当前位置: 仪器信息网 > 行业主题 > >

智能体感检测器

仪器信息网智能体感检测器专题为您提供2024年最新智能体感检测器价格报价、厂家品牌的相关信息, 包括智能体感检测器参数、型号等,不管是国产,还是进口品牌的智能体感检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合智能体感检测器相关的耗材配件、试剂标物,还有智能体感检测器相关的最新资讯、资料,以及智能体感检测器相关的解决方案。

智能体感检测器相关的论坛

  • 【求助】检测PCB是不是只能用ECD检测器?

    大侠们好: 请问检测PCB时是不是只能用ECD检测器啊?氢火焰的检测器可以吗?要开展这方面的工作,可是自己实验室没有带ECD检测器的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],只有氢火焰的,好郁闷啊!谢谢热心的朋友告知!

  • FPD检测器是不是只能检测硫和磷

    请问各位专家,气相色谱的FPD检测器,是不是应该,只检测含硫和磷化合物,对别的化合物不响应,也就是里面有别的化合物也不会出峰,但是我们新买的这个(我就不说是哪家了,),FPD检测器却只能测噻吩,而且溶剂(比如正庚烷)居然也出峰,而二苯并噻吩居然不出峰,只出一个溶剂峰,开始我以为只要带FPD检测器的色谱应该都是一样的,所以我怀疑是他们的检测器的问题,我们以前用的那个,不同的硫化物都会出峰,溶剂是不会出峰的,我还没有付钱,真不知该不该退掉,退掉厂家肯定不会乐意。希望专家们解释一下,能不退,我就不退了,对了他们给用的是极性PE色谱柱,谢谢!

  • 【求助】用于气体分析的检测器问题

    紧急求助各位大侠: 本人想用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分析氢气含量,气体成分为氧气,氮气,二氧化碳,氩气,氢气,查阅资料得知适合该分析的检测器为TCD. 现在实验室有两台色谱仪,一台为GC9800,TCD检测器,可惜钨丝断了,不知能否修好。还有一台新的安捷伦6890,配有FID,ECD,还有专测氮磷的检测器。 请问检测氢气含量是否一定要用TCD检测器,而FID,ECD等都不行???恳求赐教!

  • 【求助】液相色谱的检测器只能检测紫外吗???

    【求助】液相色谱的检测器只能检测紫外吗???

    http://ng1.17img.cn/bbsfiles/images/2013/06/201306142027_445152_2741773_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/06/201306142028_445153_2741773_3.jpg请问一下液相检测器是不是只能检测紫外区波段的,红外是不是不能用的,我实验室在515nm的时候基线走不稳,放大看是很多峰的,在紫外区波长就不会的,到底是什么原因,工程师也不是很明白,请老师们指导一下会是什么原因造成的

  • 紫外检测器与示差检测器的比较

    紫外检测器与示差检测器原理是什么?   紫外吸收检测器 ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。示差检测:是通用型检测器,凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测。目前,糖类化合物的检测大多使用此检测系统(当然现在糖类elsd很普遍)。  紫外:只要具有光吸收的都可以.  示差: 存在光的对比差或折射率  任意一束光有一种介质射入另一种介质时,由于两种截至的折射率不同而发生折射现象。折射率的大小表明了截至光学密度的高低。介质的折射率随温度升高而降低。一般选用20度时两纳线的平均值589.3nm为检测波长测定溶剂的折射率。示差折光检测器是通过连续测定色谱柱流出液体折射率的变化而对样品浓度进行检测的。检测器的灵敏度与溶剂和溶质的性质都有关系,溶有样品的流动相和流动相本身之间折射率之差反映了样品在流动相中的浓度。  紫外检测器的工作原理是Lambert-Beer定律,即当一束单色光透过流动池时,若流动相不吸收光,则吸收度A与吸光组分的浓度C和流动池的光径长度L成正比.示差检测器是连续检测样品流路与参比流路间液体折光指数差值的检测器,是根据折射原理设计的,属偏转式类型。光源通过聚光镜和夹缝在光栏前成像,并作为检测池的入射光,出射光照在反射镜上,光被反射,又入射到检测池上,出射光在经过透射镜照到双光敏电阻上形成夹缝像。双光敏电阻是测量电桥的两个桥臂,当参比池和测量池流过相同的溶剂时,使照在双光敏电阻的光量相同,此时桥路平衡,输出为零。当测量池中流过被测样品时,引起折射率变化使照在双光电阻上的光束发生偏转,使双光敏电阻阻值发生变化,此时由电桥输出讯号,即反映了样品浓度的变化情况。  示差检测器主要是依据不同溶液的折光率来鉴定的,当浓度不紫外检测器:基于Lambert-Beer定律,即被测组分对紫外光或可见光具有吸收,且吸收强度与组分浓度成正比。  很多有机分子都具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力,因此UV-VIS检测器既有较高的灵敏度,也有很广泛的应用范围。由于UV-VIS对环境温度、流速、流动相组成等的变化不是很敏感,所以还能用于梯度淋洗。一般的液相色谱仪都配置有UV-VIS检测器。用UV-VIS检测时,为了得到高的灵敏度,常选择被测物质能产生最大吸收的波长作检测波长,但为了选择性或其它目的也可适当牺牲灵敏度而选择吸收稍弱的波长,另外,应尽可能选择在检测波长下没有背景吸收的流动相。  示差检测器:对于偏转式示差折光检测器,光路在通过两个装有不同液体的检测池时发生偏转,偏转的大小与两种液体之间折光率的差异成比例。光路的偏转由光敏元件上的位移测得,显示了折光率的不同。 在光学系统中采用了多种精密装置,提高了运行的稳定性,也使检测器更加精致。从钨灯发射出的光束经过聚光透镜,狭缝1,准直镜和狭缝2检测池,然后光被检测池后的反光镜反射,再通过检.在光学系统中采用了多种精密装置,提高了运行的稳定性,也使检测器加精致。从钨灯发射出的光束经过聚光透镜,狭缝1,准直镜和狭缝2检测池,然后光被检测池后的反光镜反射,再通过检测池、狭缝2、准和零位玻璃调节器后在光敏元件上显示出狭缝1的影象 光敏元件上有两个并排的光敏接收元件。 当检测池中的样品和参比的折光率变化时,光敏元件上的影象水平移动。光敏接收元件各自发出的电信号的变化与影象的位例。因此,与折射率的差异相对应的信号可由两信号输出的差异获得。  紫外检测器的原理:被检测物质具有特定的吸收波长,在该波长下,响应值与浓度成正比。示差检测器原理:被测物质具有一定的折光系数。  各自的用途?  紫外检测器使用于大部分常见具有紫外吸收有机物质和部分无机物质.示差检测是凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测.  示差折光检测器对没有紫外吸收的物质,如高分子化合物、糖类、脂肪烷烃等都能够检测。在凝胶色谱中示差折光检测器是必不可少的,尤其对聚合物,如聚乙烯、聚乙二醇、丁苯橡胶等的分子量分布的测定。另外在制备色谱中也经常用到。还适用于流动相紫外吸收本地大,不适于紫外吸收检测的体系。  示差折光检测器与紫外可见检测器相比,灵敏度较低,一般不适用于痕量分析,也不适用于梯度洗脱。  紫外检测器对占物质总数约80%的有紫外吸收的物质均可检测,既可测190--350 nm范围的光吸收变化,也可向可见光范围350---700 nm延伸。  示差检测器属于通用性检测器,如果选择合适的溶剂,几乎所有的物质都可以进行检测。  紫外检测器适用于有机分子具紫外或可见光吸收基团,有较强的紫外或可见光吸收能力的物质检测.  示差检测器属于通用性检测器,可以分析绝大多数的物质.  用途:一般当物质在200-400nm有紫外吸收时,考虑用紫外检测器。无吸收或吸收弱时可以考虑示差检测器。  它们有什么各自优点?  紫外吸收检测器它不仅有较好的选择性和较高的灵敏度,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。示差折光检测器这一系统通用性强、操作简单.  示差检测器属于总体性能浓度型检测器,其响应值取决于柱后流出液折射率的变化,采用含有样品的流出液和不含样品的流出液的同一物理量的示差测量。其响应信号与溶质的浓度成正比。属于中等灵敏度检测器,检测限可达1mg/ml-0.1mg/ml。  紫外检测器灵敏度高,噪音低,线性范围宽,对流速和温度均不敏感,可于制备色谱。由于灵敏高,因此既使是那些光吸收小、消光系数低的物质也可用UV检测器进行微量分析。  示差折光检测器是目前液相色谱中常用的一种检测器,它可与输液泵,色谱柱,进样器等组成凝胶渗透色谱仪或高速液相色谱仪系统,也可以配置适当的进样系统作为单独的分析仪器使用。对所有溶质都有响应,某些不能用选择性检测器检测的组分,如高分子化合物、糖类、脂肪烷烃等,可用示差检测器检测。由于不同的液体折光不同,因此本检测器通用性强,可广泛地应用于化工、石油、医药、食品等领域为科研、生产服务。  紫外检测器有较好的选择性和较高的灵敏度,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱,示差检测器几乎对所有溶质都有响应.  紫外优点:常用、方便。示差检测器:弱吸收物质定量准确。  它们之间的区别?  示差折光检测器这一系统灵敏度低(检测下限为10-7g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。UV检测的主要缺点在于紫外不吸收的化合物灵敏度很低。1.紫外是选择性检测器,示差是通用性检测器;2.紫外检测器灵敏度高,示差检测器灵敏度低;3.紫外检测器可进行梯度洗脱,示差检测器不能进行梯度洗脱;4.紫外检测器对压力和温度不敏感,示差检测器很敏感。  示差检测在原理上虽然是通用型检测器,但是它的灵敏度低,和梯度脱洗不相容,因此它对于HPLC来说不是理想的检测器。  而紫外检测器既可用于等度洗脱,也可用于梯度洗脱.(来自网络,侵删)

  • 液相色谱检测器的分类

    高效液相色谱仪中的检测器是三大关键部件(高压输液泵、色谱柱、检测器)之一,主要用于监测经色谱柱分离后的组分浓度的变化,并由记录仪绘出谱图来进行定性、定量分析。常用的检测器有紫外吸收检测器(UVD)、折光指数检测器(RID)、电导检测器(ECD)和荧光检测器。检测器的分类按检测的对象分类(1)整体性质检测器检测从色谱柱中流出的流动相总体物理性质的变化情况。如折光指数检测器(RID)和电导检测器(CD),它们分别测定柱后流出液总体的折射率和电导率。此类检测器测定灵敏度低,必须用双流路进行补偿测量 易受温度和流量波动的影响,造成较大的漂移和噪声 不适合于痕量分析和梯度洗脱。(2) 溶质性质检测器此类检测器只检测柱后流出液中溶质的某物理或化学性质的变化。例如,紫外吸收检测器(UVD)和荧光检测器(FD),它们分别测量溶质对紫外光的吸收和溶质在紫外光照射下发射的荧光强度。此类检测器灵敏度高,可单流路或双流路补偿测量,对流动相流量和温度变化不敏感。但不能使用对紫外线有吸收的流动相。它们可用于痕量分析和梯度洗脱。按适用性分类(1) 择性检测器它对不同组成的物质响应差别极大,因此只能选择性地检测某些物质,如紫外吸收检测器、荧光检测器和电导检测器。(2) 通用型检测器它对大多数物质的响应相差不大, 几乎适用于所有物质。折光指数检测器属于通用型检测器,但它的灵敏度低,受温度影响波动大,使用时有一定局限性。上面提到的UVD,RID,FD,ECD 4种检测器皆属于非破坏性检测器,样品流出检测器后可进行馏分收集,并可与其它检测器串联使用。对荧光检测器因测定中加入荧光试剂,其对样品会产生玷污,当串联使用时应将它放在最后检测。

  • 示差检测器

    示差检测器只能用单泵吗?也不可以走梯度?为什么啊?

  • 【求助】检测器原理

    今天看到载气流速对浓度型检测器和质量型检测器的影响,但是不明白浓度型检测器和质量型检测器的原理是什么,浓度型检测器怎么就对浓度敏感,而质量型检测器又怎么对质量敏感的?哪位高手知道恳请指导一二。

  • 气相色谱讲义-检测器

    目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽)(一)灵敏度——应答值单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示:(3)由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异:对于浓度型检测器:当试样为液体时,S的单位为 mV•ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数;当试样为气体时,S的单位为mV•ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;对于质量型检测器:当试样为液体和气体时,S的单位均为:mV•s/g,即每秒钟有1g的组分被载气携带通过检测器所产生的mV数。灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。(二)检测限(敏感度)噪声——当只有载气通过检测器时,记录仪上的基线波动称为噪声,以 RN 表示。噪声大,表明检测器的稳定性差。检测限——是指检测器产生的信号恰是噪声的二倍(2RN)时,单位体积或单位时间内进入检测器的组分质量,以D 表示。灵敏度、噪声、检测限三者之间的关系为:(4)检测限的单位:对于浓度型检测器为mg/ml或 ml/ml;对质量型检测器为:g/s。检测限是检测器的重要性能指标,它表示检测器所能检出的最小组分量,主要受灵敏度和噪声影响。D 越小,表明检测器越敏感,用于痕量分析的性能越好。在实际分析中,由于进入检测器的组分量很难确定(检测器总是处在与气化室、色谱柱、记录系统等构成的一个完整的色谱体系中)。所以常用最低检出量表示:图2 检测器噪声(三)最低检出量——恰能产生2倍噪声信号时的色谱进样量,以 Q0 表示。 (三)线性范围检测器的线性范围是指其响应信号与被测组分进样质量或浓度呈线性关系的范围。通常用最大允许进样量QM与最小检出量Q0的比值来表示。比值越大,检测器的线性范围越宽,表明试样中的大量组分或微量组分,检测器都能准确测定。

  • NPD检测器 燃料气体的问题

    各位,我用的7890A,NPD检测器。做有机磷农残,我看不少朋友提供的好多方法都是燃料气体的流量比较大,什么空气100ml/min,氢气75ml/min一类的。可我做的时候,工具书上推荐的方法是氢气3ml/min、空气60ml/min,并且在工作站上的输入范围氢气只能0-30ml/min,空气0-100ml/min。不理解怎么回事?求好心人指点指点··

  • 【讨论】PE固体检测器有何优势?

    PE固体检测器有何优势?从根本上讲,检测器就是把光变成电信号,因此要看它的量子化效率、暗电流、噪声、线性范围等参数。光电倍增管的类型很多,不同类型之间性能相差很大;固态检测器也有很多种,不同厂家、不同型号、不同种类之间的差别也是很大的。因此很难一概而论。就[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]而言,最常用的光电倍增管是滨淞公司的R928,它的量子化效率大约是20~25%,暗电流大约是几十nA左右,噪声会随加的电压和光强而变化(估计在μA水平),线性范围一般能跨6个数量级以上。固态检测器,以较好的CCD为例,量子化效率大约是40~80%,暗电流大约是几个电子每秒每像素,噪声大约是几到几十个电子每秒每像素,线性范围大约在6个数量级左右。以上都是200~400nm区的数据,在这个区域以外,两者的性能都会下降,但光电倍增管下降的幅度更大一些。另外,光电倍增管只有一个感光点,只能检测一个信号;固态检测器一般都有多个感光点(像素),可以同时检测多个信号,这是固态检测器最大的优势。传统的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]都是采用光电倍增管做检测器的。我想原因大概有:1,每次只需检测一个信号,就算是双光束,也是先检测参比光然后再检测样品光。2,样品的浓度越低吸光值越低,也就是说透过原子化器、到达检测器的光越多;样品的吸光度值一般都小于2A,也就是说到达检测器的光都大于1%T。因此对量子化效率、暗电流、噪声、线性范围的要求都不是很高。3,光电倍增管比较便宜,成本低。目前大概只有PE和JENA的ContraAA是采用固态检测器的。我个人认为其最大的原因是为了同时检测多个信号:PE是为了同时检测样品光和参比光,ContraAA是为了同时检测背景和谱线的信号值并且做到快速切换谱线。其次才是看中固态检测器的低噪声。在ICP光谱仪上,因为是测发射光谱,样品浓度越低,到达检测器的光就越少,因此对量子化效率、暗电流、噪声的要求都比较高,而且要求多元素同时分析,所以固态检测器已经几乎完全取代光电倍增管。从长远来看,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]如果想要取得更大的发展,也应该要结合固态检测器的优势。

  • 二次电子检测器

    Leo 1530VP场发射扫描电镜,2001年安装投入使用,现二次电子检测器SE1不能使用了,据说是闪烁体时间长了,现在只能使用In Lens检测器,有时候感觉会不大方便,大家有碰到这种问题吗?能否修复二次电子检测器呀。

  • 【转帖】各种检测器介绍

    紫外吸收检测器 ultraviolet absorption detector紫外吸收检测器 ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。它不仅有较好的选择性和较高的灵敏度,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。其检测灵敏度在mg/L至mg/L范围。可见光检测器 visible light detector可见光检测器 visible light detector 又称分光光度检测器,是基于溶质分子吸收可见光的原理设计的检测器。能够直接采用可见光检测的溶质不是很多,而且多数灵敏度也不高,但采用具有高摩尔吸光系数的有机试剂(配位体和螯合剂)作为衍生化试剂进行柱前或柱后衍生操作的衍生化光度检测法是相当有用的,特别是在金属离子配合物液相色谱中的应用是相当成功的。

  • 气体吹扫检测器的气体

    看到一些ICP资料,仪器吹扫检测器的吹扫气体要始终打开,以防止潮气在检测器表面凝结,因此建议始终将气源打开,现在的检测器都是密封的吗?还需要使用的时候长期吹扫吗?

  • 用峰面积估算皂苷含量,哪种检测器最合适?

    从药材中提取纯化皂苷时,会涉及到总皂苷含量的估算。然而在紫外检测器中,酚类物质的响应高于皂苷。用峰面积估算就不合理了。其他检测器可以吗?例如质谱检测器、蒸发光散射检测器?

  • 【求助】请帮忙推荐几种半导体气体检测器?

    由于使用场所禁止易燃易爆气体,所以不能选用FID检测器。但是TCD的灵敏性距检测要求略低,因此打算采用半导体检测器。请各位前辈指点1、2,帮忙推荐几种性能比较稳定的半导体检测器。

  • 示差折光检测器

    为什么示差折光检测器不能跑梯度呢,目标物紫外吸收很差,只能用视差检测,现在的问题是峰形和分离不好,时间又长,不知道怎么改善,改梯度可以吗?为什么不能跑梯度呢

  • 【分享】测单糖成分时视差检测器的最低检出浓度值

    视差检测器:waters410,柱子:大连依利特hypersilNH2流动相:乙腈:水=80:20流速:1温度:40可我只能测出木糖和葡萄糖,其他单糖根本就测不出,并且如甘露、阿拉伯糖、半乳糖等的标样浓度都为10毫克/毫升了都没有峰。因为我以前也没做过,难道视差检测器的检出最低浓度很高吗,谢谢帮助我的人。

  • 揭秘液相色谱检测器中的独门兵器!——差折光检测器(RID)、荧光检测器(FLD)、电化学和电导检测器

    揭秘液相色谱检测器中的独门兵器!——差折光检测器(RID)、荧光检测器(FLD)、电化学和电导检测器

    这类检测器绝对属于检测器中的独门兵器,平时少有人用,仅限于某某门派或者家族独门使用,比如唐门的暗器,或者小李探花的飞刀,这类兵刃罕见于江湖,不过一旦出手,必定奏效,检测器中的荧光检测器,电导检测器等等就属于这类偏门武器。 平时我们很难见到这些兵刃行走于江湖,但是当它们出手的时候,必定是致命致胜的犀利招数。之所以说他们犀利,是因为他们对于分析某些类型的样品有非常好的效果,但可惜的是,这些样品的种类不多,或者应用的行业十分局限,所以这类兵刃也就很难在茫茫江湖中大显身手了,只有遇到正好相克的对手,才能轻松取胜。这类兵刃中,比较有典型代表性的应当属示差折光检测器(RID)和荧光检测器(FLD)了,另外,就是电性检测器一族。我们来一一说说他们的武功路数吧。=======================================================================1、示差折光检测器(RID)RID,简称示差,这是武林兵刃中最令人唏嘘感慨的一个,本来它是作为第一种被人们使用的兵器出现在武林的,是最早商品化的液相色谱检测器,可是现在沦落到只能偏居各类检测器的一隅,沧海桑田的变化,令人感慨万分。不过,造成这种变化的原因,完全是由于它自身的局限和特点,就像木棒,最早被人类用来当武器,主要是因为它随手可得,而且无需太多使用技巧,对付任何野兽都有效果,不过,随着石器加工的出现,以及后来金属冶炼技术的出现,木棒就逐步退出了作为常用武器的行列,偶尔只能在街头斗殴或者农民起义的场景中发挥一些余热。RID的境遇也差不多,由于这类检测器是检测经过流通池的液体的折光率的变化而产生响应的,所以具有很好的通用性,因为被分析物溶解在流动相中以后,一定会改变流动相的折光率,所以示差检测器可以对所有能进行液相分析的样品产生响应,在过去的年代,大家对分析的要求还很低,不要求灵敏度,不要求分析速度,在加上示差的这种通用性,让他当之无愧的成为了风靡一时的通用型检测器。http://ng1.17img.cn/bbsfiles/images/2016/08/201608291315_607267_2452211_3.jpg这就是示差检测器的基本原理,左边杯子里的是纯水,右边的是浓盐水,可以看到两种溶液对光的折射率是有差异的,示差检测器就是“显示这种差异”的检测器,不过,盐水的浓度要浓到什么程度才能显示出差异呢?答案是:很浓,很浓很浓...http://ng1.17img.cn/bbsfiles/images/2016/08/201608291315_607265_2452211_3.jpgRID检测器工作原理图不过,随着技术进步,大家对分析的要求越来越高,速度,灵敏度上都有了更严格的要求,RID的弱点就日益凸显出来了:灵敏度低:通常示差检测器能分析的样品浓度都是在几个mg/mL以上的,这对于现在的分析要求来讲,实在是差的太远了。无法运行梯度方法:示差检测器靠得是检测流动相折射率的变化进行检测,如果流动相自己的折射率都一直在变化,示差就无法正常工作,梯度方法由于其中不同流动相的比例在不停变化,折射率也在不停变化,这就让示差检测器无法正常工作了。也是由于这个原因,示差检测器在使用的时候,通常要平衡非常久,保证流动相绝对均匀稳定之后,才能开始分析。另外,一切会影响折射率的因素:温度的变化,混合的均匀性,气泡等等对于示差来讲都是致命的。加上新检测的不断涌现,示差曾经的江湖大佬地位逐渐萎缩,不过,,幸运的是,它还没有完全消亡,由于价格便宜,一些经典的应用分析大家还是会选择示差,比如糖的分析(当然是在不追求灵敏度的情况下)。另外,示差凭着自己的一身底子,也在淡出江湖后给自己找了个适合的工作:体积排阻色谱的检测器,这是一类用于分析大分子聚合的专门技术,由于很多大分子化合物没有紫外吸收,所以就需要用到一个通用的检测器进行分析,而江湖新秀ELSD由于线性响应差的问题,经常会造成测定结果的偏差,而示差检测器正好弥补了ELSD的这项不足;另外就是这类分析当中,不会使用到梯度分析的方法,而且样品的含量都很高,所以正好也不会遇到示差检测器的短板,在加上价格便宜,示差检测顺理成章的就成了这类分析的“标配”。江湖新秀ELSD本来是为了做聚合物分析而产生的,后来确成了市场上的“通用设备”,而原本最通用的RID由于自身条件限制,只能在聚合物等一些很小的领域内继续发挥余热,这种角色和地位的转变,真是令人感触颇多啊…=======================================================================2、荧光检测器(FLD)接下来的一个代表,是荧光检测器(FLD),它的经历远远没有示差检测器那么曲折复杂令人唏嘘,因为,它天生就是被设计用来测定具有荧光响应的化合物的。荧光是什么?是化合物吸收了紫外光能量之后从激发状态变回基态时候以光能释放出来的一部分能量,大概可以理解为某人吃了大餐长了肉,之后用跑步的方式去减肥,那么吃的大餐就以出汗的方式被释放掉了,荧光检测器就是检测这个家伙在跑步过程中到底出了多少汗——即释放了多少强度的荧光的。知道了这个过程,我们可以看看荧光检测器的优势专属性:由于具有荧光响应的物质种类不多,所以,荧光检测器的专属性非常好,只对有荧光特性的物质才产生响应,其他一概不管,极大程度的减小了干扰。通常,多环芳烃这种含有超大共轭体系的化合物都是具有荧光响应的物质。看到这类能诱发密集恐惧症的分子结构,荧光检测器的用武之地就来了http://ng1.17img.cn/bbsfiles/images/2016/08/201608291331_607268_2452211_3.jpg灵敏度:荧光检测器的灵敏度非常高,很多情况下,其在灵敏度上的表现堪比质谱检测器,这是由于荧光检测器是属于发射光检测器,不同于紫外这类吸收光型检测器,由于不受到样品溶液本身等因素的影响,即使有很微量的光发射出来,也可以很好的被检测。除了上面两个最大的优势之外,荧光检测器在线性,流动相兼容性(只要避免一些有荧光淬灭效应的试剂就可以)以及采样频率上也都有不错的表现。那么大家要问,这么NB的检测器,为啥只能混到第三梯度里当个阿猫阿狗,主要的原因就在于,液相测定的应用里有荧光响应的东西,实在是太少了…连5%都占不到,算上大家为了利用荧光检测器的优势将样品衍生为有荧光响应的物质,也大概勉强就能占到10%吧。所以,荧光检测器的招式虽然犀利无比,但是由于钻入了牛角尖,它注定也只能做个江湖山的小配角了。=======================================================================3、电化学和电导检测器最后,我们要说一说电性检测器一家子,这类检测器,可以分为电化学和电导检测器两大类,前者,顾名思义,是利用了被检测化合物的电-化学性质进行检测的,这里面包括了极谱,库伦和安培检测器,利用了物质的氧化还原反应中间的电能变化进行检测,最常见的是安培检测器;后一种主要是利用了离子的电性进行检测,通常用做离子色谱法的专门检测器。比起上面提到的荧光检测器,这类检测器的招式就更加独门了,只对能产生“电”特定的物质才有响应,要不物质本身具有氧化还原特性,要不就是它自己本身就是个离子,其实,要是细算下来,液相能分析的化合物中,有着两类特

  • LCMS中的MS是浓度型检测器还是质量型检测器?

    我们都知道检测器按照对浓度敏感和对质量敏感分为浓度型检测器和质量型检测器,常见的VWD,DAD,FLD,TCD等均为浓度型检测器,而ELSD,CAD,FID等为常见的质量型检测器,那MS属于何种类型呢?我一直都没搞明白。

  • 示差检测器

    示差检测器进了缓冲盐(0.5%磷酸溶液)和甲醇该怎么办,检测器会报废吗?进样品种为桑叶干膏,本来用紫外检测器,连接错了,走了示差检测器,大概走了流动相3小时。跪求解答!

  • 检测器的老化问题

    使用VARIAN机型的同仁了解一般光室温度在35度,检测器温度降低到-35度,不过设备使用6年后,光室升温慢了,检测器降温效果也差了,现在基本只能到-31度,而且速率慢了,不能达到理想的温度可能导致噪音提高,影响元素的信背比,检测器的老化问题不容忽视,为了降低噪音,大家该如何去考虑?

  • 液相常用检测器

    [i][b][color=#7b0c00]HPLC中常用的检测器[/color][/b][color=#7b0c00]分有如下几种,紫外吸收检测器(UVD)、二极管阵列检测器(PDAD)、荧光检测器(FLD)、示差折光检测器(RID)、蒸发光散射检测器(ELSD)、质谱检测器(MSD)等。[/color][/i][color=#006600][b]选择性检测器[/b][/color][color=#006600][b][color=#252525]1、[/color][color=#007aaa][b]紫外吸收检测器(UVD)[/b][/color][color=#252525]是目前HPLC中应用最广泛的检测器。它的主要特点是灵敏度高,线性范围宽,对流速和温度变化不敏感,可用于梯度洗脱。它要求被检测样品组分有紫外吸收,属于选择性检测器。[/color][/b][/color][color=#252525][color=#252525]2、[/color][color=#252525][color=#007aaa][b]二极管阵列检测器(PDAD)[/b][/color][/color][color=#252525]是20世纪80年代才出现的一种光学多通道检测器,它可以看作是UVD的一个分支。在对每个洗脱组分进行光谱扫描,经计算机处理后,得到光谱和色谱结合的三维图谱。其中吸收光谱用于定性(确证是否是单一纯物质),色谱用于定量,常用于复杂样品(如生物样品、中草药)的定性定量分析。[/color][/color][color=#252525][color=#252525]3、[/color][color=#252525][color=#007aaa][b]荧光检测器(FLD)[/b][/color][/color][color=#252525]同样属于选择性检测器,其灵敏度在目前常用的HPLC检测器中是最高的,应用也较多,仅次于UVD。它适用于能激发荧光的化合物。很多与生命科学有关的物质,如氨基酸、胺类、维生素、甾族化合物及某些代谢药物都可以用荧光法检测。荧光检测器在生物样品痕量分析中很有用,尤其在用荧光衍生后,可以检测很微量的氨基酸和肽。[/color][/color][color=#006600][b][b]通用型检测器[/b][/b][/color][color=#006600][b][b]1、[b][color=#007aaa]示差折光检测器(RID)[/color][/b][color=#252525]是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器。它的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。[/color][/b][/b][/color][color=#006600][b][color=#252525][color=#252525]2、[/color][b][color=#007aaa]蒸发光散射检测器(ELSD)[/color][/b][color=#252525]也是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。ELSD的响应值与样品的质量成正比,因而能用于测定样品的纯度或者检测未知物。ELSD灵敏度比RID高,对温度变化不敏感,基线稳定,可用于梯度洗脱。现在ELSD已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、药物以及聚合物等的检测。[/color][/color][/b][/color][color=#252525][color=#252525][color=#252525]3、[/color][b][color=#007aaa]质谱检测器(MSD)[/color][/b][color=#252525]是另一种通用型检测器,在灵敏度、选择性、通用性及化合物的分子量和结构信息的提供等方面都有突出的优点。但它的昂贵操作费用和复杂性限制了它的推广应用。[/color][/color][/color][color=#252525][color=#252525][color=#252525](转发至分析测试百科网)[/color][/color][/color]

  • [转帖]各种检测器介绍

    各种检测器介绍紫外吸收检测器 ultraviolet absorption detector紫外吸收检测器 ultraviolet absorption detector 简称紫外检测器(UV),是基于溶质分子吸收紫外光的原理设计的检测器。因为大部分常见有机物质和部分无机物质都具有紫外吸收性质,所以该检测器是液相色谱中应用最广泛的检测器,几乎所有液相色谱仪都配置了这种检测器。它不仅有较好的选择性和较高的灵敏度,而且对环境温度、流动相组成变化和流速波动不太敏感,因此既可用于等度洗脱,也可用于梯度洗脱。其检测灵敏度在mg/L至mg/L范围。可见光检测器 visible light detector可见光检测器 visible light detector 又称分光光度检测器,是基于溶质分子吸收可见光的原理设计的检测器。能够直接采用可见光检测的溶质不是很多,而且多数灵敏度也不高,但采用具有高摩尔吸光系数的有机试剂(配位体和螯合剂)作为衍生化试剂进行柱前或柱后衍生操作的衍生化光度检测法是相当有用的,特别是在金属离子配合物液相色谱中的应用是相当成功的。低压梯度 low-pressure gradient低压梯度 low-pressure gradient 又称外梯度,是在低压状态下完成流动相强度调整的梯度装置。只需一个高压泵,与等度洗脱输液系统相比,就是在泵前安装了一个比例阀,混合就在比例阀中完成。因为比例阀是在泵之前,所以是在常压(低压)下混合之后再增压输送到色谱柱的。蒸发光散射检测器克服常见的HPLC检测难题虽然阵法光散射检测器(Evaportive light Scattering,ELSD)已经开发生产15年,但是对于许多色谱工作者来说,它仍是一个新产品。第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家研制开发的,并在八十年代初转化为商品,八十年代以激光为光源的第二代ELSD面世。此后,通过不断设计提高了ELSD的操作性能。现在ELSD越来越多的作为通用型检测器]用于高效液相色谱,超临界色谱(SFC)和逆流色谱中。ELSD最大的优越性在于能检测不含发色团的化合物,如:碳水化合物、脂类、聚合物、未衍生脂肪酸和氨基酸、表面活性剂、药物,并在没有标准品和化合物结构参数未知的情况下检测未知化合物 。 ELSD的通用检测方法消除了常见于传统HPLC检测方法中的难点,不同于紫外和荧光检测器,ELSD的响应不依赖与样品的光学特性,任何挥发性低于流动相的样品均能被检测,不受其官能团的影响。ELSD的响应值与样品的质量成正比,因而能用于测定样品的纯度或者检测未知物。示差检测器(RI)也可以说是一种通用型检测器,打它灵敏度低,并与梯度脱洗不相容。质谱是另一种通用型检测器,但它的昂贵操作费用和复杂性限制了它的应用。 ELSD的独特检测方法,对于它的多种用途和高性能至为关键。ELSD检测只要分为三个步骤:(1)用惰性气体雾化脱洗液(2)流动相在加热管(漂移管)中蒸发(3)样品颗粒散射光后得到检测。 讨论: UV检测的主要缺点在于紫外不吸收的化合物灵敏度很低。ELSD可以检测任何挥发性低于流动相的样品。ELSD的通用性响应值使得ELSD响应值比UV响应值更能代表样品的质量 不同于紫外检测只能使用不吸收紫外的流动相,ELSD能与任何的挥发性流动相相容,不论其光学特性。您可根据样品的溶解度或分离特性选择流动相,例如选择氯仿和丙酮用于脂类的分离以提高样品的溶解性。用紫外检测器定量未知物是困难的,因为样品的紫外吸收值往往和代表样品的质量的色谱峰的大小无关。ELSD对几乎所有的样品给出一致的响应因子。因此可以通过和内标比较定量未知化合物,此特性对于使用组合化合技术而合成的系列化合物的定量尤其有用。用组合合成技术合成的化合物通常是用HPLC联合低波长紫外或质谱检测进行分析,但是,在缺乏已表面活性剂非常灵敏,并在梯度脱洗下维知结构参数已知的参照标准品情况下,两种方法都不能准确的定量分析此种系列化合物。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制