当前位置: 仪器信息网 > 行业主题 > >

超声波测速仪基本原理

仪器信息网超声波测速仪基本原理专题为您提供2024年最新超声波测速仪基本原理价格报价、厂家品牌的相关信息, 包括超声波测速仪基本原理参数、型号等,不管是国产,还是进口品牌的超声波测速仪基本原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超声波测速仪基本原理相关的耗材配件、试剂标物,还有超声波测速仪基本原理相关的最新资讯、资料,以及超声波测速仪基本原理相关的解决方案。

超声波测速仪基本原理相关的论坛

  • 【分享】超声波流量计的基本原理及类型

    超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。 超声波流量计的电子线路包括发射、接收、信号处理和显示电路。测得的瞬时流量和累积流量值用数字量或模拟量显示。 根据对信号检测的原理,目前超声波流量计大致可分传播速度差法 ( 包括:直接时差法、时差法、相位差法、频差法 ) 波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型,如图所示。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为: Z 法 ( 透过法 ) 、 V 法 ( 反射法 ) 、 X 法 ( 交叉法 ) 等。波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大。 多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。噪声法 ( 听音法 ) 是利用管道内流体流动时产生的噪声与流体的流速有关的原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。 测量时应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用 Z 法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用 V 法或 X 法。当流场分布不均匀而表前直管段又较短时,也可采用多声道 ( 例如双声道或四声道 ) 来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。随着工业的发展及节能工作的开展,煤油混合 (COM) 、煤水泥合 (CWM) 燃料的输送和应用以及燃料油加水助燃等节能方法的发展,都为多普勒超声波流量计应用开辟广阔前景。

  • 超声波测厚仪基本原理及影响精度的因素

    超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:(以我公司销售的超声波测厚仪为例)1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。 http://www.1718-show.cn/ComFolder/18show/908/2006621161542373.gif 超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:(以我公司销售的超声波测厚仪为例)1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面[/si

  • 我的『核磁共振波谱学的基本原理和实验』图书

    我的『核磁共振波谱学的基本原理和实验』图书

    书名:核磁共振波谱学的基本原理和实验作者:原现瑞出版社:河北人民出版社;出版年:2019年;页数:348页;装帧:平装;ISBN:978-7-202-12132-0;内容介绍:核磁共振(Nuclear magnetic resonance,NMR)包括液体NMR、固体NMR和NMR成像(Magnetic resonance imaging,MRI)等内容。液体NMR主要应用于化学,固体NMR应用于材料学,MRI应用于生物学和医学领域。本书论述液体NMR波谱学的基本原理和实验。 本书从量子力学的基础知识出发,介绍NMR波谱学的基本理论,用乘积算符公式分析一些经典脉冲序列和常用的1D和2DNMR实验,并给出NMR谱用于研究有机小分子结构的应用实例。 本书的目的是向这些非物理学专业人员介绍NMR波谱学的基本理论和常用实验,书中所采用的数学和物理的概念、模型或方法以简单介绍为主,数学公式的演算尽可能详细,以方便读者理解。 目前该书没有电子版,仅有纸质版,如有需要请与李润岩联系,电话:13784334153。谢谢!目录:第一章:核磁共振的概念和经典力学的理论解释第二章:量子力学基本知识第三章:量子力学中的算符和力学量;第四章:密度算符;第五章: 单自旋-1/2;第六章:二自旋体系;第七章:二自旋体系乘积算符之间的转化;第八章:一些经典的脉冲序列;第九章:一维NMR实验;第十章:同核二维NMR实验;第十一章:异核二维NMR实验;第十二章: 弛豫动力学;第十三章:用NMR谱研究有机化合物的分子结构;练习题及提示答案附录封面:[img=核磁共振波谱学,690,1064]https://ng1.17img.cn/bbsfiles/images/2020/07/202007151026532286_9904_1267429_3.jpg!w690x1064.jpg[/img]

  • 化学反应中的电子——基本原理

    化学反应中的电子——基本原理[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15753]化学反应中的电子——基本原理[/url]

  • 超声波测厚仪原理及影响精度的因素

    超声波测厚仪基本原理:  超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头,通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。按此原理设计的测厚仪可对各种板材和各种加工零件作精确测量,也可以对生产设备中各种管道和压力容器进行监测,监测它们在使用过程中受腐蚀后的减薄程度。可广泛应用于石油、化工、冶金、造船、航空、航天等各个领域。使用技巧:1、一般测量方法:(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm 多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约为30mm 的圆内进行多次测量,取最小值为被测工件厚度值。2、精确测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。3、连续测量法:用单点测量法沿指定路线连续测量,间隔不大于5mm。4、网格测量法:在指定区域划上网格,按点测厚记录。此方法在高压设备、不锈钢衬里腐蚀监测中广泛使用。5、影响示值的因素:(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头(6mm ),能较精确的测量管道等曲面材料。(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头(2.5MHz)。(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。(7)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (8)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。(9)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头(300-600°C),切勿使用普通探头。(10)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。(12)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。(13)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。(14)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。(15)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。

  • 热线法测量导热系数的基本原理

    热线法测量导热系数的基本原理

    http://ng1.17img.cn/bbsfiles/images/2015/04/201504221716_543087_2865376_3.jpg热线法也是一种非稳态测量方法,从其物理模型来看,要求温度波不能传到壁面,就是不能有壁面效应!所以热线法对样品的热导率、尺寸大小也有要求!现在的测试理论中,可对物理模型做改进,也扩展了热线法的应用范围!市场上也有很多不同形式的热线法仪器,和其他设备一样,操作人员最好懂一些基本原理,要不再好的仪器也可能用不好!

  • 【资料】testo风速仪的基本原理

    testo风速仪其基本原理是将一根细的金属丝放在流体中,通电流加热金属丝,使testo风速仪温度高于流体的温度,因此将金属丝称为“热线”。当流体沿垂直方向流过金属丝时,将带走金属丝的一部分热量,使金属丝温度下降。根据强迫对流热交换理论,可导出热线散失的热量Q与流体的速度v之间存在关系式。标准的热线探头由两根支架张紧一根短而细的金属丝组成,金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2mm;最小的探头直径仅1μm,长为0.2mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头,热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线testo风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制