当前位置: 仪器信息网 > 行业主题 > >

激光平整度测试仪规程

仪器信息网激光平整度测试仪规程专题为您提供2024年最新激光平整度测试仪规程价格报价、厂家品牌的相关信息, 包括激光平整度测试仪规程参数、型号等,不管是国产,还是进口品牌的激光平整度测试仪规程您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光平整度测试仪规程相关的耗材配件、试剂标物,还有激光平整度测试仪规程相关的最新资讯、资料,以及激光平整度测试仪规程相关的解决方案。

激光平整度测试仪规程相关的资讯

  • 钢化玻璃表面平整度测试仪研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 123" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 钢化玻璃表面平整度测试仪 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 中国建材检验认证集团股份有限公司 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 联系人 /p /td td width=" 177" p style=" line-height: 1.75em " 艾福强 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " afq@ctc.ac.cn /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 √可以量产 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □技术转让□技术入股□合作开发& nbsp √其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/5680075d-08c7-437e-89ed-292a629e2e36.jpg" title=" 平整度仪.jpg" / /p p style=" line-height: 1.75em " & nbsp & nbsp 钢化玻璃表面平整度测试仪采用精度为2um的位移传感器可以精确的测量出钢化玻璃表面平整度,仪器表面安装有一液晶显示器与位移传感器通过内部电路相连接,可以实时显示所测得的各个位置的位移差,仪器内部还设有报警提出功能,用户可以根据自身需要设置不同的上下限报警,当仪器测得的数值超过用户所设置的上下限时,仪器内部的蜂鸣器会发出报警声,如果用户有对产品的上下限要求,则可以通过设置上下限报警来代替人为实时观测。仪器设置有零点标定功能,当需要将仪器更换位置或者更换待测物时,可以根据需要选择零点位置,同时也避免了仪器本身的误差。该仪器携带方便,测试结果准确、直观,操作简单方便,非常适合现场检测和快速检测。 br/ & nbsp & nbsp & nbsp 性能指标: br/ & nbsp & nbsp & nbsp 测定单位: 微米& nbsp br/ & nbsp & nbsp & nbsp 测量范围:0-3mm br/ & nbsp & nbsp & nbsp A/D 变换: 16bit 逐次变换方式 br/ & nbsp & nbsp & nbsp 测试精度: ± 0.2%F.S.以下& nbsp & nbsp br/ & nbsp & nbsp & nbsp 再现精度: ± 0.1%F.S.以下& nbsp & nbsp br/ & nbsp & nbsp & nbsp 连续使用时间: 约5小时(使用温度25 ℃) br/ & nbsp & nbsp & nbsp 显示屏 : 16位数字液晶显示屏(模块化LCD)& nbsp & nbsp br/ & nbsp & nbsp & nbsp 使用温度: 0~+40 ℃ br/ & nbsp & nbsp & nbsp 计测方式: 最大值.瞬间值& nbsp & nbsp br/ & nbsp & nbsp & nbsp 电源: 4.8V充电电池 br/ & nbsp & nbsp & nbsp 采样频率: 50次/秒& nbsp & nbsp br/ & nbsp & nbsp & nbsp 机体重量:约1Kg /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 该检测仪特别适用于工厂、建筑工程质量检测站、产品质量检测站、科研院校等钢化玻璃的生产检测、和开发研究等领域。该仪器不仅适用于钢化玻璃表面平整度的检测,还可以用来检测任何可以适用的平整度检测或者位移差检测。 /p /td /tr /tbody /table p br/ /p
  • 激光粒度测试数据异常的原因及应对方法
    在粒度测试过程中,有时会出现数据异常的情况,如重复性不好、同一个样品结果与之前有差异等。这样的情况一般是由以下几个原因造成的。1、环境异常:粒度仪的使用环境应该满足以下条件,一是室温在10℃~30℃之间,并且介质温度要与室温相同或相近,若介质与室温温相差过大会导致样品池结雾而影响测试结果。二是实验台要稳固,周围无振动源。振动会使仪器测试过程中光路发生变化,导致测试结果不稳。三是电源电压要稳定且有良好的接地,电压不稳会影响仪器内部电路运行的可靠性和光源的稳定性,从而使信号不稳或完全错误,从而导致结果异常。下图为样品池结雾时测试窗口异常的状态:环境异常的解决办法是对症下药,消除异常,如加装空调、加固工作台、远离振动源、远离电磁干扰设备(如电炉)、加装稳压电源、加装接地等。2、折射率发生改变:现代激光粒度仪一般采用Mie散射理论,选择正确的折射率直接决定了测试结果的准确性,正确的折射率可以通过系统或测量来得到。下图是同一样品不同折射率时的测试结果差异。 折射率发生变化的原因是测试不同的样品时忘记把上一个样品的折射率修改成现在样品的折射率,解决办法是严格按操作规范进行操作,要认真细致,不马马虎虎。3、保养维护不当:激光粒度仪是精密仪器,日常使用要按照操作规程使用,日常保养和维护不当会产生样品池污染、样品池划伤、透镜污染、管路脏、光电探测器损坏、使用腐蚀性介质测试导致循环系统损坏等,这些原因都会导致仪器测试结果异常。下图为样品池或者透镜脏时测试仪器背景。解决方法是定期清洗样品池和管路,及时更换划伤的样品池、不在非耐腐蚀循环泵中使用腐蚀性介质、不用汽油擦仪器表面、不随便打开仪器上盖、不使杂物掉到循环池中等。4、样品制备原因:一是取样不具有代表性(包括从车间里取样和实验室缩分)。二是所用的介质不合适。三是分散剂的种类和用量不正确。四是超声分散时间和强度不一致等。下图是同一种样品分散前后的对比图像。 解决方法还是对症下药,一是从车间取样时要尽量从料流中取样而不要在堆积状态下取样,如果不得不在堆积状态下取样,必须进行多点取样(至少4点),即从不同位置、不同深度取样后混合到一起。二是从实验室样品中取测试样时,要先搅拌均匀,用小勺多点(至少4点)取样放到仪器中进行分散测试。三是悬浮液取样时,要先用电动搅拌器搅拌均匀,然后用液体取样器从中部抽取。对比重较大、较粗、粒度分布很宽的特殊样品,要先加很少量的介质制成膏状物,混合均匀后再取样。四是介质要纯净、不与颗粒发生物理和化学反应、对颗粒表面具有良好的润湿作用、使颗粒具有适当的悬浮状态、介质与室温的温差要尽量小等。五是干法粒度测试时对气体介质的要求是纯净、干燥、无油、压力适中等。六是选择合适的分散剂并控制好用量。七是确定并使用最佳超声功率和时间。以上四个方面讨论了激光粒度测试过程中出现数据异常的常见原因,并给出了相应的解决方法。但引起数据异常的原因很多,情况也不一样,本文无法一一列举,如出现类似问题,可求教于专业人士,丹东百特也愿意以“专业、迅速、热情、周到”的服务理念,为您排忧解难。 (本文作者:百特售后服务工程师 管青宇)
  • 质检总局公布第二批部门计量检定规程清理结果
    2013年2月27日,质检总局公布第二批部门计量检定规程清理结果,本次清理范围涉及轻工、电子、化工、建材、民航等领域,涉及的仪器包括实验室、表面粗糙度仪等大量仪器。详情如下: 国家质量监督检验检疫总局《关于公布第二批部门计量检定规程清理结果的公告》(2013年第32号) 2013年第32号 质检总局关于公布第二批部门计量检定规程清理结果的公告   根据《中华人民共和国计量法》的规定,为进一步做好部门计量检定规程备案工作,质检总局组织有关单位对已备案的部门计量检定规程进行了集中清理,现将清理后的第二批现行有效的部门计量检定规程公布如下(见附件)。   附件:现行有效的部门计量检定规程(第二批) 现行有效的部门计量检定规程(第二批) 序号 规程编号 规程名称 主管部门 1 JJG(轻工) 2-89 自行车滑行道检定规程 工业和信息化部 2 JJG(轻工) 4-89 自行车车架精度检具检定规程 工业和信息化部 3 JJG(轻工) 5-89 自行车前后叉中心测量轴检定规程 工业和信息化部 4 JJG(轻工) 6-89 自行车车架中接头垂直度检具检定规程 工业和信息化部 5 JJG(轻工) 7-89 自行车前叉精度检具检定规程 工业和信息化部 6JJG(轻工) 8-89 自行车车把精度检具检定规程 工业和信息化部 7 JJG(轻工) 9-89 自行车车圈接口凹陷量检具检定规程 工业和信息化部 8 JJG(轻工)10-89 自行车窜动量调整架检定规程 工业和信息化部 9 JJG(轻工)11-89 自行车车轮静负荷能力试验台检定规程 工业和信息化部 10 JJG(轻工)12-89 自行车后轴身螺纹圆跳动量检具检定规程 工业和信息化部 11 JJG(轻工)13-89 自行车曲柄心轴检定规程 工业和信息化部 12 JJG(轻工)14-89 自行车飞轮心轴检定规程 工业和信息化部 13 JJG(轻工)15-89 自行车脚蹬轴冲击试验台检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 14 JJG(轻工)16-89自行车链条灵活性测量板检定规程 工业和信息化部 15 JJG(轻工)17-89 自行车轴挡碗耐磨试验机检定规程 工业和信息化部 16 JJG(轻工)18-89 自行车漆膜冲击器检定规程 工业和信息化部 17 JJG(轻工)20-89 自行车负荷试验砝码检定规程 工业和信息化部 18 JJG(轻工)21-89 自行车盐雾试验箱检定规程 工业和信息化部 19 JJG(轻工)22-89 自行车鞍座疲劳试验机检定规程 工业和信息化部 20 JJG(轻工)23-89 自行车车把鞍座夹紧力矩试验台检定规程 工业和信息化部 21 JJG(轻工)24-89 自行车车架前叉组合件落重试验机检定规程 工业和信息化部 22 JJG(轻工)25-89 自行车车架前叉组合件冲击试验机检定规程 工业和信息化部 23 JJG(轻工)26-89 自行车前后轴灵敏度光电计数器检定规程 工业和信息化部 24 JJG(轻工)28-89 自行车飞轮圆跳动量测试仪检定规程 工业和信息化部 25 JJG(轻工)29-89 自行车前后轴灵敏度试验检具检定规程 工业和信息化部 26 JJG(轻工)32-89 自行车轴脚蹬耐磨试验机检定规程 工业和信息化部 27 JJG(轻工)35-89 自行车外露突出物测试圆柱棒检定规程 工业和信息化部 28 JJG(轻工)36-89 自行车检测专用角度块检定规程 工业和信息化部 29 JJG(轻工)40-89 自行车道路试验障碍器检定规程 工业和信息化部 30 JJG(轻工)41-89 自行车车铃寿命试验机检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 31 JJG(轻工)45-89 自行车链条耐磨试验机检定规程 工业和信息化部 32 JJG(轻工)46-89 自行车脚蹬静态试验机检定规程 工业和信息化部 33 JJG(轻工)47-89 自行车脚蹬动态试验机检定规程 工业和信息化部 34 JJG(轻工)48-2000 反射光度计 工业和信息化部 35 JJG(轻工)49-2000 纸板压缩强度试验仪 工业和信息化部 36 JJG(轻工)50.1-2000 纸与纸板厚度测定仪 工业和信息化部 37 JJG(轻工)50.2-2000 瓦楞纸板厚度仪 工业和信息化部 38 JJG(轻工)50.3-2000 可变压力厚度仪 工业和信息化部 39 JJG(轻工)51-2000 纸与纸板透气度仪 工业和信息化部 40 JJG(轻工)52-2000 纸与纸板粗糙度测定仪 工业和信息化部 41 JJG(轻工)53-2000 纸浆打浆度测定仪 工业和信息化部 42 JJG(轻工)54.2-2000 纸与纸板定量测定仪 工业和信息化部 43 JJG(轻工)55-2000 纸与纸板吸收性测定仪 工业和信息化部 44 JJG(轻工)56-2000 纸板戳穿强度测定仪 工业和信息化部 45 JJG(轻工)57-2000 纸板挺度测定仪 工业和信息化部 46 JJG(轻工)58.1-2000 摆锤式纸张抗张力试验机 工业和信息化部 47 JJG(轻工)58.2-2000 卧式纸张抗张试验机 工业和信息化部 48 JJG(轻工)59-2000 MIT式耐折度仪检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 49 JJG(轻工)60-2000 肖伯尔式耐折度仪 工业和信息化部 50 JJG(轻工)61-2000 纸与纸板耐破度仪 工业和信息化部 51 JJG(轻工)62-2000 纸和纸板平滑度仪 工业和信息化部 52 JJG(轻工)63-2000 纸与纸板撕裂度仪 工业和信息化部 53 JJG(轻工)64-2000 柔软度仪 工业和信息化部 54 JJG(轻工)65-2000 纸张透油度测定仪 工业和信息化部 55 JJG(轻工)66-2000 纸张光泽度计 工业和信息化部 56 JJG(轻工)67-2000 IGT印刷适应性测定仪 工业和信息化部 57 JJG(轻工)68-2000 纸与纸板油墨吸收性试验仪 工业和信息化部 58 JJG(轻工)69-2000 纸与纸板葛尔莱式透气度仪 工业和信息化部 59 JJG(轻工)70-2000 佛格式纸与板耐磨试验仪 工业和信息化部 60 JJG(轻工)72-2000 实验室PFI磨浆机 工业和信息化部 61 JJG(轻工)73-2000 纸浆用毛细管粘度计 工业和信息化部 62 JJG(轻工)74-2000 实验室VALLEY打浆机 工业和信息化部 63 JJG(轻工)76-91 SCI.327石英晶体阻抗计SPM.327 PPM计数器检定规程 工业和信息化部 64 JJG(轻工)77-91 盐雾试验箱检定规程 工业和信息化部 65 JJG(轻工)78-91 Ω打印计时仪检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 66 JJG(轻工)79-91 钟表仪器校验仪检定规程 工业和信息化部 67 JJG(轻工)80-91 钟表用齿轮、宝石元件投影样板检定规程 工业和信息化部 68 JJG(轻工)81-91 机械钟表校验仪检定规程 工业和信息化部 69 JJG(轻工)82-91 石英钟表校验仪检定规程 工业和信息化部 70 JJG(轻工)83-91 石英钟表仪器精度校验仪检定规程 工业和信息化部 71 JJG(轻工)84-91 手表防水测试仪检定规程 工业和信息化部 72 JJG(轻工)85-91 手表防震试验仪检定规程 工业和信息化部 73 JJG(轻工)86-91 手表综合测试仪检定规程 工业和信息化部 74 JJG(轻工)87-92 便携式地毯测厚仪 工业和信息化部 75 JJG(轻工)88-92 数显式地毯测厚仪 工业和信息化部 76 JJG(轻工)89-92 地毯绒簇拔出力测试仪 工业和信息化部 77 JJG(轻工)90-92 地毯四足踩踏试验仪 工业和信息化部 78 JJG(轻工)91-92 地毯动态负载仪 工业和信息化部 79 JJG(轻工)92-92 地毯静态负载试验仪 工业和信息化部 80 JJG(轻工)93-92 YGW-872型地毯染色牢度摩擦仪 工业和信息化部 81 JJG(轻工)94-92 水平法地毯燃烧试验装置 工业和信息化部 82 JJG(轻工)95-92 FL-45°型燃烧仪 工业和信息化部 83 JJG(轻工)98-93 家用制冷器具检测装置Ⅱ检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 84 JJG(轻工)100-1993 单盘闪光音准仪检定规程 工业和信息化部 85 JJG(轻工)101-1993 十二盘闪光音准仪检定规程 工业和信息化部 86 JJG(轻工)102-1994 便携式数字显示音准仪检定规程 工业和信息化部 87 JJG(轻工)103-1995 便携式指针显示音准仪检定规程 工业和信息化部 88 JJG(轻工)105-94 制冷压缩机量热计(第二制冷剂量热器法)检定规程 工业和信息化部 89 JJG(轻工)106-94 卤素检漏仪检定规程 工业和信息化部 90 JJG(轻工)107-94 洗净率检测装置检定规程 工业和信息化部 91 JJG(轻工)108-96 翘曲度指示器检定规程 工业和信息化部 92 JJG(轻工)109-96 150mm平整度指示器检定规程 工业和信息化部 93 JJG(电子)01001-87 SCP-2型时畴测频器试行检定规程 工业和信息化部 94 JJG(电子)03001-87 521A型PAL矢量示波器试行检定规程 工业和信息化部 95 JJG(电子)04001-87 JS-2C型晶体管反向截止电流测试仪试行检定规程 工业和信息化部 96 JJG(电子)04002-87 BJ3030型高频小功率晶体管CCrbb,乘积测试仪试行检定规程 工业和信息化部 97 JJG(电子)04003-87 BJ2952A(JS-3A)型晶体管反向击穿电压测试仪试行检定规程 工业和信息化部 98 JJG(电子)04004-87 BJ2911(HQ-1B)型晶体管综合参数测试仪试行检定规程 工业和信息化部 99 JJG(电子)04006-87 BJ2913型场效应管参数测试仪试行检定规程 工业和信息化部 100 JJG(电子)04008-87 QE1A型双基极半导体管测试仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 101 JJG(电子)04009-87 BJ2983型晶体三级管正偏二次击穿测试仪试行检定规程 工业和信息化部 102 JJG(电子)04010-87 BJ2961型晶体管集成电路动态参数测试仪试行检定规程 工业和信息化部 103 JJG(电子)04011-87 QG21~QG25型高频小功率晶体管Ft测试仪试行检定规程 工业和信息化部 104 JJG(电子)04012-87 BJ3022(QJ30)型低频大功率晶体管Ft测试仪试行检定规程 工业和信息化部 105 JJG(电子)05006-87 1620型电容测量装置试行检定规程 工业和信息化部 106 JJG(电子)05007-87 HP4192A型低频阻抗分析仪试行检定规程 工业和信息化部 107 JJG(电子)09002-87 WILTRON6409射频分析仪试行检定规程 工业和信息化部 108 JJG(电子)12004-87 363型电视频道信号发生器试行检定规程 工业和信息化部 109 JJG(电子)12005-874001A型音频扫频信号发生器试行检定规程 工业和信息化部 110 JJG(电子)12009-87 MSG-2161型调频立体声/调频-调幅信号发生器试行检定规程 工业和信息化部 111 JJG(电子)12011-87 XT24型立体声信号发生器试行检定规程 工业和信息化部 112 JJG(电子)12012-87 SBUF型电视测试发射机试行检定规程 工业和信息化部 113 JJG(电子)12014-87 MDA-456型立体声解调器试行检定规程 工业和信息化部 114 JJG(电子)12015-87 811B型电视机测量滤波器试行检定规程 工业和信息化部 115 JJG(电子)12016-87 843型收音机录音机测量滤波器试行检定规程 工业和信息化部 116 JJG(电子)14002-87 HL-12A型雷达综合测试仪试行检定规程 工业和信息化部 117 JJG(电子)15001-87 HP8970A型噪声系数仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 118 JJG(电子)18002-87 2307型电平记录仪试行检定规程 工业和信息化部 119 JJG(电子)02001-88 2610型测量放大器试行检定规程 工业和信息化部 120 JJG(电子)02003-88 DO30-C型数字式三用表校验仪 工业和信息化部 121 JJG(电子)04013-88 BJ2912(QE7)型稳压二极管测试仪检定规程 工业和信息化部 122 JJG(电子)04014-88 晶体管特性图示仪试行检定规程 工业和信息化部 123 JJG(电子)04015-88 QZ3.QZ4型高频小功率晶体管NF测试仪检定规程 工业和信息化部 124 JJG(电子)04016-88 BJ2984(QR-3)型晶体三极管瞬态热阻测试仪试行检定规程 工业和信息化部 125 JJG(电子)04017-88 BJ2900型双极型晶体管反向截止电流计量标准仪器试行检定规程 工业和信息化部 126 JJG(电子)04018-88 BJ2901型双极型晶体管反向击穿电压计量标准仪器试行检定规程 工业和信息化部 127 JJG(电子)04019-88 BJ2920型双极型晶体管h21E、VBE(sat)、VCE(sat)计量标准仪试行检定规程 工业和信息化部 128 JJG(电子)05009-88 TS-109型电解电容器半自动分选仪试行检定规程 工业和信息化部 129 JJG(电子)05010-88 RT150/RT160型继电器测试仪器试行检定规程 工业和信息化部 130 JJG(电子)05011-88 WZC-1A型电位器综合测试仪试行检定规程 工业和信息化部 131 JJG(电子)05013-88 AV2551型电位器动态接触电阻变化测量仪试行检定规程 工业和信息化部 132 JJG(电子)05014-88 HP4274A.HP4275A型多频LCR表试行检定规程 工业和信息化部 133 JJG(电子)05015-88 HP4342A型Q表试行检定规程 工业和信息化部 134 JJG(电子)05016-88 HL2801型数字式自动Q表试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 135 JJG(电子)05017-88 HP4276A.HP4277A型LCZ表试行检定规程 工业和信息化部 136 JJG(电子)05020-88 GR1658型RLC数字电桥试行检定规程 工业和信息化部 137 JJG(电子)07001-88 HP8901A型调制度分析仪试行检定规程 工业和信息化部 138 JJG(电子)07002-88 MSW-721E型中频扫频仪试行检定规程 工业和信息化部 139 JJG(电子)07003-88 MSW-7124型调频调幅扫频仪试行检定规程 工业和信息化部 140 JJG(电子)09004-88 AV3611型自动标量网络分析仪试行检定规程 工业和信息化部 141 JJG(电子)11001-88 杂音仪试行检定规程 工业和信息化部 142JJG(电子)12018-88 ZN3991型双通道分离度计试行检定规程 工业和信息化部 143 JJG(电子)15003-88 3280型射频晶体标志信号发生器试行检定规程 工业和信息化部 144 JJG(电子)18003-88 261型微微安电流源试行检定规程 工业和信息化部 145 JJG(电子)01003-89 AD5121型数字群时延测量仪试行检定规程 工业和信息化部 146 JJG(电子)01004-89 AD5122型微波群时延测量仪试行检定规程 工业和信息化部 147 JJG(电子)02007-89 2627型前置放大器试行检定规程 工业和信息化部 148 JJG(电子)04021-89 BJ3110型MOS集成电路测试仪试行检定规程 工业和信息化部 149 JJG(电子)04022-89 QO1型高频小功率晶体三极管fT计量标准装置试行检定规程 工业和信息化部 150 JJG(电子)04023-89 BJ2970型大功率半导体三极管tf测试仪试行检定规程 工业和信息化部 151 JJG(电子)04026-89 BJ2985型晶体三极管维持电压测试仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 152 JJG(电子)04028-89 BJ3190型集成运算放大器测试仪试行检定规程 工业和信息化部 153 JJG(电子)08001-89 DB-1型电场标准装置试行检定规程 工业和信息化部 154 JJG(电子)11008-89 3764A型数字传输分析仪试行检定规程 工业和信息化部 155 JJG(电子)12019-89 ZW3765A型调频广播接收机和录音机测量滤波器试行检定规程 工业和信息化部 156 JJG(电子)12020-89 电视视频电平表试行检定规程 工业和信息化部 157 JJG(电子)12023-89 MDA-453型调频线性解调器试行检定规程 工业和信息化部 158 JJG(电子)12025-89 TA03BD型电视多伴音信号发生器试行检定规程工业和信息化部 159 JJG(电子)12028-89 4143型互易校准仪试行检定规程 工业和信息化部 160 JJG(电子)12033-89 电视视频电平标准装置试行检定规程 工业和信息化部 161 JJG(电子)03009-91 SQ-20型取样示波器试行检定规程 工业和信息化部 162 JJG(电子)04041-91 BJ-3192型集成运算放大器自动测试仪试行检定规程 工业和信息化部 163 JJG(电子)04043-91 CTG-1型高频C-V特性测试仪试行检定规程 工业和信息化部 164 JJG(电子)04044-91 YWS-2980A型整流二极管IFSM和I2t测试仪试行检定规程 工业和信息化部 165 JJG(电子)05038-91 715型电位器线性示波器试行检定规程 工业和信息化部 166 JJG(电子)05039-91 YY-2781型RLC三用表试行检定规程 工业和信息化部 167 JJG(电子)05041-91 CJ-2780型三用误差分选仪试行检定规程 工业和信息化部 168 JJG(电子)05044-91 HP-4272A型预置容量表试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 169 JJG(电子)05045-91 HP-4273A型预置容量表试行检定规程 工业和信息化部 170 JJG(电子)05046-91 GR-1687型LCR数字桥试行检定规程 工业和信息化部 171 JJG(电子)05048-91 DA-1型电气安全参数测试仪试行检定规程 工业和信息化部 172 JJG(电子)07008-91 SWOF型视频扫频频谱分析仪试行检定规程 工业和信息化部 173 JJG(电子)07009-91 HP-3577A型网络分析仪试行检定规程 工业和信息化部 174 JJG(电子)10002-91 射频通过式中功率计试行检定规程 工业和信息化部 175 JJG(电子)10003-91 射频终端式中功率计试行检定规程 工业和信息化部 176 JJG(电子)12034-91 1617型带通滤波器试行检定规程 工业和信息化部 177 JJG(电子)12035-91 2010型外差式分析仪试行检定规程 工业和信息化部 178 JJG(电子)12036-91 HY-6060型驻极体传声器测试仪试行检定规程 工业和信息化部 179 JJG(电子)12037-91 DF-5990A型扬声器谐振频率测量仪试行检定规程 工业和信息化部 180 JJG(电子)12038-91 MWS-672型抖晃校准仪试行检定规程 工业和信息化部 181 JJG(电子)15019-91 XT-22型梳状频率发生器试行检定规程 工业和信息化部 182 JJG(电子)18005-91 工作用热偶真空计试行检定规程 工业和信息化部 183 JJG(电子)18006-91 电阻真空计试行检定规程 工业和信息化部 184 JJG(电子)18007-91 QF-11601型低通滤波器试行检定规程 工业和信息化部 185 JJG(电子)12026-89 MR-611A VTR抖动测量仪试行检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 186 JJG(电子)12032-89 148型电视插入测试信号发生器试行检定规程 工业和信息化部 187 JJG(电子)18004-89 HP4140B型微微安电流表/直流电压源试行检定规程 工业和信息化部 188 JJG(电子)01007-95 AD5120A型射频群时延标准检定规程 工业和信息化部 189 JJG(电子)01008-95 AD5120B型视频群时延标准检定规程 工业和信息化部 190 JJG(电子)01009-95 AD5120C型低频群时延标准检定规程 工业和信息化部 191 JJG(电子)02008-95 DA24型有效值电压表检定规程 工业和信息化部192 JJG(电子)02009-95 模拟电子电压表检定规程 工业和信息化部 193 JJG(电子)02010-95 QF2280A型超高频数字毫伏表检定规程 工业和信息化部 194 JJG(电子)02011-95 HP8405型矢量电压表检定规程 工业和信息化部 195 JJG(电子)04045-95 JS-7B型晶体管测试仪检定规程 工业和信息化部 196 JJG(电子)04046-95 QC-13型场效应管跨导参数测试仪检定规程 工业和信息化部 197 JJG(电子)04047-95 QG-6、QG-16型高频小功率晶体管fT参数测试仪检定规程 工业和信息化部 198 JJG(电子)04048-95 QG-29型高频晶体管GP(KP)、F(NF)、AGC特性测试仪检定规程 工业和信息化部 199 JJG(电子)04052-95 PTQ-2型晶体管快速筛选仪检定规程 工业和信息化部 200 JJG(电子)04055-95 安全栅检定规程 工业和信息化部 269 JJG(化工)9-89 指示计检定规程 工业和信息化部 270 JJG(化工)10-89 Q型操作器检定规程 工业和信息化部 序号 规程编号 规程名称 主管部门 271 JJG(化工)11-89 气电转换器检定规程 工业和信息化部 272 JJG(化工)12-89 电气转换器检定规程 工业和信息化部 273 JJG(化工)13-89 信号转换器检定规程 工业和信息化部 274 JJG(化工)14-89 隔离器、反向器、升压器检定规程 工业和信息化部 275 JJG(化工)101-91 橡胶圆盘摆动硫化仪检定规程 工业和信息化部 276 JJG(化工)102-91 橡胶门尼粘度计检定规程
  • 布鲁克SENTERRAII拉曼光谱仪中标北京市政工程研究院采购项目
    根据中国政府采购网发布的《北京市市政工程研究院道路交通路面设备申购中标公告》,布鲁克的智能显微共聚焦拉曼光谱仪SENTERRAII中标北京市市政工程研究院道路交通路面设备申购 项目( 项目编号:XM-0000183302170215012 )。  激光共焦拉曼光谱是用来分析物质组分﹑结构等的一种有效光谱分析手段。北京市市政工程研究院道路交通路面设备申购激光共聚焦拉曼显微光谱仪,在道路工程中可广泛对沥青类高分子化合物及其衍生物、水泥混凝土及各种添加剂原材进行微观分析。  此外,此次采购中还包括激光多功能道路测试仪1台,包含平整度激光器(车辙直射激光器共用):数量:1个 ,车辙激光器7个,构造深度激光器(车辙直射激光器共用):数量:1个,平整度专用加速度计:数量:2个。用途提高路面检测能力 瞬变电磁磁探头1台,用途适用于解决浅部地质问题。  总中标金额:211.0 万元(人民币)其中激光共聚焦拉曼显微光谱仪1台,规格型号:senterra II,单价1460000元,总价1460000元。  备注:虽然布鲁克在1988年就推出了傅立叶拉曼光谱仪,但是一直推广比较少。不过,随着市场格局的改变,布鲁克在拉曼光谱仪方面也开始发力了。继2015年推出首款便携拉曼产品BRAVO之后,analytica China 2016上布鲁克又展出了拉曼光谱仪的升级版本SENTERRAⅡ。
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 百特激光粒度仪通过CE认证
    2010年4月23日,丹东市百特仪器有限公司收到了总部设在瑞士日内瓦的世界最大的认证机构&mdash &mdash SGS(Societe Generale de Surveillance S.A.)签署的CE认证证书,宣告百特激光粒度仪通过了CE认证,百特由此成为中国首个通过CE认证的激光粒度仪品牌。 十五年来,丹东市百特仪器有限公司在产品的技术性能、质量控制、安全性能、售后服务等方面投入了大量的人力、物力、财力,使百特激光粒度仪的测试范围、重复性、准确性、自动化程度、安全性能等方面达到了同类产品的领先水平。在此基础上百特在产品质量控制上倾注了大量的心血,从元器件的采购与加工、装配工艺、检验程序、包装运输等方面制定了严格的质量规程,使百特激光粒度仪质量稳定可靠,无故障运行时间大幅度延长,受到用户的信赖。 在注重产品质量和性能的同时,百特在低压安全和电磁兼容性等方面一直坚持按国际标准进行改造和设计,全部采用通过认证的、符合安全和电磁兼容性的电子元器件,在系统布局和电路设计上采取了大量的符合安全标准、减少电磁辐射以及抗干扰设计,取得可喜成果。2010年年初,国际权威的SGS实验室对百特激光粒度仪进行了全面的测试,证明百特激光粒度仪完全符合EN61010-1:2001和EN61326-1:2006标准,一次性通过低电压安全(LVD)和电磁兼容(EMC)测试,据此测试结果,SGS向百特颁发CE认证证书。 获得CE认证证书,是百特打造精品战略所取得的又一个成果,标志着百特激光粒度仪的综合性能和质量达到了国际标准,标志着百特取得了进入国际市场特别是欧美发达国家市场的通行证。百特将以此为契机,在打造精品的道路上继续前行,为创国际知名的激光粒度仪品牌继续努力。
  • 激光粒度分析仪在色釉料中的应用
    激光粒度分析仪在色釉料中的应用 色釉料是陶瓷制品的&ldquo 行头&rdquo ,直接关系到陶瓷产品的&ldquo 卖相&rdquo 。随着我国陶瓷产品产量和质量的迅速提高,色釉料行业在最近10多年也迅速发展壮大,现已成为陶瓷产业的重要分支。从形貌上看,色釉料是一种粉体,其粒度分布直接影响呈色特征和呈色强度,必须准确测定并加以严格控制。目前最先进的测试仪器是激光粒度分析仪,由于其具有测量范围宽、重复性好、速度快、操作容易等显著优点,非常适合色釉料行业的使用。 激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。激光粒度仪的原理和结构决定了其的性能特点:1、能给出详尽的粒度分布数据,这些数据对确定色釉料颗粒的平均大小、均匀性、配料是非常有用的。2、测量范围大,能覆盖色釉料的整个粒度范围。3、测量速度快。4、重复性好、操作方便。总体来说,激光粒度仪是迄今为止最适合色釉料行业使用的粒度测试仪器。 济南微纳颗粒仪器股份有限公司是一家专注颗粒测试的企业,研究颗粒检测技术已有30多年的历史。对于陶瓷行业的检测提供了完善的服务。以坚实的质量与优质的服务实践着。在陶瓷行业受到广大客户们的一致好评。微纳在以永不停歇的脚步与客户共创美好未来。 ---------------中国颗粒测试技术的领航者--------------- 济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪等。 销售热线:0531-88873312 公司网站:http://www.jnwinner.com 联系地址:济南市高新区大学科技园北区F座东二单元
  • 百特智能激光粒度仪投放市场
    日前,百特智能激光粒度仪&mdash &mdash BT-9300Z激光粒度仪正式投入批量生产并投放市场,为国产高性能激光粒度仪增添了新的成员。该仪器具有以下突出特点,一是简化操作,减少人为误差,提高准确性和重复性,操作甚至简化到只需按一下鼠标,其余所有操作如进水、消泡、对中、背景、浓度调整、分散时间、测试过程、打印与保存结果、排放清洗等全部由电脑控制下自动完成。二是内置独立的吸水系统和水位探测系统,可以从放在地上的水桶里抽水,真正实现自动进水。三是内置80个探测器(前向68个,侧向8个,后向4个)和高精度的信号处理系统,具有很高的分辨率和稳定性,重复性误差小于1%;四是高精度的三维自动对中系统使仪器始终处于最佳状态;五是进口半导体激光器使仪器的性能更稳定,仪器寿命更长;此外,软件系统具有多语言功能、报告单转换(Excel、word 等格式)功能、报告单格式编辑功能、准确性标定(自校准)功能。使该仪器是集激光技术、软件技术、光电子技术和控制技术于一体的新一代高性能粒度测试仪器,测试范围达到0.1-460微米,是高等院校、研究院所、大中型企业的实验室粒度测试的理想仪器。
  • 滨州学院杜玉杰研制出国内首台光谱响应测试仪
    杜玉杰,现任滨州学院飞行学院副院长,教授,市第十届政协委员,南京理工大学、青岛科技大学兼职硕士生导师,山东省知联会科技服务分会常务理事。  1997年,杜玉杰从鲁东大学(原烟台师范学院)毕业后到滨州学院任教至今,期间分别于2004年、2012年获南京理工大学硕士学位、博士学位。在高校工作19年,他一直工作在教学、科研一线,获得过山东省有突出贡献的中青年专家、山东省教学名师、山东省优秀青年知识分子、滨州市有突出贡献专家等荣誉称号。  光谱响应测试仪是一种用于测试光电器件光谱响应、量子效率等性能参量的仪器,特别是能在线测试光电器件制备过程中的各种性能参量,因此广泛应用于光电子器件制造领域。而由于相关部件需要在高标准的真空环境中进行制备,对真空环境要求极高,但性能参量却不容易测试,严重影响了我国光电阴极制备工艺和制备水平的提高。  为了解决这一问题,突破这一瓶颈,杜玉杰提出研制光谱响应测试仪的想法。研制的难度很大,光信号进入激活台内衰减很严重,光电流信号微弱,信息提取很难。为此,杜玉杰带领团队反复试验,突破了重重困难,实现了对激活过程中光电阴极光谱响应的实时动态测试,提高了我国阴极制备的质量和水平。  2004年,杜玉杰完成了国内首台光谱响应测试仪的研制,成功解决了负电子亲和势(NEA)光电阴极制备过程中光阴极信息实时在线测试问题,研究成果“微光像增强器动态光谱响应测试技术研究”被鉴定为国际先进水平,获中国兵器工业集团公司科技奖二等奖。  同时,杜玉杰在光电阴极研究方面,突破了传统光电阴极研究方法,创新性地将第一性原理研究方法应用到光电阴极的研究中,实现了NEA光电阴极研究的方法创新和理论创新。他先后在《Applied Physics Letters》、《Applied Surface Science》等国际权威期刊发表30余篇被SCI收录的学术论文,获教育部科技进步奖二等奖1项、国防科技进步二等奖1项,山东省高校优秀科研成果奖4项,滨州市优秀自然成果奖一等奖5项。  长期以来,我国消防监控平台普遍存在不同品牌报警主机协议不兼容问题。基于这种现实,杜玉杰带领团队完成的山东省大型科学仪器设备升级改造技术研究项目“数字化消防检测仪的研制”,成功开发了基于GIS的消防监控平台,在消防系统推广应用。  2013年5月,杜玉杰到滨州学院飞行学院担任副院长,协助院长分管教学、科研、实验室等工作。到飞行学院后,杜玉杰狠抓内涵建设,飞行技术专业大一新生四级通过率达到75%,交通运输专业考研率达到了35%,飞行技术专业被评为教育部综合改革试点专业和山东省卓越工程师试点专业,一项教学成果获山东省高等教育优秀教学成果二等奖。  作为山东省高校航空信息技术重点实验室学科带头人,近年来,杜玉杰带领团队成员在航空信息领域、航空政策法规方面做了大量研究工作,承担了多项航空科研课题的研究工作。他主持并完成了山东省软科学研究计划项目“山东省通用航空发展现状及对策研究”。研究成果被山东省科协以科技工作者建议方式报省委主要领导,被滨州市科协以科技工作者建议方式报市委主要领导,并获市委副书记、市长崔洪刚肯定和批示。  因教学、科研业绩突出,杜玉杰于2013年被评为山东省教学名师,2014年被评为山东省有突出贡献的中青年专家,是目前滨州学院惟一一个省突出贡献奖。  作为一名大学教师,杜玉杰以教学促进科研,以科研反哺教学。在教学领域,他是“单片机原理与应用”省级精品课程负责人,主持或参与省级教学改革课题5 项,其中“基于应用型人才培养的单片机教学改革研究与实践”被鉴定为国内领先水平,教学研究成果获山东省高等教育省级教学成果二等奖1项、三等奖2项。连续11年指导学生参加各类学科竞赛,并获国家级、省级学科竞赛奖40余项。
  • Fritsch激光粒度仪免费测试公告
    各位尊敬的客户:   您好!   德国Fritsch GmbH是一家实验室样品处理以及粒度分析仪器设计和生产的专业性公司,凭借对客户认真负责的态度,已经在全球拥有了相当多的客户群。并且得到了客户的一致好评! 我司自2011年成为FRITSCH激光粒度仪在中国的独家代理商。 现代理的&ldquo analysette 22&rdquo 系列激光粒度仪有以下2种型号: 型号 量程 MicroTec plus 0.08-2000 um NanoTec 湿法:0.01-2000 um 干法:0.1-2000 um 以上产品均适用于干粉或悬浮液或乳剂中颗粒度分布测试。 其中Micro Tec plus是德国FRITSCH公司最具代表性的新型大量程激光粒度仪,它除了将主流的反傅里叶技术与它专利的移动样品池技术相结合,使测量范围达到0.08um~2000um,以及利用高品质的零件将光学平台垂直设计节省了很多的空间之外,还具有以下优势: 选用了分辨率最好的光束,双激光束设计: 绿色 (532nm), 红色 (ca. 940nm);可调节的超声波探头及水泵动力;模块化设计,将干法分散仪、湿法分散仪、检测系统独立分开,并且在10-20S就能实现干、湿法的转换;高效的自动光束测量阵列可调节容积, 通过电脑可实现选择:300、400、500ml适用于在水相及大多数有机相(例如异丙醇) 中使用先进的曲光系统测量时间ca. 10 sec.测量单元使用 Cardridge-like 设计 - 易于转换改变优秀的软件系统:采用图形设计的能够支持新32位操作系统的各项功能,标准功能非常广泛,用户也可在多处对程序机型修改从而满足不同的需要。 德国FRITSCH公司一直为全球的用户提供免费的产品测试服务,在欧洲甚至有专门的实验车,可以亲临现场为用户服务。因为我们认为,只有经过实验,才能为用户选择最为合适的产品。 为将这一服务带到中国,我司现已成立粒度分析实验室,为广大的国内用户提供免费的样品测试服务,您只需按照以下步骤即可轻松享受这一服务: 在《资料中心》下载《测试申请表》填写后发送至我司邮箱,我司工作人员会在3个工作日内主动与您联系;您也可直接拨打我司服务电话,由我司工作人员为您服务;经我司确认后,您可选择将样品邮寄或送至我司,我司热忱欢迎广大客户亲临我司参与检测过程;测试完成后我司可提供正式的检测分析报告。 欢迎广大客户前来测试! 我司联系方式: 邮寄地址:北京市海淀区中关村东路18号财智国际大厦A座1505室 电 话:010-82600826-19 传 真:010-82382580 E-MAIL:info@chinyee.cn lt@chinyee.cn
  • 全自动激光粒度仪散射理论的应用
    由于运用光散射参数的组合不同,形成了众多基于散射的颗粒粒径测量理论,米氏散射理论,夫朗和费衍射,衍射式散射,全散射,角散射等,不同理论的运用形成了多种粒度测试仪器共存的现状。   米氏理论是对均质的球形颗粒在平行单色光照射下的电磁方程的精确解,它适用于一切大小和不同折射率的球形颗粒。而夫朗和费衍射理论只是经典米氏理论的一个近似或一个特例,仅当颗粒直径与入射光波长相比很大时才能适用。这就决定了基于夫朗和费衍射理论的激光粒度仪的测量下限不能很小。正因如此,应用经典米氏散射理论的激光粒度仪以其适用范围广,在小粒径范围测量的极高精度,受到了广泛认可。
  • 激光精密测量技术及其在高端装备制造业中的应用
    “中国制造 2025”发展战略对高端装备制造业的质量提出了更高要求。超精密测量对提升高端装备制造质量具有基础支撑作用,并在制造全过程中的质量控制发挥决定性作用;只有解决整体测量能力问题,才能从根本上解决高端装备制造质量问题。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。目前,越来越多的激光精密测量系统已作为产品检测的重要环节融入高端装备制造生产线,并已成为大型装备制造业中质量保证的重要手段,包括激光干涉仪、激光跟踪仪等。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器,广泛应用于材料几何特性表征、精密传感器标定、精密运动测试与高端装备集成等场合;特别是基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。为帮助用户更好地了解激光精密测量技术及其在高端制造中的应用,仪器信息网将于2022年10月20-21日举办首届“精密测量与先进制造”主题网络研讨会,特邀中国科学院微电子研究所主任周维虎、清华大学教授张书练、哈尔滨工业大学长聘教授胡鹏程、中国计量科学研究院副研究员崔建军分享主题报告。 点击图片直达报名页面中国科学院微电子研究所主任/研究员 周维虎《激光跟踪仪精密测量技术与应用》(点击报名)周维虎研究员长期从事精密光电测量技术与仪器研究,主持科技部重大仪器专项、国家重点研发计划、自然基金重大仪器专项、国防科工局重点预研、装备发展部军用测试仪器、中科院仪器装备项目等50余项精密测量与仪器类课题,获得中国机械工业科学技术发明特等奖、中国计量测试学会技术发明一等奖等7项省部级奖励,发表论文近200篇,申请专利近50项,编写教材1部,起草国家计量检定规程和规范4部,获得国务院特殊津贴、中科院朱李月华优秀教师奖、江苏省双创领军人才、青岛市创新领军人才等称号。成功研发国际上首台飞秒激光跟踪仪、国内首台三自由度激光跟踪仪和六自由度激光跟踪仪,打破了国外在激光跟踪测量领域的技术垄断。担任中国科学院大学岗位教授、博士生导师,北京航空航天大学、华中科技大学、大连理工大学、吉林大学、合肥工业大学等十余所高校兼职教授和博士生导师,南京航空航天大学特聘教授,湖北工业大学楚天学者教授。担任《计测技术》、《测控技术》、《中国测试》和《光电子》期刊编委,《Optical Engineering》、《中国航空学报(中、英文)》等十余份国内外期刊审稿人。报告摘要:激光跟踪仪用于超大尺寸空间几何量测量,具有测量速度快、精度高、范围大,可现场测量等特点。在航空航天、船舶、雷达、高铁、能源设备、汽车、大科学装置等大型装备制造领域具有广泛应用,本报告重点介绍激光跟踪仪研发技术及相关领域中应用。清华大学教授 张书练《激光回馈精密测量技术新进展》(点击报名)张书练,清华大学教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。曾任清华大学精密测试技术及仪器国家重点实验室主任,现任广东省计量院重点实验室学术委员会主任。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。哈尔滨工业大学长聘教授 胡鹏程《超精密激光干涉位移测量技术进展与挑战》(点击报名)胡鹏程,哈工大长聘教授、博导,精密仪器工程研究院副院长,2019年入选国家高层次青年人才计划。校内兼职:第二届校学术委员会,委员;超精密仪器技术及智能化工信部重点实验室,副主任;超精密光电仪器工程研究所,常务副所长。校外兼职:中国计量测试学会,第八届计量仪器专业委员会,副主任委员;IEEE Senior Member;中国电子学会、中国光学工程学会,高级会员;中国仪器仪表学会传感器分会,理事;教育部学位与研究生教育发展中心,中国高校创新创业教育研究中心,评审专家;《光学精密工程》编委,《哈尔滨工业大学学报》青年编委,《红外与激光工程》青年编委;国家重点研发计划引力波探测重点项目,咨询专家组,成员;ISPEMI 2018, Secretary General;IFMI&ISPEMI 2020,Cochair of organizing committee,IFMI&ISPEMI 2022,Cochair of organizing committee 学术研究:围绕超精密激光测量与光电仪器方向,从事基础研究、关键技术突破和仪器研制测试。承担国家科技重大专项课题、技术基础项目、国家重大工程项目、国家自然科学基金国际合作研究项目、国家自然科学基金重大研究计划课题、国家自然科学基金面上项目等,项目经费1.2亿余元;发表SCI检索论文60篇,出版编著1部,申请/授权国内外发明专利152项。 科研成果奖励:中国计量测试学会科学技术进步奖,一等奖(第1完成人,基础类,2021年);国家技术发明奖,二等奖(第5完成人,2013年)等。报告摘要:甚多轴高速超精密激光干涉测量技术与仪器是高端装备发展与前沿研究的重大核心基础技术,作为光刻机等高端装备中不可替代的核心单元,其直接决定了装备所能达到的极限运动精度与整体性能;作为溯源精度最高的长度计量测试仪器,其准确统一全国相关量值,支撑国际单位制量子化变革等前沿研究。随着高端装备发展与前沿研究的迅猛发展,其甚多轴、高速、超精密测量需求越加显著,使激光干涉测量技术发展不断面临新的挑战。为此,开展了甚多轴高速超精密激光干涉测量技术研究,突破了激光稳频、多轴干涉镜组、干涉信号处理等多项关键技术,研制成功系列超精密激光干涉测量仪器,测量速度优于5m/s,动态测量分辨力0.077nm,光学非线性误差优于0.02nm,并在微电子光刻机、国家基准装置、德国PTB超测量装备等成功应用,为我国高端装备发展与前沿研究奠定重大共性技术基础。中国计量科学研究院课题组长/副研究员 崔建军《差分珐珀激光干涉微位移计量及应用研究》(点击报名)崔建军副研究员长期从事精密几何量测量技术及计量标准研究,主持和参加科技部重大仪器专项、国家重点研发计划、国家及北京市自然科学基金项目、国家市场监管总局项目等30余项精密测量与几何量计量研究项目,获得浙江省科学技术进步二等奖、国家质检总局科技兴检二等奖、中国计量测试学会科学技术进步三等奖等多项省部级奖励,发表论文近40余篇,申请专利近30项,软件著作权20余项,正在负责及参加起草的国家计量检定规程规范10余项。主持建立新一代双频激光干涉仪计量标准装置、激光测微仪、光栅式测微仪校准装置、纳米薄膜厚度计量标准装置等多项国家量值最高的计量标准装置。提出了双频差分法布里珀罗激光干涉技术原理,研制了准确度达到数十皮米的微位移及干涉仪非线性计量装置。担任担任全国半导体器件、全国光学和光子学光纤传感、全国试验机等3个标准化技术委员会委员,担任中国机器人检测认证联盟技术委员会分工作专家组专家,国家计量标准的一级考评员和一级注册计量师,中国计量科学研究院研究生导师,南方科技大学、河南理工大学等多所高校兼职研究生导师,担任《计量学报》、《计量科学与技术》、《中国计量》、《中国激光》,《光学学报》、《sensor review》《measurement》、等十余份国内外期刊审稿人。报告摘要:微位移测量是高端装备核心零部件设计和先进制造急需的应用基础技术,也是几何量计量、微纳制造和光刻技术等发展所急需的关键技术。报告针对当前急需的纳米及亚纳米精度的激光干涉仪、亚纳米电容测微仪和纳米位移传感器等难以计量的现状,创造性提出采用固定频差双频激光建立差分珐珀干涉系统的光学理论,并研究基于该理论构建精度达到数十皮米甚至更高量级的位移测量技术实现方法,研制实现皮米级分辨力的高精度位移测量装置,推动国家精密测量、先进制造等领域的高质量发展,也为建立皮米级国家最高微位移计量标准装置提供技术方法。扫码报名抢位指导单位:中国计量测试学会主办单位:仪器信息网协办单位:上海大学会议日程报告时间报告主题报告人单位职务10月20日上午09:30-10:00工业视觉技术进展及装备应用邾继贵天津大学精密仪器及光电子工程学院院长10:00-10:30激光跟踪仪精密测量技术与应用周维虎中国科学院微电子研究所主任/研究员10:30-11:00激光回馈精密测量技术新进展张书练清华大学教授11:00-11:30待定胡鹏程哈尔滨工业大学长聘教授10月20日下午14:00-14:3020年来齿轮测量技术的发展石照耀北京工业大学长江学者特聘教授14:30-15:00基于波长移相技术的光学平行平板轮廓和厚度信息测量技术于瀛洁上海大学机电工程与自动化学院院长15:00-15:30视觉在线测量与检测技术卢荣胜合肥工业大学教授15:30-16:00面向智能制造的全过程、全样本、全场景测量李明上海大学教授10月21日上午09:00-09:30工业摄影测量技术研究及应用郑顺义武汉大学教授09:30-10:00装备空间运动误差被动跟踪测量方法与仪器娄志峰大连理工大学副教授10:00-10:30差分珐珀激光干涉微位移计量及应用研究崔建军中国计量科学研究院课题组长/副研究员10:30-11:00面向先进制造过程的在线计量技术研究赵子越中国航空工业集团公司北京长城计量测试技术研究所高级工程师
  • 激光粒度分析仪在水泥行业的应用
    p style=" text-indent: 2em " 现如今水泥厂都偏向于将水泥磨细来提高水泥强度,其实水泥石强度并不一定随水泥细度的增加、组分水化活性的提高而提高。但颗粒越细,水化活性越高;最初的强度发展速率随细度增加而增长。在规范中,水泥细度通常用筛余或比表面积来衡量。实际上除了进行上述指标的控制,对于细度而言粒度分布(水泥行业称“颗粒级配”,这里统称“粒度”或“粒度分布”)也是重要因素。 /p p style=" text-indent: 2em " 粒度分布是指组成水泥的所有颗粒中,不同粒径颗粒所占有的百分比。粒度分布的测定不仅是控制水泥颗粒细度的一种有效的方法,更重要的是它将对粉磨、分级等环节的优化提供准确的依据。水泥的粒度分布情况将极大地影响混凝土的强度。粒度分布的测量对最终产品的质量控制,以及在生产的过程中,如何使生产工艺最佳化,来提高产品的质量,同时在减少能耗,降低生产成本等方面均有极大的作用。 /p p style=" text-indent: 2em " 大量研究表明,在原料及烧成条件确定的情况下,粒度决定水泥性能,同时物料的颗粒分布也能用来判断粉磨系统的性能。水泥颗粒只有发生水化,才对强度有贡献,而水化过程对一个单独的水泥颗粒而言又是由表及里,渐进发生的,1微米以下细颗粒由于在和水的拌和过程中就完全水化,对强度没有贡献。其含量增加,说明存在过粉磨,浪费了粉磨能量;同时显著增加了拌和的需水量,降低了浇筑性能。因此,该组分颗粒应尽可能减少。1~3微米颗粒含量高,3天强度就高,同时需水量会相应增加,浇筑性能下降。因此,该组分颗粒在3天强度能满足要求的前提下,也应尽可能低。大颗粒水化的慢,在后期才能逐渐发挥作用,特大颗粒只有表层被水化,内核只起骨架作用,对强度没有贡献。浇筑28天后的水化深度约为5.46µ m。这就意味着大于两倍水化深度(约11µ m)的颗粒,总是有一部分内核未水化。未被水化的内核在混凝土中只起骨架作用,对胶凝没有贡献。16、32和64µ m颗粒的水化率分别为97%、72%和43%,因此通常认为3~32µ m颗粒对28天强度起主要作用。32µ m以上颗粒,尤其是65µ m以上颗粒水化率较低,是对熟料的浪费,应尽可能降低。3~16µ m颗粒含量越高,熟料的作用发挥得越彻底,相同条件下混合材添加量就可以越高。32µ m以上颗粒含量过高,泌水性会增大。混合材在粒度上如果能与熟料互补,形成最佳堆积,则混合材的添加不仅不会降低水泥强度,而且还能增加强度。而传统的细度和比表面积同水泥的性能的相关性并不理想。因此,在现代水泥生产中,测定水泥的颗粒分布对水泥性能(比如强度、流动性、混合材的掺加比例等)有强烈影响。 /p p style=" text-indent: 2em " 那么如何更好的测得水泥的粒度呢?现代比较流行的粒度测试仪器有:激光粒度仪、沉降粒度仪、电阻法颗粒计数器、显微颗粒图像分析仪以及纳米激光粒度仪等。其中用动态光散射原理的光子相关动态光散射仪的测量范围主要在亚微米和纳米级,显然不适合水泥的测量;沉降仪、电阻法计数器和图像仪的测量范围虽然主要在微米级,但它们的动态范围不够。所谓动态范围就是粒度仪器在一个量程内能测量的最大与最小粒径之比。前述三种仪器的动态范围均在20:1左右,而一个水泥样品的粒度分布范围大约在100:1左右,所以这三种仪器也难以满足水泥的粒度测试需要。激光粒度仪的动态范围可以达到1000:1以上,大于水泥的粒度分布范围;其次它在样品分散方式上还可用空气作为介质(干法分散),做到了既方便又低成本,测试速度快,测一个样品只需1min左右,而且测量的重复性好,D50的相对误差小于1%。因此激光粒度分析仪已逐渐成为水泥行业中一种日常的控制方式而得到广泛应用。 /p
  • 激光粒度原理及应用
    p   粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。 /p p   激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。 /p p    strong 激光粒度仪的光学结构 /strong /p p   激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。 /p p    strong 激光粒度仪的原理 /strong /p p   激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。 /p p   米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。 /p p   为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。 /p p    strong 激光粒度仪测试对象 /strong /p p   1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。 /p p   2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。 /p p   3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。 /p p    strong 激光粒度仪的应用领域 /strong /p p   1、高校材料 /p p   2、化工等学院实验室 /p p   3、大型企业实验室 /p p   4、重点实验室 /p p   5、研究机构 /p p   文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115) /p p br/ /p
  • 干货|7大因素影响激光粒度测试结果
    p style=" text-indent: 2em " 编者按:粉体的粒度及粒度分布是衡量产品质量的关键性指标,而目前最火的粒度检测方法之一就是激光粒度仪了。这种粒度检测方法不受温度变化、介质黏度、试样密度及表面状态等诸多因素的影响,具有测试速度快、测量范围广、便捷易操作等特点。放眼市场,激光粒度仪的品牌和型号也可谓五花八门,琳琅满目。但值得称道的激光粒度仪虽然不胜枚举,却仍然会收到诸多因素的影响,造成检测结果的不稳定。太原理工大学矿业工程学院的专家张国强就深度剖析了7大影响激光粒度仪检测结果的因素。 /p p style=" text-indent: 2em " 专家观点: /p p style=" text-indent: 2em " 目前市面上的激光粒度分析仪其基本原理均为米氏散射理论及其近似理论。包括测量纳米级颗粒所使用的动态光散射原理也是借助米氏散射理论而补充完善起来的 。米氏散射理论把待测颗粒等效成各向同性的球形粒子,在入射光照射下根据麦克斯韦电磁方程组,可以求出散射光强角分布的严格数学解。 利用米氏散射理论的基本公式进一步求出此时散射光强分布对应的颗粒粒径。米氏散射理论通过测量待测样品的散射光强分布巧妙地解决了超细颗粒的粒度测量问题,但由于基于米氏理论的激光粒度测量技术本身的复杂性,提前预先设定的边界条件并不能全面地反映实际样品的具体情况。 同时商品化的激光粒度分析仪由于受生产厂家技术实力水平的限制,导致各厂家仪器的内部构造与算法程序等方面均存在差异。 /p p style=" text-indent: 2em " 为探究粉体粒度测试评价用标准样品的特性,为激光粒度分析仪生产厂家提供优化仪器性能的理论依据,为粒度检测用户提供评价激光粒度测试结果可靠性与准确性的依据。下面我将对激光粒度仪测试结果的重要影响因素进行分析: /p p style=" text-indent: 2em " (1)复折射率 /p p style=" text-indent: 2em " 激光散射法粒度测量的对象一般是微米级的粒子,这些粒子的光学常数并不能简单看成 /p p style=" text-indent: 2em " 粒子材料的光学性质,而是指颗粒的复折射率n’,其定义为:n‘=n+ik。其中 n 为通常所说的折射率,虚部k表示光在介质中传播时光强衰减的快慢,即吸收系数,有时也被称作吸收率。 /p p style=" text-indent: 2em " 复折射率的选择合适与否直接影响到粒度检测结果的准确性与可靠性,但是影响待测颗粒复折射率的因素较多,难以确定其准确值,所以到目前为止在激光粒度测量领域中仍旧没有确定复折射率的统一方法 。在实际的粒度检测过程中,一般只是对同种物质使用一个固定的复折射率,这样的测量结果必然会与样品的真实值有较大偏差。 但是如果针对不同粒 /p p style=" text-indent: 2em " 度区间的颗粒都去寻找其复折射率,却又不现实的。 /p p style=" text-indent: 2em " (2)折射率 /p p style=" text-indent: 2em " Mie 散射理论是麦克斯韦电磁方程组的严格解,激光法检测的前提假设是粉体粒子是球形且各向同性的,大多数晶体在不同的方向上有不同的折射率。由于不同厂家的设备中光能探测器的数量、空间分布位置、灵敏度的不同也会导致检测结果的差异。 /p p style=" text-indent: 2em " (3)内置算法 /p p style=" text-indent: 2em " 由于光强分布的差异,不同粒度仪生产厂家所采用的软件内置算法不同,造成系数矩阵的计算结果差异,由此给反演带来不同程度的误差。 /p p style=" text-indent: 2em " (4)内外复折射率 /p p style=" text-indent: 2em " 球形石英粉等颗粒,在高温环境下烧灼成型。由于既要成球,又要熔透转变为非晶型或不定形,其技术难度很高。 所以在生产过程中会有部分无定形态的熔融石英包裹在结晶石英上,以及熔融石英内部含有空心气泡。这种颗粒被称为双层颗粒,颗粒内外复折射率不同,导致激光法测量时可能带来较大误差,据相关文献,最大误差可能超过 50%。 /p p style=" text-indent: 2em " (5)反常异动现象 /p p style=" text-indent: 2em " 有研究者发发现在有些折射率下对于部分粒径区间,随着粒径的变小,散射光强分布主峰会向探测器内侧移动,而正常情况下应向探测器外侧移动,从而影响粒度检测的结果。 这种现象被称为散射光能分布的反常移动现象。 /p p style=" text-indent: 2em " (6)分散状态 /p p style=" text-indent: 2em " 使用激光粒度仪检测过程中,需注意保证待测颗粒处于良好的分散状态。 当前市面上的主流激光粒度仪, 基本上都带有离心循环分散和超声分散两种分散模式,所以对于这种类型仪器的用户,不建议测试前的机外分散, 因为在用烧杯将分散后的溶液导入循环槽的过程中极易在杯底残留部分大颗粒,导致测试结果产生误差。 在仪器中分散样品时,应注意根据物料性质调整超声和离心循环分散的功率,太大容易导致气泡的产生,太小则容易导致分散效果变差和大颗粒沉底。 /p p style=" text-indent: 2em " (7)仪器的保养程度 /p p style=" text-indent: 2em " 激光粒度仪的保养程度,对检测结果有较大影响。激光粒度仪需要定期标定维护。在实际的使用过程中发现,部分样品极易在测试过程中附着在仪器的管路内部,从而混入之后的测试样品中带来测试误差。而仪器自带的清洗功能很难解决这类问题,需要在激光粒度测量中引起足够重视。 /p p style=" text-indent: 2em " 鉴于激光粒度测量过程中的影响因素过多,各种样品不同粒级区间的复折射率难以确定,所以目前来看并没有可靠地依据来证明激光粒度测试的准确性,这也是激光粒度检测急需解决的问题。在对粉体粒度要求较高的领域,可以采用多种粒度检测手段,综合比较检测结果,来得到较为可靠的粉体粒度值。此外研制并推广国家及行业内认可的激光粒度分析标准样品,也是一个解决激光粒度检测差异性的实用方法。 /p
  • 2021年激光粒度仪中标盘点:纳米粒度仪需求激增
    激光粒度仪是一种常用的粒度测试仪器,广泛应用于制药、化工、能源、建材、地矿、环保等行业,以及高校、科研院所、军工等领域;按工作原理,主要分为静态光散射激光粒度仪(俗称“静态激光粒度仪”)和动态光散射激光粒度仪(俗称“纳米粒度仪”)。为了更好的了解激光粒度仪市场,仪器信息网对2021年激光粒度仪中标标讯整理分析,供广大仪器用户参考。(注:本文数据来源于公开招中标信息平台,共统计激光粒度仪中标公告234条,不包括非招标形式采购及未公开采购项目,主要反映激光粒度仪科研市场变化,结果仅供定性参考。)从时间维度来看,2021年激光粒度仪月度中标数量波动较大。1-5月份科研市场采购需求疲软,招投标市场表现低迷;6月份中标数量激增,达到全年峰值,主要原因在于马尔文帕纳科在本月分别中标一批Mastersizer 3000激光粒度仪与一批Zetasizer Pro纳米粒度及电位分析仪;下半年中标数量虽有波动,但整体保持在相对高位。从季度分布来看,2021年激光粒度仪中标数量逐季增加,与2020年趋势基本相似。据公开招中标信息平台统计,2021年激光粒度仪招标单位覆盖29个省份、自治区及直辖市。广东省中标数量再列第一,排名二到五位的依次为江苏、北京、浙江、山东;激光粒度仪采购需求连续两年集中在以上五个省市。四川、山西、河北、辽宁、河南各省中标数量排名位于第二梯队,其中,河北与河南两地浮现激光粒度仪“采购大户”,2021年,河北化工医药职业技术学院、河北省药品医疗器械检验研究院、郑州大学分单次或多次采购了一批激光粒度仪,仪器总价均超过200万元。2021年激光粒度仪采购用户单位类型对采购单位分析发现,2021年,来自大专院校/科研院所的采购比例有所提升,高达79%;而企业占比缩减至5%。“十四五”期间,科技创新被提到前所未有的高度,国家实验室及研究机构的建设浪潮势必为科学仪器市场带来新的机遇,激光粒度仪厂商应高度关注,提前布局。2021年中标激光粒度仪类型分布从中标激光粒度仪类型来看,2021年纳米粒度仪采购需求激增,中标数量占比47%,创历年新高。近年来,随着新能源、生物医药、纳米技术等行业的迅速发展,对纳米颗粒尺寸表征的需求呈现指数般增长态势,国内外激光粒度仪生产厂商积极响应市场需求,纷纷推出纳米粒度及电位分析仪。2020年,马尔文帕纳科重磅发布Zetasizer Advance系列纳米粒度电位仪,包括Lab,Pro,Ultra三个型号;2021年,丹东百特隆重推出BeNano系列纳米粒度及 Zeta 电位仪,包括BeNano 90 Zeta、BeNano 180 Zeta、BeNano 180 Zeta Pro等多个型号;珠海欧美克高调发布NS-90Z纳米粒度及电位分析仪,成功引进和吸收了马尔文帕纳科纳米颗粒表征技术。随着各方入局及新产品的推出,纳米粒度仪市场迎来良好发展机遇。2021年激光粒度仪中标价格分布纵观整体中标价位分布,30万元以上的中高端激光粒度仪更受科研用户青睐,合计占比达67%。长期以来,国产品牌往往占据中低端市场,进口品牌则在高端市场占绝对优势;值得一提的是,国产品牌开始逐渐向高端市场渗透,2021年,多条中标讯息显示,丹东百特激光粒度仪中标单价超过40万元。2021年进口/国产品牌中标数量占比2021年激光粒度仪各品牌中标数量占比分布2021年激光粒度仪中标市场上,国产占比35%,进口占比65%,与2020年相比保持稳定。聚焦中标品牌,马尔文帕纳科以41%的占比稳坐榜首;丹东百特位列第二,占比19%,持续领跑国产品牌榜;麦奇克凭借7%的占比重回前三;济南微纳与珠海欧美克紧跟其后,并列第四,占比6%;布鲁克海文与安东帕中标数量旗鼓相当,各占比5%。其他表现较好的品牌还有新帕泰克、HORIBA、真理光学、Sequoia、贝克曼库尔特、美国PSS等。根据2021年中标数据信息,仪器信息网整理了2021年招投标市场“出镜率”较高的激光粒度仪明星型号,榜单如下:仪器类型品牌型号纳米粒度及Zeta电位仪马尔文帕纳科Zetasizer Pro激光粒度仪马尔文帕纳科Mastersizer 3000激光粒度仪丹东百特Bettersize2600纳米粒度及Zeta电位仪丹东百特BeNano 90 Zeta纳米粒度及Zeta电位仪安东帕Litesizer 500纳米粒度及Zeta电位仪麦奇克Nanotrac Wave II纳米粒度及Zeta电位仪布鲁克海文NanoBrook Omni纳米粒度及Zeta电位仪布鲁克海文NanoBrook 90plus PALS激光粒度仪欧美克LS-909激光粒度仪济南微纳Winner802
  • “万瓦级半导体激光器综合测试系统研制”通过测试验收
    近日,中国科学院空天信息创新研究院牵头承担的中科院科研仪器设备研制项目“万瓦级半导体激光器综合测试系统研制”通过测试验收。 会上,介绍了空天院承研中科院条件保障与财务局科研仪器设备研制的总体情况及该项目的基本情况。项目负责人、空天院正高级工程师麻云凤汇报了项目总体情况,并与与会专家讨论交流。验收专家组现场考核仪器设备总体研制情况并现场测试,肯定了研制核心器件积分球的技术水平,一致同意通过测试验收。“万瓦级半导体激光器综合测试系统研制”项目瞄准我国半导体激光器、光纤激光器等高功率激光综合测试需求,解决激光功率、光谱、发散角等核心参数的综合测试难题,开发可承载万瓦级激光功率的1.2米口径积分球、发散角测试仪,并集成高功率多参数测试功能。项目组通过两年的技术攻关,掌握了各类积分球涂层制备核心技术,申请了6项发明专利,转化了若干小型积分球产品。可承载万瓦级激光功率1.2米直径积分球
  • 严格!大连公路检测需30余套仪器每天检测90公里
    严格!大连公路检测需30余套仪器设备。速度!检测人员每天检测里程90公里。进入11月份,随着我市各地区气温骤降,许多工程项目陆续停工。然而,在普通公路和农村公路的交工质量检测现场,却是一片热火朝天的繁忙景象。10日,记者从花园口经济区内鹤肖线现场了解到,目前我市5个督查组共计60 余名检测人员已全部到位,交工质量检测正在有序开展之中,预计今年全市公路新建工程交工项目主体检测工作将于本周末全部完成。  现场:  30余套设备齐上阵 每天检测90公里  上午,记者跟随市交通局工程质量与安全监督站监督科的工作人员来到位于花园口经济区内鹤肖线上。在现场记者看到,在这条今年新建的通屯油路上,十几名检测人员按照分工不同,正在使用手中的仪器对路面参数进行测量。  据市交通局工程质量与安全监督站监督科科长王思远介绍,这条油路是由花园口经济区城建局负责组织第三方检测机构进行现场质量检测,市交通局工程质量与安全监督站现场进行监督和指导,检测人员需要现场检测路面弯沉、宽度、横坡、平整度、压实度等十几项指标。而本次交工质量检测,采用了车载式激光平整度仪、路面雷达厚度测试仪等30余套先进的检测仪器设备,最大限度减少人为因素干扰,确保检测工作的客观公正。值得一提的是,今年交工质量检测特别增加了对道路交通安全设施质量的检测,检测人员不放过任何一处标志、标线和防护栏的检测。  王思远透露,受到通屯油路交工时间晚等因素的影响,今年我市公路新建工程交工项目主体检测工作于今年11月2日正式启动,比往年晚了20多天。由于目前气温逐渐走低,为了能在上冻之前完成今年新建工程的质量检测任务,十几天来,检测人员加班加点工作,每天检测里程在90公里左右。按照计划,今年全市公路工程交工项目主体检测工作将于本周末全部完成。‘  监督站:  全部检测任务均由第三方检测单位完成  据悉,今年我市交工质量检测的项目共计1363公里,其中,国省干线188.1公里,县级公路77.5公里,乡村级公路1097.4公里,范围涵盖全市9个区市县。  尽管今年检测工作启动时间晚,但市质监站在检测方式、检测单位选定等方面较之往年有了新突破。王思远告诉记者,为做好本次交工质量检测,今年,市质监站突破常规,采取全部检测任务均由第三方检测单位完成的方式,公开招标选取了4家检测单位全程检测,市质监站对其检测行为进行监督,对检测结果进行抽查。  王思远表示,由于今年的冬季来的比往常年更早一些,冰点以下的温度无疑为交工质量检测带来了更大的难度。结合此次公路工程量大,点多,面广的特点,他们将采取“5+2”、“白+黑”的弹性工作制度,组织交工质量检测,保证数据的及时整理和反馈,第一时间出具检测报告,按期完成通车目标。
  • 丹东百特成为法国CILAS公司激光粒度仪在中国的独家代理商
    经过双方的友好协商,丹东市百特仪器有限公司获得法国CILAS激光粒度仪在中国的独家代理权,同时向中国的新老CILAS激光粒度仪用户提供售后服务。CILAS是法国激光工业公司的简称。该公司生产的多种高精尖激光产品广泛应用于航空、航天、军事、核能等领域,同时,CILAS还是世界著名的激光粒度仪器制造商,生产激光粒度仪已经有40年的历史,产品主要销往世界各地,在中国也享有盛誉。百特公司是中国著名的粒度仪器制造商,产品产量、销量、质量、性能、服务等方面在国内处于领先地位,获得用户的广泛好评。百特公司与CILAS公司合作的宗旨是发挥各自优势,实现互利双赢,为中国CILAS客户提供近距离的、专业化的服务,为CILAS产品在中国再塑新形象。双方承诺以诚信的原则和符合市场规则的方式开展工作,与国内外同行一道培育市场,维护市场秩序,不搞恶性竞争。在代理CILAS激光粒度仪的同时,百特将会以更高的标准生产、研制百特牌粒度仪,一如既往地为百特粒度仪用户提供周到便捷的服务。百特公司愿意与同行和广大用户一道,为中国用户提供一流的产品和服务,为中国的粒度测试仪器走向世界做出贡献。
  • 青岛拍一拍你,欧美克高性能激光粒度仪亮相国际药机展
    5月10日,由中国制药装备行业协会主办的第60届全国制药机械博览会暨2021(春季)中国国际制药机械博览会在青岛世界博览城盛大启幕!作为国内的颗粒测量仪器制造商,珠海欧美克仪器有限公司(以下简称“欧美克”)携高性能激光粒度分析仪Topsizer亮相展会现场,与国内外药机企业共同探讨行业“质造”解决方案。作为国内药机行业具影响力的盛会之一,本届博览会展出面积超过13.5万平方米,来自25个国家和地区共计1484个国内外展商携产品汇集于此,展出设备涵盖原料药机械、制剂机械、制药用水、气设备、药用粉碎设备、饮片机械、药品包装机械、检测及实验室、工程、净化与环保设备、其他制药机械及设备9大类近万台(套),2场高质量的平行论坛和80余场技术交流会线上线下展播,聚焦行业关注话题,吸引了近6000人次的专业观众积极参与。随着中国制药装备产业在全球产业链的地位越发举足轻重,粒度控制的重要性已经是业内共识。2015、2020版《中国药典》采纳了激光衍射法,明确将激光粒度仪检测作为原料药辅药的要求方法。激光衍射法以其适用范围广(适用于固体粉末、悬液、乳剂颗粒检测)、测量范围宽(纳米级到毫米级)、准确性高、重现性好、操作简单、测试快速等优点,在制药行业获得广泛应用,需求增长明显。自2010年加入英国思百吉集团,欧美克仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,为行业客户提供物超所值的产品、服务及整体解决方案本次展会上,欧美克携主力产品Topsizer激光粒度分析仪亮相本次展会。Topsizer具有宽测量范围、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,更好地应用于日益精细化的制药行业领域。Topsizer激光粒度分析仪测试范围:0.02-2000um(湿法)0.1-2000um(干法)重复性:优于0.5%准确性:优于1%Topsizer激光粒度分析仪自面市以来,一直是广受客户欢迎的国产高性能激光粒度分析仪,其湿法测试范围0.02-2000um,干法测试范围0.1-2000um,对毫米级、亚微米等颗粒具有超强识别能力,同时还满足GMP认证对于药品检测的需求。最重要的是,Topsizer采用国际引进的红蓝光双色光源技术,高精度、耐用性的光学平台设计,保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可避免粒径检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克医药行业主营产品此外,欧美克针对医药行业还推出了多款粉体特性测试仪,形成激光粒度分析仪、纳米粒度分析仪、粉体流动性测试仪、粉体振实密度测试仪、近红外光谱仪等六大产品矩阵,在追求精益生产的当下,为制药企业客户提供专业、先进、高效的粉体检测解决方案,共同探讨制药行业新一轮的“质造”变革!
  • 百特激光粒度仪获众多知名企业和高校青睐
    丹东百特仪器有限公司是中国最大的粒度仪器制造商,二十多年来百特专注于粒度测试技术研究、仪器制造和推广应用工作,取得令业界瞩目的成绩,先后研制成功了具有国内外先进水平的Bettersize系列激光粒度仪、BT系列图像粒度粒形分析系统和粉体综合特性测试仪器,拥有43项专利(其中发明专利15项)、14项软件著作权,100多项粒度仪器制造专有技术。在2014年Bettersize2000系列激光粒度仪被评为“国产好仪器”。 进入新世纪,百特仪器将以“打造世界知名粒度仪品牌”为目标,为客户提供技术先进、质量可靠的粒度仪器和专业及时的服务,产品销往全国32个省市区,还出口四大洲42个国家和地区。到目前为止百特在全世界有8000多家用户,国内用户有7280家;国外用户有765家,百特仪器为众多行业提供完善的粒度检测解决方案。在2017年6月百特对 Bettersize2000粒度仪进行的客户满意度调查活动中,用户对仪器性能、技术、服务、供货时效的满意率达到100%。 在众多的用户中,有不少国内外知名的企业,他们包括中石油、 中石化、中科院、 比亚迪、国家电池质检中心、中国汽车技术研究中心、中国船舶重工集团公司、中国建材科学研究总院、玖龙纸业、哈药六厂、上海染料研究所、3M中国有限公司、北京钢铁研究总院、CTI华测检测、天津中央药业、 万华化学、江苏省农药研究所股份有限公司。。。 天津市中央药业有限公司是一个大型综合制药企业,对质量控制要求极为严格。百特 Bettersize2000LD干湿法激光粒度仪操作简便,测试速度快,结果稳定准确,并具有自动清洗、自动进样、自动对中等功能,更重要的是系统具有电子签名功能,保证了每一个批次的药品不仅是合格品,而且都是精品。万华化学集团是一家全球化运营的化工新材料公司,自2012年购买第一台百特激光粒度仪Bettersize2000起,这种高性能的激光粒度仪操作简单、结果准确、重现性好、全自动测试,对公司产品质量和生产工艺的控制起到了无可替代的作用,之后该公司又连续购买了12台,分别在烟台万华、宁波万华、上海万华等公司使用,有的仪器还在海外的分公司中使用。 中科学院上海硅酸盐研究所主要研究领域涵盖了人工晶体、高性能结构与功能陶瓷、特种玻璃、无机涂层、生物环境材料、能源材料、复合材料及先进无机材料性能检测与表征等。在高性能陶瓷研究过程中,材料颗粒的粒度及其分布影响坯体致密度、烧成温度、表面光洁度等,更重要的是影响新型陶瓷的各种物理性能。为了保证新型陶瓷材料的性能,几年来上海硅酸盐研究所购置了7台百特高性能激光粒度仪。 中国石油大学(北京)是教育部直属全国重点大学,该校拥有百特激光、图像粒度仪17台,涵盖化工学院、理学院、地球科学与技术学院、石油工程学院以及化学工程学院。其中Bettersize2000参与国家一级粒度标准物质研发和测试工作,目前该物质已纳入中华人民共和国标准物质目录(编号为GBW12028、GBW112029和GBW12030)。 此外,百特仪器还在清华大学、中国人民大学、中国地质大学、武汉大学、复旦大学、同济大学、天津大学、中国矿业大学、国防科技大学、华东理工大学、吉林大学、哈工大、昆明理工大学、西藏农牧大学等741所著名大学及514家研究机构中发挥举足轻重的作用。百特激光粒度仪具有众多独创技术,包括双镜头技术、折射率测量技术、超声波防干烧技术、自动测试技术等等,有这些技术的保驾护航,受到中国知名企业和高校青睐是不足为奇的了。
  • 2020科学仪器优秀新品第四季度入围名单:物性测试仪器及设备
    仪器信息网讯“科学仪器优秀新产品”评选活动2020年度第四季度入围奖评审已经结束,经专业编辑团初审、网络评审团初评,现已确定2020年度第四季度的入围奖名单。“科学仪器优秀新产品” 评选活动2020年度第四季度入围名单中物性测试仪器及设备共计8台/套,其中,热分析仪器2台/套、表界面物性测试仪器2台/套、粒度/颗粒/粉末分析仪器2台/套、试验机2台/套。入围名单如下(排名不分先后): 产品名称产品型号创新点公司名称激光闪光法热常数测量系统TC-1200RH查看QUANTUM量子科学仪器贸易(北京)有限公司TB系列比表面积及孔径同步分析仪TB系列查看北京精微高博科学技术有限公司马尔文帕纳科纳米粒度电位仪Zetasizer Ultra提供Blue Label 和 Red Label 型号查看马尔文帕纳科日立New STA系列TG-DSC热分析仪STA200RV查看日立分析仪器(上海)有限公司KSV NIMA roll to roll 柔性LB膜制备系统roll to roll查看瑞典百欧林科技有限公司九工位电池片剥离试验机HS系列(九工位电池片剥离试验机)查看上海和晟仪器科技有限公司全自动焦炭反应性制样系统BM100A6查看绍兴市东晶机械仪器设备有限公司桌面式电液伺服疲劳试验机SUNS 890查看深圳三思纵横科技股份有限公司需要特别指出的是,本次入围评选仅限于2020年第四季度申报的仪器范围。有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,非独家代理的代理商提供的优秀国外新品也不能入选。由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2020年上市的仪器新品,请您于2021年2月24日前向“科学仪器优秀新品”评审委员会举报和反映情况,一经核实,将取消其入围资格。“科学仪器优秀新品”评选活动对所有参与评选的仪器厂商全程免费。企业申报后,符合新品定义的仪器将历经四个阶段的评审:初审、“季度入围奖”评审、年度“提名奖”评审、年度“优秀新品奖”评审。“科学仪器优秀新品”评选活动建立了长期、稳定、高水平的四级评审体系:“专业编辑团”、“网络评审团”、“技术评审委员会”、“技术评审委员会主席团”。“技术评审委员会主席团”承担各个阶段评审工作的监督、检查工作,对“季度入围奖”名录、年度“提名奖”名录、年度“优秀新品奖”名录拥有最终裁决权。专业编辑之外的评审专家分别来自高校、研究所和企业,从事仪器研制、制造和应用相关工作,其中具有研究员、教授等高级职称的专家所占比例超过了90%。更多内容请点击详情查看。“科学仪器优秀新品”评审委员会联系方式:电话:010-51654077-8027 刘女士传真:010-82051730电子信箱:xinpin@instrument.com.cn
  • 激光粒度仪干湿法测试在涂料粒径分析中的应用
    p style=" text-indent: 2em " 涂料粒径分析主要包括粉末涂料、建筑乳液等涂料产品以及钛白粉、氧化铁、滑石粉等颜填料的粒径分布测试。粒径测试的方法主要有沉降法、激光法、筛分法、电阻法、显微图像法、电镜法、电泳法、质谱法、刮板法、透气法、超声波法等。 /p p style=" text-indent: 2em " 激光粒度仪测试法是新型粒径测试方法,应用广泛,测试速度快,测试范围广。激光粒径分析仪是根据激光在被测颗粒表面发生散射,散射光的角度和光强会因颗粒尺寸的不同而不同,根据米氏散射和弗氏衍射理论,可以进行粒径分析。激光粒度仪的测试方法可以分为干法和湿法2种。干法使用空气作为分散介质,利用紊流分散原理,能够使样品颗粒得到充分分散,被分散的样品再导入光路系统中进行测试。湿法则是把样品直接加入到水或者乙醇等分散介质中进行分散,然后再经过光路系统,计算出粒径分布。干、湿2 种测试方法由于分散介质不同,测试结果会存在差异。目前粒度仪大多数使用湿法进行测试,但是干法测试也有其优点:测试速度快,操作简单,可以测试在水中溶解的样品等。本文使用了干法和湿法分别对钛白粉、滑石粉、石墨烯等颜填料的粒度进行测试,通过分析测试结果,讨论了这2 种方法之间的差异以及测试条件、分散剂对测试结果的影响,并讨论了测试结果之间的重复性。 /p p style=" text-indent: 2em " /p p style=" text-indent: 2em " 1 实验部分 /p p style=" text-indent: 2em " 1.1 主要原料及仪器 br/ /p p style=" text-indent: 2em " 钛白粉:R-2196,中核华原钛白有限公司 滑石粉:T-777A,优托科矿产( 昆山) 有限公司;石墨烯:SE1132,常州第六元素材料科技股份有限公司。HELOS /BF 干湿二合一激光粒径分析仪:德国新帕泰克公司,镜头测试范围( R) 为R1( 0.1 ~ 35μm) 、R3( 0.5~175μm) 、R5 ( 0.5~875μm) 。 /p p style=" text-indent: 2em " 1.2 试验方法 /p p style=" text-indent: 2em " (1) 干法测试 /p p style=" text-indent: 2em " 称取一定量充分混合均匀的样品,在(105± 2) ℃的烘箱中烘15min,除去水分。选择测试模式为干法。设置分散压力、震动槽速率等参数。加样测试,遮光率控制在7%~10%。 span style=" text-indent: 2em " (2) 湿法测试 /span /p p style=" text-indent: 2em " 湿法测试的样品分为干粉样品和液态样品。干粉样品在测试前要充分混合,保证样品的均匀性。液态样品摇匀后直接加入样品槽。不易分散的样品在样品槽内加入适量的分散剂,调整泵速、超声时间、强度、搅拌速率,选择合适的镜头,开始测试。遮光率在8%~12%之间。 span style=" text-indent: 2em " 1.3 粒径分布参数 /span /p p style=" text-indent: 2em " Xb = a μm:表示粒径小于a μm 的粒径占总体积的b%;VMD: 体积平均粒径。 /p p style=" text-indent: 2em " 2 结果与讨论 /p p style=" text-indent: 2em " 2.1 钛白粉粒径分布的测试 /p p style=" text-indent: 2em " 2.1.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.6 MPa;震动槽速率60%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b84e7831-4aad-489a-a46d-0f876e2dab70.jpg" title=" 1.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图1):X1 = 0.20μm;X50 = 0.60μm;X99 = 1.80μm;VMD为0.69μm。 /p p style=" text-indent: 2em " 2.1.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/69a7988b-b531-43eb-8c0b-5bd739d289a7.jpg" title=" 2.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图2):X1=0.11μm;X50=0. 84μm;X99=2.52μm;VMD为0.90μm。 /p p style=" text-indent: 2em " 2.1.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/e2c574b9-a23f-4dd5-9d8a-183f2fd0aa7e.jpg" title=" 3.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图3):X1=0.11μm;X50=0.66μm;X99=2.08μm;VMD为0.74μm。 /p p style=" text-indent: 2em " 2.1.4 钛白粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 从钛白粉干法和湿法测试结果可以看出,2种方法的测试结果相近,干法比湿法测试结果偏小。干法与加分散剂的湿法测试相比,2种方法的X1值相差0.09 μm,X50值相差0.06μm,X99值相差0.28μm,VMD 相差0.05 μm。湿法测试中若不加分散剂,样品在分散介质中无法充分分散,样品的粒径分布图中会出现双峰(见图2) 。可见分散剂对于样品分散效果的影响较大,合适的分散剂有利于样品在分散介质中分散,保证测试的准确性。 /p p style=" text-indent: 2em " 2.2 滑石粉粒径分布的测试 /p p style=" text-indent: 2em " 2.2.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.3MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/445a2402-5a0b-4b2e-b1f1-58c432a88889.jpg" title=" 4.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图4):X1=0.57μm;X50=4.35μm;X99=19.19μm;VMD为5.41μm。 /p p style=" text-indent: 2em " 2.2.2 湿法测试(未加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/c6a8d3ba-ab3b-4b3f-9550-7ace614e5f95.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图5):X1=0.61μm;X50=6.21μm;X99=22.01μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.3 湿法测试(加分散剂六偏磷酸钠) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30 s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/b0b08e13-41c5-46e2-a71c-25e23675901d.jpg" title=" 5.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图6):X1=0.60μm;X50=5.73μm;X99=23.63μm;VMD为7.03μm。 /p p style=" text-indent: 2em " 2.2.4 滑石粉粒径分布2种测试方法之间的差异 /p p style=" text-indent: 2em " 比较滑石粉干法测试和湿法测试的粒径分布图可以看出,湿法比干法测试结果偏大。滑石粉密度较大,在干法测试的过程中,选择了0.3MPa的分散压力。湿法测试中,加入分散剂和未加分散剂的测试结果相近,可以看出添加分散剂对滑石粉的测试结果影响不大。滑石粉能够较好地分散在水中。 /p p style=" text-indent: 2em " 2.3 石墨烯粒度分布的测试 /p p style=" text-indent: 2em " 2.3.1 干法测试 /p p style=" text-indent: 2em " 测试条件:R1镜头;分散压力0.1MPa;震动槽速率65%;触发条件为遮光率>1%开始测试,遮光率小于1%停止。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/7f9ffd85-54ba-4328-b50d-4fc24a2cf80e.jpg" title=" 7.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图7):X1=0.62μm;X50=3.86μm;X99=8.10μm;VMD为3.89μm。 /p p style=" text-indent: 2em " 2.3.2 湿法测试(不加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/003d417d-2e04-44e5-8a14-57f411eab7d9.jpg" title=" 8.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图8):X1=1.94μm;X50=9.69μm;X99=20.37μm;VMD为10.19μm。 /p p style=" text-indent: 2em " 2.3.3 湿法测试(加分散剂) /p p style=" text-indent: 2em " 测试条件:R1镜头;泵速40%;超声时间30s;搅拌速率40%。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/2ba88413-e53a-482f-a685-1faee97cfeda.jpg" title=" 9.webp.jpg" / /p p /p p style=" text-indent: 2em " 测试结果(图9):X1=1.34μm;X50=7.45μm;X99 = 18.04μm;VMD为7.95μm。 /p p style=" text-indent: 2em " 2.3.4 石墨烯2种测试方法之间的差异 /p p style=" text-indent: 2em " 从石墨烯2种方法的测试结果可以看出,干法的测试结果偏小,湿法的测试结果较大( 加入分散剂测试) 。这是因为石墨烯样品密度较小,会浮在分散介质上,样品的分散效果较差。2种方法X1值相差0.72μm,X50值相差3.59μm,X99值相差9.94μm,VMD相差4.06μm,说明石墨烯样品难于在水中较好地分散,干法测试更适合石墨烯。湿法测试中,添加分散剂和不加分散剂的粒径分布结果相差也较大,说明使用分散剂六偏磷酸钠可以较好地分散石墨烯。而分散剂的浓度和用量对样品分散效果的影响则需要通过另外的实验来确定。 /p p style=" text-indent: 2em " 2.4 涂料粒径分析干法和湿法之间的差异 /p p style=" text-indent: 2em " 干法和湿法虽然测试的结果比较接近,但是由于两者的分散介质的折射指数不一样,两者的测试结果之间会有一些差异。进行粒径分析,最重要的是要保证样品在各自使用的介质中的分散效果。干法的进样速率、压力等分散条件的选择要合适,在保证可以分散好样品的情况下,尽量选择较小的压力,减少对样品颗粒的冲击,避免颗粒的二次破碎。对于一些难于分散的样品,比如氧化铁,密度较大,需要选择较大的分散压力,否则无法取得好的分散效果,或者改变进样量来改变样品的分散效果。湿法进样要通过改变搅拌速率、超声时间来进行调整,同时使用合适的分散剂来对样品进行分散。对于一些较轻,可漂浮在分散介质上的样品,要延长样品的测试时间,以利于样品的充分分散。同时湿法测试应该使用超声波去除气泡,否则会在结果中形成拖尾峰。 /p p style=" text-indent: 2em " 2.5 干法和湿法测试的重复性比较 /p p style=" text-indent: 2em " 2.5.1 干法测试重复性 /p p style=" text-indent: 2em " 重复性指标是衡量粒径分布测试结果好坏的重要指标,是指同一个样品多次测量结果之间的偏差,通常用X50之间的偏差表示。粒径分布的重复性测试与样品的分散程度有较大的关系,样品分散的好,则测试的重复性也较高。选取2种常用的颜填料钛白粉和滑石粉进行干法重复性试验。结果见表1。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/ced0fa21-b433-476e-8ea8-b78efae89aad.jpg" title=" 10.webp.jpg" / /p p /p p style=" text-indent: 2em " 2.5.2 湿法测试重复性 /p p style=" text-indent: 2em " 选取乳液和钛白粉分别进行了2次湿法重复测量。测试结果见表2。 /p p style=" text-indent: 2em " img src=" http://img1.17img.cn/17img/images/201806/insimg/0a260ef9-6bbc-4de2-a8b8-641cc551f187.jpg" title=" 11.webp.jpg" / /p p /p p style=" text-indent: 2em " 目前在GB /T 21782.13—2009 中规定了粉末涂料粒径测试重复性的要求为2次测试结果的任何一个粒度级分区间的偏差不大于1%。从以上样品的测试结果来看,干法测试和湿法测试的重复性均满足标准要求。 /p p style=" text-indent: 2em " 影响重复性测试的主要因素是样品的分散程度,所以测试前取样要保证样品的均匀性,对于容易团聚的样品,其重复性较差,所以无论是干法测试还是湿法测试,均要做好样品的前处理工作。干粉状样品,要注意除水干燥。对于一些在水中分散不好的干粉样品,需要在分散介质中加入分散剂,设置好仪器的超声时间、搅拌速率等辅助分散条件。湿法测试用液态样品,需要将样品搅拌均匀。乳液、水分散体样品,由于被测粒子已经在样品中分散形成了稳定体系,所以测试结果的重复性较好。湿法测试的分散介质对于样品的影响很大,容易和分散介质( 水) 发生反应,或和水的折射率相差不大的样品不宜使用湿法测试。而对于像氧化铁之类的密度较大的样品,使用干法测试分散性较差,可以使用湿法进行测试。通过加入分散剂,延长超声时间,提高搅拌速率,使样品可以充分分散,从而提高样品的测试重复性。 /p p style=" text-indent: 2em " 3 结语 /p p style=" text-indent: 2em " 讨论了激光粒度仪干法和湿法测试涂料用颜填料钛白粉、滑石粉、石墨烯以及建筑乳液的粒径分布。对激光粒度仪测试法来说,干法测试和湿法测试由于分散原理上的差异,对于同一个样品,测试结果也会存在差异。湿法测试的结果比干法测试的结果偏大。在进行密度较小的样品的测试过程中,样品会浮在分散介质上,要加入六偏磷酸钠等表面活性剂,降低分散介质的表面张力,提高样品的分散度,才能保证样品在分散介质中充分分散。 /p p style=" text-indent: 2em " 在保证准确的仪器设置条件下,激光粒度仪测试的重复性较好,钛白粉、滑石粉等粉体干法测试2次结果的偏差小于1%。湿法测试,乳液的测试重复性要好于干粉的测试重复性,湿法测试2次结果的偏差小于1%。 /p
  • 贵州省市场监管局公布现行有效、废止的地方计量检定规程、校准规范
    为加强地方计量检定规程、校准规范的管理,根据《贵州省地方计量检定规程校准规范制修订办理程序》要求,省市场监管局对我省地方计量检定规程及校准规范进行了清理。经认真清理,《混凝土回弹仪标准装置检定规程》、《数据网络流量测试仪校准规范》、《烷基汞分析仪校准规范》等48件地方计量检定规程、校准规范(详见附件1)继续有效;《车用尿素溶液加注机校准规范》地方计量校准规范于2023年6月27日予以废止,《医用离心机校准规范》、《大量程电子数显千分指示表校准规范》地方计量校准规范于2023年6月7日予以废止(详见附件2)。现予以公告。2023年3月23日附件1:贵州省现行有效地方计量检定规程、校准规范目录序号规程、规范号地方计量检定规程、校准规范名称备注1JJG(黔)06-2003《电话计时计费装置检定规程》2JJG(黔)011-2011《混凝土回弹仪标准装置检定规程》3JJG(黔)16-2018《医用磁共振成像(MR)设备检定规程》4JJF(黔)20-2015《锚杆拉拔仪校准规范》5JJG(黔)22-2016《矿用二氧化碳检测报警仪检定规程》6JJG(黔)23-2016《矿用温度检测报警仪检定规程》7JJF(黔)25-2016《砖用卡尺校准规范》8JJF(黔)27-2017《导热系数测试仪》9JJG(黔)28-2018《彩色多普勒超声诊断仪检定规程》10JJF(黔)30-2018《麻醉机校准规范》11JJF(黔)31-2019《闯红灯自动记录系统校准规范》12JJG(黔)32-2019《机动车区间测速系统检定规程》13JJF(黔)32-2019《电能质量分析仪校准规范》14JJF(黔)35-2019《测桩荷载箱校准规范》15JJG(黔)33-2019《车用甲醇燃料加注机检定规程》16JJF(黔)36-2019《膜盒(片)式矿用差压检测仪校准规范》17JJF(黔)37-2020《水泥安定性试验用沸煮箱校准规范》18JJF(黔)38-2020《100G数据网络性能测试仪校准规范》19JJF(黔)39-2020《数据网络流量测试仪校准规范》20JJF(黔)40-2020《烷基汞分析仪校准规范》21JJF(黔)41-2020《氧气透过率测定仪校准规范》22JJF(黔)42-2020《气体透过量测定仪校准规范》23JJF(黔)44-2020《工频火花试验机校准规范》24JJF(黔)45-2020《交直流数字高压表校准规范》25JJF(黔)46-2020《静载试验仪校准规范》26JJF(黔)47-2020《违法停车计时器校准规范》27JJF(黔)13-2020《铜含量、铁含量分析仪校准规范》28JJF(黔)48-2021《钢直尺全自动检定仪校准规范》29JJF(黔)49-2021《滚筒反力式制动检验台动态制动力测量装置校准规范》30JJF(黔)50-2021《呼出气体酒精含量检测仪检定装置校准规范》31JJF(黔)51-2021《矿用瓦斯抽放多参数传感器校准规范》32JJF(黔)52-2021《矿用风速传感器校准规范》33JJF(黔)53-2021《矿用激光甲烷传感器校准规范》34JJF(黔)54-2021《矿用温湿度传感器校准规范》35JJF(黔)55-2021《电动颈腰椎牵引设备地方计量校准规范》36JJF(黔)56-2021《矿用液位传感器校准规范》37JJF(黔)57-2021《网络时间(NTP)服务器校准规范》38JJF(黔)58-2021《地质雷达校准规范》39JJF(黔)59-2021《微量进样器校准规范》40JJG(黔)35-2021《医用数字化移动式C形臂X射线辐射源检定规程》41JJF(黔)60-2021《荧光定量聚合酶联反应分析仪校准规范》42JJF(黔)61-2022《数字LCR测量仪校准规范》43JJF(黔)62-2022《电子厚度仪地方计量校准规范》44JJF(黔)63-2022《矿用粉尘浓度传感器校准规范》45JJF(黔)64-2022《烟草专用标准棒地方计量校准规范》46JJF(黔)65-2022《一氧化氮和二氧化氮检测仪校准规范》47JJF(黔)66-2022《卫星定位汽车行驶记录仪检定装置校准规范》48JJF(黔)67-2022《变比测试仪校准规范》附件2:贵州省废止地方计量检定规程、校准规范目录序号废止规程、规范号废止地方计量检定规程、校准规范名称废止原因1JJF(黔)33-2019《车用尿素溶液加注机校准规范》国家检定规程JJG 11911-2022《车用尿素加注机检定规程》已发布,于2023年6月27日实施。2JJF(黔)24-2016医用离心机校准规范国家校准规范JJF 2004-2022《医用离心机校准规范》已发布,于2023年6月7日实施。3JJF(黔)34-2019《大量程电子数显千分指示表校准规范》国家检定规程JJG 34-2022《指示表检定规程》已发布,于2023年6月7日实施。
  • 岛津SALD激光衍射粒度仪25周年优惠活动登场
    为综合・ 全面地捕捉粉体物性,岛津公司提供为数众多的粉体测试仪器,助推粉体技术的发展。2013年,岛津激光衍射粒度仪SALD产品系列迎来了25周年。25年来,岛津不断研发出性能更为卓越,使用更为方便、高效的激光粒度仪产品。 SALD-2300激光衍射粒度仪是岛津SALD系列的主力机型,获得世界各地用户的高度好评。SALD-2300可以提供更加广泛的测量范围,并可方便、高效的进行精密测定的粒度仪,其粒径测量范围可达17纳米到2500微米。并且,通过对光路和检测器的优化,灵敏度提高10倍,因此能够轻松应对浓度在0.1ppm到200000ppm之间的样品。 SALD-2300采用了单一高能半导体光源设计,在测定过程中无需切换光源,因此其最短测量间隔仅为1秒,并可连续进行测定,从而可快速对粒子发生的团聚或分散过程进行实时监测,确认样品的状态变化。该光源能量更高,可测定对光吸收严重的粒子,同时具有开机预热时间短,寿命更长的优点。 全新配备的Wing SALDII系列软件着重解决了激光粒度折射率选择的难题,独家配备了自动选择折射率功能。以往,人们都是使用文献中给出的折射率数据,但是折射率会受到粒子粒径和形状的影响,因此这种方法并不可靠。岛津公司在世界上首次在软件中开发了基于LDR原理(光强分布再计算)的自动折射率选择功能,能够根据样品所得粒度数据给出5种最佳推荐折射率,并给出置信度。 为了答谢广大用户多年来的支持,自2013年5月1日起至2013年12月31日,针对SALD-2300及进样器进行优惠促销。 SALD-2300+MS-23湿法测定系统 SALD-2300+DS5干法测定系统 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312 · 浦西分公司 (021) 2201-3888 · 广州分公司 (020) 8710-8661 · 四川分公司 (028) 8619-8421 · 沈阳分公司(024) 2341-4778 · 西安分公司(029) 8838-6350 · 乌鲁木齐分公司(0991) 230-6271 · 昆明分公司(0871) 315-2986 · 南京分公司(025) 8689-0258 · 重庆分公司(023) 6380-6068 · 深圳分公司(0755) 8287-7677 · 武汉分公司(027) 8555-7910 · 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 需购置光谱仪等设备128台(套),年产10万件电子测试仪器项目即将开工
    近日,千里马招标网显示,江苏百旺金属制品有限公司10万件电子测试仪器制造项目将于2月开工,竣工时间为12月。信息显示,该项目新增建筑面积3000平方米,项目需购置光谱仪、变压器综合测试台、激光切割机、耐压试验装置等128台(套),工艺流程:原料(生铸铁、金刚玉)→注塑成型→冷却→焊接→测试→组装→检验出货;项目建成后预计年新增10万件电子测量仪器。
  • 张福根教授:不同激光粒度仪测试结果不一致的深层原因分析
    p style=" text-indent: 2em " 在粒度测量的诸多手段中,激光粒度仪无疑占据着统治地位。但在激光粒度仪的实际应用中,人们经常遇到一个令人困惑的现象:同一个样品给不同品牌甚至同一品牌不同型号的激光粒度仪测量时,所得结果有很大差异(指大于合理的允许误差范围)。 span style=" text-indent: 2em " 剔除取样代表性、操作过失等人为因素的影响,作者认为这种差异本质上来自于当前各种激光粒度仪的内在技术缺陷。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 本文首先简述激光粒度仪的工作原理,阐明在理想条件下不同仪器应该能得到相同的测试结果的道理。然后讨论当前具有代表性的几种激光粒度仪的光学系统缺陷,这些缺陷造成承载被测颗粒大小信息的散射光分布信号不能被完全接收,从而导致最终的误差。不同仪器有不同的光学缺陷以及为弥补光学缺陷采取了各自独立的软件修饰方法,导致相互间结果出现差异。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 另外作者所在研究团队发现,对透明颗粒,激光粒度仪得以建立的基本物理规律(颗粒越小,散射角度越大)在有些粒径区间并不成立,我们称之为爱里斑的反常变化(ACAD)现象[1]。如果用通常的(把散射光分布转换成粒度分布)反演算法,该现象会导致反常区域内测量结果的不稳定或明显偏离真实(例如出现不应有的多峰分布)。为了掩饰这种偏差,不同的仪器厂家也用了不同的修饰方法,从而导致相互之间结果的不可比。下文将逐一展开讨论。 /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " strong span style=" font-size: 18px color: rgb(0, 176, 80) " 一、激光粒度仪的工作原理 /span /strong /h1 p style=" text-indent: 2em " 激光粒度仪所依据的物理原理是:当光束照射到颗粒上时,会偏离原来的传播方向。当颗粒较大,尤其当颗粒具有较强的吸收性时,这种偏离的规律可以用光的衍射理论[2]描述,因此该仪器在诞生时的正式名称是“激光衍射法粒度分析仪”。但是在更一般的情况下,例如颗粒尺寸小于光波长,或者颗粒尺寸与光波长的尺度相近,并且对照明光透明,衍射理论不再适用,这时就需要用严格建立在麦克斯韦电磁波理论基础上的米氏散射理论[3]来描述。近年来国际上越来越多地把这种仪器称为“静态光散射法粒度分析仪”。 /p p style=" text-indent: 2em " 这里强调“静态”,是因为还有一种“动态”光散射粒度仪,又称为“动态光散射纳米粒度仪”。这是两种不同原理、适用于不同粒径范围的粒度分析仪,但都用激光作为光源,且都利用了颗粒的散射光信号。静态光散射粒度仪认为在某个测量点上,散射光的信号不随时间变化(因而是静态的),测量粒度是利用不同散射角上的散射光信号,即散射光的空间分布;而动态光散射粒度仪是在一个固定的散射角上测量散射光随时间的变化。 /p p style=" text-indent: 2em " 在一定条件下,颗粒越大,散射光的分布范围越广,见图1。当颗粒为理想圆球时(粒度测量中,都假设颗粒是理想圆球),散射光斑由中心的亮斑和外围一系列明暗相间的同心圆环组成,这样的光斑称为“爱里斑(Airy& nbsp Disk)[2]”。中心亮斑包含了衍射光(从一般意义上说,颗粒的散射光可近似看成衍射光和几何散射光的相干叠加,但是几何散射光不包含颗粒大小的信息,换言之,颗粒大小信息只包含在衍射光的分布中)总能量的83.8%[2],因此通常把中心亮斑的角半径(从光斑中心点到第一个暗环的角距离)作为爱里斑的半径,或作为颗粒对光的散射角,如图1中的。业界普遍认为:颗粒越小,越大。或者说:颗粒大小与爱里斑大小有一一对应关系。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0a92c26f-9514-44bb-81eb-2b9a575840f3.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图1& nbsp & nbsp & nbsp 颗粒对光的散射现象示意图 /strong /p p style=" text-indent: 2em " 激光粒度仪的原理图见图2。从激光器发出的细激光束经过空间滤波和准直,成为一束平行、纯净的扩展光束,然后照射到测量池内。被测颗粒分散悬浮在池内的分散介质(例如,水)中。入射光如果遇到颗粒,就被散射,形成散射光;没有遇到颗粒的光仍然是平行光,沿着原来的方向传播。后者经过傅里叶透镜后被会聚到光电探测器的中心,并穿过中心上的小孔,被中心探测器接收。散射光经过傅里叶透镜后,相同散射角的光被聚焦到探测器的同一点上。因此探测器上的一个点代表一个散射角。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/30adc066-e066-49ea-a9b0-fa68ea9f5877.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图2& nbsp & nbsp & nbsp 激光粒度仪工作原理示意图 /strong /p p style=" text-indent: 2em " 探测器由多个独立的探测单元组成,每个单元对应一个散射角区间。单元序号从探测器的中心往外,逐渐增大。探测单元的中心对应的散射角以及单元的接收面积均随着序号增大呈指数式增大。每个单元输出的光电信号正比于投射到该单元上的散射光功率(习惯上称为“光能”)。所有单元输出的信号组成了散射光能分布。虽然任意大小的颗粒的散射光斑的中心亮斑都是中心强而边缘弱,但是散射光能分布的峰值则总是处在某个探测单元上。颗粒越小,散射光斑越大,散射光能分布的峰值就越往外,如图3所示。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/44cd191a-2d5a-4371-8182-a1550ac56046.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图3& nbsp & nbsp 散射光能分布示例 /strong /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 461px " src=" https://img1.17img.cn/17img/images/202008/uepic/8cf88b1b-9997-41d5-888c-b955ff8a0543.jpg" title=" 4.png" alt=" 4.png" width=" 664" height=" 461" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 从形式上看,仪器通过测量直接得到散射光的分布后,求解上述线性方程组,就可得到粒度分布 ,即粒度分布。但实际上该方程的系数矩阵的阶数高达30以上,通常是病态的,不能直接求解,而只能通过一种特定的迭代算法求出。这个迭代算法是激光粒度仪的关键技术之一,称作“反演算法”。 /p p style=" text-indent: 2em " & nbsp 由于现实的仪器都存在测量误差,即直接测量得到的散射光分布 & nbsp 与被测颗粒散射形成的真实的散射光分布有一定的偏差,因而通过反演计算获得的粒度分布也与真实的粒度分布有一定的偏差。在此将反演计算得到的粒度分布记为 ,& nbsp & nbsp 与之对应的光能分布为 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 664px height: 279px " src=" https://img1.17img.cn/17img/images/202008/uepic/023a9645-5777-486c-b9ed-bd67278142bf.jpg" title=" 5.png" alt=" 5.png" width=" 664" height=" 279" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 从以上叙述可以看出,激光粒度仪能给出准确测量结果的要素有三: /p p style=" text-indent: 2em " (1)获得足够准确的散射光能分布; /p p style=" text-indent: 2em " (2)粒径与散射光能分布之间有足够好的一一对应关系(下文称为“特异性”) /p p style=" text-indent: 2em " (3)反演算法合格(通过模拟计算可以验证) /p p style=" text-indent: 2em " 激光粒度仪经过几十年的发展,已经有多种公开报道的可用于实际的反演算法[4],实现上述第(3)条并不难。所以,只要第(1)、(2)条得到满足,就可获得足够准确的粒度分布数据。而正确的结果只有一个,因此如果不同的激光粒度仪都能给出正确的结果,那么这些结果在合理的误差范围内就应该是一致的。下面看一个实测的例子: /p p style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 图4是两种不同仪器测量同一样品的测量数据。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/930ad661-7e73-4959-ac40-7bbf2d0edac8.jpg" title=" 6.jpg" alt=" 6.jpg" style=" text-indent: 2em max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 0em " (a)真理光学LT2200仪器的测量结果 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/248a96bb-e7d6-4c67-abda-dab786cc7b47.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-indent: 0em text-align: center " (b)某国外仪器的测量结果 /p p style=" text-align: center text-indent: 0em " strong 图4& nbsp 两种激光粒度仪测同一种陶瓷介子粉的测试报告 /strong br/ /p p style=" text-indent: 2em " 这两种仪器给出的D50值分别为75.76µ m和75.93µ m,相对误差0.2%;D90值分别为127.02& nbsp µ m和126.13& nbsp µ m,相对误差0.7%;D10值分别为41.51µ m和44.28µ m,相对误差6.5%。可见这两个结果的吻合度相当好。 /p p style=" text-indent: 2em " 下文讨论造成仪器之间结果不一致的两个内在因素。 span style=" text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" color: rgb(0, 176, 80) font-size: 18px " 二、大角散射光测量盲区对亚微米颗粒测量的影响 /span /h1 p style=" text-indent: 2em " 颗粒的散射光分布在0到180° 的所有方向上。当颗粒远大于光波长时,散射光的中心光斑主要分布在前向较小的角度上。随着颗粒的减小,散射光的分布范围逐步扩大,直至后向(大于90° )。因此,一台理想的激光粒度仪应该能够在全角度上测量散射光。然而目前商品化的激光粒度仪都不能完全覆盖0到180° 的范围。 /p p style=" text-indent: 2em " 图2所示的激光粒度仪的光学系统是经典的光学系统。早期的激光粒度仪几乎全都采用这种光路。它只能测量前向的散射光,其最大散射角的接收能力受傅里叶透镜的孔径限制。现存的采用经典光路的仪器的透镜孔径对测量池中心的最大张(半)角,从空气中看为40° 。如果颗粒悬浮在水介质中,那么从水中看,该系统能接收的最大散射角只有29° 。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/70eab1d0-34e5-4aca-bcbe-278bb8d77fe9.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图5& nbsp 逆傅里叶变换系统示意图 /strong /p p style=" text-indent: 2em " 图5是当前较流行的一种光学系统,称为“逆傅里叶变换系统”。它用会聚光照明被测颗粒。通过数学推导可以知道,在小散射角上,它与经典傅里叶变换系统一样,也能实现同方向散射光的理想聚焦。但在大角度上聚焦不良,不过可通过光学计算,在散射光能矩阵上对聚焦不良带来的不利影响加以弥补。它的好处是突破了傅里叶透镜孔径对系统接收角的制约,扩展了激光粒度仪的测量角。 /p p style=" text-indent: 2em " 虽然突破了傅里叶透镜孔径的限制,它的测量角的上限还要受光线全反射规律的限制。假设颗粒处在水中,散射光从水中传播到玻璃再到空气,经过了两次折射。由于空气的折射率低于水的折射率,由光的折射定律可以知道,光线在空气中的出射角总是大于水中的入射角。当照明光垂直入射到测量池时,水中散射光的散射角等于散射光对玻璃的入射角。当水中的散射角约为49° 时,空气中的出射角等于90° ,如图6(a)所示。 /p p style=" text-indent: 2em " 散射角再增大时,散射光将被玻璃/空气界面完全反射,不能出射到空气中。这种现象称为“光的全反射”,而此时的入射角称为“全反射的临界角”。实际的激光粒度仪不可能把探测单元放置在90° 的位置。例如某国外仪器空气中的最大角探测器位置为60° (见图6(b)),对应于水中的散射角为41° 。所以该仪器能接收的最大前向散射角是41° 。在后向上也放置了最大60° 的探测器,故后向只能接收139° (=180° 41° )以上的 散射光。这样,这种光学系统就存在41° 到139° 的测量盲区,盲区跨度共98° ,见图8(a)。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 314px " src=" https://img1.17img.cn/17img/images/202008/uepic/3e096d92-88f4-479c-9808-233c5400f1a1.jpg" title=" 9.png" alt=" 9.png" width=" 500" height=" 314" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 真理光学提出了一种斜置的梯形窗口方案,见图7。在该方案中,窗口玻璃倾斜10° 放置,可把散射光的临界角扩展7° 左右,同时前向玻璃加厚,把玻璃/空气界面的一部分做成30° 的斜面,使原本在玻璃/空气界面上接近或大于临界角的散射光的入射角小于临界角。这种结构能让可接收的最大散射角(在水中看)扩展到80° ,后向的最小散射角则减到45° ,测量盲区为80° 到135° ,盲区跨度共55° ,见图8(b)。& nbsp & nbsp & nbsp & nbsp /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 557px " src=" https://img1.17img.cn/17img/images/202008/uepic/bf64a724-c11f-4ca3-b5ce-44dfb1b6587d.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 500" height=" 557" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 图7& nbsp & nbsp 斜置的梯形测量窗口示意图 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b795291d-52ad-4d40-9fc4-b8e3ad37af0a.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图8& nbsp 两种典型的逆傅里叶变换系统的散射光测量盲区 /strong /p p style=" text-indent: 2em " 图9(a)是0.3,0.25,& #8230 , 0.05& nbsp µ m的颗粒产生的理想的散射光能分布图,其中假设探测器的面积和位置如本文第1节所述,光波长为0.633& nbsp µ m,颗粒折射率为1.59,介质折射率为1.33。如果采用通常的逆傅里叶变换系统接收,能得到的实际散射光能分布范围如图9(b)所示。用这种光路测量散射光,丢失了0.3& nbsp µ m及以细颗粒散射光能分布的所有峰值信息,而峰值信息所包含的粒度特征最多,即特异性最强。图9(c) 是斜置梯形窗口系统能获得的散射光能分布曲线,基本包含了所有颗粒的峰值信息。据此可以大体推断,后者对测量0.3µ m以细颗粒有更好的效果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/7b617d96-cd21-42fe-ab14-c07932f50905.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-indent: 0em text-align: center " (a)散射光的全角度分布图 /p p style=" text-indent: 0em text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b791938f-c40a-433b-a01b-6ad5838f5343.jpg" title=" 13.jpg" alt=" 13.jpg" / & nbsp /strong /p p style=" text-indent: 0em text-align: center " (b)通常的逆傅里叶变换系统能接收的散射光分布 /p p style=" text-indent: 0em text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/eb6b3e68-866c-42e1-8601-4780c83d6dfa.jpg" title=" 14.jpg" alt=" 14.jpg" / /strong & nbsp (c)采用斜置梯形窗口的逆傅里叶变换系统能接收的散射光分布 /p p style=" text-align: center text-indent: 0em " strong 图9& nbsp & nbsp 多种细颗粒(小于0.3µ m)的散射光能分布以及实际被接收到的光能分布 /strong /p p style=" text-indent: 2em " 下面举一个实际测量例子。样品是一种水性石墨烯。图10(a)是用真理光学LT3600Plus仪器(采用了斜置梯形窗口技术)测得的粒度分布。图10(b)是对应的实测光能分布与反演拟合的光能分布的对比。所得结果D50、D10、D90分别为0.135µ m、0.047 µ m和0.405 µ m,粒度分布曲线呈单峰,拟合残差1.27%,数值在合理范围内。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/56de073e-fb37-4161-82b2-065fa3ae79bb.jpg" title=" 15.jpg" alt=" 15.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图10& nbsp & nbsp 一种水性石墨样品用真理光学LT3600Plus测量的结果 /strong /p p style=" text-indent: 0em text-align: center " strong (a)粒度分布;(b)实测光能与拟合光能对比曲线 /strong /p p style=" text-indent: 2em " 图11是某国外仪器(采用通常的逆傅里叶变换光学系统)对上述水性石墨烯的测量结果。图11(a)和(d)都是该仪器在同一次取样进行多次测量时给出来的粒度分布数据,两个结果来回跳动;图(b)和(d)是对应的实测光能和拟合光能分布的对比曲线。按照结果1,D50、D10、D90分别为0.084µ m、0.055µ m和0.477 µ m;按照结果2,D50、D10、D90分别为0.119µ m、0.062 µ m和0.227 µ m。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b824343e-5812-45c4-bce0-b2e068f7388c.jpg" title=" 16.jpg" alt=" 16.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图11& nbsp & nbsp 一种水性石墨样品用某国外仪器测量的结果 /strong /p p style=" text-indent: 0em text-align: center " strong (a)粒度分布1;(b)实测光能与拟合光能对比曲线1 /strong /p p style=" text-indent: 0em text-align: center " strong (c)粒度分布2;(b)实测光能与拟合光能对比曲线2 /strong /p p style=" text-indent: 2em " 和图10所示结果对比,看得出来两种仪器的结果相差颇大。不过可以基本判定真理光学仪器的结果更加可靠。理据是:真理光学的结果(A)结果稳定,(B)粒度分布的峰形比较合理,(C)拟合残差比较小;而国外仪器的结果(A)测量结果在两组数之间来回跳动,很不稳定,(B)其中一种结果是双峰,不符合常理,(C)两种结果的光能拟合情况都很差,残差都在7%以上。 /p p style=" text-indent: 2em " 各家仪器都有自己独特的光路,但都未能完全解决全角度测量问题,不过各家解决的程度有不同,因而遇到颗粒很小的情况时,有的测量结果更接近真实,有的有较大偏离,从而造成结果不一致。 /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-family: arial, helvetica, sans-serif " strong span style=" font-size: 18px color: rgb(0, 176, 80) " 三、爱里斑的反常变化(ACAD)对0.4µ m10µ m粒度测量的困扰 /span /strong /span /h1 p style=" text-indent: 2em " strong 3.1& nbsp & nbsp ACAD现象及其规律 /strong & nbsp & nbsp /p p style=" text-indent: 2em " 自激光粒度仪诞生直到前不久的近50年来,业内人士都不曾怀疑过这样的光散射规律:& nbsp 颗粒越小,散射光的分布范围越大(爱里斑越大),即散射光的分布范围随着颗粒的减小而单调增大,从而保证了颗粒大小与散射光分布之间的一一对应关系。这是激光粒度仪能够正常工作的物理基础。但是真理光学和天津大学的联合研究团队却发现[& nbsp 1],对于透明颗粒,上述规律在某些特定的粒径区间不成立,即有时会出现颗粒越小,爱里斑也越小的现象。 /p p style=" text-indent: 2em " 图12是波长取0.633µ m,颗粒折射率1.59,介质折射率1.33时,2至4µ m之间的各种颗粒的散射光斑图样。其中3µ m颗粒的爱里斑尺寸是7.98° ,而3.5µ m颗粒的爱里斑尺寸则是13.31° ,出现了反常现象,我们称之为爱里斑的反常变化(Anomalous& nbsp Change& nbsp of& nbsp Airy& nbsp Disk,ACAD)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a3b9bd33-50a4-4238-b6bb-c7e195895891.jpg" title=" 17.jpg" alt=" 17.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图12& nbsp & nbsp 爱里斑的反常变化现象 /strong /p p style=" text-indent: 0em text-align: center " img style=" max-width: 100% max-height: 100% width: 664px height: 94px " src=" https://img1.17img.cn/17img/images/202008/uepic/5466a2bf-0e34-4d60-aef8-563ced5c2c4e.jpg" title=" AAA.png" alt=" AAA.png" width=" 664" height=" 94" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 蓝色曲线是采用米氏理论计算得到的爱里斑尺寸随无因次参量变化的曲线,红色曲线则是用夫琅禾费衍射理论计算得到的爱里斑尺寸变化曲线。由于米氏理论是物理学界公认的严格理论,因此蓝色曲线的结果反映了爱里斑变化的真实情况。图中的m表示颗粒相对于分散介质的相对折射率(本例中,实部为1.59/1.33=1.20),其虚部为0,表示颗粒是透明的。从中可以看出,爱里斑尺寸随着粒径的增大而振荡变化。虽然总体趋势是减小的,但在某些局部是增大的,我们把这样的区域称为反常区,而把反常区内蓝色曲线和红色曲线的交点称作反常区的中心,图中共有3个反常区。 /p p style=" text-indent: 2em " 我们进一步推导出反常区中心位置的一般公式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3b4b49c7-4e34-4f6b-b133-0b17f2954913.jpg" title=" BBB.png" alt=" BBB.png" / /p p style=" text-indent: 2em " (1)爱里斑的反常现象存在于任意的透明颗粒中。 /p p style=" text-indent: 2em " (2)对任一给定的折射率,都有无数多个反常区。 /p p style=" text-indent: 2em " (3)即使相对折射率小于1,例如水中的气泡,也会发生反常现象。 /p p style=" text-indent: 2em " 不过由于粒径分段时,序号越大,段间隔也越大,所以会干扰粒度分布反演计算的主要是第一个反常区,令k=1,得 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/50c20884-7c84-4285-96c8-2c29163bf224.jpg" title=" ccc.png" alt=" ccc.png" / /p p style=" text-indent: 2em " 从上式可以计算任意折射率的透明颗粒的第一个反常区中心位置。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/f6019ad6-a2d4-490a-b435-dd01f6457d90.jpg" title=" 18.jpg" alt=" 18.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图13& nbsp & nbsp 爱里斑尺寸随无因次参量的变化 /strong /p p style=" text-indent: 2em " 颗粒如果具有吸收性,那么随着吸收系数的增大,反常现象会逐步减弱,直至消失。在图14中,图(a)表示颗粒吸收系数为0.05时的爱里斑大小随无因次参量的变化曲线,可以看出,曲线的振荡幅度显著减小;图(b)表示颗粒吸收系数为0.10时,曲线的振荡完全消失。 /p p style=" text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/03a274c8-4d56-4052-9c0a-25e6d8498cb5.jpg" title=" 19.jpg" alt=" 19.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图14& nbsp & nbsp 反常现象随着颗粒吸收系数的增大而减弱 /strong /p p style=" text-indent: 2em " strong 3.2& nbsp & nbsp ACAD对粒度测量的困扰& nbsp & nbsp & nbsp /strong /p p style=" text-indent: 2em " ACAD将导致在反常区附近一个爱里斑尺寸最多可对应3个不同的粒径。如图15,等3个不同的无因次参量对应的爱里斑尺寸都是10° 。从散射光能分布看,反常现象会导致光能分布峰值位置出现颠倒。在正常的散射情况下,颗粒越大,散射光能的峰值位置越靠近坐标的中心;而在图16中,4.0µ m颗粒的峰值位置在3.5微米峰值位置的外侧。可见不论从散射光强分布(爱里斑)角度还是散射光能分布角度看,ACAD都导致了颗粒尺寸与散射光场分布的一一对应关系的破坏,从而使处在反常区的颗粒的粒度测量结果变得不稳定或者结果不真实(一般体现为粒度分布曲线的振荡,见图17)。文献[5]对此有更严谨的论证。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/cad6ffb6-1581-412f-b399-14274f5b71a8.jpg" title=" 20.jpg" alt=" 20.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图15& nbsp & nbsp 同一爱里斑尺寸对应3个不同的粒径& nbsp /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9c4d156e-24cb-451f-bed2-8d6cd2ffae49.jpg" title=" 21.jpg" alt=" 21.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图16& nbsp 在反常区附近散射光能分布的峰值位置出现了颠倒 /strong /p p style=" text-indent: 2em " span style=" text-indent: 2em " 图17& nbsp 是某国外仪器用“通用模式”测量3.0µ m聚苯乙烯微粒标样的结果,出现了两个峰,并且两个峰的峰值位置都不在3.0µ m上。聚苯乙烯颗粒的折射率为1.59,分散在水中时,相对折射率为1.20。从表1可以查到,反常中心位置为3.20& nbsp µ m。可见该颗粒正好处在反常区中心附近,故而得不到正确的测量结果。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ff19f16e-aa24-4082-b60b-1e56c8b82ed9.jpg" title=" 22.jpg" alt=" 22.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图17& nbsp & nbsp 某国外仪器用“通用模式”测量3.0µ m聚苯乙烯微粒标样的结果 /strong /p p style=" text-indent: 2em " 尽管ACAD作为一种客观的物理现象,一直都存在,并且困扰着激光衍射法粒度测量技术的应用,但是在本团队的论文发表前,都没有公开的相关报导,仪器制造商更没有提出解决这一困扰的根本办法。目前所做的,对单分散样品(大多指标准微粒),厂家提供的操作指引上指定选“单峰窄分布”模式,这时对聚苯乙烯材料的3µ m标样,进行“特殊处理”,以得到看上去正确的结果。对一般的透明样品,如果粒径分布范围部分或全部处在反常区,则在进行反演分析时,人为给折射率加上一个虚部,例如,0.1。对一个给定的颗粒折射率,只要人为加上去的吸收系数足够大,那么在计算散射矩阵(各种粒径散射光能分布的组合)时,光能分布峰值位置颠倒的情况就会消失。但颗粒实际还是无吸收的,强行认为颗粒有吸收,将造成实测的光能分布与反演计算时认为的光能分布不相符。在不加修饰的情况下,反演结果将在粒径1µ m附近鼓起一个假峰(Ghost& nbsp Peak)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0f7136f6-c723-48ff-88e4-db914e4f69ac.jpg" title=" 23.jpg" alt=" 23.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图18& nbsp & nbsp 人为给透明颗粒加吸收系数造成反演数据出现假峰 /strong /p p style=" text-indent: 2em " 下面用一个数值模拟的例子进行说明。图18(a)中的蓝色曲线是事先设定的一种颗粒样品的粒度分布。假设颗粒透明,折射率为1.50,处在水介质中。它对应的散射光能分布如图(b)中的蓝色曲线所示。假如给颗粒加上一个0.1的吸收系数,那么该颗粒样品产生的散射光能分布如图(b)中的红色曲线所示。蓝、红两种曲线相比,蓝色曲线在35到45单元之间鼓起一个小峰,这个小峰等效于一定比例的绿色曲线,也可视为某种粒度分布对应的散射光能分布。图18(b)中三种曲线或散射光能分布用公式可表达为 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 21px " src=" https://img1.17img.cn/17img/images/202008/uepic/4c2c1f38-4beb-4d73-8420-e51489fb0299.jpg" title=" 24.png" alt=" 24.png" width=" 600" height=" 21" border=" 0" vspace=" 0" / br/ /p p style=" text-indent: 2em " 式中,是e sub R /sub 、e sub 0 /sub 、e sub D /sub 是归一化、矢量形式的散射光能分布,分别表示无吸收颗粒的散射光能分布(即本实验设定颗粒真实的光能分布)、吸收系数为0.1时相同颗粒样品产生的散射光能分布,以及这两种光能分布之差。后者等效于一个粒径1µ m左右的颗粒样品产生的散射光能分布。因此,如果用0.1吸收的散射矩阵去反演计算一个透明颗粒样品产生的光能分布,如图18(b)中蓝色曲线所示的散射光分布,就会得到图18(a)中红色曲线所示的粒度分布,这个粒度分布相较于蓝色曲线所示的粒度分布(即原本的粒度分布),在1µ m附近多了一个假峰。 /p p style=" text-indent: 2em " 下面再举一个实际测试的例子。图19是一种陶瓷泥浆样品实际测量得到的粒度分布曲线。蓝色曲线表示吸收系数取0得到的粒度分布,红色曲线表示吸收系数取0.1得到的粒度分布。两条曲线相比,红色曲线在1µ m附近颗粒含量明显偏高。 /p p style=" text-indent: 2em " 所以给透明颗粒人为加吸收系数,虽然能掩饰ACAD带来的测试结果不稳定或者振荡,但同时会使1µ m附近产生一个假的峰,或者引起1µ m附近颗粒含量的测试值高于实际值。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/6aa48cfb-e661-4bd7-a47b-55c4fda3bf9d.jpg" title=" 25.jpg" alt=" 25.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图19& nbsp & nbsp 一种陶瓷泥浆样品的实测粒度分布 /strong /p p style=" text-indent: 2em " 为了修饰这个假峰,某国外仪器在算法上强行抹平这个假峰。但这会带来新的问题:如果被测样品在1µ m附近真的有一个峰,也会被强行抹掉,从而造成测量结果的失真。 /p p style=" text-indent: 2em " 图20是一种人为配制出来的三个峰的二氧化硅样品。用国外仪器测量时,如果取“通用模式”,则结果如图(a)所示,只有一个峰;如果取“多峰窄分布模式”,则在主峰的右侧(大颗粒侧)出现一个小峰。该样品用真理光学LT3600测量时,共有3个峰:在主峰的左右各有一个小峰,左侧的小峰在1到3µ m之间。图21是该样品的电镜照片。从图(a)460倍放大照片看,确实存在30µ m左右的大颗粒;从图(b)8000倍放大照片看,也存在1µ m到2µ m颗粒。可见1到3µ m的颗粒是真实存在的,而国外仪器没有测到这些颗粒。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3e8ab13f-8d7a-4661-a744-51e8adb0ea73.jpg" title=" 26.jpg" alt=" 26.jpg" / /p p style=" text-indent: 0em text-align: center " strong 图20& nbsp 一种二氧化硅样品“”的粒度测量结果 /strong strong style=" text-indent: 0em " & nbsp img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/616caea4-21d1-4f17-bf0c-d4ef061356e1.jpg" title=" 27.jpg" alt=" 27.jpg" / /strong /p p style=" text-indent: 0em text-align: center " strong 图21& nbsp & nbsp 一种二氧化硅样品的电子显微镜照片 /strong /p p style=" text-indent: 2em " 从本节的讨论可以看出,当被测的透明颗粒处在反常区时,通常的反演算法得出的粒度分布是不稳定或者振荡的。目前大多数仪器厂家的处理办法是,在反演计算时给颗粒加上吸收系数。这会使得反演得到的粒度分布曲线稳定、平滑,但是同时在1µ m附近鼓起一个假的峰,或者1µ m附近颗粒含量变高。也有的厂家在算法上强行抹平这个假峰,但会导致仪器在1µ m附近测量灵敏度降低。真理光学团队在对ACAD规律透彻理解的基础上,改进了反演算法,使其能在大多数情况下对处在反常区的透明颗粒进行真实的粒度分布反演,如图20(c)的结果。对3µ m聚苯乙烯标样也能成功反演。 /p p style=" text-indent: 2em " 所以,由于ACAD的困扰,造成各个仪器厂家采取了不同的、有些是修饰性的(并非符合科学的)算法,从而导致相互间结果不一致。 /p p style=" text-indent: 2em " strong 3.3& nbsp & nbsp ACAD影响的粒径范围以及对激光粒度仪用户的建议 /strong span style=" text-indent: 2em " & nbsp /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/202008/uepic/d97f35cb-9fbe-4a00-9be0-546df3eb57ae.jpg" title=" 28.png" alt=" 28.png" width=" 664" height=" 112" border=" 0" vspace=" 0" style=" text-indent: 2em max-width: 100% max-height: 100% width: 664px height: 112px " / /p p style=" text-indent: 2em " 如果介质折射率区1.33,空气中波长取0.633& nbsp µ m,那么可以得到如表1所示的分别用无因次参量和粒径表达的各种折射率下第1个反常区中心位置的数值。 /p p style=" text-align: center text-indent: 0em " strong 表1& nbsp & nbsp 各种折射率下的反常区中心位置 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a349395c-f611-4105-900a-8013cc4eb93d.jpg" title=" 29.png" alt=" 29.png" / /strong /p p style=" text-indent: 2em " 假设颗粒分散在水中,那么m=1.05对应于绝对折射率1.40,接近已知固体材料折射率的下限,此时反常区的中心粒径为13.0µ m。m=2.40对应于绝对折射率3.19,接近已知固体材料折射率的上限,此时反常区的中心粒径为0.396µ m。在颗粒折射率未知的情况下,如果被测颗粒的粒径大于13& nbsp µ m,那么就可确定颗粒不在反常区内,不论用哪家的粒度仪,都不必给颗粒人为地加吸收系数(颗粒实际有吸收的情况除外),这样各种激光粒度仪得到的粒度测试结果应该是基本一致的,就如本文图4所举的例子。 /p p style=" text-indent: 2em " 如果颗粒折射率已知,又是不吸收的,可以查表1或者用本小节的公式计算第1个反常区中心的位置,如果被测粒径分布不在反常区中心附近,那么也不必人为给颗粒加吸收系数,这样可以得到更真实因而也更可比的结果。 span style=" text-indent: 2em " & nbsp /span /p h1 label=" 标题居中" style=" font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px " span style=" font-size: 16px color: rgb(0, 176, 80) " strong 四、结语 /strong /span /h1 p style=" text-indent: 2em " 激光粒度测试技术发展到今天,还不能说是很完善的技术。本质原因是物理上存在两大缺陷:大角散射光测量盲区和爱里斑的反常变化(ACAD)。前者影响0.3µ m以细颗粒的测量,后者影响0.4µ m至13µ m颗粒的测量。所以,概略地说,对于13µ m以粗颗粒的测量,当前技术是比较成熟的,不同仪器的测量结果应该有较好的可比性。 /p p style=" text-indent: 2em " 对0.3µ m以细颗粒的测量,有的厂家解决得好一些,有些差一些,但是都没有完全解决。这需要全体激光粒度仪厂家的共同努力。如果都能解决全散射角的测量问题,那么各家仪器的测量结果就应该是一致的。 /p p style=" text-indent: 2em " 对0.4µ m至13µ m的颗粒,最根本的是要解决ACAD条件下的反演算法问题。目前真理光学已经较好地解决了这个问题,但其他品牌多采取人为加吸收系数的办法,这只让测试结果看上去比较正常,数值则已偏离实际;而且不同的厂家对由此引起1µ m附近的假峰的处理方法不一,造成相互间结果难以对比。对于用户来说,可参照表1的数据或者同一节中的公式,先查找或计算被测样品的反常区中心位置,如果被测粒度远离反常中心,则尽量不要给透明颗粒加吸收系数,这样能得到更真实的粒度结果,不同仪器的用户都能这么做,相互间的可比性也更好。 /p p style=" text-indent: 2em " 最后,呼吁中国市场上的所有激光粒度仪厂家,能够正视激光粒度测试技术内在的缺陷问题,努力解决这些问题,尽快实现粒度测试结果的全面可比。 span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp /span /p p style=" text-indent: 2em " strong 参考文献 /strong /p p style=" text-indent: 2em " 1.& nbsp & nbsp Linchao Pan et. al.& nbsp Anomalous change of Airy disk with changing size of spherical particles. Journal of Quantitative Spectroscopy & amp Radiative Transfer 170 (2016) 83–89 /p p style=" text-indent: 2em " 2. & nbsp M.& nbsp 玻恩,E.& nbsp 沃耳夫.& nbsp 光学原理(上册).& nbsp 科学出版社 & nbsp 1978. P.517 /p p style=" text-indent: 2em " 3.& nbsp & nbsp Van de Hulst HC.& nbsp Light scattering by small particles. New York: Dover 1981 /p p style=" text-indent: 2em " 4. & nbsp Santer R , Herman M . Particle size distributions from forward scattered light /p p style=" text-indent: 2em " using the Chahine inversion scheme. Appl Opt 1983 22:2294–301 . /p p style=" text-indent: 2em " 5.& nbsp & nbsp Linchao Pan et. al. Indetermination of particle sizing by laser diffraction in the /p p style=" text-indent: 2em " anomalous size ranges. Journal of Quantitative Spectroscopy & amp Radiative Transfer 199 (2017) 20–25 /p p style=" text-indent: 2em " strong 作者简介: /strong /p p style=" text-indent: 2em text-align: justify " img style=" max-width: 100% max-height: 100% float: left width: 110px height: 124px " src=" https://img1.17img.cn/17img/images/202008/uepic/cb2b6104-1423-4066-b06f-ec34a1cec7f1.jpg" title=" 张福根:不同激光粒度仪测试结果不一致的深层原因分析.jpg" alt=" 张福根:不同激光粒度仪测试结果不一致的深层原因分析.jpg" width=" 110" height=" 124" border=" 0" vspace=" 0" / 珠海真理光学仪器有限公司首席科学家,天津大学兼职教授、博导。主要从事颗粒表征、微粉材料制造和3D测量及显示技术的研究和产品开发。主持了多种型号的激光粒度仪、电阻法颗粒计数器、图像法粒度仪以及3D测量和显示设备。发表学术论文30多篇,获得专利授权30多项。曾担任中国颗粒学会副理事长、常务理事,现任全国颗粒表征与分检及筛网标准化技术委员会副主任委员,中国颗粒学会颗粒测试专委会副主任。 /p p style=" text-indent: 2em text-align: justify " (注:本文由张福根教授供稿,文章为张老师结合其所在团队的科研成果,与读者进行分享交流,不代表仪器信息网本网观点) /p
  • 陕西理工大学237万元采购激光扫描显微镜等仪器公开招标
    陕西开源招标有限公司受陕西理工大学的委托,经政府采购管理部门批准,按照政府采购程序,对陕西理工大学材料学院教学设备采购项目进行公开招标,欢迎符合资格条件的、有能力提供本项目所需货物的单位参加投标。  一、采购项目名称:陕西理工大学材料学院教学设备采购项目  二、采购项目编号:KYZBZC2016/7-ZB-446  三、采购单位名称:陕西理工大学  四、采购代理机构名称:陕西开源招标有限公司  地址:西安市长安路南稍门十字中贸广场15号楼B座1701室  联系方式:029-85233002、85233003、85233658-805  五、采购内容和要求:  1标段:激光扫描共焦显微镜采购  2标段:材料热处理及物理性能测试仪器设备采购  3标段:高分子材料与工程专业实验室建设项目仪器设备采购  项目用途:自用  项目性质:自筹资金  项目预算:  1标段:95万元  2标段:56万元  3标段:86.8万元  六、投标单位资质要求:  1标段:  1、企业营业执照副本  2、税务登记证副本  3、组织机构代码证副本  备注:三证合一的企业提供统一社会信用代码的营业执照副本  4、法定代表人授权书及被授权人身份证(法定代表人直接投标只须提交其身份证原件)  5、提供投标保证金的银行转账或电汇凭证  6、针对本次项目主要设备的厂家或总代理商唯一授权书及售后服务承诺函  2标段:  1、企业营业执照副本  2、税务登记证副本  3、组织机构代码证副本  备注:三证合一的企业提供统一社会信用代码的营业执照副本  4、法定代表人授权书及被授权人身份证(法定代表人直接投标只须提交其身份证原件)  5、提供投标保证金的银行转账或电汇凭证  6、针对本次项目主要设备的厂家授权书及售后服务承诺函  3标段:  1、企业营业执照副本  2、税务登记证副本  3、组织机构代码证副本  备注:三证合一的企业提供统一社会信用代码的营业执照副本  4、法定代表人授权书及被授权人身份证(法定代表人直接投标只须提交其身份证原件)  5、提供投标保证金的银行转账或电汇凭证  6、针对本次项目主要设备的厂家或总代理商唯一授权书及售后服务承诺函  7、针对本次项目主要设备的厂家授权书及售后服务承诺函  七、招标文件发售:  1、发售时间:2016年7月15日至7月22日9:00―11:30,  14:00--17:00时止(工作时间)  2、发售地点:西安市长安路南稍门十字中贸广场15号楼B座1701室  3、文件售价:招标文件售价300元/标段(人民币),售后不退,购买招标文件请携带单位介绍信和身份证原件。(谢绝邮寄)  八、投标文件截止时间及开标时间和地点:  1、投标文件递交截止时间:2016年8月4日14:30前  2、开标时间:2016年8月4日14:30整  3、开标地点:西安市长安路南稍门十字中贸广场15号楼B座1702室  九、采购项目联系人:张娅宁 刘金柯  电话:029-85233002、85233003、85233658-805  传真:029-85233002-800  采购代理机构开户名称:陕西开源招标有限公司  开户行名称:中国建设银行西安甜水井支行  账 号:61001913600052501396  陕西开源招标有限公司  2016年7月15日
  • 国瑞力恒发布自动烟尘/气测试仪新品
    GR-3100型自动烟尘/气测试仪产品简介 GR3100型自动烟尘/气测试仪是依据国家检定规程JJG680-2007《烟尘采样器检定规程》JJG968-2002《烟气分析仪检定规程》,吸取国内外同类仪器之优点,由我公司研发人员精心研制的新一代智能型烟尘烟气测试仪,该机技术性能指标符合国家环保局颁布的烟尘烟气采样仪的有关规定,实现烟尘、烟气同机采样及检测,大大缩短现场工作时间。适用于各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定和各种锅炉、工业炉窑的SO2、NO、NO2、CO、CO2、H2S等有害气体的排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定主要特点l 主机内集成差压、微压传感器、微处理器、直流旋片泵,基于皮托管平行法等速采样原理,自动测量跟踪烟气流速等速采集烟尘。l 主机内集成温度传感器、压力传感器。能测量计算包括动压、静压、全压、烟气流速、干、湿球温度、含湿量、烟气排放量等在内的所有参数。l 选用进口贴片器件,可靠性高,故障率极低,仪器体积大大减小,携带方便。l 电化学传感器随同线路板一起设计,用户升级、更换简捷方便。l 自动选择存储监测数据,供查询、打印,信息量大。l 自动记忆上次输入的监测目标工况参数,下次开机自动采用。l 320×240点阵STN型液晶显示,自动背光照明。中文菜单显示人机对话方式,图文并茂,简单明了。用户可以凭借仪器丰富的在线操作提示,直接操作。液晶屏幕可前后0~180度自由旋转。l 通过键盘即可对仪器测量的各项参数进行标定。l 烟尘采样过程中,如果烟道负压较大,或取样孔开孔位置在水平烟道顶部时采样结束后滤筒中采集的烟尘易被倒吸出来,造成数据严重偏差。该仪器有特殊的功能来防止倒吸发生。l 烟尘烟气监测数据繁多,不同顾客不同测试目的对数据要求各异,该机具备选择打印项功能,顾客可以根据需求来选择要打印的数据。l 进行参数校正时您必须输入密码,以保证仪器内存数据安全。l 选配油烟取样管后,可满足GB18483-2001《饮食业油烟排放标准》中对油烟进行采样的要求。技术指标 参数范围分辨率误差采样流量5~ 80 L/min0.1 L/min≤±5%流量控制稳定性-30.00 ~+30.00 kPa0.01 kPa≤±4 %流量计前压力-40.00 ~0 .00kPa0.01 kPa≤±2.5 %流量计前温度-30.0 ~ 150.0℃0.1℃≤±2℃烟气温度0 ~ 500℃1℃≤±3℃大气压(60~130)kPa0.1 kPa≤±2.5 %含湿量(0~60)%0.1%≤±1.5%O2 (可选)(0 ~ 30)%0.1%示值误差:≤±5 %;重复性: ≤2 %;响应时间:≤60s; 传感器寿命:除CO2外空气中2年 SO2 (可选)(0~5700 )mg/m31 mg/m3 NO(可选)(0~1340) mg/m31 mg/m3NO2 (可选) (0~200 )mg/m3CO (可选)(0~5000)mg/m3H2S (可选)(0~300)mg/mCO2 (可选)(0~20)%采样泵负载能力≥30 L/min (阻力为-20kPa时)最da采样体积999999 .9 L0.1 L≤±5%外型尺寸310×170×310 mm仪器噪声功 耗100 W 创新点:GR3100型自动烟尘/气测试仪,实现烟尘、烟气同机采样及检测,大大缩短现场工作时间;选用进口贴片器件,可靠性高,故障率极低,仪器体积大大减小,携带方便;自动选择存储监测数据,供查询、打印,信息量大 烟尘采样过程中,如果烟道负压较大,或取样孔开孔位置在水平烟道顶部时采样结束后滤筒中采集的烟尘易被倒吸出来,造成数据严重偏差。该仪器有特殊的功能来防止倒吸发生. 自动烟尘/气测试仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制