当前位置: 仪器信息网 > 行业主题 > >

文章照妖镜在线检测

仪器信息网文章照妖镜在线检测专题为您提供2024年最新文章照妖镜在线检测价格报价、厂家品牌的相关信息, 包括文章照妖镜在线检测参数、型号等,不管是国产,还是进口品牌的文章照妖镜在线检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合文章照妖镜在线检测相关的耗材配件、试剂标物,还有文章照妖镜在线检测相关的最新资讯、资料,以及文章照妖镜在线检测相关的解决方案。

文章照妖镜在线检测相关的资讯

  • Q-TOF质谱:方便面的“照妖镜”
    现代社会人们对于自我身体的关注不仅只是&ldquo 生病了看医生&rdquo 如此简单,而是将视线前移,通过每年一次的体检进行风险预防,尽可能早的发现并解决身体存在的问题。随着医学技术的进步,体检的项目也越来越精细,力求达到&ldquo 全身体检&rdquo 的效果。  而在食品领域,对于原料的品质把控如同&ldquo 体检&rdquo ,在供应链的初始端就要把关,预防可能造成的食品安全风险。但过去&ldquo 食品体检&rdquo 的局限就是只能针对性检测到&ldquo 已知有害物&rdquo ,而对于&ldquo 未知有害物&rdquo 根本无法预判和筛检。这也让一些无良的原料供应商有机可乘,敢铤而走险在原料中违法添加&ldquo 未知农药&rdquo 、&ldquo 未知化学物&rdquo 。  然而魔高一尺道高一丈,一项全面分析扫描食品材料的技术已为世界顶级食品制造企业所使用,这就是Q-TOF质谱分析技术。它将助力食品企业全面管控原料以及成品品质,为消费者提供更安全的食品。  Q-TOF可以对所有生产所需的食品原料进行&ldquo 高效灵敏而全面的扫描分析&rdquo ,好比&ldquo 照妖镜&rdquo ,各种隐藏在食品原材料和产品里的已知未知的有害物一扫即现原形。其能够检测的有害物种类达七百多种,远高于国家标准。农药残留、激素残留、违法添加等问题能得到有效管理。  Q-TOF扫描仪因为造价昂贵,在国内尚不多见,康师傅成为国内最早使用Q-TOF质谱分析技术的食品企业。  作为农产品深加工企业,康师傅方便面、饮料等产品生产所需原物料数量大品类多,在对原物料的品质管控上,康师傅一直严阵以待,尤其是由于环境污染或者无良供应商造成的未知有害物的食品安全风险成为企业最大的挑战。而Q-TOF的使用则能够帮助康师傅极大提高对于未知有害物的筛查能力,做到从原料到成品的全面分析和监测,真正做到供应链的全面风险管理。  康师傅控股执行长韦俊贤先生说过:&ldquo 食品安全不可能做到&lsquo 零风险&rsquo ,但是我们必须做到&lsquo 零容忍&rsquo 。&rdquo 正是基于这样对食品安全毫不妥协的坚持,康师傅才能做到深受消费者喜爱家喻户晓,也正是企业如此用心,消费者才会对品牌由衷的放心。  日前,全球领先的消费者市场研究机构凯度消费者指数(Kantar Worldpanel)发布了2015年度中品牌足迹排行榜,这份研究报告覆盖全球35个国家11000各品牌,调查指出过去一年中国有90.2%的城市家庭购买了8.8次的康师傅品牌,使得康师傅继续位列榜首,这也是康师傅第三年蝉联中国品牌足迹榜的榜首。
  • 科学岛团队牵头发表中国大气污染源排放在线监测技术进展综述文章
    近期,中科院合肥物质科学研究院王焕钦研究员在环境科学与工程领域知名期刊Journal of Environmental Sciences发表了题为“Review on recent progress in on-line monitoring technology for atmospheric pollution source emissions in China”的综述文章。文章系统介绍了“十三五”间我国大气污染源排放在线监测技术的最新进展,并指出移动源和固定源排放污染物在线监测技术正朝着多组分、小型化和智能化方向发展。   近几十年来,改善环境空气质量一直是全球面临的最大挑战之一。由于移动源和固定源的排放对大气环境和全球气候都有不利影响,其成分包括超细颗粒物、挥发性有机化合物(VOCs)和其他活性气体,如氨(NH3)和氮氧化物(NOx)等,对人类健康的损害也十分严重,因此它们是国家空气污染物排放控制法规的重点。此外,污染源排放已成为中国亟待解决的重大社会经济问题,在线监测技术和仪器亟待研究开发。   文章系统介绍了在“十三五”期间,以中科院合肥物质科学研究院牵头的桂华侨团队和以清华大学牵头的丁艳军团队,自2016年起分别针对我国移动和固定污染源排放特点和最新的超低排放标准,以快速、自动、在线监测技术研发为核心,创新性地提出了差分荷电式移动源超细颗粒物数浓度测量、微型平板式差分电迁移颗粒物粒径分级、垂直式多车道机动车尾气排放快速遥感识别,以及三波长光散射式固定源颗粒物质量浓度和粒径分布同时测量、利用物理定向吸附技术和涡流加热技术实现烟气汞形态分离与原子汞高效富集等一系列污染源超低排放关键污染物在线测量方法,实现了污染源超低排放超细颗粒物、挥发性有机物、烟气汞等典型污染物的高灵敏在线监测。   团队自主研发了高稳定喷射稀释器、飞安级(千万亿分之一)微电流检测模块、数字线型离子阱、专用磁性捕汞管、基于特异性催化的高性能半导体传感器等卡脖子核心模块,研制完成一批具有独立自主知识产权的机动车排放超细颗粒物监测仪、便携式车载挥发性有机物质谱仪、垂直式多车道机动车尾气遥测系统,以及固定源排放细/超细颗粒物、VOCs、恶臭、工业氨、汞等在线监测技术设备,关键技术和性能指标达到国际先进水平,形成了具有自主知识产权的移动源和固定源排放快速在线监测技术体系,并将自研仪器应用于机动车、船舶、机场、化学工业和发电厂的排放监测,有效满足了国家行业最新标准和超低排放监测的要求。   文章指出,随着中国大气污染防治工作的加强,对污染精准控制的需求日益迫切。此外,大数据、物联网、云计算等新一代信息技术也将在污染监测技术中发挥重要作用。总体而言,移动源和固定源排放污染物在线监测技术正朝着多组分、小型化和智能化方向发展。   论文第一作者为合肥物质科学研究院王焕钦研究员,通信作者为合肥物质科学研究院桂华侨研究员和清华大学丁艳军教授。该研究得到了国家重点研发计划项目、国家自然科学基金、安徽省科技重大专项和安徽省杰青项目的支持。图1. 研制的移动源与固定源排放多组分污染物在线监测仪器
  • 照妖镜!美军便携DNA检测仪快速确定恐怖分子(组图)
    美国战略之页网站6月6日发表题为《情报机构称DNA成为一种武器》的报道称,美国特种作战司令部正在海外测试两种便携式DNA分析设备。这两种设备分别造价约25万美元,一种重55公斤,一种重91公斤。这两种设备都需要几乎持续供电,因为一些用于测试的化学品必须冷藏。最重要的是,这两种设备能够在90分钟内对DNA组织样本进行分析。而以往的分析工作必须返回美国或一些拥有DNA分析设备的国家进行,这需要一周多时间,有时甚至耗时一个多月。  这种更快速的DNA分析让逮捕一些炸弹制造者或参与恐怖活动的人成为可能,因为可以分析(从炸弹碎片或遇袭地点获得的)DNA样本,并与当地的恐怖主义嫌疑人进行比较,以便在嫌疑人逃跑前抓捕(或打死)他们。这种便携式DNA分析器是为了让美国特种作战司令部海外人员使用(他们聪明机智,但很少有人受过实验室技术人员的训练)并且取得了成功。  美国拥有一个庞大的恐怖主义嫌疑人和支持者数据库,并且内容还在不断增加。一个重大创新就是大大提高生物特征识别方法(包括指纹、虹膜、面孔识别和DNA)的应用。2003年之后,美国开发了让作战部队在战场上使用生物测定学的工具。主要工具名为&ldquo 安全电子登记组件&rdquo 。  这是一种便携式电子工具包,可以在任何地点任何时间收集人的生物数据,包括指纹扫描、眼睛(虹膜)扫描、嫌疑人的数码照片和后来的DNA样本。这些最终汇总到一个主数据库,这个数据库包含数百万恐怖分子、恐怖主义嫌疑人、支持者和其他&ldquo 利害关系人&rdquo 的数据。  战场上的部队可以利用&ldquo 安全电子登记组件&rdquo 工具包携带部分数据,这样就能很快识别和抓获通缉犯。2011年,在抓捕乌萨玛· 本· 拉丹的行动中,美国突击队员就是这么做的。尽管DNA检测是确认身份的最好方法,但如果获取了指纹、虹膜扫描或照片,基本上就能确认身份了。甚至于只有指纹和面部扫描或照片就已经相当有说服力了。但经常只有DNA,这时候就需要便携式DNA分析器大显身手了。资料图片:美军的DNA比对中心。(图片源于网络)   2015年3月27日,法国塞讷阿尔卑斯(Seyne-les-Alpes),坠机现场附近设立移动实验室,检测遇难者DNA。  4月23日,美国总统奥巴马在华盛顿白宫发表讲话。美国白宫23日承认,美军在今年1月一次针对&ldquo 基地&rdquo 组织的反恐行动中,误杀一名美国人质和一名意大利人质。总统奥巴马召开新闻发布会就此致歉。新华社记者 殷博古 摄    1月17日,在美国洛杉矶郡克莱尔蒙特大学园区,两名特警从直升飞机上索降。新华社记者杨磊摄  1月17日,在美国洛杉矶郡克莱尔蒙特大学园区,&ldquo 遇袭&rdquo 的伤员被抬出现场。新华社记者杨磊摄  1月17日,在美国洛杉矶郡克莱尔蒙特大学园区,消防人员对伤员进行救治。新华社记者杨磊摄
  • 核酸检测新冠肺炎敏感性只有30%-50% 是什么影响了检测准确率
    p  2月13日,湖北省卫健委官网发布的最新疫情情况,将临床诊断病例数纳入确诊病例数进行公布。通报显示,湖北省新增新冠肺炎病例14840例(含临床诊断病例13332例)。/pp  何为临床诊断病例?又为什么会有临床确诊病例?据中国医学科学院院长王辰分析,现在对于病毒核酸的检测能力在不断提升,但不同的试剂之间精准程度有差别,并不是所有患者都能检测出核酸阳性,所以有大量看着流行病学史上、接触史上像是,临床症状也像是,但是核酸未能得到确证的病人,现在被列为疑似病例,建议在武汉出现这样的病人,应当可以列为临床诊断病例,因为核酸对于已确诊的病人阳性率也只在30%~50%之间,因此设出临床诊断这个档级是非常有必要的。/pp  为什么核酸检测结果会出现假阴性?不同企业的试剂检测产品有何异同?今天的科技日报也发表文章:《新冠病毒核酸检测出现假阴性到底是什么影响了准确率》,详细分析了为什么核酸检测结果会出现假阴性?不同企业的试剂检测产品有何异同?/ppstrong  扩增让新冠病毒现形/strong/pp  大多数生物体的遗传物质是DNA,只有少数病毒的遗传物质是RNA,例如这次的新冠病毒。为了知道人体内是否含有新冠病毒,需要采集人体样本进行检测。根据《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》,在鼻咽拭子、痰、下呼吸道分泌物、血液、粪便等标本中可检测出新冠病毒的RNA。/pp  但实际上,样本中病毒的遗传物质极其微量。而且与DNA相比,RNA极易降解。问题来了,样本中的RNA病毒量少又不稳定,怎样才能逼这只妖怪“现形”呢?/pp  逆转录-聚合酶链反应技术(RT-PCR技术)就是“照妖镜”。该技术能将病毒的RNA合成为DNA,然后对合成DNA进行扩增,再通过荧光探针检测这些扩增产物。荧光探针就像雷达一样,一旦锁定目标就会发出信号。/pp  扩增产物越多,累积的荧光信号就越强。核酸检测就是通过检测荧光信号的累积来确定样本中是否有病毒核酸。目前,获批的新冠病毒核酸检测试剂使用的均是RT-PCR技术。/pp  中国工程院院士、清华大学生物医学工程系讲席教授程京接受采访时表示,除RT-PCR这一热循环扩增技术之外,等温核酸序列扩增技术(NASBA技术)和环介导等温扩增技术(LAMP技术)等恒温扩增技术也在分子诊断领域中扮演着重要角色。/pp  “目前,获批的核酸检测试剂产品都是单一指标的,即只能用于检测新冠病毒这一种病毒。”程京坦言,对于大量疑似病人来说,这类检测试剂作用有限,临床上急需能一次性检测多个病原体的检测试剂产品。/ppstrong  为何核酸检测结果会出现假阴性?/strong/pp  程京在采访中表示,这可能由多种因素导致。“首先,试剂盒研发需要十几种关键化学原材料,比如酶、合成DNA等。不同企业选择的原材料供货方不同,酶的活性、DNA的纯度就会有差别,这都会影响到核酸检测试剂的准确度。”程京说。/pp  “而在试剂盒产品研发过程中,原材料制备、生产工艺选择、研发人员能力、技术手段使用,每一个环节都有可能产生偏差,误差累计起来也会导致试剂盒产品灵敏度出现差别。”程京说。/pp  再者,取样过程不规范也会影响后续的分离和测定结果。以使用最普遍、操作简单的咽拭子采集为例,由于咽部的新冠病毒含量少,所以有可能造成漏检。“虽然只是在咽部拿棉签划几下,但如果没有良好的专业实操技能,样本的采集部位和手法可能不符合规范,就可能直接影响检测结果。”程京表示,此外,刚被感染的病人因体内带毒数量有限,也可能出现检测结果为阴性。/pp  送样本时必须采取冷链运输,如果在运送过程中样本受损,也会影响检测结果。/pp  核酸检测出现假阴性的问题,一度引发用CT影像代替核酸检测试剂确诊新冠肺炎的呼声。近日发布的《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》中,在“疑似病例”和“确诊病例”之外新增了一个“临床诊断病例”,并将“疑似病例具备肺炎影像特征者”作为其诊断标准(只限于湖北省之内),这也意味着CT影像结果成了“临床诊断病例”的判定依据。/pp  浙江大学附属第二医院放射科主任医师、中国医师协会放射医师分会呼吸专委会主任委员张敏鸣教授曾指出,CT影像结果阳性也存在误诊可能。他还提到,如果都去做CT检查而忽略防护,容易造成交叉感染。专家表示,无论是CT检查还是核酸检测,都不能保证绝对的准确性。/pp  “尽管核酸检测存在假阴性问题,但核酸检测是病原诊断的一个依据,也是目前确诊的最重要依据。”国家医疗专家组成员、北京大学第一医院感染疾病科主任王贵强表示。/p
  • 重大仪器项目“水中有机物监测仪” 30分钟检24种有机物
    p  11月10日电,如果河流突发环境事故,使用一种新型便携式检测仪器,可以在30分钟内,检测出水体中“隐藏”的各种有机物,为快速安全处置提供依据。据武汉市环保科技部门获悉,这种填补国内空白、国际领先的仪器正在武汉研制,目前研发工作已全面启动,预计于2020年实现量产。/pp  近年来,河流等水体的环境事故频发,如松花江的硝基苯、长治的苯胺、新安江的苯酚等污染事故,已严重威胁水体安全。据专家介绍,这类有机物在环境中较挥发性有机物(如苯、甲醛)更难降解,存在时间更长,吸附在颗粒物上容易被人体吸入,被称为半挥发性有机物(SVOCs)。它们种类众多,超过50种,主要来源于水源周边的一些有机排放物,如塑料、杀虫剂、燃烧产物、材料助剂(增塑剂、阻燃剂)等。SVOCs在水中含量极低,国家的检出标准多在0.01毫克/升左右,相当于在一个游泳池中滴入一滴墨水。 而这种“隐形污染物”的生理毒理却十分显著,如果长期接触,将严重危害人体健康。/pp  要捕捉到水中的“隐形污染物”非常困难。目前,我国只能采用实验室检测方法,从提取水样到实验室化验,往往需要3、4天才能检测出结果。国际上目前也没有快速、全面的检测仪器。/pp  为此,国家环保部门将“水中半挥发性有机物自动监测仪器”列为重大科学仪器开发项目。经过专家组的论证、评选,武汉境辉环保科技有限公司联合中国环境监测总站、中国科学院大连化学物理研究所等单位“夺标”,共同自主研发。据悉,该企业曾先后自主研发50余项水质自动监测仪器。/pp  目前,整个研发工作已全面启动。按照计划,研制组将采用多项国际前沿技术构建一套全新的检测设备。预计于2020年实现量产。该产品将首次实现水中SVOCs现场在线、快速检测,可在30分钟内一次检测出24种“隐形污染物”, 犹如一枚“照妖镜”让水中隐形污染物显形、被抓。业内人士称,此产品可弥补传统处理方法费时、费力、溶剂用量大等不足,能更好地分离、检测水中有机物,大大提升应对水体突发环境事故和日常监测水质的能力。/p
  • 生态环境部在《求是》发表文章,要加快建立现代化生态环境监测体系
    11月16日,生态环境部在《求是》杂志发表文章《准确把握新征程上推进生态文明建设需要处理好的重大关系》。习近平总书记2023年7月在全国生态环境保护大会上强调,总结新时代10年的实践经验,分析当前面临的新情况新问题,继续推进生态文明建设,必须以新时代中国特色社会主义生态文明思想为指导,正确处理几个重大关系,即高质量发展和高水平保护的关系、重点攻坚和协同治理的关系、自然恢复和人工修复的关系、外部约束和内生动力的关系、“双碳”承诺和自主行动的关系。此文章中提到:要处理好重点攻坚和协同治理的关系。我国生态环境保护结构性、根源性、趋势性压力尚未根本缓解,污染物和碳排放总量仍居高位,环保历史欠账尚未还清,生态环境质量稳中向好的基础还不稳固。新征程上,要处理好重点攻坚和协同治理的关系,以改善生态环境质量为核心,坚持精准治污、科学治污、依法治污,持续深入打好污染防治攻坚战,推动污染防治在重点区域、重要领域、关键指标上实现新突破。加大对突出生态环境问题集中解决力度,以细颗粒物控制为主攻方向,强化多污染物协同控制和区域污染协同治理,统筹推进水资源、水环境、水生态治理,强化土壤污染风险管控,加强固体废物综合治理和新污染物治理,不断提高人民群众生态环境获得感、幸福感、安全感。要处理好外部约束和内生动力的关系。我国生态环境治理体系仍有待健全,有的地方生态环境监管流于表面、监管不到位,有的企业法律意识淡薄,存在不正常运行污染治理设施、超标排放、监测数据造假等问题。新征程上,要处理好外部约束和内生动力的关系,打好法治、市场、科技、政策“组合拳”,加快健全党委领导、政府主导、企业主体、社会组织和公众共同参与的现代环境治理体系。继续发挥中央生态环境保护督察利剑作用,把严的基调和问题导向贯穿始终,进一步压紧压实各级党委和政府生态环境保护政治责任。持续推进重点领域法律法规制修订,建立健全和严格执行生态环境法规制度,强化执法监管,保持对环境污染和生态破坏问题高压态势。全面实行排污许可制,深化省以下生态环境机构监测监察执法垂直管理制度改革。实施生态环境科技创新重大行动,加快建立现代化生态环境监测体系,提高生态环境监管效能。要处理好“双碳”承诺和自主行动的关系。党的十八大以来,我们完整、准确、全面贯彻新发展理念,将碳达峰碳中和纳入经济社会发展全局和生态文明建设整体布局,坚持全国统筹、节约优先、双轮驱动、内外畅通、防范风险的原则,建立碳达峰碳中和“1+N”政策体系,推动地方和相关行业开展碳达峰行动。完善碳排放统计核算制度,健全碳排放权市场交易制度,启动和稳定运行全球最大的碳市场,年覆盖二氧化碳排放量约45亿吨。10年来,我国碳排放强度累计下降超过35%,扭转了二氧化碳排放快速增长的态势。2020年,我国二氧化碳排放强度比2005年下降48.4%,超额完成第一阶段国家自主贡献承诺。同时也要看到,实现“双碳”目标是一场广泛而深刻的经济社会系统性变革,不是轻而易举就能实现的,而是要付出持续艰苦努力。当前,全球生态环境问题政治化趋势增强,部分西方国家打“气候牌”,出台碳关税等政策,向发展中国家转嫁减排责任。新征程上,要处理好“双碳”承诺和自主行动的关系,落实好碳达峰碳中和“1+N”政策体系,有计划分步骤实施碳达峰行动。强化煤炭清洁高效利用,构建清洁低碳安全高效的能源体系。推动能耗“双控”逐步转向碳排放“双控”,健全碳排放权市场交易制度。推动减污降碳协同增效,开展多领域、多层次协同创新试点。
  • 南京地理所研发陆基高光谱遥感监测仪及原位高频在线监测系统
    在气候变暖和人类活动双重作用的影响下,藻类水华频发且呈现全球加剧态势,严重威胁经济社会可持续发展和人类健康。由于藻类水华生消过程快,实时精准的监测是藻类水华预测、预警和有效管控的关键。   目前藻类水华监测主要包括现场观测、水下自动监测和卫星遥感反演等三种方式。现场观测费时费力,且无法在时间和空间上连续监测;水下自动监测探头易受到水中物质侵蚀,且维护费用高昂;卫星遥感的时间分辨率低且受大气影响较大。   对此,中国科学院南京地理与湖泊研究所研究员张运林团队等基于水色遥感原理,研发了一款陆基高光谱遥感监测仪及原位高频在线监测系统,实现了藻类水华连续、精准、实时监测,有效弥补了现有方法的不足。   该系统主要由高光谱测量仪器、数据处理平台和远程访问控制、显示和存储平台等三部分组成(图1)。高光谱测量仪测定的水体光谱反射率信号,通过嵌入AI芯片处理器(数据处理平台)的反演算法,转化为叶绿素a信息。光谱反射率和叶绿素a数据通过无线传输设备进行远程访问控制、显示和存储。研究人员通过系统评估近几十年来应用最广泛的三种叶绿素a遥感反演的经验算法、半分析算法以及机器学习算法等,遴选了建模和验证精度最高的反演模型作为陆基遥感系统叶绿素a提取的主要模型(图2)。   架设在太湖的陆基高光谱遥感监测系统清晰捕捉到2021年8月发生的两次藻类水华形成过程(图3)。除了藻类水华以外,陆基遥感系统亦可同步监测水体透明度、悬浮物、总氮、总磷、高锰酸盐指数、营养状态指数、藻密度等多个水生态环境参数,可为藻类水华发生机理研究提供精细化观测和科学证据。   该观测系统主要有以下优势:低成本、环保的方式实时、连续地提供藻类水华的高频数据;水体信号不受大气影响,不需要进行复杂的大气校正;适用于中小型河流、湖泊的藻类水华动态监测;嵌入的AI芯片支持算法快速替换和升级以及远程控制和数据访问。目前该系统已广泛应用于广东、四川、江苏、浙江、北京等数十个重要水体的水质监测。   相关研究成果发表在Journal of Hazardous Materials上。研究工作得到国家自然科学基金优秀青年基金、中科院科学仪器研发项目、南京地理所青年科学家小组等项目的联合资助。图1 陆基遥感系统的原理和结构示意图图2 陆基高光谱遥感监测系统机器学习算法检验与校正精度结果图3 陆基遥感系统捕捉到的两次浮游植物水华和对应的现场照片
  • 食品检测仪咋成了“摆设”?
    山西太原的大型超市中食品安全信息查询机安装近两年,但许多市民不知为何物,很少有人使用。有的放在超市很不起眼的角落里,落满了灰尘,很不容易被人发现 有的干脆没有开机,或者说已经死机了 有的看作银行的自动终端服务机,甚至被误认为是擦鞋机,几乎变成了“摆设”。(据2012年2月26日中国广播网)  事实上,关于商场超市里的食品安全检测设备成“摆设”的消息,早已不是新闻了。自2002年以来,全国各地对菜市场农药残留检测仪沦为“摆设”的质疑声不断。海口、合肥、武汉、重庆、上海等地不断有媒体曝光。2月13 日的《十堰晚报》披露:记者近日走访城区10个农贸市场发现,尽管都配有快速农药检测仪,但是一直搁置不用,成了“聋子耳朵”,资源浪费令人无奈。  保证食品质量安全,让市民吃上安全放心食品是商场超市经营者的责任和义务。既然购置了食品安全检测设备,就应该不折不扣进行检测,将检测结果进行公示,要让检测名副其实。政府有关部门也要加强检查监管,对不检测不公示的商家进行处理,防患于未然。那么,食品安全检测设备为何成了“摆设”?  从表面上看,这与经营者的成本算计相关,耗时较长、开支过高是多数商场超市检测设备未按要求投入使用的主要原因。比如,农残检测设备需要2万元,快速检测仪需千余元。需要2名专业人员操作,一年的工资开支至少6万元,一年的检测药水至少要5000元。而且检验过程非常繁琐,耗时至少45分钟。快速检测仪仅能检测蔬菜的农药综合残留,并不能确定农药残留的成分,用时大约15分钟。因此,不少农残检测专家也认为,对菜市场、超市等终端市场的检测意义不大,甚至有专家心疼花在检测上的大笔投入。  从深层次上看,根本原因是非法利益驱使,而不是检测成本考量。其实,商场超市里的检测设备只是经营者给监管者看的,而不是给消费者用的。或者说,经营者压根儿就不想使用它。因为他们的如意算盘是昭然若揭的:在当今的民族缺乏信用观念、国家缺乏信用制度、社会缺乏信用体系、企业缺乏信用管理的背景下,再加上政府缺乏信用监督,有法不依,执法不严,食品安全质量不高是通病,经营者要想拒不安全食品于十万八千里之外,不现实也不可能。假如商家积极鼓励消费者使用检测设备,检测率很高,那恐怕真的是脑袋被驴踢了。  事实上,保护和经营不安全食品,正是许多商家不菲利润来源之一,他们怎么会自封财路呢?更何况,引导消费者进行食品安全检测无疑是没事找事,给自己添麻烦。道理很简单,在食品生产源头规范不力、不安全食品无孔不入的情况下,商家想保自身干净太难了。消费者一旦确认自己遇到了问题食品,退货、索赔、讨个说法之类的“折腾”自然少不了,商家肯定承受不起,莫不如压根儿就不扯这个。所以,才把检测设备这个“照妖镜”放在“很不起眼的角落里”,或者让其“死机”,失去用武之地。检测设备成“摆设”,最终还是因为商场超市里藏“李鬼”、有猫腻。  “民以食为天,食以安为先”,食品安全问题关系到每个人的身体健康,牵动着每个人的神经。让人们不再为“染色馒头”、“瘦肉精”、“地沟油”等颤栗,离不开监管执法的严厉。近日,最高法、最高检、公安部联合发布通知,要求对于明知是地沟油而予以销售的,追究刑事责任 对于制售地沟油情节恶劣、危害严重的犯罪分子,罪当判处死刑的,要坚决判死刑,且要严格把握适用缓刑条件。相信类似的案例出现后,一定会对涉及“地沟油”的犯罪产生震慑作用。
  • 水质在线监测检测仪器市场前景
    水质安全问题在水环境问题日益严重的当下备受关注,因此带来的环境水质在线监测检测仪器的市场潜力巨大。随着收入的增加,居民对和身体健康密切相关的环境问题的关注度不断提高,同时,工业化和城镇化的发展导致水污染的范围不断扩散、程度不断加深。水环境恶化和人民需求标准上升之间的矛盾,为水处理及相关行业提供了广阔的发展空间。  根据中国环境保护产业协会环境监测仪器专业委员会发布的《我国环境监测仪器行业2009年发展综述》,2009年,废水污染源在线监测设备实现产值约6.8亿元。预计2010-2013年间,地表水质在线监测仪器市场的年均增长率约为22.90%,2010-2013年地表水质在线监仪器细分市场容量预计增长如下:  我国水资源总量为2.8万亿立方米。其中地表水2.7万亿立方米,地下水0.83万亿立方米,水资源总量居世界第六位,人均占有量为2240立方米,在世界银行连续统计的153个国家中居第88位。我国的水资源现状存在总量紧缺、人均占有量低、地区分布不均、水土资源不相匹配、水体污染日益加重、城市缺水情况凸显等问题。城镇化步伐的加快和区域经济的发展,加重了局部水资源的负荷,也加剧了城市地下水的污染,很多城市的地下水均出现了水质富营养化、铁锰超标等问题。水污染问题已经成为我国经济社会发展的最重要制约因素之一,已经引起国家和地方政府的高度重视。  我国确定了单位GDP能耗每年减少4%,5年减少20%的目标 主要污染物排放,包括二氧化硫、化学需氧量总量5年内要减少10%的减排目标。在水体污染防治工作中,水质监测工作是污染预警、持续性污染物监测和治理效果评定的重要手段,已受到有关部门的重视。作为连续性监测工具的水质在线监测仪器承担着提供准确监测数据和监测报告的责任,在环境监测工作中发挥着越来越重要的作用。  目前我国一二线城市市政生活污水处理情况较佳,但未来县镇一级单位污水总体处理率仅为60.1%,远落后于重点城市,市场依然处于亟待开发状态。  其次我国工业污水处理情况较为严峻。2012年以来国内由于工业污水未能实现妥善处理所造成的公共环境污染问题层出不穷,严重影响了污染地群众的生活生产和经济发展。随着国内生活水平的不断发展,尤其是中西部缺水地区工业的发展,水资源紧缺和工业水污染将会成为地方经济发展的紧箍咒。  从供水端来看,随着水源地污染的加深和新自来水标准的提高,现有水厂技术更新和管网升级势在必行,此外家庭用小型净水机亦存在较大的市场需求。排水方面,生活、工业、农业污水处理率及处理技术仍有很大提高空间,相关污水治理企业将从中持续获益。  我国水资源短缺的现状导致地下水已经成为工业、居民生活用水的重要来源,地下水受污染将导致供水企业必须提高水处理技术,为有技术优势的水处理设备供应商提供了较大的市场需求。由于地下水处理的难度较大,解决其污染问题的重点在于防止污染,主要体现在监测和污水达标排放两方面。  专家分析,各级环保部门实现信息公开是一个循序渐进的过程,目前大部分地区的环境监测体系尚未建立。采购环境监测设备,建设监管网络是下一阶段重点。水污染等污染体感明显的板块将成为短期内的重点采购目标。  环保部在&ldquo 十二五&rdquo 规划中,已明确将氨氮、氮氧化物的监测约束性指标加入到现有的监测指标中,因此水质监测行业必将在现有基础上增加这两方面设备的投入,水质监测行业今后将会继续稳定、持续地发展 运营市场方面,随着有关部门监管力度的加强,运营企业的数量将逐渐缩小,少数规模大、实力强的运营企业将逐渐成为运营市场的主力军。随着国家对环保的日益重视,水质监测行业竞争将不断加剧,国内优秀的水质监测企业将迅速崛起,逐渐成为水质监测行业中的翘楚!
  • 空气监测: 臭氧前体物的野外全自动在线监测
    臭氧前体物的野外全自动在线监测 PerkinElmer 与美国国家环保局(US EPA)成功合作案例---无需液氮、无需人员照看、24小时连续监测、化合物测量范围更宽、更高灵敏度的全自动热脱附-气相色谱臭氧前体物(C2-C12 VOCs)分析解决方案在美国,1970 年的清洁空气法赋予了环保署(EPA)保护空气清洁和保障公众健康的责任。1990年,在传统的六项环境空气监测指标基础上加入了挥发性有机物(VOCs)的监测。VOCs、羰基类化合物(carbonyls)以及氮氧化物(NOx)是地面臭氧生成的前体物,无论是在城市还是乡村地区,它们都以低至ppb 级别的浓度存在于环境空气中。在美国这些项目的测试是通过光化合物评估监测站(PAMS)来实施的。全球范围内也有一些其他类似机构进行这样的工作。例如,欧洲现在就在遵循联合国欧洲经济局有关控制VOCs 排放的协议。在我国,即将发布的《环境空气质量标准》中将增设臭氧8小时平均浓度限值,并将该指标纳入空气质量的日常评价。作为臭氧前体物及大气的主要污染物之一---挥发性有机物(VOCs)无疑将在&ldquo 十二五&rdquo 期间倍加重视。2011年12月发布的《国家环境保护&ldquo 十二五&rdquo 规划》中已明确提出要求开展挥发性有机污染物等有毒废气监测,并将对 VOCs 相关重点行业如石化、有机化工、合成材料、化学原料药、塑料、设备涂装、电子元器件、电子电器产品、包装印刷等行业进行重点监管。PerkinElmer 作为全球著名分析仪器供应商,从1955年率先推出全球第一套商用气相色谱仪以来,已屡创多项业内关键第一,如第一套全自动热脱附分析仪、第一套自动进样器、第一根毛细管色谱柱、第一套FID/NPD检测器、第一套GC/MS等。对于臭氧前体物分析,现可提供从样品前处理到分析结果的整体解决方案 方案特点 完全满足美国环保局(U.S.EPA)《臭氧前体物采样和分析技术支持文件》EPA/600-R-98/161 允许无人操作 双柱同时分析 中心切割技术产生平行色谱图增大产出和色谱分离效果 1小时间隔采样 采样与色谱分析同时进行 系统自动校准 完整的数据处理 可选择热脱附系统、气相色谱和数据处理的远程软件控制 无需冷却剂操作 一家供应商提供全部分析方案包 配备中心切割设备及双FID检测器的 Clarus 气相色谱仪和配备联机进样附件 TurboMatrix 热脱附仪 TotalChrom 和Turbomatrix 远程控制软件 Swafer 中心切割设备注:双柱分离5ppb 臭氧前体物(C2-C12 VOCs)标准物质典型色谱分析图PerkinElmer 典型客户郊外臭氧前体物在线监测监测站照片 请点击查阅相关应用文章
  • 水污染源在线监测标准解读及解决方案
    水污染源在线监测标准解读及解决方案12月4日,“水污染源在线监测标准解读及解决方案” 主题网络研讨会将在仪器信息网平台举行。为规范污水监测的相关技术要求,2019年12月25日,生态环境部发布了4项水污染源监测技术规范,这四项标准于2020年3月24日起实施,为我国的水污染治理提供坚实可靠的支持。 本次会议,将邀请环境监测总站专家及哈希水质分析仪器公司的产品专家,讲解水污染源在线监测系统相关标准,带来水污染源在线监测最新解决方案。主题:水污染源在线监测标准解读及解决方案参加费用: 免费参加方法: 文章底部,点击“阅读原文”即可报名开始时间: 2020年12月4日星期五下午14:00-16:00观看平台: 仪器信息网 专家介绍左航,中国环境监测总站高级工程师,主要研究领域为水质在线监测技术和分析方法的开发研究以及标准化等工作,主要负责的课题有:《水环境监测现代装备发展策略研究》、《水环境监测现代装备技术转化平台》,组织制定《化学需氧量(CODCr)水质自动在线监测仪技术要求及检测方法》、《氨氮水质自动在线监测仪技术要求及检测方法》、《铅水质自动监测仪技术要求与检测方法》、《COD光度法快速测定仪技术要求及检测方法》、《水污染源在线监测系统(CODCr、NH3-N等)安装技术规范》、《水污染源在线监测系统(CODCr、NH3-N等)验收技术规范》和《水污染源在线监测系统(CODCr、NH3-N等)运行技术规范》、《水污染源在线监测系统(CODCr、NH3-N等)数据有效性判别技术规范》等10余项标准的制修订工作。黄林,哈希高级定制品及系统集成经理,从事水质在线监测事业18年,有着多年的仪器硬件研发、软件开发、分析应用的经验。常年负责水质在线系统的研发和技术支持工作,参与诸多领域的水质相关监测技术方案的编写和相关应用项目的开展。在水污染源、地表水等水质监测领域有着丰富的经验。不要犹豫,报名及获取更多资讯,点击下方的阅读原文,报名参与吧。END
  • 中药在线监测:连续化生产的核心
    2021年是我国“十四五”规划的开局之年,医药产业,是21世纪创新最为活跃、影响最为深远的新兴产业之一。新冠疫情的突袭,进一步加速了医药行业的升级与变革,使其备受瞩目。面对新阶段、新形势、新机遇、新挑战,伴随医药行业新法规、新政策、新变革,中国的医药行业步入创新药驱动的新时代,产业化的实施落地更需在研发、工艺、设备、生产技术、质量控制等方面协同创新,才能在市场竞争中突出重围。连续制造(Continuous Manufacturing, CM),作为一种先进的制造工艺,正在成为制药行业未来技术竞争和产业保护的新焦点。它是指物料连续不断投入并随着加工而转化,加工后的物料连续不断从系统中排出。与之相对的是间歇工艺(Batch Process),半连续工艺(Semi Continuous)。总的来说,与间歇工艺相比,连续生产的优势主要表现在:生产周期缩短,生产效率极大提高;生产设备自动化、封闭化程度高,人工干预少;设备体积小,占地面积少;物料损耗少,生产成本低;整个药品生产过程实施高强度过程分析和先进工艺控制,产品质量一致性较高。对于连续制造,FDA和ICH一直以来都是推动者。其中以下2篇指南可以看出FDA和ICH对连续制造技术的鼓励支持以及相关的科学建议。FDA于2019年2月发布了《Quality Considerations for Continuous Manufacturing》行业指南草案,提供FDA目前对小分子固体口服制剂新药和仿制药连续制造的质量考虑因素的看法。描述了几个关键质量方面的考虑因素,包括工艺动态,批次定义,控制策略,药品质量体系,放大,稳定性,以及现有批生产到连续制造的桥接。ICH 于2021年7月公布了Q13指南文件《Continuous Manufacturing of Drug Substances and Drug Products》,对连续制造的模式、Batch批次的定义、控制策略、控制状态、工艺动态、物料特性与控制、设备设计与系统整合、工艺监测与控制、物料可追溯性与分流、工艺模型、生产输出变更、持续工艺确证、监管考量等方面均有更新。客观来看,中药产业迈向连续制造的难度远比国外制药(以生物制药、化学药为主)大得多,主要瓶颈涉及到工艺改进法规限制、装备创新能力不足、生产制造控制技术基础薄弱等方面。可喜的是近年来,国家陆续出台一系列政策,将中医药提升为国家战略,如在线检测、过程分析技术(PAT)、质量控制体系、质量大数据、工艺优化方法等技术方向,均已陆续出现在国家各类政策和国家级课题的指南之中。作为FDA连续制造的指南草案中极为重要的一部分,PAT的实施在产业的发展过程中主导地位凸显。连续制造,从“批次”到“流程”。基于众多项目的实施,总结为以下三个关键点:1)设备的连续化;2)工艺技术连续化;3)法律的合规性。就目前而言,1)是制药装备的发展,3)需要国家层面上的政策的导向;我们现在基于的是2)的工作可行性以及有效数据的积累和挖掘。针对工艺技术的连续化,如下图所示:以颗粒剂生产为例,其突出的特点为:物料/产品在每一步单元操作后统一收集,转至下一单元操作(事实上目前已有部分设备能够实现某些单元操作的半连续制造,如部分制粒操作);最终的制剂是在所有操作完成后,在离线的实验室中进行检验的;实际生产用时(每批)等于几天到几周不等。需要同样操作的颗粒剂连续制造;同样提取、浓缩、制粒和混合的操作,通过设备和控制系统设计,使得每一单元操作之间物料/产品不间断通过。颗粒剂的例子中,实时监测和控制将制粒操作后测得的粒度分布、最终混合操作后测得的多组分含量均匀度等构成实时联动的反馈控制系统。突出的特点为:1)物料/产品在每个单元操作之间持续流动;2)生产过程中的在线检测;(3)基于在线检测结果和评估的整个工艺的微调(在线控制);(4)由原来的对工艺的在线控制变成全过程的质量在线控制;(5)实际生产用时大大缩短。苏州泽达兴邦医药科技有限公司在PAT领域已经取得了显著的社会效益。2021年度,公司在多家中药企业落地了在线过程质量检测系统,例如上药杏灵科技药业股份有限公司在线质量检测项目、太极藿香正气口服液生产全过程在线检测以及二期补肾益寿胶囊全过程质量监测项目、众生复方血栓通在线质量检测系统项目、华润本溪三药气滞胃痛颗粒在线分析系统项目、江中参灵草口服液在线检测系统项目等等。此外,公司还顺利完成枣庄三九中成药制剂数字化车间新模式应用项目、天圣中药固体口服制剂数字化车间项目等验收,攻克了中药制剂一步制粒过程中在线检测的难题,将问题深度剖析,将经验转换成数据,将数据转换为知识,深深得到客户们的一致好评,尤其在柱层析以及一步制粒的工段的研究,基本实现全过程的质量控制,将生产工人经验转变成数据的可视化,为未来的工段连续化生产提供的技术支撑;案例:层析分离工段柱层析是目前广泛应用于中药生产过程中的一种重要分离手段,在其分离过程中,通过监测现场工艺状况来保证生产稳定、终产品质量均一和及时确保目标药物洗脱终点。传统上,操作人员凭借观察药物颜色、气味或者通过UV、HPLC等方法判断药物分离的起点和终点,但具有主观性强、不可控风险高、低效耗时等缺点。为了实现银杏酮酯生产过程的智能监测,苏州泽达兴邦医药科技有限公司与上海上药杏灵科技股份有限公司合作了银杏酮酯PAT项目,在项目实施过程中不仅建立了药材、中间体(提取液、浓缩液、醇沉液、层析液、干燥物)及成品质量指标的在线及离线快速检测方法,更通过近红外光谱技术实现了银杏酮酯生产过程中柱层析洗脱起点和终点的实时判断,同时也基于多元统计过程控制技术(MSPC)的方法保证每次收集的样本一致性,最终于SCADA系统工艺参数构建映射分析,当出现异常的时候能够进行实时的调节反馈。项目的实施大大降低了企业生产成本,保证了产品质量的均一稳定,更好地满足了中药生产过程高效精准的需求。目前我们也与辽宁本溪三药合作开展了气滞胃痛颗粒全过程质量控制(PAT)技术以及关键技术的创新研究。针对一步制粒过程自学习生产研究,通过使用多元统计过程控制技术(MSPC)建立了气滞胃痛颗粒一步制粒生产过程轨迹,根据PAT的监测数据结合SCADA系统数据,对生产过程的参数进行实时调控反馈,实现了对一步制粒过程的全程监控。作者简介 王钧,2013年参加工作,现任苏州泽达兴邦医药科技有限公司过程分析控制部技术总负责人,苏州市姑苏紧缺人才,苏州高新区重点产业人才引进,同时担任中国仪器仪表学会近红外分会协会理事。近年来主要从事过程分析技术及其应用研究,先后参与国家工信部智能制造新模式项目5项、工业转型升级(中国制造2025)1项。先后完成多个中药上市企业的制药过程质量控制技术研究与工业应用项目,包括山东绿叶制药有限公司“罗替戈汀”生产过程质量控制技术研究、扬子江药业集团江苏龙凤堂中药有限公司国家工信部智能制造新模式应用项目子课题:“蓝芩口服液”生产过程质量控制技术及产业化应用研究、江苏康缘药业股份有限公司工信部智能制造试点示范项目“中药生产智能工厂”项目-热毒宁注射液生产全过程质量控制体系构建、重庆天圣制药集团股份有限公司国家工信部智能制造新模式应用项目子课题“银参通络等中药单品种生产过程分析技术研究及系统构建”及国家重大新药创制课题“中药新药地贞颗粒先进制造与信息化技术融合示范研究”。发表相关论文23篇,其中SCI 5篇,申请发明专利3项,团体标准1项(在线近红外)。单位简介泽达兴邦成立于2011年,是依托浙江大学苏州工业技术研究院和浙江大学药学院的科研创新体系孵化出来的医药领域高水平科技创新企业,是国内医药制造大健康方向既有竞争力的信息化解决方案供应商和系统集成商。公司联合浙江大学主导制定了国际首个中药生产工艺语义关联的ISO国际标准并于2020年1月出版,先后荣获中国科协“智能制造十大科技进展”、中华中医药学会“科学技术奖一等奖”、荣登中国科协2020年度“科创中国”先导技术榜单等荣誉,入选工信部2019年智能制造系统解决方案供应商。公司专注于新一代信息技术与医药健康领域的创新融合,致力于中药、疫苗等制药全产业链智能制造解决方案,推动具有行业示范效应的核心技术应用,开发了一系列具有核心竞争优势的信息化技术及软件产品。已在国内近百家中药制药企业进行产业化应用,为国内中药领军企业开展中药全产业链智能制造整体解决方案设计与实施服务,核心在于PAT系统的构建。
  • 中药提取过程近红外在线检测项目取得重要进展
    近日,吉林省科技厅主持召开吉林敖东"中药提取过程近红外光谱在线质量监控系统"科技成果鉴定会,与会专家指出,吉林敖东在中药提取技术上获得重大突破,在中药口服液体制剂生产技术上走在了全国、全世界前列。  中药采购受时间和地域差别而难以标准化,中药成份量化和质量综合检测一直是中药走向世界的瓶颈。据了解,敖东制药与清华大学主持的"近红外在线检测项目",经罗国安教授带领的项目组的创新科研,历时五年,最终攻克了从"检测"到"检控"的难关,首次实现将近红外光谱技术应用于中药口服液提取过程的在线质量监控。申请并获得了国家发明专利4项,实用新型专利2项,软件著作权3项。  鉴定专家组在听取项目组汇报和答辩后,进行了现场考察,在鉴定意见中指出"敖东药业对液体制剂品的二次开发,代表了当今中国液体制剂生产技术的最高水平,指纹图谱技术的应用,为口服液产品质量控制提供了国际认可的技术标准。"
  • 科学家发明癌细胞“照妖镜”:黄金纳米粒子
    以色列物理学家研发使用黄金纳米粒子检测早期癌症的方法首次通过人体测试。以色列巴伊兰大学纳米科技及先进材料研究所的德奥尔· 菲克斯勒教授率领的团队,经过5年的研究证实了纳米技术在癌症早期诊断中的光明前景。他们研发的非侵入无辐射光学系统,被用于检测脑部、颈部及口腔癌症,也可用来检测位于舌头、咽喉部位的癌症发病情况。该方法已在动物身上测试成功,最近也通过了人类测试,被确认有效。  几分钟即可检测出癌症且成功率超过90%  这种发明是如何工作的?如果一位口腔感到疼痛并伴有其他病症的患者去看医生,有一种令人不安的可能就是,该患者正受到口腔癌、舌癌或喉癌的折磨。医生要求患者使用一种特殊的混合物漱口,几分钟后便能确认患者是否患有癌症。  这样的测试很简单,患者只要花上几分钟,用含有黄金纳米粒子的混合物漱口,这些粒子能够有效给癌细胞着色,着色部位被一个专门研发的工具扫描成图,医生便可在电脑屏幕上查看结果。当前的临床试验表明,该方法可成功检测出人类舌头及咽喉部位的癌症。舌癌的检测在特拉维夫大学牙医学院进行,咽喉癌的检测由舍巴医学中心耳鼻喉部完成。菲克斯勒说:&ldquo 我们将试验结果和病人活检结果进行对比,该试验的成功率超过90%。&rdquo   两种技术手段成就这一快速检测技术  菲克斯勒研发的检测方法包括了两种在医学领域还未充分展示其全部潜能的技术手段,&ldquo 物理扩散&rdquo 技术和&ldquo 纳米技术&rdquo 。  &ldquo 物理扩散&rdquo 技术发展于上世纪70年代末,主要的理论基础是光束在身体器官上的反射能够帮助检测肿瘤。对被器官阻碍的光线扩散的研究可以显示出器官哪一部分吸收或反射了光线,从而有助于检测癌细胞生长。菲克斯勒说:&ldquo 研究者们花费了很长时间构建模型,尝试找出光线反射原理下器官发生了什么,然而该领域的研究停滞了一段时间,因为该模型无法确切显示肿瘤是否被检测到,也无法确认扩散源是否来自身体的不同部分。作为基础研究的极好模型,事实证明它没有多少临床价值。&rdquo 他解释道:&ldquo 被称为漫反射的理论模型自20世纪80年代就很流行,但对癌症的检测不能仅依赖于光线对器官的反射这一依据,要确认癌细胞是否生长,我们需要能够更好地描绘器官图像的物质或微粒。&rdquo   &ldquo 大约12年前,一种被称为分子药剂的新思路进入人们的视线。&rdquo 菲克斯勒说。和先前寻求大体图像的思路不同,新思路希望寻求分子层面的结论。以此思路为基础,一种被称为&ldquo 对比成像&rdquo 的方法在近十年中研发出来。运用该方法,医生将一种秘密药剂注射到患者身体中,植于医生希望探测癌细胞生长的地方,从而获得所需图像,这种秘密药剂就是纳米粒子。其中,黄金纳米粒子因其无毒且与人体具有较好的集成度而被广泛使用。  &ldquo 事实上,纳米粒子是在我们血液中运行的小型机器人。&rdquo 菲克斯勒解释说,&ldquo 当纳米粒子在癌症抗体分子中时,我们可以观察到,这些粒子能够黏着于癌细胞。因此无需核磁共振或CT检查,癌细胞便可被识别出来。因为某种量子特性,黄金纳米粒子在一定的波长下能够对光线产生很强的反射作用。&rdquo   近年来,一种使用黄金纳米粒子成像的技术被研发出来,基于这种技术的疾病探测和治疗仪器随之出现,但这种仪器有个实质问题,即如何平衡创建高清质量的图像与所需黄金数量的关系。  新算法模型还可将该技术扩展于检测其他疾病  菲克斯勒和他的同事对自己的探测方法不断改进。&ldquo 这就像在寻找隧道。&rdquo 他解释道,&ldquo 仅探测外部环境找到隧道并不容易,有时候你需要等待有人从里面出来。我们不仅依据粒子反射的光线,同时还根据人体组织上光线扩散产生的效果检测癌细胞。&rdquo   研究人员改变了黄金纳米粒子传统的球形形状,把它做成了杆形,改变了粒子反射波的长度,使粒子更深入地穿透到人体组织中。更重要是,他们研发了一种数学算法,能将粒子反映的信息转化成实际的图像。&ldquo 粒子穿透组织,我们看不到反射。&rdquo 菲克斯勒说,&ldquo 但我们可看到它们如何在人体组织内影响光扩散。基于从组织细胞反射出来的光子数量,可建立计算数学函数。&rdquo   菲克斯勒的方法不限于癌症检测,他还在开发多发性硬化症的诊断方法。他的研究引起了国际科学界的关注, 去年6月,伦敦医学院为他颁发奖学金,资助其之后一年在伦敦国王学院与其他科学家一同继续此研究。44岁的菲克斯勒出生于特拉维夫,现任巴伊兰大学先进光学显微镜实验室主任。 他在瓦伦西亚大学完成博士后工作,曾在中国华南师范大学激光研究所担任客座教授。
  • 上海智城成功研发在线光密度检测摇床
    我国生物发酵领域通过手工不断取样,了解微生物菌种生长特性的落后实验方法将得到彻底改变。上海智城分析仪器制造有限公司科研人员经过多年研究,成功开发出采用非接触式技术,对微生物菌种进行OD值在线实时检测的ZWYF—290B型在线光密度检测摇床新品。据了解,这一专利产品的问世,改变了我国生物发酵领域无此类国产设备的尴尬。 众所周知,我国对生物发酵技术的研究和应用经过数十多年的快速发展,已经使我国迈入了世界生物工程领域发酵大国的行列。但我国在此领域的科研水平及取得的科研成果与发达国家相比,还存在着较大的差距,实验装备的落后是其中的一个重要原因。目前我国在生物工程发酵领域对微生物菌种的培育和研究,还沿用着传统的,通过手工不断取样来了解微生物菌种生长特性的实验方法。这种手工操作方法不但费时费力,准确度底,重复性差,其研究效率还十分低下。这一状况已经成为我国生物发酵工程领域对微生物菌种进行培育和筛选的重要瓶颈。广大生物发酵领域的实验人员迫切希望能有国产的自动化检测设备早日问世,能够将他们从繁琐、繁重的实验操作中解放出来,实现我国从发酵大国走向发酵强国的夙愿。 ZWYF—290B型在线光密度检测摇床是一种采用非接触式检测技术,对微生物细胞浓度进行光密度(optical density,OD)值在线实时检测的恒温摇床新品。该产品在叠加式真彩触摸屏摇床上配置一个非侵入式多通道光度检测器,在动态环境下,实时测量微生物发酵液中细胞的光密度,在线跟踪微生物生长的浓度或粒度变化,为生物工程、生物医学和生物制药等提供了一款基础性的新型生物反应器。该产品使用波长为600/660nm激光光源,采用250mL特制锥形三角瓶作为生物发酵摇瓶,可以满足一般微生物发酵过程检测和细胞生长速率的在线分析。该新产品抗干扰噪声强,能在250rpm等转速振动的环境中获得真实的微生物细胞生长曲线。设备可选4、8、12和16通道, 适合正交试验、均匀实验和DoE设计实验,从而高效实现菌种筛选、培养基优化、工艺优化和动力学分析等。此外,产品所配置的无线数据采集和传输功能,为进一步实现多机联网、高通量大数据生物反应和分析创造了条件。 该产品适用于菌种筛选、培养基优化、发酵工艺优化等研究,能显著提高工艺优化与筛选效率。还可广泛应用于微生物细胞、动物细胞和植物细胞培养与发酵,在生物医药、食品开发、生物农业、环境治理等领域进行菌种筛选和工艺开发具有很好的应用前景。根据研究需要,该产品还可更换激光波长,应用于酶、蛋白质等活性物质的检测等。 采用ZWYF—290B型在线光密度检测摇床所得到的实验效果图形: 图一、大肠杆菌、农杆菌生长曲线自动生成(37℃,12小时) 图二、交大昂立的一种营养食品菌种在不同培养基中的生长曲线(37℃,17小时) Min 图三、接种不等量菌株,记录的大肠杆菌生长曲线
  • 让泄漏气体无处遁形 | 谱育科技 EXPEC 1880 红外热成像气体泄漏检测仪 新品上市
    谱育科技 EXPEC 1880红外热成像气体泄漏检测仪 EXPEC 1880 红外热成像气体泄漏检测仪(以下简称EXPEC 1880)是一款针对挥发性有机气体(VOCs)的非接触式泄漏检测仪,采用高端中波制冷型二类超晶格红外探测器。该产品通过Ex ic nc op is II c T4 Gc防爆认证,防护等级高(IP54)。照妖镜——化无形为有形肉眼即可见泄漏气体超能力——不可达点检测实现远距离检测泄漏黄金搭档——定性定量检测EXPEC 1880+EXPEC 3100组合1、定性定量分析 EXPEC 1880 红外热成像仪 与 EXPEC 3100 便携式VOCs分析仪通过工业级WIFI连接,实现了设备间的检测数据实时互通(氢火焰离子法FID+光离子法PID),在快速影像捕捉泄漏气体的同时,实时显示VOCs泄漏值。2、不可达点检测 EXPEC 1880 可针对不可达密封点进行红外热成像气体泄漏检测,即使不接近泄漏点,也可实现远距离泄漏检测,有效避免不必要危险和损失,保障操作人员安全。 ☆ 生态环境部2019年6月26日发布《重点行业挥发性有机物综合治理方案》(环大气〔2019〕53号)中指出:对不可达密封点采用红外法检测。 ☆ 生态环境部2020年6月19日发布《关于征求储油库大气污染物排放标准(征求意见稿)等三项标准意见的函》中的《加油站大气污染物排放标准(征求意见稿)》指出:采用红外摄像方式检测油气回收系统密闭连接点位,不应有可见油气泄漏。3、多模式选择 EXPEC 1880具有可见光、普通红外、高灵敏红外三种模式。在检测时可快捷切换不同模式,发现泄漏组件,精准定位泄漏源头,让微小气体也无处遁形。4、优越性能配置(1)4.3英寸可旋转触摸屏+800*600像素取景器(2)手柄符合人体工学,可180度旋转调节。(3)启动时间≤5分钟,做到分秒必争,提高现场检测工作效率。(4)连接防爆手操器,可实现与谱育LDAR管理平台数据互通;也可通过防爆手操器实现远程监控。(5)GPS定位、视音频录制功能,便于现场取证。5、多领域应用 石油化工厂、炼油厂、井场, 油气储集区、加油站、天然气管道、海上石油平台、泄漏检测与修复(LDAR)、环保监督执法部门等。
  • PCR在动植物病害检测和鉴定中的应用|iCPCR2023在线开讲
    PCR在动植物疫病应用广泛5月29日,《自然通讯》(Nature Communications)杂志网站刊登了“在猪中检测到高致死性基因型I和II重组非洲猪瘟病毒”的研究。研究称,哈兽研研究团队在江苏、河南和内蒙采集的猪样本中分离出3株非洲猪瘟病毒基因I型和基因II型的重组体,结果表明,重组病毒JS/LG/21在猪中是高度致死和可传播的。重大动物疫病、人畜共患病危及公共卫生安全。非洲猪瘟从2018年延绵到现在,一直被生猪养殖界称为世界性难题。值得关注的是,荧光PCR检测方法是非洲猪瘟确诊的重要标准,世界粮农组织及中国农村农业局均推荐优先采用荧光PCR检测方法进行核酸检测诊断非洲猪瘟。而植物病害严重危害农业生产,不仅危害农作物产量的减少,而且在一定程度上还严重威胁农产品质量安全及国际贸易。应用PCR扩增技术可将很少的病原微生物核酸扩增放大,可以用于植物病害的早期诊断。病害的防治通常是预防大于治疗,浓度偏低的病毒病标样的准确诊断和检测对病害的有效控制非常重要。目前,PCR技术在我国植物病害检测中已得到了广泛应用,覆盖真菌类、细菌类、病毒类的检测研究。聚焦动植物疫病,iCPCR2023全阵容嘉宾开讲PCR和建立在PCR基础上的分子生物学技术以其灵敏、快速、简便等优点,能将病害快速、准确的鉴定出来,在动植物病害检测和鉴定中得到了广泛应用。2023年6月28-30日,由仪器信息网举办的第七届PCR技术网络会议(iCPCR 2023)将在线开播,众位PCR技术和仪器研发专家,PCR技术应用专家,前沿科学研究PI等嘉宾将在3i讲堂分享精彩报告。本次会议特别设置了【动植物疫病应用】分会场,特邀多位嘉宾分享PCR在动植物疫病检查中的应用与经验。立即报名》》》精彩报告提前揭晓:原霖 实验室技术总监 北京中科基因技术股份有限公司《数字PCR在污水等复杂基质中的动物病原检测》(6月30日上午开讲 点击报名 )原霖 博士 高级兽医师,北京中科基因技术股份有限公司 实验室技术总监,“原博士带你做检测”公众号创始人。毕业于中国农业大学。全国标准物质技术评审专家库专家、全国标准样品技术委员会动物防疫标准样品专业工作组(SAC/TC118/WG15)组员、全国生化检测标准化技术委员会(SAC/TC 387)成员。目前主要从事检测实验室质量控制与标准化研究。已经研制了ASFV和PRRSV等10余项国家标准物质/标准样品。PRRSV核酸标准物质为我国兽医领域第一个核酸定量有证标准物质。建立了非洲猪瘟、禽流感和蓝耳病等数十个数字PCR方法。主持及参与国家重点研发计划2项,参与起草《医学实验室 核酸检测质量和安全指南》(CNAS-TRL-018)等标准10项,参编书籍6本;发表学术论文30余篇。王少林 教授 中国农业大学动物医学院《高通量扩增子检测技术在动物病原与耐药性检测中的应用》(6月30日上午开讲 点击报名 )王少林,教授,现就职于中国农业大学动物医学院,2003年获得中国农业大学生物学学士学位,2009年获得美国奥本大学分子遗传学博士学位,入选中组部万人计划“青年拔尖人才”。主要从事药理基因组, 毒理基因组,微生物基因组、宏基因组和生物信息学方面的研究;在重要国际期刊上发表SCI论文100余篇,主要研究成果论文引用5000次以上,参与出版英文著作4个章节,主持国家重点研发计划课题、自然科学基金、农业部细菌耐药性监测项目等10项。史喜菊 博士/研究员 中国海关科学技术研究中心《多重荧光PCR在动物疫病检测中的应用》(6月30日上午开讲 点击报名 )史喜菊博士,研究员,中国海关科学技术研究中心,主要从事境外动物疫病风险评估、进出境动物疫病分子诊断技术研究和实验室质量管理体系研究。“十三五”、“十四五”国家重点研发计划课题主持人,先后主持/负责完成国家级、省部级科研课题22项,科研成果曾获得北京市科技奖励二等奖1项、三等奖1项、原国家质检总局科技兴检二等奖1项,三等奖3项,获海关总署科技成果评定三等奖1项。获得授权的国家发明专利9项,副主编出版专著2部,参编、参译著作7部;以第一作者发表文章50多篇,其中SCI文章6篇,主持/参与制定行业标准15项。夏应菊 高级兽医师 中国兽医药品监察所《猪瘟和非洲猪瘟假病毒的研制与应用》(6月30日下午开讲 点击报名 )夏应菊博士,高级兽医师,中国兽医药品监察所,国家/WOH猪瘟参考实验室骨干。从事猪瘟、非洲猪瘟等重大猪病诊断方法、疫苗评价及免疫机制等研究工作。国家猪瘟参考实验室学术委员会委员、中国畜牧兽医学会动物传染病学分会青年学者专业组委员。主持和参加 “十四五”、“十三五”国家重点专项课题、国家自然科学基金面上项目等国家和省部级课题8项。发表论文30余篇,主编、参编著作3部,获专利3项。邓丛良 研究员 中国海关科学技术研究中心《数字荧光PCR技术在检验检疫中的应用》(6月30日下午开讲 点击报名 )邓丛良,博士,研究员,北京植物病理学会常务理事,现在中国海关技术研究中心动物研究所从事物种查验工作。在植物病毒检测技术研究方面具有深入研究,第一作者和通讯作者发表论文30余篇,研究成果分获省部级1等奖,2等奖和3等奖计5项。冯小宇 正高级兽医师北京市动物疫病预防控制中心《动物疫病检测用标准物质的研究与应用》(6月30日下午开讲 点击报名 )冯小宇,北京市动物疫病预防控制中心正高级兽医师。中国微生物学会兽医微生物学专业委员会委员,北京市奶牛创新团队岗位专家。从事动物疫病监测诊断、防控技术研究及推广应用工作。主持或参与省部级科研项目 15 项;获省部级奖励 6 项、国家标准物质 2 项、新兽药证书 1 项、发明专利 9 项、实用新型专利 4 项,发表论文30 余篇。获北京市青年文明号、北京市动植物疫情防控先进个人、北京市郊区青年致富带头人等荣誉称号。蒲静 研究员 中国海关科学技术研究中心《PCR技术在动物源性成分鉴定中的应用》(6月30日下午开讲 点击报名 )蒲静,研究员,2005年毕业于中国农业大学,获预防兽医学博士学位。现任职于中国海关科学技术研究中心动物检疫研究所,同时担任进出境濒危物种鉴定实验室联盟技术专家。主要从事进出境动物及动物源性产品的检验检疫、濒危物种鉴定及动物源性成分鉴定等国门生物安全动物领域相关工作,在精准分子检测及鉴定技术方面开展科研创新,主要研究成果包括“濒危动物及其制品鉴定技术体系”、“主要动物疫病快检技术平台”等。主持和参加国家科技支撑计划、海关总署科研项目等12项,获得省部级科技进步奖3项;主持发布国家标准3项;取得授权发明专利12项;发表核心期刊论文和会议论文30余篇。 参会指南 快速报名入口:https://www.instrument.com.cn/webinar/meetings/icpcr2023/一、主办单位仪器信息网二、会议时间2023年6月28日-30日三、会议日程第七届PCR前沿技术与应用网络会议(iCPCR 2023)时间专场主题6月28日 上午新产品与新技术6月28日 下午分子诊断应用6月29日 上午药品/生物制品应用6月29日 下午农林育种应用6月30日 上午动植物疫病应用(上)6月30日 下午动植物疫病应用(下)扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。四、会议联系会议内容及报告赞助仪器信息网 刘编辑:13683372576,liuld@instrument.com.cn
  • 在线TOC检测触发警报-FDA发出483警告信
    2009年12月,美国FDA对美国某制药公司进行了为期12天的检查,对检查中观察到的问题,发出警告信1。其中,“观察3(OBSERVATION 3)”中,指出该药厂TOC指标控制存在问题。当在线TOC传感器指示警报时,QA主任指示设备部简单地关闭警报,没有执行任何标准操作规程(SOP)。同时,从此设备取样用实验室TOC做进一步分析。FDA警告信原文如下:观察3:在生产与过程控制工作中,未遵守书面的生产与过程控制程序。详细如下:该药厂SOP 2-ENG-010中规定:当警报被触发时,对应的员工应该确认收到警报,然后遵照正确的工作流程,包括文档记录及调查。没有SOP说明由谁来解除警报,在什么样的情况下可以解除警报,及谁负责决定警报是否应该解除。然而,在2009年9月23日上午12:29,AIT-21201警报被解除了。这次警报检测到用于生产热注射用水的分配回路中,总有机碳TOC(Total Organic Carbon)水平过高。维护日志与生成偏差(PR#6425)指出,设备部被QA主任命令解除警报。这表明FDA对制药企业如何处理过程控制或实时检测的异常TOC警报,非常敏感。另外,上述公司使用实验室TOC分析仪对从在线传感器采集的样品进行了分析,得到了正常的TOC结果——不高于控制限值。这个结果和两个样品测定的结果差异,甚至比这封483警告信中观察到的问题更严重。为什么该公司的实验室与在线TOC仪,会对同样的水样报告不同的TOC检测结果?出现在线TOC分析仪报告超标的问题,实际上是实验室型与在线型TOC分析仪的工作原理不同而造成的。该公司的实验室型TOC分析仪是Sievers 900型,采用选择性膜电导的检测方式,如果水系统中出现含有杂原子(如氮、磷、硫、氯等)的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。Sievers的选择性膜电导技术,只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。但是该药厂在线型TOC分析仪是其他品牌,使用的是直接电导法的检测方式。当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,造成电导率检测急剧升高,从而报告异常高的TOC值。这是一种仪器检测的“假正”现象。实际上,水样的TOC仍处于合格的范围内。该药厂的注射用水系统,平时水中没有出现含杂原子的有机化合物时,在线直接电导法TOC传感器与实验室型膜电导法的TOC分析仪,报告的结果相吻合。但在原水出现变化时,水系统中意外地含有带杂原子的有机化合物,实验室型由于膜电导的检测方式,可以去除这种干扰。但在线型的直接电导检测方式,无法去除这种干扰,造成检测TOC结果过高,触发警报。这就是为什么该药厂的实验室TOC检测正常,但在线TOC传感器却触发超规值 OOS(Out-of-Specification)警报的原因。测定值超出了中国药典ChP、美国药典USP 等对水系统的规格要求。如何才能避免这种由于仪器方法的不同,造成的测定结果的偏差呢?为解决此问题,在线与实验室,应使用相同仪器方法的TOC分析仪。这里,相对于直接电导法的仪器,膜电导法对TOC检测具有科学性与准确性,建议均选择膜电导法TOC分析仪。这样无论在线还是实验室,均能排除水系统异常的干扰,准确测定TOC,直接避免了方法验证的风险。避免为验证不同的方法,所需要花费的时间与人力。最后,使用直接电导法的仪器,根据国际协调化委员会ICH(International Conference of Harmonization)的方针2,在方法验证时存在风险。根据ICH Q2(R1)中对分析方法的验证要点的要求,方法的精确度、准确度及专属性等,都是必须验证的。对于直接电导法的TOC检测,由于其对有机化合物上取代的杂原子,均不能避免其对TOC检测的干扰,所以,对这些化合物无法正确回收。用这类化合物做准确度与专属性的验证,浓度水平在500 μg C/L(碳含量)时,均无法通过,包括氯仿、烟酰胺、十二烷基苯磺酸钠等。结论从FDA 483观察中,明确表明FDA对制药企业如何验证用于过程控制的方法非常敏感。分析测定对确保制药产品的质量至关重要。不正确检测的后果可以非常严重,如本文所示。方法验证是确认用于特定检测的分析方法是否适合预期用途的过程。使用TOC检测用于实时(Real-time)过程控制时,对方法验证进行严格要求尤其重要。相关引用FDA对美国某制药公司的警告信-2009警告信来源自FDA网站:http://www.fda.gov/downloads/AboutFDA/CentersOffices/ORA/ORAElectronicReadingRoom/UCM204194.pdf参考资料警告信来源自以下 FDA 网站:http://www.fda.gov/downloads/AboutFDA/CentersOffices/ORA/ORAElectronicReadingRoom/UCM204194.pdf国际协调化委员会 ICH, 协调的第三方指南(ICH Harmonised Tripatite Guideline),“分析过程的验证:正文与方法论 Q2(R1)(Validation of Analytical Procedures: Text and Methodology Q2(R1))”。◆ ◆ ◆联系我们,了解更多!
  • 利用水质在线预警技术监测水质变化
    仪器信息网讯 2014年11月25-26日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的&ldquo 第七届中国在线分析仪器应用及发展国际论坛暨展览会(简称 CIOAE 2014)&rdquo 在国家会议中心召开。北京城市排水集团有限责任公司水质检测中心翟家骥在会上做题为&ldquo 利用水质在线预警技术监测水质变化&rdquo 的报告。北京城市排水集团有限责任公司水质检测中心 翟家骥  环境污染对人民群众的生活带来很大的威胁,及时有效的发现污染物的泄漏或排放有着十分重要的意义。尤其,对于污水处理厂,及时有效的发现进水的异常状态,对于构筑物和活性污泥都能起到很好的保护作用,同时也能够更好的确保出水水质稳定,这其中水质在线监测预警技术将会起到非常重要的作用。  水质在线预警系统一般包括样品采集设备、水质在线监测仪器、数据采集设备、数据传输设备、通讯设备和终端接收设备等。其中,对采集的各种监测数据传输至环保系统,目前有多种传输方式,如:电话线方式、GPRS方式、GSM短消息方式、局域网方式、无线电台方式等。水质在线监测预警系统示意图  在线预警常用指标有:化学需氧量(COD)、生化需氧量(BOD)、总有机碳(TOC)、氨氮(NH3-N)、总氮(TN)、总磷(TP)。  COD是水质监测分析中最常测定的项目,评价水体污染的重要指标之一  实验室测定COD的方法主要有:GB11914-89《水质 化学需氧量的测定 重铬酸钾法》,ISO 15705《水质&mdash &mdash 化学需氧量的测定(ST-COD)&mdash &mdash 小型密封试管法》,HJ/T399-2007《水质 化学需氧量的测定 快速消解分光光度法》。  GB11914-89是测定CODCr经典的方法,适用于各种天然水体、工业废水、生活污水和污水处理厂进出水的测定。测定的精密度和准确度都很好,可信度高,广泛用于各方面的检测和仲裁等。但存在水电等能耗高,氧化性、腐蚀性药品用量大,检测人员工作强度大,分析时间长等缺陷。  ISO 15705是国际化标准组织水质技术委员会颁布的一种测定水中CODCr的便捷的方法。与HJT 399-2007不同之处有两方面:一是消解温度为150℃,二是消解时间为120min。这一方法在国外的一些CODCr测定仪生产公司中被采用,如HACH公司。但这种方法测定较低浓度的CODCr时,结果往往偏高,更适合测定200mg/L以上的样品。  2007年,HJ/T399-2007颁布,这种方法在各方面的检测中得到了越来越广泛的应用。该方法的消解时间仅为15分钟,可谓非常快捷,很适合用于大批量样品的检测和应急监测中。但由于其采用的温度较高,对于污水处理厂二级处理出水和再生水的检测会因原污水的性质不同而受到影响。有些样品中会因为含有一定量的高沸点有机物,采用HJ/T399-2007法测定,结果会偏高。  在线监测COD的方法主要有:化学法(重铬酸盐法)、光谱法(UV254 双波长法)、相关系数法(通过TOC间接求出COD)、连续流动分析法(重铬酸钾法演化)、分光光度法(重铬酸钾法演化)等。  在线监测COD技术的干扰因素主要有:氯化物(加硫酸汞)、加药管路堵塞和污染(清理管路)、催化剂投加(加硫酸银)、本底校正(空白实验)等。COD自动在线监测仪流程图  TOC在线监测技术比较方法性能燃烧氧化法湿式氧化法氧化能力氧化能力强氧化能力弱,难氧化颗粒物、烷基苯磺酸、腐植酸、咖啡因等。检测限常用情况为几毫克每升,特殊用途可达约10&mu g/L。常用情况为几毫克每升,特殊用途可达约几微克每升。前处理不需前处理,直接由TC-IC求出TOC,无挥发性有机物损失必须前处理,挥发性有机物有损失可操作性容易、快速、使用高温炉和催化剂较复杂,使用氧化剂、UV灯   &ldquo 十二五&rdquo 期间&ldquo 氨氮&rdquo 成为硬性指标  氨氮在水中会以铵盐离子形态和游离态溶解氨存在,铵盐离子一般认为没有毒性,游离态溶解氨毒性大小与氢离子浓度有关  氨氮的实验室测定方法:HJ 535-2009《水质 氨氮的测定 纳氏试剂分光光度法》,HJ 535-2009是以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420nm处测量吸光度。  HJ 536-2009《水质 氨氮的测定 水杨酸分光光度法》,HJ 536-2009在碱性介质(pH=11.7)和亚硝基铁氰化钠存在下,水中氨、铵离子与水杨酸盐和次氯酸离子反应生成蓝色氯化物,在697nm处用分光光度计测量吸光度。  在线监测主要方法是氨气敏电极法。氨气敏电极法氨氮在线监测仪的测量原理是将水样中的NH4+转为气态的NH3(NH4++OH-D NH3+H2O),氨气通过渗透膜进入到电极内,使得电极内部的平衡反应NH4+D NH3+H+发生变化,引起电极内部[H+]变化,由pH玻璃电极测得其变化,并产生与样品中铵离子浓度有关的输出电压,得出相应的氨氮浓度。  在线监测正在从单一参数的检测向对水体安全进行全面评估的生物毒性预警发展  目前对水质的考核指标多为对某几类污染物的限值要求,但是,即使考核的污染物含量都达到要求,对水质的实际安全性依然存疑。目前尤为关注的包括水中残留的难降解有机物,以及消毒副产物等存在较大生物毒性的物质,这些物质无法简单用COD、BOD或TOC来表征,存在于水体中对环境和生态都有一定的威胁。所以,对生物毒性进行综合的评价,能够有效的对水体的安全进行全面的评估。  生物毒性实验室测定方法主要有SOS/umu生物检测生物遗传毒性、发光细菌急性毒性(发光菌)、大型蚤暴露生物急性毒性(大型蚤)、斑马鱼活体暴露风险评价慢性毒性(斑马鱼)、胚胎暴露生物早期发育影响(斑马鱼卵)等。  而在线监测生物毒性方法主要有发光菌监测系统、双壳软体动物监测系统、鱼类监测系统、水溞监测系统等。  其中,发光细菌法是利用灵敏的光电测量系统测定毒物对发光细菌发光强度的影响,判断毒物毒性的大小。发光细菌含有荧光素、荧光酶、ATP等发光要素,在有氧条件下通过细胞内生化反应会产生微弱荧光。当细胞活性升高,处于积极分裂状态时,其ATP含量高,发光强度增强。发光细菌在毒物作用下,细胞活性下降,ATP含量水平下降,导致发光细菌发光强度降低。基于鱼类毒性的在线测定技术,鱼活对水环境的变化十分敏感,当水体中有毒物质达到一定浓度时,就会引起一系列中毒反应。
  • 在线课堂:水污染源水质监测解决方案
    在线课堂:水污染源水质监测解决方案哈希公司 叮叮叮,哈希线上课堂开课了,让您足不出户,了解最新水质行业知识。5月为在线课堂的污染源主题月,三场在线课堂,精彩不容错过。5月的在线课堂的主要内容是水污染源水质监测各方面知识。水污染源是环境监测中的一项重点,5月中,哈希专家将据此主题,为大家带来满满的干货,助力大家解决工作中的实际难题。 参加费用:免费 参与方法:文章底部,点击阅读原文,即可报名日期主题5月14日下午 14:00 水污染源新标解决方案5月20日下午14:00CODmax III蜕变上市5月26日下午14:00水污染源在线仪表解决方案在这里,有:工程师专家直播讲解在线抽奖,精美礼品相送闪迪32G优盘3.0、羽博便携充电风扇、小米Redmi小爱音箱、米家保温杯、小米电动牙刷等奖品直播抽奖END不要犹豫,点击下方阅读原文,参加报名吧!
  • 【项目文章】高效离子迁移谱对饮料中人工甜味剂的快速检测
    我们南京财经大学和江苏省质量安全工程研究院用户,在Analytical Letters杂志发表题为Determination of Artificial Sweeteners by High-performance Ion Mobility Spectrometry with Electrospray Ionization的文章,利用高效离子迁移谱(HPIMS),建立对5种人工甜味剂的快检方法。我们将这篇文章进行了解读。 人们对简单、快速、低成本、绿色测定人工甜味剂的需求越来越高,人工甜味剂因可能存在的毒性而备受关注。采用直接电喷雾高效离子迁移谱法测定了安赛蜜、糖精钠、甜蜜素、阿斯巴甜和纽甜。高效离子迁移谱(ESI-HPIMS),正离子和负离子模式的分辨率均超过60。单次采集时间小于10 s,总分析时间在2 min以下,比传统色谱方法更快。文章建立了浓度为0.1到1.5或2.0 mg/L的甜味剂的标准曲线,相关系数约为0.99。ESI-HPIMS的简单样品制备、快速分析、灵敏度高、稳定性高、绿色性能和低成本的特点,使其成为一种很有前景的用于测定水和饮料中的安赛蜜、糖精钠、甜蜜素、阿斯巴甜和纽甜的技术。人工甜味剂通常被用于食品和饮料,因为它们的卡路里含量较低。然而,人工甜味剂是最具争议的食品添加剂之一,主要由于其潜在的健康影响。因此,食品中甜味剂的种类和浓度受到法规的限制。甜味剂可以单独使用,也可以与其他甜味剂混合使用。食品行业的普遍趋势是使用甜味剂混合物。为了提高消费者的安全,有必要控制食品中甜味剂的浓度。已经开发了各种分析方法来进行测定。大多数方法都是针对单个甜味剂开发的。由于可以制备许多可能的甜味剂组合,因此需要快速测定几种甜味剂的方法。使用得较多的方法是高效液相色谱(HPLC)。然而,HPLC较为耗时且操作复杂。亟需一种简单、快速、高灵敏度、稳健性、绿色和低成本的方法来测定甜味剂混合物。离子迁移谱(ion mobility spectrometry, IMS),基本原理是被检测的样品离子化形成气相离子,然后使产生的离子进入电场中进行漂移,在漂移过程中离子会与逆流的中性漂移气体分子不断发生碰撞。根据离子的大小、结构形状和质量电荷比不同,使得不同的离子通过电场的漂移时间各不相同,由此可实现样品的分离。只有少数报道采用IMS检测人工甜味剂。本研究的目的是基于IMS,开发快速检测安赛蜜、糖精钠、甜蜜素、阿斯巴甜和纽甜的方法。 通过高效离子迁移谱,对购自超市的纯水、绿茶和运动饮料中五种人工甜味剂进行检测。将待测样本以1:9的体积比与甲醇混合。仪器参数见下表。ParameterIon modePositiveNegativeSource voltage (V)19002000Drift tube voltage (V)80008000Gas inlet temperature (℃)180.0180.0Drift tube temperature (℃)180.0180.0Gate voltage (V)5252Gate pulse width (µ s)8080Spectrum length (ms)3030Data acquisition sampling rate (s- 1)200000200000Number of spectra summed per cycle1010Drift gas flow rate (L/min)1.251.25Exhaust pump rate (L/min)1.200.60Direct spray flow rate (µ L/min)2.001.50 安赛蜜、糖精钠、甜蜜素采用负离子模式,阿斯巴甜和纽甜采用正离子模式。用L-色氨酸和柠檬酸溶液分别对在正离子模式和负离子模式下进行仪器校准。 安赛蜜、糖精钠、甜蜜素在负离子模式下的峰值分别为8.1 ms、8.7 ms和9.4 ms,阿斯巴甜和纽甜在正离子模式下的峰值分别为12.2 ms和14.7 ms。结果表明,IMS非常适用于内甜味剂的快检。 混合标准的分析:所有溶液均以负模式测量,然后是正模式,浓度由低到高排列。整体需要1到2个min,检测速度远比HPLC或GC快。ESI-HPIMS对这些化合物在正、负离子模式下的分辨率均高于60。0.1、0.5、1.0、1.5、2.0和3.0 mg/L标准品的ESI-HPIMS光谱。每种物质的峰位置和峰面积与单一甜味剂溶液相同。当同时测试时,每种物质对其他物质没有显著影响。对甜味剂的检测限低于0.1 mg/L。 甜味剂的响应曲线如下图所示,显示为峰值面积作为浓度的函数。每个点代表每个浓度下三个光谱的平均值。 AnalyteLinear dynamic range (mg/L)Calibration relationshipCorrelation coefficientAcesulfame-K0.1 ~ 1.5y = 0.1467 x + 0.02740.9978Sodium saccharin0.1 ~ 2.0y = 0.0954 x + 0.02610.9936Sodium cyclamate0.1 ~ 1.5y = 0.0890 x + 0.00850.9879Aspartame0.1 ~ 1.5y = 0.0592 x + 0.00320.9942Neotame0.1 ~ 1.5y = 0.0907 x + 0.00670.9967 为了评估ESI-HPIMS在食品分析中的能力,所开发的方法被用于测定包括水、绿茶和运动饮料等饮料中的甜味剂。饮料用甲醇(1:9)稀释,分析甜味剂。 绿茶和运动饮料中甜味剂的浓度低于国家标准(GB 2760-2014,2015)。在分析之前,这些饮料中添加了不同浓度的甜味剂。下表中,回收率在82.3%~121.2%之间。结果表明,该方法适用于水中和饮料中甜味剂的测定,虽然回收率不同,但结果在可接受的范围内。此外,由于纯水中干扰分析的物质较少,所以回收率均接近100%。建议进一步进行饮料预处理,以获得更高的准确性。 SampleAnalyteFortified concentration (mg/L)Determined concentration (mg/L)Recovery (%)Relative standard deviation (%)WaterAK0.750.802106.92.2SAC0.750.782104.22.0CYC0.750.807107.62.9ASP0.750.762101.77.8NEO0.750.771102.97.2Green teaAK1.001.027102.73.0SAC1.001.212121.213.1CYC1.001.188118.86.9ASP1.000.86486.44.5NEO1.000.82382.37.9Sports drinkAK1.251.17694.18.0SAC1.251.487119.08.6CYC1.251.461116.911.6ASP1.251.16893.42.2NEO1.251.12189.61.5 采用高效离子迁移谱(ESI-HPIMS)可快速检测安赛蜜、糖精钠、甜蜜素、阿斯巴甜和纽甜,这些人工甜味剂的检测灵敏度和分辨率都较高。大多数分析都在不到两分钟的时间内完成,与HPLC相比,这是节省了大量的时间。对0.1~1.5或2.0 mg/L的甜味剂进行校准曲线,相关系数约为0.99。高效离子迁移谱具有样品制备简单、分析快速、灵敏度高、稳定性好、绿色性能和低成本等优点。特别适合水和饮料中的人工甜味剂快速检测。 参考文献:Min Sha, Zhengyong Zhang, Jun Liu, Haiyan Wang. Determination of Artificial Sweeteners by High-performance Ion Mobility Spectrometry with Electrospray Ionization. 2017. Analytical Letters,Volume 50
  • 中药制药过程关键工艺阶段近红外在线监测研究
    2016年4月1日,聚光科技一站式智慧实验室作为协办单位盛装出席了2016广州国际分析测试及实验室设备展览会暨技术研讨会,并成功邀请到广东药科大学中医药研究院博士、中国仪器仪表学会近红外光谱分会理事、中国中药协会中药品种开发与培育专业委员会常务委员肖雪博士做研究报告。 肖雪博士在药品质量控制论坛上做研究报告 在2016广州药品质量控制论坛上,肖雪博士对“中药制药过程关键工艺阶段近红外在线监测研究”做了详细的报告,报告指出:“中药制药过程一般包括提取、浓缩、精制、配制、制剂等步骤,每个环节都对中药制剂的最终质量有着重要影响。目前,中药生产多手动操作,部分生产线上了自动化系统,对生产过程的参数进行主要控制,缺乏对生产过程关键性质的在线检测”。报告中提到:“近红外由于其明显的优势,非常适用于中药制药生产过程的在线监测。其研究团队针对数个中药品种的提取、柱层析、混配、干燥等关键工艺开展了近红外光谱技术的在线应用研究,取得了良好的社会效益和经济效益”。近红外光谱在线分析的优点: 分析速度快(毫秒、秒级); 样品基本不需预处理、操作简单; 无浪费、无污染,可非接触测量; 一次光谱扫描可测定多种成分和指标; 分析结果的统计准确度逼近标准方法; 工业上可以做到实时监控。中药质量控制的在线模式: NIR快速检测,适于inline、online分析; 相同的NIR光谱反映相同的化学成分及含量,NIR光谱用于中药质量定性定量分析,起到类似指纹图谱质量控制(包含多指标成分定量技术)的作用; NIR在线光谱结合智能计算技术可对多个指标成分的含量进行实时预测,对生产工艺进行在线诊断,及检测一些综合量如总氮、以及一些物理量如密度等,其检测范围比单纯的色谱分析更为广泛。 近红外光谱技术(NIR)是“多快好省”的绿色分析技术,是中药质量在线分析、智能控制的仪器基础。 SupNIR-1000系列便携式近红外分析仪是针对现场快速检测而设计的一款便携式分析仪,结构紧凑、体积小、内置充电电池、大容量存储设备和液晶显示模块。 SupNIR-2600系列快速油料品质分析仪是基于透射的测样方式,波长覆盖1000-1800nm。在石油行业、流通质检和科学研究等领域有着广泛应用。 SupNIR-2700系列多功能饲料/油料/谷物分析仪是基于漫反射的测样方式,波长范围覆盖1000-2500nm。在饲料生产、油料加工、谷物收购、育种研究等领域有着广泛的应用。 SupNIR-3000系列独创的光源平移技术,使得全盘扫描成为现实,无死角的样品检测。仪器检测校准准确度、重复性和再现性,满足《GB/T 24895-2010粮油检验 近红外分析定标模型验证和网络管理与维护通用规则》。 SupNIR-4000系列在线近红外分析仪适用于工业过程实时检测,波长范围覆盖1000-2500nm,以液体样品为测量对象,内置多通道光开关、恒温控制系统和液晶显示模块,实现多个测量点的检测。更多产品信息可关注聚光科技一站式智慧实验室!http://www.fpi-inc.com/jgzt/product.php?20/127
  • VOC检测报警仪与VOCs在线监测系统的区别
    1.不同的仪器结构VOC检测报警仪的结构相对简单,只包括探头(传感器)和传感器信号转换电路。然而,VOCs在线监测系统不仅配备有探头(传感器),还配备有一整套气体回路系统,即一整套气体回路系统,其将样品气体引入仪器,然后导致仪器的排气或回收。2.测定条件的不同控制方法VOC检测报警仪不配备样气工艺技术条件的调控部分,同时不考虑样气存在的环境条件直接检测。VOCs在线监测系统内部一套完整的气体回路系统和外部配套设备构成一套相对完整的化学工艺流程。气体分析仪内样气的工作条件调节和控制,达到传感器正常稳定运行的目的。这是VOCs在线监测系统能够获得准确测量数据的保证。3.不同的检测方法VOC检测报警仪使用探头直接暴露在被测空气或样品气体环境中进行检测。VOCs在线监测系统通过特殊的测量方法将被测气体(样气)引入仪器,然后将其导出仪器进行排气。4.完成整个测定过程的操作方法是不同的应用VOC检测报警仪时,只需将仪器置于被测大气中,仪器就可以显示数值。但是,VOCs在线监测系统必须小心地将样气引入仪器,然后严格调整工艺条件,如温度、压力、流速等。只有当操作员调整仪器直到实现稳定的化学过程时,才能获得准确的测量数据。但是,在此之前获得的数据是不正确的,必须丢弃。5.在检测过程中,考虑了不同的方法来消除干扰因素VOC检测报警仪直接测量大环境大气中的传感器,装置的结构设计和检测过程的实际使用不考虑大环境大气中干扰因素的存在与否,也不具备消除各种干扰因素的设计能力。然而,在设计、选择和使用VOCs在线监测系统时,必须充分考虑影响测定的各种内部和外部因素,并逐个小心排除。只有这样才能保证检测数据的准确性和真实性。否则,某个影响因素会被不适当地忽略,这是测试所不允许和不可接受的。6.数据的不同准确性VOC检测报警仪只能提供定性分析结果和相对粗略的定量分析数据。该仪器显示的数据经不起仔细检查,不能用于误差分析(只有当分析数据偏离真实值时,才能提及“误差”)。因此,它不能用作准确的分析数据来确定(决定)重要过程改进和调整的措施。VOCs在线监测系统是一种严格的测量仪器,在进行定量分析时,它可以提供非常准确的数据。这些数据可作为改善和提高天然气生产和安全生产的依据,可用于指导和实施生产管理、质量管理和企业管理。
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断
    总有机碳TOC (Total Organic Carbon),是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如GE的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。◆ ◆ ◆案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:1. 为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;2. 加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:a. 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;b. 在超滤后增加活性炭过滤器;c. 或在电除盐EDI前增加脱氧膜组;d. 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。◆ ◆ ◆为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部0682章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。◆ ◆ ◆如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。Sievers M9便携式、M9在线型、500RL在线型TOC分析仪均使用选择性膜电导检测技术CheckPoint在线/便携式TOC分析仪使用直接电导检测技术
  • 制药行业总有机碳TOC的在线检测及水系统故障诊断案例
    总有机碳TOC (Total Organic Carbon)是反映水中有机污染物总量的指标。相比于传统化学需氧量 (COD) 的测定,TOC技术简单、快速。TOC分析仪的分析时间一般为2-6分钟,TOC传感器,比如苏伊士Sievers分析仪的CheckPoint型号,可快至15秒。快速的检测速度,使TOC检测得到广泛应用,尤其在制药行业,其应用已经非常普遍,而在线TOC检测更成为了制药水系统有机污染监测的趋势。案例分享TOC的在线检测能及时反映水质异常,尽早发现制水系统的问题。某制药企业用户向我们反映,其注射用水的在线TOC监测数据有异常,希望我们到现场查看 。我们了解了该药厂的水处理工艺流程,并查看了TOC检测数据记录。该药厂的水处理流程为:其总回水点TOC数据在1月底突然升高:其后,我们对EDI出水 (纯化水) 的电导率数据进行记录,纯化水电导率数据在2月中旬开始升高:从以上制药水系统TOC与电导率的趋势图中,可以看出,水系统的总回水点在线TOC监测值,早在1月24日就出现异常,开始报警。接着,自2月中旬开始EDI出水电导率逐日升高,最后维持在0.7-0.9 μS/cm。根据现场操作人员反映,EDI运行电压在350V时,正常电流应为0.9A,但此时电流接近于0A,EDI的电导率和电流都无法恢复。由此可以断定水系统出现了问题,而由于1月底恰逢春节放假,药厂未能及时根据TOC的异常值进行处理。推测其原因可能是自来水水质变差,自来水公司加入过多氯气,导致水中消毒副产物 (DBP),如三卤甲烷等 (THM) 和卤乙酸 (HAA) 过多,不仅影响了EDI 的性能,还导致纯化水中引入过多的小分子有机物,如氯仿等。由于反渗透RO对这些小分子有机物去除率极低 (约10-50%),所以这些小分子有机物进入EDI系统,同时EDI系统的阴离子交换树脂可以像活性炭一样物理吸附这些小分子有机物,经过一段时间的积累,这些小分子有机物把阴离子交换树脂的交换通道阻塞,导致EDI性能下降。在使用直接电导法原理的TOC仪进行检测时,TOC数值出现了超标 (500 ppb),产生了不合格的纯化水。由于不合格的纯化水中的有机物绝大部分为小分子有机物,它们的沸点多低于100摄氏度,经多效蒸馏器后产生的注射水 (WFI) 的有机物去除率很低,导致注射水 (WFI) 的TOC值也出现了超标。通过这个案例,我们可以看到,TOC在线监测在此纯化水系统中起到了很好的水处理工艺的预警作用。当TOC测量数据出现异常时,很快EDI也出现了问题,这表明在线TOC监测可以对纯化水系统管理起到很好的探查作用,及时发现问题。帮助用户发现水系统的故障后,我们的工程师给出了建议:01为了确认纯化水系统中存在氯仿和三氯甲烷等卤代烷烃的可能,建议到第三方检测机构进行自来水、纯化水和注射用水水样定量分析;02加强对现有纯化水系统的有机物去除,尤其是对去除小分子有机物的工艺改造,如:- 请水处理专家审核现有水处理工艺,发现系统缺陷,进行水系统工艺整改;- 在超滤后增加活性炭过滤器;- 或在电除盐EDI前增加脱氧膜组;- 或在抛光混床 (Polisher MB) 前加185 UV等。用户对纯化水处理系统的反渗透RO和电除盐EDI进行了化学清洗,但没有取得预期效果,EDI性能也没有恢复。随后这家药厂对纯化水处理系统进行了改造,在超滤后和反渗透前增加了活性炭过滤器,并定期更换活性炭,同时更换了EDI膜堆。改造结束后,这几年其EDI一直运行稳定,再也没有出现纯化水 (PW) 和注射水 (WFI) TOC检测值超标的现象。为何选择在线检测?我国制药行业对制药用水TOC检测的强制要求,最早来自于2010年版《中国药典》。其对注射用水的TOC检测为强制项目,纯化水的TOC检测为可选项目 (易氧化物或TOC任选其一),注射用水与纯化水的TOC合格限为500 ppb (μg/L)。但对于TOC的检测方式,是采用离线实验室测定,还是在线测定呢?目前,大部分制药企业对纯化水 (PW) 和注射用水 (WFI) 的放行都使用手动取样和实验室TOC检测。但采用在线TOC分析仪取代实验室分析有很多优势。首先,在线TOC分析仪能自动从水系统中直接取样,能消除人工操作可能造成的失误或样品污染的风险。按照2015年版《中国药典》四部0682章节《制药用水中总有机碳测定法》,在线监测与离线实验室测定,都是允许的,并明确指明了离线检测可能带来的污染,及在线检测的优越性,原文如下:“在线监测可方便地对水的质量进行实时测定并对水系统进行实时流程控制;而离线测定则有可能带来许多问题,例如被采样、采样容器以及未受控的环境因素 (如有机物的蒸气) 等污染。由于水的生产是批量进行或连续操作的,所以在选择采用离线测定还是在线测定时,应由水生产的条件和具体情况决定。”美国FDA也正在进行过程分析技术PAT (Process Analytical Technology) 的倡仪,即建议所有指标检测均需进行在线检测,以确定最终产品的质量,一方面可以避免外界的干扰,更重要的是通过实时监控,最大限度地进行风险的防范。因此,虽然离线实验室测定是被接受的方式,但在线测定能将取样污染的风险降到最低,是更有效、实时、可靠的方式。TOC在线监测正在成为制药水系统有机污染监测的趋势。有前瞻性的制药企业,在实验室配备TOC分析仪之后,开始关注对制水系统,采用一点或多点的TOC在线监测。同时,使用在线TOC分析仪,相比较传统取样/实验室分析,更能节省成本。将实验室分析转换为在线分析的成本,通常在更换后的一年内就能收回。如何选择在线TOC分析仪?目前市场上应用于制药行业的在线型TOC分析仪的主要区别在于使用不同的检测方法:选择性膜电导检测技术和直接电导检测技术。在选择时,制药企业应该注意评估用途和准确度。水中的TOC测量涉及测量初始CO2 (无机碳,IC),将所有有机物完全氧化为CO2,然后测量其氧化后的CO2总浓度 (总碳,TC)。TC – IC = TOC。如果水系统中出现含有杂原子 (如氮、磷、硫、氯等) 的有机物,在仪器对水样进行氧化时,这些杂原子会被氧化为相应的离子。直接电导检测技术通过电导率池直接测量CO2 (直接电导率,DC方法),当水中出现含杂原子的有机化合物时,无法去除其被仪器氧化后生成的杂离子的影响,会产生假正及假负的TOC结果。如上述案例中,如果水中仅存在10 ppb的氯仿,则氯被氧化为氯离子,所产生的电导率,会造成TOC报数高达475 ppb。连同水中其他的TOC成分,结果很容易超出合格限500 ppb,产生报警。但实际TOC并没有超标,仪器报告超标,是因为受到了N、S、P、Cl等杂原子电离后的干扰造成的。这时候,您需要使用以下膜电导率法原理的仪器进行真实TOC的确认。选择性膜电导检测技术将CO2通过选择性膜扩散到去离子水中,然后使用膜电导 (Membrane-Conductometric,MC) 法在电导池测量电离的CO2。只有二氧化碳气体小分子可以通过这层膜,而引起电导率升高,进而被检测。其他杂离子被这层膜屏蔽,不会通过膜,不会影响二氧化碳的检测。如果TOC检测准备应用于涉及法规报告、测量产品质量、实时放行、管理工艺控制限值和进行系统验证的关键质量决策,准确度非常重要,使用选择性膜电导检测技术的TOC分析仪较合适。另一方面,如果准备用于一般的TOC监控、趋势、故障排查和诊断,而非用于关键的质量决定,使用直接电导检测技术的TOC分析仪较合适。Sievers M9便携式、M9在线型、500RL在线型TOC分析仪均使用选择性膜电导检测技术CheckPoint在线/便携式TOC分析仪使用直接电导检测技术◆ ◆ ◆联系我们,了解更多!
  • 《中药炼蜜过程水分在线检测 近红外光谱法》团体标准项目立项
    近期,由北京中医药大学吴志生研究员作为项目负责人,北京中医药大学为承担单位的中药炼蜜过程水分在线检测 近红外光谱法》团体标准项目正式批准立项。为推进中医药标准化建设,制定满足市场和创新需求的团体标准,加快中医药标准化发展进程,中华中医药学会标准化办公室组织了团体标准立项审查(函审)。专家对《中药炼蜜过程水分在线检测 近红外光谱法》的科学性、实用性进行审查,经过专家审查同意该项目立项,并经中华中医药学会秘书长办公会审议通过。炼蜜过程通过热加工去除蜂蜜部分水分,提高粘度,是中药传统制造的特色工艺。炼蜜按照炼制程度可分为嫩蜜、中蜜和老蜜,水分是其中的关键质量属性。目前,炼蜜过程一般采用人工取样,通过折光率法离线检测水分,存在生产过程高耗,工艺控制粗放等问题,迫切需要引入水分的在线检测方法。近红外光谱技术具有快速、无损和可在线检测等优势。同时,近红外光谱可用于测定蜂蜜水分,实现炼蜜过程水分的在线检测。为进一步加强炼蜜过程水分在线检测近红外光谱法的应用和推广,本标准起草工作组拟制定炼蜜过程水分在线检测方法在应用过程中的光谱数据采集、校正模型开发、校正模型验证以及数据处理与表达等要求,旨在促进炼蜜制造过程的提质增效,为中药质量稳定可控提供保障。据悉,该团体标准由北京中医药大学、陕西中医药大学、福建中医药大学、中国农业科学院农产品加工研究所、卡尔蔡司(上海)管理有限公司、瑞士万通中国有限公司、波通瑞华科学仪器(北京)有限公司、北京同仁堂股份有限公司、九芝堂股份有限公司、厦门壮途医药有限公司、浙江寿仙谷医药股份有限公司、山东金璋隆祥智能科技有限公司、仲景宛西制药股份有限公司、内蒙古天奇中蒙制药股份有限公司等多单位起草。项目负责人吴志生研究员介绍:吴志生研究员,北京中医药大学研究员、博士生导师、博士后合作导师。中药制药首位国家优青,中药提取分离过程现代化国家工程研究中心学科带头人,教育部中药制药与新药开发关键技术工程中心学术带头人,中药智能制造与全程质量控制创新团队负责人。 领衔获中国仪器仪表学会最美抗疫先锋团队,获中国仪器仪表学会最美科技工作者、北京市科技新星、全国高等中医药院校优秀青年、中华中医药学会青年人才托举工程等荣誉称号。获中华中医药学会十大论文奖,中国仪器仪表学会陆婉珍近红外青年奖,中国仪器仪表学会青年科技奖,中华中医药学会中青年创新人才奖,中国药学会以岭生物医药创新奖,中国仪器仪表学会科学技术二等奖,北京市科学技术奖一等奖等奖项。 中国仪器仪表学会理事,药物质量分析与过程控制分会秘书长,中国医药设备工程协会医药自动化专业委员会副主任委员,全国饲用中草药科技产业联盟副理事长等,世界科学技术---中医药现代化、中草药、中华中医药杂志、计算机与应用化学、世界中医药英文版、中华中医药杂志编委或青年编委。科技部十四五中医药关键技术装备重大专项指南起草编制组-中药饮片组组长,中国科协“创新驱动助力工程”项目组专家,中国科协“智能制造助力中药产业发展”政策建议类项目执行人,中国互联网健康医疗发展报告蓝皮书执笔人之一,全国中医药博士生优秀论文奖评审专家,国家科学技术进步奖专家库专家,山东科学技术进步奖专家库专家、教育部学位中心专家库专家等;国家自然科学基金委、教育部、科技部及北京、江苏、山东、新疆、陕西和福建等基金专家。 致力于中药制造质量控制与名方新药创制研究。承担国家重点研发计划子课题、国家重大新药创制、国家自然科学青年、面上项目和制药企业/基金会委托课题(100万以上级)等十余项。以第一或通讯作者发表论文120余篇,包括Bioresource Tech, J Control Release, Acta Pharmaceutica Sinica B, Talanta, Scientific Reports, Food chemistry等SCI论文60余篇,蓝皮书3项,起草指南2项,标准4项,著作6部,申请专利20余项。受邀SPIE,第446次香山科学会议等学术报告20余次。
  • 科普:一篇文章让你了解水质检测仪器
    水质检测仪器是科学产品,随着社会经济发展、科学进步和人民生活水平的提高,人们对生活饮用水的水质要求不断提高,饮用水水质标准也相应地不断发展和完善。水质检测仪,用于分析水质成分含量的专业仪表,主要指测量水中:BOD、COD、氨氮、总磷、总氮、浊度、PH、溶解氧等项目的仪器,为了保护水环境,必须加强对污水排放的监测,水质检测仪在环境保护、水质的检测和水资源保护中起到了重要的作用。分类水质检测仪按功能分为:多参数测定仪、单参数测定仪。水质检测仪按测定项目分为:5BCOD测定仪、BOD测定仪、氨氮测定仪、总磷测定仪、浊度仪、PH计等。水质检测仪按使用环境分为:便携式测定仪、实验室智能型测定仪、简单经济型测定仪、在线检测仪等。原理一般水质检测仪原理是通过电化学反应或者化学药剂反应使水中的相应物质参与其中,然后通过比色法、滴定法、电导率测量等方式计算出水中相应物质的含量。
  • Cell杂志封面文章报道ProteinSimple 超灵敏细胞因子检测系统Ella
    细胞因子(cytokine)是由细胞分泌的具有生物活性的小分子蛋白物质的统称。在免疫应答过程中,细胞因子在免疫调节、炎症应答、肿瘤转移等生理和病理过程中起重要作用。细胞因子的检测不仅是基础免疫研究的有较手段,同时在临床疾病诊断、病程观察、疗效判断及细胞因子治疗监测方面具有重要价值。2016年11月份的Cell杂志封面文章,题目为:Host and Environmental Factors Influencing Individual Human Cytokine Response,作者研究个体及环境因素对人体细胞因子表达的影响,以作为功能人类基因组的重要补充。研究者包括多个世界著名大学:荷兰拉德堡德大学医学中心,美国麻省理工学院Broad研究所,美国哈佛大学麻省总医院,美国科罗拉多大学医学院,新加披科技部,挪威奥斯陆大学医院等。研究者观察了534例正常人群,包括不同年龄,性别。被观察者接触了不同细菌,病毒,寄生虫,以及烟雾和维生素等非微生物刺激,检测六个细胞因子的改变,VEGF,IL-6,IL-18,IL-18BP,IL-β,IL-1Rα。 研究者发现正常人群静息水平的细胞因子,低于ELISA的检测下限,无法获的结果,但是Ella微流体全自动免疫学分析系统,可以在低至pg/ml,fg/ml,检测到细胞因子表达水平。原文如下:Measurement of resting levels of low abundance cytokines such as IL-1b, IL-6 IL-18, and VEGF are below the lower limit of quantification by standard ELISAs in a healthy cohort therefore, the Ella microfluidic analyzer was used to assess cytokine concentrations in the fg/mL to low pg/mL range. For instance, the mean level of IL-6 concentrations of the cohort was 1.25 ± 0.06 pg/mL (range 0.15–8.1 pg/mL see the STAR Methods for levels of all circulating mediators). The assessment of these parameters provides a comprehensive view of baseline immune characteristics, most importantly of inflammatory status and humoral immunity.Ella 是美国ProteinSimple 公司(纳斯达克上市公司Bio-Techne重要组成部分)创新研发的新一代微流控全自动免疫学检测系统,只需5分钟手工操作,1小时可以获取72个样本定量检测结果。 因为采用了独创的检测系统,线性区间可以达到5个log,比传统方法高2log,并且在低丰度蛋白检测方面有独到优势,已经被Roche等制药巨头用于药物临床研究中细胞因子变化研究。更多信息可以登录ProteinSimple官网:http://www.proteinsimple.com/ella.html。
  • 环境监测市场大有文章可做-聚光科技密集发力 创新成果竞相涌现
    大气颗粒物在线源解析技术、灰霾超级站数据智能质控及分析解决方案、全参数水质自动超级站、流域全景遥测技术……昨日,聚光科技(杭州)股份有限公司(以下简称“聚光科技”)携带一批自主创新成果亮相第十六届中国国际环保展览会,吸引了众多用户和参展企业的注意。聚光科技缘何引领生态环境监测市场?未来又将在哪些领域布局?在本届环保展览会上,本报记者专访了聚光科技环境安全事业部总经理孙越。聚光科技环境安全事业部总经理孙越项目也有选择性乡镇街道空气自动站数据购买服务项目等采用的设备均为国标法设备,可评价、可考核;实现“测—管—治一体化”战略落地  记者:时隔一年再次相聚中国国际环保展,聚光科技在此期间又有哪些大动作?  孙越:近一年来,聚光科技中标了几个监测管理类大项目,包括浙江省杭州市、嘉兴市,山东省菏泽市等地的乡镇街道空气自动站数据购买服务项目等。这些项目与过去的大气网格化监测项目全然不同,采用的设备均为国标法设备,可评价、可考核,是大气环境精细化管理的重要体现。通过监测网数据,能精准看到整个地区的污染时空分布、污染排名及变化趋势。对于空气质量较差的地方,还能结合周边的源清单和气象场做溯源。  此外,环境治理行业格局比监测行业复杂得多,涉足企业众多、治理技术五花八门,聚光科技在进入这些市场时也是有选择性的。聚光科技中标了湖北省黄冈市罗田县乡镇污水处理设施ppp项目,建设运营总投资约3.4亿元。聚光科技还承接了内蒙古通辽地区日处理规模达10万吨的中水回用工程项目。这是聚光科技向治理端延伸的非常有代表意义的两个项目,也是聚光科技“测—管—治一体化”战略落地的重要体现。打造平台型公司构建从监测、管理到治理的一体化格局,具备技术创新能力、跨行业技术方案整合能力,将现代信息技术与生态环境监测相融合  记者:作为环境监测领域的龙头企业,聚光科技近期逐步向智慧环保和环境治理领域进军,与其他企业相比,聚光科技最大的优势是什么?  孙越:环境监测只是基础,聚光科技的目标是打造一个平台型公司,构建从监测、管理到治理的一体化格局,所以需要向治理产业链延伸。聚光科技的优势可以总结为三个方面:一是核心监测技术创新能力。仪器仪表行业是一个技术密集型产业,聚光科技不断致力于新技术研究和新产品开发,以应对市场变化和客户需求。比如这次我们带来参展的大气在线源解析技术、国标法水质微型一体机、卫星遥感技术等。特别是聚光科技在原有监测设备上结合人工智能、物联网技术,使之具备更强的智能化,提升其自诊断、自运营和自修复能力。  二是跨行业技术方案整合能力。成熟的环境监管方案是能系统化解决问题的,比如我们的智慧园区、智慧城市、“环保管家”等,都不是单一行业应用,涉及多个行业多个领域的方案集成,这是因为我们具备较强的顶层规划和跨行业技术方案整合能力。我们的目标是做规划师,协助各级管理部门构建现代化治理能力。  三是聚光科技最近把ai(人工智能)等现代信息技术与生态环境监测进行了融合。在环境监测服务市场,企业自行环境监测已经向第三方开放,监测数据的质量问题成为关键。为保证监测数据的真实、客观、准确,聚光科技结合ai技术,研发了人机联控系统。通过监控运维人员的行为,用神经网络深度学习的计算机视觉分析技术,有效识别运维人员行为是否存在异常。同时,将环境监测设备监控数据、运行状态数据、运维人员行为三位一体,进行关联分析、联动控制。凭借哪些优势抢滩市场?大气颗粒物在线源解析技术、“网格化+全域化”双模式管理成亮点  记者:面对大气、水、土壤污染防治攻坚战的更高要求,聚光科技有哪些创新技术与方案?作为定位在生态环境综合服务商的聚光科技,认为出现了哪些新的市场机会,行业会有怎样的变化?  孙越:水、气、土污染防治到了深化落实阶段,与之相关的环境监测、治理市场仍有很大空间。比如,乡镇街道的空气质量监测、大气在线源解析、黑臭水体治理、二三线城市及乡镇地区污水处理、工业园区的综合整治等。聚光科技的亮点方案一是大气颗粒物在线源解析技术。目前全国338个地级及以上城市大气环境监测网基本建立,在掌握大气环境质量的基础上就要攻坚如何科学治理。大气颗粒物在线源解析技术通过颗粒物组分监测和pmf源解析模型,能对pm2.5开展实时源解析,结果中包含源构成及源贡献。  二是水环境监测“网格化+全域化”双模式管理。我们研发了一款国标法微型一体机,占地面积仅0.85平米,解决中小流域站房征地困难的问题。但是网格化监测站点数量毕竟有限,无法将污染带全部捕捉,所以我们又补充了“全域化”监管手段。聚光科技通过卫星遥感技术可将水体污染信息直接用可视化地图表征,实现流域全景感知,发现隐蔽污染带,分析污染演变趋势,实现从传统的点式管理向“点、面、域”的协同管理转变。  此外值得关注的市场趋势出现在中共中央办公厅、国务院办公厅印发的《关于建立资源环境承载能力监测预警长效机制的若干意见》中。这一文件将推动实现资源环境承载能力监测预警规范化、常态化、制度化,推动各地建立起以“资源环境承载能力”为红线的规划发展体系。我们认为,这一监测市场值得抢滩 。
  • 大气颗粒物检测遇难题?三维荧光光谱来助力!【在线讲座| 5月29日】
    三维荧光光谱法(EEM)是鉴定环境中发色团物质的重要仪器分析方法,近年来已被频频应用到大气气溶胶研究领域中。然而,因为多数情况下样品的EEM谱图具有非常相似的形貌,限制了EEM方法的广泛应用,当前EEM方法在大气领域的应用也进入瓶颈期。前不久,我们曾报道过陕西科技大学陈庆彩研究团队利用三维荧光光谱(EEM),对大气颗粒物中发色物质的种类和来源进行了分析。这项工作突破了一定的方法瓶颈,对于EEM方法在气溶胶研究领域的应用起到了关键推动作用。那么,EEM法是如何应用于大气颗粒物中发色团的化学组成、来源分析的呢?在这一研究中还有哪些技术问题亟待解决?如何突破现有EEM方法在大气领域的应用瓶颈?为解答这些疑问,5月29日,HORIBA 2020在线讲座第6课,我们邀请了陕西科技大学环境学院——陈庆彩副教授,为大家详细介绍EEM法研究大气颗粒物的具体应用案例、当前待解决的技术难点,以及他所在研究团队的新科研成果。前往微信公众号“HORIBA 科学仪器事业部”,查看历史文章即可报名!精彩内容不止一个!除了陈庆彩副教授的精彩报告外,本次讲座还将为大家介绍三维荧光光谱在食品、生化检验等领域的应用。HORIBA 资深技术顾问周磊博士,将以红酒、橄榄油、胰岛素、细胞培养基等为例,详细介绍HORIBA新稳态技术——A-TEEM技术在复杂样品定性和定量分析中的作用。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着201年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制