当前位置: 仪器信息网 > 行业主题 > >

数字水准仪的测量原理

仪器信息网数字水准仪的测量原理专题为您提供2024年最新数字水准仪的测量原理价格报价、厂家品牌的相关信息, 包括数字水准仪的测量原理参数、型号等,不管是国产,还是进口品牌的数字水准仪的测量原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字水准仪的测量原理相关的耗材配件、试剂标物,还有数字水准仪的测量原理相关的最新资讯、资料,以及数字水准仪的测量原理相关的解决方案。

数字水准仪的测量原理相关的论坛

  • 【原创】水准仪规格型号全面介绍

    水准仪是根据水准测量原理测量地面点间高差的仪器。水准仪是在17~18世纪发明了望远镜和水准器后出现的。20世纪初,在制出内调焦望远镜和符合水准器的基础上生产出微倾水准仪。20世纪50年代初出现了;60年代研制出激光水准仪;90年代出现电子水准仪或数字水准仪。

  • 天平水准仪漏夜

    我用的是岛津的AUWD220型,水准仪坏了请问如何换啊?开了半天没打开啊

  • 拆箱后,悲剧了,水准仪哪去了---什么鬼

    拆箱后,悲剧了,水准仪哪去了---什么鬼

    http://ng1.17img.cn/bbsfiles/images/2017/04/201704242300_02_2158849_3.jpg什么鬼---水准仪的泡泡没了,或者全是泡泡没水了---有人遇到这种情况不,厂家说寄水准仪过来,可是这面板这做工---似乎不好换吧,不能外接吧---

  • RTK。全站仪。水准仪优惠大活动

    百色市安云测绘仪器测量仪器超市 奉经理 手机:18078604755地址:百色市右江区城北二路28号门面 测绘仪器超市 销售批发: 对讲机专业销售批发 多频 公网 南方系列,科力达系列,中海达系列,苏一光,徕卡,天宝,合众思壮1:测量型RTK产品,GPS 水上GPS,手持GPS 2:工程型全站仪、免棱镜全站仪、防爆全站仪3:隧道断面检测仪及软件、激光指向仪4:经纬仪、水准仪、扫平仪、激光水平仪、激光测高、测距仪5:风俗风向仪、气体检测仪器及各种气象环境监测仪器6:各种工程检测仪器、各种试模、压力机、万能机、建筑工程无损检测仪器7:进口、国产对讲机批发、中继台、车载台8:各种测绘测量软件及测量配件 承揽各种测量工程:地形、勘界、宗地、土石方、道路测量、测量飞机 服务;测绘测量仪器维修、检定、租赁 免费校正调试仪器,送货上门服务。衡阳安云测绘仪器测量仪器公司成立于2014年 公司是瑞士徕卡、美国天宝、日本拓普康、索佳、尼康、宾得等世界仪器品牌永州总代理 也是南方 ,科力达,中海达、华测、常州大地、三鼎、中纬、苏一光、科力达、合众思壮等国产品牌的永州总代理。 我公司具有雄厚的技术实力,可以进行全站仪、经纬仪、水准仪的维修与调校,是湖南省测绘产品质量监督检验授权站永州测绘仪器检测代办机构 公司在全站仪、GPS、测绘软件的使用及测量知识培训方面拥有得天独厚的优势。 提供送货上门,免费校正服务。

  • RTK。全站仪。水准仪优惠大活动

    百色市安云测绘仪器测量仪器超市 奉经理 手机:18078604755地址:百色市右江区城北二路28号门面 测绘仪器超市 销售批发: 对讲机专业销售批发 多频 公网 南方系列,科力达系列,中海达系列,苏一光,徕卡,天宝,合众思壮1:测量型RTK产品,GPS 水上GPS,手持GPS 2:工程型全站仪、免棱镜全站仪、防爆全站仪3:隧道断面检测仪及软件、激光指向仪4:经纬仪、水准仪、扫平仪、激光水平仪、激光测高、测距仪5:风俗风向仪、气体检测仪器及各种气象环境监测仪器6:各种工程检测仪器、各种试模、压力机、万能机、建筑工程无损检测仪器7:进口、国产对讲机批发、中继台、车载台8:各种测绘测量软件及测量配件 承揽各种测量工程:地形、勘界、宗地、土石方、道路测量、测量飞机 服务;测绘测量仪器维修、检定、租赁 免费校正调试仪器,送货上门服务。衡阳安云测绘仪器测量仪器公司成立于2014年 公司是瑞士徕卡、美国天宝、日本拓普康、索佳、尼康、宾得等世界仪器品牌永州总代理 也是南方 ,科力达,中海达、华测、常州大地、三鼎、中纬、苏一光、科力达、合众思壮等国产品牌的永州总代理。 我公司具有雄厚的技术实力,可以进行全站仪、经纬仪、水准仪的维修与调校,是湖南省测绘产品质量监督检验授权站永州测绘仪器检测代办机构 公司在全站仪、GPS、测绘软件的使用及测量知识培训方面拥有得天独厚的优势。 提供送货上门,免费校正服务。

  • 【原创】今日盘点世界五款知名的测绘仪器数据

    [em09506]先如今世界过大知名的测绘仪器产品多不胜数,今天我们就来分析一下最重要的六款知名仪器产品。让你们更加的了解仪器行业的信息。 一、测距仪 APRESYS测距望远镜,高品质机芯,测量迅速快,精确度高! 既是望远镜,更是测距仪!观察和测距同步进行! 提高工作效率,实现单人操作!想准确,快速的测量距离吗? 现在!您完全可以放弃那些繁琐步骤……使用APRESYS激光测距望远镜 您无须 拉皮尺,两人操作; 也无须 辛苦的推着测距轮测距;更无须 为了测量难以接近的地方的距离而烦恼不已。二、水准仪 中纬水准仪,中纬ZDL700,中纬ZDL700水准仪,中纬水准仪ZDL700,自动安平水准仪,光学水准仪,电子水准仪,国产水准仪,进口水准仪,光学水准仪,水准仪价格,徕卡水准仪价格ZDL700 数字水准仪满足二到四等水准测量精度要求高等级防尘防水,有力支持外业测量路灯照明轻松测量,更加方便快捷 五号(AA)电池供电,解决外业供电问题相位法条码识别,解决视场部分遮挡丰富的应用程序,方便您的外业测量。三、全站仪 指标差异 H配滑动基座 L配激光下对点器.性能特点:1.测角部采用欧美品牌的APD光电二极管和集成电路,性能可靠。2.测距部采用欧洲进口的人眼安全红外发光二极管。3.适用于专业测量、工程测量、教学培训、精密工业安装等方面。4.大屏幕中文界面,大字体设计,数字化键盘,操作提示直观,易学易用。5.强大的内存管理功能,具有可存贮15000(可选15000~50000)点数据大容量内存, 并可以方便地进行内存管理。6.可自动记录各种测量数据(角度数据、距离数据、坐标数据、测站数据),采用开放的通讯方式。7.可直接与计算机进行实时双向数据传输和内存双向数据传输。四、经纬仪 1.方便的读数与测量:读数方便,显示清晰 ,液晶显示16*2字符(LCD)的双面显示垂直角与水平角可用 度分秒显示.2.方便的键盘操作:功能键可以进行快速作业3.使用方便:集成化、精度高、重量轻,主机只有4.6 kg (包含电池)4.自动关机功能:使电池的使用时间更长5.角度测量与角度锁定:盘左盘右角度测量垂直角可转换成坡度百分比水平角在任何位置可置水平角锁定功能6.明亮的光学特征即使在光线条件不好的情况下也能成像清晰7.碱性电池供电充电式电池:Hi-MH2000mAh,一次充电可使用20小时左右碱性干电池:可使用25小时。五、投线仪 本产品具有自动安平功能;可产生三个激光平面(一个水平面和两个正交的铅垂面,投射到墙上产生激光线)和一个激光下对点。两条铅垂线会合,产生一个天顶点;仪器具有360°旋转及微调机构,可准确照准目标。

  • 数字磁通表工作原理及特点

    数字磁通表由高精度、无漂移的运算放大器组成低漂移的积分器,线路经过优化设计处理,性能进一步得到提升,漂移达到最小,保证了整机的可靠性、稳定性。数字磁通表的电源采用开关电源,整机功耗低。数字磁通表有产品分选、峰值测量、声光提示功能,可作一般的磁通测量;可测脉冲磁场;也可用于产品的大批量检测,检测操作方便快捷,是测量磁场、磁通的理想仪器。 数字磁通表的特点是采用磁感应原理测量直流磁通量。具有峰值保持功能,测量脉冲磁场。 量宽,操作方便,读书清晰,稳定。 3 1/2位数字显示,显示满度1999。

  • 【资料】有奖征集——各类计量器具的使用寿命

    [size=4][i][u][color=#fe2419][size=5]有奖征集——各类计量器具的使用寿命 [/size][/color][/u][/i]游标卡尺千分尺角度尺水准仪光学经纬仪电子天平拉力计转速表数字万用表数字绝缘电阻表照度计电子秒表光谱分析仪[/size]

  • 【原创】UV能量计的测量原理及分析

    UV能量计的测量原理及分析UV能量计测量方案主要有两种不同的方案:1) 单芯片集成测量方案2)智能单片机采集方案对于单芯片集成测量方案,不需要程序设计,直接用传感器加可调电阻,组成了模拟信号的输入。只能显示通过调节可调电阻,单液晶显示最终的能量值。一般采用段码式液晶。这种方案的优点是设计简单,缺点是准确度不够,只能显示能量值,不能显示功率值。智能UV能量计方案的测量原理,首先通过ADC模数转换芯片,将紫外探测器的弱电流信号转换为数字信号,然后单片机采集到数字信号,通过软件调校,首先测量到UV功率,通过对UV功率的对时间的积分,得到UV能量。这个过程,一需要模数转换,得到UV功率大小,二需要积分,得到能量值。如果需要准确度高,采集时间必需足够的快,一般一秒钟至少1000次以上,这样积分的能量值,才比较准确。对于智能单片机采集方案,首先测到功率值,然后计算能量值。这样采用这种方案的UV能量计,都是同时显示实时功率值,最大功率值和能量值。有些智能UV能量计,还会集成温度测量。智能UV能量计采用的高速多点采集,所以能够记录采集过程的各个数据,得出过程中的曲线数据。总结:智能UV能量计,能够测量到UV功率值,可以带温度测量,并可有测量过程的曲线显示。这样就更能分析固化炉中的各个点的UV强度分布和温度分布,便于生产过程中工艺分析和工艺参数制定。

  • 【分享】如何得知拉伸法测量金属的弹性模量

    最简单的形变是线状或棒状物体受到长度方向上的拉力作用,发生长度伸长。设金属丝(或杆)的原长为L,横截面积为S,在弹性限度内的拉力F作用下,伸长了L。比值F/S为金属丝单位横截面积上所受的力,叫做胁强(或应力),相对伸长量 L/L叫胁变(或应变)。据虎克定律,胁强和胁变成正比,即: (1)比例系数: (2)E叫做物体的弹性模量(或称杨氏模量)。E的大小与物体的粗细、长短等形状无关,只决定于材料的性质,它是表示各种固体材料抗拒形变能力的重要物理量,是各种机械设计和工程技术选择构件用材必须考虑的重要力学参量。 任何固体在外力作用下都会改变固体原来的形状大小,这种现象叫做形变。一定限度以内的外力撤除之后,物体能完全恢复原状的形变,叫弹性形变。 杨氏弹性模量的测量方法有静态测量法、共振法、脉冲传输法等,其中以共振法和脉冲法测量精度较高。杨氏弹性模量的静态测量法就是在物体加载以后,测出物体的应力和应变,根据一定的计算式得到E值,主要有拉伸法、梁弯曲法等。用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离处的绝对形变不同(AA'BB'),而相对形变则相等,即 (6-3)式中 称为切变角,当 值较小时,可用 代替 ,实验表明,一定限度内切变角 与切应力 成正比,此处S为立方体平行于底的截面积,现以符号 表示切应力 ,则 (6-4)比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。实验目的1. 掌握测量固体杨氏弹性模量的一种方法。2. 掌握测量微小伸长量的光杠杆法原理和仪器的调节使用。3. 学会一种数据处理方法——逐差法。实验仪器杨氏模量仪、尺读望远镜、光杠杆、水准仪、千分尺、游标卡尺(精度0.02mm)及1kg砝码9个。 实验的详细装置如图1所示。其中尺读望远镜由望远镜和标尺架组成,望远镜的仰角可由仰角螺钉调节,望远镜的目镜可以调节,还配有调焦手轮。杨氏模量仪是一个较大的三脚架,装有两根平行的立柱,立柱上部横梁中央可以固定金属丝,立柱下部架有一个小平台,用于架设光杠杆。小平台的位置高低可沿立柱升降、调节、固定。三脚架的三个脚上配有三个螺丝,用于调节小平台水平。 光杠杆如图2所示,将一个小反射镜装在一个三脚架上,前两脚和镜子同面,后脚(或叫主杆、主脚)垂直镜架,其长度a可以调节。实验原理 由(1)式可知,只要测得F、S、L、 L各量,就可以求出物体杨氏模量。其中F可以从添加的砝码直接写出;S可用螺旋测微器(千分尺)量出金属丝的直径d算出;L可用米尺量度,唯有 L很微小,用一般工具不能量准,本实验用光杠杆对 L进行准确的间接测量。 光杠杆测量微小伸长量 L的基本装置如简图2所示。待测金属丝L上端固定,下端夹在小圆柱体的中央缝隙中,小圆柱体穿套在一个固定的小平台的圆孔中,并可以自由地上下移动,其下端有一个环,可以挂砝码,以产生作用力F,光杠杆前脚立在固定的小平台上,后脚尖立在小圆柱体上,光杠杆前方D距离处有观测的标尺和尺读望远镜。 假定添加砝码之前,光杠杆的小反射镜M的镜面竖直,从望远镜中的横丝上,可以见到标尺N0刻度经M反射所成的像。添加砝码之后,金属丝相应拉长了 L,光杠杆的后脚尖也随小圆柱下降了 L,此时,后脚将带动小镜转过一个小角度θ到M′处,因此,在望远镜中将看到以θ角入射和反射的标尺Ni刻度所成的像,入射线和反射线之前的夹角为2θ,据图3的几何关系,可得: ∵ 甚小,上两式可以写成: 消去 可得: (5)上式表明,如果D取值远大于 ,则 n将是 L的 倍( 》1), 就是光杠杆的放大倍数。(5)式右边各量均可用一般的测长工具直接度量,即 可由标尺上的读数差取得;D可用米尺量取;α为光杠杆后脚长,可把光杠杆取下印出三个脚尖,用卡尺量出后脚尖到前两脚连线中点的距离,即为 。从而通过(5)式可以算出 L,这就是光杠杆测 L的原理。将(5)式代入(1)式,得杨氏模量E最终的计算式为: E (6)实验方法 (1)先置水准仪于小平台上,检查、调节小平台水平(应在相互正交的两个方向上都达到水平指示),达到水平后,取下水准仪。 (2)小圆柱下端预先挂上2kg砝码,以拉直金属丝,然后调小平台高低位置,使小平台上表面与小圆柱体上端等高,抄记金属丝的长度L(固定端至小圆柱体上表面之间的距离)。 (3)把光杠杆立在小平台上(前脚置于小平台上的沟槽内,后脚立于小圆柱体上),并调节光杠杆的小镜面至铅直(目估即可)。 (4)调节尺读望远镜:把尺读远镜立在光杠杆小镜前约1.10~1.30m处,调节其高度,使望远镜大致与光杠杆小镜等高;用尺读望远镜瞄准线对准小镜;先用一只眼睛靠近目镜头上方直接朝小镜看去,应能见到镜子里有标尺的像;如看不到,可变动一下望远镜及标尺的相对位置,或移动尺读望远镜底座,或调整光杠杆镜面,直至上述现象出现。在上述状态下调节望远镜,分两步进行:① 先调望远镜的目镜,直至看到最清晰的十字丝,并转动望远镜目镜镜筒,使横丝水平;② 调节望远镜的调焦手轮(通过转动中部旋钮)直至看清标尺的像,且标尺像与十字丝同面,即当眼睛略上下移动时,横丝和标尺像无相对位移(无视差)。此后便可以进行观测,记下横丝所对准的标尺读数n0。 (5)依次添加砝码七次(每次添1kg),并逐次记录出现于望远镜中的标尺刻度n1、n2、…、n7。然后,依次减去砝码七次(每次1kg),并记录相应的读数n7、n6、n5、n4、…、n0,求同一拉力下的平均读数 、 、…、 。然后将平均读数分成 、 、 、 和 、 、 、 两组,用逐差法算出每增添4kg砝码时的平均读数差 。计算式为: =[( - )+( - )+( - )+( - )]/4 (6)用尺读望远镜测量标尺至光杠杆的前脚距离D;尺读望远镜上下叉丝对齐标尺刻度之差×100倍为D的2倍值。用卡尺测量光杠杆后脚长a(方法见光杠杆测量装置末段所述);用螺旋测微器测量金属丝的直径d(应在不同位置量五次,求平均值 )。 (7)记录金属丝长度L,四个砝码的拉力F,以及D、a。它们的不确定度及L值由实验室给出。用(6)式算出杨氏模量E,计算出E的不确定度,写出E±UE。

  • 【分享】声级计的工作原理及分类

    声级计俗称为噪声计是噪声测量中最基本的仪器。声级计一般由电容式传声器、前置放大器、衰减器、放大器、频率计权网络以及有效值指示表头等组成。声级计的工作原理是:由传声器将声音转换成电信号,再由前置放大器变换阻抗,使传声器与衰减器匹配。放大器将输出信号加到计权网络,对信号进行频率计权(或外接滤波器),然后再经衰减器及放大器将信号放大到一定的幅值,送到有效值检波器(或外按电平记录仪),在指示表头上给出噪声声级的数值。 声级计中的频率计权网络有A、B、C三种标准计权网络。A网络是模拟人耳对等响曲线中40方纯音的响应,它的曲线形状与340方的等响曲线相反,从而使电信号的中、低频段有较大的衰减。B网络是模拟人耳对70方纯音的响应,它使电信号的低频段有一定的衰减。C网络是模拟人耳对100方纯音的响应,在整个声频范围内有近乎平直的响应。 声级计经过频率计权网络测得的声压级称为声级,根据所使用的计权网不同,分别称为A声级、B声级和C声级,单位记作dB(A)、dB(B)和dB(C)。 目前,测量噪声用的声级计,表头响应按灵敏度可分为四种: (1)“慢"。表头时间常数为1000 ms,—般用于测量稳态噪声,测 得的数值为有效值。 (2)"快"。表头时间常数为125ms,一般用于测量波动较大的不稳态噪声和交通运输噪声等。快档接近人耳对声音的反应。 (3)“脉冲或脉冲保持"。表针上升时间为35ms,用于测量持续时间较长的脉冲噪声,如冲床、按锤等,测得的数值为最大有效值。 (4)“峰值保持"。表针上升时间小于20ms.用于测量持续时间很短的脉冲声,如枪、炮和爆炸声,测得的数值是峰值.即最大值。测距仪测高仪激光投线仪流量计GPS测厚仪水准仪平板仪波形记录仪测试夹具电压电流记录器资料集录器图形记录仪流量积算仪表 声级计可以外接滤波器和记录仪,对噪声做频谱分析。国产的ND2型精密声级计内装了一个倍频页程滤波器,便于携带到现场和作频谱分析。过程校准仪温度校准仪压力校准仪回路校准仪校正缓冲液钳表校正器示波器校准器噪音计校正器电流校正器多功能校正器湿度校正仪ph校正器 声级计按精度可分为精密声级计和普通声级计。精密声级计的测量误差约为土1dB,普通声级计约为土3dB。声级计按用途可分为两类:一类用于测量稳态噪声,一类则用于测量不稳态噪声和脉冲噪声。 积分式声级计是用来测量一段时间内不稳态噪声的等效声级的。噪声剂量计也是一种积分式声级计,主要用来测量噪声暴露量。 脉冲式声级计是用于测量脉冲噪声的,这种声级计符合人耳对脉冲声的响应及人耳对脉冲声反应的平均时间。

  • 水准瓶碘液瓶崩塞的处理

    传统气体容量法的碳硫分析仪在使用中常见故障水准瓶碘液瓶崩塞(胶塞脱落)水准瓶和碘液瓶崩塞: 1产生原因:传统碳硫分析仪的水准瓶和碘液瓶口大胶塞分别穿有加压和出液玻璃管,会造成胶塞变形(增加不圆度)和降低弹性,从而导致不易塞紧,在压力偏高时,引起崩塞故障。 2排除方法:将胶塞裹上两三层水胶带(水电安装用的),再塞紧胶塞。 3预防方法: 3.1水准瓶和碘液瓶瓶口应磨砂,增加摩擦力; 3.2两瓶的压力要调整至适当,不可过高。

  • 【经验】数字化影像测量仪(CNC版)与手摇式影像测量仪的区别!!!!

    影像测量仪(又名影像式精密测绘仪)是在测量投影仪的基础上进行的一次质的飞跃,它将工业计量方式从传统的光学投影对位提升到了依托于数位影像时代而产生的计算机屏幕测量。值得一提的是,目前市面上有一种既带数显屏又接计算机的过渡性产品。从严格意义来说,这种仅把电脑用作瞄准工具的设备不是影像测量仪,只能叫做“影像式测量投影仪”或“影像对位式投影仪”。换句话说:影像测量仪是依托于计算机屏幕测量技术和强大的空间几何运算软件而存在的。影像测量仪又分数字化影像测量仪(又名CNC影像仪)与手摇式影像测量仪两种,它们之间的区别主要表现在如下几个方面:一:数字化CNC技术实现了点哪走哪:手摇影像测量仪在测量点A、B两点之间距离的操作是:先摇X、Y方向手柄走位对准A点,在用手操作电脑并点击鼠标确定;然后摇手到B点,重复以上动作确定B点。每次点击鼠标该点的光学尺位移数值读入计算机,当所有点的数值都被读入后计算机自动进行计算并得到测量结果,一切功能与操作都是分离进行的;数字化CNC影像测量仪则不同,它建立在微米级精确数控的硬件与人性化操作软件的基础上,将各种功能彻底集成,从而成为一台真正义上的现代精密仪器。具备无级变速、柔和运动、点哪走哪、电子锁定、同步读数等基本能力;鼠标移动找到你所想要测定的A、B两点后,电脑就已帮你计算测量出结果,并显示图形供校验,图影同步,既使是初学者测量两点之间距离也只需数秒钟。二:数字化技术实现了工件随意放置:手摇式影像测量仪在进行基准测量时,需要摇动工作平台,然后通过认为判断所要求的点。而数字化影像测量仪可以利用软件技术完成空间坐标系旋转和多坐标系之间的复杂换算,被测工件可随意放置,随意建立坐标原点和基准方向并得到测量值,同时在屏幕上呈现出标记,直观地看出坐标方向和测量点,使最为常见的基准距离测量变得十分简便而直观。三: 数字化技术能进行CNC快速测量:手摇式影像测量仪在进行同一工件的批量测量时,需要人工逐一手摇走位,有时一天得摇上数以万计的圈数,仍然只能完成数十个复杂工件的有限测量,工作效率低下。数字化影像测量仪可以通过样品实测、图纸计算、CNC数据导入等方式建立CNC坐标数据,由仪器自动走向一个一个的目标点,完成各种测量操作,从而节省人力,提高效率。数十倍于手摇式影像测量仪的工作能力下,操作人员轻松而高效.如有疑问请登陆www.yr17.net

  • 【求助】水准瓶的用法

    非水滴定法测碳硫,水准瓶的用法我是刚开始搞钢铁五大元素的分析,用的是JTY-CS201碳硫分析仪,说明书上说的不清楚,我想请教各位高手!请多多帮忙!!

  • 【分享】激光测距仪测量原理

    【分享】激光测距仪测量原理

    激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离; c——光在大气中传播的速度; t——光往返A、B一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间,如图所示。相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=φ/ω将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω 在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具,宏诚科技的CEM手持式激光测距仪LDM-100就是测量的最佳助手。 手持式激光测距仪使用注意事项 [font=Times New Rom

  • 【求助】水准瓶的用法?

    非水滴定法测碳硫,水准瓶的用法我是刚开始搞钢铁五大元素的分析,用的是JTY-CS201碳硫分析仪,说明书上说的不清楚,我想请教各位高手!请多多帮忙!!

  • 如何区别仪器需要检定还是校准

    如题所示。本人看到某计量所,出具的报告:检定证书的有:天平、秒表、电子称、钢直尺、回弹仪、百分表校准证书的有:烘箱、移液管、红外线测温仪,水准仪、灌砂筒、弯沉仪、碳化深度仪请教各位前辈,1、上述证书对否?       2、仪器检定与校准有何区别?       3、对于我自己试验室的上述等各种设备,如何划分检定还是校准?多谢各位。

  • 《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    《核磁共振原理与实验方法》、《磁共振成像原理》两书数字出版了

    今天到这里来发布一个消息,对坛里各位师生都有用,版主不要认为是广告帖,高抬贵手啊。《核磁共振原理与实验方法》原书由武汉大学出版社出版,ISBN:9787307059894。出版时间:2008-04-01。大32开本,32个印张,精装版,每本定价95元,该书是核磁共振专著。前5章为核磁共振基础知识;第6章是介绍核磁共振谱仪和操作程序;第7和第8章是理论计算方法和表象理论,很有看点;第9章是该书所特有,如想设计新的实验就有必要一读;第10章一维谱,包括谱仪各种指标测试和13C谱编辑;第11章自旋回波和驰豫时间测量;第12 章双共振,重点讨论各种自旋去偶;第13章二维谱,是读者感兴趣的部分; 第14章多量子跃迁,比较专业;第15章供关心固体高分辨的读者一阅;第16章是书中的重点,分析了84个实用脉冲序列,体现了理论与实验相结合的价值。《核磁共振原理与实验方法》适用于从事核磁共振研究的专业人员,应用核磁共振技术做结构分析的相关工作人员,以及大学教师、研究生、科研人。该书2008年出版,很快售罄,一直未再版。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011326_540416_2995925_3.jpg网上对该书需求度很高。现在,两位老师(高汉宾、张振芳)不顾年事已高,重新整理,与时俱进,以数字出版方式,在武汉大学出版社的天线出版网上正式网络出版,出版号: UDPN 978-7-307-01368-1。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011333_540417_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011334_540418_2995925_3.jpg扫一扫同时,两位老师的另一新作《磁共振成像原理》也以数字出版形式出版,出版号: UDPN 978-7-307-01369-8。该书没有纸质出版,数字出版是唯一形式。http://ng1.17img.cn/bbsfiles/images/2015/04/201504011338_540419_2995925_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/04/201504011339_540420_2995925_3.jpg扫一扫该书简介:随着磁共振成像在临床诊断中普遍应用,磁共振影像已为大众所熟悉,希望了解磁共振成像的人与日俱增,为此,需要一本具有一定深度的普及读物供大家阅读和参考。本书从物理角度论述磁共成像原理,全书共分14章。 第一章 磁共振成像概述 第二章 连续与离散傅里叶变换 第三章 离散采样与傅里叶重建像 第四章 稳态κ空间采样 第五章 稳态快速κ空间采样 第六章 κ空间分区采样和回波平面成像(EPI) 第七章 Bloch方程的解与旋密度、T1、T2 的测量 第八章 分辨率、信噪比、对比度 第九章 化学位移谱成像和抑制脂肪信号 第十章 磁场不均匀对图像的影响 第十一章 随机运动、弛豫与扩散 第十二章 运动伪影和速率补偿 第十三章 磁共振血管成像(MRA) 第十四章 磁化率成像与脑功能成像(FMIR)参考文献

  • 【资料】高精度数字失真度测量仪的设计

    引言   通信系统中采用的许多算法和技术都是在线性系统的前提下研究和设计的,一定频率的信号通过这些网络后,往往会产生新的频率分量,称之为该网络的线性失真。失真度分析采取的常用方法有基波抑制法和谐波分析法两种。  基波抑制法通常用在模拟失真度测量仪中,原理是采用具有频率选择性的无源网络(如谐振电桥、双T陷波网络等)抑制基波,由信号总功率和抑制基波后的信号功率计算出失真度。理想的基波抑制器应完全滤除基波,又不衰减任何其他频率。但实际上,基波抑制器对基波衰减抑制只能达到-60 dB~-80 dB,对谐波却损耗0.5 dB~1.0 dB。这种方式的失真度仪的性能主要依赖于硬件设计,调试和校准工作烦琐,一般只能实现固定1个或几个频率的失真度测量,其测量误差随着失真度降低而加大,并且随着器件老化,电路的稳定性和可靠性降低。  谐波分析法类似于频谱分析,通常是借助数字方式的以FFF(快速傅里叶变换)为基础的算法,或者采用模拟方式的选频测量方法,从而获得基波和各次谐波的功率,计算出失真度。模拟选频方式的失真度分析仪性能高,但硬件电路复杂。数字方式的失真度分析对硬件的设计要求降低,其性能主要决定于A/D转换的精度和数字信号处理算法。仅仅采用FFT来分析失真度是远远不够的,因为测量精度与其运算量、存储空间的大小和测量速度存在明显的矛盾。 针对以上失真度测量方法的不足,本文以数字谐波分析法为基础,提出了基于DFT(离散傅里叶变换)和过零检测法的失真度分析算法,不仅可满足高精度和任意频率的测试需求,还可降低硬件设计复杂度。  1失真度算法研究  1.1算法分析  失真度定义为: http://www.vihome.com.cn/class/UploadFiles_4704/200909/2009092213540898.jpg  式中:u1,u2,…,uM分别为被测频率的基频、二次谐波、…、M次谐波分量的幅度有效值;E1,E2,…,EM为基频和谐波分量的能量,一般M=5或7。 从失真度定义来分析,要测量信号的失真度,只须设法将被测信号的基波与谐波分离,分别测出它们各自的功率或电压有效值,代入式(1)即可。  DFT在DSP中通常用于对平稳信号的频谱估计,在应用中,将输入信号截短,得到的行向量X=x(n)与一个相同长度的正弦信号W=w(n)相乘积分,可得到向量X中含有正弦信号W的分量。所以,如果向量W的频率等于失真度测量的各个频率分量和它们的正交分量,则可以计算出输入信号中包含第m次谐波的能量Em: http://www.vihome.com.cn/class/UploadFiles_4704/200909/2009092213540809.jpg  将式(2)值代人式(1)就可得到失真度值。   在工程测量中,被测信号的频率往往未知,而DFT计算时是确定的频率,所以应给W提供准确的频率,而且W的频率预测越准确,能量计算也越精确。  为了准确找到基频,对采样信号采用过零检测法来测量频率,为避免噪声干扰,设置零幅度带,每通过零幅度带即为过零一次。被测信号频率由fx=N/T得到,T为时间基准,N为T内过零点数。过零检测法测频虽准确度较高,但是在标准的时间基准T中如10 ms、0.1 s、1 s等,由于被测信号与门控信号不可能同步锁定,所以存在固有的±1量化误差。本系统中如果选用1 s做时间基准的话,实时性不够。因此综合考虑实时性、存储量、处理速度之间的关系,选择T=0.1 s作为时间基准。这时±1误差被扩大10倍,为±10 Hz。为解决±1量化误差,使用以过零测频为中心,固定带宽(30 Hz)内最大值能量搜索办法(二分法)寻找基频能量最大值,经过5~7次迭代可得到准确的基频。然后直接使用此基频得到各次谐波的准确频率,并将基频和谐波频率提供给W,使用DFT就可直接估计基频和各高次谐波能量,完成失真度计算。  1.2仿真结果分析  使用MATLAB对上述算法进行仿真。设输入信号基频为1 kHz,并在±30 Hz范围内随机变动,信噪比20 dB,采样速率为44×103次采样/s,计算到7次谐波能量,基频能量二分法搜索带宽为30 Hz。最大值搜索时,当能量变化小于0.1%时终止,序列运算长度1 024个采样点,使用平方汉宁(Hanning)窗减少频谱泄漏。按这些条件,对500次具有随机频偏和失真特性的输入信号进行算法仿真。结果如图1所示。  仿真结果表明,采用上述条件时,频率计算误差控制在1 Hz以下(见图1(a));失真度误差能控制在1%以下(见图1(b))。如果终止条件更严格,测量精度可以更高。通过仿真还发现,当基频搜索时能量变化小于0.01%时终止,失真度测量误差可小于0.1%(见图1(d))。为使失真度算法更有效率,本系统采用能量变化小于0.1%时终止。  2数字失真度测量仪硬件结构  该系统硬件结构如图2所示。测量仪主要由信号调理、低通滤波、数据采集系统、主控制器AVR单片机(Atmega64L)、DSP(数字信号处理器)等模块组成。  2.1信号调理和低通滤波模块  信号调理和低通滤波的功能是对信号的幅度进行调理和滤波。信号的输入范围是不定的,小信号信噪比较低,大信号会引起A/D转换器对信号进行限幅而失真,所以采用数控可变增益放大器对信号输出电压范围进行调整,将信号的幅度控制在A/D转换器的满幅度附近。保证A/D转换器采集到的波形数据最大值仅占A/D转换器不失真输入范围的80%。低通滤波为20 kHz低通滤波器,其0.1 dB带宽为18 kHz,能有效滤除高频信号,同时保证较好的带内平坦度。  2.2数据采集模块  作为电子测量仪器要得到高精度的测量结果,要求A/D转换器的精度必须足够高。系统采用了TI公司的24 bit工业A/D转换器ADS1271,它可以得到低的漂移、极低的量化噪声。经ADS1271采样后的数据由DOUT引脚串行输出,与TMS320C6713的多通道缓冲串口McBSP直接相连。McBSP可支持字长为24 bit的数据,可直接接收A/D转换器输出的24 bit串行数据,并自动将接收数据中的数据位调整为DSP需要的格式。A/D转换器采样速率为44×103次采样/s。A/D转换器的采样脉冲信号由DSP的定时器提供。  2.3数据处理模块  DSP模块以TMS320C6713芯片为核心。该芯片是TI公司推出的一款高性能浮点DSP,内核包含了8个功能单元,采用先进的VLIW(甚长指令字)结构,使得DSP在单周期内能够执行多条指令。在225 MHz的时钟频率下,其最高执行速度可以达到1350×106次浮点运算/s。它还集成了丰富的片内外设单元,本系统主要用到的有HPI、EDMA和定时器。  主机接口为HPI,外部主机可以直接访问内部的存储器和存储器映像存储器,TMS320C6713的HPI通过EDMA控制器实现对DSP存储空间的访问,本系统中Atmega64L是主机,可以直接配置TMS320C6713的EDMA定时器,节省TMS320C6713的查询周期。ED-MA(增强型直接存储器访问)是C621x/C671x/C64x系列DSP特有的访问方式,其启动可以由内部或外部事件触发,本系统采用外部触发。  2.4外围设备  失真度测试系统的控制和结果显示通过标准RS-232接口完成。因此该数字失真度测量仪可以作为一个独立测量模块集合在其他综合测试仪中。  2.5控制模块  主控制器使用Atmega64L单片机,完成系统的控制。DSP的处理结果由主控制器通过HPI接口获得,并缓存在内存中;当外部命令读取测试结果时,再通过RS-232接口发送出去。控制模块还完成系统的低功耗控制、DSP运行模式等控制。  3软件实现  图3是TMS320C6713芯片的软件流程图。该芯片受Atmega64L控制。Atmega64L根据RS-232接口获得指令,然后根据指令参数来控制仪器的运行。TMS320C6713可执行两种操作:一种是自动测量,首先对采集数据使用过零法粗测频率,然后把粗测频率作为参数传递给失真度测量程序,由失真度计算程序完成测量;另一种是定频测量,把Atmega64L传递来的频率参数直接传递给失真度测量程序完成失真度的测量,而不需要事先测量频率。  失真度测量程序设有一个入口参数fmiddle,以此参数为中心频率在带宽30 Hz内使用最大值搜索法找寻准确的基频频率并完成失真度计算,返回值是实际测量的基频频率、信号电平、失真度。  DSP处理完数据后,把测试结果缓存在内存中,单片机根据指令通过HPI接口读取测试结果。  4性能分析  测量速度是决定仪器实用性的重要因素。每计算一次失真度,基频能量二分法最大值搜索时一般需要5~7次迭代,每次迭代含3次向量乘法(2次乘法,2次加法),取10次迭代需要30次向量乘累加操作、生成30个W向量;剩余6次谐波计算需要6个W向量,合计36个W向量。  W向量的生成如果采用直接调用库函数,运送量太大,而

  • 【分享】磁性涂镀层厚度测量仪应用原理简介

    一、磁吸力原理测厚仪利用永久磁铁测头与导磁的钢材之间的吸力大小与处于这两者之间的距离成一定比例关系可测量覆层的厚度,这个距离就是覆层的厚度,所以只要覆层与基材的导磁率之差足够大,就可以进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成形,所以磁性测厚仪应用最广。测量仪基本结构是磁钢,拉簧,标尺及自停机构。当磁钢与被测物吸合后,有一个弹簧在其后逐渐拉长,拉力逐渐增大,当拉力钢大于吸力磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。一般来讲,依不同的型号又不同的量程与适应场合。 在一个约350º角度内可用刻度表示0~100µm;0~1000µm;0~5mm等的覆层厚度,精度可达5%以上,能满足工业应用的一般要求。这种仪器的特点是操作简单、强固耐用、不用电源和测量前的校准,价格也较低,很适合车间作现场质量控制。 二、磁感应原理测厚仪磁感应原理是利用测头经过非铁磁覆层而流入铁基材的磁通大小来测定覆层厚度的,覆层愈厚,磁通愈小。由于是电子仪器,校准容易,可以实多种功能,扩大量程,提高精度,由于测试条件可降低许多,故比磁吸力式应用领域更广。当软铁芯上绕着线圈的测头放在被测物上后,仪器自动输出测试电流,磁通的大小影响到感应电动势的大小,仪器将该信号放大后来指示覆层厚度。早期的产品用表头指示,精度和重复性都不好,后来发展了数字显示式,电路设计也日趋完善。近年来引入微处理机技术及电子开关,稳频等最新技术,多种获专利的产品相继问世,精度有了很大的提高,达到1%,分辨率达到0.1µm,磁感应测厚仪的测头多采用软钢做导磁铁芯,线圈电流的频率不高,以降低涡流效应的影响,测头具有温度补偿功能。由于仪器已智能化,可以辨识不同的测头,配合不同的软件及自动改变测头电流和频率。 一台仪器能配合多种测头,也可以用同一台仪器。可以说,适用于工业生产及科学研究的仪器已达到了了非常实用化的阶段。利用电磁原理研制的测厚仪,原则上适用所有非导磁覆层测量,一般要求基本的磁导率达500以上。覆层材料如也是磁性的,则要求与基材的磁导率有足够大的差距(如钢上镀镍层)。磁性原理测厚仪可以应用在精确测量钢铁表面的油漆涂层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,化工石油行业的各种防腐涂层。对于感光胶片、电容器纸、塑料、聚酯等薄膜生产工业,利用测量平台或辊(钢铁制造)也可用来实现大面积上任一点的测量。

  • 什么是“相同测量条件下重复测量”

    什么是“相同测量条件下重复测量”

    科学网精选科普杂文[align=center]什么是“相同测量条件下重复测量”?[/align][align=center]武汉大学 叶晓明[/align] 概率论中的一个基本思维是,以大量彼此独立的随机事件的统计值去评价其中一个未知事件的概率。而测量理论则是概率论在测量领域里的一个应用。 既然是“大量彼此独立的随机事件”,这就意味着这些事件一定来自于不同条件,所以概率论中绝对没有什么“相同条件”字眼,否则,如果强调各个事件来自于相同条件,各个事件样本就完全相关,就等同于对一个事件做重复统计,那自然不是100%就是0%。但是,现有测量理论却以“相同测量条件下重复测量”作为误差类别的鉴别依据。 近年来,作者在新概念测量理论中强调,测量序列发散来自重复测量中的测量条件变化,如果以“相同测量条件下重复测量”,测量序列将不会发散,测量实践中不可能作到绝对的相同测量条件。但是,一个比较普遍的情况是,测量学家们强调“设定‘相同测量条件下重复测量’前提是个为了便于误差分类”,当我的论文证明那些实践中的重复测量实际都是不同测量条件时,他们会说我所指的不同测量条件“实际等同于现有理论中的相同测量条件,相同测量条件只是一种近似说法,不需要绝对化。”而非常奇怪的是,他们一方面非常强调要把某些不同条件近似地说成相同条件,却又另一方面禁止把某些不同条件近似说成为相同条件,而且非常反感将“相同条件”字眼更换成“不同条件”字眼。 看实际案例吧。 一台经纬仪的轴系误差的MPE(最大允许误差),来自大量不同仪器的轴系误差检测样本的统计。但是,经纬仪的轴系误差要归类为系统误差,这个不同仪器条件不能近似地说成相同条件,因为不能承认轴系误差在相同测量条件下能导致离散。 一台经纬仪的测角标准偏差,来自大量不同盘位的测点的样本统计,因为这个标准偏差属于精度(精密度,随机误差),这个不同盘位条件就需要近似地说成相同条件。 一台水准仪的高差误差的标准偏差的检测过程中,需要反复改变仪器架设高度和重新整平进行样本采样,也是来自不同条件,但因为这个检测值也叫精度(精密度),属于随机误差的范畴,这些不同的测量条件也就需要近似地说成为相同的测量条件。测绘领域水准网平差中精度来自不同路线高差观测值的发散性统计,因为属于精度(随机误差),这个不同的路线条件需要近似说成相同测量条件。 一种测距仪的乘常数误差来自仪器内石英晶体频率的误差,该误差的MPE来自大量仪器在各种不同温度条件下的样本统计,但是,测距仪的乘常数误差需要归类为系统误差,这些不同条件不能近似说成相同测量条件。 一台测距仪的综合精度的检测样本来自大量不同距离量程的样本统计,因为属于精度(随机误差),这个不同距离量程条件需要近似说成相同测量条件。 一台相位式测距仪的周期误差是距离的正弦函数规律,当误差样本来自各种不同距离量程时,很容易推证出周期误差遵循一个U形随机分布。但是,周期误差被看作是系统误差,这个不同距离量程条件就不能近似说成相同测量条件。舍入误差(四舍五入),通过任意不同量程的误差值分析,很容易推证出它遵循矩形分布。由于这个误差被看作是随机误差,所以这个不同量程条件需要近似说成相同测量条件。 电子噪声误差的分布来自大量不同时间获得的误差样本的统计,这个误差需要归类为随机误差,所以这个不同时间条件需要近似说成相同测量条件。 某卡尺的MPE为±0.02mm,这实际是大量同型号卡尺、各种不同的量程在可能的各种环境温度下的误差检测值做统计出来的。这些不同测量条件究竟应该说成相同测量条件还是不能说成相同测量条件,反正我是说不清楚了。 某品牌手表的MPE为±15秒/天,这实际是大量同品牌手表在各种不同温度环境的检测值统计出来的。这些不同测量条件究竟应该近似地说成相同测量条件还是不能说成相同测量条件,我还是说不清楚。 …… 瞧这个逻辑乱的,您能归纳出其中区分相同条件和不同条件的奥妙之处吗?相信您现在肯定一头雾水。其实,其中也根本没有什么奥妙---不过是人的主观喜好而已,目的只是为了强行把某些误差归类为系统误差而把另外某些误差归类为随机误差。但相信您已经看出,那些所谓的相同测量条件没有一个属于真正的相同测量条件;而当真正作到相同测量条件重复测量时,没有一个误差能导致发散;而当让与误差相关的测量条件变化时,所有误差(包括各种规律的误差)却又都能导致发散,表现出随机分布。 所以,相信您已经有所理解:所谓误差分类不过是选择性失明而已,需要随机误差时,就把不同条件近似地说成相同条件;需要系统误差时,就咬定严格的相同条件对一个误差做重复统计。 也相信您也感受到了新概念测量理论的一个核心概念:任何误差其实都遵循随机分布,都有方差表达其概率区间(不确定性),没有什么系统/随机类别,没有什么精密度/正确度的概念区分,误差贡献发散(随机影响)或贡献偏离(系统影响)是重复测量中测量条件的变化规则决定的,是测量原理决定的,仪器内外的所有工作状态都是测量条件。 这里举出了这么多案例,当然还可以举更多,可以看到,每个案例中的误差统计实际都是在不同测量条件下进行。这说明了什么?说明那些工作在生产科研第一线的测量工作者们其实都很清楚明白,从来就没有人蠢到用“相同测量条件”去纠缠一个孤立的误差样本做重复统计----这本来就不是一个高深的理论问题。真不知道那些测量理论工作者是怎么想的,当你明确告知是不同测量条件时,他们还要扯“近似说法”,死不认账。 就这么一个“相同测量条件下重复测量”,相同既是相同也是不同,不同既是不同也是相同,进可攻退可守,刀枪不入,顺我者昌,逆我者衰。于是,精度也是“相同测量条件下重复测量”测得值的发散性,不确定度也是“相同测量条件下重复测量”测得值的发散性。人们念念有词,如醉如痴…… 2019 6 8 于武汉大学[align=center][img=,690,413]https://ng1.17img.cn/bbsfiles/images/2019/06/201906091241043452_1384_2101846_3.png!w690x413.jpg[/img][/align]

  • 【原创】常见粒度测量仪器的原理和性能特点(包括颗粒图像处理仪、电阻法颗粒计数器)

    本文简介:[B]颗粒图像处理仪[/B]是用显微镜放大颗粒,然后通过数字摄像机和计算机数字图像处理技术分析颗粒大小和形貌的仪器,能给出不同等效原理(如等面积圆、等效短径等)的粒度分布,能直接观察颗粒分散状况、粉体样品的大致粒度范围、是否存在低含量的大颗粒或小颗粒情况等等,并增加了详细的圆度分析功能,是其他粒度测试方法的非常有用的辅助工具,是我国现行金刚石微粉粒度测量标准的推荐仪器。适用于磨料、涂料、非金属矿、化学试剂、填料等各种末颗粒的粒度测量、形貌观察粉和分析。 [B]电阻法(库尔特)颗粒计数器[/B]是根据小孔电阻原理,又称库尔特原理,测量颗粒大小的。由于原理上它是先逐个测量每个颗粒的大小,然后再统计出粒度分布的,因而分辨率很高,并能给出颗粒的绝对数目。其最高分辨率(通道数)取决于仪器的电子系统对脉冲高度的测量精度。此文为专业普及文档,PDF文档,请用Acrobat Reader浏览相关链接:http://www.omec-tech.com/products-01-gs.html[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=66309]其他常见粒度测量仪器的原理和性能特点[/url]

  • 【资料】数字式仪表概述

    随着生产和科学技术的发展,对电测技术提出了更高的要求,一般的电工指示仪表、已不能满足某些测量的需要。数字式仪表、晶体管电压表等电子测量仪器具有高精确度、高灵敏度、高速度以及易于实现自动化等优点,因此得到了迅速的发展和广泛的应用。数字式仪表是利用半导体脉冲数字电路自动地将被测量数值用数字形式直接显示出来的一种电子仪表。 和电工指示仪表相比,数字仪表有以下的优点: (1)准确度高,如六位数字电压表测直流电压的误差可低于10—s数量级。 (2)灵敏高度,如积分式数字电压表的分辨率可达1微伏。 (3)测量速度快,一秒内可测多次,有些数字电压表可达每秒几万次。 (4)输入阻抗高、仪表功耗小。如数字电压表的基本量程的输入阻抗提高达2500兆欧。而消耗功率只有4×10 瓦,这是一般指示仪表根本达不到的。 (5)读数方便,没有读数误差这是由于测量结果直接用数字给出,所以不会由于使用者读数时站立角度不同而产生视差。数字仪表的缺点是:由于采用了大量的电子元件和其它部件,所以结构比较复杂,成本也较高。但是由于大规模集成电路的发展,现已有可能制造出价格低廉的数字式仪表。不同数字仪表的工作原理和测试功能是各不相同的,但都是由模拟一数字变换系统(简称模/数变换或A/D变换)和计数系统两部分组成。模拟一数字变换系统的作用是将被测的模拟量,如电压、电阻等变换为数字量,即将被测信号变换成与之成比例的脉冲参量,而计数系统的作用是对转换成的数字量进行计数和显示。由于数字仪表具有以上特点,它主要应用于:精密测量;对大批生产的精密指示仪表进行刻度与校验;对大量生产的元件进行分选;远距离测量;生产过程自动检测系统和控制等方面。常用的数字仪表有计数器、数字频率表、数字电压表、数字相位表和数字功率表等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制