当前位置: 仪器信息网 > 行业主题 > >

盛瀚离子色谱安培检测

仪器信息网盛瀚离子色谱安培检测专题为您提供2024年最新盛瀚离子色谱安培检测价格报价、厂家品牌的相关信息, 包括盛瀚离子色谱安培检测参数、型号等,不管是国产,还是进口品牌的盛瀚离子色谱安培检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合盛瀚离子色谱安培检测相关的耗材配件、试剂标物,还有盛瀚离子色谱安培检测相关的最新资讯、资料,以及盛瀚离子色谱安培检测相关的解决方案。

盛瀚离子色谱安培检测相关的论坛

  • 盛瀚“CIC-300型离子色谱仪”被列为2011年国家重点新产品项目

    根据国家科技部发计的420号"关于下达2011年度国家有关科技计划项目通知” ,青岛盛瀚色谱技术有限公司申报的" CIC-300型离子色谱仪"获得立项批准( 932项 2011TJC62028 CIC-300型离子色谱仪 ),这是盛瀚继获得国家科技部科技型中小企业创新基金等奖项的又一重点立项项目。 CIC-300离子色谱仪是盛瀚最新研发的多功能型离子色谱仪。采用双通道、全塑流路设计,可实现阴阳离子同时、快速分析;采用电导、UV-Vis、安培等多检测器检测模式,常规阴阳离子、重金属、过渡元素、碱土金属、糖、氨基酸、自来水消毒副产物、卤素、三聚氰胺、食品添加剂等分析工作可在同一台仪器上全部完美解决。 国家重点新产品计划是一项推动企业自主创新、加速科技成果转化及产业化的计划,是国家科技计划体系的重要组成部分。青岛盛瀚公司凭借最先进的离子色谱技术、扎实的研发实力、高素质的专业人才队伍以及完全拥有自主知识产权的创新产品,在众多的竞争对手中脱颖而出,再次证明了青岛盛瀚公司整体的技术实力与综合管理水平,此立项的获得将推动中国离子色谱行业的前进,对树立良好的民族品牌奠定了基础。官方通知链接:http://www.most.gov.cn/tztg/201110/t20111013_90264.htm

  • 【求助】离子色谱安培检测器

    代人问个问题,安培检测器和电导检测器不同吧?有没有版友的离子色谱配的是安培检测器?离子色谱的检测器有几种类型啊?

  • 【原创大赛】离子色谱实战宝典 5.3 安培检测器(一)5.3.1-2安培检测器的发展历史及主要厂家

    【原创大赛】离子色谱实战宝典  5.3 安培检测器(一)5.3.1-2安培检测器的发展历史及主要厂家

    [align=left][font='Times New Roman','serif']5.3 [/font][font=宋体]安培检测器[/font][/align][align=left][font='Times New Roman','serif']5.3.1 [/font][font=宋体]安培检测器的发展历史[/font][/align][font='Times New Roman','serif']5.3.2 [/font][font=宋体]国内外主要安培检测器厂家[/font][align=left][font='Times New Roman','serif']5.3.3 [/font][font=宋体]安培检测器的原理[/font][/align][font='Times New Roman','serif']5.3.3.1 [/font][font=宋体]伏安法[/font][font='Times New Roman','serif']5.3.3.2 [/font][font=宋体]直流安培法([/font][font='Times New Roman','serif']Direct amperometric detection[/font][font=宋体],[/font][font='Times New Roman','serif']DC[/font][font=宋体])[/font][b]5.3.3.3 [font=宋体]脉冲安培法([/font]Pulsedamperometric detection, PAD[font=宋体])[/font]5.3.3.4 [font=宋体]积分安培法([/font]Integratedpulsed amperometric detection, IPAD[font=宋体])[/font]5.3.3.5 [font=宋体]迟滞时间[/font]5.3.3.6 [font=宋体]电位极限[/font][/b][font='Times New Roman','serif']5.3.4 [/font][font=宋体]安培检测器各组成的结构[/font][b]5.3.4.1 [font=宋体]安培池的结构[/font]5.3.4.2 [font=宋体]热电(戴安)安培检测器(池)的结构[/font][/b][font='Times New Roman','serif']5.3.4.3 [/font][font=宋体]万通安培检测器(池)的结构[/font][font='Times New Roman','serif']5.3.4.4 Antec [/font][font=宋体]安培检测器(池)的结构[/font][font='Times New Roman','serif']5.3.4.5 [/font][font=宋体]工作电极[/font][font='Times New Roman','serif']5.3.4.6 [/font][font=宋体]参比电极[/font][font='Times New Roman','serif']5.3.4.7 [/font][font=宋体]膜片[/font][font='Times New Roman','serif']5.3.5 [/font][font=宋体]薄层式安培池检测响应的关系[/font][font='Times New Roman','serif']5.3.6[/font][font=宋体]安培检测器的应用[/font][b]5.3.6.1 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url][/font]-[font=宋体]直流安培检测技术([/font]IC-CP[font=宋体])[/font]5.3.6.2 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url][/font]-[font=宋体]脉冲安培检测技术([/font]IC-PAD[font=宋体])[/font]5.3.6.3[font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url][/font]-[font=宋体]积分脉冲安培检测技术([/font]IC-IPAD[font=宋体])[/font]5.3.7 [font=宋体]安培检测器各部件的使用和维护[/font]5.3.7.1 [font=宋体]热电安培检测器的使用和维护[/font]5.3.7.2 [font=宋体]万通安培检测器的使用和维护[/font]5.3.8 [font=宋体]安培检测器的故障判断和注意事项[/font][font=宋体][/font][font=宋体][/font][/b][align=left][font='Times New Roman','serif']5.3.1 [/font][font=宋体]安培检测器的发展历史[/font][/align][font=宋体]电化学检测的起源可追溯到[/font][font='Times New Roman','serif']20[/font][font=宋体]世纪初,当时为了发展碳氢燃料,研究了对污染的贵金属电极的再活化。[/font][font='Times New Roman','serif']1924[/font][font=宋体]年,[/font][font='Times New Roman','serif']Hammett[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][15][/font][/sup][font=宋体]首先对[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极施加脉冲电势对其进行清洗。[/font][font='Times New Roman','serif']Armstrong[sup][16][/sup][/font][font=宋体]在[/font][font='Times New Roman','serif']1934[/font][font=宋体]年分别将脉冲电位用于[/font][font='Times New Roman','serif']H[sub]2[/sub][/font][font=宋体]的阳极氧化和[/font][font='Times New Roman','serif']O[sub]2[/sub][/font][font=宋体]的阴极还原。[/font][font='Times New Roman','serif']Kolthoff[/font][font=宋体]和[/font][font='Times New Roman','serif']Tanaka[sup][17][/sup][/font][font=宋体]研究了在多种支持电解质作用下的[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极的极化曲线,为以后通过电位氧化和还原脉冲对电极进行再活化的研究工作奠定了基础。随着[/font][font='Times New Roman','serif']IC[/font][font=宋体]在上世纪七十年代的发展,刺激了贵金属电极表面脉冲电位再活化的发展。[/font][font='Times New Roman','serif']1981[/font][font=宋体]年,爱荷华州立大学的[/font][font='Times New Roman','serif']Johnson[/font][font=宋体]和他的同事以及学生们引入了脉冲安培检测([/font][font='Times New Roman','serif']PAD[/font][font=宋体]),用于测定流动注射系统中[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极上的简单醇和糖类[/font][sup][font='Times New Roman','serif'][18][/font][/sup][font=宋体]。在[/font][font='Times New Roman','serif']Johnson[/font][font=宋体]和[/font][font='Times New Roman','serif'] Dionex[/font][font=宋体]公司(现为[/font][font='Times New Roman','serif']Thermo Scientific[/font][font=宋体])的共同努力下,研制出了第一台能够进行脉冲电化学检测([/font][font='Times New Roman','serif']pulsed electrochemicaldetection, PED[/font][font=宋体])的电化学检测器[/font][sup][font='Times New Roman','serif'][19][/font][/sup][font=宋体]。[/font][font='Times New Roman','serif']1983[/font][font=宋体]年,[/font][font='Times New Roman','serif']Polta[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][21][/font][/sup][font=宋体]采用脉冲安培检测器,[/font][font='Times New Roman','serif']Pt[/font][font=宋体]电极作为工作电极,[/font][font='Times New Roman','serif']NaOH[/font][font=宋体]为淋洗液,成功检测了三种氨基酸,并且灵敏度良好,甘氨酸、苯胺和羟基脯氨酸的检测限分别为[/font][font='Times New Roman','serif']13ng[/font][font=宋体]、[/font][font='Times New Roman','serif']7ng[/font][font=宋体]和[/font][font='Times New Roman','serif']23ng[/font][font=宋体]。[/font][font='Times New Roman','serif']1998[/font][font=宋体]年,[/font][font='Times New Roman','serif']Rocklin[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][22][/font][/sup][font=宋体]开发了一种采用四电位波形的脉冲安培法检测糖类,与常用的三电位波形相比,四电位波形能使工作电极即金电极由于金氧化物形成和溶解而导致的表面损耗最小化,从而提高了检测的信噪比,并且大大提高了测样的长期重现性。[/font][font='Times New Roman','serif']1989[/font][font=宋体]年,[/font][font='Times New Roman','serif']Welch[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][23][/font][/sup][font=宋体]提出了积分脉冲安培检测法([/font][font='Times New Roman','serif']IPAD[/font][font=宋体]),并将其成功应用于氨基酸的检测,[/font][font=宋体]积分安培检测可解决含[/font]N[font=宋体]、[/font]S[font=宋体]等化合物在检测过程中致使电极钝化的问题[/font][font=宋体]。[/font][font='Times New Roman','serif']Clarke[/font][font=宋体]等[/font][sup][font='Times New Roman','serif'][24][/font][/sup][font=宋体]在[/font][font='Times New Roman','serif']1999[/font][font=宋体]年通过对施加电位波形的优化,开发了一种新的不用衍生化的六电位波形检测方法检测氨基酸和氨基糖,基线非常稳定,信噪比和测样重现性都有了很大提高,并且降低了工作电极的损耗,该方法对于大多数分析物的检出限小于[/font][font='Times New Roman','serif']1 pmol[/font][font=宋体]。[/font][font=宋体]就国内而言,最早是在[/font][font='Times New Roman','serif']1985[/font][font=宋体]年南京分析仪器研究所的蒋孝忠等[/font][sup][font='Times New Roman','serif'][25][/font][/sup][font=宋体]制作了薄层流动式安培检测器,其性能良好,并且灵敏度高,成功应用于大白鼠脑组织中的儿茶酚胺类及其代谢物,检测限为[/font][font='Times New Roman','serif']10[sup]-12[/sup] g[/font][font=宋体]。[/font][font='Times New Roman','serif']1987[/font][font=宋体]年,纪华民等[/font][sup][font='Times New Roman','serif'][26][/font][/sup][font=宋体]制造了多工作电极的薄层流通式安培检测器,并且将其与液相色谱结合成功检测了五种儿茶酚胺化合物,检出限达到[/font][font='Times New Roman','serif']10 pg[/font][font=宋体]。[/font][font='Times New Roman','serif']1993[/font][font=宋体]年,吴守国等[/font][sup][font='Times New Roman','serif'][27][/font][/sup][font=宋体]研制了一种多功能安培检测器,具有壁面射流型、薄层型和工作电极串行或并行四种模式。[/font][font='Times New Roman','serif']1996[/font][font=宋体]年,上海分析仪器厂项目组金成等[/font][sup][font='Times New Roman','serif'][28][/font][/sup][font=宋体]成功研制了商品化的脉冲安培检测器[/font][font='Times New Roman','serif']XP-206PAD[/font][font=宋体],并且经过了严格的测试与试用,其性能优异,推动了我国[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]领域的发展。随后国内的科研工作者继续研制了一些新型安培检测器,如毛细管电泳柱端[/font][font='Times New Roman','serif']/[/font][font=宋体]柱上安培检测器、微安培检测器等[/font][sup][font='Times New Roman','serif'][29-32][/font][/sup][font=宋体]。[/font][font=宋体]在2010年前其中上海天美与华东师范大学合作曾成功研制一款脉冲和直流集一体的安培检测器,但后期这款安培检测器并未商品化。[/font][font=宋体]但是这些研制的安培检测器并没有得到良好的实际应用。国内商品化的安培检测器基本仍处于空白。国内[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]厂家目前能见到的是青岛普仁的伏安检测器,盛瀚的直流安培检测器,但并没有相应的使用论文发表。华东理工大学的施超欧,成功研发了脉冲安培检测器,,发表了国内第一篇全国产的脉冲安培检测器的论文[/font][font='Times New Roman','serif'][][/font][font=宋体],安徽皖仪,近日也推出了带脉冲安培检测器的高端[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],目前还有更多的厂家在研发脉冲安培检测器。[/font][b][font=宋体][font=宋体][font='Times New Roman','serif']5.3.2 [/font][font=宋体]国内外主要安培检测器厂家[/font][font=宋体]目前商品化的安培检测器厂家不多,国外主要有荷兰的[/font][font='Times New Roman','serif']Antec[/font][font=宋体]、美国的[/font][font='Times New Roman','serif']Thermo[/font][font=宋体],瑞士[/font][font='Times New Roman','serif']Metrohm[/font][font=宋体]、美国[/font][font='Times New Roman','serif']Agilent[/font][font=宋体]、美国[/font][font='Times New Roman','serif']Waters[/font][font=宋体](其中[/font][font='Times New Roman','serif']Metrohm[/font][font=宋体]、[/font][font='Times New Roman','serif']Agilent[/font][font=宋体]、[/font][font='Times New Roman','serif']Waters OEM Antec[/font][font=宋体]的电化学检测器)、[/font][font=宋体]以及日本的[/font][font='Times New Roman','serif']Shimadzu[/font][font=宋体]等。其中荷兰的[/font][font='Times New Roman','serif']Antec[/font][font=宋体]在电化学检测器上整体实力最强,是国际著名的专业电化学检测器厂家。[/font][/font][/font][font=宋体][font=宋体][font=宋体][img=,502,341]https://ng1.17img.cn/bbsfiles/images/2021/11/202111231033388876_7732_1617661_3.jpg!w502x341.jpg[/img][/font][/font][/font][font=宋体][font=宋体][font=宋体]国外主要安培检测器厂家之间的关系[/font][font='Times New Roman','serif'] [/font][font=宋体]国内[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]厂家还是以电导检测器为主,青岛盛瀚有直流安培检测器,普仁有伏安检测器,可运行脉冲电位,但不能用于糖的分析,安徽皖仪和深圳通用成功开发了脉冲安培检测器,可用于糖的检测,除此外历元等也在研究安培检测器。[/font][/font][/font][font=宋体][font=宋体][/font][/font][/b]

  • 离子色谱脉冲安培检测器

    各位老师,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]脉冲安培检测器基线不稳定是什么原因?

  • 2011年青岛盛瀚第十一届离子色谱培训班

    2011年青岛盛瀚第十一届离子色谱培训班邀 请 函 您好!青岛盛瀚色谱技术有限公司定于2011年9月4日至9月6日在青岛举办第十一届离子色谱培训班,届时公司将邀请:朱 岩(中国分析仪器学会、离子色谱专业委员会副主任;浙江大学教授,在国内外发表离子色谱应用方面学术论文三百余篇)、丁明玉(中国仪器仪表协会、离子色谱专业委员会副主任 ;中国色谱学会、中国仪器仪表协会分析仪器学会和北京色谱学会理事;清华大学教授,在国内外发表学术论文数百篇)、蒋士强(中国仪器仪表学会常务理事)等专家及有数十年从业经验的盛瀚高级工程师就中国离子色谱最新应用技术动态和CIC系列离子色谱仪使用注意事项、日常维护技巧、常见故障排除、考核样操作技巧等与您开展互动讨论。 现特邀盛瀚新老客户和致力于提高离子色谱分析技术的各界同仁报名参加。 会议具体安排如下:时间会议内容9月2-3日报到9月4日上午 专题讲座 下午 专题讲座9月5日学术交流9月6日实验室实际操演 报名截止日期8月25日,会议报到时间2011年9月2日-9月3日.会务费人民币1800元/人(包含培训费500元,住宿餐饮、学术交流及其他费用1300元),路费自理,住宿统一安排。回执单见附件   青岛盛瀚色谱技术有限公司联系电话:0532-80679876 崔小姐 0532-80663777 徐小姐 0532-80663888 范小姐

  • 【原创】盛瀚色谱-----国产离子色谱的骄傲

    盛瀚色谱技术有限公司为四川灾区捐赠了一台CIC-100型[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],用于检测因人体和动物腐蚀后产生的生物胺等有害物质,此检测项目由盛瀚色谱技术有限公司和北京理化分析测试中心共同开发,经过双方技术人员的多次实验,终于获得了成功,为灾区的生活饮用水提供了安全保障。 盛瀚自成立以来一直秉承:付出是为了更好的回报社会---这一精神理念,不断致力于基础研发与创新。时刻做好准备:在企业高速发展的同时,寻找各种途径回报社会,回报人民。 相关报道见公司网站,青岛日报、青岛财经报、北京理化中心都有相关报道。

  • 【原创大赛】国产离子色谱安培检测器快速测定废水中碘离子含量

    【原创大赛】国产离子色谱安培检测器快速测定废水中碘离子含量

    [align=left][font=times new roman][size=24px][color=#ff0000]本论文是国内第一篇采用全国产设备和色谱柱的,使用脉冲安培器的研究论文。[/color][/size][/font][/align][align=left][font='times new roman'][size=16px][/size][/font][/align][align=left][font='times new roman'][size=16px]国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]安培检测器快速测定废水中碘离子含量[/size][/font][/align][align=left][font='times new roman'][size=16px]施超欧[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]*[/size][/font][font='times new roman'][size=16px] 赵晓含[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px] 李泳谊[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px] 李晓[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]张业平[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px] [/size][/font][/align][align=left][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px].[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]华东理工大学 化学与分子工程学院[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]分析测试中心[/size][/font][font='times new roman'][size=16px] 上海 200237[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px].[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]通用(深圳)仪器有限公司 深圳 [/size][/font][font='times new roman'][size=16px][color=#333333]518038[/color][/size][/font][font='times new roman'][size=16px][color=#333333])[/color][/size][/font][/align][align=left][b][font=宋体]摘[/font][font=宋体]要:[/font][/b][font=宋体]目前国内利用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法测定水中碘离子含量的多数报道是利用进口仪器如[/font]Thermo[font=宋体]和[/font]Metrohm[font=宋体],鲜有利用全套国产仪器进行水中碘离子含量的测定,特别是国产脉冲安培检测器并没有相关报道。将在[/font]Thermo ICS5000+ [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]上开发的快速测定水中碘[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]条件应用到全套国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url][/font]-[font=宋体]安培检测器上进行方法学验证实验。结果表明:[/font]I[sup]-[/sup] [font=宋体]在[/font]5 μg/L~100 μg/L[font=宋体]的浓度范围内线性关系良好,相关系数达到[/font]0.9998[font=宋体]以上,进样量[/font]100 μl[font=宋体]时检出限为[/font]1.03 μg/L[font=宋体],定量限为[/font]3.42 μg/L[font=宋体]([/font]3S/N[font=宋体]),进样重复性良好,加标回收率在[/font]93 %~99.4 %[font=宋体]之间。检出限和测定下限仅为国标抑制[/font]-[font=宋体]电导法的[/font]1/5[font=宋体]左右,符合国家标准,能够满足[/font]I[sup]-[/sup] [font=宋体]的低浓度检测,为国产仪器的推广应用提供一个可行的方案。[/font][b][font=宋体]关键词:[/font][/b][font=宋体]国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url] 脉冲安培检测碘离子 快速柱[/font][/align][align=left][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]是液相色谱的一个分支,因其前处理简单,检测灵敏度高,已成为分析无机阴离子的首选方法[/font][sup][1][/sup][font=宋体]。碘离子在天然水体中含量很低,而[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法对低含量的无机阴离子检测灵敏度极高,常见阴离子在电导检测器中检出限[/font]≤10 μg/L[font=宋体],安培检测器基于电活性物质在给定电位下发生氧化或还原反应产生的相应电流为响应,检出限相比电导检测器更低。因此近年来应用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法安培法测定水中碘离子含量愈加广泛。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法测定水中碘离子的检测方法主要有抑制[/font]-[font=宋体]电导法、紫外和安培法,淋洗液通常选用碳酸盐体系或氢氧根体系,碳酸盐体系洗脱能力强且[/font]pH[font=宋体]较低,氢氧根体系洗脱能力弱于碳酸盐体系,但在抑制[/font]-[font=宋体]电导法中检测背景较碳酸盐体系小。张俊华[/font][sup][2][/sup][font=宋体]和李叙柏[/font][sup][3][/sup][font=宋体]利用抑制[/font]-[font=宋体]电导法在氢氧根体系检测水中碘化物,两篇报道的方法检出限小于[/font]0.35 μg/L[font=宋体](进样量[/font]500 μL[font=宋体]),碘离子保留时间为[/font]10 min[font=宋体]左右;宋冰冰等人[/font][sup][4][/sup][font=宋体]利用抑制[/font]-[font=宋体]电导法在碳酸盐体系快速检测水中碘离子,方法检出限为[/font]2 μg/L[font=宋体](进样量[/font]250 μL[font=宋体]),碘离子在[/font]12 min[font=宋体]内出峰;刘克纳等人[/font][sup][5][/sup][font=宋体]在氢氧根体系分别使用电导、直流安培和紫外检测器建立痕量碘离子的快速检测方法,碘离子保留时间分别为[/font]5.97[font=宋体]、[/font]4.43[font=宋体]和[/font]4.46 min[font=宋体],[/font]50 μL[font=宋体]进样量检出限分别为[/font]30[font=宋体]、[/font]1[font=宋体]和[/font]25 μg/L[font=宋体]。蒋园园等人[/font][sup][6][/sup][font=宋体]在碳酸盐体系分别用电导和直流安培检测器测定清洁水样中碘离子含量,进样量[/font]250 μL[font=宋体]时电导检测器检出限为[/font]2 μg/L[font=宋体],直流安培检测器检出限为[/font]0.03 μg/L[font=宋体],碘离子在[/font]22.5 min[font=宋体]出峰。在氢氧根体系使用脉冲安培检测器测定高浓度氯离子存在下的痕量碘离子,佘小林等人[/font][sup][7][/sup][font=宋体]建立的方法检出限为[/font]0.2 μg/L[font=宋体],碘离子在[/font]7 min[font=宋体]内出峰;而韩静等人[/font][sup][8][/sup][font=宋体]使用浓缩柱对饱和卤水中的痕量碘离子进行富集,进样量[/font]50 μL[font=宋体]时检出限低至[/font]0.07 μg/L[font=宋体]。[/font][font=宋体]可以看出,抑制[/font]-[font=宋体]电导法灵敏度较安培法低,因此需要大体积进样才能获得较低的检出限,直流安培法是在固定电位下检测,银工作电极表面容易中毒导致检测重复性和灵敏度稍差,而脉冲安培法具备清洗电位,检测灵敏度和稳定性较直流安培法更优,另外在实际操作中发现,高[/font]pH[font=宋体]条件下[/font]Ag[font=宋体]电极稳定性较差,不超过[/font]2[font=宋体]天就要抛光打磨,而碳酸盐体系下[/font]Ag[font=宋体]电极稳定性较好,可以连续使用一个星期以上。[/font][font=宋体]目前国内利用[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法测定水中碘离子含量的多数报道是利用进口仪器如[/font]Thermo[font=宋体]和[/font]Metrohm[font=宋体],少有利用全套国产仪器进行水中碘离子含量的测定,郭芳芳等人[/font][sup][9][/sup][font=宋体]用青岛盛瀚的[/font]CIC300[font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],抑制[/font]-[font=宋体]电导法检测水中碘离子含量,方法检出限为[/font]2 μg/L[font=宋体],但利用国产安培检测器测定碘离子并没有报道。本文基于针对定制尺寸的碘离子快速分析柱在[/font]Thermo ICS5000+[font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]上开发的快速测定水中碘离子方法,基于碳酸盐体系下,安培检测器的稳定性和重复性优于氢氧根体系,选定了碳酸钠作为淋洗液,脉冲安培法具备更优的检测灵敏度和稳定性。将最佳色谱条件应用到自行研制的全套国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]上,包括自动进样器、四元梯度泵、安培检测器(脉冲电位)、安培检测池、参比电极、[/font]Ag[font=宋体]工作电极([/font]1 mm[font=宋体])和膜片,进行方法学验证实验,由此评价国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器整机的性能。[/font][b]1 [font=宋体]仪器和材料[/font][/b][font=宋体]国产[/font]GI 5000 [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],包括自动进样器,四元梯度泵,[/font]Eclipse[font=宋体]色谱工作站,国产安培检测器[/font]GI-5250[font=宋体],含国产安培检测池、国产参比电极、国产自制银电极([/font]1 mm[font=宋体])、自制膜片([/font]25 μm[font=宋体]),通用(深圳)仪器有限公司;色谱柱为[/font]I[sup]- [/sup][font=宋体]快速分析柱([/font]3*150 mm[font=宋体]),自主定制;[/font]Millipore-QA10[font=宋体]超纯水机,美国[/font]Millipore[font=宋体]公司。[/font][font=宋体]无水[/font]Na[sub]2[/sub]CO[sub]3[/sub][font=宋体],优级纯,纯度[/font]≥99.8%[font=宋体],上海阿拉丁生化科技公司;水中碘,[/font]100 μg/mL[font=宋体],国家有色金属及电子材料分析测试中心。[/font][b]2 [font=宋体]溶液的配制[/font][/b]2.1 [font=宋体]淋洗液的配制[/font][font=宋体]精确称取[/font]4.24 g[font=宋体]无水[/font]Na[sub]2[/sub]CO[sub]3[/sub][font=宋体]于淋洗液瓶中,使用超纯水溶解并超声,定容至[/font]2 L[font=宋体],得到[/font]20 mmol/L[font=宋体]的[/font]Na[sub]2[/sub]CO[sub]3[/sub][font=宋体]溶液作为淋洗液[/font]B[font=宋体]路。[/font]2.2 [font=宋体]标准溶液的配制[/font][font=宋体]移取上述碘标准溶液[/font]1 mL[font=宋体],使用超纯水逐级稀释得到[/font]1 mg/L[font=宋体]的[/font]I[sup]- [/sup][font=宋体]标准溶液,现配现用。[/font]2.3 [font=宋体]样品溶液的配制[/font][font=宋体]采集华东理工大学不同河道排污废水样,使用[/font]0.45 μm[font=宋体]水系微孔滤膜进行过滤,弃去初滤液[/font]3mL[font=宋体]后,将后续废水滤液收集至离心管中,作为待测废水样,冷藏待用。[/font]2.4 [font=宋体]色谱条件[/font][font=宋体]色谱柱:定制尺寸的碘离子快速分析柱[/font]3*150 mm[font=宋体];流速:[/font]0.4 mL/min[font=宋体]。[/font][font=宋体]淋洗液:[/font]A[font=宋体]路[/font][font=宋体]超纯水:[/font]B[font=宋体]路[/font] 20 mmol/L Na[sub]2[/sub]CO[sub]3[/sub]=60:40[font=宋体];[/font][font=宋体]柱温:[/font]30 ℃[font=宋体];进样量:[/font]100 μL[font=宋体];检测器:安培检测器(脉冲电位)。[/font][font=宋体]脉冲电位如表[/font]1[font=宋体]。[/font][/font][/align][align=left][font=宋体][font=宋体][/font][/font][/align][align=center][font=宋体]表[/font]1 [font=宋体]脉冲安培检测电位[/font][/align][align=center]Table 1 Pulse ampere detection potential[/align] [table=304][tr][td] [align=center][font=宋体]时间[/font]/s[/align] [align=center]Time/s[/align] [/td][td] [align=center][font=宋体]电位[/font]/V[/align] [align=center]Potential/V[/align] [/td][/tr][tr][td] [align=center]0.00[/align] [/td][td] [align=center]-0.10[/align] [/td][/tr][tr][td] [align=center]0.20[/align] [/td][td] [align=center]-0.10[/align] [/td][/tr][tr][td] [align=center]0.90[/align] [/td][td] [align=center]-0.10[/align] [/td][/tr][tr][td] [align=center]0.91[/align] [/td][td] [align=center]-1.00[/align] [/td][/tr][tr][td] [align=center]0.93[/align] [/td][td] [align=center]-0.30[/align] [/td][/tr][tr][td] [align=center]1.00[/align] [/td][td] [align=center]-0.30[/align] [/td][/tr][/table][align=left][font=宋体][b]3 [font=宋体]实验结果与讨论[/font][/b]3.1[font=宋体]色谱条件的选择[/font][font=宋体]基于定制柱的尺寸(直径[/font]3 mm[font=宋体])选定流速为[/font]0.4 mL/min[font=宋体];选取[/font]303.13 K[font=宋体]([/font]30 [font=宋体]℃)保证方法普适性与检测灵敏度;[/font]Ag[font=宋体]工作电极在高[/font]pH[font=宋体]环境下稳定性较差,使检测背景逐渐升高,而碳酸钠体系,[/font]pH[font=宋体]较低,[/font]Ag[font=宋体]电极稳定性较好,同时考虑可兼容电导,因此最终选择[/font]8.0 mmol/L[font=宋体]的[/font]Na[sub]2[/sub]CO[sub]3[/sub][font=宋体]。[/font]3.2 [font=宋体]干扰实验[/font][font=宋体]为验证该体系下其他阴离子对于[/font]I[sup]-[/sup] [font=宋体]的测定无影响,以在安培检测器上有响应的[/font]Br[sup] -[/sup][font=宋体]、[/font]CN[sup]-[/sup][font=宋体]、[/font]S[sup]2-[/sup][font=宋体]、[/font]SCN[sup]- [/sup][font=宋体]共[/font]4[font=宋体]种常见阴离子进行干扰实验,在安培检测器上[/font]Br[sup] -[/sup][font=宋体]、[/font]CN[sup]-[/sup][font=宋体]、[/font]S[sup]2-[/sup][font=宋体]、[/font]SCN[sup]-[/sup] [font=宋体]均不会对[/font]I[sup]-[/sup] [font=宋体]在该定制柱上的保留时间和相应峰高、峰面积产生影响,该体系适用于实际样品中[/font]I[sup]-[/sup] [font=宋体]的测定。[/font]3.3 [font=宋体]线性关系和检出限[/font][font=宋体]在最佳色谱条件下,对配制好的一系列的线性标准溶液在国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器上进行测定,采用[/font]100 μL[font=宋体]定量环。每个浓度的[/font]I[sup]-[/sup] [font=宋体]标准溶液平行测定[/font]3[font=宋体]次,检测结果如下表。[/font][/font][/align][align=left][font=宋体][font=宋体][/font][/font][/align][align=center][font=宋体]表[/font]2 [font=宋体]不同浓度的[/font]I- [font=宋体]标准样品的安培检测结果[/font][/align][align=center]Table 2 Amperometric detection results of I- standard samples with different concentrations [/align] [table=479][tr][td] [align=center][font=宋体]浓度[/font][/align] [/td][td] [align=center][font=宋体]峰面积[/font][/align] [/td][td] [align=center]RSD%[/align] [/td][td] [align=center][font=宋体]峰高[/font][/align] [/td][td] [align=center]RSD%[/align] [/td][td] [align=center][font=宋体]噪音[/font][/align] [/td][td] [align=center][font=宋体]背景[/font][/align] [/td][/tr][tr][td] [align=center]/(μg/L[font=宋体])[/font][/align] [/td][td] [align=center]/(nC*s)[/align] [/td][td] [align=center][font=宋体]([/font]n=3[font=宋体])[/font][/align] [/td][td] [align=center]/nC[/align] [/td][td] [align=center][font=宋体]([/font]n=3[font=宋体])[/font][/align] [/td][td] [align=center]/nC[/align] [/td][td] [align=center]/nC[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]3.970[/align] [/td][td] [align=center]2.4[/align] [/td][td] [align=center]0.2267[/align] [/td][td] [align=center]2.5[/align] [/td][td] [align=center]0.014[/align] [/td][td] [align=center]2.850[/align] [/td][/tr][tr][td] [align=center]10[/align] [/td][td] [align=center]8.640[/align] [/td][td] [align=center]1.9[/align] [/td][td] [align=center]0.4533[/align] [/td][td] [align=center]1.3[/align] [/td][td] [align=center]0.016[/align] [/td][td] [align=center]2.860[/align] [/td][/tr][tr][td] [align=center]25[/align] [/td][td] [align=center]20.04[/align] [/td][td] [align=center]0.32[/align] [/td][td] [align=center]1.083[/align] [/td][td] [align=center]0.53[/align] [/td][td] [align=center]0.013[/align] [/td][td] [align=center]2.860[/align] [/td][/tr][tr][td] [align=center]50[/align] [/td][td] [align=center]40.44[/align] [/td][td] [align=center]0.38[/align] [/td][td] [align=center]2.117[/align] [/td][td] [align=center]0.98[/align] [/td][td] [align=center]0.016[/align] [/td][td] [align=center]2.870[/align] [/td][/tr][tr][td] [align=center]100[/align] [/td][td] [align=center]81.22[/align] [/td][td] [align=center]1.4[/align] [/td][td] [align=center]4.100[/align] [/td][td] [align=center]0.98[/align] [/td][td] [align=center]0.012[/align] [/td][td] [align=center]2.860[/align] [/td][/tr][tr][td] [align=center][font=宋体]线性关系[/font][/align] [/td][td=2,1] [align=center]y = 0.8105x + 0.062[/align] [/td][td=2,1] [align=center]y = 0.0407x + 0.0498[/align] [/td][/tr][tr][td] [align=center]R2[/align] [/td][td=2,1] [align=center]0.9999[/align] [/td][td=2,1] [align=center]0.9998[/align] [/td][/tr][/table][align=left][font=宋体][font=宋体]如表[/font]2[font=宋体]所示,在国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器上进行[/font]I[sup]- [/sup][font=宋体]测定时,每个浓度的[/font]I[sup]- [/sup][font=宋体]标准溶液平行测定的[/font]RSD[font=宋体]值≤[/font]2.5 %[font=宋体],说明国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器状态较为稳定。工作电极打磨后,背景值较低,稳定在[/font]2.860 nC[font=宋体]附近,噪音则≤[/font]0.016 nC[font=宋体]。[/font][font=宋体]使用国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]测定[/font]I[sup]- [/sup][font=宋体]时,在[/font]5 μg/L~100 μg/L[font=宋体]的浓度范围内线性关系良好,峰面积相关系数达到[/font]0.9999[font=宋体]以上。经计算可得,检出限为[/font]1.03 μg/L[font=宋体],定量限为[/font]3.42 μg/L[font=宋体]([/font]3[font=宋体]倍信噪比)。[/font]3.4 [font=宋体]重复性[/font][font=宋体]为考察该国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url][/font]-[font=宋体]安培检测器是否符合实际检测应用需求,需进一步考察其稳定性。分别取高中低浓度的标准样品溶液:[/font]10 μg/L[font=宋体]、[/font]50 μg/L[font=宋体]、[/font]250 μg/L[font=宋体]的[/font] I[sup]- [/sup][font=宋体]标准溶液连续进样,每个标准浓度重复测定[/font]8[font=宋体]次,结果如下表[/font]3[font=宋体]。[/font][/font][/align][align=center][font=宋体]表[/font]3 [font=宋体]国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]上不同浓度的[/font]I[sup]-[/sup] [font=宋体]标准样品的重复性考察结果([/font]n=8[font=宋体])[/font][/align][align=left][font=宋体][font=宋体] [/font][/font][table=628][tr][td=1,2] [align=center][font=宋体]序号[/font][/align] [/td][td=4,1] [align=center]10 μg/L[/align] [/td][td=3,1] [align=center]50 μg/L[/align] [/td][td=4,1] [align=center]250 μg/L[/align] [/td][/tr][tr][td] [align=center]t[sub]R[/sub][/align] [align=center]/min[/align] [/td][td] [align=center][font=宋体]峰面积[/font][/align] [align=center]/(nC*s)[/align] [/td][td] [align=center][font=宋体]峰高[/font][/align] [align=center]/nC[/align] [/td][td=2,1] [align=center]t[sub]R[/sub][/align] [align=center]/min[/align] [/td][td] [align=center][font=宋体]峰面积[/font][/align] [align=center]/(nC*s)[/align] [/td][td=2,1] [align=center][font=宋体]峰高[/font][/align] [align=center]/nC[/align] [/td][td] [align=center]t[sub]R[/sub][/align] [align=center]/min[/align] [/td][td] [align=center][font=宋体]峰面积[/font][/align] [align=center]/(nC*s)[/align] [/td][td] [align=center][font=宋体]峰高[/font][/align] [align=center]/nC[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]5.36[/align] [/td][td] [align=center]8.340[/align] [/td][td] [align=center]0.46[/align] [/td][td=2,1] [align=center]5.34[/align] [/td][td] [align=center]41.02[/align] [/td][td=2,1] [align=center]2.16[/align] [/td][td] [align=center]5.29[/align] [/td][td] [align=center]190.9[/align] [/td][td] [align=center]9.38[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]5.36[/align] [/td][td] [align=center]8.240[/align] [/td][td] [align=center]0.48[/align] [/td][td=2,1] [align=center]5.33[/align] [/td][td] [align=center]41.06[/align] [/td][td=2,1] [align=center]2.18[/align] [/td][td] [align=center]5.29[/align] [/td][td] [align=center]188.4[/align] [/td][td] [align=center]9.31[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]5.36[/align] [/td][td] [align=center]8.680[/align] [/td][td] [align=center]0.46[/align] [/td][td=2,1] [align=center]5.33[/align] [/td][td] [align=center]42.25[/align] [/td][td=2,1] [align=center]2.20[/align] [/td][td] [align=center]5.30[/align] [/td][td] [align=center]187.0[/align] [/td][td] [align=center]9.23[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]5.36[/align] [/td][td] [align=center]8.530[/align] [/td][td] [align=center]0.46[/align] [/td][td=2,1] [align=center]5.33[/align] [/td][td] [align=center]41.11[/align] [/td][td=2,1] [align=center]2.16[/align] [/td][td] [align=center]5.30[/align] [/td][td] [align=center]187.0[/align] [/td][td] [align=center]9.33[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]5.36[/align] [/td][td] [align=center]8.260[/align] [/td][td] [align=center]0.45[/align] [/td][td=2,1] [align=center]5.33[/align] [/td][td] [align=center]40.58[/align] [/td][td=2,1] [align=center]2.16[/align] [/td][td] [align=center]5.29[/align] [/td][td] [align=center]190.3[/align] [/td][td] [align=center]9.34[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]5.35[/align] [/td][td] [align=center]8.370[/align] [/td][td] [align=center]0.46[/align] [/td][td=2,1] [align=center]5.32[/align] [/td][td] [align=center]40.55[/align] [/td][td=2,1] [align=center]2.16[/align] [/td][td] [align=center]5.30[/align] [/td][td] [align=center]186.2[/align] [/td][td] [align=center]9.27[/align] [/td][/tr][tr][td] [align=center]7[/align] [/td][td] [align=center]5.35[/align] [/td][td] [align=center]8.480[/align] [/td][td] [align=center]0.46[/align] [/td][td=2,1] [align=center]5.33[/align] [/td][td] [align=center]42.52[/align] [/td][td=2,1] [align=center]2.20[/align] [/td][td] [align=center]5.29[/align] [/td][td] [align=center]188.2[/align] [/td][td] [align=center]9.44[/align] [/td][/tr][tr][td] [align=center]8[/align] [/td][td] [align=center]5.36[/align] [/td][td] [align=center]8.040[/align] [/td][td] [align=center]0.45[/align] [/td][td=2,1] [align=center]5.33[/align] [/td][td] [align=center]41.43[/align] [/td][td=2,1] [align=center]2.20[/align] [/td][td] [align=center]5.29[/align] [/td][td] [align=center]192.0[/align] [/td][td] [align=center]9.34[/align] [/td][/tr][tr][td] [align=center]RSD%[/align] [/td][td] [align=center]0.086[/align] [/td][td] [align=center]2.4[/align] [/td][td] [align=center]2.0[/align] [/td][td=2,1] [align=center]0.10[/align] [/td][td] [align=center]1.7[/align] [/td][td=2,1] [align=center]0.91[/align] [/td][td] [align=center]0.10[/align] [/td][td] [align=center]1.1[/align] [/td][td] [align=center]0.69[/align] [/td][/tr][/table][/align][align=left][font=宋体]从表中可得,保留时间的重复性最佳,[/font]RSD[font=宋体]值均≤[/font]0.10%[font=宋体],峰高的[/font]RSD[font=宋体]值≤[/font]2.0%[font=宋体],峰面积的[/font]RSD[font=宋体]值在[/font]2.4%[font=宋体]以下,以上结果表明该国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url][/font]-[font=宋体]安培检测器的检测重复性良好,可满足检测需求。[/font]3.5 [font=宋体]实际样品的测定和加标回收率[/font]I[sup]-[/sup] [font=宋体]标样色谱图如图[/font]1[font=宋体],使用相同的色谱条件,将待测废水样品在国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器上直接进样进行分析,未检测出碘离子。加标废水样品色谱图如图[/font]2[font=宋体]。[/font][img=,452,348]https://ng1.17img.cn/bbsfiles/images/2021/09/202109211739586401_7706_1617661_3.jpg!w452x348.jpg[/img][img=,452,348]https://ng1.17img.cn/bbsfiles/images/2021/09/202109211740039838_3464_1617661_3.jpg!w452x348.jpg[/img][/align][align=center][font=宋体]图[/font]1 I[sup]- [/sup][font=宋体]标样色谱图 [/font][font=宋体]图[/font][font=宋体]2 [/font][font=宋体]加标废水样品的检测图谱[/font][/align][align=center][font=宋体][font=宋体]进行高低两个水平的加标回收测定,平行测定[/font]6[font=宋体]次。检测结果如表[/font]4[font=宋体]所示。[/font][/font][/align][align=center][font=宋体]表[/font]4 [font=宋体]废水样品检测结果、加标量以及回收率测定[/font][/align][align=center]Table 4 The detection results, standard addition and recovery rate determinationof wastewater samples [/align] [table=505][tr][td] [align=center][font=宋体]测定次数[/font][/align] [/td][td] [align=center][font=宋体]加标量[/font]1[font=宋体]([/font]15μg/L[font=宋体])[/font][/align] [align=center][font=宋体]测定值[/font]μg/L[/align] [/td][td] [align=center][font=宋体]加标量[/font]2[font=宋体]([/font]25μg/L[font=宋体])[/font][/align] [align=center][font=宋体]测定值[/font]μg/L[/align] [/td][td] [align=center][font=宋体]加标回收率[/font]1[/align] [align=center]%[/align] [/td][td] [align=center][font=宋体]加标回收率[/font]2[/align] [align=center]%[/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [align=center]14.34[/align] [/td][td] [align=center]23.25[/align] [/td][td] [align=center]95.6[/align] [/td][td] [align=center]93.0[/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=center]14.62[/align] [/td][td] [align=center]23.40[/align] [/td][td] [align=center]97.5[/align] [/td][td] [align=center]93.6[/align] [/td][/tr][tr][td] [align=center]3[/align] [/td][td] [align=center]14.62[/align] [/td][td] [align=center]24.21[/align] [/td][td] [align=center]97.5[/align] [/td][td] [align=center]96.8[/align] [/td][/tr][tr][td] [align=center]4[/align] [/td][td] [align=center]14.65[/align] [/td][td] [align=center]24.24[/align] [/td][td] [align=center]97.7[/align] [/td][td] [align=center]97.0[/align] [/td][/tr][tr][td] [align=center]5[/align] [/td][td] [align=center]14.73[/align] [/td][td] [align=center]24.60[/align] [/td][td] [align=center]98.2[/align] [/td][td] [align=center]98.4[/align] [/td][/tr][tr][td] [align=center]6[/align] [/td][td] [align=center]14.77[/align] [/td][td] [align=center]24.85[/align] [/td][td] [align=center]98.5[/align] [/td][td] [align=center]99.4[/align] [/td][/tr][/table][font=宋体]总的来看,加标回收率集中在[/font]93.0%~99.4%[font=宋体]之间,符合国家标准。以上数据表明,国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url][/font]-[font=宋体]安培检测器的开发已经较为成熟,可满足实际样品的分析测定。[/font]3.6 [font=宋体]与国标方法对比[/font][font=宋体]将采用全套国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器([/font]GI-5000[font=宋体])测定结果的检出限和定量限,与进口仪器测定结果和国标方法规定值进行对比。[/font][align=center][font=宋体]表[/font]5 [font=宋体]国产仪器检测灵敏度与国标方法对比[/font][/align][align=center]Table 5 Comparison of detection sensitivity of domestic instruments withnational standard methods[font=宋体]([/font]3S/N[font=宋体])[/font][/align] [table=693][tr][td] [align=center][font=宋体]仪器设备[/font][/align] [/td][td] [align=center][font=宋体]方法[/font][/align] [/td][td] [align=center][font=宋体]进样量[/font]/μL[/align] [/td][td] [align=center][font=宋体]检出限[/font]/(μg/L)[/align] [/td][td] [align=center][font=宋体]定量限[/font]/(μg/L)[/align] [/td][/tr][tr][td] [align=center][font=宋体]进口仪器[/font][/align] [/td][td] [align=center][font=宋体]常规阴离子交换柱[/font]-[font=宋体]抑制电导法[/font][sup][10][/sup][/align] [/td][td] [align=center]250[/align] [/td][td] [align=center]2.00[/align] [/td][td] [align=center]8.00[/align] [/td][/tr][tr][td] [align=center]GI 5000[/align] [/td][td] [align=center][font=宋体]定制[/font]I[sup]- [/sup][font=宋体]快速分析柱[/font]-[font=宋体]安培检测器[/font][/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]1.03[/align] [/td][td] [align=center]3.42[/align] [/td][/tr][/table][font=宋体]如表[/font]5[font=宋体]所示,采用全套国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]器设备,并采用定制柱开发的方法测定[/font]I[sup]- [/sup][font=宋体],灵敏度高,检出限低,仅为国标方法检出限和测定下限的[/font]1/5[font=宋体]左右(按照相同的进样量换算),符合国家标准,能够满足[/font]I[sup]- [/sup][font=宋体]的低浓度快速检测。根据众多用户的反馈,在很多情况下即使根据国标法采用进口设备进行检测,很多情况下也难以达到[/font]2 μg/L[font=宋体]的检出限,而采用本文的全套国产安培系统,在常规的条件下,检出限优于国标中的抑制[/font]-[font=宋体]电导法,实际操作难度更低,可为实验提供更为可靠简单的方案。[/font][b]4 [font=宋体]结论[/font][/b][font=宋体]利用全套国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url][/font]-[font=宋体]安培检测器对已开发方法进行方法学验证实验,结果表明:国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url][/font]-[font=宋体]安培检测器测定[/font]I[sup]- [/sup][font=宋体]时,在[/font]5 μg/L~100 μg/L[font=宋体]的浓度范围内线性关系及进样重复性良好,加标回收率在[/font]93%~99.4%[font=宋体]之间,在[/font]250 μL[font=宋体](换算后)进样量时检出限和定量限为国标方法的[/font]1/5[font=宋体]左右,能够实现[/font]I[sup]- [/sup][font=宋体]的低浓度快速检测,这填补了国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]尤其是安培检测器应用的空白。[/font][align=center][font=宋体][font=宋体][/font][/font][/align][align=center][font=宋体]参考文献[/font][1][font='Times New Roman'] [/font]MouS F, Liu K N, Ding X J. Ion Chromatography Method and Application (2[sup]nd[/sup]Edition) [M].Beijing: Chemical IndustryPress, 2005: 1.[font=宋体]牟世芬[/font],[font=宋体]刘克纳[/font], [font=宋体]丁晓静[/font]. [font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]方法及应用[/font]. [font=宋体]第[/font]2[font=宋体]版[/font][M]. [font=宋体]北京[/font]: [font=宋体]化学工业出版社[/font], 2005: 1.[2][font='Times New Roman'] [/font]ZhangJ H. Shanxi Science and Technology[J], 2020,35(2): 94-96.[font=宋体]张俊华[/font].[font=宋体]山西科技[/font][J], 2020,35(2): 94-96.[3][font='Times New Roman'] [/font]LiX B, Zhang Y, Jiang W W. Water Purification Technology[J], 2017,36(4): 84-86.[font=宋体]李叙柏[/font],[font=宋体]张琰[/font],[font=宋体]姜巍巍[/font]. [font=宋体]净水技术[/font][J], 2017,36(4): 84-86.[4][font='Times New Roman'] [/font]SongB B, Tian Y, Li R Y, Qin D L, Lin H L, Guo Q, Zhu Y, Luo Y P. TheAdministration and Technique of Environmental Monitoring[J], 2017,29(4): 50-52,56.[font=宋体]宋冰冰[/font],[font=宋体]田耘[/font], [font=宋体]李仁勇[/font], [font=宋体]秦迪岚[/font], [font=宋体]林海兰[/font], [font=宋体]郭倩[/font], [font=宋体]朱颖[/font], [font=宋体]罗岳平[/font]. [font=宋体]环境监测管理与技术[/font][J], 2017,29(4):50-52,56.[5][font='Times New Roman'] [/font]LiuK N, Mou S F, Chai C W. PTCA (PART B: CHEMICAL ANALYSIS) [J], 2001,37(8): 337-338,342.[font=宋体]刘克纳[/font],[font=宋体]牟世芬[/font], [font=宋体]柴成文[/font]. [font=宋体]理化检验[/font] ([font=宋体]化学分册[/font]) [J],2001,37(8):337-338,342.[6][font='Times New Roman'] [/font]JinagY Y, Cheng H, Xu L. Environmental Monitoring and Forewarning[J], 2020,12(2): 31-35.[font=宋体]蒋园园[/font],[font=宋体]程海[/font], [font=宋体]徐蕾[/font]. [font=宋体]环境监控与预警[/font][J], 2020,12(2): 31-35.[7][font='Times New Roman'] [/font]SheX L, Li R Y, Chen Y Y, Hu L. Modern Scientific Instruments[J], 2010(6): 139-140.[font=宋体]佘小林[/font],[font=宋体]李仁勇[/font], [font=宋体]陈园园[/font], [font=宋体]胡兰[/font]. [font=宋体]现代科学仪器[/font][J], 2010(6):139-140.[8][font='Times New Roman'] [/font]HanJ, Liang L N, Mou S F, Cai Y Q, Lu Y Q. Chinese Journal of Analytical Chemistry[J],2008,36(2):187-191.[font=宋体]韩静[/font],[font=宋体]梁立娜[/font], [font=宋体]牟世芬[/font], [font=宋体]蔡亚岐[/font], [font=宋体]鲁毅强[/font]. [font=宋体]分析化学[/font][J],2008,36(2): 187-191.[9][font='Times New Roman'] [/font]GuoF F, Dai C, Zhang S Y. Chemical Enterprise Management[J],2017(35): 192.[font=宋体]郭芳芳[/font],[font=宋体]戴超[/font], [font=宋体]张书玉[/font]. [font=宋体]化工管理[/font][J],2017(35): 192.[10][font='Times New Roman'] [/font]HJ 778-2015 Waterquality-Determination of iodide-Ion chromatiography[s].HJ 778-2015 [font=宋体]水质[/font][font=宋体]碘化物的测定[/font][font=宋体][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]法[/font][s]. [/s][/s][/align][align=left][font=宋体][b][font='Times New Roman','serif'][/font][/b][/font][/align]

  • 【讨论】寻配脉冲安培检测器的离子色谱

    想了解下配脉冲安培检测器的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]多吗?北京地区有哪家不错的可对外使用?因为在糖测定上有优势,一直在关注中.

  • 国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物

    国产离子色谱-脉冲安培检测器测定饮料中常见的糖类化合物郎 蕾1,刘格林1,2,施超欧3*(华东理工大学化学与分子工程学院 分析测试中心,上海 200237)摘要:使用国产离子色谱系统检测饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖,并进行方法学验证。结果表明,5种糖类化合物在各自线性范围内R2不小于0.9990,对葡萄糖、果糖、乳糖、蔗糖和麦芽糖的检出限(RSN=3)分别为3.42 μgL-1、11.4 μgL-1;6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。5种糖类化合物的相对标准偏差均小于2.47%,样品的加标回收率范围在94.13% ~ 114.2%之间,均符合相关检测标准要求,能应用于日常实验室的常规糖分析。为考察国产仪器分析的准确性和评价主要模块的性能,与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000-液相色谱示差检测器系统进行比较,对比结果表明,三者的分析结果一致性良好,其中国产脉冲安培离子色谱系统的检出限和定量限比Thermo仪器高3~4倍,除此之外,国产离子色谱仪器各个模块性能稳定,可满足常规糖类化合物含量的测定,填补国产离子色谱在糖类化合物检测领域的空白。关键词:国产离子色谱仪;国产脉冲安培检测器;饮料;糖类化合物中文分类号:O657.7+5 文献标志码:A Determination of Common Carbohydrate Compounds in Beverages by Ion Chromatography with Pulsed Amperometric Detector Made by MyselfLANG Lei1,LIU Gelin1,2,SHI Chaoou3*(Analysis and Research Center,East China University of Science and Technology,Shanghai 200237)Abstract: Using the self-developed pulse amperometric detector, it is assembled with other domestic instrument components to form a complete set of domestic ion chromatography instruments, and applied to the analysis of glucose, fructose, lactose, sucrose and maltose commonly found in beverages, and methodological verification. The results showed that the R2 of the five carbohydrate compounds was not less than 0.9990 in their respective linear ranges, and the detection limits (RSN=3) for glucose, fructose, lactose, sucrose and maltose were 3.42 μgL-1 and 11.4 μgL-1, respectively. 6.76 μgL-1、22.5 μgL-1;10.1 μgL-1。 The relative standard deviation of the five carbohydrates was less than 2.47%, and the spiked recovery of the samples ranged from 94.13% to 114.2%. All meet the requirements of relevant testing standards and can be applied to daily laboratory testing. And in the full import Thermo ICS-5000+ ion chromatography system and Dionex Ultimate 3000 liquid chromatography difference detector repeated the same experimental process, the comparison results show that the analysis results are consistent, but the domestic amperometer detection limit and quantitative limit is 3 to 4 times higher than the imported instrument, the reason for the exploration is that there is a certain gap between the domestic pump and the inlet pump in the stable output mobile phase. The performance of each module and machine of domestic ion chromatography instrument is stable.Keywords:Domestic ion chromatography Domestic pulse amperometric detector Soft drinks Carbohydrate compounds 糖类是植物和动物的主要能量来源,对生理活动等有着极大影响。食品中常见中的糖主要包括葡萄糖、果糖、乳糖、蔗糖和麦芽糖。目前检测食品中糖的测定方法主要有化学法、酶比色法、酶电极法、高效液相色谱法、气相色谱法,毛细管电泳法和高效阴离子交换色谱法等。其中高效液相色谱法测糖主要包括高效液相色谱-示差折光法、高效液相-蒸发光散射法和高效液相质谱法等。高效液相色谱-示差折光检测法只适用于等度洗脱的测试,且只适用于高浓度含量糖样品的分析,在进行多组分分析时效果不好。高效液相色谱-蒸发光散射法对不挥发的溶质具有较高的检测灵敏度,蒸发发光法不受溶剂成分及温度的影响,能够进行梯度洗脱的测试,适于低聚糖的分析。近年来,该方法主要应用于中药材、烟草、食品中糖含量的测定。高效阴离子交换色谱-脉冲安培(high performance anion exchange chromatography with pulsed amperometric detection,HPAEC-PAD)法采用NaOH为流动相,并添加NaAc。能实现糖醇、单糖、双糖、寡糖、低聚糖、多糖以及糖衍生物的分析。其在检测糖时主要使用金电极的脉冲安培检测器,可检测ugL-1级的糖,不需要进行衍生反应和复杂的样品纯化处理,基体干扰少,有着较好的方法重复性和稳定性。但是,目前国内所有文献安培法测糖的报道都使用进口检测器,未见国产安培检测器的应用报道。目前带脉冲安培检测器的进口离子色谱仪器价格昂贵,维护费用高。因此,开发国产带脉冲安培检测器的离子色谱仪十分必要。本实验使用GI5000离子色谱系统包含脉冲安培检测器,对饮料中常见的葡萄糖、果糖、乳糖、蔗糖和麦芽糖的分析,进行了相关的方法学实验,并选取了三种市面上常见的含糖饮料进行了检测。与Thermo ICS-5000+离子色谱安培检测系统和Dionex Ultimate 3000液相色谱示差检测器系统进行比较,以此来验证GI5000离子色谱系统在检测糖类化合物方面的性能,从而填补了国产离子色谱仪器对糖类化合物检测的空白,同时考察了国产自研安培检测器和国产泵与进口仪器的性能差距。 1 试验部分 1.1 仪器与试剂GI5000离子色谱系统:包括GI3000软件、四元梯度泵、自动进样器和GI5250安培检测器(包括自研安培检测池、自研参比电极和自研Au工作电极); Thermo ICS 5000+离子色谱系统,包括变色龙7.2软件、SP-DP单元四元梯度泵、AS-AP自动进样器、DC模块(带安培检测器)。Dionex Ultimate 3000液相色谱系统,包括变色龙6.8软件、四元梯度泵、自动进样器、柱温箱和RI-101型示差折光检测器Millipore-Q A10超纯水系统,AL204电子分析天平。5种糖混合标准储备溶液:1.000 gL-1,称取葡萄糖51.0 mg、果糖50.5 mg、乳糖50.5 mg、蔗糖51.0 mg、麦芽糖51.0 mg于50 mL容量瓶中,加入超纯水充分溶解后定容至刻度,储存于于4 ℃冰箱中冷藏保存,可放置半个月。使用时用超纯水稀释到所需质量浓度。可口可乐溶液:先将可口可乐溶液进行超声处理,用0.22 μm的滤膜进行过滤,称取可乐样品126 mg,加入超纯水稀释50倍。样品溶液:将样品1(脉动饮料)和2(茶π饮料)用0.22μm的滤膜进行过滤,再分别称取496 mg和507 mg于50 ml容量瓶中,加入超纯水定容至刻度,得到浓度为9920 mgL-1和10140mgL-1的两份实际样品溶液。使用时用超纯水稀释到所需质量浓度。50% NaOH(W/W)(电子级) 德国Merck公司;D-无水葡萄糖( D-Glucose anhydrous,≥98%) 上海笛柏化学品有限公司;D-果糖(D-Fructose,≥99%)、蔗糖(sucrose,≥99.5%)、麦芽糖(maltose,≥98%) 上海阿拉丁生化科技股份有限公司;无水乳糖(lactose,≥98%) 上海麦克林生化科技有限公司;可口可乐、实际样品1(脉动)和实际样品2(茶π),均为超市购买;实验用水均采用电阻率不低于18.2 MΩcm的超纯水。所有试剂使用前均使用0.22 μm的滤膜过滤。1.2 色谱条件GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统:Dionex CarboPac PA1色谱柱(250 mm×4 mm),Dionex CarboPac PA1保护柱(50 mm×4 mm);柱温为30℃;流量为1 mlmin-1;进样量为25 μL;流动相为200 mmolNaOH溶液;安培检测器电位波形为糖标准四电位。图1为5 mgL-1 5种糖类化合物混合标准溶液在GI5000离子色谱系统中的色谱图。Dionex Ultimate 3000液相色谱系统:Shodex-SP0810色谱柱(8.0 mm×300 mm);柱温70 ℃;流量为1mlmin-1;进样量为25μL;流动相为超纯水。 https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708218665_5415_3389662_3.jpg!w310x240.jpg 图1 5种糖类混合标准溶液色谱图Fig.1 Chromatogram of mixed solution of 5 sugar standards 2 结果与讨论2.1 GI5000离子色谱系统与Thermo ICS-5000+离子色谱系统灵敏度对比实验显示GI5000离子色谱仪器的噪音稳定在0.12 nC,而Thermo ICS-5000+离子色谱仪器的噪音稳定在0.02 nC,探索了造成这种现象的原因,首先将与检测器相连接的安培池体部件进行了拆卸,对自研Au工作电极进行打磨维护,冲洗了自研参比电极,重新组装后安装在Thermo安培检测器上,用Thermo DP泵进行测试,观察Au工作电极噪音的变化,结果发现噪音值稳定在0.02 nC,与进口安培池体噪音一致,排除了自研安培池体部件对噪音的影响。又将自研安培池体转移至GI5250安培检测器上并与Thermo DP泵串联起来进行测试,噪音值稳定在0.06 nC,说明GI5250安培检测器自身和国产泵较进口仪器存在一定差距,但已符合日常的检测灵敏度的要求。2.2 方法学验证1)标准曲线分别配置质量浓度为0.2、0.5、1.0、2.0、5.0 mgL-1的5种糖类化合物混合标准溶液,以质量浓度(x,mgL-1)为横坐标,以峰面积(y)为纵坐标,绘制标准曲线。各组分的线性范围、线性方程、相关系数、检出限(RSN=3)和定量限(RSN=10)见表1,5种糖类化合物在各自线性范围内线性关系R2不小于0.9990,满足分析方法的要求。Thermo ICS-5000+离子色谱系统对葡萄糖、果糖、乳糖蔗糖和麦芽糖的检出限和定量限分别为1.200 μgL-1、4.010 μgL-1;1.830 μgL-1、6.100 μgL-1;2.960 μgL-1、9.860 μgL-1;6.230 μgL-1、20.78 μgL-1;10.15 μgL-1、33.82 μgL-1。 表1 GI5000离子色谱仪测定5种糖类化合物的线性数据和检出限Table 1 The GI5000 ion chromatograph determines linear data and detection limits for five carbohydrate compounds糖类化合物线性范围/(mgL-1)线性方程相关系数检出限/(μgL-1)定量限/(μgL-1)葡萄糖0.2~5y = 621.5x + 24.910.99983.42011.40果糖0.2~5y = 366.7x + 23.920.99966.75922.53乳糖0.2~5y = 328.0x + 39.460.999010.1233.72蔗糖0.2~5y = 218.1x + 21.340.999320.4368.09麦芽糖0.2~5y = 272.5x + 14.950.999031.37104.6 2)进样重复性取适量的浓度为5 mgL-1的5种糖类化合物混合标准溶液于进样瓶中,分两批分别在GI5000离子色谱系统和Thermo ICS-5000+离子色谱系统上重复进样8次,记录所测得的峰高和峰面积,计算RSD实验结果如表2所示,表明葡萄糖、果糖、乳糖、蔗糖和麦芽糖的峰高和峰面积RSD≤2.47%,结果稳定,与Thermo ICS-5000+离子色谱系统检测结果的RSD几乎一致,说明了GI5000离子色谱系统在重复性方面与进口仪器保持一致,性能良好,实验结果稳定可靠。 表2 5种糖类化合物进样重复性考察结果Table 2 Results of repeated sampling of five sugars糖类化合物GI5000Thermo ICS-5000+峰高RSD/(%)峰面积RSD/(%)峰高RSD/(%)峰面积RSD/(%)葡萄糖0.570.481.411.56果糖0.560.481.982.19果糖0.720.912.172.54蔗糖0.932.471.251.40麦芽糖0.841.780.460.51 3)5种糖类化合物加标回收率测定对可口可乐样品进行加标回收率实验,对于样品中含有的糖类化合物,以其质量分数的80%、100%和120%进行加标,重复进样5次,计算峰面积的RSD,检测结果如表3所示,样品的加标回收率范围在94.13%~114.2%之间,相对标准偏差在0.22%~4.14%。经计算得,可口可乐中葡萄糖质量浓度为41.6 gL-1,果糖质量浓度为54.4 gL-1、乳糖质量浓度为1.5 gL-1、蔗糖质量浓度为4.1 gL-1、麦芽糖质量浓度为1.8 gL-1,总含糖量为103.4 gL-1,可口可乐厂家标注碳水化合物总量为104.6 gL-1,误差1.14%,说明检测结果可靠。图2为可口可乐样品色谱图。 表3 5种糖类化合物加标回收率测定结果Table 3 Determination of the recovery rate of five sugars糖类化合物本底/(mgL-1)加标量/(mgL-1)测得量/(mgL-1)回收率/%相对标准偏差/%葡萄糖1.9551.6003.55399.881.802.0003.89997.200.382.4004.21494.130.22果糖2.1401.6003.69397.803.832.0004.07396.650.252.4004.629103.74.14乳糖1.010.8001.885109.40.191.0002.151114.20.231.2002.353111.90.8蔗糖0.7740.8001.54496.250.971.0001.847107.40.171.2002.043105.80.15麦芽糖0.8920.8001.755107.92.721.0001.915102.30.451.2002.128103.00.75https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708335940_9325_3389662_3.png!w424x327.jpg 图2 可口可乐样品色谱图Fig.2 Coca-Cola sample chromatography 2.3 三种仪器检测结果对比离子色谱法中两种实际样品稀释100倍,液相色谱法中两种实际样品稀释10倍。分别在全进口仪器Thermo ICS 5000+离子色谱系统、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪器上重复进样5针,测试结果如表4所示。 表4 实际样品1和样品2中含糖量测定结果Table 4 Measurement results of sugar content in actual sample 1 and sample 2糖类化合物离子色谱法-Thermo安培离子色谱法-GI5000安培液相色谱法-Dionex示差样品1样品2样品1样品2样品1样品2含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)含糖量/(gL-1)葡萄糖15.8723.1016.6222.1816.3322.08果糖19.7131.1919.9029.5021.5730.86乳糖------------蔗糖12.8523.5512.2823.0911.7223.72麦芽糖------------总含糖量/g/L48.4377.8448.8074.7749.6276.66样品1和样品2厂家标注的总含糖量分别为49 gL-1和75 gL-1。如表4所示,全进口仪器Thermo ICS 5000+测得两种样品的总含糖量分别为48.43 gL-1和77.84 gL-1,GI5000离子色谱系统测得两种样品的总含糖量分别为48.80 gL-1和74.77 gL-1。Dionex Ultimate-3000液相色谱示差法测得两种样品的总含糖量分别为49.62 gL-1和76.66 gL-1。三种仪器的所测得的两种实际样品中糖类化合物总量相差5%以内,结果均较为准确,同时也证明了国产离子色谱仪器性能稳定可靠。三台仪器对两种实际样品的分离色谱图如图3和4所示。https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708443314_437_3389662_3.png!w273x210.jpghttps://ng1.17img.cn/bbsfiles/images/2022/12/202212151708496041_6974_3389662_3.png!w273x210.jpg 图3 样品1和样品2中糖分离色谱图Thermo离子色谱仪(左)、国产离子色谱仪(右)Fig.3 Separation chromatograms of sugars in samples 1 and 2 Thermo ion chromatograph (left), domestic ion chromatograph (right)https://ng1.17img.cn/bbsfiles/images/2022/12/202212151708552407_2039_3389662_3.png!w273x210.jpg 图4 液相-示差法测得样品1和样品2中糖分离色谱图Fig.4 Separation chromatogram of sugar in sample 1 and sample 2 by liquid-differential method 3 讨论与结论 通过将GI5250安培检测器和进口仪器相互串联等实验得到GI5000离子色谱系统的检出限和定量限约为全进口仪器的3~4倍,其原因是GI5250安培检测器自身性能与进口检测器存在差距,并且进口泵在稳定输出流动相上优于国产泵。后续需要针对国产安培检测器和泵性能进一步优化。使用GI5000离子色谱系统检测饮料中糖类化合物,进行了方法学测试,对比了全进口Thermo ICS 5000+仪器的检测结果,验证了GI5000离子色谱系统在检测糖类化合物方面的性能。结果显示,5种糖类化合物在0.2~5 mgL-1范围内线性关系良好,检测的线性相关系数均在0.9990以上,重复性RSD≤2.47%,除麦芽糖外,其余四种糖检出限均在0.1 mg L-1以内,麦芽糖检出限为0.105 mgL-1。NY/T 3902-2021标准中葡萄糖的检出限为0.4 mg L-1、果糖和麦芽糖的检出限为1.2 mgL-1、蔗糖的检出限为0.6 mgL-1,表明GI5000离子色谱系统所测得的结果,均能够满足上述相关标准的要求,可满足日常实验室检测需求。以市面上售卖的可口可乐为样品,对5种糖类化合物进行加标回收实验,5种糖类化合物的加标回收率范围为94.13%~114.2%。相对标准偏差在0.22%~4.14%。测得可口可乐中的5种糖类化合物总量为10.34 g/100 g。分别使用全进口仪器Thermo ICS-5000+、GI5000离子色谱系统以及Dionex Ultimate 3000液相色谱仪检测了脉动和茶π饮料中糖类化合物的含量,三种方法检测的结果几乎一致,证明了GI5000离子色谱系统性能的可靠。 参考文献 佚名. 碳水化合物—化学结构. 淀粉与淀粉糖, 2010(2): 36-44. ZHANG Z, KHAN N M, NUNEZ K M, et al. Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Chemistry, 2012, 84(9): 4104-4110.DOI:10.1021/ac300176z. 岳虹, 赵贞, 刘丽君, 李翠枝, 邵建波.高效液相色谱法测定发酵乳饮料中果糖、葡萄糖、蔗糖、麦芽糖及乳糖含量.乳业科学与技术, 2017, 040(002): 23-26. 樊宏, 陈强. 乳制品中乳糖直接比色测定方法探讨. 中国卫生检验杂志, 2006, 16(3): 296-297. 钟宁, 侯彩云. 三种乳糖检测方法的比较. 食品科技, 2011, 36(7): 263-265. 中华人民共和国卫生部. GB/T 5009.7—2003 食品中还原糖的测定. 北京: 中国标准出版社, 2003. Zhang J L, Dai X, Song Z L, Han R, Ma L Z, Fan G C, Luo X L,One-pot enzyme- and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer, Sensors and Actuators B: Chemical, 2020, 304. ZIELINSKI A A F, BRAGA C M, DEMIATE M I, et al. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stag. Food Science and Technology, 2013, 34(1): 38-43. DOI:10.1590/S0101-20612014005000003. SHANMUGAVELAN P, KIM S Y, KIM J B, et al. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydrate Research, 2013, 380(20): 112-117. DOI:10.1016/j.carres.2013.06.024. MA C M, SUN Z, CHEN C B, et al. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chemistry, 2014, 145: 784-788. DOI:10.1016/j.foodchem.2013.08.135. WU X D, JIANG W, LU J J, et al. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry. Food Chemistry, 2014, 145: 976-983. DOI:10.1016/j.foodchem.2013.09.019. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. DANIEL D, LOPES F S, SANTOS V B D, et al. Detection of coffee adulteration with soybean and corn by capillary electrophoresistandem mass spectrometry. Food Chemistry, 2018, 243: 305-310. DOI:10.1016/j.foodchem.2017.09.140. 张欢欢, 李疆, 赵珊, 等. 毛细管区带电泳-间接紫外检测法快速测定食品中乳糖、蔗糖、葡萄糖和果糖. 色谱, 2015, 33(8): 816-821. 马海宁, 华玉娟, 屠春燕, 等. 毛细管电泳法分析藏红花植物细胞多糖中单糖组成. 色谱, 2012, 30(3): 304-308. DOI:10.3724/SP.J.1123.2011.11015. LV X Y, GUO Y X, ZHUANG Y P, et al. Optimization and validation of an extraction method and HPAEC-PAD for determination of residual sugar composition in L-lactic acid industrial fermentation broth with a high salt content. Analytical Methods, 2015, 7: 9076-9083. DOI:10.1039/c5ay01703c. WANG X, XU Y, LIAN Z N, et al. A one-step method for the simultaneous determination of five wood monosaccharides and the corresponding aldonic acids in fermentation broth using highperformance anion-exchange chromatography coupled with a pulsed amperometric detector. Journal of Wood Chemistry and Technology, 2013, 34(1): 67-76. DOI:10.1080/02773813.2013.838268. ZHANG Y, WU J R, NI Q H, et al. Multicomponent quantification of astragalus residue fermentation liquor using ion chromatographyintegrated pulsed amperometric detection. Experimental and Therapeutic Medicine, 2017, 14: 1526-1530. DOI:10.3892/.2017.4673. Young C S . Evaporative light scattering detection methodology for carbohydrate analysis by HPLC.. Cereal Foods World, 2002, 47(1):14-16. 梁亚丽, 张彦玲, 何颖娜. 糖类化合物分离分析方法进展. 河北化工, 2006, (06): 42-44. 梁智安, 王成龙, 龙飞. 液相色谱示差折光法测定酒中的总糖和还原糖.食品安全质量检测学报, 2018, 9(09): 2188-2194. 陈琴呜, 刘文英. HPLC—ELSD在中药糖类分析中的应用. 中草药, 2008, 39(6): 955-957. BAI W D, FANG X D, ZHAO W H, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography.Journal of Food Drug Analysis, 2015, 23: 645-651. DOI:10.1016/j.jfda.2015.04.011. HE J Z, XU Y Y, CHEN H B, et al. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. International Journal of Molecular Medicine, 2016, 17(12): 1-17. DOI:10.3390/ijms17121988. INDORF C, BODé S, BOECKX P, et al. Comparison of HPLC methods for the determination of amino sugars in soil hydrolysates. Analytical Letters, 2013, 46: 2145-2164. DOI:10.1080/00032719.2013.796558. 水果、蔬菜及其制品中阿拉伯糖、半乳糖、葡萄糖、果糖、麦芽糖和蔗糖的测定 离子色谱法:NY/T 3902-2021. 2021.

  • 离子色谱中安培检测器测糖的阴离子色谱柱和常规阴离子色谱柱有什么不同?

    一直有一个疑问困扰很久了,希望在此能够找到答案,[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中,常规阴离子使用阴离子交换色谱柱+电导检测器测定,糖类用阴离子交换色谱柱+安培检测器测定,那么这两种阴[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱有什么不同呢?从官方资料来看,基质都是聚合物基质,功能基也都是季铵基,pH耐受也基本都是0-14,那为什么还要分成两种不同的色谱柱呢?能不能用常规的阴离子柱,使用糖类检测的色谱条件进行检测?

  • 盛瀚推出离子色谱柱 力争打破垄断

    盛瀚推出离子色谱柱 力争打破垄断

    仪器信息网讯 2011年9月14日,受青岛盛瀚色谱技术有限公司(以下简称为:青岛盛瀚)委托,青岛科技工程咨询研究院在北京西郊宾馆召开了“离子色谱柱固定相科技成果评价会”。  http://ng1.17img.cn/bbsfiles/images/2011/09/201109190826_317657_782_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/09/201109190827_317658_782_3.jpg 中科院生态环境研究中心江桂斌院士担任评价咨询专家组组长,浙江大学朱岩教授和中科院生态环境研究中心牟世芬研究员担任评价咨询专家组副组长,评价咨询专家组成员还包括:中国分析测试协会汪正范研究员、北京矿冶研究总院于力研究员、中科院海洋研究所王琦研究员、山东出入境检验检疫局技术中心崔鹤研究员。评价会由青岛科技工程咨询研究院院长阮航先生主持。  http://ng1.17img.cn/bbsfiles/images/2011/09/201109190827_317659_782_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/09/201109190828_317660_782_3.jpg 研发方代表北京市科学技术研究院张经华博士、北京理化分析测试中心王文副主任、中国色谱学会武杰副理事长,以及青岛盛瀚总经理朱新勇先生、青岛盛瀚离子色谱柱研发项目组组长崔成来工程师也参加了评价会。  评价会上,评价咨询专家组组长江桂斌院士表示,“我国的科技体制改革正进入到关键时刻,而改革的重要内容是科技成果如何评价,评价方式及方法需要改变。而此次评价会就是改革的一种尝试,相比于鉴定会,评价会更加注重学术方面的讨论。此外,我很高兴此次评价的成果是离子色谱柱。众所周知,在过去的30、40年中,离子色谱柱一直处于国外产品垄断局面,产品价格很高,并且垄断的市场也愈发不能满足食品、环保等应用的需求,而青岛盛瀚自主研发离子色谱柱,在此方面做了有益的探索。”http://ng1.17img.cn/bbsfiles/images/2011/09/201109190828_317661_782_3.jpg  作为成果研发方代表,青岛盛瀚离子色谱柱研发项目组组长崔成来工程师介绍了项目的相关情况。据其介绍,我国离子色谱仪诞生于1983年,在仪器硬件方面研发和制造商较多,但是在制约我国离子色谱技术发展瓶颈的离子色谱柱方面进展不大;同时世界离子色谱固定相进展明显,戴安公司是这方面的技术及市场领导者。青岛盛瀚此前一直专注于离子色谱仪器的研发与生产,2008年公司开始从事离子色谱固定相的研制,此次评价的是公司新近研发的四款离子色谱柱:第一款是公司与北京市理化分析测试中心共同研发SH-AC-Ⅰ,该款柱子7-12分钟可完成7 种常见阴离子的基线分离,是一种通用型阴离子色谱柱;第二款是SH-AC-Ⅱ,该款柱子20分钟内分离8种以上阴离子分析,能分离F-及水的负峰,并且可以进行溴酸盐分析;第三款是SH-CC-ⅡB,该款柱子是弱酸型阳离子色谱柱,其可以同时分析一价、二价常规阳离子;第四款是SH-HM-Ⅰ,该款柱子是重金属分析色谱柱,其一次分析可以分离

  • 盛瀚离子色谱仪中标国家质检总局采购项目

    六月初,接到国家质检总局发来的中标通知书,青岛盛瀚色谱技术有限公司凭借优秀的技术实力和完善的售后服务中标“国家质检总局2011年专用仪器设备采购项目”(招标编号:0702-1141CITC5M01)。国家质检总局此次招标项目对供应商的技术指标和售后服务要求非常高,绝大部分厂家望而却步,青岛盛瀚是参加竞标的四个厂商中唯一的一家国内厂商,并且最终成功中标。一直以来,青岛盛瀚色谱技术有限公司紧扣市场,以产品质量为根本,依托科技进步,不断提升产品竞争力,经过十年的沉淀,盛瀚已成长为国内最值得信赖的离子色谱仪生产商,生产的CIC系列离子色谱仪适用于环保、质检、疾控等众多行业,满足我国各行业分析工作的需求。此次中标国家质检总局采购项目是高端用户对青岛盛瀚产品的一种肯定,今后,青岛盛瀚色谱技术有限公司将继续坚持制造精品,为客户提供可靠有效的技术支持和服务。

  • 【求助】关于青岛盛瀚的离子色谱

    单位要买该公司的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],有用过盛瀚的仪器的老师,想请教一下,CIC-100专业型和普通型哪个好? 还有该公司离子上面两台色谱仪配带电脑吗?

  • 盛瀚离子色谱

    盛瀚[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url],用自动进样器进样,没进到样,吸空了,会怎么样

  • 青岛盛瀚精彩亮相2011BCEIA

    青岛盛瀚精彩亮相2011BCEIA

    2011年10月12日,第十四届北京分析测试学术报告会及展览会(简称2011BCEIA)在北京展览馆拉开帷幕。BCEIA是中华人民共和国科学技术部批准的专业性的分析测试仪器展览会,每两年举办一次,在国内外享有较高声誉。作为国内色谱技术领头人,青岛盛瀚色谱技术有限公司携最新研发成果及代理产品共襄盛举。会议期间,青岛盛瀚色谱技术有限公司展出的最新技术---CIC系列离子色谱仪、安培及紫外检测器、离子色谱柱等吸引了众多分析行业专家学者驻足了解。特别是CIC-300型离子色谱仪及SH离子色谱柱可称之为此次盛瀚展品的最大亮点,并得到了中国分析测试协会副理事长王顺昌及研究员汪正范、中国离子专业委员会主任朱岩等众位分析行业专家的认可。http://ng1.17img.cn/bbsfiles/images/2011/10/201110220832_325683_782_3.jpg中国分析测试协会副理事长王顺昌(右下)、中国分析测试协会研究员汪正范(左下)、日本FLOM公司高层(右上)等莅临展位参观CIC-300离子色谱仪是盛瀚最新研发的多功能型离子色谱仪。采用双通道、全塑流路设计,可实现阴阳离子同时、快速分析;采用电导、UV-Vis、安培等多检测器检测模式,常规阴阳离子、重金属、过渡元素、碱土金属、糖、氨基酸、自来水消毒副产物、卤素、三聚氰胺、食品添加剂等分析工作可在同一台仪器上全部完美解决。SH系列离子色谱柱是盛瀚历时6年的高科技研发成果,其中阳离子色谱柱及阴离子、重金属色谱柱分别被行业专家评价为“国际先进”和“国内领先”水平。做为国内唯一的可实现批量化生产的同类产品,SH系列离子色谱柱已成熟应用于CIC系列离子色谱产品中,并可与其他厂商的离子色谱仪通用。凭借其稳定的性能和低廉的价格,SH系列离子色谱柱将为广大离子色谱用户的工作提供更便捷、更广泛的选择与支持。 此次BCEIA,日本FLOM高效液相配件的加盟也为青岛盛瀚增色不少,吸引了多家高效液相生产商赴盛瀚展位咨询洽谈。FLOM公司被业界称为“小型化先锋”,是日本著名的高效液相色谱配件制造商,产品在小型化和稳定性方面尤为出众,制造的高效液相色谱阀门及泵在日本占有最大的市场份额。2011年2月,青岛盛瀚取得其中国地区代理权,自此,FLOM品牌进驻中国市场,成为国内色谱生产商的新宠。 关于我们 2002年,青岛盛瀚色谱技术有限公司成立且CIC-100型离子色谱仪正式商品化;2004年-2006年,两次获得青岛市崂山区科技计划项目资金扶持;2007年,CIC-200型离子色谱仪诞生,企业通过ISO9001质量管理体系认证并设立专项“盛瀚-离子色谱技术创新奖学金”;2008年,在国家科技部、质检总局组织的“生鲜奶中三聚氰胺统一测试”中获得第一名;2009年,荣获国家科技部专项“科技型中小企业创新基金”及英国渣打银行颁发的年度“中国最具成长性新锐企业优秀奖”;2010年,CIC-300型离子色谱仪诞生,获“青岛市高新技术企业”、青岛市首批“新三板上市试点企业”及青岛市最具融资价值中小企业称号;与北京市工业技师学院共建“盛瀚色谱班”第一届正式开班;CIC系列离子色谱仪成为国产科学仪器应用示范中心指定推荐产品;2011年,CIC系列离子色谱仪中标国家质检总局采购项目。

  • 盛瀚超级品牌日 离子色谱新品首发邀您一起揭幕

    2020年4月2日,仪器信息网联合盛瀚打造“[url=https://www.instrument.com.cn/zt/D150]盛瀚2020年度超级品牌日[/url]”,盛瀚将于同日发布[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]新产品CIC-D150。  盛瀚自2002年成立至今一直专注于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]领域,18年的孜孜不倦,积累沉淀,只等绽放。2020年疫情来袭,挡不住盛瀚的创新脚步,盛瀚将首次采用网络直播的形式发布新产品,2020年4月2日下午14:00-17:00震撼新品等你来!  本次新品CIC-D150集中盛瀚多年来在仪器技术和软件上的创新成果,以“智能之选 为卓越而生”为主题,为客户带来智能便捷的使用体验。值此超级品牌日和新品发布会双重庆典时刻,盛瀚为广大参会网友准备了丰盛精彩的礼品,还等什么,快点报名参会吧![align=center][url=https://www.instrument.com.cn/webinar/meetings/D150/][img=报名.jpg]https://img1.17img.cn/17img/images/202003/uepic/c71de12c-a611-4ab9-84a2-a0a18dd9a677.jpg[/img][/url][/align][align=center][size=18px][b][color=#ff0000]看点一:线上直播 新品全网直击[/color][/b][/size][/align]  以往科学仪器厂商发布新品,往往采取线下发布会的形式,这样除了少量参加新品发布会的用户之外,大多数用户只能通过后续的资讯报道和产品资料等来了解新产品,也无法第一时间和厂商沟通来获得更多信息。本次盛瀚线上发布会,参会用户可以一起第一时间了解新品信息,同时随时向盛瀚提出疑问,与广大网友一起,见证盛瀚[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]新品首次的揭幕仪式。[align=center][size=18px][color=#ff0000][b]看点二:仪咖说 聊IC行业产学研用[/b][/color][/size][/align]  本次新品发布会,除有重量级[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]新品与大家见面外,盛瀚还将邀请业内专家与大家一起分享[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]行业产学研用创新。中国科学院大连化学物理研究所关亚风、浙江大学朱岩、青岛盛瀚总经理朱新勇,围绕[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]产业发展展开讨论。  [b]会议日程如下:[/b][table][tr][td]时间[/td][td]会议议程[/td][td]内容[/td][td]讲解人[/td][/tr][tr][td]14:00-14:15[/td][td]会议开场[/td][td]青岛盛瀚企业发展介绍[/td][td]孙旭光(青岛盛瀚色谱技术有限公司)[/td][/tr][tr][td]14:15-14:20[/td][td]专家致辞[/td][td][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]行业新期望[/td][td]牟世芬、朱岩[/td][/tr][tr][td]14:20-14:50[/td][td=1,2]专家报告[/td][td]《[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]技术在饮用水检测中的应用》[/td][td]张岚(国家疾控中心研究员)[/td][/tr][tr][td]14:50-15:10[/td][td]《[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱新成果:几种AP阴[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]柱介绍》[/td][td]崔成来(青岛盛瀚色谱技术有限公司)[/td][/tr][tr][td]15:10-15:20[/td][td]产品揭幕 互动抽奖[/td][td]CIC-D150新品揭幕[/td][td]朱新勇(青岛盛瀚色谱技术有限公司)[/td][/tr][tr][td]15:20-15:50[/td][td=2,1]智能之选,为卓越而生-D150产品介绍[/td][td]王永文(青岛盛瀚色谱技术有限公司)[/td][/tr][tr][td]15:50-16:50[/td][td]仪咖说[/td][td]国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]的挑战和机遇[/td][td]主持人、关亚风、朱岩、朱新勇[/td][/tr][/table][align=center][size=18px][color=#ff0000][b]看点三:多重好礼 参会互动等你拿[/b][/color][/size][/align]  [b][color=#ff0000]活动一[/color] [color=#0070c0]报名成功送好礼[/color][/b]  只要您提交相关信息成功报名盛瀚新品发布会,即有机会获得盛瀚精心准备的报名小礼品,盛瀚定制钥匙挂件1份。  [b][color=#ff0000]活动二[/color] [color=#0070c0]直播互动有抽奖[/color][/b]  我们将在新品发布会直播中,从互动客户中随机截屏抽取幸运观众,会后在盛瀚公众号中公布中奖名单,智能音箱、运动耳机、智能台灯应有尽有。  [b][color=#ff0000]活动三[/color] [color=#0070c0]新品预定有优惠[/color][/b]  [font=黑体, SimHei][color=#0070c0]CIC-D150新款[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],限量10台预售。获得此预售名额的客户将享受以下优惠:(1)1年耗材全包(2)3年质保(3)2名青岛基地培训名额[/color][/font]  发布会精彩多多,更多关于盛瀚[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]新品及发布会信息,请点击专题页面查看:[align=center][url=https://www.instrument.com.cn/zt/D150][img=发布.jpg]https://img1.17img.cn/17img/images/202003/uepic/f3fe66be-fd9f-497d-b13b-7c4790e9f15f.jpg[/img][/url][/align]

  • 【原创】第二届“盛瀚-离子色谱技术创新奖学金”征稿开始了

    第二届“盛瀚-[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]技术创新奖学金”征稿开始了“盛瀚-[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]技术创新奖学金”第一届颁奖仪式已于2008年11月在12届全国[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]年会上顺利举行。在第一届的论文征集中,得到了全国十多个高校和科研院所的大力支持,并收录了上百篇的优秀论文。转眼间,“盛瀚-[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]技术创新奖学金”第二届论文征稿即将开始。我们将一如既往的将推进国产[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]技术的发展,激励在校大学生努力奋进,培育更多优秀的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]专业人才这一最终目标进行到底。“盛瀚-[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]技术创新奖学金”是青岛盛瀚色谱技术有限公司出资设立,由中国分析仪器学会协助管理和规范奖学金的整体运作及管理办法。[color=#DC143C]软性的广告帖,暂且锁定[/color]

  • 离子色谱选购之检测器篇

    [font=宋体][color=#3333ff][b][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]常用检测器[/b][/color][/font]包括电导检测器、安培检测器、紫外检测器等其中电导检测器应用最广泛,这是一种电化学检测器,同时也是一款通用性检测器,可用于检测阴阳离子和有机酸、有机胺等离子安培检测器是一种电化学检测器,同时也是一款选择性检测器,用于检测在电极表面可以发生氧化还原反应的物质,比如碘、硫、氨基酸、糖等。[color=#3333ff][b]检测器量程[/b][/color]根据量程分类可以分为动态量程检测器和固定量程检测器。以电导检测器为例,可以分为动态量程电导检测器和固定量程电导检测器,区别在于量程是否固定,基于此前提决定了检测范围是否是分段的,动态量程电导检测器范围更宽,固定量程电导检测器检测范围相对较小。[color=#3333ff][b]二极电导池与五极电导池的区别[/b][/color]二极电导池,指电导池由两个电极组成,目前市场上的[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]大多采用这种类型电导池,比如赛默飞、万通、睿谱、盛瀚等。适合所以应用于各种场合,死体积小,耐压高,适用于抑制法和非抑制法两种检测方式。五极电导池,指电导池由5个电极叠压组成,起主要测量作用的是四个电极 ,两个电极为激励电极,另两个电极为测量电极,整个池内体积分布于四个电极间,因此池内死体积更大,目前国内这种类型的电导池公布的池体积是测量电极间体积,这是不正确的。[b][color=#3333ff][/color][color=#3333ff]理性分辨电导检测范围[/color][/b]1. 电导检测范围超过2000微西意义不大,因为色谱柱容量有限,这么大的峰,色谱柱无法正常的分离,峰形很宽,无法定量。2. 有的检测器范围很宽,资料标称0-35000uS,0-46000uS,0-64000uS等,但一定要注意,这个范围是分段的,即分量程的,有挡位的,在进样前要设置量程,选择了高灵敏度量程,则高浓度离子出平头峰,选择低灵敏度量程,可以测高浓度离子但低浓度离子无法检测。另一种检测器,资料标称检测范围为0-15000uS,一定要注意这是一段无量程的检测范围,可以同时兼顾高低浓度离子检测。使用此技术的有赛默飞、万通、睿谱、盛瀚等公司的产品。

  • 青岛盛瀚离子色谱仪

    应用青岛盛瀚[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url]测试水中的阴离子,打样瞬间压力在4.0,走样分析时候压力慢慢开始涨,增大到5.4左右,请大神给指点。

  • 盛瀚成功参加第五届亚太地区离子分析会议

    11月3日至6日,由中国仪器仪表学会主办的第五届亚太地区国际离子分析会议在桂林市召开。来自中国、日本、韩国、印度尼西亚、瑞士、德国等国家的47家科研院所和高校的离子色谱分析领域专家、学者以及学生代表共计140余人出席此次大会。 会上,与会代表就离子分析新仪器新装置研究、离子色谱分离和检测技术、离子色谱与其他分析技术联用新方法、毛细管电泳和微流控芯片分离分析技术、流动注射分析、样品前处理技术、离子分析技术应用研究等议题展开深入研讨。中科院院士、中科院生态环境中心副主任江桂斌院士,清华大学丁明玉教授、日本广岛大学Kazuhiko Tanaka教授,韩国国立庆北大学Kwang-Pill Lee 教授以及日本岐阜大学 Toyohide Takeuchi教授等5位国际著名离子分析科学家先后在大会上作了报告。此外,来自中、日、韩高校的其他19名专家、学者也分别在会上作了专题报告,向与会人员展示了他们在离子分析及相关技术领域研究的新进展、新成果。 本次会议是亚太地区离子分析、离子色谱以及相关领域的一次学术盛会,来自不同国家的五家离子色谱厂商热情参与了此次会议。青岛盛瀚作为中国离子色谱第一品牌,对此次会议投入了很大热情,所属的应用开发中心投稿10篇高质量的离子色谱应用技术论文,引起了与会学者的关注;展示的盛瀚最新研制的CIC-300型离子色谱也受到了国内学者和日本专家的极大兴趣。CIC-300离子色谱仪是盛瀚最新研发的多功能型离子色谱仪(获得2011年度国家质检总局立项,项目编号2011TJC62028 ),是中国离子色谱高端技术的代表,采用双通道、全塑流路设计,可实现阴阳离子同时、快速分析;采用电导、UV-Vis、安培等多检测器检测模式,常规阴阳离子、重金属、过渡元素、碱土金属、糖、氨基酸、自来水消毒副产物、卤素、三聚氰胺、食品添加剂等分析工作可在同一台仪器上全部完美解决,适用于环保、质检、疾控、科研、自来水等众多行业。 盛瀚公司一直非常重视离子色谱应用领域的研发工作,所属的应用开发中心主要职责就是为各行业客户的离子色谱实际检测工作做方法开发和技术解决方案,此次会议,盛瀚的技术总监也专门到会了解、学习离子色谱领域的新技术,为应用开发工作供更多的支持,以求为客户提供更好的解决方案。

  • 盛翰CIC300安培检测器进行氰化物检测方法研究

    盛翰CIC300安培检测器进行氰化物检测方法研究

    盛翰CIC300安培检测器进行氰化物检测方法研究 危险废物中的氰化物毒性较大,比较经典的化学方法有硝酸银滴定法、异烟酸-吡唑啉酮分光光度法和异烟酸-巴比妥酸分光光度法等。但其过程繁琐,本次运用盛翰CIC300离子色谱加国内较少的盛翰自产的安培检测器进行氰化物的检测研究。1 材料与方法1.1仪器及试剂 CIC300型离子色谱仪,淋洗液:100mmol/L氢氧化钠+50mmol/L醋酸钠+0.5%(体积比)乙二胺,氰化物标准物质。http://ng1.17img.cn/bbsfiles/images/2016/11/201611010814_615496_0_3.jpg1.2 色谱条件 分析柱为SI-52 4E日本柱,淋洗液流速0.7mL/min,安培检测器采用45度,直流安培,施加电位-0.07V。1.3 样品的前处理与分析 称取 5g(准确至 0.001g)过 180μm 筛且有代表性的固体废物于 250ml 烧杯中,加入 80ml 水,超声提取 30min。然后将其全部转移到 100ml 容量瓶中,用水定容。摇匀后,取部分溶液于3000rpm 速度离心 15min,取上清液。依次经过 0.22μm 尼龙滤膜和C18柱将提取液中的固体颗粒和有机物除去, 而后进样分析。 如果用于进样的溶液中氯离子含量超过 50mg/L, 则需要过C18柱将绝大部分氯离子去除。准确量取 50ml 浸出液,依次经过 0.22μm 尼龙滤膜和 C18 柱将提取液中的固体颗粒和有机物除去,而后进样分析。开启主机、电脑、显示器,主机预热10min。打开色谱工作站,将去离子水脱气:真空泵脱气3-5min。通淋洗液,在电位控制软件上设置电位-0.07V,在HW软件中采集信号,等待基线走稳。进样分析,方法如下: ①用去离子水将进样器、针头清洗干净。(注意:进样过程中手不要触及针头) ②用洗瓶将进样口清洗2-3次。 ③将阀打到“进样”位置,用注射器每次吸取2ml样品注入将进样口清洗3次。(注意:注射器中不能有气泡) ④注入1ml 样品。迅速将阀打至“分析”位置(注意动作要快,在1S内完成),点击“进样”按钮开始采集样品谱图。 ⑤样品谱图采集完毕,点击“停止”按钮,更改谱图文件名,将谱图保存。2 结果与讨论2.1精密度的测定 运用同一样品浓度进行处理,重复测量6次,计算其相对标准偏差,结果如表1http://ng1.17img.cn/bbsfiles/images/2016/11/201611010815_615498_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/11/201611010815_615497_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/11/201611010816_615499_0_3.jpg2.2准确度的测定对空白样品加标回收率可达70%-85%。2.3 注意事项1. 安培池使用完毕后需将参比电极旋转下来泡到饱和氯化钾溶液中。2. 安培池使用一段时间后需要将银电极拆下来使用打磨纸打磨。方法是将打磨纸上撒上打磨粉,滴上几滴去离子水,将电极放在上面画八字打磨。 实验证明盛翰CIC300配制自家安培检测可以对氰化物进行检测,可以满足日常需求,但是经我们测试,检出限的下限有待进一步优化,是我们后续的工作。

  • 号外:盛瀚获8537万元重大仪器专项造离子色谱——年度首个公布的专项

    今日看到新闻,以青岛盛瀚为产业化单位联合其他高等院校、科研院所共8家单位获国家重大科学仪器设备开发专项--“多功能离子色谱仪的开发与产业化”项目立项,项目总预算8537万元,国家支持资金4063万元。据悉,山东出入境检验检疫局也在此专项研发团队中。详细新闻:http://www.instrument.com.cn/news/20121102/084725.shtml讨论:各位如何看待此项目?目前,离子色谱与国际差距在哪?8000多万元主要要解决离子色谱哪些问题?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制