有幸参与到此标准的现场测试与方法验证过程,为标准的严谨、规范与合理提供了有力的数据支撑。该产品符合标准所有要求,在全国已有广泛的用户群体。
  • 《固定污染源废气中非甲烷总烃排放连续监测技术指南(试行)》发布
    p   非甲烷总烃是目前固定汚染源挥发性有机物监测的主要指标之一。为规范非甲烷总烃的监测,生态环境部已发布多项标准:《HJ1013-2018 固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》、《HJ1012-2018 环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》等。 /p p   为落实《关于加强重点排污单位自动监控建设工作的通知》(环办环监〔2018〕25号)要求,规范污染源挥发性有机物自动监控设施安装、运行维护管理工作,生态环境部组织制定了《固定污染源废气中非甲烷总烃排放连续监测技术指南(试行)》,并与近日印发。 /p p   《技术指南》主要规范的是采用氢火焰离子化检测器(即FID)进行固定污染源废气中非甲烷总烃连续监测的系统,值得注意的是,若采用氢气钢瓶作为工作气源的,则应在监测站房内安装氢气报警器。 /p p   全文如下: /p p style=" text-align: center " strong 固定污染源废气中非甲烷总烃排放连续监测技术指南( 试 行 ) /strong /p p   为 span style=" color: rgb(255, 0, 0) " 规范采用氢火焰离子化检测器(即FID)进行固定污染源废气中非甲烷总烃连续监测系统 /span 的建设、运行和管理,制定本指南。 /p p    strong 一、安装建设要求 /strong /p p   (一)系统组成 /p p   固定污染源非甲烷总烃连续监测系统(以下简称NMHC-CEMS)由非甲烷总烃监测单元和烟气参数监测单元、数据采集与处理单元组成。 /p p    span style=" color: rgb(255, 0, 0) " NMHC-CEMS应当实现测量烟气中非甲烷总烃浓度、烟气参数(温度、压力、流速或流量、湿度等),同时计算废气中污染物排放速率和排放量 /span ,显示(可支持打印)和记录各种数据和参数,形成相关图表,并通过数据、图文等方式传输至管理部门等功能。 /p p   进入NMHC-CEMS燃烧(焚烧、氧化)装置,需要补充空气进行燃烧、氧化反应的废气,还应实现同时测量含氧量的要求。含氧量参与污染物折算浓度计算的,应按排放标准要求换算为大气污染物基准排放浓度。利用锅炉、工业炉窑、固体废物焚烧炉焚烧处理有机废气的,烟气基准含氧量按其排放标准规定执行。 /p p   (二)技术性能要求 /p p   满足《固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》(HJ 1013)中技术要求。 /p p   (三)监测站房要求 /p p   满足《固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范》(HJ 75)中关于固定污染源烟气排放连续监测系统监测站房的要求。 /p p    span style=" color: rgb(255, 0, 0) " 若采用氢气钢瓶作为工作气源的,则应在监测站房内安装氢气报警器, /span 站房外张贴显著的防火标识,同时应按照《爆炸性环境 第1部分:设备 通用要求》(GB 3836.1)中相关规定配备防爆等安全设施。 /p p   (四)安装位置要求 /p p   满足HJ 75中关于固定污染源烟气排放连续监测系统安装位置的要求。 /p p   设置采样或监测平台时,应易于人员和监测仪器到达,当采样平台设置在离地面高度≥2m的位置时,应有通往平台的斜梯,宽度应≥0.9m,有条件的可采用旋梯、Z字梯或升降梯等。 /p p   (五)安装施工要求 /p p   满足HJ 75中关于固定污染源烟气排放连续监测系统安装施工要求。 /p p   固定污染源排放废气中含强腐蚀性气体时,样品经过的器件或管路需选用耐腐蚀性材料。室外部件的外壳或外罩还应至少达到《外壳防护等级(IP代码)》(GB/T 4208)中IP55防护等级要求。样品传输管线应具备稳定、均匀加热和保温的功能,其加热温度应符合有关规定,加热温度值应能够在机柜或系统软件中显示查询。 /p p    strong 二、运行管理 /strong /p p   (一)运维人员 /p p   NMHC-CEMS运维单位应根据NMHC-CEMS使用说明书和技术要求编制仪器运行管理规程,确定系统运行操作人员和管理维护人员的工作职责。运维人员应当熟练掌握NMHC-CEMS的原理、使用和维护方法。 /p p   (二)巡检和维护 /p p   NMHC-CEMS日常运行管理应包括日常巡检和日常维护保养,应满足HJ 75中日常巡检和日常维护保养的相关要求,运维人员应对NMHC-CEMS开展定期维护,保证其正常运行。 /p p   按照HJ 75附录G中表格形式做定期维护记录。定期维护应做到: /p p   1.对于使用氢气钢瓶的,每周巡检钢瓶气的压力并记录,有条件的应做到一用一备 /p p   2.至少每月检查一次氢气发生器变色硅胶的变色情况,超过2/3变色更换变色硅胶 /p p   3.对于使用氢气发生器的,应按其说明书规定,定期检查氢气压力、氢气发生器电解液等,根据使用情况及时更换,定期添加纯净水 /p p   4.至少每周检查一次除烃装置温度是否保持在350℃以上 /p p   5.至少每周检查一次出峰时间与标准谱图一致性情况是否符合仪器使用手册要求 /p p   6.至少每月检查一次燃烧气连接管路的气密性,NMHC-CEMS 的过滤器、采样管路的结灰情况,若发现数据异常应及时维护 /p p   7.至少每半年检查一次零气发生器中的活性炭和一氧化氮氧化剂,根据使用情况进行更换 /p p   8.使用催化氧化装置的NMHC-CEMS 每年用丙烷标气检验一次转化效率,保证丙烷转化效率在90%以上,否则需更换催化氧化装置 /p p   9.更换主要部件如色谱柱、定量环时,应对分析仪进行多点校准,并记录校准数据和过程,校准数据符合技术要求并且稳定后才可投入运行。 /p p   (三)定期校准 /p p   定期校准应满足HJ 75中定期校准的相关要求。按照HJ 75附录G中表格形式填写定期校准记录。 /p p   (四)质量保证 /p p   日常运行质量保证是保障NMHC-CEMS正常稳定运行、持续提供有质量保证监测数据的必要手段。当NMHC-CEMS不能满足技术指标而失控时,应及时采取纠正措施,并应缩短下一次校准、维护和校验的间隔时间。 /p p   (五)其他 /p p   考虑到涉及非甲烷总烃排放现场易燃易爆情况较多,日常运行管理中应遵照安全生产有关要求。 /p p   常见故障分析及排除应满足HJ 75中常见故障分析及排除的相关要求。 /p p    strong 三、数据审核和处理 /strong /p p   (一)数据审核 /p p   参照HJ 75中烟气排放连续监测系统(即CEMS)数据审核相关要求开展数据审核,并按照CEMS数据无效时间段相关要求进行无效时间段的数据处理。 /p p   (二)数据记录与报表 /p p   参照HJ 75附录D、HJ 1013附录A等表格形式记录监测结果,按照相关管理要求,定期将NMHC-CEMS监测数据,上报重点污染源自动监控与基础数据库系统,报表中应给出最大值、最小值、平均值、累计排放量、参与统计的样本数等相关信息。 /p p    strong 四、其他 /strong /p p   采用其他方式进行测量的系统可参照本技术指南执行。有关技术性能、监测站房、系统安装和校准维护等方面的具体指标要求,将在相关标准规范中予以详细规定。 /p
  • 生态环境部部署固定污染源氮磷污染防治
    p   生态环境部发布消息称,为打好污染防治攻坚战,推动解决日益突出的氮磷污染问题,生态环境部近日印发了《关于加强固定污染源氮磷污染防治的通知》(以下简称《通知》)。 /p p   《通知》要求,各地要以重点行业企业、污水集中处理设施、规模化畜禽养殖场氮磷达标排放整治为突破口,强化固定污染源氮磷污染防治 重点流域要以实施排污许可制为契机和抓手,严格控制并逐步削减重点行业氮磷排放总量,推动流域水质改善。到2019年底前,基本完成氮磷排放重点行业企业超标整治工作。 /p p   《通知》明确,将肥料制造、污水集中处理、规模化畜禽养殖等18个行业作为氮磷污染防治的重点行业,要求全面推进氮磷达标排放。地方各级环境保护主管部门应依托排污许可证核发管理逐行业掌握氮磷排放重点行业企业信息,督促重点行业企业建立氮磷排放管理台账,摸清行业排放底数。各地环境保护主管部门应督促指导相关工矿企业、污水集中处理设施优化升级生产治理设施并强化运行管理,提高脱氮除磷能力和效率。重点开展磷化工和磷矿采选企业生产工艺及污水处理设施建设改造,推进磷石膏无害化处理和资源化利用。氮磷排放重点行业的重点排污单位应于2018年6月底前安装含总氮和(或)总磷指标的自动在线监控设备并与环境保护主管部门联网。 /p p   《通知》明确,实施重点流域重点行业氮磷排放总量控制。生态环境部将研究确定实施氮磷排放总量控制的流域控制单元及对应行政区域,根据排污许可证氮磷许可排放量信息确定相关流域控制单元的行业总量控制指标,实施行业总量控制。对于氮磷超标的流域控制单元内新、改、扩建项目,实施氮磷排放总量指标减量替代并严格落实到许可证上,严控氮磷新增排放。 /p p   《通知》强调,市、县两级人民政府在制定实施工业污染源全面达标排放工作方案中应强化氮磷排放达标管理,建立整改企业台账,对重大问题实行挂牌督办,跟踪整改销号。生态环境部优先将工作成效显著地区的氮磷减排工程纳入水污染防治中央项目储备库,对工作任务不落实、工作目标未完成的地区采取挂牌督办、约谈、限批等措施,将氮磷污染防治工作问题突出的纳入中央环保督察。 /p
  • 生态环境部:进一步加强固定污染源监测监督管理
    固定污染源监测监督管理是深入打好污染防治攻坚战的基石,是精准治污、科学治污、依法治污的重要抓手,是排污许可制度的重要支撑。党的十八大以来,党中央、国务院高度重视生态环境监测工作,将生态环境监测纳入生态文明建设大局统筹推进,取得了前所未有的显著成效。当前,我国进入深入打好污染防治攻坚战、推进美丽中国建设的关键期,环境管理要求固定污染源监测提供更加精细化、科学化的硬核服务支撑。《“十四五”生态环境监测规划》也明确提出要坚持国家指导、省级统筹、市县承担,深入推进执法监测机制优化增效。然而,随着经济社会的不断发展、监测制度改革不断深入、污染治理措施不断加强,固定污染源监测面临新形势、新要求,目前排污企业和管理部门仍存在一些亟需解决的问题。一方面,部分排污单位不规范开展自行监测,不如实公开监测结果,另一方面,由于相关法律法规不完善、相关标准规范滞后,导致监测监管机制不健全等各方面问题,影响和制约了固定污染源监测支撑作用的进一步发挥,也造成了管理工作的被动。日前,生态环境部印发了《关于进一步加强固定污染源监测监督管理的通知》(以下简称《通知》),从压实生态环境部门执法监测责任、强化环境监测和执法联动两个方面对固定污染源执法监测工作提出了具体要求,擘画了固定污染源执法监测的蓝图,为进一步规范和强化执法监测明确了方向,为深入打好污染防治攻坚战提供了坚实保障。《通知》确定了2023年、2025年阶段性目标:到2023年年底,排污许可日常管理、环境监测、环境执法有效联动,以排污许可制为核心的固定污染源监测监督管理机制基本形成。到2025年年底,固定污染源监测监督管理机制顺畅高效,排污单位自行监测规范性显著增强,执法监测能力明显提升。《通知》结合环保垂改实施情况,进一步明确和压实国家、省和市级生态环境部门执法监测责任,提出强化环境监测和执法联动的有关要求,鼓励各地制定环境监测与执法联动相关管理制度。《通知》规定了各级生态环境部门的自行监测监管责任,明确了环境监测部门、排污许可审批部门、环境执法部门联动监管机制。同时,《通知》还明确了排污单位应当于监测工作完成后5个工作日内,经全国排污许可证管理信息平台公开手工监测数据;进一步明确“未保证大气或水污染物排放自动监测设备正常运行”“以逃避监管方式排放污染物”2种违法行为认定情形。在强化平台支撑方面,《通知》明确所有自行监测的手工监测数据,实现排污单位在全国排污许可证管理信息平台“一口”登录、监测数据“一网”填报、排污信息“一窗”公开。各级生态环境部门不得要求排污单位重复填报监测信息,国家将排污单位填报的监测信息经省级生态环境部门实现各级共享。在强化队伍建设方面,《通知》分别对生态环境部和各级生态环境部门提出强化队伍建设要求。生态环境部建立专家委员会,于2023年年底前完成45个自行监测技术指南配套教材编制;各级生态环境部门要针对性培养专业技术人才,加强业务培训。在鼓励公众参与方面,《通知》提出要充分发挥社会团体和公众,在排污单位自行监测开展、信息公开等方面的监督作用。《通知》要求各级生态环境部门要搭建公众参与和沟通平台,拓宽意见交流和投诉渠道,并积极调查处理反馈意见。接下来,《通知》还将加强技术帮扶指导和业务培训、推动污染源监测信息综合分析应用、加强智能化污染源监测技术研发应用,其中包括持续推进以执法监测需求为导向的快速、便携、智能监测仪器研发和方法的标准化,包括颗粒物、VOCs和烟气参数等,加大便携、智能化现场监测设备配置应用。推动基于仪器物联化的质控体系建立,实现现场质控全留痕、保存形成完整证据链,保证数据质量以满足执法监测需求。强化智能化自行监测检查技术研究,提升自行监测数据质量和管理效能。以有力推动《通知》的高效实施。《通知》的印发,有利于落实自行监测数据质量责任和监管责任,推动固定污染源监测与排污许可、行政执法等环境管理工作紧密融合;有利于贯彻精准治污、科学治污、依法治污理念,优化执法监测管理机制;有利于加快推进固定污染源监测体系和监测能力现代化,实现对生态环境精准管理、科学决策、高效服务的强力支撑。
  • 崂应2017年固定污染源超低排放监测技术培训班(河北站)成功举办
    由崂应主办, 2017年固定污染源超低排放监测技术培训班(河北站),于2017年5月20日在河北石家庄成功举办,来自河北市的100余名环境监测机构及环境监测公司技术人员参加了此次培训。崂应团队培训现场合影河北培训班签到现场 此次培训内容主要包括“固定污染源废气低浓度颗粒物测定操作流程”,“固定污染源废气测定光学法”,“固定污染源废气硫酸雾的测定”,“超低排放监测技术模拟实训”和“硫酸雾排放监测技术模拟实训”。此次培训由崂应技术人员授课。培训班授课现场 河北省2017年颁布了《大气污染防治条例》《钢铁工业大气污染物排放标准》《燃煤电厂污染物排放标准》和《工业企业挥发性有机物排放标准》《2017年全省环境信息污染源自动监控工作要点通知》明确指出狠抓污染源排放及大气污染治理,特别是围绕实现‘京60目标’落实‘2+4’‘1+2’核心区域市工业污染治理,优化能源结构,严格监控各类污染源,大力推进依法治污措施,建议明确贯彻《河北省‘十三五’大气污染计划》,把大气污染治理,改善计划当中大气污染节能减排的重要部分,借此机会为崂应仪器在检测领域更好的服务,针对污染源治理,崂应3023紫外差分烟气综合分析仪、3012H-D以及新品崂应1083A硫酸雾多功能取样管皆可助之一臂之力,除此之外,此次培训在以往培训内容的基础上增加了环境空气类仪器的相关内容,这也正体现出崂应以“为国家服务”的理念。崂应讲师与学员积极互动培训班实操现场 期待通过此次培训班为河北省客户提供有力高效的技术支持!
  • 《山东省固定污染源 低浓度颗粒物的测定 重量法》正式发布实施
    2014年9月22日,由山东省环境监测中心站等单位编制的《山东省固定污染源废气 低浓度颗粒物的测定 重量法》(DB37/T 2537-2014)正式发布实施。此前山东省环境保护厅与山东省质量技术监督局组织召开了该方法标准专家审查会,与会专家一致同意通过审查。该方法标准是我国首次发布实施的低浓度颗粒物测定方法标准,也是山东省首次制定环境保护监测方法标准。标准规定了测定固定污染源废气中低浓度颗粒物的手工重量法,扩展了相关国家标准中低浓度颗粒物的测定方法。经现场验证,该方法操作性强,适用于固定污染源低浓度颗粒物的测定。标准的制定实施对于山东省乃至全国做好燃煤电厂超低排放技术应用试点新技术推广以及加快推进大气污染防治工作具有非常重要的意义。 来源:山东省环境监测中心站
  • 《固定污染源废气 氨排放连续监测技术规范》征求意见
    氨法脱硫、氨法脱硝是废气企业去除二氧化硫、氮氧化物的主要方式之一,但采用该方法会造成不同程度的氨逃逸,而空气中的氨是二次颗粒物的前体物,因此废气中氨排放也是影响 PM2.5的重要原因。基于此,河南、山东、河北三省率先出台了地方性氨逃逸排放限制要求。2019年3月,河南省发布的《2019年大气污染防治攻坚战实施方案》中规定,2019年年底前,水泥窑废气在基准氧含量10%的条件下,氨逃逸不得高于8mg/m3。这是自超低排放概念在水泥行业推出后,地方首次将氨逃逸问题列入监测要求 同样在2019年3月,山东省发布《火电厂大气污染物排放标准DB 37/664-2019》,增加了氨逃逸和氨厂界浓度控制指标要求;2020年3月,河北印发《水泥工业大气污染物超低排放标准》、《平板玻璃工业大气污染物超低排放标准》和《锅炉大气污染物排放标准》三项地方标准,均在严格了烟气颗粒物、二氧化硫、氮氧化物排放限制的基础上,增加了氨逃逸控制指标。但目前尚未出台废气氨排放连续监测技术规范,如果仅仅列出了排放限制,并未规定具体的、经过验证的检测方法,相关标准的颁布恐会流于形式,而无法对氨逃逸控制起到有效帮助。中国环境监测总站在“征集2021年生态环境监测类标准制修订立项建议”中征集“固定污染源和环境空气氨监测相关的技术方法”,说明行业性的非为氨排放连续监测技术规范已受到重视。日前,河南省发布了《固定污染源废气 氨排放连续监测技术规范》(征求意见稿),规定了固定污染源废气排放连续监测系统中的氨排放和有关废气参数连续监测系统的组成和功能、技术性能、监测站房、安装、技术指标调试检测、技术验收、日常运行管理、日常运行质量保证以及数据审核和处理的有关要求。据了解,河南省目前已安装联网489套氨排放在线监控设施,涉及289家企业489个排放口,行业分布和设备型号分布如下。征求意见稿见附件:《固定污染源废气 氨排放连续监测技术规范》(征求意见稿)CEMS是大气质量控制中关键的设备之一,为了解CEMS的使用情况,仪器信息网发起了CEMS有奖调研。点击链接参与调研:https://www.wjx.top/vj/wCA4U4O.aspx调研时间:即日起至5月24日 活动对象:CEMS相关用户及厂商 活动主办方:仪器信息网奖励方式:第一重奖励:活动期间,认真、如实填写完成调研问卷的相关用户,均将获得20元话费奖励,总共300份,先到先得。 第二重奖励:活动期间参与完成问卷,初步确定为有效问卷并获得电话调研资格的用户,将在电话调研后确定为有效问卷的情况下,继续获得10元话费奖励。 注:活动期间参与完成问卷,未被确认为有效问卷,但获得电话调研资格的用户,将在电话调研后确定为有效问卷的情况下,获得20元话费奖励。(活动结束后统一发放)
  • 能谱测油仪:HJ 1077-2019 固定污染源废气 油烟和油雾的测定
    警告:实验中所使用的萃取溶剂对人体健康有害,样品前处理过程应在通风橱中进行, 并按规定要求佩戴防护器具,避免接触皮肤和衣物。1 适用范围 本标准规定了测定固定污染源废气中油烟和油雾的红外分光光度法。 本标准适用于固定污染源废气中油烟和油雾的测定。 当采样体积为 250 L(标准状态),萃取液体积为 25 ml,使用 4 cm 石英比色皿时,本方法油烟和油雾的检出限均为 0.1 mg/m3,测定下限均为 0.4 mg/m3。2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 18483 饮食业油烟排放标准(试行) GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 397 固定源废气监测技术规范3 术语和定义 下列术语和定义适用于本标准。3.1油烟 oil fume 指食物烹饪、加工过程中挥发的油脂、有机质及其加热分解或裂解产物。3.2 油雾 oil mist 指工业生产过程(如机械加工、金属材料热处理等工艺)中挥发产生的矿物油及其加热分解或裂解产物。4 方法原理 固定污染源废气中的油烟和油雾经滤筒吸附后,用四氯乙烯超声萃取,萃取液用红外分光光度法OIL3000B 红外测油仪测定。油烟和油雾含量由波数分别为 2930 cm-1(CH2 基团中 C—H 键的伸缩振动)、2960 cm-1(CH3 基团中C—H 键的伸缩振动)和 3030 cm-1(芳香环中 C—H 键的伸缩振动) 谱带处的吸光度 A2930、A2960 和 A3030 进行计算。5 试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂。5.1 正十六烷(C16H34)。5.2 异辛烷(C8H18)。5.3 苯(C6H6)。5.4 四氯乙烯(C2Cl、2960 cm-1 和 3030 cm-1
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制