当前位置: 仪器信息网 > 行业主题 > >

多功能校准仪制造标准

仪器信息网多功能校准仪制造标准专题为您提供2024年最新多功能校准仪制造标准价格报价、厂家品牌的相关信息, 包括多功能校准仪制造标准参数、型号等,不管是国产,还是进口品牌的多功能校准仪制造标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多功能校准仪制造标准相关的耗材配件、试剂标物,还有多功能校准仪制造标准相关的最新资讯、资料,以及多功能校准仪制造标准相关的解决方案。

多功能校准仪制造标准相关的资讯

  • 先进简单的多功能过程校准器
    Allerød, Denmark –过程信号在各个行业中都是至关重要的,从控制阀、开关或灯,到测量管道中的压力,再到校准烘焙烤箱中的温度。随着如此重要的参数被广泛使用,确保这些过程信号保持准确是至关重要的。用户对他们使用的校准设备有多种选择,但最重要的因素之一是易用性。因为可能会使用多个过程信号,包括伏特、毫伏、安培或毫安,而每一个都可能有很大的量程差异,大多数用户转向多功能校准以满足所有情况。然而,随着期权的增加,该工具的复杂性也趋于增加。对于新手来说,看似简单的连接接线任务可能都是困难的。JOFRA ASC-400 先进的校准仪具有连接助手的功能。ASC-400现在包括一个内置的帮助功能,提供了一个图形解决方案,根据当前设置提供精确的连接图示。如果测量参数发生变化(例如从V变为mA),连接辅助界面也会发生变化。使用新功能可以显著减少错误和浪费时间。ASC-400多功能过程校验仪读取和输出RTD,热电偶,电流,电压,频率,电阻,脉冲序列等信号。它整合了诸如百分比误差计算、缩放、泄漏测试和开关测试校准等功能到一个手持校准器。大型全彩显示器、带有光标的数字小键盘和功能键有助于简化使用。ASC-400结合APM CPF压力模块实现压力校准. ASC-400结合Jofra干体炉实现温度校准。关于AMETEK STC and JOFRA AMETEK STC 在JOFRA和Crystal品牌下制造和供应温度、压力和过程信号的校准仪器。JOFRA温度校准器以其准确性、稳定性和可靠性闻名于世。
  • 采用新型球杆仪校准机床正合医疗设备制造商心意
    无线操作有助于在小型防护罩中使用,方便进行快速检查,而且最大程度上减少运行中断。空间精度测试增加了新的维度。 美国印第安纳州韦恩堡 &mdash 球杆仪分析是一种经证明在测定机床功能方面行之有效的方法,也是评估数控机床轮廓精度最实用、最便捷且最全面的工具。虽然球杆仪在精密加工操作中已经普及应用20多年,但在对小型机床进行快速功能检查以及制定机床的空间精度基准方面,一家总部位于美国中西部的医疗设备制造商展示了最新的无线球杆仪技术如何发挥举足轻重的作用。 作为Avalign Technologies集团的一个分部,Nemcomed是为医疗设备原始制造商提供植入体、 普通外科器械、刃具、专业外科器械、器械盒和托盘的全方位服务供应商。Avalign的战略是为整形设备、脊椎和创伤领域的原始设备供应商提供&ldquo 一站式&rdquo 服务,旨在供应医师开展植入手术所需的全部工具。确保机床和过程能够按照规格生产零件是所有客户和该公司450多名员工以及联邦监管机构的共同目标。&ldquo 显然,我们必须达到FDA和ISO的要求,&rdquo Nemcomed的制造工程师Eric Arnold说,&ldquo 而且,我们还要考虑到客户的特殊要求以及个人兴趣和自尊,因为我们的产品可能最终要植入人体。也许有一天我们自己也会成为患者,因此我们希望尽可能生产出最优质的零件。&rdquo QC20-W无线球杆仪设定 监管环境和客户要求 作为医疗设备制造商,Nemcomed必须同时遵守FDA 21 CFR Part 820《质量体系法规》和《ISO 13485医疗器械标准》。为保证机床质量合格,该公司过去一直采用雷尼绍传统的QC10有线球杆仪。&ldquo 我们测试XY、YZ和XZ平面,而QC10需要针对各个平面进行设置,因此我们的设置时间大约为一个半小时。&rdquo Arnold说。 该公司在2010年采购了雷尼绍的新款QC20-W无线球杆仪后,对零件质量和公司利润产生了立竿见影的积极影响。新款球杆仪保留了采用数控机床圆检验程序的原理和功能强大的软件,因此能够快速诊断和量化机床位置误差,包括伺服不匹配、爬行误差、反向间隙、重复性、比例不匹配和几何精度误差,同时还提供总体圆度误差值。同时它也增加了新功能。&ldquo 无线球杆仪仅需一次设置 &mdash 不超过15分钟,即可测试全部三个平面,&rdquo Arnold说,&ldquo 更重要的是,它不会干扰我们的生产设置,因此当我们恢复生产模式时不需要重新设定机床。我们只要取下球杆仪,插入刀具,就可以重新生产零件,这一切在几分钟内即可完成。&rdquo 无线操作亦是Nemcomed小型机床的理想选择,Arnold补充道。&ldquo 机床制造商了解&lsquo 精益操作&rsquo 对车间空间有多么重要的价值,因此新型机床设计占地面积减小了,&rdquo 他解释道,&ldquo 这样一来,操作有线球杆仪的内部空间也就减小了,因此无线数据传输体现出巨大优势。测试过程中能够完全关闭机床门也提高了安全性。&rdquo 外科手术植入体和器械 Nemcomed制造大约1000种不同的零件 &mdash 有植入手术使用的植入体,也有工具,并且为顶级的整形外科原始设备制造商供应零件。公司生产膝盖、髋关节、肩部、手腕、肘部、手指和脊椎植入体;工具包括手术镊、手术刀以及剪线钳。植入体有一系列型号,每个零件包括五到六个型号,典型批量为30-40件。许多植入体具有复杂特性,比如弯曲组件或球形组件。 Nemcomed零部件 该公司还生产通过内部研发开发出来的专利产品,然后授权客户使用。比如,它的柔性轴 (Flex-Shaft) 和自保持 (Self-Retaining) 技术获得了专利,并在包括脊椎手术和髋关节、肩部及膝盖置换术在内的多种应用中得到运用。柔性轴适用于外科手术螺丝刀、丝锥和钻头。 Nemcomed的专利柔性轴 (Flex-Shaft) 零件一般由不锈钢、钛或钴铬合金制成,一开始以棒材或锻件(植入体)形式出现。原材料通过切割工具进行处理,然后根据复杂程度转到铣床或车削中心。 快速、精准 &ldquo 收到新的球杆仪不久之后,我们有一台机床不符合规格,因此我们对它进行了测试,并且让激光干涉仪操作人员也参与测试,&rdquo Arnold说,&ldquo 球杆仪和激光干涉仪的检测结果完全相同,因此我们完全相信可以通过球杆仪快速准确地测试数控机床。&rdquo 这一快速、精准的测试功能帮助我们赢得了一个注重质量的大客户,他们需要对校准过的机床进行验证。&ldquo 如果对每台机床都进行激光干涉仪测试,零件制造成本将使我们难以承受,&rdquo Arnold解释道,&ldquo 我们向客户展示了球杆仪和激光干涉仪测试的结果,他们认为球杆仪测试符合他们的验证要求。从根本上说,QC20-W只需检测两台机床就可以收回投资回报。&rdquo 空间测试制定新的性能基准 新型球杆仪设计在测试三个正交平面方面具有独特的优势,它只需一个参考点,经过一次设置之后,随附软件即可对三个平面加以综合考虑,对空间位置精度进行典型测量。Arnold解释说,该空间精度基准对Nemcomed来说很重要,因为位置误差可能会因为勾画轮廓过程中的多轴同步运动而增大。(注:空间精度对大型机床和零件来说也很重要,刀具轨迹偏差会因为机床行程长而增大。) QC20-W部分圆弧测试 2010年8月,Nemcomed将韦恩堡工厂的面积扩大了10 000平方英尺,整合了另外一个工厂的生产操作,并为新机床增加了空间: 五台新型Citizen Swiss机床和一台五轴Fanuc Robodrill完善了原有的Mori-Seiki和Mazak五轴铣床、Fadal三轴铣床、Brother和Fanuc线切割机床以及Samsung三轴车床组成的生产线。公司在20台机床上采用球杆仪,包括所有的数控铣床和线电极电火花加工机床。维修工程师监控预防性维护计划的结果,进行为期3个月的跟踪,以便及早检测出误差,提高安排维护和维修的效率。 球杆仪附带一个系统便携箱,有足够的空间存放最常用的附件,方便运输。&ldquo 我们可以带着它到我们在全球的四个制造工厂,快速安装,并完成我们所需的机床精度验证,&rdquo Arnold说,&ldquo 切削工件之前就了解机床的功能,能够确保我们最大程度上降低废品率并减少机床停机。这在提供优质零件和保持高生产力的同时降低了制造成本。这就是&lsquo 精益制造&rsquo 的精髓所在 &mdash 提高客户价值。&rdquo 公司在11月份完成了第二次扩建,面积增加了14 000平方英尺,Arnold说,随着公司不断扩建,球杆仪的使用也会越来越广泛。 有关我们的校准产品系列的更多信息,请访问www.renishaw.com.cn/calibration
  • 企业外销内销两标准 高质量中国制造都出口
    国外买的篮球鞋穿了一年还挺好,国内买的同款鞋两个月就坏了 在香港采购了内地生产的牛肉丸,口感却比内地市场销售的好很多 “中国造”的高档电饭煲,在国内市场却买不到̷̷  12月2日出版的《人民日报》,便关注到“高质量的中国制造不在中国卖”这一现象,并发出疑问:  我们成了“品质洼地”吗?  对这一话题,记者在今天下午采访了多位消费者和专家,看看他们是怎么讲的。  同一个品牌、产地,为何“内外有差”?  不少消费者发现,同样的商品或服务,国内看到的、买到的,品质往往比国外“差点意思”。对此,《人民日报》指出:  外销内销是两个标准、两条生产线,一流产品外销、二流产品内销,这在国内一些行业似乎成了“惯例”。  上海市杨浦区居民李娜前不久到日本旅游,带回一款在日本销售火爆的电饭煲。几次使用后,她感觉这款电饭煲在多功能性、煮饭美味度等方面,确实优于国内销售的很多电饭煲。细心的李娜发现,这个日本品牌的电饭煲底部,赫然贴着“MADE IN CHINA”的标签。“中国生产的电饭煲,在中国买得到吗?”李娜走访了上海苏宁、国美等多家大型电器销售商,却没看到这款电饭煲的身影。  手机、电饭煲、服装、鞋类、食品、智能马桶盖̷̷国际市场上销售的众多产品都是“中国造”,然而,大量在中国“出生”的优质产品,却不在中国销售,而是直接被运往国外市场。中国消费者想要买到这些产品,不得不“追随”商品到国外兜一圈,花费更高的成本。  在深圳某银行工作,对内地与香港消费品的品质差异“门儿清”的小陈,在接受每日经济新闻(微信号:nbdnews)记者采访时候表示:  离香港近一些,基本所有入口的身上穿的都在香港买,香港的品质标准跟内地是不一样的,在我和许多朋友看来,香港标准就意味着“更安全”。  比如我的一款剃须刀,虽然产地就在广东,而且价格实惠,但耐用性的确强过我以前在内地购买的,还有猫粮猫罐头,我都在香港的超市里扫货,因为就产品本身标准和入关检验标准而言,我还是更相信香港的。  那么,同一个品牌、同一个产地,为何“内外有差”?  一位东莞某音响贸易公司的业务经理向记者表示:  外销肯定与内销标准不同,因为我们都是按照订单来的,订单要求你怎样做,你就要怎样做,有的订单还要签署保密协议,就是你不得把这批外销订单的货品私自流出到内地市场上。  中国消费者开始追求高品质消费  近日,国家发改委综合司司长丛亮在发改委新闻发布会上表示,当前,居民消费的特点已经从模仿型排浪式的基本消费逐步转变为个性化、多样化的高品质消费,特别是旅游、文化、体育、健康、养老、教育培训这些领域的消费需求是快速增加,而且现在看挖掘的潜力非常大。  而伴随高品质消费崛起的同时,“品质洼地”现象必须引起注意。  丛亮指出,看到潜力的同时,还需注意目前消费结构需要调整,上述这些领域的调整升级特别是供给的结构升级是滞后于消费变化的,突出表现为高品质产品和服务的有效供给不足,制约了消费的持续扩大和升级。  “当前可以称之为是‘新消费浪潮’崛起的阶段,这个阶段的特点就是从以满足温饱为基础追求演变成追求高品质、个性化的消费,一方面消费变得更加理性,一方面对消费品提出了更高的标准和品质上的要求,”中国农科院农经所副研究员郭静利告诉每日经济新闻(微信号:nbdnews)记者,“当消费的理性主义对撞消费品的高标准要求,那么消费者自然是‘用脚投票’,选择购买外国货,哪怕这个货品就是中国产的,但是能进入到国外市场销售自然是说明了其符合外国标准,说到底,这是一个对标准高低与否的要求。”  那么,对于消费品的标准建设,目前我国处于怎样的阶段?  “从我接触到的一些创新创意制造业企业来看,标准体系的建设尚存在空白,”知名创投咨询顾问史伊告诉记者,“就以前不久比较火的网购爆款‘气象瓶’为例,一是仿冒者众多,作坊式生产,二是这样的爆款来也匆匆去也匆匆,产品的市场寿命往往并不长,还未来得及确立相关标准,它可能就已经不再火爆,而要建设相关标准,相对而言政府主管部门投入成本较高,所以实际上对于当前新消费而言,确定一个既能体现消费潮流、又能精准定位消费者本身利益、且能实现动态化的监管体系、标准体系显得尤为重要”。  根据国办近日下发的《消费品标准和质量提升规划(2016—2020年)》,目标将是改革标准供给体系、优化标准供给结构,实现重点领域的主要消费品与国际标准一致性程度达到95%以上、消费品质量国家监督抽查合格率稳定在90%以上、消费品质量竞争力指数稳定在84以上。  中国贸易促进会研究院国际贸易研究部主任、研究员赵萍表示:  我国的生产标准分为强制性和推荐性两种,强制性标准适用于食品、药品等直接关系人民健康的产品,提高强制性标准就意味着整个行业的标准会大幅度提高,从而提升整个行业产品品质。推荐性标准更多的是引导行业的发展水平向先进的企业标准看齐,以引导行业的发展向高水平前进。
  • 国家智能制造标准体系建设指南(2018年版)印发 提及仪器仪表
    p   近日,工信部、国家标准委共同组织制定并印发《国家智能制造标准体系建设指南(2018年版)》,以加快推进智能制造发展,指导智能制造标准化工作的开展。以下为指南全文。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/28470e18-f993-4f54-a1ef-41d090899ded.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 工业和信息化部 /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 国家标准化管理委员会 /span /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 关于印发国家智能制造标准体系建设指南(2018年版)的通知 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " 工信部联科〔2018〕154号 /span /p p   各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、质量技术监督局(市场监督管理部门),有关标准化技术组织、标准化专业机构,有关中央企业、行业协会,有关单位: /p p   为加快推进智能制造发展,指导智能制造标准化工作的开展,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》,现予印发。 /p p style=" text-align: right "   工业和信息化部 /p p style=" text-align: right "   国家标准化管理委员会 /p p style=" text-align: right "   2018年8月14日 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 国家智能制造标准体系建设指南 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " (2018年版) /span /strong /p p   制造业是国民经济的主体,是立国之本、兴国之器、强国之基。智能制造是落实我国制造强国战略的重要举措,加快推进智能制造,是加速我国工业化和信息化深度融合、推动制造业供给侧结构性改革的重要着力点,对重塑我国制造业竞争新优势具有重要意义,“智能制造、标准先行”,标准化工作是实现智能制造的重要技术基础。 /p p   为指导当前和未来一段时间智能制造标准化工作,解决标准缺失、滞后、交叉重复等问题,落实“加快制造强国建设”,工业和信息化部、国家标准化管理委员会在2015年共同组织制定了《国家智能制造标准体系建设指南(2015年版)》并建立动态更新机制。 /p p   按照标准体系动态更新机制,扎实构建满足产业发展需求、先进适用的智能制造标准体系,推动装备质量水平的整体提升,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》。 /p p   span style=" background-color: rgb(255, 255, 255) "   /span span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 一、总体要求 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong (一)指导思想 /strong /span /p p   进一步贯彻落实《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)和《装备制造业标准化和质量提升规划》(国质检标联〔2016〕396号)的工作部署,充分发挥标准在推进智能制造产业健康有序发展中的指导、规范、引领和保障作用。针对智能制造标准跨行业、跨领域、跨专业的特点,立足国内需求,兼顾国际体系,建立涵盖基础共性、关键技术和行业应用等三类标准的国家智能制造标准体系。加强标准的统筹规划与宏观指导,加快创新技术成果向标准转化,强化标准的实施与监督,深化智能制造标准国际交流与合作,提升标准对制造业的整体支撑作用,为产业高质量发展保驾护航。 /p p   span style=" color: rgb(0, 112, 192) " strong  (二)基本原则 /strong /span /p p   按照《国家智能制造标准体系建设指南(2015年版)》中提出的“统筹规划,分类施策,跨界融合,急用先行,立足国情,开放合作”原则,进一步完善智能制造标准体系,全面开展基础共性标准、关键技术标准、行业应用标准研究,加快标准制(修)订,在制造业各个领域全面推广。同时,加强标准的创新发展与国际化,积极参与国际标准化组织活动,加强与相关国家和地区间的技术标准交流与合作,开展标准互认,共同推进国际标准制定。 /p p    span style=" color: rgb(0, 112, 192) " strong (三)建设目标 /strong /span /p p   按照“共性先立、急用先行”的原则,制定安全、可靠性、检测、评价等基础共性标准,识别与传感、控制系统、工业机器人等智能装备标准,智能工厂设计、智能工厂交付、智能生产等智能工厂标准,大规模个性化定制、运维服务、网络协同制造等智能服务标准,人工智能应用、边缘计算等智能赋能技术标准,工业无线通信、工业有线通信等工业网络标准,机床制造、航天复杂装备云端协同制造、大型船舶设计工艺仿真与信息集成、轨道交通网络控制系统、新能源汽车智能工厂运行系统等行业应用标准,带动行业应用标准的研制工作。推动智能制造国家和行业标准上升成为国际标准。 /p p   到2018年,累计制修订150项以上智能制造标准,基本覆盖基础共性标准和关键技术标准。 /p p   到2019年,累计制修订300项以上智能制造标准,全面覆盖基础共性标准和关键技术标准,逐步建立起较为完善的智能制造标准体系。建设智能制造标准试验验证平台,提升公共服务能力,提高标准应用水平和国际化水平。 /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 二、建设思路 /strong /span /p p   国家智能制造标准体系按照“三步法”原则建设完成。第一步,通过研究各类智能制造应用系统,提取其共性抽象特征,构建由生命周期、系统层级和智能特征组成的三维智能制造系统架构,从而明确智能制造对象和边界,识别智能制造现有和缺失的标准,认知现有标准间的交叉重叠关系 第二步,在深入分析标准化需求的基础上,综合智能制造系统架构各维度逻辑关系,将智能制造系统架构的生命周期维度和系统层级维度组成的平面自上而下依次映射到智能特征维度的五个层级,形成智能装备、智能工厂、智能服务、智能赋能技术、工业网络等五类关键技术标准,与基础共性标准和行业应用标准共同构成智能制造标准体系结构 第三步,对智能制造标准体系结构分解细化,进而建立智能制造标准体系框架,指导智能制造标准体系建设及相关标准立项工作。 /p p   span style=" color: rgb(0, 112, 192) " strong  (一)智能制造系统架构 /strong /span /p p   《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)指出,智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。 /p p   智能制造系统架构从生命周期、系统层级和智能特征三个维度对智能制造所涉及的活动、装备、特征等内容进行描述,主要用于明确智能制造的标准化需求、对象和范围,指导国家智能制造标准体系建设。智能制造系统架构如图1所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/69e999c9-14b7-45ea-b883-8b32d12690b4.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 图 1 智能制造系统架构 /p p   span style=" color: rgb(0, 112, 192) " strong  1. 生命周期 /strong /span /p p   生命周期是指从产品原型研发开始到产品回收再制造的各个阶段,包括设计、生产、物流、销售、服务等一系列相互联系的价值创造活动。生命周期的各项活动可进行迭代优化,具有可持续性发展等特点,不同行业的生命周期构成不尽相同。 /p p   (1)设计是指根据企业的所有约束条件以及所选择的技术来对需求进行构造、仿真、验证、优化等研发活动过程 /p p   (2)生产是指通过劳动创造所需要的物质资料的过程 /p p   (3)物流是指物品从供应地向接收地的实体流动过程 /p p   (4)销售是指产品或商品等从企业转移到客户手中的经营活动 /p p   (5)服务是指提供者与客户接触过程中所产生的一系列活动的过程及其结果,包括回收等。 /p p   span style=" color: rgb(0, 112, 192) " strong  2. 系统层级 /strong /span /p p   系统层级是指与企业生产活动相关的组织结构的层级划分,包括设备层、单元层、车间层、企业层和协同层。 /p p    strong (1) /strong strong 设备层是指企业利用传感器、仪器仪表、机器、装置等,实现实际物理流程并感知和操控物理流程的层级 /strong /p p   (2)单元层是指用于工厂内处理信息、实现监测和控制物理流程的层级 /p p   (3)车间层是实现面向工厂或车间的生产管理的层级 /p p   (4)企业层是实现面向企业经营管理的层级 /p p   (5)协同层是企业实现其内部和外部信息互联和共享过程的层级。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 智能特征 /strong /span /p p   智能特征是指基于新一代信息通信技术使制造活动具有自感知、自学习、自决策、自执行、自适应等一个或多个功能的层级划分,包括资源要素、互联互通、融合共享、系统集成和新兴业态等五层智能化要求。 /p p   (1)资源要素是指企业对生产时所需要使用的资源或工具及其数字化模型所在的层级 /p p   (2)互联互通是指通过有线、无线等通信技术,实现装备之间、装备与控制系统之间,企业之间相互连接及信息交换功能的层级 /p p   (3)融合共享是指在互联互通的基础上,利用云计算、大数据等新一代信息通信技术,在保障信息安全的前提下,实现信息协同共享的层级 /p p   (4)系统集成是指企业实现智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统集成过程的层级 /p p   (5)新兴业态是企业为形成新型产业形态进行企业间价值链整合的层级。 /p p   智能制造的关键是实现贯穿企业设备层、单元层、车间层、工厂层、协同层不同层面的纵向集成,跨资源要素、互联互通、融合共享、系统集成和新兴业态不同级别的横向集成,以及覆盖设计、生产、物流、销售、服务的端到端集成。 /p p   span style=" color: rgb(0, 112, 192) " strong  (二)智能制造标准体系结构 /strong /span /p p   智能制造标准体系结构包括“A基础共性”、“B关键技术”、“C行业应用”等三个部分,主要反映标准体系各部分的组成关系。智能制造标准体系结构图如图2所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/119fcc1f-42e0-461b-92c0-cc146bea2988.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " 图2 智能制造标准体系结构图 /p p   具体而言,A基础共性标准包括通用、安全、可靠性、检测、评价等五大类,位于智能制造标准体系结构图的最底层,是B关键技术标准和C行业应用标准的支撑。B关键技术标准是智能制造系统架构智能特征维度在生命周期维度和系统层级维度所组成的制造平面的投影,其中BA智能装备对应智能特征维度的资源要素,BB智能工厂对应智能特征维度的资源要素和系统集成,BC智能服务对应智能特征维度的新兴业态,BD智能赋能技术对应智能特征维度的融合共享,BE工业网络对应智能特征维度的互联互通。C行业应用标准位于智能制造标准体系结构图的最顶层,面向行业具体需求,对A基础共性标准和B关键技术标准进行细化和落地,指导各行业推进智能制造。 /p p   智能制造标准体系结构中明确了智能制造的标准化需求,与智能制造系统架构具有映射关系。以大规模个性化定制模块化设计规范为例,它属于智能制造标准体系结构中B关键技术-BC智能服务中的大规模个性化定制标准。在智能制造系统架构中,它位于生命周期维度设计环节,系统层级维度的企业层和协同层,以及智能特征维度的新兴业态。其中,智能制造系统架构三个维度与智能制造标准体系的映射关系及示例解析详见附件2。 /p p    span style=" color: rgb(0, 112, 192) " strong (三)智能制造标准体系框架 /strong /span /p p   智能制造标准体系框架由智能制造标准体系结构向下映射而成,是形成智能制造标准体系的基本组成单元。智能制造标准体系框架包括“A基础共性”、“B关键技术”、“C行业应用”三个部分,如图3所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f73eeadb-c50e-41c5-a66b-b231643b6a2f.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " 图3 智能制造标准体系框架 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 三、建设内容 /span /strong /p p    span style=" color: rgb(0, 112, 192) " strong (一)基础共性标准 /strong /span /p p   基础共性标准用于统一智能制造相关概念,解决智能制造基础共性关键问题,包括通用、安全、可靠性、检测、评价等五个部分,如图4所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/a8dfce4d-fac0-40e0-bedf-99ae0b46c421.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " 图4 基础共性标准子体系 /p p    span style=" color: rgb(0, 112, 192) " strong 1. 通用标准 /strong /span /p p   主要包括术语定义、参考模型、元数据与数据字典、标识等四个部分。术语定义标准用于统一智能制造相关概念,为其他各部分标准的制定提供支撑。参考模型标准用于帮助各方认识和理解智能制造标准化的对象、边界、各部分的层级关系和内在联系。元数据和数据字典标准用于规定智能制造产品设计、生产、流通等环节涉及的元数据命名规则、数据格式、数据模型、数据元素和注册要求、数据字典建立方法,为智能制造各环节产生的数据集成、交互共享奠定基础。标识标准用于对智能制造中各类对象进行唯一标识与解析,建设既与制造企业已有的标识编码系统兼容,又能满足设备互联网协议(IP)化、智能化等智能制造发展要求的智能制造标识体系。 /p p    span style=" color: rgb(0, 112, 192) " strong 2. 安全标准 /strong /span /p p   主要包括功能安全、信息安全和人因安全三个部分。功能安全标准用于保证控制系统在危险发生时正确地执行其安全功能,从而避免因设备故障或系统功能失效而导致生产事故,包括面向智能制造的功能安全要求、功能安全系统设计和实施、功能安全测试和评估、功能安全管理等标准。信息安全标准用于保证智能制造领域相关信息系统及其数据不被破坏、更改、泄露,从而确保系统能连续可靠地运行,包括软件安全、设备信息安全、网络信息安全、数据安全、信息安全防护及评估等标准。人因安全标准用于避免在智能制造各环节中因人的行为造成的隐患或威胁,通过合理分配任务,调节工作环境,提高人员能力,以保证人身安全,预防误操作等,包括工作任务、环境、设备、人员能力、管理支持等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 可靠性标准 /strong /span /p p   主要包括工程管理、技术方法两个部分。工程管理标准主要对智能制造系统的可靠性活动进行规划、组织、协调与监督,包括智能制造系统及其各系统层级对象的可靠性要求、可靠性管理、综合保障管理、寿命周期成本管理等标准。技术方法标准主要用于指导智能制造系统及其各系统层级开展具体的可靠性保证与验证工作,包括可靠性设计、可靠性预计、可靠性试验、可靠性分析、可靠性增长、可靠性评价等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 4. 检测标准 /strong /span /p p    strong 主要包括测试项目、测试方法等两个部分。测试项目标准用于指导智能制造装备和系统在测试过程中的科学排序和有效管理,包括不同类型的智能制造装备和系统一致性和互操作、集成和互联互通、系统能效、电磁兼容等测试项目标准。测试方法标准用于不同类型智能制造装备和系统的测试,包括试验内容、方式、步骤、过程、计算分析等内容的标准,以及性能、环境适应性和参数校准等。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 5. 评价标准 /strong /span /p p   主要包括指标体系、能力成熟度、评价方法、实施指南等四个部分。指标体系标准用于智能制造实施的绩效与结果的评估,促进企业不断提升智能制造水平。能力成熟度标准用于企业识别智能制造现状、规划智能制造框架与提升智能制造能力水平提供过程方法论,为企业识别差距、确立目标、实施改进提供参考。评价方法标准用于为相关方提供一致的方法和依据,规范评价过程,指导相关方开展智能制造评价。实施指南标准用于指导企业提升制造能力,为企业开展智能化建设、提高生产力提供参考。 /p p   span style=" color: rgb(0, 112, 192) " strong  (二)关键技术标准 /strong /span /p p   主要包括智能装备、智能工厂、智能服务、智能赋能技术和工业网络等五个部分。 /p p   span style=" color: rgb(0, 112, 192) " strong  1. 智能装备标准 /strong /span /p p   主要包括识别与传感、人机交互系统、控制系统、增材制造、工业机器人、数控机床及设备、智能工艺装备等七个部分,如图5所示,其中重点是识别与传感、控制系统和工业机器人标准。主要规定智能传感器、自动识别系统、工业机器人等智能装备的信息模型、数据字典、通信协议、接口、集成和互联互通、优化等技术要求,解决智能生产过程中智能装备之间,以及智能装备与智能化产品、物流系统、检测系统、工业软件、工业云平台之间数据共享和互联互通的问题。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/7aa8a32a-4026-41f2-bb3f-10cec1a98bf8.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " 图5 智能装备标准子体系 /p p    span style=" color: rgb(0, 112, 192) " strong (1)识别与传感标准 /strong /span /p p   主要包括标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。主要用于在测量、分析、控制等工业生产过程,以及非接触式感知设备自动识别目标对象、采集并分析相关数据的过程中,解决数据采集与交换过程中数据格式、程序接口不统一的问题,确保编码的一致性。 /p p    span style=" color: rgb(0, 112, 192) " (2)人机交互系统标准 /span /p p   主要包括工控键盘布局等文字标准 智能制造专业图形符号分类和定义等图形标准 语音交互系统、语义库等语音语义标准 单点、多点等触摸体感标准 情感数据等情感交互标准 虚拟显示软件、数据等VR/AR设备标准。主要用于规范人与信息系统多通道、多模式和多维度的交互途径、模式、方法和技术要求,解决包括工控键盘、操作屏等高可靠性和安全性交互模式,语音、手势、体感、虚拟现实/增强现实(VR/AR)设备等多维度交互的融合协调和高效应用的问题。 /p p    span style=" color: rgb(0, 112, 192) " strong (3)控制系统标准 /strong /span /p p   主要包括控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。主要用于规定生产过程及装置自动化、数字化的信息控制系统,如可编程逻辑控制器(PLC)、可编程自动控制器(PAC)、分布式控制系统(DCS)、现场总线控制系统(FCS)、数据采集与监控系统(SCADA)等相关标准,解决控制系统数据采集、控制方法、通信、集成等问题。 /p p    span style=" color: rgb(0, 112, 192) " strong (4)增材制造标准 /strong /span /p p   主要包括典型增材制造工艺和方法标准 设计规范、文件格式、数据质量保障、文件存储和数据处理等模型设计标准 增材制造设备接口标准 增材制造材料、设备和零部件性能的测试方法标准 增材制造服务架构、服务模式等服务标准。主要用于规范智能制造系统中增材制造相关技术、方法,确保增材制造与智能制造各环节、要素的协调一致及效能最优。 /p p   span style=" color: rgb(0, 112, 192) " strong  (5) /strong /span span style=" color: rgb(0, 112, 192) " strong 工业机器人标准 /strong /span /p p   主要包括集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。主要用于规定工业机器人的系统集成、人机协同等通用要求,确保工业机器人系统集成的规范性、协同作业的安全性、通信接口的通用性。 /p p    span style=" color: rgb(0, 112, 192) " strong (6)数控机床及设备标准 /strong /span /p p   主要包括智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。主要用于规范数字程序控制进行运动轨迹和逻辑控制的机床及设备,解决其过程、集成与协同以及在智能制造应用中的标准化问题。 /p p    span style=" color: rgb(0, 112, 192) " strong (7)智能工艺装备标准 /strong /span /p p   主要包括成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。主要用于规范智能制造系统中铸造、塑性成形、焊接、热处理与表面改性、粉末冶金成形等热加工成形工艺装备相关技术、方法、工艺,确保成形制造与智能制造系统的协调一致。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能装备标准建设重点 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 识别与传感标准。 /strong /span 标识及解析、数据编码与交换、系统性能评估等通用技术标准 信息集成、接口规范和互操作等设备集成标准 通信协议、安全通信、协议符合性等通信标准 智能设备管理、产品全生命周期管理等管理标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 控制系统标准。 /strong /span 控制方法、数据采集及存储、人机界面及可视化、通信、柔性化、智能化等通用技术标准 控制设备集成、时钟同步、系统互联等集成标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 工业机器人标准 /strong /span 。集成安全要求、统一标识及互联互通、信息安全等通用技术标准 数据格式、通信协议、通信接口、通信架构、控制语义、信息模型、对象字典等通信标准 编程和用户接口、编程系统和机器人控制间的接口、机器人云服务平台等接口标准 制造过程机器人与人、机器人与机器人、机器人与生产线、机器人与生产环境间的协同标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 数控机床及设备标准。 /strong /span 智能化要求、语言与格式、故障信息字典等通用技术标准 互联互通及互操作、物理映射模型、远程诊断及维护、优化与状态监控、能效管理、接口、安全通信等集成与协同标准 智能功能部件、分类与特性、智能特征评价、智能控制要求等制造单元标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能工艺装备标准。 /strong /span 成形工艺和方法标准 工艺术语、工艺符号、工艺文件及其格式、存储、传输、数据处理标准 成形工艺装备接口标准 工艺过程信息感知、采集、传输、处理、反馈标准 工艺装备状态监控、运维标准。 /p p    strong 2. 智能工厂标准 /strong /p p   主要包括智能工厂设计、建造与交付,智能设计、生产、管理、物流和集成优化等部分,如图6所示,其中重点是智能工厂设计、智能工厂交付、智能生产和集成优化等标准。主要用于规定智能工厂设计、建造和交付等建设过程和工厂内设计、生产、管理、物流及其系统集成等业务活动。针对流程、工具、系统、接口等应满足的要求,确保智能工厂建设过程规范化、系统集成规范化、产品制造过程智能化。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/4d35ea79-85e2-4bba-b8e6-d2e7cfa91494.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-align: center " 图6 智能工厂标准子体系 /p p   span style=" color: rgb(0, 112, 192) " strong  (1)智能工厂设计标准 /strong /span /p p   主要包括智能工厂的基本功能、设计要求、设计模型等总体规划标准 智能工厂物联网系统设计、信息化应用系统设计等智能化系统设计标准 虚拟工厂参考架构、工艺流程及布局模型、生产过程模型和组织模型等系统建模标准 达成智能工厂规划设计要求所需的工艺优化、协同设计、仿真分析、设计文件深度要求、工厂信息标识编码等实施指南标准。主要用于规定智能工厂的规划设计,确保工厂的数字化、网络化和智能化水平。 /p p   span style=" color: rgb(0, 112, 192) " strong  (2)智能工厂建造标准 /strong /span /p p   主要包括建造过程数据采集范围、流程、信息载体、系统平台要求等建造过程数据采集标准 满足集成性、创新性要求、促进智能工厂建设项目管理科学化、规范化的建造过程项目管理标准。主要用于规定智能工厂建设和技术改造过程,通过智能工厂建造过程的控制与约束,确保智能工厂建设质量、建设周期、建设成本等预定目标的实现。 /p p    span style=" color: rgb(0, 112, 192) " strong (3)智能工厂交付标准 /strong /span /p p   主要包括交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。主要用于规定智能工厂建设完成后的验收与交付,确保建成的智能工厂达到预定建设目标,交付数据资料满足智能工厂运营维护要求。 /p p   span style=" color: rgb(0, 112, 192) " strong  (4)智能设计标准 /strong /span /p p   主要包括基于数据驱动的参数化设计、专业化并行/协同设计、基于模型的产品生命周期(定义MBD、制造和检验)标准以及产品设计全过程的标准化管理 试验方法设计、试验数据与流程的管理、试验结果的分析与验证、试验结果反馈等试验仿真标准。主要用于规定产品的数字化设计和仿真,以及产品试验验证过程仿真的方法和要求,确保产品的功能、性能、易装配性、易维修性,缩短新产品研制和制造周期,降低成本。 /p p    span style=" color: rgb(0, 112, 192) " strong (5)智能生产标准 /strong /span /p p   主要包括计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发与执行、设计与制造协同、制造资源动态组织、生产过程管理与优化、生产过程可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。主要用于规定智能制造环境下生产过程中计划调度、生产执行、质量管控、设备运维等应满足的要求,确保制造过程的智能化、柔性化和敏捷化。 /p p    span style=" color: rgb(0, 112, 192) " strong (6)智能管理标准 /strong /span /p p   主要包括供货商评价、质量检验分析等采购管理标准 销售预测、客户关系管理、个性化客户服务等销售管理标准 设备可靠性管理等资产管理标准 能流管理、能效评估等能源管理标准 作业过程管控、应急管理、危化品管理等安全管理标准 职业病危害因素监测、职业危害项目指标等健康管理标准 环保实时监测和预测预警能力描述、环保闭环管理等环保管理标准 基于模型的企业战略、生产组织与服务保障等基于模型的企业(MBE)标准。主要用于规定企业生产经营中采购、销售、能源、工厂安全、环保和健康等方面的知识模型和管理要求等,指导智能管理系统的设计与开发,确保管理过程的规范化和精益化。 /p p    span style=" color: rgb(0, 112, 192) " strong (7)智能物流标准 /strong /span /p p   主要包括物料标识、物流信息采集、物料货位分配、出入库输送系统、作业调度、信息处理、作业状态及装备状态的管控、货物实时监控等智能仓储标准 物料智能分拣系统、配送路径规划、配送状态跟踪等智能配送标准。主要用于规定智能制造环境下厂内物流关键技术应满足的要求,指导智能物流系统的设计与开发,确保物料仓储配送准确高效和运输精益化管控。 /p p    span style=" color: rgb(0, 112, 192) " strong (8)集成优化标准 /strong /span /p p   主要包括虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。主要用于规定一致的语法和语义,满足通用接口中应用特定的功能关系,协调使能技术和业务应用之间的关系,确保信息的共享和交换。 /p p    strong span style=" color: rgb(0, 112, 192) " 智能工厂标准建设重点 /span /strong /p p    span style=" color: rgb(0, 112, 192) " strong 智能工厂设计标准。 /strong /span 智能工厂参考模型、通用技术要求等总体规划标准 智能工厂信息基础设施设计、物联网系统设计和信息化应用系统设计等工厂智能化系统设计标准 虚拟工厂设计参考架构、虚拟工厂信息模型和虚拟工厂建设要求等虚拟工厂设计标准 达成智能工厂规划设计要求所需的仿真分析、工艺优化、工厂信息标识编码和设计文件深度要求等实施指南标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能工厂交付标准。 /strong /span 交付内容、深度要求、流程要求等数字化交付标准 智能工厂各环节、各系统及系统集成等竣工验收标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能生产标准。 /strong /span 计划仿真、多级计划协同、可视化排产、动态优化调度等计划调度标准 作业文件自动下发、协同生产、生产过程管理与优化、可视化监控与反馈、生产绩效分析、异常管理等生产执行标准 质量数据采集、在线质量监测和预警、质量档案及质量追溯、质量分析与改进等质量管控标准 设备运行状态监控、设备维修维护、基于知识的设备故障管理、设备运行分析与优化等设备运维标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 集成优化标准。 /strong /span 虚拟工厂与物理工厂的集成、业务间集成架构与功能、集成的活动模型和工作流、信息模型、信息交互、集成接口和性能、现场设备与系统集成、系统之间集成、系统互操作等集成与互操作标准 各业务流程的优化、操作与控制的优化、销售与生产协同优化、设计与制造协同优化、生产管控协同优化、供应链协同优化等系统与业务优化标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 智能服务标准 /strong /span /p p   主要包括大规模个性化定制、运维服务和网络协同制造等三个部分,如图7所示,其中重点是大规模个性化定制标准和运维服务标准。主要用于实现产品与服务的融合、分散化制造资源的有机整合和各自核心竞争力的高度协同,解决了综合利用企业内部和外部的各类资源,提供各类规范、可靠的新型服务的问题。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/40685663-9aef-47ef-af5d-bfc4038d52f0.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " 图7 智能服务标准子体系 /p p   span style=" color: rgb(0, 112, 192) "  (1)大规模个性化定制标准 /span /p p   主要包括通用要求、需求交互规范、模块化设计规范和生产规范等标准。主要用于指导企业实现以客户需求为核心的大规模个性化定制服务模式,通过新一代信息技术和柔性制造技术,以模块化设计为基础,以接近大批量生产的效率和成本满足客户个性化需求。 /p p    span style=" color: rgb(0, 112, 192) " (2)运维服务标准 /span /p p   主要包括基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。主要用于指导企业开展远程运维和预测性维护系统建设和管理,通过对设备的状态远程监测和健康诊断,实现对复杂系统快速、及时、正确诊断和维护,全面分析设备现场实际使用运行状况,为设备设计及制造工艺改进等后续产品的持续优化提供支撑。 /p p   span style=" color: rgb(0, 112, 192) " strong  (3)网络协同制造标准 /strong /span /p p   主要包括实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。主要用于指导企业持续改进和不断优化网络化制造资源协同云平台,通过高度集成企业间、部门间创新资源、生产能力和服务能力的相关技术方法,实现生产制造与服务运维信息高度共享、资源和服务的动态分析,增强柔性配置水平。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能服务标准建设重点 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 大规模个性化定制标准。 /strong /span 通用要求、需求交互规范、模块化设计规范和生产规范等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 运维服务标准。 /strong /span 基础通用、数据采集与处理、知识库、状态监测、故障诊断、寿命预测等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 网络协同制造标准。 /strong /span 实施指南、总体框架、平台技术要求、交互流程和资源优化配置等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 4. 智能赋能技术标准 /strong /span /p p   主要包括人工智能应用、工业大数据、工业软件、工业云、边缘计算等部分,如图8所示,其中重点是人工智能应用标准和边缘计算标准。主要用于构建智能制造信息技术生态体系,提升制造领域的信息化和智能化水平。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/f41f5cf5-1a95-47e7-b9e6-0f6b321ae332.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " 图8 智能赋能技术标准子体系 /p p   span style=" color: rgb(0, 112, 192) " strong  (1)人工智能应用标准 /strong /span /p p   主要包括场景描述与定义标准、知识库标准、性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。主要用于满足制造全生命周期活动的智能化发展需求,指导人工智能技术在设计、生产、物流、销售、服务等生命周期环节中的应用,并确保人工智能技术在应用中的可靠性与安全性。 /p p    span style=" color: rgb(0, 112, 192) " strong (2)工业大数据标准 /strong /span /p p   主要包括平台建设的要求、运维和检测评估等工业大数据平台标准 工业大数据采集、预处理、分析、可视化和访问等数据处理标准 数据质量、数据管理能力等数据管理标准 工厂内部数据共享、工厂外部数据交换等数据流通标准。主要用于典型智能制造模式中,提高产品全生命周期各个环节所产生的各类数据的处理和应用水平。 /p p   strong span style=" color: rgb(0, 112, 192) "  (3)工 /span /strong span style=" color: rgb(0, 112, 192) " strong 业软件标准 /strong /span /p p   主要包括产品、工具、嵌入式软件、系统和平台的功能定义、业务模型、技术要求等软件产品与系统标准 工业软件接口规范、集成规程、产品线工程等软件系统集成和接口标准 生存周期管理、质量管理、资产管理、配置管理、可靠性要求等服务与管理标准 工业技术软件化方法、参考架构、工业应用程序(APP)封装等工业技术软件化标准。主要用于促进软件成为工业领域知识、技术和管理的载体,提高软件在工业领域的研发设计、生产制造、经营管理以及营销服务活动中发挥的作用,指导工业企业对研发、制造、生产管理等工业软件的集成和选型,帮助工业企业开展工业技术软件化,对工业知识进行有效积累。 /p p   span style=" color: rgb(0, 112, 192) " strong  (4)工业云标准 /strong /span /p p   主要包括平台建设与应用,工业云资源和服务能力的接入与管理等资源标准 能力测评规范、计量计费、服务级别协议(SLA)等服务标准。主要用于构建工业云生态体系,指导工业云平台的设计和建设,规范不同工业云服务的业务能力,提升工业云服务的设计、实现、部署、供应和运营管理水平,指导开展各类工业云服务的采购、审计、监管和评价活动。 /p p    span style=" color: rgb(0, 112, 192) " (5)边缘计算标准 /span /p p   主要包括架构与技术要求、计算及存储、安全、应用等标准。主要用于指导智能制造行业数字化转型、数字化创新,解决制造业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求,用于智能制造中边缘计算技术、设备或产品的研发和应用。 /p p    span style=" color: rgb(0, 112, 192) " strong 智能赋能技术标准建设重点 /strong /span /p p   人工智能应用标准。场景描述与定义标准,知识库标准,性能评估标准,以及智能在线检测、基于群体智能的个性化创新设计、协同研发群智空间、智能云生产、智能协同保障与供应营销服务链等应用标准。 /p p   边缘计算标准。架构与技术要求、计算及存储、安全、应用等标准。 /p p    span style=" color: rgb(0, 112, 192) " strong 5. 工业网络标准 /strong /span /p p   主要包括体系架构、组网与并联技术和资源管理,其中体系架构包括总体框架、工厂内网络、工厂外网络和网络演进增强技术等 组网与并联技术包括工厂内部不同层级的组网技术,工厂与设计、制造、供应链、用户等产业链各环节之间的互联技术 资源管理包括地址、频谱等,但智能制造中工业网络仅包括工业无线通信和工业有线通信,如图9所示。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/7bdbbbf4-685a-40d3-b754-6d1914a40033.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " 图9 工业网络标准子体系 /p p   span style=" color: rgb(0, 112, 192) " strong  (1)工业无线通信标准 /strong /span /p p   针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准。 /p p    span style=" color: rgb(0, 112, 192) " strong (2)工业有线通信标准 /strong /span /p p   针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。 /p p   工业网络标准建设重点 /p p   工业无线通信标准。针对现场设备级、车间监测级及工厂管理级的不同需求的各种局域和广域工业无线网络标准 /p p   工业有线通信标准。针对工业现场总线、工业以太网、工业布缆的工业有线网络标准。 /p p   span style=" color: rgb(0, 112, 192) " strong  (三)行业应用标准 /strong /span /p p   依据基础共性标准和关键技术标准,围绕新一代信息技术、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业机械装备、新材料、生物医药及高性能医疗器械等十大重点领域,同时兼顾传统制造业转型升级的需求,优先在重点领域实现突破,并逐步覆盖智能制造全应用领域。行业应用标准体系如图10所示。 /p p style=" text-align: center "    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/6e36eb49-21b3-4cb8-bdd3-35383350d62b.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " 图10 行业应用标准子体系 br/ /p p   发挥基础共性标准和关键技术标准在行业应用标准制定中的指导和支撑作用,优先制定各行业均有需求的设备互联互通、智能工厂建设指南、数字化车间、数据字典、运维服务等重点标准。在此基础上,发挥各行业特点,制定行业亟需的智能制造相关标准。如:新一代信息技术领域的射频识别标准等。高档数控机床和机器人领域的机床制造和测试标准等。航空航天装备领域的复杂装备云端协同制造标准、航天装备数字化双胞胎制造标准等。海洋工程装备及高技术船舶领域的大型船舶设计工艺仿真与信息集成标准、海洋石油装备互联互通和运维服务标准等。先进轨道交通装备领域的轨道交通网络控制系统标准、车载信号系统标准、高速动车组智能工厂运行管理标准等。节能与新能源汽车领域的新能源汽车智能工厂运行系统标准等。电力装备领域的存储管理标准、数据智能采集标准、监测诊断服务标准等。农业机械装备领域的农机装备智能工厂平台化制造运行管理系统标准等。生物医药及高性能医疗器械领域的医疗设备质量追溯标准等。其他领域的标准包括:家电行业空调产品信息集成数据接口标准,石油石化行业智能设备互联互通标准,纺织行业智能装备网络通讯接口、系统集成与互操作标准,锂离子电池制造行业智能工厂标准,采矿、冶金、建筑专用设备制造行业高端工程机械可靠性仿真与协同制造标准等。 /p p   智能制造标准体系与机械、航空、汽车、船舶、石化、钢铁、轻工、纺织等制造业领域标准体系之间不是从属关系,内容存在交集。交集部分是智能制造标准体系中的行业应用标准。例如,船舶工业标准体系用于指导船舶相关产品设计、制造、试验、修理管理和工程建设等,智能制造标准体系中的船舶行业相关标准主要涉及到船舶制造环节中的互联互通等智能制造相关内容。 /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 四、组织实施 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 加强统筹协调。 /strong /span 在工业和信息化部、国家标准化管理委员会的指导下,积极发挥国家智能制造标准化协调推进组、总体组和专家咨询组的作用,开展智能制造标准体系的建设及规划。充分利用多部门协调、多标委会协作、军民融合等工作机制,凝聚各类标准化资源,扎实构建满足产业发展需求、先进适用的智能制造标准体系。 /p p    span style=" color: rgb(0, 112, 192) " strong 实施动态更新。 /strong /span 实施动态更新完善机制,随着智能制造发展水平和行业认识水平的不断提高,根据智能制造发展的不同阶段,每两年滚动修订《国家智能制造标准体系建设指南》。 /p p    span style=" color: rgb(0, 112, 192) " strong 加快标准研制。 /strong /span 基于“共性先立,急用先行”的原则,完善智能制造标准绿色通道,加快国家和行业标准的制定 推动标准试验验证平台和公共服务平台建设,为标准的制定和实施提供技术支撑和保障。 /p p    span style=" color: rgb(0, 112, 192) " strong 加强宣贯培训。 /strong /span 充分发挥地方主管部门、行业协会和学会的作用,进一步加强标准的培训、宣贯工作,通过培训、咨询等手段推进标准宣贯与实施。用标准引领行业实现智能转型。 /p p   加强国际交流与合作。加强与国际标准化组织的交流与合作,定期举办智能制造标准化国际论坛,组织中外企业和标准化组织开展交流合作,通过参与国际标准化组织(ISO)、国际电工技术委员会(IEC)等相关国际标准化组织的标准化工作,积极向国际标准化组织提供我国智能制造标准化工作的研究成果。 /p p   附件1:智能制造相关名词术语和缩略语 /p p   附件2:智能制造系统架构映射及示例解析 /p p   附件3:已发布、制定中的智能制造基础共性标准和关键技术标准 /p p br/ /p
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
  • 云唐仪器|多功能食品安全检测仪对食品样品准确分析
    云唐仪器|多功能食品安全检测仪对食品样品准确分析  山东云唐智能科技有限公司生产的食品安全综合分析仪,采用多功能集成、箱仪一体化设计,以高强度安全防护箱为载体,内部集成多个检测功能,适用于食药监局、卫生部门、高教院校、科研院所、农业农村局、食品深加工企业及检验检疫部门等单位。 高智能食品安全检测仪产品链接https://www.instrument.com.cn/netshow/SH104655/C467598.htm 多功能食品安全检测仪创新点和产品特性:  1. 功能构成:主要包括分光光度模块、新型农残检测模块、胶体金检测模块、荧光检测模块、数字化管理模块等,所有模块集成一体,可快速检测200多种食品安全项目,如兽药残留、农药残留、非法添加剂、细菌数值等指标。  2. 检测样品种类:餐具及厨房用品、瓜果蔬菜及其制品、水产品及其制品、畜禽产品及其制品、婴幼儿乳品及奶粉制品、蜂蜜、粮油及其制品、调味品(食醋、酱油、味精、盐等)、酒类茶叶及其制品、食用菌、饮料、蛋类药物残留(鸡蛋,鸭蛋等)、米豆面制品、糖果糕点类(小食品)、薯类及膨化食品、瓶(桶)装饮用水、添加食用色素的食品、使用添加剂的食品、含有有毒有害物质的相关食品。  3、显示屏幕:仪器采用15.6英寸液晶触摸屏显,搭配运行安卓智能操作系统,主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,操作方便,性能更强。  4、供电模式:仪器交直流两用,直流12V供电,可连接车载电源,配18ah大容量充电锂电池,电量可实时显示,无外部电源条件下可持续工作至少 4 小时。  5、检测通道:≥24通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值,更加准确高效,采用高精度进口四波长冷光源,每个通道均配置 410、520、590、630nm 波长光源,标配先进的光路切换装置,专利光路切换功能可实现64波长,并且所有检测项目可实现所有通道同时检测.  6、通讯接口:配备无线通信模块、4G(APN)通讯模块、蓝牙传输,同时具有双USB接口以及RJ45网线接口,可以多方式实现数据保存及数据传输。  7、存储方式:支持U盘存储,两个标准USB接口,免驱动安装。检测结果存储容量20万条以上,可生成Excel表格进行拷贝,并具有登录保护功能。  8、操作系统:仪器可在同一检测界面自动对应相关检测通道,一次性选择不少于11个样品名称,无需退出界面,节省操作时间。并可以对每个通道属性和样品信息单独进行编辑,例如送检单位、人员,检测人员等,打印时勾选打印显示。  9、数据集成系统:设备首页自动汇总分析检测数据,包含:周检测数据、月检测数据,全部检测总数量,包含检测总数,合格数,不合格数,以及相关柱形分析图,各项检测数据一目了然,无需电脑查询,更加快捷直观。  10、数据库系统:十几项数据库分类管理仪器:包含项目类型、项目数据、检测数据、历史记录、国标信息、曲线信息、采样信息、检测信息、受检信息、复核信息、图表信息、光源校准信息、打印样式信息、样品库信息等等,数据库之间互相协调联动保证数据的真实完整性。同时产品数据库以及历史检测记录支持一键检索功能。  11、限量规判系统:具有限量查询、添加物质合规判定系统。检测出结果后,系统自动调用系统数据库中相关国标进行比对判定,客观显示判定结果是否合格。  12、项目预设系统:仪器具有任务预设模块,一键提前预设,给出方便快捷的新检测方案,每一个任务分别可以设置不同的样品、批次、编号、来源、备注、抽样信息、检测信息、受检信息、复核信息等更多信息。样品送检时一键调取保存信息,并可多次调取,适用于大批量检测业务,可以大大提高检测效率。  13、数据监管系统:同步对接监管平台,数据可局域网和互联网数据上传,检测结果可直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,监测区域食品安全长短期动态及问题预估、预警。  14.1、全新打印系统:内置全新打印机,新创自定义打印方式,可按需灵活勾选控制:产品合格证(国家农业部标准要求),二维码,抽样信息、检测信息,受检信息、复核信息、抽样日期、检测日期等信息的打印。  14.2、A4纸版本报告打印功能:设备拥有两种结果展示方式,可以自动生成A4打印模板和小票打印模板两种样式,可通过WiFi及网线等方式连接外置打印机可进行打印。  15、胶体金检测模块:采用单通道CMOS成像处理技术及胶体金免疫层析技术,可读取胶体金卡数据,自动采集、处理分析,将检测结果显示,并可根据参考限值自动判断检测结果,可检测常见的兽药残留、生物毒素、抗生素、违禁添加物等。  15.1、可即时检测单联卡及三联卡   15.2、检测通道:2个通道   15.3、检测方式:消线法和比色法   15.4、显示模式:阴性或阳性   15.5、曲线形式:插入式扫描方式,显示金标卡图像,实时生成、识别CT曲线图,无需手动调整。兼容市场上其他金标卡,使用耗材不受限制。  16、荧光检测模块:快速检测水质中微生物、固体物细菌含量。利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。以ATP含量表明样品中微生物与其他生物残余得多少,用于判断卫生状况。 适用于食品、餐具、手、液体等表面及水质洁净度的检测。  16.1、检测通道:双通道  检测精度:1×10-18mol  16.2、检测范围:0 to 99999 RLU  16.3、检测时间:15 秒  16.4、检测干扰:±5﹪或±5 RLU  16.5、操作温度范围:5℃到 40℃  16.6、操作湿度范围:20—85﹪  16.7、开机 30 秒自检、内置自校光源、自动判断合格与不合格、自动统计合格率 。  17、仪器具备远程升级功能,可定向分客户分仪器更新,开机后自动更新,并可持续性免费更新系统版本,无需像传统产品返厂更新,节省时间及人力成本并避免了物流运输返厂升级导致设备损坏的潜在风险。
  • 盘点2022年增材制造国家标准、行业标准、地方标准
    随着近几年3D打印行业的快速发展,国家也相继出台了几十项增材制造标准,从设计到材料、工艺、设备、测试以及后处理等。相信随着相关标准的陆续发布及不断完善,将能够让从业人员有规可循,助推行业进一步发展。一、国家标准通过在”全国标准信息公共服务平台“查询得知,2022年我国已发布8项增材制造国家标准,其中4项已在今年开始实施,另外4项即将在明年开始实施。同时,2022年还有4项增材制造国标正在制定中,接下来为大家做详细介绍。2022年新增并且处于现行的国家标准序号标准名称发布日期实施日期1增材制造用镍粉(GB/T 41335-2022)2022-03-09 2022-10-012增材制造用钨及钨合金粉(GB/T 41338-2022)2022-03-092022-10-013粉末床熔融增材制造镍基合金(GB/T 41337-2022)2022-03-092022-10-014增材制造 金属粉末空心粉率检测方法(GB/T 41978-2022)2022-10-122022-10-122022年新增并且处于即将实施的国家标准序号标准名称发布日期实施日期1增材制造 术语 坐标系和测试方法(GB/T 41507-2022)2022-07-112023-02-012增材制造 通则 增材制造零件采购要求(GB/T 41508-2022)2022-07-112023-02-013增材制造用铜及铜合金粉(GB/T 41882-2022)2022-10-142023-05-014粉末床熔融增材制造钽及钽合金(GB/T 41883-2022)2022-10-142023-05-012022年正在起草当中的国家标准序号计划号项目名称起草单位120220748-T-610增材制造用镍钛合金粉西安欧中材料科技有限公司220220735-T-610增材制造用铝合金粉中车工业研究院有限公司 、宁波众远新材料科技有限公司 、飞而康快速制造科技有限责任公司320220736-T-610增材制造用金属粉末的包装、标志、运输和贮存西安欧中材料科技有限公司 、西北有色金属研究院420220074-T-604增材制造 云服务平台产品数据保护技术要求中国海洋大学 、青岛海尔智能技术研发有限公司 、中机生产力促进中心等二、行业标准据统计,2022年新增正式实施的增材制造行业标准共计5项,其中医药行业2项,机械行业3项。此外,还有一项关于医药的标准将在2023年实施。具体内容如下:1、标准号:YY/T 1802-2021项目名称:增材制造医疗产品 3D打印钛合金植入物金属离子析出评价方法行业领域:医药批准日期:2021-09-06实施日期:2022-09-012、标准号:YY/T 1809-2021项目名称:医用增材制造 粉末床熔融成形工艺金属粉末清洗及清洗效果验证方法行业领域:医药批准日期:2021-09-06实施日期:2022-09-013、标准号:JB/T 14279-2022项目名称:增材制造 材料挤出成形3D打印笔行业领域:机械批准日期:2022-04-08实施日期:2022-10-014、标准号:JB/T 14280-2022项目名称:增材制造 桌面级材料挤出成形设备安全技术规范行业领域:机械批准日期:2022-04-08实施日期:2022-10-015、标准号:JB/T 14190-2022项目名称:增材制造设备 桌面型熔融挤出成形机行业领域:机械批准日期:2022-04-08实施日期:2022-10-016、标准号:YY/T 1851-2022(明年实施)项目名称:用于增材制造的医用纯钽粉末行业领域:医药批准日期:2022-08-17实施日期:2023-09-01三、地方标准截至目前,据资源库统计,国内关于增材制造的地方标准共计8项,其中2022年起正式实施的只有一项,适用于陕西省,具体内容如下。标准号:DB61/T 1503-2021标准名称:医用增材制造 金属粉末生产技术规范所在地址:陕西省批准日期:2021-12-17实施日期:2022-01-17无论是哪个行业,想要正规化发展,都离不开标准的制定,无论是国家标准,还是行业标准、地方标准等。3D打印有标准可依,才能走得更远、更稳、更好。
  • 建立高端仪器标准,发力“中国制造2025”
    为认真落实《中国制造2025》中明确的制造业标准化提升计划,国家标准委近日制定四个重点工作,明确标准制定任务,为&ldquo 中国制造2025&rdquo 发力。其中,研制智能传感器、高端仪表标准为重点项目。   建立智能制造标准体系   研制智能制造技术标准,包括智能制造关键术语和词汇表、企业间联网和集成、智能制造装备、智能化生产线和数字化车间、智慧工厂、智能传感器、高端仪表、智能机器人、工业通信、工业物联网、工业云和大数据、工业安全、智能制造服务架构等一大批标准。在智能制造等重点领域开展综合标准化工作,重点加快制定以智能化为特征的重大成套装备、自动化生产线系统集成标准,在大飞机、发电和输变电等优势领域,围绕关键用户需求,应用综合标准化模式,推进标准综合体研制,继续加快推进战略性新兴产业标准综合体项目。搭建标准化验证测试公共服务平台,重点针对流程制造、离散制造、智能装备和产品、智能制造新业态新模式、智能化管理和智能服务5个领域开展试点示范。   强化基础领域标准体系建设   围绕实施工业强基工程,紧贴工业&ldquo 四基&rdquo 发展指导目录,重点制定关键零部件所需的钢铁、有色、有机、复合等基础材料标准。重点提高轴承、齿轮、液压气密等关键基础零部件性能、可靠性和寿命标准指标。集中研制铸造、锻压、热处理等先进工艺及基础制造装备标准,破解产业发展的瓶颈。在数控机床、航空航天、发电设备等重点领域选择核心企业,推动整机企业和基础配套企业对接,运用综合标准化方法,开展核心基础零部件、先进基础工艺、关键基础材料标准的研制与对标达标活动,系统解决设计、材料、工艺、检测标准的衔接问题,提升基础产品的质量、可靠性和寿命。   推动重点领域标准化突破   加强产业升级关键技术标准研制,制修订2000余项技术标准。重点围绕实施&ldquo 中国制造2025&rdquo ,加强新一代信息技术、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、新材料、生物医药及高性能医疗器械、农业机械装备等重点领域标准研制,助推智能制造、绿色制造。重点围绕实施高端装备创新工程,在大型飞机、航空发动机及燃气轮机、民用航天、智能绿色列车、节能与新能源汽车、海洋工程装备及高技术船舶、智能电网成套装备、高档数控机床、核电装备、高端诊疗设备等领域研制一大批标准,突破共性关键技术与工程化、产业化瓶颈,开展应用试点和示范,提高创新发展能力和国际竞争力。   推动装备走出去和国际产能合作   在铁路、航天、工程机械等重点领域,推动研制一批高端装备国际标准。积极推进船舶、海洋、信息技术等国际标准取得突破。加强&ldquo 一带一路&rdquo 沿线重点国家大宗商品标准比对分析研究。围绕航天、工程机械等重点领域装备走出去,提出中国装备标准名录。加大标准互认力度,增加标准互认的国家和标准数量,成体系开展急需标准外文版翻译。   此外,国家标准委还将加快标准创新研究基地建设,积极发挥已批准筹建中关村、华南中心、广州等3个国家技术标准创新基地优势,强化技术标准研制与科技创新、产业升级协同发展,促进创新成果产业化、市场化和国际化。力争&ldquo 十三五&rdquo 筹建20个制造业相关领域国家技术标准创新基地,支撑中国制造业由大变强。
  • 一机两用|量准发布WeSPR 200多功能分子检测仪新品
    近日,量准(上海)医疗科技有限公司正式推出了全新升级WeSPR™️200多功能分子检测仪新品。WeSPR™️200多功能分子检测仪WeSPR™️200多功能分子检测仪兼具SPR与ELISA两种检测功能,可用于实时、无标记、快速分析多种生物分子之间的相互作用,获得高质量的动力学、抗体筛选、表位鉴定以及浓度测定等信息;具有8个光纤检测通道,可以使用单个通道或最多八个通道进行分析,从而实现样品通量的灵活性;全新升级的赋予功能,能够显著提高检测精度及稳定性;配套软件分析平台,实现数据一站式处理。关于量准:量准专注于利用独特传感器芯片专利技术开发创新型生物检测芯片及相应的检测设备和试剂产品,为生物医药研发和临床医学体外诊断应用服务。量准自主研发制造了的晶圆级高性能超表面等离子共振MetaSPR芯片产品实现了对传统药物筛选芯片及分子互作检测设备的技术路线突破和超越,并且借助其技术在性价比上的明显优势突破传统技术局限并涵盖到更加广泛的生物医药研发应用领域。量准正在推出的开放式MetaSPR微孔板、微流控MetaSPR芯片卡以及相应配套的半自动和全自动检测技术提供分子互作的无标记实时检测,亲和力精确测定、抗体筛选和优化,以及快速高通量表达定量等灵活多样的高性能检测能力,以满足于包括靶向化学药、生物药、细胞基因治疗、合成生物学和IVD原料等众多细分领域研发生产中的具体检测需求。
  • 多功能数字万用表核心部件
    仪器名称 6 ½ 位多功能数字万用表核心部件 单位名称 北京布莱迪测控仪表有限公司 成果成熟度 已有样机 合作方式 ■合作开发 ■其他 成果简介: 北京布莱迪测控仪表有限公司基于自主技术,在已有5 ½ 位数字压力表核心部件基础上,完成6 ½ 位多功能数字万用表核心部件,包括:6 ½ 位A/D转换模块,高精度前端前段放大器,中央处理模块。并建立部件测试评价方法。本产品主要是为了解决国内产品稳定性差,可靠性低的问题,核心部件MTBF大于10000小时,长期稳定运行大于5000小时。 主要技术难点为: 1) 6 ½ 位分辨率AD转换模块设计、制造; 2) 6 ½ 位高精度可变字长A/D转换模块稳定性; 3) 高精度前端放大模块制造; 关键技术及创新点: 6 ½ 位多功能数字万用表核心部件研发主要存在的关键技术问题及创新点如下: 1) 高精度前端放大器模块设计 2) 6 ½ 位高精度可变字长A/D转换模块电路设计 3) 6 ½ 位高精度可变字长A/D转换模块脉冲时序单元设计 4) 6 ½ 位多功能数字万用表核心部件集成 5) 6 ½ 位多功能数字万用表核心部件测评方法 应用前景: 本产品成果经专家鉴定为国内领先水平,其各项技术指标均超过国内同行业产品。成果填补了国内空白。6 ½ 位数字万用表核心部件可单独作为测量产品使用,亦可作为其他设备的核心A/D转换部件使用。具有测量精度高,灵敏度高,测量速度快,读数客观,抗干扰能力强,而且还具有其自身的优越性,用它做主体,配上各种变换器插件或单元就构成了一系列的数字多用表(DMM),从而可以测量其他电量和非电量。在6½ 位多功能数字万用表标准校准系统中能够完全替代国外部件,可大幅度降低整套系统造价,能广泛应用于国防、科研、工厂、学校、计量测试等技术领域。。 知识产权及项目获奖情况: 本产品核心技术拥有自主知识产权,申请了一项实用新型专利和两项软件著作权专利。 成果名称 6 ½ 位多功能数字万用表核心部件 单位名称 北京布莱迪测控仪表有限公司 联系人 汪声 联系邮箱 wangshengjackie@163.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 &radic 其他 成果简介: 北京布莱迪测控仪表有限公司基于自主技术,在已有5 ½ 位数字压力表核心部件基础上,完成6 ½ 位多功能数字万用表核心部件,包括:6 ½ 位A/D转换模块,高精度前端前段放大器,中央处理模块。并建立部件测试评价方法。本产品主要是为了解决国内产品稳定性差,可靠性低的问题,核心部件MTBF大于10000小时,长期稳定运行大于5000小时。 主要技术难点为: 1) 6 ½ 位分辨率AD转换模块设计、制造; 2) 6 ½ 位高精度可变字长A/D转换模块稳定性; 3) 高精度前端放大模块制造; 关键技术及创新点: 6 ½ 位多功能数字万用表核心部件研发主要存在的关键技术问题及创新点如下: 1) 高精度前端放大器模块设计 2) 6 ½ 位高精度可变字长A/D转换模块电路设计 3) 6 ½ 位高精度可变字长A/D转换模块脉冲时序单元设计 4) 6 ½ 位多功能数字万用表核心部件集成 5) 6 ½ 位多功能数字万用表核心部件测评方法 应用前景: 本产品成果经专家鉴定为国内领先水平,其各项技术指标均超过国内同行业产品。成果填补了国内空白。6 ½ 位数字万用表核心部件可单独作为测量产品使用,亦可作为其他设备的核心A/D转换部件使用。具有测量精度高,灵敏度高,测量速度快,读数客观,抗干扰能力强,而且还具有其自身的优越性,用它做主体,配上各种变换器插件或单元就构成了一系列的数字多用表(DMM),从而可以测量其他电量和非电量。在6½ 位多功能数字万用表标准校准系统中能够完全替代国外部件,可大幅度降低整套系统造价,能广泛应用于国防、科研、工厂、学校、计量测试等技术领域。。 知识产权及项目获奖情况: 本产品核心技术拥有自主知识产权,申请了一项实用新型专利和两项软件著作权专利。
  • 《多功能自然型湿地修复与重建技术导则》标准讨论会即将召开
    p   由中国水利企业协会与中国质量检验协会联合立项的《多功能自然型湿地修复与重建技术导则》标准,定于2020年8月18日召开第一次讨论会。 /p p   标准由中国水科院、 中电建华东勘测设计研究院、河北水科院雄安分院、珠江委珠江水科院主编,涵盖了湿地调查、工程选址、湿地设计、控制指标、监测评估、管理维护等多个方向,结合多功能自然型湿地的不同建设类型、规模、运行情况开展研究,将为多功能自然型湿地的运行维护工作制定切实可行的标准方法。 /p p   据悉,作为生态环境保护的载体之一,多功能自然型湿地能够在满足人类社会需求的同时,兼顾水域生态系统健康与可持续性需求,已成为城乡污水治理、海绵城市建设的重要基础。 /p p   发文如下: /p p style=" text-align: center" img style=" width: 565px height: 780px " src=" https://img1.17img.cn/17img/images/202008/uepic/ca583c0d-e881-4f89-b4cd-ea2463d04dc3.jpg" title=" 1.jpg" width=" 565" height=" 780" / /p p style=" text-align: center" img style=" width: 615px height: 852px " src=" https://img1.17img.cn/17img/images/202008/uepic/dcd5c89a-7b3e-4e49-9a72-e01af0ff2ce6.jpg" title=" 2.jpg" width=" 615" height=" 852" / /p p style=" text-align: center" img style=" width: 606px height: 839px " src=" https://img1.17img.cn/17img/images/202008/uepic/348b6515-a613-46ab-960d-b0b54d2249e1.jpg" title=" 3.jpg" width=" 606" height=" 839" / /p p br/ /p
  • 曲婉:以标准化战略助推中国制造业转型升级
    p   党的十九大工作报告提出到本世纪中叶把我国建成社会主义现代化强国,形成若干世界级先进制造业集群。2017年11月4日新《标准化法》通过修订,并将于2018年1月1日起施行,进一步强化了标准在促进技术进步和创新成果转化中的桥梁作用。但是,当前我国制造业发展还面临创新动力和能力不强、大中小企业融通发展不足、制度环境建设滞后等问题。迫切需要深入贯彻标准化战略,建立标准与创新政策深度融合的产业政策体系,形成制造业转型升级的倒逼机制,推动我国制造业创新发展。 /p p    strong 我国制造业转型升级面临的新问题 /strong /p p   制造业技术创新能力与发达国家有较大差距,已经成为制约我国制造业国际竞争力提升的重大瓶颈。我国制造业部分基础技术、通用技术与高端装备仍处于起步发展阶段,大量关键零部件、关键材料、系统软件和高端装备等基本依赖进口。如光伏领域的高压电源、真空泵、真空计、高性能激光器,机器人领域的精密减速器、伺服电机及驱动器等部件主要依赖进口 信息产业和船舶制造领域关键技术和系统的对外依存度高达50%以上。 /p p   制造业整体实力不强,代表国家的制造业整体技术水平的行业龙头企业规模偏小,盈利能力相对较弱。2016年世界研发投入前2500强企业中,中国共有273家制造业企业上榜,企均销售收入和企均利润分别为30.25万欧元和1.95万欧元 而美国、日本、德国上榜企业的平均销售额为我国的1.6~3.9倍,企均利润为我国的2.6~4.3倍。2016年世界500强榜单中,上海汽车集团居汽车与零部件行业第七位,营业收入仅为排名第一的德国大众公司45.09% 中国医药集团居制药行业第六位,营业收入仅为排名第一的美国强生公司的63.25%。 /p p   制造业小微企业数量规模大,主要集中于劳动密集型、附加值率低的行业,面临死亡率高、平均寿命短、效益差等问题,创新能力和竞争力较弱。小微企业数量占我国制造业企业总量的97.3%,部分行业领域占比在99%以上 而美国、德国和日本的小微企业占制造业企业总量比例在90%左右。第三次全国经济普查资料显示,我国小微企业死亡率达到2.3%,是大型和中型企业死亡率的23.6倍和6.9倍 小微企业平均寿命为6.8年,不足大型企业的1/3 小微企业资金产值率为59.1%,分别比大型和中型企业低34.2个和21.3个百分点。 /p p   标准体系建设不适应新发展理念下制造业转型升级建设需求。标准作为规范产品的市场准入门槛,在推动企业研发和创新、提升产品质量和性能、淘汰落后产能等方面发挥着重要作用,对于倒逼制造业转型升级发挥着重要作用。但是,当前我国标准建设中交叉重复、矛盾、缺失、滞后老化等现象广泛存在。例如,现行国家标准、行业标准、地方标准中仅名称相同的就有近2000项,有些标准技术指标不一致甚至存在冲突。此外,标准更新速度缓慢,“标龄”高出德、美、英、日等发达国家1倍以上,难以适应新形势下制造业对标准的旺盛需求。在国际标准体系建设方面,中国仍未发挥应有作用,世界上2.6万余项国际标准中,中国主导制定的国际标准仅占1%,“中国标准”在国际上认可度不高。 /p p   由于标准建设滞后和监管不严,中国产品在国际上竞争力不强,中国制造往往成为低质低价的代名词。近五年来,质检总局开展国家监督抽查,产品质量不合格率一直徘徊在10%左右。中国出口商品长期处于通报召回问题产品数量首位,2016年,美国消费品安全委员会发布1380项产品召回通报,其中涉及中国产品946项,占通报总数的68.55% 同期,欧盟非食品类快速预警系统(RAPEX)发布1887项产品召回通报,其中涉及中国产品960项,占通报总数的50.87%。 /p p strong   几点建议 /strong /p p   结合我国制造业转型升级的关键问题,未来一段时期,应该以改革创新为动力,以标准与创新政策的深度融合为着力点,建立与中国制造业技术和产业发展阶段相适应的标准动态调整机制,加快完善标准与产业政策和创新政策融合的政策体系,形成推动制造业创新发展、转型升级和质量提升的倒逼机制,提升实体经济发展的质量优势。 /p p   推动建立融合必要标准的市场准入政策和政府创新采购政策,倒逼制造业提质增效。改革市场准入负面清单关于禁止准入和淘汰类项目的遴选机制,建立与强制性标准关联的动态调整机制,结合制造业转型升级需求,提高强制性标准关于产品及产品生产、储运和使用中的性能、安全、卫生、污染物排放和环保的相关要求,带动制造产品质量、寿命和节能、环保性能的提升。加强制造业推荐性标准与德国、美国、日本等制造业强国相应标准的接轨工作,建立与推荐性标准挂钩、符合国际惯例的政府创新采购政策,引导制造企业产品创新和升级。 /p p   建立与强制性标准挂钩的研发税收优惠政策,引导制造业大幅提升创新发展能力。修改高新技术企业认定管理办法,在高新技术产品(服务)和主要产品的认定中增加关于国家安全、生态环境安全、使用寿命、质量等强制性标准的相关内容,更好地发挥标准对促进制造业创新和转型发展的促进作用。制造企业开展研发活动中实际发生的研发费用在按规定享受加计扣除优惠政策时,必须同时满足与企业生产经营活动相关的基础材料、基础工艺、基础共性技术和产品标准要求,以充分发挥标准在倒逼制造企业加大研发投入,有效促进企业研发创新活动的重要作用。 /p p   发挥标准在国家重大科技项目的引导作用,统筹推进科技、标准、产业、政策协同创新。加快制造业基础和关键技术标准制定,及时更新和清理行业标准,废止阻碍新兴产业和新兴业态发展的落后标准,形成与产业发展相协调的制造业标准体系。加快制造业标准体系与国家科技计划的深度融合,在重大科技项目设计、预研、立项、实施、验收等全过程增加核心技术零部件标准、先进基础工艺标准、关键基础材料标准、基础共性技术标准等考核指标,建立科技、标准、产业、政策协同发展机制。推进科技成果与标准研制有效结合,将科技成果及时转化为标准。 /p p   打造产业链上下游联动的标准体系,支持大中小企业融通发展。以保障制造业迈向国际价值链中高端为目标,结合制造业细分产业链上中下游发展需求,组织开展涵盖工业基础标准、军民通用标准、团体标准的标准体系建设,加快研制网络化协同研发制造、大规模个性化定制、服务型制造等新模式中的相关标准,加快推进制造企业贯标工作,系统解决大中小企业配套协作中的标准化问题,助力构建大中小企业融通发展的新格局。 /p p /p
  • 国产自研多功能Oligo合成仪成功交付,助力中国生物智造
    2022年11月,伯科生物科技有限公司(以下简称“伯科生物”)自主研发的首款多功能Oligo合成仪SynStar21已成功交付北京合生基因科技有限公司(以下简称“合生基因”),双方将在基于RNA合成的技术方向积极合作,拓展应用管线。伯科生物是一家合成生物学底层技术领军企业,致力于面向合成生物学与基因组学的新技术开发与转化。成立至今,伯科生物持续拓展核酸(DNA/RNA)合成上游技术与设备的开发制造。伯科生物研发团队经过五年的努力,在探索与实践了不同前沿合成技术路径后,确认了当前成熟的合成工艺,可以满足科学试验、临床检测以及药物研发等不同的合成需求。SynStar21多功能Oligo合成仪在上一代长链DNA合成仪的基础上自主研发完成,具备多种合成功能,满足RNA、DNA、DNA/RNA修饰以及DNA/RNA嵌合Oligo合成,具有合成准确性高、经济、操作简单等优势;SynStar21合成仪通过深度优化的硬件和软件系统,可以提供nmol~μmol合成规格,可开展不同类别不同长度不同修饰的高品质DNA和RNA Oligo合成,单链长度可达120nt DNA和100nt RNA。合生基因是致力于合成生物学在生物医药和生命健康领域应用的国家高新技术企业,专注于基于合成生物学技术的基因与细胞治疗药物研发及科研与临床服务。2021年10月11日,合生基因研发的首款基因治疗产品——用于治疗晚期实体瘤的溶瘤病毒产品 SynOV1.1 腺病毒注射液获得国家药品监督管理局(NMPA)临床试验默示许可,这也是国内首个“合成基因线路精准调控”的基因治疗产品获得国家药监局批准开展临床试验。在此之前,该产品已于2020年11月获得美国FDA临床试验许可。合生基因期望利用合成生物技术开发针对癌症、遗传病、传染性疾病的创新药物和治疗方法,构建基于合成生物技术的生物医药新生态。合生基因首席科学家谢震教授指出,在细胞治疗和小核酸药物等的药物研发领域,很大程度上都需要利用合成生物技术进行研发。合生基因通过融合信息技术,挖掘关键且具有差异化的生物学元件,组装成真正的分子机器,利用分子机器进行细胞功能模块化设计。目前合生基因将合成生物学技术应用到了溶瘤病毒的治疗领域,研发出了具有差异化的产品,达到杀伤肿瘤效果。近年来,核酸药物、细胞/基因治疗的研发与临床转化取得了巨大的进步。2022年3月,美国麻省理工大学的科研团队在《自然》杂志发表论文,首次报道了在动物模型中通过sup-tRNA治疗无义突变导致的遗传疾病的可能性[1];2022年11月,靶向LPA基因的siRNA降脂药物Olpasir的II期临床试验结果公布于《新英格兰医学杂志》(The New England Journal of Medicine)上,在治疗36周时血液中脂蛋白(a)水平下降超过95%,几乎所有患者的脂蛋白(a)恢复正常水平,试验结果令人振奋[2]。截止目前,FDA已经批准了十余款寡核苷酸药物,包括多种合成修饰的RNA或DNA,例如反义寡核苷酸(antisense oligonucleotide,ASO)、小干扰核糖核酸(small interfering RNA,siRNA)和核酸适配体(aptamer)等。2021年12月,靶向PCSK9基因的siRNA降脂药物Leqvio(inclisiran)获FDA批准,一年两次给药可实现长效降脂,极大的提高了患者的依从性,对动脉粥样硬化性心血管疾病(ASCVD)有良好治疗效果。图1 ASO、siRNA作用机制以及用于心血管疾病的治疗[3、4]2022年,有5款基因疗法获得美国或欧盟监管机构的批准上市(Upstaza、Zynteglo、Roctavian、Skysona和Hemgenix),分别用于治疗芳香族L-氨基酸脱羧酶缺乏症(AADCD)和β地中海贫血等疾病。在肿瘤治疗方面,2022年10月在国际医学权威期刊《柳叶刀》(The Lancet)上,概述了目前mRNA癌症疫苗的研发进展和临床试验状况,现在至少有35项mRNA癌症疫苗在临床开发中。mRNA疫苗由于其耐受性好、具有非传染性同时生产速度快、成本低等优势,已有大量临床试验开始评估mRNA疫苗的临床疗效和免疫原性[5]。未来,中国的生物科技企业需要努力在核心设备的自研自造、生物学工程的优化创新、生物技术与信息技术的融合等方面积极开拓,纵深合作,共同推动中国生物经济的持续健康发展。参考文献:1. Wang J, Zhang Y, Mendonca C A, et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice[J]. Nature, 2022, 604(7905): 343-348.2. O'Donoghue ML, Rosenson RS, Gencer B, et al. OCEAN(a)-DOSE Trial Investigators. Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N Engl J Med. 2022 Nov 17 387(20):1855-1864.3. Blom D J, Marais A D, Moodley R, et al. RNA-based therapy in the management of lipid disorders: a review[J]. Lipids in Health and Disease, 2022, 21(1): 1-16.4. Paunovska K, Loughrey D, Dahlman J E. Drug delivery systems for RNA therapeutics[J]. Nature Reviews Genetics, 2022, 23(5): 265-280.5. Lorentzen, Cathrine Lund, et al. "Clinical advances and ongoing trials on mRNA vaccines for cancer treatment." The Lancet Oncology 23.10 (2022): e450-e458.关于伯科伯科生物科技有限公司是一家合成生物学底层技术领军企业,致力于面向合成生物学与基因组学的新技术开发与转化,于2020年获得国家高新技术企业认证。为学术研究与商业应用提供了高品质核酸产品,为医疗健康、生物制药和农业等领域提供底层技术支持。公司产品线涵盖NGS测序、纳米孔测序、PCR平台检测、CRISPR基因编辑、以及RNA干扰等领域。伯科生物已在中国无锡搭建全流程国产化的高通量核酸合成与应用技术转化中心,建立了GMP厂房和ISO9001、ISO13485质量体系。公司已经为国内外100多家的医学检验机构、30多家知名医院与临床学术团队开发了400多款液相基因芯片(Gene Panel),在基因组、转录组、甲基化组及病原体液相基因芯片均有成熟的产品。液相基因芯片(Gene Panel)已经成为合成生物学的重要应用之一,在生殖、遗传疾病、肿瘤诊断、肿瘤早筛、病原体检测等医学与健康领域有着广泛的应用,在动植物的分子育种以及品种鉴定方面也有着广阔的应用前景。2020年9月伯科生物在液相基因芯片取得突破性进展,完成了首款全流程国产人全外显子液相基因芯片的研发与测试,正式推向市场,达到了国际领先水平,打破了海外巨头对该产品的垄断。该产品在实现优质性能的同时实现了模块化扩展,扩大全外显子液相基因芯片在科研、临床、大健康等领域的应用。伯科生物可以完整提供全流程国产甲基化液相基因芯片以及配套试剂。未来,依托合成生物学的底层技术,伯科生物将向基因治疗、核酸药物、DNA存储、DNA材料学以及分子育种等领域积极拓展,为实现“精益求精创新,为人类美好生活”的企业使命而努力。
  • 绿色制造技术标准联盟日前正式成立
    2010年2月2日,由机械科学研究总院中机生产力促进中心(下称“中心”)组织,中国机械工业联合会、北京机电研究所、重庆大学等20余家单位共同发起的绿色制造技术标准联盟(下称“联盟”)成立大会在北京召开。成立大会由中心副主任邱城主持,中国机械工业联合会李冬茹处长、机械科学研究总院院长李新亚到会并讲话。中心标准化研究所副所长丁红宇做了绿色制造技术标准联盟筹备工作总结报告,对近两年的联盟筹备工作进行了详细介绍。   据了解,联盟以“十一五”国家科技支撑计划“绿色制造关键技术和装备”重大项目成果为基础,由国内相关的研发单位、应用企业、标准化机构、行业协会以及检测、评定机构等共同发起,自愿组成。主要任务为:跟踪绿色制造技术发展前沿和国内外相关标准化动态,研究装备制造业绿色制造技术标准需求,开展共性问题和重点标准的前期研究和技术研讨工作 提出绿色制造技术标准体系、行业标准和国家标准制修订计划、标准化研究项目立项以及相关标准化方针和政策的建议 促进相关标准化机构之间的信息沟通、技术交流与标准协调工作,配合相关标准机构,组织联盟成员单位协助或参与相关国家或行业标准的研究与制定工作 组织开展国际、国内相关标准化技术交流活动,建立绿色制造技术标准平台,配合相关标准机构开展标准技术咨询、标准宣传与贯彻工作。   李新亚院长对联盟的成立给予了充分的肯定,并指出,联盟的组建将进一步增强绿色制造技术联盟的整体实力,为统一绿色制造技术基本概念的理解与表述,更好地开展绿色制造技术标准体系研究、标准制修订奠定了基础。在提升绿色制造技术的普及、应用和收效程度,保障绿色制造技术相关检测、评估评价与认定工作的规范化,促进绿色制造技术资源的共享与积累等方面具有重要的意义。同时,李院长表示,作为绿色制造技术创新联盟的成员,机械科学研究总院将积极支持院直属企业加入绿色制造技术标准联盟,认真履行相应义务。   此次会议推选中国机械工业联合会李冬茹为理事长,中机生产力促进中心奚道云为联盟第一届理事会秘书长,重庆大学曹华军、上海交通大学陈铭为副秘书长。
  • 《装备制造业标准化和质量提升规划》印发
    质检总局 国家标准委 工业和信息化部关于印发《装备制造业标准化和质量提升规划》的通知国质检标联〔2016〕396号  各省、自治区、直辖市人民政府,国务院各部门、各直属机构:  为落实《中国制造2025》的部署和要求,切实发挥标准化和质量工作对装备制造业的引领和支撑作用,推进结构性改革尤其是供给侧结构性改革,促进产品产业迈向中高端,建设制造强国、质量强国,质检总局、国家标准委、工业和信息化部会同有关部门共同编制了《装备制造业标准化和质量提升规划》,经国务院同意,现印发给你们,请认真贯彻执行。  质检总局 国家标准委 工业和信息化部  2016年8月1日  (此件公开发布)装备制造业标准化和质量提升规划  装备制造业是经济社会发展的支柱性、基础性产业,是提升我国综合国力的基石。标准是产业发展和质量技术基础的核心要素,是装备制造业行业管理的重要手段。标准是装备设计、制造、采购、检测、使用和维护的依据,标准的先进性、协调性和系统性决定了装备质量的整体水平和竞争力。坚持标准引领,用先进标准倒逼装备制造业转型和质量升级,建设制造强国、质量强国,是结构性改革的重要内容,有利于改善供给、扩大需求,促进产品产业迈向中高端。经过多年发展,我国装备制造业标准化和质量取得了长足进步。我国现行国家标准和行业标准中,装备制造业标准占总数的50%以上,基本形成了适应产业发展的标准体系。装备制造业标准水平不断提升,与国际接轨程度进一步提高,国际标准转化率达到70%以上,重大装备国产化程度大幅提高,产品整机质量与可靠性水平明显提升。装备制造业标准化在提升产品质量、扩大国际贸易、促进技术进步和创新等方面发挥了积极作用,产生了显著的经济和社会效益,有力支撑了装备制造业的发展。但是,随着新一代信息技术和装备制造业深度融合,标准体系存在系统性和协同性不强、服务产业跨界融合的适应性较差等问题,智能制造、绿色制造等高端装备制造业相关标准缺失,标准国际化水平不高,装备制造业质量发展的基础相对薄弱,造成装备在质量一致性、稳定性、可靠性、安全性和耐久性等方面差距较大,质量品牌竞争力不强,装备制造业标准和质量的整体水平亟待提升,迫切需要组织实施装备制造业标准化和质量提升规划,重点推进工业基础、智能制造、绿色制造等标准化和质量提升工程,充分发挥标准对制造业发展的支撑和引领作用,推进装备制造业转型和质量升级。为落实国务院有关《中国制造2025》和《深化标准化工作改革方案》的部署和要求,制定本规划。  一、总体要求  (一)总体思路。  紧贴《中国制造2025》的需求,以提高制造业发展质量和效益为中心,以实施工业基础、智能制造、绿色制造等标准化和质量提升工程为抓手,深化标准化工作改革,坚持标准与产业发展相结合、标准与质量提升相结合、国家标准与行业标准相结合、国内标准与国际标准相结合,不断优化和完善装备制造业标准体系,加强质量宏观管理,完善质量治理体系,提高标准的技术水平和国际化水平,提升我国制造业质量竞争能力,加快培育以技术、标准、品牌、质量、服务为核心的经济发展新优势,支撑构建产业新体系,推动我国从制造大国向制造强国、质量强国转变。  (二)实施原则。  需求引领、问题导向。紧贴装备制造业发展对标准化和质量的需求,针对装备制造业标准化和质量存在的问题和短板,全面部署,集中攻坚,强化标准的研究与验证,推动标准体系建设和装备质量水平的整体提升。  深化改革、创新驱动。全面落实标准化工作改革要求,释放创新活力,加强装备制造业标准与技术创新的融合发展,推进形成政府主导制定的标准和市场自主制定的标准协同发展、协调配套的新型标准体系,全面提升大质量工作格局。  重点突破、综合推进。围绕装备制造业重点领域,协调推动各部门、地方政府、行业组织共同开展质量品牌提升行动,研制一批急需的关键技术标准。统筹装备制造业产业生态链的需求,成套、成体系地推进标准制定,构建相互衔接、协调配套的综合标准体系。  军民融合、统筹发展。兼顾工业制造和武器装备建设需求,提高军用标准和民用标准通用化水平,促进军民科技成果双向转化,提高装备质量,为统筹经济建设和国防建设筑牢工业基础。  开放兼容、强化实施。推动装备制造业标准国际化,服务“一带一路”战略实施。注重装备制造业标准实施与工业消费品质量提升的结合,注重标准实施与政策、法规的衔接配套,加强标准的宣贯、实施、监督和服务,形成政府重视质量、企业追求质量、社会崇尚质量的良好氛围,以质量品牌升级推动经济转型升级。  (三)目标任务。  到2020年,工业基础、智能制造、绿色制造等重点领域标准体系基本完善,质量安全标准与国际标准加快接轨,重点领域国际标准转化率力争达到90%以上,装备制造业标准整体水平大幅提升,质量品牌建设机制基本形成,部分重点领域质量品牌建设取得突破性进展,重点装备质量达到或接近国际先进水平。  到2025年,系统配套、服务产业跨界融合的装备制造业标准体系基本健全,企业质量发展内生动力持续增强,质量主体责任意识显著提高,有力支撑《中国制造2025》的实施,标准和质量的国际影响力和竞争力大幅提升,打造一批“中国制造”金字品牌。  二、提升装备制造业标准化和质量管理创新能力  适应装备制造业发展需要,深化标准化工作改革,强化标准化与科技创新融合,推进军用标准和民用标准兼容发展,培育发展团体标准,创新政府事中事后监管方式,提升质量技术基础服务水平,健全质量发展考核与激励机制,提升企业标准化和质量管理创新能力,塑造“中国制造”品牌形象。  (一)提升装备制造业标准化创新能力。  强化标准化与科技创新融合。加大科技研发对标准研制的支持,深化国家科技计划与标准化紧密结合机制,在项目设计、立项、实施和验收各阶段增加对研发产品的质量稳定性、设备可用性及产品寿命等标准化指标因素,通过科研项目促进标准的形成,通过标准促进科技成果、专利技术转化和快速推广应用,将技术标准作为科研项目实施的主要考核指标之一。依托国家质量基础的共性技术研究与应用重点专项,加强装备制造业关键技术标准研究。围绕产业创新联盟建设,完善产业技术基础公共服务体系,加强产学研用协同,研制对产业竞争力整体提升带动性强的关键共性技术标准,促进成果转化。结合制造业创新中心建设,重点在工业基础、新材料、新一代信息技术、高端装备制造等领域建立标准创新基地,聚集装备制造业领域标准化和科技创新资源,为先导性、创新性技术标准研制、应用与国际化提供服务,促进企业创新成果的转化应用。结合新型工业化产业示范基地建设,开展国家高端装备制造业标准化试点,推动创新成果应用和产业化,促进装备制造业由大变强。(科技部、质检总局、工业和信息化部、国家标准委等按职责分工负责)  推进军用标准和民用标准兼容发展。加快推进装备制造业领域军用标准和民用标准通用化,推动国防和军队建设中优先采用先进适用的民用标准,加快军用标准向民用领域的转化和应用,开展现有军用标准和民用标准整合修订和军民通用标准制定。加强军用和民用标准化技术委员会联动,促进军用标准和民用标准资源共享。推进国防科技工业标准化体系建设,推动中国航天标准走出去,促进国防科技工业军民融合深度发展。(中央军委装备发展部、国防科工局、国家标准委、工业和信息化部等按职责分工负责)  培育发展团体标准。在装备制造业市场化程度高、技术创新活跃、产品类标准较多的领域,鼓励有条件的学会、协会、商会、联合会等社会团体根据技术创新和市场发展的需求,协调相关市场主体,自主制定发布团体标准,供社会自愿采用。支持专利融入团体标准,推动装备制造业技术进步。(国家标准委、工业和信息化部等按职责分工负责)  提升企业标准化创新能力。研究制定促进装备制造业标准化与产学研相结合的政策,推动企业将创新成果转化为技术标准,推进产业化。鼓励企业制定严于国家标准、行业标准的企业标准,建立完善先进的企业标准体系。加强中小微企业标准化和质量管理能力建设,引导企业建立标准化制度体系,培育标准化和质量意识,促进大众创业、万众创新。鼓励企业参与行业标准、国家标准及国际标准的制修订工作,承担国际标准化组织专业技术委员会工作。推动企业依据标准组织生产和提供服务,引导企业开展对标达标活动。运用行业准入、生产许可、行政执法、认证认可等手段,促进装备制造业领域节能、节水、环保、技术、安全等标准的实施,坚决淘汰不达标产品,优化产品结构,提升产品品质,提振消费者对“中国制造”的信心。以建立企业产品和服务标准自我声明公开和监督制度为契机,统筹建设企业产品标准信息公共服务平台,加强企业标准大数据采集,推行企业标准主要技术指标“领跑者”制度试点,形成标准竞争机制。强化对公开标准的事中事后监管和依标准开展监管,及时向社会公开监督检查结果,并将结果纳入企业质量信用记录,推动信用监管和信用约束。鼓励消费者、新闻媒体和社会组织对企业自我声明公开的产品和服务标准的实施进行监督,汇聚多元共治的合力。(国家标准委、质检总局、科技部、发展改革委、工业和信息化部、国资委、国家认监委,以及各省级人民政府按职责分工负责)  (二)提升装备制造业质量管理创新能力。  提升质量技术基础支撑能力。加强标准、计量、认证认可、检验检测等国家质量技术基础能力建设,结合国家重大战略部署和地区发展规划,推动质量技术基础服务示范点,为装备制造企业产品、服务质量提升和品牌建设提供质量技术支持“一站式”服务。推进国家质量技术基础的综合服务示范和国际互认,为中国装备走出去,形成持续竞争力提供质量技术保障。对关系国计民生、健康安全、节能环保的重大设备,以及政府投资项目、国有企业或国有控股企业需政府核准投资项目的重大设备,综合运用质量技术基础手段实施重大设备监理,保障重大设备设计、生产、安装、调试等全生命周期质量安全和项目投资效益。(质检总局、工业和信息化部、国家认监委、国家标准委,以及各省级人民政府按职责分工负责)  创新政府事中事后监管方式。探索强制性标准实施与质量监管相结合的负面清单管理模式,推进装备制造业强制性标准整合精简和统一管理,除在危害国家安全、人身健康和安全、生态环境安全以及防止欺诈等方面设置强制性标准,需要强制执行、严格管住外,其他方面应更多让市场发挥作用。全面推进“双随机、一公开”监管,随机抽取检查对象,随机选派执法检查人员,加强质量违法失信行为信息的在线披露和共享。建立产品统计监测制度,健全质量评价指标体系,加强宏观质量统计分析。(质检总局、工业和信息化部,以及各级人民政府按职责分工负责)  健全质量发展考核与激励机制。建立科学规范的质量工作绩效考核评价体系,完善省级政府质量工作考核,推动将装备制造业质量和安全纳入地方各级人民政府绩效考核评价内容。建立健全国家和地方质量奖励制度,鼓励装备制造企业积极开展争创质量管理先进班组和质量标兵活动,对装备制造领域质量管理先进、成绩显著的组织和个人给予表彰奖励,树立标杆和先进典型。(质检总局,以及各级人民政府按职责分工负责)  塑造“中国制造”品牌形象。将质量品牌建设纳入质量强省、质量强市、质量强县活动内容,健全质量评价和激励机制,加快建立健全质量品牌评价指标体系。充分发挥行业协会、专业机构、新闻媒体、广大消费者和第三方机构等社会力量的作用,促进行业自律,加强社会监督。调动全社会提升质量品牌的积极性,形成推动质量品牌提升的叠加效应和强大合力。(质检总局、工业和信息化部等按职责分工负责)  三、实施工业基础标准化和质量提升工程  加快核心基础零部件(元器件)、先进基础工艺、关键基础材料和产业技术基础(以下简称“四基”)领域急需标准制定。以破解装备制造业发展瓶颈和加强薄弱环节为突破口,开展关键基础零部件(元器件)核心共性技术标准研究,配套解决基础材料、基础工艺标准短板。针对高档数控机床、电子专用设备、航空航天装备、海洋工程装备、先进轨道交通装备、节能与新能源汽车等高端装备制造业配套基础零部件(元器件)标准缺失的局面,组织攻关,重点研制高速高精度轴承和齿轮、高压液压件、高强度紧固件、高应力高可靠性弹簧等关键基础零部件(元器件)标准。研究解决影响基础零部件(元器件)产品质量一致性、稳定性、可靠性、安全性和耐久性的关键共性技术,系统制修订液压件、紧固件、弹簧、密封件等量大面广的基础零部件(元器件)标准 钢材、有色金属、电子专用材料、有机和复合材料等基础原材料标准,特别是耐高温高压、耐寒、耐腐蚀、耐磨材料标准 金属成型、金属加工、热处理、锻压、铸造、焊接、表面工程等基础工艺标准,提升可靠性和寿命指标。(国家标准委、工业和信息化部、国防科工局等按职责分工负责)  加强工业基础标准研究和试验验证。针对“四基”标准基础数据和方法研究薄弱环节,建立以产业集聚区和龙头骨干企业为主体,高校、科研院所和产业链相关主机企业联合参加的标准推进联盟,产学研用协同创新,推进产品研发与标准制定,开展标准基础研究和试验验证,加强相关设计方法、检测试验、可靠性验证和疲劳寿命评估等原始试验数据积累,支撑国家工业基础数据库和工业产品质量控制与技术评价实验室建设,面向全社会提供服务。(工业和信息化部、国家标准委等按职责分工负责)  推进“四基”领域综合标准化。加强“四基”领域产业链上下游相关标准化联动,系统解决设计、材料、工艺、检测与应用标准的衔接问题。鼓励主机企业积极参与“四基”标准制修订,扩大基础零部件、基础材料相关标准在主机行业的应用。选择汽车、机床、工程机械等领域开展整机企业和基础配套企业对接标准化试点示范,协同推进工业基础领域标准化。(国家标准委、工业和信息化部、质检总局等按职责分工负责)  实施工业基础质量提升行动。以汽车、高档数控机床、航空航天装备、海洋工程装备、轨道交通装备、大型成套技术装备、工程机械、特种设备对关键原材料和核心基础零部件的需求为重点,以对质量影响较大的关键工序和特殊工序为突破口,加强可靠性设计,提升试验及生产过程质量控制水平,推进新工艺、新材料、新技术的应用,提高装备质量水平。(工业和信息化部、质检总局等按职责分工负责)  四、实施智能制造标准化和质量提升工程  创新智能制造标准化工作机制。针对智能制造标准跨行业、跨专业、跨领域的特点,加强顶层设计,建立智能制造标准化协调推进工作机制。在智能产品、装备、制造技术等方面,建立产学研用协同创新的标准推进联盟,制定满足市场需要的标准,加快智能制造科技成果转化。(国家标准委、工业和信息化部等按职责分工负责)  加快智能制造标准体系建设。研究分析智能制造标准化需求和重点领域,系统梳理现有相关标准,构建先进、开放、协调、国际接轨的智能制造标准体系。按照共性先立、急用先行的原则,重点研制智能制造关键术语和定义、智能装备/产品、工业互联网/物联网、智能工厂/数字化车间、工业软件、工业云和大数据等基础通用和关键核心技术标准,规范、引领智能制造产业健康有序发展。(工业和信息化部、国家标准委、国防科工局等按职责分工负责)  开展智能制造综合标准化试验验证。选择基础条件好、需求迫切的行业和企业,针对流程制造、离散制造、智能装备和产品、智能制造新业态新模式、智能化管理和智能服务等领域开展综合标准化试验验证工作。在充分考虑现有布局和利用现有资源基础上,通过现有经费渠道对智能制造重点领域标准研制和标准验证等工作予以支持。鼓励和引导行业和企业参与智能制造标准体系和重要技术标准研制、实施应用、意见反馈等工作。(工业和信息化部、国家标准委、质检总局等按职责分工负责)  推动装备智能化和质量提升。选择一批辐射带动力强、发展前景好、具有竞争力优势的企业实施制造过程信息化集成和协同应用、质量检测等方面的技术改造,建设产品质量检测系统和追溯体系。依托重点领域智能工厂、数字化车间的建设以及传统制造业智能转型,突破高档数控机床与工业机器人、增材制造装备、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备,实现工程应用和产业化,提升装备制造业智能化水平。(工业和信息化部、质检总局等按职责分工负责)  深化智能制造标准化国际交流与合作。积极参与国际标准化组织(ISO)、国际电工委员会(IEC)、国际电信联盟(ITU)等国际标准化组织活动,在数字化协同设计等领域实现国际标准突破。加强与发达国家和地区间的技术标准交流与合作,充分利用中德智能制造/工业4.0标准化工作组等合作平台,吸引企业界、学术界广泛参与智能制造标准化工作,培养标准化人才,开展标准互认,共同制定国际标准。(国家标准委、工业和信息化部等按职责分工负责)  五、实施绿色制造标准化和质量提升工程  完善绿色制造标准体系。制定产品全生命周期标准,指导装备制造业产品设计、制造、使用、回收及再利用等全生命周期的绿色化。重点研究绿色设计、工艺、装备、材料及管理等绿色生产标准 余热回收、水循环利用、废弃物资源化利用、无害化处置,以及废弃汽车整车及关键系统部件、废弃机电产品的回收、拆解、再制造等回收再利用标准 满足轻量化、无害化、节能降噪、资源节约、易拆解、易回收、高可靠性和长寿命等要求的绿色产品评价标准 绿色采购、绿色消费、绿色物流等绿色供应链标准 基于基础设施、管理体系、能源与资源投入、产品与环境排放、环境绩效等工厂建设运营的不同维度,以实现厂房集约化、原料无害化、生产洁净化、废物资源化、能源低碳化为目标的绿色工厂标准 园区生态环境及空间布局、基础设施共享、产业共生耦合、近零排放等绿色园区标准。(国家标准委、发展改革委、工业和信息化部、环境保护部等按职责分工负责)  推进节能减排标准化。以高效节能节水、先进环保、资源循环利用为重点,建立和完善节能环保产业标准体系。加强节能环保产业基础标准、性能检测方法标准和评价管理标准的研制,建立高效电机、LED照明、先进节能环保装备等重要产品标准和产业园区循环化改造标准综合体。开展能效、水效提升与节能服务、环保装备及关键技术、循环经济、工业资源综合利用等重点领域标准研制,推动节能量测量与验证、节能服务、能耗在线监测与评估、重大节能环保装备等领域的技术标准成为国际标准。(国家标准委、发展改革委、工业和信息化部、环境保护部等按职责分工负责)  推动绿色制造标准实施及效果评估。将目前分头设立的环保、节能、节水、循环、低碳、再生、有机等产品统一整合为绿色产品,建立统一的绿色产品标准、认证、标识等体系。加强对绿色制造标准、节能环保产业标准等绿色标准实施情况的监督检查。加强绿色标准检测、认证等服务能力建设,积极推动第三方机构依据法律法规、标准开展绿色标准实施效果评价。依据标准积极推进绿色产品和认证、绿色工厂和绿色园区建设,推广绿色产品。开展绿色供应链标准化试点,推动建立绿色供应链评估体系。全面推进绿色制造业改造升级,加快推进制造过程的流程化再造,减少污染物排放、降低资源能源消耗和质量损失,避免低价竞争。(国家标准委、发展改革委、工业和信息化部、质检总局、环境保护部、国家认监委等按职责分工负责)  六、发展服务型制造和生产性服务业标准化  加快服务型制造关键技术标准研制。围绕消费品需求,促进装备制造企业开展柔性化生产和个性化定制相关设备和标准的研制,发展故障诊断、维修保养、远程咨询等专业服务,生产更多有创意、品质优、受群众欢迎的产品。开展全生命周期管理、云制造服务、远程监控和运行维护服务、基于大数据的网络精准营销、产品回收再制造、金融租赁、知识管理与服务等技术标准研究,推动企业由生产型向生产服务型转变,成为提供整体解决方案和系统集成的供应商。(国家标准委、工业和信息化部及各有关部门按职责分工负责)  加强生产性服务关键技术标准研制。开展基于互联网和大数据的第三方信息技术服务、线上/线下协同服务等技术标准研究,促进制造企业流程再造和模式创新。加快制定研发设计、生产设施管理、第三方物流、知识产权、服务外包、品牌建设等生产性服务标准研制,支撑装备制造业转型升级。(国家标准委及各有关部门按职责分工负责)  提升装备制造业服务质量。鼓励企业优化产品设计,加快质量技术创新,开展个性化定制、柔性化生产,增加优质新型产品有效供给,满足不同群体不断升级的多样化消费需求。适应生产性服务业社会化、专业化发展要求,发展技术支持和设备监理、保养、维修、改造、备品备件等专业化服务,提高设备运行质量。积极运用互联网、物联网、大数据等新理念和新技术,发展远程检测诊断、运营维护、技术支持等售后服务新业态,提高装备制造业服务质量。(工业和信息化部、质检总局等按职责分工负责)  加快制造服务标准化成果转化与应用。结合产业布局,引导和鼓励各地区、各产业集群,推进制造服务标准化成果转化与应用示范建设,探索建立区域性制造服务标准化“科技研发、转化成果、推广应用”的合作模式,开展服务型制造和生产性服务业标准化试点示范工作。依托制造业集聚区,推进研发设计、物流服务、质量检验检测相关标准化公共平台建设。引导优势企业积极发挥引领作用,推广质量标杆管理,将质量管理的成功经验和先进方法向产业链两端延伸推广,带动中小企业实施技术改造升级和管理创新,增强整体质量竞争力。(科技部、质检总局、国家标准委、工业和信息化部、发展改革委等按职责分工负责)  七、推动重点领域标准化突破,提升装备制造业质量竞争力  围绕实施高端装备创新工程,适应创新进展和市场需求,改进标准制修订流程,提高标准制修订效率,缩短标准制修订周期,及时更新标准,推动新一代信息技术、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业机械装备、新材料、高性能医疗器械等领域标准化实现新突破,加快装备质量安全标准与国际标准接轨,促进产业升级和产品质量国际竞争力提升。  (一)新一代信息技术。加快完善集成电路标准体系,推进高密度封装、三维微组装、处理器、高端存储器、网络安全、信息通信网络等领域集成电路重大创新技术标准制修订,开展集成电路设计平台、IP核等方面的标准研究。开展靶材、电子浆料、半导体材料、高强高导铜合金等新型电子材料标准研究,研制传感器、专用电子设备等关键共性技术标准,完善新型显示、传感器件、片式元器件、太阳能光伏、锂离子电池等标准体系。加强智能终端、视听产品、可穿戴设备、智能硬件等关键技术标准研究。加强信息通信网络关键技术和设备的标准化工作,加快新型计算、高速互联、先进存储、体系化安全保障等技术标准研制。加快适用于工业环境的宽带移动通信标准制定,研制第五代移动通
  • 通标标准技术服务有限公司安吉阻燃实验室签订多功能燃烧测试仪采购合同
    2010年5月31日,莫帝斯技术(中国)有限公司同通标标准技术服务有限公司SGS安吉阻燃实验室,签订了应用于纺织品阻燃测试的多功能燃烧测试仪采购合同,货物将于6月内交付使用。 此次采购,通标标准技术服务有限公司SGS安吉阻燃实验室进行了多家对比,以及现场考察,最终确定我司为多功能燃烧测试仪的供应商,对此深表感谢! 同时对无锡出入境检验检疫局对此次仪器考察给予的帮助表示感谢! Firemaster 多功能燃烧测试仪主要应用于通过对垂直竖向纺织品及组件边缘及底边点火检测其易燃性能、还可检测睡衣用面料和面料组合,帷幕及窗帘、防护服织物的阻燃性能;符合众多国内外检测标准要求。 莫帝斯技术(中国)有限公司所推出的Firemaster 多功能燃烧测试仪,综合了国外同类产品的特点,同时在其基础上,进行了更为人性化的设计,由于该项测试为室外控制方式,莫帝斯选择使用支托臂系统进行软件界面操作,这样可以通过旋转支托臂,更便于测试人员的使用了操作。由于设计精巧,受到用户的好评。 Firemaster 多功能燃烧测试仪可完成的阻燃测试项目如下: ISO 6940:1995 垂直竖向试样易燃性能 ISO 6940:2004 垂直竖向试样易燃性能 ISO 6941:2003 垂直竖向试样火焰蔓延性能 ISO 10047:1993 织物表面燃烧时间确定 BS 5438:1976 垂直竖向纺织品及组件阻燃性能 BS 5438:1989 垂直竖向纺织品及组件底边及边缘点火阻燃性能 BS 5722:1991 睡衣用面料和面料组合的阻燃性能 BS EN1103:2005 服用面料燃烧性能 BS EN 13772:2003 帷幕及窗帘火焰蔓延性能 ISO 15025:2002 帷幕及窗帘火焰蔓延性能 AS 2755.1、2、3 澳大利亚及新西兰垂直竖向试样易燃性能 GB/T 8745、GB/T 8746、GB/T 5456 等中国国家标准 通标标准技术服务有限公司安吉阻燃实验室介绍: SGS阻燃实验室于2004年落户浙江省安吉县。经过几年的发展,现已从原先200平方米的单一的家具检测实验室发展成为目前涵盖软体家具、纺织品、建筑材积构建、交通工具、电线电缆以及电子电工等所有阻燃测试需求领域的5000平方米的实验室空间。凭借齐全的先进检测仪器设备和经验丰富的专业技术人才,SGS安吉阻燃实验室现已在国内乃至国际阻燃检测领域赢得了良好的口碑。在阻燃测试领域,安吉阻燃实验室已获得英国皇家认可委员会授权的UKAS实验室认可,成为国内唯一一家在防火领域具有此项资质的第三方检测机构。 值得一提的是,SGS安吉阻燃实验室能够提供全面的燃烧性能测试与评估服务,是目前国内首个具备轨道车辆燃烧性、浓烟度、烟毒性全面测试能力的实验室。在此次扩建过程中,SGS充分考虑到地域经济的发展特点,为安吉周边的客户带来便利高效的&ldquo 一站式&rdquo 专业服务。如为安吉、杭州、宁波、金华等地提供家具检测服务,为安徽、江苏等地的电线电缆燃烧测试提供便捷服务等。特别是针对户外用品检测服务的问题也通过此次扩建得以解决,从今以后公司可在该实验室中完成所有阻燃项目的检测而无须送到其他城市,从而为客户节省了大量的检测时间和成本。 www.motis-tech.com
  • 中德标准化合作委员会年会召开,助力两国标准化合作与制造业发展
    p   2018年5月29日,中德标准化合作委员会年会在德国海德堡召开。中德标准化合作委员会合作机制下的中德智能制造/工业4.0标准化工作组和中德电动汽车标准化工作组于5月27-28日同期举行了第六次全体会议。来自中德双方政府部门、标准化组织、研究机构以及相关领域企业的100余名代表共同参与了本次会议。德国联邦经济和能源部数字和创新政策司副司长黑尔格· 恩格哈德、国家标准委副主任殷明汉和工业和信息化部装备工业司副巡视员曹钢出席会议并发言。 /p p   在中德智能制造/工业4.0标准化工作组会议上,中德专家报告了2017年5月青岛会议以来双方开展的合作情况,并达成如下共识:双方将继续加强参考模型互认、信息安全与功能安全、网络通信与边缘计算、预测性维护、应用案例等方面的合作,完成预期目标 双方将继续加强智能制造能力成熟度模型、基于机器视觉的在线检测和制造系统接口等新议题上的信息交流和双边合作,并加强在国际标准化工作中的合作 双方同意成立标准地图任务组和人工智能任务组。中德电动汽车标准化工作组会议上,双方代表团总结了过去一年来在电动汽车电气安全、动力电池、无线电力传输(WPT)、大功率充电(HPC)、自动充电等领域的合作成果,提出了进一步合作需求和建议。 /p p   本次中德标准化合作委员会年会深化了中德两国在智能制造/工业4.0和电动汽车领域现有标准化领域的合作,拓展了中德两国在智能制造/工业4.0和电动汽车领域的标准化合作范围。后续,中德双方将继续以合作机制为纽带,共同推进上述领域的国际标准化工作。 /p
  • 华大智造项目成功入围2023年度智能制造标准应用试点项目
    近日,国家标准化管理委员会公示拟入选2023年度智能制造标准应用试点项目名单,全国共78个:智能工厂建设应用类项目50个、新模式实践应用类项目14个、供应量协同应用类项目6个、系统集成服务类项目4个、咨询规划服务类项目2个、新技术融合创新类项目2个。其中,与生命科学领域相关的是由武汉华大智造科技有限公司和深圳华大智造科技股份有限公司共同申报的“生命科学装备智能工厂标准应用试点”项目。本次试点项目申报工作旨在发挥标准支撑引领作用,引导制造业企业运用标准化方式组织生产、经营、管理和服务,形成一批标准化、高水平的系统解决方案,推动制造业高端化、智能化、绿色化发展。围绕智能制造标准在制造业各细分行业中的应用,优先试点已发布、研制中的国家标准,配套应用相关行业标准、地方标准、团体标准和企业标准,2023年在全国范围内遴选不少于70个具有代表性的标准应用试点项目,到2024年遴选出200个以上标准应用试点项目,形成一批推动智能制造有效实施应用的“标准群”,打造一批成熟典型的标准应用实施指南、解决方案、工具库和案例集。附件:2023年度智能制造标准应用试点项目名单
  • 李克强:以提升消费品质量标准倒逼“中国制造”全产业链升级
    结束江西考察后,李克强总理密集工作日程并没有片刻停歇。8月24日中午,总理返回北京,当天下午即主持召开国务院常务会议,延续争分夺秒的“克强节奏”。  当天会议的议题,是部署促进消费品标准和质量提升,增加“中国制造”有效供给满足消费升级需求。李克强说,以先进标准引领消费品质量提升,倒逼装备制造业升级,是实施“中国制造2025”、推动“中国制造”迈向中高端、夯实工业发展根基的关键所在。  总理还以江西考察中的三个事例,部署工作重点。他强调:“要用消费品质量标准的提升,倒逼‘中国制造’全产业链升级。”  “打出品牌”不仅能提升企业的竞争力,也会倒逼企业对产品品质提出更高要求  李克强举的第一个例子,是他23日在南昌考察的晶能光电公司。该公司颠覆性的硅衬底半导体技术,能够使LED产品在成本降低1/3的同时,能效提高20%。总理当时勉励他们,不仅要把科技成果转化为生产力,更要打出品牌,在市场上形成竞争力。  “过去我们的企业给国外品牌代工比较多,现在要引导企业强化品牌意识。”24日的常务会上,李克强提到此事时说,“‘打出品牌’不仅能提升企业的竞争力,也会倒逼企业对产品品质提出更高要求。”  当天会议决定,引导企业增强质量、品牌和营销意识,弘扬企业家精神和工匠精神,实施精细化质量管理。李克强说,当前我国与一些发达国家相比,消费品竞争力还不强,重点消费品抽查合格率仍待进一步提高,导致一些人选择出国购买日用消费品。  他明确要求,要抓住政府工作的定位,一方面推动企业强化品牌建设,提高中国消费品知名度和美誉度 另一方面,紧扣消费品质量安全要素,加快制定一批强制性国家标准,同时创新标准和质量监管。  “现在很多人都追求个性化定制,我们也不可能把所有产品标准化,因此政府更要在监管上下大工夫。”总理说,“但必须明确,一定要创新监管制度,实行随机抽查企业、随机抽检产品、随机选择检测机构。要避免重复检查,规范涉企收费,真正让企业集中精力抓质量、提品质。”  提升消费品标准和质量,离不开高质量的职业技术人才  李克强总理举的第二个例子,是南昌一家新模式的众创空间,中航长江设计师创意产业园。这里整合建筑装饰产业链,引进室内设计、园林设计等30多个设计中心,实现园区与设计师之间、上下游创客之间优势互补、利益共享。南昌一所大学还将这里作为实习基地,成功孵化了两个创业项目,每年带动数百名大学生实习就业。  “提升消费品标准和质量,离不开高质量的职业技术人才。德国的‘双元制’职业教育模式,就是把学校教育和工厂企业职业培训结合起来。我们也要强化职业教育和技能培训,建立学校和企业‘双元’的技术人才培养机制,推出体现技工价值的薪酬、荣誉等制度。”总理说。  他强调,多方面培养职业技术人员已经是迫在眉睫的需求,必须深化这一领域的改革。  把工业产品、消费品的标准和质量提升,与装备制造升级紧密结合  李克强总理举的第三个例子,是他在江西考察的第一站:赣州孚能公司。这家民营企业主要从事新能源车用锂电池和整车控制系统的研发生产,其生产设备全部是向国内制造商定制化生产,价格仅为进口设备的1/6。  李克强当即肯定这种新模式,要求有关部门负责人研究推广。他在24日的常务会上强调,要把工业产品、消费品的标准和质量提升,与装备制造升级紧密结合,以消费市场向中高端发展引导带动装备制造企业主动提高设备产品的性能、功能和工艺水平。  “要改变过去‘有什么装备就生产什么’的旧模式,以消费品需求的升级,促进‘中国制造’全产业链升级。”总理说。  李克强最后要求,要推进体制机制创新,发挥市场作用,发挥各部门合力,切实促进消费品标准和质量提升,为经济社会发展增添新动力。
  • 高低温湿热试验箱的制造标准介绍
    p style=" text-align: justify text-indent: 2em " 高低温湿热试验箱主要是针对于电工、电子产品,塑胶材料、纸品印刷、金属、原器件及其它材料在高温、低温、湿热的环境下贮存、运输、使用时的适应性试验。该试验设备主要用于对产品按照国家标准要求或用户自定要求,在低温、高温、高温高湿条件下,对产品的物理以及其他相关特性进行环境模拟测试,测试后,通过检测,来判断产品的性能,是否仍然能够符合预定要求,以便供产品设计、改进、鉴定及出厂检验用。       /p p style=" text-align: justify text-indent: 2em " strong 高低温湿热测试箱制造标准: /strong /p p style=" text-align: justify text-indent: 2em " GB10589-89低温试验箱技术条件; /p p style=" text-align: justify text-indent: 2em " GB10592-89高低温试验箱技术条件; /p p style=" text-align: justify text-indent: 2em " GB10586-89湿热试验箱技术条件; /p p style=" text-align: justify text-indent: 2em " GB11158-89高温试验箱技术条件; /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em " GB/T5170、2-1996电工电子产品环境试验设备基本参数检定方法温度试验设备; /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em " GB/T5170、5-1996电工电子产品环境试验设备基本参数检定方法湿热试验设备 ; /span span style=" text-indent: 0em "   /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 0em " GB2423、1-89电工电子产品基本试验规程试验A:低温试验方法; /span /p p style=" text-align: justify text-indent: 2em " GB2423、2-89电工电子产品基本试验规程试验B:高温试验方法; /p p style=" text-align: justify text-indent: 2em " GB2423、3-91电工电子产品基本试验规程试验Ca:恒定湿热试验方法; /p p style=" text-align: justify text-indent: 2em " GB2424、1-89电工电子产品基本环境试验规程高温低温试验导则。 /p p style=" text-align: justify text-indent: 2em " strong 高低温湿热试验箱结构特点:    /strong /p p style=" text-align: justify text-indent: 2em " 1、采用液晶显示触摸屏控制器,荧幕操作简单,程式编辑容易,具有RS-232电脑接口。 /p p style=" text-align: justify text-indent: 2em " 2、控制器操作界面设中、英文字可供选择,可接电脑操作、控制。 /p p style=" text-align: justify text-indent: 2em " 3、采用法国原装进口压缩机,使用全环保冷媒R134a、R404a、R23。 /p p style=" text-align: justify text-indent: 2em " 4、箱体内外部材质采用不锈钢板(SUS#304),外部施于粉体烤漆,防静电以及增加外观质感及洁净度。 /p p style=" text-align: justify text-indent: 2em " 5、箱体保温层采用高强度PU发泡树脂与高密度之玻璃纤维棉,厚度10公分可避免不必要之能量损失。 /p p style=" text-align: justify text-indent: 2em " 6、全自动补水系统,可循环用水、外挂水箱等功能。 /p p style=" text-align: justify text-indent: 2em " 7、箱体左侧具一直径50mm之测试孔,可供外接测试电源线或信号线使用。 /p
  • 仪器仪表制造工这一职业有了国家标准!
    p    strong 仪器信息网讯 /strong 为规范从业者的从业行为,引导职业教育培训的方向,为职业技能鉴定和职业技能等级认定提供依据,依据《中华人民共和国劳动法》,适应经济社会发展和科技进步的客观需要,立足培育工匠精神和精益求精的敬业风气,人力资源社会保障部组织有关专家,制定了《仪器仪表制造工国家职业技能标准》(以下简称《标准》)。 /p p   《标准》对仪器仪表行业从业人员的职业活动内容进行规范、细致的描述,对各等级从业者的技能水平和理论知识水平进行了明确规定。《标准》依据有关规定将“仪器仪表制造工”这一职业分为五级/初级工、四级/中级工、三级/高级工、二级/技师、一级/高级技师五个等级,包括职业概况、基本要求、工作要求和权重表四个方面的内容。 /p p   《标准》编制工作在人力资源和社会保障部职业能力建设司的指导下,由中国仪器仪表学会组织,主要编写单位有:四川仪表工业学校、河南化工技师学院、中国四联集团、重庆川仪自动化股份有限公司、重庆川仪调节阀有限公司、重庆川仪控制系统有限公司、厦门宇电自动化科技有限公司、重庆四联测控仪表有限公司、北京京仪集团等。 /p p   《标准》主要审定单位有:国家电网冀北电力有限公司、华南理工大学、重庆川仪自动化股份有限公司、重庆川仪控制系统有限公司、厦门宇电自动化科技有限公司、北京京仪集团、浙江中控技术股份有限公司、广州禾信仪器股份有限公司、浙江正泰仪器仪表有限责任公司、汉威科技集团股份有限公司、四川威卡自控仪表有限公司、电子科技大学、国家电网四川省电力公司、西华大学等。 /p p   《标准》制定过程中,得到了人力资源社会保障部职业技能鉴定中心、中国仪器仪表学会、广东省测量控制技术与装备应用促进会、中国机械工业联合会、机械工业职业技能鉴定指导中心、辽宁机电职业技术学院、佛山市南海区信息技术学校、亚龙智能装备集团股份有限公司、河北化工医药职业技术学院、广东正业科技股份有限公司等单位,及王小兵、曾周末、张彤、张建、张迎春、燕泽程、于清笈、李晓光、史仲光、李玲、袁瑞铭、蒋艳芳、王学伟、林锦实、丁渝丹、喻立川、吴绪敏、刘龙华、杨绍忠、高举、刘江彩、张新国、蔡林等有关领导、专家的指导和大力支持。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/2557e4cc-7f27-4334-babc-185fcb8dd6ad.jpg" title=" 1.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/11e4bdc3-736a-471b-8023-cb6d029da3b7.jpg" title=" 2.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/4ff77052-d932-4d3e-98ec-68303904de01.jpg" title=" 3.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/dc41681a-b68c-41a0-8277-6293d934d93e.jpg" title=" 4.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/8bc4f6b4-269b-4c0e-9818-53b054e72b93.jpg" title=" 5.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/c2503c55-2a78-4a4b-95a1-e351f8c4c244.jpg" title=" 6.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/be3c5884-8238-4b27-9af8-01d944ff72a9.jpg" title=" 7.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/3d398f7e-d473-4dfc-9270-1990840dcc33.jpg" title=" 8.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/0854b6ab-6f39-443d-8f93-bcc7f962ef37.jpg" title=" 9.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/7765e140-5469-4339-99ab-a4ea8b4eb292.jpg" title=" 10.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/74506731-0ed9-4edb-8598-c1fa1198ca1c.jpg" title=" 11.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/410bccc6-0a43-4026-9a25-38f999f2219b.jpg" title=" 12.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202012/uepic/aa6aade4-744b-4444-b6c4-20fcd944bfc7.jpg" title=" 13.jpg" / /p p   下载链接: a href=" https://www.instrument.com.cn/download/shtml/975460.shtml" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://www.instrument.com.cn/download/shtml/975460.shtml /span /a /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p style=" text-align: center" /p p br/ /p
  • 新标准图文解析-增材制造金属粉末性能表征方法
    本文由马尔文帕纳科应用专家张瑞玲女士供稿 自2021年6月1号起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项推荐国家标准开始实施!该标准主要规范了金属粉末性能的表征方法,检测项目主要包括:外观质量、化学成分、粒度及粒度分布、颗粒粒形、流动性、密度、夹杂物及空心粉。 马尔文帕纳科作为材料表征领域的专家,其先进的分析检测技术为增材制造行业提供粒度、粒度分布、颗粒形貌等贯标解决方案。涉及技术及仪器包含:ü 激光衍射法:Mastersizer3000超高速智能激光粒度仪ü 动态图像法:Hydro Insight 智能颗粒图像分析仪ü 静态图像法(显微镜法):Morphologi-4 全自动粒度粒形分析仪 一、粒度及粒度分布检测的必要性 为什么增材材料要对粒度及粒形分布进行检测呢?这是因为其工艺性质决定的。增材制造是在金属粉末层熔融过程中,先使金属粉末层分布于制造平台上,然后使用激光或电子束选择性地熔化或熔融粉末。熔化后,平台将被降低,并且过程将持续重复,直到制造过程完成。未熔融粉末将被去除,并根据其状态重复使用或回收。 粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动性和堆积密度。粒度会直接影响这些特性,是该工艺的关键技术指标,例如,对于选择性激光熔融工艺(SLM),最佳粉末粒度在 15-45 μm;而对于电子束熔融工艺(EBM),最佳粉末颗粒则应在 45-106 μm(对于 EBM)范围内。图1 层叠增材制造工艺的粉末床工艺图图1展示了SLM工艺中金属粉末床如何形成和扫描激光金属形成2D形貌。持续不断的新的粉末床为最终的3D金属部件提供原材料。金属部件的结构一致性和完成件的表面平整度与粉末的化学特性和堆积密度息息相关。 粉末的堆积密度是由颗粒大小和形状控制的。如图2,粉末中大颗粒过多降低填料的密度,而小颗粒过多则降低填料的流动性。只有当大颗粒和小颗粒比例最优时,填充密度最大,大颗粒中的小空隙被小颗粒填满,流动性和堆积密度达到最佳值。 图2 堆积密度和颗粒大小的关系 为了保证厚度的均一,通常会选择较窄的粒径分布。颗粒的填充和流通性对于金属粉末3D打印技术非常重要,这也是我们为什么要优化粒度及其分布,以实现所需的大颗粒和小颗粒的比例,这点非常重要。 堆积密度会影响熔融池的连续性,较低的堆积密度会导致熔融不连续,完成件表面粗糙,导致结果的一致性降低。图3 堆积密度影响的熔融池分析 如图3所示,粉末床在于激光接触时的熔融池模拟图像,熔融池的温度与粉末的组分和由堆积密度控制的熔融池的连续性直接相关,如果堆积密度高,就会形成一个连续的熔融池,生产出表面光滑、结构稳定的完成件。 二、新国标中的粒度及粒度分布的相关指标 2021年6月1日开始实施的系列标准中对于各种金属粉末的粒度及粒度分布,做了具体的推荐要求,涉及金属粉末粒度分析的标准如下所示:ü GB/T 38970-2020《增材制造用钼及钼合金》ü GB/T 38971-2020《增材制造用球形钴铬合金粉》ü GB/T 38972-2020《增材制造用硼化钛颗粒增强铝合金粉》ü GB/T 38974-2020《增材制造用铌及铌合金粉》ü GB/T 38975-2020《增材制造用钽及钽合金粉》 三、金属粉末粒度分布测试技术:激光衍射法 关于粒度及粒度分布,在6月1日施行的GB/T39251-2020 等6项国家标准中,推荐是使用激光衍射法,具体标准参考 GB/T 19077。这是因为激光衍射法且具备样品用量少、制备简单、测量速度快、重现性好等优点,除此之外,激光衍射发广泛适用于所有增材制造用金属粉末的粒度分布检测,该技术测试覆盖范围宽(马尔文帕纳科激光粒度仪测量范围达到0.01 μm ~3500 μm,完全覆盖增材制造行业金属粉末的粒径范围)。图4 激光衍射测量原理图 激光衍射测量是一种非常常用的测试粒径大小及分布的方法----特别是面对较小的粒度范围时。 在激光衍射测量中,激光束穿过分散的颗粒样品,测试散射光强度的角度变化。因为较大的颗粒有较小的角度和较大的散射光强,而较小的颗粒则有较大的角度和较小的散射光强。激光衍射分析仪运用米氏理论,根据所测量的散射光的角度依赖性来计算样品颗粒的粒度分布。 马尔文帕纳科粒度及粒度分布解决方案马尔文帕纳科 Mastersizer 3000 超高速智能激光粒度仪高度自动化,可实现按钮操作,并且只需很少的手动输入即可提供高产量分析,并且有非常广泛的动态范围0.01 至~3500 µm ,可以精确测量金属粉末的粒径分布。并且还可以很容易的在干法和湿法之间切换,测试金属粉末湿分散和干分散的粒径大小。图5 Mastersizer 3000 超高速智能激光粒度仪图6 钛合金粉末湿法和干法测量叠加图 图 6显示了在 Mastersizer 3000 上使用湿法和干法分散制备的金属粉末的测量结果,可以看到湿法和干法结果一致。其实,如果优化了分散程序且采样具有可比性,干湿法应具有等效结果。从趋势表也可以看出,干法和湿法结果一致性非常好。从GB/T 39251-2020 《增材制造 金属粉末性能表征方法》中,关于金属粉末粒度要求来看,这应该属于I 类金属粉末材料,适用于粉末床熔融(选区激光熔融)增材制造 。四、金属粉末颗粒形貌测试技术:动态图像法/ 静态图像法 目前测试颗粒大小和形貌的技术主要有三种:ü SEM技术:分辨率高,但统计颗粒数目不多,可作为定性技术;ü 动态图像技术:可以提供很多的颗粒数量,但图像质量较差,对于小颗粒的形貌还有区分颗粒的表面结构,较为困难;ü 静态图像技术:可以兼顾分辨率和颗粒数量,可以定性,也可以定量。 国标中对于各种金属粉末的颗粒形状,也就是粉末的微观形貌、球形度的表征方法推荐使用动态颗粒图像分析法和显微镜法(静态图像法)。粉末球形度以一定数量粉末颗粒投影界面的圆形度检测值的平均值进行近似表征。 马尔文帕纳科动态颗粒图像分析解决方案最新推出的 Hydro Insight 动态颗粒图像分析仪采用高速高分辨率摄像机实时采集动态颗粒图像,搭配 Mastersizer 3000 超高速智能激光粒度仪可以提供颗粒的分散和单个颗粒实时的图像,并且可以定量测试样品的分布数据,还有32个尺寸和形状的相关指标,如圆度、椭圆图、不透明度、平均直径、长宽比,可以帮助了解颗粒的大小和形状是如何影响了材料的性能。方便您更好地了解您的材料,简化故障排除,并助力快速开发新方法。图7 Hydro Insight 动态图像分析仪(左)金属粉末样品中少量的大颗粒或者小颗粒用激光衍射的方法很难捕捉到信号,Hydro Insight 动态颗粒形貌分析仪可以对单个颗粒进行成像,并提供数量分布,并且可以看到颗粒的形貌。帮助我们看到这些大颗粒是否真实存在,以及它的外观,是高度球形的颗粒,卫星颗粒还是高度不规则的颗粒。图8 Hydro Insight 呈现的大颗粒形貌图9 动态图像法颗粒分布累积曲线马尔文帕纳科静态图像分析解决方案马尔文帕纳科还提供静态图像法高效颗粒形貌测量工具——Morphologi 4 全自动粒度粒形分析仪,用于测量从0.5 微米到数毫米的颗粒粒度和形状。使用伸长率、圆度、凸度等参数报告形状信息,以量化颗粒不规则性和表面粗糙度。与手动显微镜和电子显微镜相比,自动成像更高效,可提供数万颗粒的统计数据。图10 Morphologi 4-ID 全自动粒度粒形分析仪 Morphologi 4 全自动粒度粒形分析仪粒度测量范围从0.5μm到1300μm,采用整体式干粉分散装置,优化的显微镜光学器件和高信噪比CMOS相机,从样品分散到结果分析,均实现自动化SOP控制。图11 钛合金粉末球形度分析示意图 由于80-95%的金属粉末在增材制造的整个周期中都没有使用,昂贵的金属粉末回收利用也是增材制造行业中的关注重点。 为减少制造过程中降解的粉末导致零件质量的下降,避免导致灾难性的零件故障,关注原始材料和回收材料形貌的微妙偏差就显得尤为重要。 Morphologi 4 粒度粒形分析仪对原始粉末和使用多次后的粉末进行检测,为您揭示回收粉末材料与原始粉末的细微差异,进一步解析造成粉体流动性和堆积密度不同的原因。图12 钛合金球形度分析统计结果,红色为原始粉末,绿色为使用8次的粉末,蓝色为使用16次的粉末图13 样品的圆当量粒度分布图,红色是原始粉末,蓝色为使用8次的粉末,黑色为16次的粉末关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。 通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。 这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 霍尼韦尔发布经双重认证的实验室仪器校准标准样品
    新一代Hydranal™ 产品系列经过ISO Guide 34认证,有助于简化研究实验室的仪器校准工作  芝加哥,2017年3月13日讯 – 霍尼韦尔(NYSE代号:HON)近日宣布推出首套Hydranal™ 双重认证标准样品 (CRM) 系列,满足卡尔?费休 (KF) 滴定应用要求。  迄今为止,卡尔?费休滴定的商业化标准水样大都采用ISO/IEC 17025标准进行测试,有些甚至没有任何测试标准。霍尼韦尔研究化学品部新一代标准水样的生产和认证符合ISO Guide 34和ISO/IEC 17025双重标准。这种双重认证意味着我们的产品能够兼容最严格的法规要求,研究人员可放心使用。  虽然纯净水亦可用于校验实验室仪器,但最终检测结果的精度受到所使用的天平、滴管体积、卡尔?费休滴定剂以及用户专业经验等诸多因素的影响。为此,研究人员都倾向于使用标准样品对仪器进行校准,以便大批量处理样本。  “自35年前发布Hydranal产品线之后,我们位于德国塞尔策 (Seelze) 的实验室始终在卡尔?费休试剂和标准水样产品线方面贯彻最高的生产和质量控制标准。”霍尼韦尔研究化学品部全球市场经理瑟伦霍格(Soeren Hoegh)表示,“客户的研究结果直接受到所用认证标准样品的影响,因此我们始终致力于不断改进工艺,确保我们的产品能帮助客户实现最佳研究结果。提供经过双重认证的标准样品正是这一承诺的又一体现。”  随着来自监管机构压力的不断增加以及用户对于更高质量测量结果的需求日益增强,越来越多的实验室都采用经认证的产品,以便更好地通过标准样品展示其测量性能和测量结果的可追溯性。  现在,客户可通过霍尼韦尔研究化学品部新上线的电子商务网站订购Hydranal标准样品系列。该网站由我们联合实验室和研究中心管理者共同开发,可确保满足霍尼韦尔客户对化学品采购的各类需求。霍尼韦尔Hydranal系列产品包括:   HYDRANAL-CRM标准水样10.0(液态,10.0 mg/g = 1.0%水含量)   HYDRANAL-CRM标准水样1.0(液态,1.0 mg/g = 0.1%水含量)   HYDRANAL-CRM二水合酒石酸纳(固态,~15.66%水含量)  霍尼韦尔研究化学品部的Hydranal卓越中心已成功通过德国国家认证机构DAkkS审核,被认定为符合ISO Guide 34的认证标准样品 (CRM) 制造商,成为全球范围内执行最高产品质量标准的少数机构和企业之一。  霍尼韦尔在无机物、溶剂和其他重要化学品领域的创新历史可以追溯到200多年前,当时化学家约翰雷德尔(Johann Daniel Riedel)在德国开始生产制药产品。霍尼韦尔研究化学品部总部位于德国塞尔策,靠近汉诺威,其致力于为实验室研究和分析检测应用提供高纯度解决方案。更多关于霍尼韦尔研究化学品信息,请访问www.lab-honeywell.com。  关于霍尼韦尔  霍尼韦尔是一家《财富》100强之一的多元化、高科技的先进制造企业,在全球,其业务涉及航空产品和服务,楼宇、家庭和工业控制技术,涡轮增压器以及特性材料。霍尼韦尔在华的历史可以追溯到1935年。当时,霍尼韦尔在上海开设了第一个经销机构。目前,霍尼韦尔四大业务集团均已落户中国,旗下所辖的所有业务部门的亚太总部也都已迁至中国,并在中国的20多个城市设有多家分公司和合资企业。霍尼韦尔在中国的员工人数现约12,000名。欲了解更多公司信息,请访问霍尼韦尔中国网站, 或关注霍尼韦尔官方微博和官方微信。
  • 78家!2023年度智能制造标准应用试点项目名单公示
    根据《关于开展2023年度智能制造标准应用试点工作的通知》(市监标技发〔2023〕83号),现将拟入选的2023年度智能制造标准应用试点项目名单进行公示。如有异议,请在公示期内将意见书面反馈至市场监管总局标准技术司、工业和信息化部装备工业一司。公示时间:2023年12月1日至8日联系方式:市场监管总局标准技术司 010-82262645工业和信息化部装备工业一司 010-68205630市场监管总局标准技术司工业和信息化部装备工业一司2023年12月1日
  • 新品上市丨多功能粉末 X 射线衍射仪:XRDynamic 500
    安东帕推出了创新的自动化多功能粉末 X 射线衍射仪:XRDynamic 500XRDynamic 500:早在 2021 年 8 月,选定的客户和合作伙伴公司就可以看到材料表征X射线产品线(MCX)的新产品,随后在 10 月中旬正式上市。五年来,Anton Paar GmbH、Anton Paar ShapeTec GmbH 和 AXO Dresden 的研究人员在Josef Gautsch 的领导下开发了自动化多功能粉末 X 射线衍射仪。XRDynamic 500 作为一个重要决定的结果自20世纪50年代以来,安东帕一直在 X 射线技术领域开展业务。当时,展出公司历史上第一台科学分析仪器——Kratky 小角度 X 射线相机。它不仅标志着安东帕在商业领域取得的成功,同时也标志着安东帕进入制造测量仪器领域。自20世纪60年代开始,安东帕生产X 射线衍射仪附件的温控台和 Kratky 小角度 X 射线相机,多年来通过飞利浦(现马尔文帕纳科)以及西门子(现布鲁克)进行销售。此后发生了很多事情,正如首席执行官 Friedrich Santner 所描述的那样:“当时,公司规模太小,无法自主研发完整的 X 射线衍射 (XRD) 仪器,并且没有全球分销渠道,我们不得不依赖强大的合作伙伴。一步一步,我们的 X 射线部门得到了进一步发展,现在可以自豪地展示强大的产品组合,并将在未来几年中不断扩大。”“几年前,我们开始开发自己的 X 射线源,因为我们的 SAXS 仪器需要它们,它们也可用于 X 射线衍射仪,”材料表征 - X 射线(MCX)产品线经理 Petra Kotnik 说。 2019 年,国际知名公司 AXO Dresden 加入了Anton Paar GmbH,该公司致力于 X 射线光学器件开发和生产。 “基于公司内部的专业知识和交叉销售潜力,我们决定进入XRD业务领域。XRDynamic 500 是这一决定的成果。”研究什么?X 射线的波长与原子之间的距离非常相似。这使得可以“观察”材料内部,并检查材料中原子的排列方式。通过这种方式,可以确定材料的机械、热和电性能。因此,X 射线不仅在科学领域和医学领域有着重要作用,同时在工业应用领域也有着重要作用。可以分析材料的类型、组成及各种成分的比例。使用 XRDynamic 500,用户还可以在不同温度、气体或湿度的影响下测试样品。任何类型的粉末都是 X 射线衍射仪的潜在样品。 “我们的星球上有无数粉末,它们具有各种各样的功能。这也使得 XRDynamic 500在每个行业都具有极大的吸引力,”Petra Kotnik 解释说。 “基本上,XRDynamic 500 旨在用于基础研究以及科学和工业领域的应用研究和开发。”XRDynamic 500 有什么特别之处?该仪器的核心是 TruBeam 概念,它汇集了一系列不同的功能和组件,最重要的是真空光学单元。 “X 射线束不仅与样品相互作用,而且与空气中的分子相互作用,这会立即增加背景信号。因此,当真空进行时,可以降低噪音并提高数据质量。抽真空的光学单元要求仪器内所有不同的光学元件都被适当地封装和自动化。我们可以在不同的光束几何、不同的光学元件和不同的样品台之间自由切换。这种高度自动化是任何竞争对手都无法比拟的。此外,仪器和样品可自动进行校准,提高了结果的可靠性,”Petra Kotnik 解释说。 唯一非安东帕制造的关键部件是由捷克公司 Advacam 提供,是用于 XRDynamic 500 的 X 射线探测器。 Advacam 使用 Timepix3 芯片 - 欧洲核子研究中心开发的最新探测器技术。欧洲核研究组织 (CERN) 是位于日内瓦附近的一个主要研究机构。CERN进行基础物理研究,特别是借助著名的粒子加速器研究物质的结构。最近几个月,在Mülheim, Ruhr的马克思-普朗克研究所和格拉茨技术大学已经使用 XRDynamic 500 进行了多次测试。测试人员对软件的直观操作印象特别深刻,控制软件功能强大且复杂,但仍具有用户友好性。鉴于材料表征领域新的成功篇章的先决条件。Friedrich Santner很高兴:“祝贺整个MCX团队取得这一伟大成就。因此,XRDynamic 500在即将到来的100周年纪念日前完成这一任务。”
  • 多功能激光粉尘仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 113" p style=" line-height: 1.75em " 仪器名称 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " 多功能激光粉尘仪 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " 北京绿林创新数码科技有限公司 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 联系人 /p /td td width=" 187" p style=" line-height: 1.75em " 翟利明 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " 2851630081@qq.com /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 √可以量产 /p /td /tr tr td width=" 113" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 535" colspan=" 3" p style=" line-height: 1.75em " □技术转让 & nbsp □技术入股 & nbsp & nbsp √合作开发& nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/c834e053-482a-48d0-9e8d-a14b7828e2c2.jpg" title=" 多功能激光粉尘仪.jpg" width=" 350" height=" 327" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 327px " / span style=" line-height: 1.75em " & nbsp & nbsp & nbsp /span /p p style=" line-height: 1.75em " & nbsp & nbsp LD-7S多功能激光粉尘仪是“高稳定高可靠PM2.5微电脑激光粉尘仪产业化培育”项目研究成果,本成果主要解决仪器长期运行的温度和零点漂移、环境湿度对测量值的影响等关键技术问题,并在电源保护及自动校准方面进行了技术创新,提高了电源的稳定性和可靠性,延长了电池使用寿命,可方便实现远程校准。多功能可便携、可在线实时监测、良好的环境适应性以及良好兼容性是我们产品的亮点。产品主要功能及性能指标如下: br/ & nbsp & nbsp & nbsp strong 主要功能 /strong : /p ul class=" list-paddingleft-2" li p style=" line-height: 1.75em " 直读质量浓度mg/m3(设置浓度转换系数K值)。 /p /li li p style=" line-height: 1.75em " 内置φ40mm滤膜,可在监测颗粒物浓度的同时收集粉尘样品。 /p /li li p style=" line-height: 1.75em " PM10、PM5、PM2.5、PM1.0、TSP切割器可供选择。 /p /li li p style=" line-height: 1.75em " 独特的光路自清洗系统,避免粉尘对仪器核心部件的污染。 /p /li li p style=" line-height: 1.75em " 内设出厂前已标定的具有光学稳定性的自校装置,可有效消除仪器的系统误差。 /p /li li p style=" line-height: 1.75em " 大屏幕汉字提示,操作直观简便。 /p /li li p style=" line-height: 1.75em " 多种工作模式,可直读TWA和STEL,可根据设定时间定时启动采样,所得数据可存贮、回放或导入PC机进行数据处理、打印表格和曲线。 /p /li li p style=" line-height: 1.75em " 内置强力抽气泵,更适合于需配备较长采样管的采样场所(如集中空调排气口PM10可吸入颗粒物浓度的检测)。 /p /li li p style=" line-height: 1.75em " 可设定粉尘浓度超标报警阈值,超标时自动声音报警或将信号传输到控制中心进行监控。 /p /li /ul p style=" line-height: 1.75em " & nbsp & nbsp & nbsp strong 主要技术指标 /strong strong /strong /p ul class=" list-paddingleft-2" li p style=" line-height: 1.75em " 检测灵敏度(相对于校正粒子):0.001mg/m3(高灵敏度);0.01mg/m3(低灵敏度)。 /p /li li p style=" line-height: 1.75em " 测量范围(相对于校正粒子):(0.001 ~10 )mg/m3(高灵敏度);(0.01~100)mg/m3(低灵敏度)。 /p /li li p style=" line-height: 1.75em " 测定时间:0.1min,1min(标准测量时间),及(1~9999)min任意设定。 /p /li li p style=" line-height: 1.75em " 重复性误差:≤2%。 /p /li li p style=" line-height: 1.75em " 相对误差:± 10%。 /p /li li p style=" line-height: 1.75em " 显示屏:汉字提示屏。 /p /li li p style=" line-height: 1.75em " 连续监测:可设定测量时间(1~9999)s,待机时间(0~9999)s,采样次数(1~9999)次。 /p /li li p style=" line-height: 1.75em " 数据存贮: /p /li /ul p style=" line-height: 1.75em " 一般测量:循环存储99组数据(可由仪器回放,亦可PC机读取)。 br/ & nbsp & nbsp & nbsp & nbsp 劳动卫生:循环存储30组数据(可由仪器回放,亦可PC机读取),每组包括:采样日期,采样开始时间,使用K值,测量周期,TWA值,STEL值和记录序号。同时保留最新一次测量的每分钟所测浓度值(以CPM表示),最多1440个数值(24h),该组数据只能通过PC机读取。 br/ & nbsp & nbsp & nbsp & nbsp 连续监测:可存储两组测量连续监测数据,每组最多存储9999个浓度值,只能通过PC机读取。 /p ul class=" list-paddingleft-2" li p style=" line-height: 1.75em " 报警模式:可设定报警浓度阈值,超过该阈值时声音报警。 /p /li li p style=" line-height: 1.75em " 输出接口:PC机通讯串行接口(RS232/RS485)。 /p /li li p style=" line-height: 1.75em " 电源:可充电锂电池组3.5Vх2,电池充满可连续使用8h以上。在线仪器可使用专用 电源适配器供电。 /p /li /ul /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 本成果仪器与其他商品销售仪器与其他商品销售颗粒物测量仪器相比,最大的特点是,具有湿度修正功能,可有效降低湿度对测量值的影响,改善高湿度环境下的测量准确度;既可通过设定测量时间进行颗粒物的实时测量,又可通过内置滤膜采样装置同时收集滤膜样品,进行重量法测量校准和成分分析。因此该仪器可应用于公共卫生,环境保护及工矿企业职业场所三大领域对包括PM2.5在内的颗粒物浓度进行快速检测,也可用于科研单位进行环境分析、污染源分析及对人类健康影响分析等。 br/ & nbsp & nbsp & nbsp 近年来,PM2.5污染成为政府和民众关注的热点问题。为研究和了解可吸入颗粒物的来源、形成、污染过程,全国开始大范围建设在线监测网络,获取现场数据,为污染预警及控制以及政府决策提供依据。2015年全国环境监测工作现场会上环境保护部副部长吴晓青上谈“十三五”监测事业发展思路时提出了八项监控重点。其中之一是巩固和提升污染源监督性监测,企业自行监测及信息公开。这将涉及环境监测,卫生监察以及几十万企业,因此国 a href=" http://www.chinairn.com/report/20140303/084510754.html" style=" color: rgb(0, 0, 0) text-decoration: underline " span style=" color: rgb(0, 0, 0) " 家政 /span /a 策将对产品应用产生巨大的推动作用。十二五期间我国的PM2.5监测覆盖了所有地级市,仅设备方面的前期投入就超过20亿元。“十三五”规划则对污染物排放总量的控制更加严格,要根据大气、水、土壤三大行动计划实施的需求,整合优化环境监测网络,不断强化污染源监测、环境应急与预警监测,这将带来可观的工业污染源、交通道路及筑建行业在线监测设备需求。除此之外颗粒物监测仪器在智能楼宇室内环境监测、净化器净化效果评价,控烟执法等市场需求也急剧增加,这些为PM2.5检测仪器撬动了一个巨大的市场。基于光散射原理制成的激光测尘仪具有成本低、体积小、重量轻、灵敏性高、操作简便、维护成本低廉以及快速直读的特性,非常适于上述应用,已成为很多系统集成商的唯一选择。但同所有原理的检测设备一样,所有光散射法检测仪器的测量值均受环境湿度影响,亟待解决,而本成果有效解决了湿度影响问题,有效提高了高湿度环境颗粒物浓度测量数据的可靠性,这对光散射法仪器大规模应用具有重要的意义。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 本成果已取得自主知识产权, 其中“一种高稳定可靠粉尘浓度检测仪”实用新型专利1项(专利号2015 2 0643938.5);“LD-7S激光粉尘仪软件” 软件著作权1项(证书号:软著登字第1179054)。 /p /td /tr /tbody /table p br/ /p
  • 2021年度检定校准计量器具超26.8万台件 临沂市检验检测中心精准计量支撑高质量发展
    围绕市委、市政府“八个第一方阵”和“六强、六富、六精”目标任务,贯彻市检验检测中心党组“服务政府、服务民生、服务产业”工作要求,中心计量检定所着力提升社会公用计量标准能力,创新计量工作方式,为我市经济社会高质量发展提供有力技术支撑。一年来,新建和维护市级社会公用计量标准达131项,实验室认可项目26项,成功创建“中国计量测试学会创新驱动服务站(临沂站)”这一国家级品牌;一年来,累计检定校准26.8万台件计量器具,将国家计量基准量值传递到贸易结算、生产经营、安全防护、医疗卫生、生态环境、建设工程、交通运输、科技研发等生产生活一线。一、深化民生计量,满足人民美好生活期待民生计量与百姓生活息息相关,如何以精准举措打通计量惠民服务的“最后一公里”?中心计量检定所想群众所想、谋群众所需,加大对“民用四表”、衡器、加油机、加气机、出租车计价器等民生领域计量器具的检定校准。在国家级“青少年维权岗”、省级“青年文明号”示范引领下,开展健康计量进医院、诚信计量进市场、绿色计量进企业、光明计量进校园等“惠民计量”系列服务活动,开放计量实验室,举办公益讲座,加强计量法规宣贯和培训,引导社会各界提高法制计量意识。今年以来,累计检定校准新冠疫苗冷链储存运输温控系统200余台件,民用四表约16.5万台件,加油(气)机6699台件,出租车计价器3803台件,衡器6982台件,以实际行动保障广大人民群众切身利益。二、聚焦产业计量,释放产业升级发展动能在加快建设产业计量标准的同时,中心计量检定所坚持以市场需求和产业发展为导向,探索计量精准发力新路径、新方法,为我市产业转型升级注入新动能。提供定制服务,为企业发展赋能添翼。深入挖掘企业需求,全面推行“个性化、专业化”和“阶梯式、一站式”服务模式,与70余家骨干龙头企业等签订技术服务或合作研发协议。加快信息化建设,提升服务效率与水平。升级智慧计量平台管理系统,将1000多台标准器、120多个项目及对应的技术人员管理纳入新系统,初步实现与国家e-CQS计量强制检定系统的数据交互,拓宽企业计量需求反馈渠道,推动产业计量服务向信息化、数字化、智能化转型,助力营商环境持续优化。深化检企结合,打造计量产业服务示范点。与奥德集团合作共建流量站,打造“服务计量产业示范点”,实现我市大口径流量计量检定新突破;对接鲁南制药、罗欣药业等医药生产经营企业,服务医药健康产业做大做强;为临工机械、新达重工等龙头企业开辟绿色服务通道,助力我市机械制造业提升“大文章”;与沂州、天元、冠鲁、市政集团开展技术合作,为建筑建材产业升级发展提供技术支持等,实现计量检定机构与产业龙头企业设备共享、优势互补,树立起省内检企合作新标杆。着眼全产业链发展,推进省级计量测试中心建设。帮助企业解决产品研发、设计、生产过程控制等全产业链中存在的关键参数测量及量值传递溯源难题,提高企业创新能力,提升临沂水表质量、效益和品牌影响力,推进省级水表产业计量测试中心建设。三、紧盯能源计量,推动节能降耗降本增效落实“双碳”目标,关键在于节能减排,而能源计量正是节能减排工作的基础。针对列入全省“百千万行动”计划的88家重点用能企业和高污染、高耗能单位,中心计量检定所成立节能降耗计量服务队,整合力学、热学、电学、化学等能源技术专家,开展“水、煤、油、电、气”专项能源一对一计量服务,提供包括能源计量器具的配备、选型、检定、校准、测试、控制以及人员培训、计量标准建立等“一条龙”服务。同时加大投入,配备外夹超声波流量计等多功能、在线检定校准装置,以上门服务方式现场检定企业在线计量设备,在企业不停工不停产的情况下完成检定,保证企业生产效益和节能效益。四、突出安全计量,筑牢安全生产“生命线”各行各业广泛使用的安全防护计量器具,如压力表、温控仪表、测速仪等,事关社会稳定和人民群众生命财产安全。中心计量检定所一方面建立预警机制,通过优化升级计量综合管理平台,实现对备案临期计量器具的预警提示,提高各类安全防护计量器具定期检定率。另一方面形成安全防护合力。监检结合,积极配合监管部门对全市备案的65000余台件安全防护类计量器具实行分类重点建档、动态监督管理,保证在用强制检定安全防护器具的检定覆盖率和合格率。市县联动,承接九县氧气压力表等强制检定委托任务,帮助解决安全防护类计量器具检定能力不足、人手不够等问题。检企结合,扶持25家大型企业建立压力表企业最高计量标准,帮助企业建立实验室,合理配置计量检定仪器。今年以来,累计检定压力表2.6万台件、温控仪表4515台件、气体报警器2962台件,服务企业达4300余家。五、抓实环保计量,打好蓝天净水保卫战为满足环境监测数据精准需要,中心计量检定所与全市范围内13家疾控中心、40多家生态环境监测机构、70多家机动车检测机构和300多家生产类企业保持高度对接,在满足基本量值溯源需求的基础上,加快总悬浮颗粒物采样器、环境参数仪等相关领域内检定标准的建立。为奥德、金沂蒙、施可丰、舜天化工、恒昌焦化、沂州水泥等重点化工企业提供环境监测设备“一揽子服务”,为保护“蓝天净水”提供技术支持。今年以来,累计检定尾气分析仪、烟度计和测功机等机动车检测设备2232台,有毒有害气体报警器、大气采样器、酸度计等水质检测、环境监测设备3531台。六、强化医疗计量,守护群众生命健康安全医疗器械计量精确是医院开展诊疗的重要前提。市检验检测中心与市人民医院成立质控联合实验室,共建医疗器械计量检定协作创新示范点,在全省率先树立了医疗机构与法定计量检定机构协作标杆。同时,立足国家医学计量强检目录不断扩大的实际,成立医疗器械计量专班,在最短时间完成专业技术人员培训、检定装置购置、专用车辆配备和标准能力建设,成为省内第三家建立医用多参数监护仪检定标准的地级市法定计量检定机构。今年以来,累计检定医用多参数监护仪、心脑电图测量仪、血压计、心电监护仪、验光机、焦度计等医用计量器具3839台件,各类验光镜片2.2万余片。汗水浇灌收获,实干笃定前行。立足“两个一百年”奋斗目标历史交汇点,市检验检测中心计量检定所将继续以只争朝夕、真抓实干的奋斗姿态,充分发挥计量工作的基础保障和技术支撑作用,为加快推进临沂“由大到强、由美到富、由新到精”战略性转变作出应有贡献。
  • 墨西哥提出药物新优良制造标准建议
    近日,墨西哥政府发布两项独立提案,为药品(pharmaceuticals)和药物(medicaments)建立新优良制造标准,分别为PROY-NOM-164-SSA1-2013标准和PROY-NOM-059-SSA1-2013标准。PROY-NOM-164-SSA1-2013标准将对墨西哥境内销售的药品和活性成分的生产建立更新最低要求 而PROY-NOM-059-SSA1-2013标准将专注于药物的治疗、预防或恢复效果。   提案中包括的要求涉及的范围有:文书和相关操作、质量管理系统、人事、设施和设备、验证和认证、生产系统 返回、成品发布、质量控制、产品召回、转包商、分销商、用于临床研究的医药品和残留物销毁和处理等。   有意者可分别在5月4日和5月14日之前提交有关PROY-NOM-164-SSA1-2013标准和PROY-NOM-059-SSA1-2013标准的评议意见。
  • 实验室仪器的校准目的、校准周期如何确定?
    1、设备定期校准的主要目的 实验室对设备进行定期校准的主要目的有:1)建立、保持和证明设备的计量溯源性;2)改善设备测量值与参考值之间的偏差及不确定度;3)提高设备不确定度的可信性;4)确定设备性能是否发生变化,该变化可能引起实验室对之前所出具结果的准确性产生怀疑。 2、设备初始校准周期如何确定 设备初始校准周期的确定应由具备相关测量经验、设备校准经验或了解其它实验室设备校准周期的一个或多个人完成。确定设备初始校准周期时,实验室可参考计量检定规程/校准规范、所采用的方法和仪器制造商建议等信息。此外,实验室可综合考虑以下因素:1)预期使用的程度和频次;2)环境条件的影响;3)测量所需的不确定度;4)最大允许误差;5)设备调整(或变化);6)被测量的影响(如高温对热电偶的影响);7)相同或类似设备汇总或已发布的测量数据。 3、设备校准周期的调整 ISO/IEC 17025:2017 中 6.4.7 规定:【实验室应制定校准方案,并进行复审和必要的调整,以保持对校准状态的信心】实验室制定校准方案后,应在后续使用中结合设备的使用情况和性能表现作出必要的调整。设备的校准周期以及后续校准周期的调整一般应由实验室(或设备使用者)确定,并以文件化的形式规定。如果设备的校准证书中给出了校准周期的建议,实验室可根据自身情况决定是否采用。 4、设备后续校准周期调整需考虑的因素 设备后续校准周期的调整,一般应考虑以下因素:1)实验室需要或声明的测量不确定度;2)设备超出最大允许误差限值使用的风险;3)实验室使用不满足要求设备所采取纠正措施的代价;4)设备的类型;5)磨损和漂移的趋势;6)制造商的建议;7)使用的程度和频次;8)使用的环境条件(气候条件、振动、电离辐射等);9)历次校准结果的趋势;10)维护和维修的历史记录;11)与其它参考标准或设备相互核查的频率;12)期间核查的频率、质量及结果;13)设备的运输安排及风险;14)相关测量项目的质量控制情况及有效性;15)操作人员的培训程度。
  • 169项新标准关乎仪器检测 绿色制造C位出道或带来环境监测市场热潮
    p    strong 仪器信息网讯 /strong 截至12月,工业和信息化部办公厅今年共印发三批共计1322项行业标准制修订项目计划,涉及化工、石化、建材、电子、钢铁、机械、船舶、汽车、轻工、纺织、包装、通信等多个行业。其中,绿色制造标准项目成为今年三批行业标准中反复出现的标准项目。绿色制造标准中的生命周期影响评价包含资源能源消耗、生态环境影响和人体健康危害3类影响类型,其中生态环境影响和人体健康危害两项指标评估与 a href=" https://www.instrument.com.cn/list/main/05.shtml" target=" _self" 环境监测仪器 /a 紧密相关。 /p p   工信部第一批公布的行业标准共安排项目计划661项。其中制定521项,修订140项 重点专项标准316项、基础公益类标准97项、一般标准248项 产品类标准479项,工程建设标准2项,节能与综合利用标准164项,安全生产标准7项,标准样品9项。行业标准外文版项目计划39项,其中翻译现有行业标准的31项、与行业标准制修订计划同步研制外文版的8项。第二批共安排项目计划347项。其中制定241项,修订106项 重点专项标准85项、基础公益类标准37项、一般标准225项 产品类标准286项,工程建设标准28项,节能与综合利用标准22项,安全生产标准11项。第三批共安排项目计划526项。其中制定394项、修订132项 重点专项标准279项、基础公益类标准48项、一般标准199项 产品类标准456项、工程建设标准6项、节能与综合利用标准64项。三批标准中包含共计169项绿色制造标准,占全部标准比例的12.7%。 span style=" text-align: center " /span /p p   绿色制造也称为环境意识制造、面向环境的制造等,是一个综合考虑环境影响和资源效益的现代化制造模式。绿色制造技术是指在保证产品的功能、质量、成本的前提下,综合考虑环境影响和资源效率的现代制造模式。它使产品从设计、制造、使用到报废整个产品生命周期中不产生环境污染或环境污染最小化,符合环境保护要求,对生态环境无害或危害极少,节约资源和能源,使资源利用率最高,能源消耗最低。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 390px " src=" https://img1.17img.cn/17img/images/201912/uepic/d332289f-beee-49fd-b0c4-52621ed596f5.jpg" title=" 环境监测.jpg" alt=" 环境监测.jpg" width=" 600" height=" 390" border=" 0" vspace=" 0" / /p p   一般,产品相关污染物种类繁多,气体检测中可能含颗粒物、二氧化硫、氮氧化物、非甲烷总烃、硫化氢、氨、臭气浓度、一氧化碳等 水体检测中可能含pH值、化学需氧量、悬浮物、氨氮、石油类、总磷等。针对对应的检测项目,分别可使用气体检测仪和水质分析仪可对相应项目进行检测。例如,气体检测仪中的空气检测仪可对空气中的一氧化碳、二氧化硫、氮氧化物等进行检测 水质分析仪中的氨氮测定仪可对水体中的氨氮等进行监测。对于重金属检测,还有原子荧光光谱、原子吸收光谱、电感耦合等离子体发射光谱法等测试方法。绿色制造产品标准对产品全生命周期的评估相较一般产品更为细化和严格。 /p p   当前,世界上掀起一股“绿色浪潮”,环境问题已经成为世界各国关注的热点,并列入世界议事日程,制造业将改变传统制造模式,推行绿色制造技术,发展相关的绿色材料、绿色能源和绿色设计数据库、知识库等基础技术,生产出保护环境、提高资源效率的绿色产品,如绿色汽车、绿色冰箱等,并用法律、法规规范企业行为,随着人们环保意识的增强,那些不推行绿色制造技术和不生产绿色产品的企业,将会在市场竞争中被淘汰,使发展绿色制造技术势在必行。 /p p   国外不少国家的政府部门已推出了以保护环境为主题的“绿色计划”。1991年日本推出了“绿色行业计划”,加拿大政府已开始实施环境保护“绿色计划”。美国、英国、德国也推出类似计划。在一些发达国家,除政府采取一系列环境保护措施外,广大消费者已热衷于购买环境无害产品的绿色消费的新动向,促进了绿色制造的发展。产品的绿色标志制度相继建立,凡产品标有“绿色标志”图形的,表明该产品从生产到使用以及回收的整个过程都符合环境保护的要求,对生态环境无害或危害极少,并利于资源的再生和回收,这为企业打开销路、参与国际市场竞争提供了条件。如德国水溶油漆自1981年开始被授于环境标志(绿色标志)以来,其贸易额已增加20%。德国已有60种类型3500个产品授予环境标志,法国、瑞士、芬兰和澳大利亚等国于1991年对产品实施环境标志,日本于1992年对产品实施环境标志,新加坡和马来西亚也在1992年开始实施环境标志。已有20多个国家对产品实施环境标志,从而促进了这些国家“绿色产品”的发展,在国际市场竞争中取得更多的地位和份额。 /p p   国际经济专家分析认为,“绿色产品”比例大约为5-10%,再过10年,所有产品都将进入绿色设计家族,可回收、易拆卸,部件或整机可翻新和循环利用。也就是说,在未来10年内绿色产品有可能成为世界商品市场的主导产品。 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201912/attachment/7dcc85b4-381e-44a6-8587-234121ac55d6.docx" title=" 工业和信息化部2019年第一批行业标准制修订和外文版项目计划.docx" 工业和信息化部2019年第一批行业标准制修订和外文版项目计划.docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201912/attachment/e5ff65cd-ad7c-447d-aa36-276ce68fced1.doc" title=" 工业和信息化部2019年第二批行业标准制修订计划.doc" 工业和信息化部2019年第二批行业标准制修订计划.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201912/attachment/8bcda0fa-3163-444b-8d67-590911ae831d.doc" title=" 工业和信息化部2019年第三批行业标准制修订计划.doc" 工业和信息化部2019年第三批行业标准制修订计划.doc /a /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制