当前位置: 仪器信息网 > 行业主题 > >

圆盘旋光仪的工作原理

仪器信息网圆盘旋光仪的工作原理专题为您提供2024年最新圆盘旋光仪的工作原理价格报价、厂家品牌的相关信息, 包括圆盘旋光仪的工作原理参数、型号等,不管是国产,还是进口品牌的圆盘旋光仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合圆盘旋光仪的工作原理相关的耗材配件、试剂标物,还有圆盘旋光仪的工作原理相关的最新资讯、资料,以及圆盘旋光仪的工作原理相关的解决方案。

圆盘旋光仪的工作原理相关的论坛

  • WXG-4圆盘旋光仪怎么读数

    买了台WXG-4圆盘旋光仪,不知道这圆盘的游标怎么读数。不知道谁还在使用这种老机器,知道的说下啊,最好能附图,谢了!

  • 【原创大赛】经典再现,拆解33年前WXG-4型圆盘旋光仪

    【原创大赛】经典再现,拆解33年前WXG-4型圆盘旋光仪

    经典再现,拆解33年前WXG-4型圆盘旋光仪 年龄大的分析人员一般都用过圆盘旋光仪测量物质的旋光度,其结构简单、操作维修方便。 早期的旋光仪是手动操作的仪器,因为用手轮转动旋光片(刻度圆盘),被称为圆盘旋光仪。由于精度不高、价格便宜,在一些要求不高的小工厂,或车间中间体检验,还在应用中,网上有销售。现在有些地方的旋光检验员考试,也有圆盘旋光仪操作内容。一、外观及技术指标 国产WXG-4型圆盘旋光仪曾经辉煌一时,下图是目前正在销售的WXG-4型圆盘旋光仪,经典的延续:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271359_524841_1807987_3.jpg技术参数:测量范围: -180°~+180°度盘格值: 1°度盘游标读数值 : 0.05°放大镜放大倍数: 4 倍单色光源波长:低压钠灯 589.44nm试管长度: 200mm,100mm 各 1 支钠灯功率 : 20W工作电流: 1.3A光源稳定时间: 5 分钟电源类型: 220V 50Hz外型尺寸: 500×135×330mm重量: 约 5Kg二、仪器结构WXG-4型圆盘旋光仪结构示意图如下:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271400_524842_1807987_3.jpg今天拆解的主角亮相,一台33年前的WXG-4型圆盘旋光仪,还能正常使用:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271400_524843_1807987_3.jpg仪器铭牌,1981年上海大庆光学仪器厂生产,车间作中间体检验,外观比较脏:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271401_524844_1807987_3.jpg各部位细节:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271401_524845_1807987_3.jpg为了减少读数误差,度盘被设计为左右同时读数,通过左右两个4倍放大镜观察。度盘内圈是定盘,外圈是动盘(带动偏振片同步旋转):http://ng1.17img.cn/bbsfiles/images/2014/11/201411271402_524846_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524847_1807987_3.jpg打开样品镜筒盒盖子,内部放置的是样品管:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524848_1807987_3.jpg取出样品管,检测时,要将被测液体装入管内旋紧:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271403_524849_1807987_3.jpg镜筒盒是黄铜材质的,这是光源端:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271404_524850_1807987_3.jpg这是度盘端:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271404_524851_1807987_3.jpg这是钠灯,灯罩很结实:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271405_524852_1807987_3.jpg取下灯罩,内部是单色光源低压钠光灯,波长为589nm:http://ng1.17img.cn/bbsfiles/images/2014/11/201411271405_524853_1807987_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411271406_524854_1807987_3.jpg[

  • WXG-4型圆盘旋光仪镇流器替代更换实验(方法二)

    WXG-4型圆盘旋光仪镇流器替代更换实验(方法二)

    WXG-4型圆盘旋光仪镇流器是非标产品,由各厂家自己绕制。损坏后,买不到配件维修。自行绕制镇流器对材料、工艺技术的要求不低,对大多数人来讲,没有这个能力。只有想办法找替代品进行更换。本人曾用旧40W日光灯电感镇流器替代更换WXG-4型圆盘旋光仪镇流器(见本社区帖子“WXG-4型圆盘旋光仪钠光灯镇流器替代更换实验”[font=times new roman][size=13px] [/size][/font]https://bbs.instrument.com.cn/topic/8118385,称方法一)。下面,再介绍用高压钠灯电感镇流器作为替代品进行更换的方法。一、旋光仪的情况下面这台手动WXG-4型圆盘旋光仪的历史有几十年了,现在的产品没啥变化,还这样:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347580226_7942_1807987_3.jpg[/img]打开底盖,内部就一个镇流器。镇流器内部过热,表面有焦糊现象:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347584082_2663_1807987_3.jpg[/img]仪器的电路图如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347590812_9355_1807987_3.jpg[/img]旋光仪使用的20W低压钠灯参数如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347589775_4336_1807987_3.png[/img]这款圆盘式旋光仪的镇流器采用E型铁芯漏磁变压器,是非标元件,测量其电参数为:直流电阻5.3Ω,电感0.49H,感抗153.93Ω,阻抗159.23Ω。旋光仪工作时,实测电参数为:市电电压222.5V,电流1.33A,功率因数0.13,功率40.59W。二、高压钠灯的情况高压钠灯不陌生,许多城市街道照明采用它。这里只讨论使用电感镇流器的高压钠灯。国产高压钠灯及镇流器有关参数见下面:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347592941_1790_1807987_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347592031_7719_1807987_3.jpg[/img]三、旋光仪镇流器用高压钠灯镇流器替代方案的选择高压钠灯与旋光仪GP20Na低压钠灯工作机理伏安特性是有区别的。根据高压钠灯的参数,灯管工作电压都在90V以上。以70W的高压钠灯为例,灯管电压约90V;而旋光仪GP20Na低压钠灯工作时,灯管电压只有15V。如果将高压钠灯镇流器直接用于GP20Na低压钠灯电路,将会承担更高的电压,电路中的电流会超过镇流器的额定工作电流,引起严重发热甚至烧毁。如果该电流超过了低压钠灯的工作电流,还会致使旋光灯受到损坏。所以,[b]同功率[/b]高压钠灯与GP20Na低压钠灯的镇流器是不能直接互相替代更换的。作为替代品能不能成功,关键是替代后,旋光仪钠灯的工作电流应在1.0A~1.3A范围内。电流过低,钠灯不能启动或亮度微弱无法工作;电流过高损坏钠光灯或超过镇流器本身的额定工作电流,长期超负荷、过热损坏镇流器。根据欧姆定律原理,低压钠灯工作电流=(市电电压-低压钠灯灯管电压)÷线路阻抗,只有选择合适的镇流器(线路阻抗)进行组合,才能替代原低压钠灯镇流器,使灯电流在1.0A~1.3A的工作范围内。经过多次试验,找到飞利浦有一款BSN70L(70W)的DIH灯镇流器,与国产的70W高压钠灯镇流器指标有所不同,额定工作电流为1.2A,可以直接替代使用。有以下两种替代方案:1、选用飞利浦额定工作电流1.2A、功率70W的DIH灯镇流器(型号BSN70L),直接替代,能够胜任旋光灯原镇流器的功能。2、选用飞利浦额定工作电流1.2A、功率70W的DIH灯镇流器(型号BSN70L),再串联1只台式电脑ATX电源用的PFC电感(利旧),替代后,能够胜任旋光灯原镇流器的功能。替代元件图片如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347593388_7031_1807987_3.jpg[/img]特别提醒:国产70W高压钠灯镇流器的额定工作电流为0.98A,不能直接替代使用!!!飞利浦另有一款70W钠灯镇流器,额定工作电流也为0.98A,不能直接替代使用!!!四、方案实验1、第一种方案选用飞利浦BSN70L(1.2A/70W)高压钠灯镇流器,直接替代原旋光仪镇流器,用仪表测量出它们的电参数(表一):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347596544_4774_1807987_3.png[/img]旋光仪镇流器替代前后的实测工作数据(表二):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347595468_3478_1807987_3.png[/img]经实测,镇流器替代后,旋光仪低压钠灯工作电流为1.21A,与70W高压钠灯镇流器的额定工作电流1.2A相当,旋光灯能够正常工作。工作1小时后,镇流器表面温度约90℃左右,没有超过130℃。2、第二种方案如果嫌直接替代使用的发热量较高,可将飞利浦70W高压钠灯镇流器与1只电脑台式机ATX电源用的PFC电感串联后,替代旋光仪原镇流器。替代后的电路图(2)如下:[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347596455_9815_1807987_3.jpg[/img]替代元件的电参数如下(表三):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041347599845_34_1807987_3.png[/img]旋光仪镇流器替代前后的实测数据(表四):[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210041348001320_3276_1807987_3.png[/img]经实测,按照第二种方案进行镇流器替代后(表四),低压钠灯工作电流为1.05A,也没有超过70W高压钠灯镇流器的额定工作电流1.20A,旋光灯能够正常工作,镇流器温度较低。六、其它替代方案如果手头有其它国产品牌高压钠灯镇流器,建议的方案:①用70W高压钠灯镇流器+2只ATX电源PFC电感串联;②用两只150W高压钠灯镇流器串联;来替代旋光仪原镇流器,效果也不错。结语:高压钠灯电感镇流器市场上销售量大,价格不高,比较适合作为旋光仪镇流器的替代更换品。第一种办法,使用1只飞利浦(1.2A/70W)高压钠灯镇流器直接替代原旋光灯镇流器,方便快捷,成本不高,可以内置。缺点是镇流器电流满负荷运行,温度较高。第二种办法,使用1只飞利浦(1.2A/70W)高压钠灯镇流器,再串联1只ATX电源PFC电感,优点是镇流器电流低、发热低,长期稳定工作。缺点是体积稍大、占地方,适合外置。可结合具体情况,选用其中一种替代办法。

  • WXG-4型圆盘旋光仪钠光灯镇流器替代更换实验

    WXG-4型圆盘旋光仪钠光灯镇流器替代更换实验

    [font=宋体][size=18px] [/size][size=16px]老式的手动[/size][/font][size=16px]WXG-4[font=宋体]型圆盘旋光仪,现在偶尔使用一下。虽然这个旋光仪结构简单,故障率低,比较耐用,但其电感镇流器出现故障后,很难找到元件更换。寄送厂家维修费用高、时间长,加之使用率低,也没必要,成了鸡肋。经多次试验,确定了利用淘汰的老式日光灯镇流器替代旋光仪原电感镇流器的方案,实验过程如下。[/font][font=宋体]一、基本情况[/font][font=宋体] 一台早期的[/font][font='Calibri','sans-serif']WXG-4[/font][font=宋体]型圆盘旋光仪,打开旋光仪底板,内部太简单,只有一个电源开关、一只[/font][font='Calibri','sans-serif']8[/font][font=宋体]足灯管座,一只[/font][font='Calibri','sans-serif']E[/font][font=宋体]型铁芯漏磁变压器型电感镇流器:[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026278013_9201_1807987_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026287065_6610_1807987_3.jpg[/img][font=宋体]旋光仪长时间工作,内部镇流器过热、表面有焦糊状态:[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026291703_4165_1807987_3.jpg[/img][font=宋体]旋光仪电路图如下:[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026293471_645_1807987_3.jpg[/img][/size][align=left][size=16px]二、[font=宋体][color=#333333]旋光仪灯管(低压钠光灯)的特性[/color][/font][/size][/align][font=宋体][color=#333333] 1、[/color][/font][color=#333333][color=#333333][color=#333333]灯管的主要电参数和外形尺寸[/color][/color][/color][font=宋体][color=#333333]钠光灯在市电220V额定电压下点燃时,应配用符合灯管工作电流(1.0A~1.3A)要求的限流器,否则灯将烧毁。[img=,690,356]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011036522609_7338_1807987_3.png!w690x356.jpg[/img][/color][/font][color=#333333] [font=宋体][color=#333333]2,灯的光谱特性[/color][/font][/color][font=宋体][color=#333333] 灯在点燃后,能辐射出两条具有钠特征的谱线589.0nm和589.6nm(称之为钠双谱),供旋光仪使用。[/color][/font][font=宋体]三、旋光灯镇流器替代实验方案[/font][font=宋体] 在网上找不到这款旋光灯镇流器的销售商家,向厂家寻求解决太麻烦,想自己绕制一个,缺乏相关材料和工具。再想想其他替代办法。[/font][font=宋体] 这台旋光仪钠光灯是气体放电,采用电感式镇流器([/font]E[font=宋体]型铁芯漏磁变压器型)。老式日光灯也是气体放电,同样使用电感式漏磁镇流器。二者原理相同,只要参数匹配接近,应该可以替代使用。[/font][font=宋体] 先测量这台旋光仪镇流器电参数,电阻[/font]5.3[font=宋体]Ω[/font][font=宋体]欧姆,电感[/font]0.49H[font=宋体]毫亨,感抗约[/font]153.93 [font=宋体]Ω[/font][font=宋体],阻抗[/font]159.23[font=宋体]Ω。[/font][font=宋体] 老式[/font][font='Calibri','sans-serif']T8[/font][font=宋体]日光灯电感镇流器(捷光牌),规格是常见的[/font][font='Calibri','sans-serif']40W/220V[/font][font=宋体],额定工作电流[/font][font='Calibri','sans-serif']0.43A[/font][font=宋体],[/font][font='Calibri','sans-serif']tw105[/font][font=宋体]。测量其电参数,电阻[/font][font='Calibri','sans-serif']55.4[/font][font=宋体]Ω[/font][font=宋体],电感[/font][font='Calibri','sans-serif']1.157H[/font][font=宋体],感抗约[/font][font='Calibri','sans-serif']364.42[/font][font=宋体]Ω[/font][font=宋体],阻抗为[/font][font='Calibri','sans-serif']419.82[/font][font=宋体]Ω。见下图:[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026289263_9518_1807987_3.jpg[/img][font=宋体]从淘汰的电脑[/font]ATX[font=宋体]电源中拆一只[/font]PFC[font=宋体]电感,该电感的电阻[/font]1.6[font=宋体]Ω[/font][font=宋体]欧姆、电感[/font]0.0453H[font=宋体]、感抗约[/font]14.23[font=宋体]Ω[/font][font=宋体]、阻抗为[/font]15.83 [font=宋体]Ω。[/font][font=宋体][/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026290591_4795_1807987_3.png[/img][font=宋体]将[/font]2[font=宋体]只旧[/font]40W[font=宋体]日光灯镇流器并联,然后再串联台式电脑[/font]ATX[font=宋体]电源中取用的旧[/font]PFC[font=宋体]电感,接入电路中替代原来的镇流器:[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026291724_3874_1807987_3.jpg[/img][font=宋体]替代电路图如下:[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026293179_5162_1807987_3.jpg[/img][font=宋体]实测旋光仪工作时的电参数如下:[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026299741_6711_1807987_3.png[/img][font=宋体]接通市电,旋光仪低压钠灯正常启动发光,[/font]3[font=宋体]分钟后,待灯光稳定,调节视窗内图像清晰,可以进行检测工作。[/font][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210011026295455_5562_1807987_3.jpg[/img][font=宋体] 制作一个铁皮支架,将三只替代元件固定后,再安装在旋光仪基座上,替代原[/font]E[font=宋体]型变压器镇流器。也可做一个铁皮盒子,将三只替代元件放入其中,外置使用,为加强散热,还可以再加装一个[/font]220V[font=宋体]交流风扇,效果不错。[/font][b][font=宋体]结束语:[/font][/b][font=宋体]利用废弃的老式日光灯[/font]40W[font=宋体]电感镇流器替代维修圆盘旋光仪镇流器,效果接近、工作稳定,取材容易、成本低,值得一试。但由于每只替代用日光灯镇流器工作电流([/font]0.45A[font=宋体])略高于自身的额定工作电流([/font]0.43A[font=宋体]),其发热量较高,应加强散热。最好外置并加装散热风扇。或用于短时工作,用完及时关机。若手中旧[/font]40W[font=宋体]镇流器数量够多,还可以采用另一种方式连接:采用日光灯镇流器[/font]3[font=宋体]并[/font]+2[font=宋体]串[/font]ATX[font=宋体]电源[/font]PFC[font=宋体]电感,发热量低,效果更佳。只是体积较大,只能做成外置式。具备条件的,可以自己绕制镇流器。提醒一句,更新换代日光灯照明灯具时,老电感镇流器别扔了,是好东西,收留几只,以备后用。[/font]

  • WXG—4圆盘旋光仪

    样品放入旋光仪内怎么读出数据啊,具体怎么使用旋光仪啊??,第一次使用,求助各位大神

  • 瑞典SKF VPG-3-03149圆盘分配器

    瑞典SKF VPG-3-03149圆盘分配器是一款专为工业润滑系统设计的先进分配设备,其高效、精确和可靠的特性使其成为众多工业领域的优选。以下是对该圆盘分配器的详细介绍: 一、产品概述 瑞典SKF VPG-3-03149圆盘分配器,作为SKF品牌下的高端润滑分配解决方案,采用圆盘式设计,通过旋转圆盘上的出油口,将润滑剂依次、精确地输送到各个润滑点。该分配器结构紧凑,操作简便,能够满足多种复杂工况下的润滑需求。 二、技术特点 高效润滑:VPG-3-03149圆盘分配器采用圆盘旋转的方式分配润滑剂,实现了连续、稳定的润滑效果。其设计优化了润滑剂的流动路径,减少了摩擦和阻力,提高了润滑效率。 精确计量:该分配器具备高精度的计量功能,能够精确控制每个出油口的润滑剂输出量。这确保了每个润滑点都能得到适量的润滑剂,避免了过量或不足导致的润滑问题。 可靠耐用:分配器采用高质量材料制造,具有优异的耐磨、耐腐蚀性能。同时,其内部结构设计合理,密封性能好,能够在恶劣的工况下长时间稳定运行。 灵活配置:VPG-3-03149圆盘分配器可根据实际需求进行灵活配置,如调整出油口数量、改变出油口位置等。这为用户提供了更多的选择空间,使其能够更好地适应不同的润滑需求。 易于维护:该分配器的设计考虑了维护的便捷性,用户可以方便地进行清洗、检查和更换部件。此外,SKF公司还提供了完善的售后服务和技术支持,确保用户在使用过程中得到及时的帮助和支持。 三、应用领域 瑞典SKF VPG-3-03149圆盘分配器广泛应用于多个工业领域,包括但不限于: 机械工程:为机床、轴承、链条、齿轮等机械部件提供精确的润滑支持,确保设备的正常运行和延长使用寿命。汽车工业:在汽车制造和维修过程中,为发动机、变速箱等关键部件提供可靠的润滑保障,提高汽车的性能和可靠性。建筑和采矿:在重型设备和大型机械中,该分配器能够确保关键部件得到充分的润滑,减少磨损和故障,提高生产效率。包装和印刷:在包装和印刷行业中,精确的润滑对于保证产品质量和生产效率至关重要,VPG-3-03149圆盘分配器能够满足这些需求。 四、总结 瑞典SKF VPG-3-03149圆盘分配器以其高效、精确、可靠和灵活配置的特点,在工业润滑领域展现出了卓越的性能。作为SKF公司的一款高端润滑分配设备,它不仅满足了客户对润滑系统的高要求,还为企业提供了可靠的运行保障。在未来的发展中,VPG-3-03149圆盘分配器将继续发挥其优势,为更多行业提供更优质的润滑解决方案。

  • 【求助】圆盘金电极怎么处理干净啊!!!新手跪求!

    我现在用CHI800b 电化学分析仪,三电极系统(工作电极为圆盘金电极,辅助电极铂丝电极,参比电极为银溶液电极),来制作免疫传感器。想在金电极表面组装一层L-半胱氨酸,但多次实验下来结果好像不太理想! 目前怀疑是电极抛光不彻底,希望高人指点圆盘金电极抛光的方法!另外若有大侠知道检测电极抛光程度的方法的话,阿拉直接拜倒!!!!谢谢~~~~~

  • 【求助】关于旋转圆盘电极

    请教高手指教:旋转圆盘电极是独立装置吗,可以在所有工作站或恒电位仪上通用吗?旋转环-盘电极有成品卖吗,还是要自行设计?谁有相关资料和图片之类的给偶发一些吧:pfofp@163.com小女子不胜感激!

  • 关于旋转圆盘电极的一些疑惑

    关于旋转圆盘电极的一些疑惑

    旋转圆盘电极上的各处的扩散层厚度一样,测LSV时,由于线性电势扫描的电势不断改变,不是稳态,扩散层厚度应该不断的改变,是不是旋转圆盘电极上的扩散层厚度也在变化,只是各处都一样?

  • 寻找转动圆盘~

    电脑放在办公桌上,需要打资料的时候,就必须要坐到显示器所向的位置上面来。有没有一种圆盘,是可以放在显示器下面的,需要用电脑的时候,就可以很方便很随意地转动显示器到任何一个角度呀?

  • MAXOS ?250x30mm DIN7080特殊硅酸盐圆盘安全视镜低热膨胀性

    MAXOS ?250x30mm DIN7080特殊硅酸盐圆盘安全视镜是一款专为工业环境设计的高品质视镜产品,其独特的低热膨胀性使其在众多应用场景中脱颖而出。以下是对该产品的详细介绍: [b]产品概述[/b] 该视镜采用直径为250mm、厚度为30mm的圆盘设计,材质为特殊硅酸盐玻璃,特别遵循DIN 7080国际标准进行制造。这一标准确保了产品的质量和性能符合国际行业要求,为用户提供了可靠的质量保证。 [b]主要特点[/b] [list=1][*][font=-apple-system, BlinkMacSystemFont, &]低热膨胀性[/font]:[list][*]特殊硅酸盐玻璃具有极低的热膨胀系数,这意味着在温度变化较大的环境中,视镜能够保持稳定的尺寸和形状,不易因热胀冷缩而发生破裂或变形。这一特性使得该视镜特别适用于高温、高压或温度变化剧烈的工业环境。[/list][*][font=-apple-system, BlinkMacSystemFont, &]优异的化学耐蚀性[/font]:[list][*]特殊硅酸盐玻璃不仅具有低热膨胀性,还具备优异的化学耐蚀性。它能够抵抗多种化学物质的侵蚀,确保在腐蚀性介质中也能保持稳定的性能。[/list][*][font=-apple-system, BlinkMacSystemFont, &]高透光率[/font]:[list][*]该视镜的玻璃材质具有高透光率,使得观察者能够清晰地看到容器或管道内部的介质情况。这对于实时监控生产过程中的各种参数至关重要。[/list][*][font=-apple-system, BlinkMacSystemFont, &]高强度与耐冲击性[/font]:[list][*]经过特殊的热强化处理,该视镜具有极高的抗压强度和抗冲击性能。即使在恶劣的工作环境中,也能有效防止因外部冲击而导致的破裂或损坏。[/list][*][font=-apple-system, BlinkMacSystemFont, &]多种规格与定制服务[/font]:[list][*]除了标准的?250x30mm规格外,MAXOS还提供多种规格的视镜产品以满足不同工业应用的需求。同时,该品牌还提供特殊规格定制服务,确保用户能够根据实际工况选择最合适的视镜产品。[/list][/list] [b]应用领域[/b] MAXOS ?250x30mm DIN7080特殊硅酸盐圆盘安全视镜广泛应用于化工、石油、制药、食品加工等工业领域。在这些行业中,视镜作为观察液体、气体、蒸汽等介质的重要设备元器件,对于保障生产安全、提高生产效率具有重要意义。 [b]选购建议[/b] 在选购MAXOS ?250x30mm DIN7080特殊硅酸盐圆盘安全视镜时,建议考虑以下因素: [list=1][*][font=-apple-system, BlinkMacSystemFont, &]工作环境[/font]:了解介质的性质(如温度、压力、腐蚀性)以及容器的尺寸和形状,以确保所选视镜能够满足实际的工作需求。[*][font=-apple-system, BlinkMacSystemFont, &]观察需求[/font]:确定所需的观察距离和角度,以及是否需要特殊的观察效果(如反射或透明)。[*][font=-apple-system, BlinkMacSystemFont, &]安全性能[/font]:考虑视镜的抗压强度、抗冲击性能和耐温性能,以确保在恶劣的工作环境中也能保持稳定的性能。[*][font=-apple-system, BlinkMacSystemFont, &]成本效益[/font]:根据预算和实际需求选择合适的规格和型号,以实现最佳的成本效益。[/list] 综上所述,MAXOS ?250x30mm DIN7080特殊硅酸盐圆盘安全视镜以其低热膨胀性、优异的化学耐蚀性、高透光率和高强度等特点,在工业领域中具有广泛的应用前景和重要的应用价值。

  • 【分享】GB/T 701-2008 低碳钢热轧圆盘条

    GB/T 701-2008 低碳钢热轧圆盘条2008-08-05发布,将于2009-04-01实施,代替GB/T 701-1997。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=127641]GB/T 701-2008 低碳钢热轧圆盘条[/url]

  • 纳米圆盘简介

    纳米圆盘简介

    [font='times new roman'][size=18px] [font=宋体]纳米圆盘简介[/font][font=宋体]1 [/font][font=宋体]纳米圆盘与生物膜[/font][font=宋体]去垢剂在膜蛋白质研究中具有重要的作用,但是基于去垢剂的膜蛋白质提取方法存在一定缺陷。一方面,去垢剂种类诸多,筛选出最适合目标膜蛋白质增溶、稳定和结构表征的去垢剂费时费力;此外,去垢剂胶束固有的动态性质会导致去垢剂[/font][font=宋体]-[/font][font=宋体]膜蛋白质复合物不稳定,从而导致随着时间的推移膜蛋白质有聚集/变性的趋势。另一方面,膜蛋白质的结构和功能与其所处的膜环境即脂质分子是息息相关的。传统上用于提取膜蛋白质的去垢剂是通过破坏脂质双分子层,将膜蛋白周围的脂质剥离,以胶束的形式将膜蛋白质包裹于疏水核心,去垢剂分子的极性头部则暴露于水相环境,以此为膜蛋白质提供了另一种溶解环境,这极大地影响了膜蛋白质的结构和活性。[/font][font=宋体]显然,去垢剂分子形成的胶束远不能模拟膜蛋白质所存在的脂质双分子层环境,因而并不是膜蛋白提取、增溶、稳定的最佳工具。近年来,膜蛋白质研究的发展方向之一是开发能够提供更好的细胞膜膜模拟效果的纯化方法,新型细胞膜膜模拟系统主要有[/font][font=宋体]liposome[/font][font=宋体]s[/font][font=宋体]、bicelles、amphipols[/font][font=宋体]和nanodiscs,其中nanodiscs即纳米圆盘为细胞膜研究提供了新的工具,并被公认为是一种最佳的膜模拟系统。纳米圆盘技术最早由Sligar等人提出,纳米圆盘的组成为两亲性膜支架蛋白[/font][font=宋体](MSP)[/font][font=宋体]围绕圆盘状的磷脂双分子层,可稳定地分散于水相。将去垢剂增溶的膜蛋白质、磷脂分子、MSP混合,就可以将膜蛋白质自组装至MSP纳米圆盘中。MSP结合的纳米圆盘潜在优势包括纳米圆盘尺寸可调、可对MSP进行基因工程修饰、纳米圆盘中的脂质成分可控、纳米圆盘中的膜蛋白质可以确定的低聚状态存在等。但是,MSP纳米圆盘形成过程中仍需要去垢剂进行初始增溶步骤,如图1-7所示,不能避免去垢剂分子对膜蛋白质的稳定性和活性的影响。此外,MSP纳米圆盘中脂质的组成与天然脂质双分子层的组成不同,这可能会影响蛋白质的结构、活性及其调控。基于SMA的纳米圆盘克服了MSP纳米圆盘的局限性,没有去垢剂的情况下,SMA能够溶解脂质膜形成盘状纳米颗粒(图1-8),近年来在细胞膜研究领域受到越来越多的关注。[/font][/size][/font][align=center][img=,662,487]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071551559682_8480_3237657_3.jpg!w662x487.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]7 MSP纳米圆盘和SMA纳米圆盘的形成过程[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]7 [/font][font=宋体]The formation processes of MSP nanodiscs and SMA nanodiscs[/font][/align][font=宋体]1.2.[/font][font=宋体]2 SMA结合的纳米圆盘[/font][font=宋体]早在[/font][font=宋体]2001[/font][font=宋体]年,[/font][font=宋体]Tonge[/font][font=宋体]等人就证明了既含有疏水单元苯乙烯又含有亲水单元马来酸的[/font][font=宋体]SMA[/font][font=宋体][font=宋体]可以增溶脂质分子,并在[/font][font=宋体]2006年利用SMA将脂质双分子层转化成稳定的纳米圆盘形状的双层膜,获得专利。2009年,SMA首次被报道用于提取跨膜蛋白质,在脂质双分子层中加入SMA后,SMA与细胞膜结合,将其溶解为天然的纳米圆盘,又称为苯乙烯-马来酸脂质颗粒[/font][font=宋体]([/font][font=宋体]SMALPs)[/font][font=宋体],[/font][font=宋体]SMA包围在圆盘侧面,膜蛋白质则被包裹于圆盘之中,如图1-8所示。与去垢剂和MSP纳米圆盘相比,SMALPs的优势在于不需要去垢剂就可以直接从细胞膜上提取膜蛋白质,同时保留膜蛋白质周围的天然脂质环境。自2009年开始,[/font][font=宋体]关于利用[/font][font=宋体]SMALPs技术提取纯化膜蛋白质的文献数目[/font][font=宋体]迅速增加,(图[/font][font=宋体]1-9)。这些文献研究了多种重要的膜蛋白质,如G蛋白偶联受体、离子通道、ABC转运蛋白等,处于SMALPs中的膜蛋白质具有良好的稳定性和活性且显著优于去垢剂胶束中的膜蛋白质。此外,这些文献表明SMA对于单跨膜螺旋蛋白、多跨膜螺旋蛋白,甚至大型多亚基跨膜蛋白都具有良好的提取效果。[/font][/font][align=center][img=,662,406]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552290358_7544_3237657_3.jpg!w662x406.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]8 SMALPs示意图[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]8 [/font][font=宋体]Schematic diagram of SMALPs[/font][sup][font=宋体][font=宋体][59][/font][/font][/sup][/align][align=center][img=,615,432]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071552556903_281_3237657_3.jpg!w615x432.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]9 利用SMALPs技术纯化膜蛋白质的文献数目[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]9 Numbers of [/font][font=宋体]literatures describing membrane proteins purified by SMALPs technology[/font][/align][font=宋体][font=宋体]SMA可同时实现膜蛋白质和膜脂的提取,很多研究也对[/font][font=宋体]SMALPs[/font][font=宋体]中的脂质分子进行了定性定量分析。[/font][font=宋体]Teo等采用SMA对大肠杆菌的ZipA、FtsA和PgpB三种膜蛋白质进行提取纯化,并采用反相HPLC-MS/MS分别对三种膜蛋白质的SMALPs中的磷脂进行分离分析。结果表明,SMA本身不会优先从细胞膜中提取特定的磷脂[/font][font=宋体]。在[/font][font=宋体]ZipA和PgpB[/font][font=宋体]的[/font][font=宋体]SMALPs中,磷脂分子种类类似且单不饱和PE和PG含量较高;在FtsA的SMALPs中,磷脂分子种类与ZipA和PgpB差异较大,具有更长碳链的PE和PG含量更高。Ayub等人采用SMA对酵母细胞膜上的CD81蛋白进行增溶和纯化,并采用“鸟枪法”对酵母细胞膜总脂质提取物、空SMALPs(不含CD81)[/font][font=宋体]中脂质[/font][font=宋体]和含[/font][font=宋体]CD81的SMALPs中[/font][font=宋体]脂质进行测定。结果表明,前两者所含磷脂分子种类差异不大,含[/font][font=宋体]CD81的SMALPs中磷脂分子种类变化明显,表现为带正电荷的PE和PC减少,带负电荷的PI相对增多。[/font][/font][font=宋体]1.2.[/font][font=宋体]3 SMA与磷脂双分子层[/font][font=宋体]近年来,关于[/font][font=宋体]SMALP[/font][font=宋体]s[/font][font=宋体]自组装机制的研究[/font][font=宋体]也[/font][font=宋体]得到开展[/font][font=宋体]。简单来说,在疏水效应驱动下,[/font][font=宋体]SMA吸附到磷脂双分子层[/font][font=宋体][font=宋体],苯乙烯基团插入到磷脂双分子层中,与酰基链紧密结合,在临界浓度下,带电的马来酸基团使膜失稳,导致膜破裂并形成被[/font][font=宋体]SMA聚合物带环绕的纳米圆盘。对于SMA与其它两亲性聚合物的区别,Scheidelaar等从苯环和羧基的性质进行了详细阐述:刚性苯环基团的存在,使SMA从溶液游离状态转化成围绕纳米圆盘的另一种状态,熵变小,这是有利的;羧基的偶极矩与膜的偶极势之间有良好的相互作用。SMA的这些特性使其对磷脂双分子层具有高增溶性能,可以增溶各种不同头部基团、不同酰基链、不同构型的脂质分子。特别是苯乙烯与马来酸摩尔比在2:1到3:1之间的SMA,其疏水性和极性达到最佳平衡,对磷脂双分子层增溶效果最佳[/font][/font][sup][font=宋体][font=宋体][71][/font][/font][/sup][font=宋体]。[/font][font=宋体]1.[/font][font=宋体][font=宋体]3 SMA[/font][font=宋体]及其衍生物[/font][/font][font=宋体]1.[/font][font=宋体]3[/font][font=宋体].[/font][font=宋体][font=宋体]1 SMA[/font][font=宋体]的性质与制备[/font][/font][font=宋体]SMA是苯乙烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸酐共聚物([/font][font=宋体]SMAnh)的水解形式,SMAnh是被广泛研究的聚合物之一,由Alfey和Lavin在1945年首次制备。由于苯乙烯和马来酸酐存在极性差异,且苯环为给电子体,马来酸酐为吸电子体,在一定反应条件下两者竞聚率相近,聚合后可形成具有独特交替结构的聚合物链,经水解后,赋予SMA两亲性聚合物的性质。SMA不仅化学性质独特,还具有良好的生物相容性,可用作很多药物的载体,如坦螺旋霉素、两性霉素B等。[/font][/font][font=宋体][font=宋体]用于膜蛋白质和膜脂研究时,[/font][font=宋体]SMAnh的制备方式通常有两种,即利用传统自由基聚合或[/font][font=宋体]可控[/font][font=宋体]/“活性”自由基聚合[/font][font=宋体]。传统自由基聚合因其慢引发、快增长、易终止的特点而导致聚合反应过程、聚合度、聚合物的结构和分子量分布难以控制。可控[/font][font=宋体]/“活性”自由基聚合技术的出现使得对聚合物进行分子设计和可控聚合成为可能,特别是可逆加成[/font][/font][font=宋体]-[/font][font=宋体]断裂链转移[/font][font=宋体][font=宋体]([/font]RAFT)[/font][font=宋体][font=宋体]聚合已发展成为合成复杂聚合物结构的最通用和最强大的聚合技术之一。[/font][font=宋体]RAFT聚合中的关键试剂[/font][/font][font=宋体]-[/font][font=宋体]链转移试剂[/font][font=宋体][font=宋体]([/font]CTA)[/font][font=宋体],在聚合过程中可以形成无聚合活性的休眠种,与活性自由基链相比,对体系中其它自由基的竞争力相当,使得整个反应体系始终存在自由基的可逆链转移,很大程度上抑制了双基终止,并实现了对聚合过程的调控。[/font][font=宋体]Craig等采用RAFT聚合法制备了三组具有低、中、高分子量的SMAnh,每组分别设置了不同的苯乙烯、马来酸酐摩尔比[/font][font=宋体][font=宋体]([/font]2:1-4:1)[/font][font=宋体][font=宋体],经体积排阻色谱法分析,证明了所得聚合物的分散度指数([/font][font=宋体]PDI)在1.25-1.35之间,且所有聚合物的实际分子量与理论值相近,说明聚合过程得到了很好的控制。将SMAnh进行水解,用于磷脂分子增溶,结果发现形成SMALPs的大小与SMA分子量无关,而与两个单体的比例有关。苯乙烯、马来酸酐摩尔比为2:1、3:1、4:1时,形成的纳米圆盘尺寸分别约为28 nm、10 nm、32 nm。因此,利用RAFT聚合方法可以控制SMA结构,通过扩大纳米圆盘的尺寸可为提取更多的膜脂和体积更大的膜蛋白质提供可能性。[/font][/font][font=宋体]Smith等在蒙特卡罗模拟的基础上,通过RAFT聚合法合成了六组16种具有不同苯乙烯/马来酸酐比例和不同单体/CTA比例的聚合物,经凝胶渗透色谱、核磁共振等技术表征,证实了RAFT聚合可以控制聚合物链中单体的含量、组成、分布情况。作者进一步比较了上述聚合物在磷脂增溶和SMALPs形成方面的性能差异,筛选出了聚合物D,与商业SMA2000相比,得到的纳米圆盘分散性更小,而较低的样品分散性可能有利于结构生物学研究。[/font][font=宋体]1.3.2 SMA衍生物的[/font][font=宋体]性质与[/font][font=宋体]制备[/font][font=宋体]SMA[/font][font=宋体]LPs[/font][font=宋体]已逐渐发展成为细胞膜组成研究的可靠工具,但其应用价值受到[/font][font=宋体]pH[/font][font=宋体]值[/font][font=宋体]和二价金属离子的限制。在酸性条件下,[/font][font=宋体]SMA[/font][font=宋体][font=宋体]中的羧基[/font][font=宋体]易发生质子化使共聚物疏水性增强而极易从溶液中沉淀析出,这不利于提取在酸性环境中发挥最佳功能的膜蛋白质;此外,在毫摩尔浓度的镁或钙离子存在下,[/font][/font][font=宋体]SMA[/font][font=宋体]中的羧基可与金属离子螯合而产生沉淀,使[/font][font=宋体]SMA[/font][font=宋体][font=宋体]无法用于钙[/font][font=宋体]/镁离子依赖性膜蛋白质的研究[/font][/font][sup][font=宋体][font=宋体][82-83][/font][/font][/sup][font=宋体]。[/font][font=宋体]为了拓宽[/font][font=宋体]SMALPs[/font][font=宋体][font=宋体]技术的适用范围,利用[/font][font=宋体]SMAnh中酸酐基团的高反应活性和衍生能力,可进一步通过酯化、酰胺化等反应进行后修饰制备[/font][font=宋体]SMA衍生物[/font][font=宋体],如图[/font][font=宋体]1-10所示。后修饰基团的引入可改变SMA的特性,增强了聚合物的pH值和金属离子耐受范围,如SMI在pH值为2.5-10范围内,二价金属离子浓度高达200 mM时,仍可发挥膜蛋白质及膜脂提取功能,形成的纳米圆盘显示出超强稳定性。上述SMA衍生物为后续更广泛的膜蛋白质和膜脂研究提供了更多的选择。[/font][/font][align=center][img=,690,343]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553237687_6095_3237657_3.jpg!w690x343.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]10 SMA衍生物[/font][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]10 [/font][font=宋体]SMA derivatives[/font][/align][align=center][/align][font=宋体]1.4 SMALPs[/font][font=宋体]的扩展[/font][font=宋体]二异丁烯[/font][font=宋体]-[/font][font=宋体][font=宋体]马来酸共聚物([/font][font=宋体]DIBMA[/font][font=宋体])在增溶磷脂,稳定膜蛋白质的性能上与[/font][font=宋体]SMA相当。同SMALPs一样,DIBMA以[/font][font=宋体]DIBMA[/font][font=宋体]脂质颗粒([/font][font=宋体]DIBMALPs[/font][font=宋体])的形式同时提取膜脂和膜蛋白[/font][font=宋体]质[/font][font=宋体]。[/font][font=宋体]SMA中苯基的存在使得提取的膜蛋白质不能直接进行紫外或圆二色谱等光谱学表征,而DIBMA可弥补这一缺陷。Gulamhussein等比较了SMA与DIB-MA两种聚合物对不同表达系统的具有不同形状和不同大小的膜蛋白质在增溶效率、提取纯度和稳定性能方面的差异,如图1-11所示[/font][font=宋体]。[/font][font=宋体]DIBMA[/font][font=宋体]对某些膜蛋白质的增溶效率并没有优于[/font][font=宋体]SMA,所提取膜蛋白质的纯度也不如SMA,这是由于[/font][font=宋体]DIBMALPs[/font][font=宋体]的尺寸较[/font][font=宋体]SMALPs大,提取出来的杂质随之增多。较大尺寸的DIBMALPs能包容更多的膜脂,膜脂的有序度因为空间的增大而下降,这可能不利于膜蛋白质结构和功能的稳定,但也可能为蛋白质构象变化和动力学研究提供更好的环境。[/font][/font][align=center][img=,580,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071553485075_347_3237657_3.jpg!w580x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]11 比较SMALPs与DIBMALPs[/font][/align][align=center][/align][font=宋体]Tribet等开发了一类新型两亲性聚合物([/font][font=宋体]APols[/font][font=宋体]),其结构特征为低分子量聚丙烯酸的羧基被辛胺和异丙胺随机酯化。[/font][font=宋体]APols[/font][font=宋体]这一命名是为了将这类两亲性聚合物与化学或工业等其它领域的两亲性聚合物区分,其中被应用和研究最为广泛的是[/font][font=宋体]A8-35[/font][font=宋体]。[/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中有[/font][font=宋体]25%的羧基被辛胺随机酯化,40%的羧基被异丙胺随机酯化,剩下35%的游离羧基,使其具有温和的表面活性。另外,与去垢剂分子相比,聚合物链具有一定粘度,与膜蛋白质接触位点更多,能使膜蛋白质在更长时间和更高温度下保持稳定状态。[/font][/font][font=宋体]A8-35[font=宋体]主要缺点在于其[/font][/font][font=宋体][font=宋体]临界缔合浓度较低,不能像[/font][font=宋体]SMA那样直接溶解细胞膜,提取膜蛋白质。基于此,Marconnet等作出假设,用环烷烃替代[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]中线性的烷基侧链,期望环烷烃能发挥[/font][font=宋体]SMA中苯环的作用,可以自发地吸附到磷脂双分子层上,这是实现生物膜增溶、膜蛋白质提取的第一步。结合SMA独特的膜增溶性能和[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]优异的膜蛋白稳定性能,[/font][font=宋体]Marconnet等制备了聚丙烯酸衍生物CyclAPols。[/font][/font][font=宋体]A8-35[/font][font=宋体][font=宋体]和[/font][font=宋体]CyclAPols结构如图1-12。经过一系列膜蛋白质提取实验,结果表明,所制备的CyclAPols可用于直接提取膜蛋白质和膜脂,提取速度甚至比SMA更快。例如,对于膜蛋白质YidC,CyclAPols可在1小时左右达到最大提取率,而SMA用时超过1小时。此外,CyclAPols对膜蛋白质的稳定性优于SMA。例如,对于HsBR膜蛋白质,[/font][/font][font=宋体]50[/font][font=宋体]℃加热处理6小时,在CyclAPols中可保留80-85%的原始构象,而在SMA中约保留20%。[/font][align=center][img=,412,473]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554112299_7819_3237657_3.jpg!w412x473.jpg[/img][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体][font=宋体]12 [/font][font=宋体]A8-35和CyclAPols[/font][font=宋体]结构[/font][/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]12 Structures of [/font][font=宋体]A8-35 and CyclAPols[/font][sup][font=宋体][font=宋体][92][/font][/font][/sup][/align][font=宋体]Yasuhara等[/font][sup][font=宋体][font=宋体][97][/font][/font][/sup][font=宋体][font=宋体]首次报道了[/font][font=宋体]聚甲基丙烯酸酯两亲性共聚物[/font][font=宋体],如图[/font][font=宋体]1-13所示,甲基丙烯酸丁酯可提供非极性侧链,而甲基丙烯酰氧乙基三甲基氯化铵可提供带正电荷的极性侧链。动态光散射、电镜、核磁共振测试证实了制备的聚合物可以有效溶解磷脂双分子层形成纳米圆盘结构。此外,与SMA相比,[/font][font=宋体]聚甲基丙烯酸酯衍生物[/font][font=宋体]中不含苯环和酰胺键,可将提取的膜蛋白质直接进行荧光、圆二色谱表征,这些表征可用于研究淀粉样蛋白质聚集的动力学和淀粉样蛋白质聚集过程中的结构变化。因此,该聚合物被进一步用于研究人胰岛淀粉样多肽([/font][font=宋体]hIAPP[/font][font=宋体]),[/font][font=宋体]而[/font][font=宋体]hIAPP[/font][font=宋体]产生淀粉样聚集变性与[/font][font=宋体]2型糖尿病中胰岛细胞的死亡息息相关。[/font][/font][align=center][img=,690,190]https://ng1.17img.cn/bbsfiles/images/2022/09/202209071554363037_3318_3237657_3.jpg!w690x190.jpg[/img][/align][align=center][font=宋体]图[/font][font=宋体]1-[/font][font=宋体]13 两亲性甲基丙烯酸酯共聚物[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][align=center][/align][font=宋体][/font][align=center][font=宋体]Fig[/font][font=宋体]. [/font][font=宋体]1-[/font][font=宋体]13 [/font][font=宋体]Amphiphilic methacrylate copolymers[/font][sup][font=宋体][font=宋体][96][/font][/font][/sup][/align][font=宋体] [/font]

  • 【资料】水质浊度的测定透明度测试试管法和圆盘法

    FHZHJSZISO0002 水质浊度的测定透明度测试试管法F-HZ-HJ-SZ-ISO-002水质—浊度的测定—透明度测试试管法1 适用范围透明度测试试管法是半定量的方法,适用于测定纯水和高度污染的水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试试管,防护屏,印刷物样品(白底黑印记),恒定光源。4 过程简述将样品充分混合,转移到透明度测试试管中,平稳的降低样品液面的高度,直至从上方观察可清楚的辨认印刷符号。根据试管上的刻度记录液面高度。5 来源国际标准化组织,ISO 7027:1999(E)FHZHJSZISO0003 水质浊度的测定透明度测试圆盘法F-HZ-HJ-SZ-ISO-003水质—浊度的测定—透明度测试圆盘法1 适用范围透明度测试圆盘法是半定量的方法,适用于测定地表水。2 采样用玻璃或塑料瓶采样,采样后尽快分析。或将样品放在阴凉、黑暗处,24 小时内分析。防止样品与空气接触,避免样品温度不必要的变化。3 仪器透明度测试圆盘4 过程简述将圆盘放在链上,放入水中逐渐降低,直至从上方观察几乎看不见。测量链子浸没的长度。重复实验几次。5 来源国际标准化组织,ISO 7027:1999(E)

  • 【有奖活动】常规仪器——我猜、猜、猜(22)

    【有奖活动】常规仪器——我猜、猜、猜(22)

    [size=4][B][color=#DC143C]各位版友:大家好!【有奖活动】常规仪器——我猜、猜、猜(21)的正确答案是:圆盘旋光仪!猜对的前三名的版友是:mcds、keylua和tuodacy!恭喜![/color]请版友们继续参加我们的活动:请你猜猜下面仪器的具体名称![/B][/size][img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905241536_151657_1608408_3.jpg[/img]

  • 红外光谱仪的种类和工作原理

    一、红外光谱仪的种类  红外光谱仪的种类有:  ①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。  ②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。  当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学运算后,就可得到入射光的光谱。这种仪器的优点:  ①多通道测量,使信噪比提高。  ②光通量高,提高了仪器的灵敏度。  ③波数值的精确度可达0.01厘米-1。  ④增加动镜移动距离,可使分辨本领提高。  ⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。  近红外光谱仪种类繁多,根据不用的角度有多种分类方法。  从应用的角度分类,可以分为在线过程监测仪器、专用仪器和通用仪器。从仪器获得的光谱信息来看,有只测定几个波长的专用仪器,也有可以测定整个近红外谱区的研究型仪器;有的专用于测定短波段的近红外光谱,也有的适用于测定长波段的近红外光谱。较为常用的分类模式是依据仪器的分光形式进行的分类,可分为滤光片型、色散型(光栅、棱镜)、傅里叶变换型等类型。红外光谱仪的原理在下面分别加以叙述。  二、滤光片型近红外光谱仪器:  滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。  仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。  该类型仪器优点是:仪器的体积小,可以作为专用的便携仪器;制造成本低,适于大面积推广。  该类型仪器缺点是:单色光的谱带较宽,波长分辨率差;对温湿度较为敏感;得不到连续光谱;不能对谱图进行预处理,得到的信息量少。故只能作为较低档的专用仪器。  三、色散型近红外光谱仪器:  色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。  该类型仪器的优点:是使用扫描型近红外光谱仪可对样品进行全谱扫描,扫描的重复性和分辨率叫滤光片型仪器有很大程度的提高,个别高端的色散型近红外光谱仪还可以作为研究级的仪器使用。化学计量学在近红外中的应用时现代近红外分析的特征之一。采用全谱分析,可以从近红外谱图中提取大量的有用信息;通过合理的计量学方法将光谱数据与训练集样品的性质(组成、特性数据)相关联可得到相应的校正模型;进而预测未知样品的性质。  该类型仪器的缺点:是光栅或反光镜的机械轴承长时间连续使用容易磨损,影响波长的精度和重现性;由于机械部件较多,仪器的抗震性能较差;图谱容易受到杂散光的干扰;扫描速度较慢,扩展性能差。由于使用外部标准样品校正仪器,其分辨率、信噪比等指标虽然比滤光片型仪器有了很大的提高,但与傅里叶型仪器相比仍有质的区别。  四、傅里叶变换型近红外光谱仪器:  傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品 信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采样系统,通过数模转换器把检测器检测到的干涉光数字化,并导入计算机系统;⑤计算机系统和显示器,将样品干涉光函数和光源干涉光函数分别经傅里叶变换为强度俺频率分布图,二者的比值即样品的近红外图谱,并在显示器中显示。  在傅里叶变换近红外光谱仪器中,干涉仪是仪器的心脏,它的好坏直接影响到仪器的心梗,因此有必要了解传统的麦克尔逊干涉仪以及改进后的干涉仪的工作原理。  ⑴ 传统的麦克尔逊(Michelson)干涉仪:传统的麦克尔逊干涉仪系统包括两个互成90度角的平面镜、光学分束器、光源和检测器。平面镜中一个固定不动的为定镜,一个沿图示方向平行移动的为动镜。动镜在运动过程中应时刻与定镜保持90度角。为了减小摩擦,防止振动,通常把动镜固定在空气轴承上移动。光学分束器具有半透明性质,放于动镜和定镜之间并和它们成45度角,使入射的单色光50%透过,50%反射,使得从光源射出的一束光在分束器被分成两束:反射光A和透射光B。A光束垂直射到定镜上;在那儿被反射,沿原光路返回分束器;其中一半透过分束器射向检测器,而另一半则被反射回光源。B光束以相同的方式穿过分束器射到动镜上;在那儿同样被反射,沿原光路返回分束器;再被分束器反射,与A光束一样射向检测器,而以另一半则透过分束器返回原光路。A、B两束光在此会合,形成为具有干涉光特性的相干光;当动镜移动到不同位置时,即能得到不同光程差的干涉光强。  ⑵改进的干涉仪:干涉仪是傅里叶光谱仪最重要的部件,它的性能好坏决定了傅里叶光谱仪的质量,在经典的麦克尔逊干涉仪的基础上,近年来在提高光通量、增加稳定性和抗震性、简化仪器结构等方面有不少改进。  五、传统的麦克尔逊干涉仪工作过程中,当动镜移动时,难免会存在一定程度上的摆动,使得两个平面镜互不垂直,导致入射光不能直射入动镜或反射光线偏离原入射光的方向,从而得不到与入射光平行的反射光,影响干涉光的质量。外界的振动也会产生相同的影响。因此经典的干涉仪除需经十分精确的调整外,还要在使用过程中避免振动,以保持动镜精确的垂直定镜,获得良好的光谱图。为提高仪器的抗振能力,Bruker公司开发出三维立体平面角镜干涉仪,采用两个三维立体平面角镜作为动镜,通过安装在一个双摆动装置质量中心处的无摩擦轴承,将两个立体平面角镜连接。  三维立体平面角镜干涉仪的实质是用立体平面角镜代替了传统干涉仪两干臂上的平面反光镜。由立体角镜的光学原理可知,当其反射面之间有微小的垂直度误差及立体角镜沿轴方向发生较小的摆动时,反射光的方向不会发生改变,仍能够严格地按与入射光线平行的方向射出。由此可以看出,采用三维立体角镜后,可以有效地消除动镜在运动过程中因摆动、外部振动或倾斜等因素引起的附加光程差,从而提高了一起的抗振能力

  • 【求助】请问知道怎么购买或自制微碳圆盘电极吗?

    [em01] 大家好,我们现在用的是毛细管电泳电化学检测仪,仪器随带的电极无法满足实验要求,所以我们需要一种微碳圆盘电极。但是我们自己制作的效果一直不好,请问各位知道怎么自制或者购买吗?有好的建议希望大家多多发表!非常感谢!!!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制