当前位置: 仪器信息网 > 行业主题 > >

局部放电测试仪原理

仪器信息网局部放电测试仪原理专题为您提供2024年最新局部放电测试仪原理价格报价、厂家品牌的相关信息, 包括局部放电测试仪原理参数、型号等,不管是国产,还是进口品牌的局部放电测试仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合局部放电测试仪原理相关的耗材配件、试剂标物,还有局部放电测试仪原理相关的最新资讯、资料,以及局部放电测试仪原理相关的解决方案。

局部放电测试仪原理相关的仪器

  • 鼎创电科局放测试仪优势局部放电检测仪可广泛应用于电力系统的局放检测,包括高压开关柜、环网柜、电压/电流互感器、变压器(包括干式变压器)、GIS、架空线路、电缆等设备的绝缘状态检测。☀ 配置不同传感器实现几乎所有的电气设备的局部放电检测;☀ 人性化的人机界面方便不同设备的数据管理;☀ 内置超声波传感器和暂态地电压(以下简称 TEV)传感器,可外接变压器、GIS、架空线路、电缆等专用传感器;☀ 采用非侵入式检测方式,测试过程中无需停电,无需额外配置高压源,比传统的脉冲式局部放电检测仪使用更加方便;☀ 测试带宽范围为30kHz ~ 2.0GHz,适用各种频段的检测原理。
    留言咨询
  • 局部放电检测仪参数表技术特性通道数独立2通道采样精度12bit量程切换-40dB,-20dB,0dB,20dB,40dB,60dB共6档测量频带3dB 带宽 10kHz~1MHz数字滤波10kHz~1MHz 任意选择程控滤波器分段低端频率:10kHz,20kHz,40kHz,80kHz 低端频率:10kHz,20kHz,40kHz,80kHz 本量程非线性误差10%测量范围0.1pC~100,000pC灵敏度0.1pC可测试品的电容量范围6pF~250μF试验电源频率范围50~500Hz显示显示屏12” TFT真彩色触摸液晶显示屏分辨率1024 × 768接口USB3路,可外接鼠标键盘,以及外接移动存储设备电源模式AC 220V;频率50Hz;功率300W电信号接口2路BNC接口,用于信号输入光信号接口2路,用于信号输入网口1路接地钮外部接地通用说明CPU主频1.60GHz内存2.0GB硬盘128GB固态硬盘系统Windows Xp工作环境环境温度:-10~45℃相对湿度:≤95%尺寸长×宽×高:474mm × 288mm × 370mm重量15.8kg1、局部放电检测系统为2通道、台式、TFT液晶显示,系统可靠,故障率低2、真正实现了局放测量、定位、在线监测多功能合为一体3、本系统采用现代电子和计算机综合技术,实现信号放大(模拟、电子、数字)、滤波、数据采集、数据处理、图形显示、试验报告自动生成,从而完成局部放电的测量及故障诊断JFD-2000A局部放电检测系统为2通道、台式、TFT液晶显示,系统可靠,故障率低。除了可以用于高压电气设备的局部放电测量外(标配),还拥有对故障设备故障点精准定位的功能(选配),同时也可用于大型电力变压器等高压电气设备的局部放电在线连续监测(选配)。真正实现了局放测量、定位、在线监测多功能合为一体。本局放仪是测量、分析电力设备绝缘性能的专用仪器。本系统采用现代电子和计算机综合技术,实现信号放大(模拟、电子、数字)、滤波、数据采集、数据处理、图形显示、试验报告自动生成,从而完成局部放电的测量及故障诊断。本局放仪适用范围、检测方法、试验回路、技术性能参数等符合国际标准IEC 60270-2000、国家标准GB/T 7354-2003《局部放电测量》和DL/T 417-2006《电力设备局部放电现场测量导则》标准要求。产品别称:局部放电检测仪、局部放电测试仪、局放仪、局部放电测试系统
    留言咨询
  • 价格仅作为参考,我司配置有很多种,具体根据需求咨询在线客服或者拨打电话,谢谢! 创新型气体泄漏电力局部放电监测--奥斯恩便携式手持式声学成像仪,采用声学算法,实现对目标物高准确度检测,实时转化可视化声学图像,查看泄露点位,判断泄漏量,支持录像、录音、照相等多种数据保存,记录故障点信息,并将其导入PC端分析软件,一键自动导出测试报告。 奥斯恩OSEN-ZCXY型手持式工业声学成像仪是一款通过声学可视化成像原理而设计研发的解决远距离气体泄漏定源检测的智能检测设备。该设备基于传声器阵列测量技术,通过测量一定空间内的声波到达各传声器的信号相位差异,依据相控阵原理确定声源的位置,测量声源的幅值,并以图像的方式显示声源在空间的分布,即取得空间声场分布云图-声像图,并以图像的颜色和亮度代表泄漏的强弱。 该泄漏声学成像仪能够排除现场嘈杂的工业环境干扰,迅速的定位到气体的泄漏和负压真空泄漏,阀门内漏、冷凝器泄漏等;同时也适用于工业现场的压力容器的气密性和密封性检测。另外在电气设备的局部放电、开关柜局部放电和电晕产生的高电压绝缘子缺陷造成的局放的检测具有非常好的效果。
    留言咨询
  • PDMAXX便携式局部放电在线检测及诊断仪可用于在线探测、分析电力设备(如变压器、GIS、电力电缆,套管、避雷器)内部局部放电信号的强弱与定位的简便性在线检测仪。PDMAXX局部放电在线测量与诊断仪可外接超声波传感器(AE),高频电流传感器(HFCT),特高频传感器(UHF)。其中,AE传感器检测伴随局部放电产生的超声波信号,HFCT 传感器检测高频脉冲泄漏脉冲电流,UHF传感器检测特高频的电磁波信号。由于高压电气设备运行环境中充斥着各类噪声,捕捉出被检测设备内部的微弱局放信号,检测装置必须具备高性能的配置和很强的信号获取、分辨和甄别能力。因此,采用局部放电在线检测与监测装置在进行局部放电检测时,需要同时配有超声波、高频泄漏电流、特高频等传感器,通过三种不同的带电检测技术结合,运用不同的信号处理技术,在时域和频域中对交变电场中检测到各种信号进行同步分析。PDMAXX高压电气设备内部局部放电在线检测装置,为军工级一体化三防在线监测系统,由检测主机、4通道100M高速局放采集卡、放大电路、电源及相关配件组成,具有防水、防震、防盐雾等性能。主要功能有:信号放大、数字滤波、波形测量、脉冲技术、局放甄别和风险评估等。技术特点 检测方法同时采用声测法、电测法、电磁波法相结合的局放在线检测技术,测试方法灵活、可靠;支持采用二维、三维PRPD等图谱显示和数据导出; 传感器超声波传感器:单台高压电气设备内部局部放电可采用四个超声波传感器,针对某个局放脉冲计算出声源参考位置;主要用于判断局放信号位置,通过放电脉冲、电磁波信号的结合或直接利用超声信号对放电源进行物理定位和局部放电类型的判别。高频电流传感器:利用罗哥夫斯基线圈从电气设备的接地线处测取信号,测量信号频率可以达到30MHz,有效地提高了局部放电的测量范围;检测系统安装方便,采用了开合钳式高频电流脉冲传感器,在被测设备外壳接地线上获取脉冲电流信号,无须设备停电,检测过程和方法不改变电力系统的运行方式。特高频传感器:主要应用于电气设备内部局部放电和电气设备外部放电的在线检测。当电气设备发生放电时,会伴随有高频电磁波信号,并局部放电产生的电磁波信号发生谐振,其频率可达3GHz以上,因此采用特高频传感器可以很好地采集到由局部放电现象产生的电磁波信号,是一种可靠的局部放电检测技术。局部放电检测的电磁干扰及抑制局放测量环境的严重电磁干扰会大大降低检测仪器的灵敏度,严重时甚至使测量无法进行,因而有效地抑制电磁干扰是局部放电检测技术的不可缺少的环节。局部放电检测的干扰是多样的,按照时域波形可分为周期性干扰、脉冲型干扰和白噪声。周期性干扰包括系统高次谐波、载波通讯以及无线电通讯等等;脉冲型干扰分为周期脉冲型干扰和随机脉冲型干扰,周期脉冲型干扰主要由电力电子元件动作产生高频涌流引起,随机脉冲型干扰包括高压输电线上的电晕放电、其他电力设备的局部放电、分接开关动作产生放电以及接触不良产生的悬浮电位放电等;白噪声包括线圈的热噪声、地网噪声、配点线路和变压器继电保护信号线中的耦合进入的各种噪声以及检测线路中的半导体器件的噪声等。针对不同类型的干扰采用相应的抑制方法。周期型干扰也称为窄带干扰,具有强度大且相位比较固定的特点。大多采用频域方法处理,主要包括FFT阀值滤波器、自适应滤波器、固定系数滤波器和带阻滤波器等。随机型干扰较难剔除,干扰和局部放电信号在频域有相似性,因而多在时域考虑。与局部放电信号混杂在一起的白噪声是一均值为零的平稳随机喜好,属于宽带干扰信号。滤波器设置系统滤波功能应分为带通滤波器、带阻滤波器以及自适应滤波器三类。系统用于处理HFCT传感器信号的频率范围为100KHz~30MHz,处理AE传感器信号的频带范围为20kHz~500kHz,UHF传感器的频带范围为200MHz-1800MHz;带阻滤波器仅滤除频率介于高频及低频间信号,其他频率的信号均可通过。在波形检测过程中可采用该滤波器滤除干扰;而自适应滤波器滤除波形检测过程中的某些连续噪声。存在某些较强连续噪声的环境中,可采用该滤波器。但根据奈科斯特稳定性判据(Nyquist Theorem),滤波器上限截止频率应等于或小于1/2采样频率。严重等级判别当超声波原始信号幅值大于300uV时可发现明显放电痕迹,应立即进行设备检修。即在系统硬件增益为X100时,如软件界面显示的超声波局放脉冲信号均值超过3,000mV(3V),则意味着原始信号为3,000mV/10,000=300uV;而当局放脉冲群的时间间隔小于2ms时局放已经发展成严重等级,需要立即进行停电检修。当信号时间间隔大于4ms时,相对来说设备还处于较安全的运行状态下,但需要进行跟踪观察其发展趋势(信号幅值、发生频率、波形形态等)。
    留言咨询
  • PDC-DS4000型局放检测仪用于检测50Hz(或60Hz)频率下高压设备绝缘中局放量的检测系统。仪器完全符合国际标准IEC 60270中关于局放检测的要求,并可实时测量、显示局放数据,记录整个电源周期内局放脉冲的频率及幅值,适合于各类中高压(至500kV)电缆及其它电力设备的在线局放监测,诊断及定位。 整套系统完全由计算机控制,并预装PDC-Analyzer应用软件。仪器内置带有通用接口总线的示波屏(Tektronix TDS200系列)以显示由局部放电产生的电磁信号,此外仪器还内置一台工业用计算机、SVGA显示器、鼠标及键盘等。整套仪器置于一便携式手提箱内,应用软件简便易学,并可按用户设定的时间间隔显示局放检测数据,同时提供自动统计功能便于日后分析。PDC-DS40004通道局放诊断测试仪可进行在线及离线局放监测,其特点包括: - 宽频4通道在线局放(PD)诊断,测量及监视技术;- 四通道同步信号采集,同步精度 ≤2ns;- 用于电缆及配件、变压器、互感器、开关装置以及电动机和发电机的局放监测;- 噪音干扰脉冲自动抑制及局放自动“事件辨识”功能。 硬件详细说明监测频率范围0-1.5GHz (超宽频)输入通道4(同步)输入连接类型BNC/SMA输入连接内部阻抗50Ω/1MΩ/DC/GND数据采集(数据捕获方式)连接触发源线路/自动/外部最大采样率5GS/s(单通道采集)2.5GS/s(双通道同时采集)1.25GS/s(四通道同时采集)板载存储空间4G 输入电压范围±200 mV至±2.5 V一体化触摸屏人机界面操作系统windows 7显示器类型a-Si TFT-LCD液晶显示器彩色触屏显示器大小(对角线)10.4 英寸显示器分辨率1024X768像素连通性 (外接显示器)15针D型SVGA串行端口RS232(DB-9)以太网10/100Base-TUSB2.03尺寸(H x W x D)408mm x 340mm x 180mm重量7.26kg 技术参数 带通放大器 显示系统输入灵敏度1mV ~ 1V输入通道4通道视在输入阻抗50欧姆 最大输入? 2.5Amps @ 50Hz 连续? 100Amps @ 50Hz 持续10mSec? 5伏连续电压 @ 20kHz ~2MHz? 10 焦耳脉冲输入(最大)测量精度全量程优于1dB增益设置10dB六档动态范围60dB滤波器特性? 低通 200kHz ? 高通 50kHz? 低通及高通结合? 范围 20KHz ~ 2MHz带宽100 MHz 可选;20MHz 带宽限制输入阻抗DC 1M欧姆灵敏度2mV/div ~ 5V/div通道2最大输入电压(50 欧姆阻抗)5V rms最大采样速率1 GS/s数据记录每通道2500个样本数字转换器8 bit 解析率显示率每通道每秒多至180个波形相关配件 ? HFCT 100/50:射频CT – 用于在线局放测量可提供用于高压电缆、开关在线局放检测的一系列高性能高频分芯绞合屏蔽射频电流互感器。测试时须保证测试对象良好接地。? 容性耦合探头用于金属表面耦合局放信号的磁性探头, 也称为暂态对地电压(TEV)探头。 ? 超声波探头用于检测开关内局放的磁性超声波探头;
    留言咨询
  • 价格仅作为参考,我司配置有很多种,具体根据需求咨询在线客服或者拨打电话,谢谢! 奥斯恩OSEN-ZCXY型手持式工业声学成像仪是一款通过声学可视化成像原理而设计研发的解决远距离气体泄漏定源检测的智能检测设备。该设备基于传声器阵列测量技术,通过测量一定空间内的声波到达各传声器的信号相位差异,依据相控阵原理确定声源的位置,测量声源的幅值,并以图像的方式显示声源在空间的分布,即取得空间声场分布云图-声像图,并以图像的颜色和亮度代表泄漏的强弱。 该泄漏声学成像仪能够排除现场嘈杂的工业环境干扰,迅速的定位到气体的泄漏和负压真空泄漏,阀门内漏、冷凝器泄漏等;同时也适用于工业现场的压力容器的气密性和密封性检测。另外在电气设备的局部放电、开关柜局部放电和电晕产生的高电压绝缘子缺陷造成的局放的检测具有非常好的效果。
    留言咨询
  • PDMAXX手持式多功能局部放电检测仪内置高速AD采集卡、主处理器和锂电池及其管理板,使用FPGA对高速采样芯片进行控制,如启动采样、停止采样、数据同步、高速数据存取以及数据通信。高性能锂电池带有保护板,具有恒流充电、过充、过放保护和过流保护功能,有效延长电池寿命。PDMAXX手持式多功能局部放电检测仪配置有五种传感器,其中TEV、超声波和HFCT适用于对高压开关柜、环网柜局部放电检测;超声波和UHF适用于对GIS的绝缘状态进行检测;使用超声波和HFCT适用于电缆的绝缘状态进行检测。内置的专家诊断系统能根据检测数据进行分析,判断放电能量大小和可能部位,在电力、铁路等得到广泛应用。 产品特点- 便携式ABS工程机箱,所有检测HUB、PAD、传感器、充电器、信号电缆- 均放置手提箱内,总重量小于5KG,1人即可携带和操作。- 便携式信号处理HUB:自主研发的高速采样板卡,4通道同步数据采集。- 软件系统:分析软件基于ARM嵌入式系统,显示软件基于Android系统- FPGA控制:控制启动、停止采样,数据同步与高速数据存取,时间间隔20ms- 手持PAD软件显示界面:使用触摸式8.1寸1280 x 800 IPS屏 - 专家系统根据检测数据,判断放电能量和部位- 局放显示:在检测界面显示局部放电的幅值、每个工频周期的脉冲个数- 超限报警:使用红、黄、蓝三色指示提示局部放电的严重程度- 电磁兼容:静电放电抗扰度满足4级- 阻尼振荡波抗干扰度满足3级要求- 工频磁场抗扰度满3级要求- 脉冲磁场抗扰度满足3级要求重量轻、易携带,很适合现场使用
    留言咨询
  • FLIR Si124-PD用于局部放电检测的声像仪FLIR Si124-PD声像仪可帮助您检测高压电气系统的局部放电,速度比传统方法快10倍。这款小巧轻便的单手设备内置了 124 个麦克风,可生成精确的声学图像,即使在声音很大的工业环境中也能直观地呈现超声波信息。声音图像实时转置于数码相机的图像之上,让您可以准确定位声源。Si124-PD 配备了一个插件,使用户能够将声像数据导入 FLIR Thermal Studio 套件,以便进行离线编辑、分析并创建高级报告。利用 FLIR Acoustic Camera Viewer 的云服务还可以进行现场分析和报告。通过定期的例行维护,FLIR Si124 可帮助工厂节省公用事业费用。提供其他型号,包括一体化电池款:用于压缩空气泄漏检测应用的Si124-LD,既可用于局部放电检测应用,也可用于压缩空气泄漏检测应用的Si124 。在以下相关产品部分查看型号。更多参数信息,敬请访问FLIR官网进行查阅!
    留言咨询
  • 电容充放电测试仪 400-860-5168转1431
    目前常规电滞回线测试设备在高压下测量电容能量密度存在的问题:待测样品上的电荷被放回到高压电源,而不是一个有效有意义的负载上。问题主要表现为:1)对电源放电时速度慢(10-100毫秒),而实际上对负载放电一般在微秒到毫秒;2)对电源放电时待测电压线形下降, 而对负载放电时电压是指数下降;3)电滞回线测量过程中程序控制的实际是电源输出电压(假设样品电压与电源电压一样),样品能量放回到了高压电源;4)对负载放电时如同自由落体,电压由样品性能,负载(阻抗),与其中接线而定。可以选择一个与应用相似的负载(成比例缩小)从而精确测得一个与应用相关的能量密度;5)一般情况下由电滞回线测得的能量密度大于电容实际应用时能放出的能量密度,可能会误导用户;为了更好的解决以上存在的实际测试问题,PolyK公司开发了该测试仪器,主要用于研究电容的高电压放电性能,根据所选型号,电容样品可以在100皮法到100微法。主要特点:1)本测试仪使用特殊高压开关,分别控制充放电过程,其中放电开关速度快,相应速度在纳秒量级;2)使用高压无感电阻作为放电负载,放出的能量有示波器采集,并经过程序分析直接给出放电能量密度;3)两种操作模式:-手动控制:用户手动控制充放电开关;-自动控制:计算机程序自动控制测试过程,并保存测试结果。尤其适合长期充放电寿命测试;主要规格:1)测试电压: 10 kV (由所选高压开关决定);2)样品电容: 100 pF to 100 μF;3)放电大电流: 15 A(放电开关型号决定);4)放电电阻: 1Ω to 1 MΩ;5)放电速度: 高压MOSFET 开关, 放电速度 100纳秒;6)测试电流与电压的度由所用电源,样品大小与放电电阻综合决定;7)设备选项:测试温度可以保存;新加功能:1)测试介电压电材料的介电击穿强度:直流电击穿,在恒定直流电压击穿时间(耐压时间),交流击穿强度,在恒定交流电压击穿时间(耐压时间);2)能同时测试放电电流(在一定电流范围内);3)内置示波器;4)许使用特定的电感/电阻组合,研究放电震荡;5)允许反向电压/电流;6)提供软硬件使得用户可以极化压电材料;7)全新测试夹具;8)定制低压充放电测试薄膜样品(100伏);欢迎垂询!
    留言咨询
  • FLIR Si2-PD适用于局部放电检测的声学成像仪FLIR Si2-PD 声学成像仪可提供有效的局部放电 (PD) 检测和响应解决方案,从而帮助您降低电气设备的维护成本。此款声学成像仪可在 200 米远处检测、定位、分类和评估局部放电故障,发现比之前所能检测到的小 30 倍的局部放电问题。可提供基于声学成像仪和软件的严重程度评估,为您提供精密维护决策所需的决策支持。对于具体的应用,在泄漏检测和轴承故障检测方面您可以选择 Si2-LD,在全面的电力行业、泄漏检测和轴承故障检测应用方面则可以选择 Si2-Pro。这些型号可以在相关产品部分找到,以便您根据需要来定制维护方法。先进的局部放电检测可在 200 米远处发现比前几代产品所能检测到的小 30 倍的局部放电 (PD) 问题,这对于确保运营效率和安全性是必不可少的。全面的分析工具详细的分析工具,包括设备内部对放电类型的分类、严重程度和建议措施,有助于快速决策和适当的响应规划。设备集群管理功能通过设备集群管理、云数据集成和 OTA 软件更新,确保设备在大规模工业环境中的最佳使用和维护。在同一报告中将声学图像与红外图像相结合。更多参数,敬请访问FLIR官网。
    留言咨询
  • 高压放电法密封性测试仪Leak-HV适用于水针剂包装物密封性测试,仪器采用高压放电法测试原理,无损检测技术,满足ASTM测试方法。高精度的测试技术能够检测到微型小孔的泄漏。广泛适用于制药企业、第三方检测机构等单位。测试过程适用一套电极探头来扫描不导电的密封容器。如果有针孔、裂缝、或其他缺陷,那么将有电阻差异和电流改变,表明容器有泄漏。可以识别大致的缺陷位置。高压放电法的优点测试便捷快速,可重复,无损检测,人为因素小,灵敏度高,可测试高粘稠液体样品。虽然高压放电法检漏仪造价高,但是是目前有效、直观、高效的检漏法。而且样品经过检验后并不会受到污染,可正常使用。 二、技术特点可用于检测不可燃液体包装如输液软袋、BFS、玻璃管制注射剂瓶、安瓿瓶、卡式瓶等产品密封性测试测试效率极高,可在几秒钟内完成样品的扫描测试测试结果非主观性判断,无需人工参与,保证数据准确性与客观性。电动毛刷、滚筒电极,一键启动,自动检测适用于检测微小漏孔,也可以鉴别大漏孔样品,并给出合格与不合格的判断。具有充分的密码防护功能,分为四级权限管理,每个操作人员具有独特的登录名和密码组合才能进入仪器操作。原始数据存储,win10系统。符合药学研究申报的方法开发。可持续新增扩展模块,不仅可用于样品的离线测试,也可用于小批量产品的100%检漏实验多种模块可快速切换,适用于不同容量、不同剂型的包装测试二重接地,安全、应急、检测门三重保护,安全直观可见电流30mA,对样品影响更小提供方法开发、验证服务提供现场服务提供需求定制服务 三、技术参数指标 参数测试方法 高压放电法应用产品 不可燃液体包装如输液软袋、BFS、玻璃管制注射剂瓶、安瓿瓶、卡式瓶内容物 导电的液体产品量程 0-30mA测试电压 0-30KV测试频率 400-800Hz检测灵敏度 ≥1.0um漏孔主机尺寸 760mmX960mmX1700mm(长宽高)重 量 75Kg环境温度 20℃-30℃相对湿度 80%,无凝露工作电源 220V 50Hz高压放电法密封性测试仪此为广告
    留言咨询
  • PDMAXX-T型变压器局部放电UHF在线监测装置采用高速信号采集技术(ADC+FPGA+ARM),兼容高频脉冲电流、超声波和超高频局部放电传感器,可通过内置式超高频UHF局部放电传感器监测变压器等高压电力设备内部发生的局部放电,能准确的监测设备内可能产生的局部放电信号,并具有良好的抗干扰能力,可满足现场相对复杂的电磁环境和高频信号干扰的要求。PDMAXX-T型变压器局部放电UHF在线监测装置采集单元单通道采样率最高可达100M/S,具有极强的信号捕捉能力。可独立安装在被监测变压器附近,周期性地对被监测变压器进行扫描,捕捉设备中发生的各类放电的原始信号。针对变压器内局部放电频谱宽的特性,采用多通道同时采集方式,并兼容不同类型局部放电传感器。通过多路通道信号的采集、滤波、比对,确保检测数据的真实、完整、可靠,最大限度地减少和消除干扰信号。产品特点l 专业故障数据库和模型数据库,分析更全面;l 多通道实时采样率高(100M/S),12bit分辨率;l 可兼容UHF、AE、HFCT等多种局部放电传感器;l 局部放电量化检测、实时显示、实现多信号联合定位功能;l 采用SID技术:S(信号分离)-I(局部放电识别)-D(诊断)技术,含有硬件、数字等多重降噪机制,自动识别、分离局部放电及噪声;l 具备在现场复杂电磁环境下,有效抑制和排除背景干扰的能力,保证监测有效性;l 专业电力变压器专用局部放电分析、诊断软件,具备时域、频域切换、小波变换等功能;l 提供多种专用软件滤波算法,输出PRPS/PRPD放电图谱;l 智能输出被监测设备的绝缘状况评估报告,诊断数据库可独立部署;l 监测终端板卡数量可以自由扩充;l 可以根据被监测对象的实际需要,定期或不定期形成变压器状态评估报告。数据采集装置数据采集频带300MHz~1500MHz采集带宽≥ 300MHz,全频段连续采集分辨率12位输入灵敏度 1mVpp信号接收动态范围≥ 60dB每个工频周期可采集脉冲数量≥ 800数据采集采样率≥ 64MS/s输入/输出回路对地绝缘阻抗≥ 20MΩ输入/输出阻抗50Ω触发模式工频过零触发通讯方式RS-485、ModBUS、IEC61850Ethernet以太网(局域网):10/100M自适应,100M以内光纤(可选):10km以内工作环境温湿度-40℃~70℃,≤95%,无凝露 诊断软件l OS:MS Windows WIN7/WIN8/WIN10;l 数字滤波功能、图形缩放功能、波形频谱分析、信号幅值、计数功能;l 软件内对放电信号的触发阈值进行设定、设定数据采集的时长(工频数)和间隔;l 局部放电波形分析:脉冲-时间、脉冲-相位、脉冲-幅值、脉冲-时间-相位、PRPD/PRPS等;l 具有信号分离分类功能,可获取不同类型信号幅值、相位、等效时长和等效频率等特征参数;l 提供各种典型放电的波形特征,可以帮助用户识别不同的放电类型并进行分析,如电晕放电、表面放电、空穴放电等;l 保存局部放电信号波形文件,提供手动设定文件保存路径功能,便于数据调用和查阅;
    留言咨询
  • PD-MIMS 型发电机局部放电在线监测装置是为大型发电机定子绕组提供自动与连续局部放电测量的经济型装置,通过安装于A、B、C各相的耦合电容式传感器可连续监测发电机内部的局部放电信。随后系统采用QM/NQN局部放电分析方法对设备内的局部放电进行分析,该装置检测的局部放电信号范围为200kHz~300MHz。此外,PD-MIMS 型发电机局部放电在线监测装置可向专业的维护人员提供了现场或远程的自动测量功能,同时提供了发电机局部放电的主要趋势监测参数,便于与电厂已有SCADA系统集成。 l 实时连续在线监测(数据库);l 提升设备使用效能;l 有计划的维护和极大地减少在运行中发生的故障;l 降低维护成本; 发电机定子绕组故障 发电机定子线棒内空穴 EMC传感器安装图 l PD-MIMS 装置是一套局部放电在线监测及诊断系统,用于发电机定子内部的局部放电信号实时监测. l PD-MIMS 配置专用应用软件,便于用户通过RS485或LAN的通讯方式自远端实现数据下载及管理。l 此外,整套监测装置配套软件也具有分析、诊断及按年、月、日数据管理功能。 EMC环氧云母电容器EMC是专门设计用于发电机局部放电脉冲信号探测的耦合电容器,将其并联于发电机定子的各相出线端,传感器利用电容耦合方法检测到定子绕组的高频局部放电信号并收集来自MIMS数据采集装置的信号。PD-MIMS型发电机局部放电在线监测装置采用滤波电路的脉冲计数和脉冲波形分析局部放电信号脉冲数、幅值以及相位间关系。EMC环氧云母电容耦合传感器相当于一个80PF的电容器,局部放电产生高频信号很容易通过,而50Hz交流电则很难通过。工业现场的电噪声频率大都分布在20MHz以下,而局部放电的频率范围在50~250MHz之间,电容耦合传感器的频率范围在40~350MHz,因此采用电容耦合传感器可获得较高的信噪比。电容传感器安装一般都在定子线棒的高压侧部分汇流环或者母线上(感抗小,信号衰减少),靠近局部放电容易发生的部位。PD-MIMS型发电机局部放电在线监测装置数据采集包含处理电容耦合传感器信号的MUX板和CPU板卡,所有采集到的数据都通过RS422方式传输至终端计算机进行数据分析与处理。 参数IPDS-05IPDS-07IPDS-15IPDS-27IPDS-38额定电压(L-L), kV57.217.527381分钟交流耐压(kV rms)1920386080绝缘等级(kV峰值)607595125 (150 2) )200使用温度(℃)-40…+130-40…+130-40…+130-40…+130-40…+130绝缘材料环氧树脂环氧树脂环氧树脂环氧树脂环氧树脂使用环境户内户内户内户内户内安装方式垂直或水平垂直或水平垂直或水平用垂直或水平垂直或水平电容量pF80+5%80+5%80+5%80+5%80+5%局部放电检测灵敏度(pC)3 @ 7 kVrms L-G3 @ 7 kVrms L-G3 @ 7 kVrms L-G3 @ 7 kVrms L-G3 @ 7 kVrms L-G重量(kg)1.361.812.725.8912.24高度(mm)88.9114.3152.4222.5368.3直径(mm)107.95107.95120.65152.4165.1 整套装置技术参数显示部件?系统运行状态 ?报警操作系统Win XP/7/8/10 操作系统数据管理相位/幅值/PPS 3D数据QM/NQN 趋势分析根据波形包络曲线进行局部放电脉冲计数数据分析相位/幅值/PPS 3D显示及分析QM/NQN 显示通道数3、6、9传感器传感器类型:环氧云母电容式耦合传感器(80pF/18KV)带宽:200KHz~300MHz
    留言咨询
  • PD-TP500A型声电联合局部放电检测装置可专门用于电力设备,如变压器、电力电缆、GIS及SF6断路器内部局部放电(PD)信号的连续在线检测、诊断及定位装置。 PowerPDTMPD-TP500A型声电联合局部放电检测装置同时提供专业分析软件,并可完全实现整套系统的远程通讯及操作。PowerPDTM系统可实现: l 设备局部放电的连续监测;l 同时采用AE(超声波)传感器及HFCT(高频电流)传感器进行局部放电检测,检测结果更为可靠;l 局部放电波形测量、分析、显示及故障定位;l 最低检测局部放电量:AE: 20pC, HFCT: 5pC;l 有效避免变压器、GIS及断路器突发性事故;l 对设备状态做出趋势分析; 用 途该装置可用于实时检测并分析高压电力设备(如电力变压器)内局部放电的产生及状态,装置同时采用超声波及高频电流即声电联合检测技术使得检测结果更为可靠。 系统配置膝上型计算机本地主机传感器CPU: Pentium局部放电脉冲计数及局部放电超声波(AE)传感器OS: Windows 98/NT/2000/XP信号高速数字转换高频电流(HFCT)传感器系统运行、数据处理及管理传感器信号处理与计算机间数据传输 特色功能? 局部放电检测及诊断局部放电脉冲计数 局部放电波形处理及显示? 分析及诊断局部放电脉冲数据管理局部放电波形分析脉冲 - 时间, 脉冲 - 相位数字滤波、 FFT(快速傅式变化)、缩放脉冲 – 幅值, 脉冲 - 时间- 相位频率、幅值及信号计数脉冲 – 幅值 - 相位? 超声波定位报警? 数据管理 保证30年以上可靠的脉冲及波形数据管理 技术指标系统类型 便携式通道数5 通道 (4个AE通道; 1个HFCT通道)传感器AE: 80KHz ~ 300KHz 采样频率: 16 MHz(Max)HFCT: 100KHz ~ 30MHz 采样频率: 20MHz (Max)数字转换 最小可在3个电源周波内进行5通道同时数字转换系统操作GUI 图形用户界面 Windows 7/8/10/XP通讯方式- USB: 12Mbps- RS-422(可选): 500Kbps, 300m (Max)- 光纤(可选): 1 km外形尺寸及重量- 330(长)x330(深)x152(宽)mm- 5.4kg电源要求AC 110/240V +/- 10%, 50/60Hz, 1Φ, 0.5A应用范围变压器、 GIS、断路器、电缆
    留言咨询
  • 产品简介蓄电池充放电测试仪是集蓄电池恒流放电、智能充电和充放电循环于一体的测试设备,用于定期的电池组检测及落后电池再生活化。用于电信、基站和电力等部门,也适用于个类型的叉车,高尔夫球车及火车等牵引电池组的测试和循环活化。产品优势蓄电池充放电测试仪采用定制镍铬合金电阻器作为负载源。低阻值;能实现更大电流的放电,定制型外观使功率密度更高。高精度;精度能控制在±0.001Ω内,作为负载源使放电过程更稳定。低温度系数;受温度系数影响小,环境适应能力强。耐电流冲击;耐电流能力强,能快速响应大电流冲击,放电过程更可靠。智能芯片控制。放电过程智能控制,跟随蓄电池电压下降自动调整,保证恒流放电。单节蓄电池电压实时采集,并以曲线方式展示,便于评估分析,同时智能分析电池电压状态,并作出评估。7英寸超大液晶触摸屏:采用大尺寸触摸屏,分辨率1024x600,可直接在屏上进行点击操作,简单明了。抗干扰能力强。采用LORA无线单体监测模块(选配):兼容2V/6V/12V单体电压监测。每个无线监测模块可同时监测6个单体,相比每个模块监测一只单体电压方法,需要配置的模块数量只是其1/6(48V只需4个监测模块),让无线模块接线操作更加简便。电池充放电过程中,各单体电压实时检测和显示:并在主机屏幕上呈现出各单体电压柱状图的变化轨迹,支持数据表格显示,还能自动实时呈现出电压最高与最低的单体,帮助您快速分析单体变化的趋势。充放电曲线查看:可回看放电过程中电池组电压、电流曲线。数据转存:主机配置U盘数据转存,数据分析软件可对数据进行解析,并支持报告生成。
    留言咨询
  • 蓄电池充放电修复测试仪 一、蓄电池充放电修复测试仪概述 智能充电机采用智能三阶段充电模式,可以实现均充/浮充、恒流/恒压自动转换功能,可设定并控制电压、电流等参数,液晶屏显示,全中文菜单提示,操作简便,智能化程度高。 该仪器功率大,体积小,重量轻,友好、人性化的人机交互界面,大大减少了蓄电池日常测试维护的工作量,是蓄电池维护工作的好助手。二、蓄电池充放电修复测试仪功能▶ 仪器采用触摸屏操作,直接使用触摸笔或者手指即可操作界面。▶ 存储数据方式有内部存储和外部SD卡存储方式,自行选择。▶ 具有过压、过流、过热等保护功能。▶ 活化功能:在蓄电池处于离线状态下,可以对单节蓄电池进行活化。活化前设置好活化循环次数,单次活化充放电时间,保护电压等参数,仪器便自动执行活化功能;并实时显示电池电压、充/放电电流、充入/放出容量、充/放电时间等数据;预设的活化循环执行完毕或人为终止操作均可停止活化过程。▶ 放电功能:在蓄电池处于离线状态下利用智能假负载进行恒流核对放电,设定好“放电电流”、“放电时间”、“放电容量”、“终止电压”等参数,仪器便自动执行放电功能,并实时显示出放电电流、电池已放容量、电池电压、放电时间等数据;当蓄电池达到预设的终止放电条件或人为终止操作均可停止放电测试。▶ 充电功能:在蓄电池处于在线浮充或离线状态下,可对蓄电池进行自动充电,设定好“充电电流”、“充电时间”、“终止电压”等参数,仪器便自动执行充电功能,并实时显示出充电电流、电池已充入容量、电池电压、充电时间等数据,当蓄电池达到预设的终止充电条件或人为终止操作均可停止充电。▶ 内阻快测功能:(选配)在电池组脱离系统后放电,只需1~2分钟便可测出电池的评估容量、内阻等。▶ 高亮度彩色屏幕液晶显示器,显示效果清晰优美。▶ 上位机数据管理软件功能强,界面友好,提供数据管理、打印、分析、报表统计、自动生成测试报告等功能。 三、蓄电池充放电修复测试仪参数四、蓄电池充放电修复测试仪特点1、数据存储:容量大。可分别保存10组活化数据、10组核对放电数据、10组充电测试数据;用户对数据可进行查询、删除及导出功能。2、具有RS232通讯接口与USB接口。数据传入计算机,进入数据库管理,可进行长期的历史数据保存和分析;利用U盘传递数据,随时测试随时保存。3、在测试过程中当检测到电池异常或活化仪本身工作异常时,活化仪自动终止测试,以便保护电池。4、活化采用监控单元与功率单元一体化设计。监控单元采用高速A/D、D/A,使得测量与控制更为迅速、精确;功率单体采用新型功效器件。5、该软件全中文设计,能自动生成电压、电流曲线图,还能自动生成测试报告(包括Excel表格、WORD文档)。6、7英寸超大触摸屏∶智能中英文菜单,单人触屏操作,全程自动测量,使用简便。7、体积更小,重量更轻,单机功率最大∶单机重量小于10kg,充放电电流高达100A.配高档铝合金包装箱,方便不同的测试现场携带。8、可以在线对落后电池活化∶不用从电池组中退出单块电池,在线活化不影响整组电池运行,使用更方便。9、保护功能强大∶在测试过程中当检测到电池异常或活化仪本身工作异常时,活化仪自动终止测试,以便保护电池。10、使用灵活∶产品具有充电、放电、活化、内阻测试,数据存储记录功能及后台软件分析功能,用户可以对极板硫化的落后电池活化,电压偏低的电池单独在线补充充电,也可以作为实验仪器在其他行业中做电池特性实验时使用。 五、公司简介 武汉雷科电力有限公司坐落于国家网络安全人才与创新基地东西湖区,是一家专注于智能电网诊断技术的高新技术企业。专注于电力系统二次测试、在线监测、检测设备的研发、生产与销售,集电力系统检测方案、电气试验及新能源检测服务于一体。经过多年匠心耕耘,公司已成为分布式故障诊断技术行业的标准制定者和领航者,公司“输电线路分布式故障诊断系统”在长达23余万公里的输电线路上累计应用超过2.8万套,成功诊断线路故障3300余次,产品质量及应用成熟度在行业内受高度认可。 雷科电力秉承“专业专注,创新创业”的企业精神。在技术上不断开拓、创新,雷科电力产品先后获得了包括国家科技进步奖、中国电力科技进步一等奖、中国南方电网公司科技进步一等奖在内的众多荣誉 在服务上周到、细致,公司建立了覆盖全国的服务网络,为客户提供7*24小时快捷、专业、标准的技术服务。雷科电力致力于成为全球智能电网诊断技术解决方案提供商。销售服务电话:、公司电话: 手机号码: 微信号码: 同手机号 网址:
    留言咨询
  • 蓄电池充放电测试仪 一、蓄电池充放电测试仪概况 蓄电池充放电测试仪是集蓄电池恒流放电、智能充电和充放电循环于一体的测试设备,用于定期的电池组检测及落后电池再生活化。用于电信、基站和电力等部门,也适用于个类型的叉车,高尔夫球车及火车等牵引电池组的测试和循环活化。 本仪器是专门针对蓄电池组进行核对性放电实验、容量测试、电池组日常维护、工程验收以及其它直流电源带载能力的测试而设计。采用最新的无线通讯技术,通过PC机监控软件可对蓄电池放电过程进行实时监测,监控每节电池的放电过程。 功耗部分采用新型PTC陶瓷电阻作为放电负载,完全避免了红热现象,安全可靠无污染。整机由微处理器控制,液晶显示、中文菜单。外观设计新颖,体积小、重量轻、移动方便。各种放电参数设定完成后,自动完成整个恒流放电过程。完全实现智能化。使整个放电过程更安全。 本仪器系列便携、智能化的专业设计使放电测试工作变得简捷、轻松,大大降低了专业维护人员的劳动强度,也提高了放电测试的科学性和智能化。 二、蓄电池充放电测试仪特点▶ 产品采用定制镍铬合金电阻器作为负载源。低阻值;能实现更大电流的放电,定制型外观使功率密度更高。高精度;精度能控制在±0.001Ω内,作为负载源使放电过程稳定。低温度系数;受温度系数影响小,环境适应能力强。耐电流冲击;耐电流能力强,能快速响应大电流冲击,放电过程可靠。▶ 智能芯片控制。放电过程智能控制,跟随蓄电池电压下降自动调整,保证恒流放电。单节蓄电池电压实时采集,并以曲线方式展示,便于评估分析,同时智能分析电池电压状态,并作出评估。智能计算放电容量与放电小时率之间的转换,实现电池容量状态评估效果。可设定多种门限阀值,智能判断。▶ 7英寸超大液晶触摸屏:采用大尺寸触摸屏,分辨率1024x600,可直接在屏上进行点击操作,简单明了,抗干扰能力强。▶ 采用LORA无线单体监测模块(选配):兼容2V/6V/12V单体电压监测。每个无线监测模块可同时监测6个单体,相比每个模块监测一只单体电压方法,需要配置的模块数量只是其1/6(48V只需4个监测模块),让无线模块接线操作更加简便。▶ 电池充放电过程中,各单体电压实时检测和显示:并在主机屏幕上呈现出各单体电压柱状图的变化轨迹,支持数据表格显示,还能自动实时呈现出电压最高与最低的单体,帮助您快速分析单体变化的趋势。▶ 充放电曲线查看:可回看放电过程中电池组电压、电流曲线。▶ 数据转存:主机配置U盘数据转存,数据分析软件可对数据进行解析,并支持报告生成。 三、蓄电池充放电测试仪组成四、公司简介 武汉雷科电力有限公司坐落于国家网络安全人才与创新基地东西湖区,是一家专注于智能电网诊断技术的高新技术企业。专注于电力系统二次测试、在线监测、检测设备的研发、生产与销售,集电力系统检测方案、电气试验及新能源检测服务于一体。经过多年匠心耕耘,公司已成为分布式故障诊断技术行业的标准制定者和领航者,公司“输电线路分布式故障诊断系统”在长达23余万公里的输电线路上累计应用超过2.8万套,成功诊断线路故障3300余次,产品质量及应用成熟度在行业内受高度认可。 雷科电力秉承“专业专注,创新创业”的企业精神。在技术上不断开拓、创新,雷科电力产品先后获得了包括国家科技进步奖、中国电力科技进步一等奖、中国南方电网公司科技进步一等奖在内的众多荣誉 在服务上周到、细致,公司建立了覆盖全国的服务网络,为客户提供7*24小时快捷、专业、标准的技术服务。雷科电力致力于成为全球智能电网诊断技术解决方案提供商。销售服务电话:、公司电话: 手机号码: 微信号码: 同手机号 网址:
    留言咨询
  • 电池等温量热仪-锂电池充放电产热测试仪 BIC-400A / 产品概述测试特性:充放电产吸热、比热容适用领域:锂电池基于功率补偿等温量热原理开发的面向各类型锂电池单体产热特性测试的专业仪器,能够实现锂电池充放电产热特性以及热物性参数测量,为电池热仿真、热管理系统设计优化以及电池热安全性能评估提供精确、稳定、可靠的基础热数据。电池等温量热仪-锂电池充放电产热测试仪 BIC-400A / 产品特点在等温环境中,采用功率补偿法,可更加准确地测量电池充放电过程中的吸放热功率、吸放热总量、zui大放热功率等热特性参数具有仪器校准功能,可对不同条件下的充放电产热准确性进行校准具备热容测量功能,采用对比法测量热容,降低热容测试操作要求,可准确测量电池不同温度下的热容集成电池充放电模块,可实现充放电模式切换、恒流/恒压充电模式设置、充电/放电电流设置、实时电池电量计算等功能网络通讯方式实现仪器远程操控、数据远程传输,保障实验人员安全可同步记录电池充放电过程中电压、电流、温度数据选配氮气吹扫模块,确保低温测量准确性,有效抑制低温冷凝水问题技术规格量热仪主体工作环境(5~40)℃,<85%RH油浴控温范围(-40~100)℃实验模式等温功率补偿模式、等温热流模式、比热容模式温度稳定性±0.005℃温度分辨力0.001℃可测电池尺寸L340mm*W230mm*H100mm(支持方形/18650/21700/26650/软包电池)最大补偿功率200W量热灵敏度10mW(功率补偿模式)、0.2mW(热流模式)吸放热焓测量精度±1%(功率补偿模式)、±2%(热流模式)基线噪声10mW(功率补偿模式)、0.2mW(热流模式)加热通道标配2通道测温通道标配8通道仪器接口RJ45可调气体流量(5~25)L/min供电电源AC220V/50Hz最大功率600W油浴设定温度范围(-55~200 )℃温度稳定性±0.01℃显示分辨率0.01℃加热功率3kW制冷功率1.5kW@20℃,1.5kW@0℃,1kW@-20℃,0.3kW @-40℃泵流速(22-26)L/min压力泵(0.4~0.7)bar (双级循环泵,更高的温度均匀性)吸力泵(0.2~0.4)bar浴槽开口/尺寸12×11/16cm充液体积5L通信接口串口(可转RJ45)充放电模块 (选配)充放电电压范围(0~5)V充放电电流范围(-400~400)A充放电通道数4通道充放电模式配备恒压、恒流充放电模式电压测量精度±0.1%FS电流测量精度±0.1%FSSOC测算具有SOC测算功能通讯方式RJ45恒压恒流源(选配)通道1电压电流范围(0-25)V,7A通道2电压电流范围(0-50)V,4A电压回读精度0.05%+5mV电流回读精度0.15%+5mA电压噪声小于500μVrms电流噪声小于2mArms保护功能具有过压过流保护功能通讯方式串口、GPIB(可转RJ45)
    留言咨询
  • 通道锂电池充放电容量测试仪新兴产业发展规划》中已将锂离子电池列为行业发展的重点。随之而来,与之匹配的检测方法标准以及设备也在逐步完善中。随着GB/T 18287-2013《移动电话用锂离子蓄电池及蓄电池组总规范》、GB 31241-2014携式电子产品用锂离子电池和电池组安全要求》、《锂离子电池行业规范条件》等众多标准出台,对锂离子电池的检测越发严格,对所有类型的锂离子电话业上下游生产企业也提出了更高要求。通道锂电池充放电容量测试仪正极材料,负极材料,锂离子嵌入和脱嵌的难易程度,决定了材料内阻的大小,是浓差极化电阻的一4.2交流内阻测量方法给电池加载一个幅值较小的交流输入作为激励,监测其端电压的响应情况。使用特定程序对数据进行分析,得出电池的交流内阻。分析得到的阻值,只与电池本身特性有关,与采用的激励信号大小无关。由于电池电容特性的存在,激励信号的频率不同,其测量得到的阻值也不同。软件分析的结果可以用一组复数表示,横轴为实部,纵轴为虚部。这样,就形成了一个图谱,所谓交流阻抗谱。通过进一步的数据分析,人们可以从交流阻抗谱中得到这只电池的欧姆电阻,SEI膜的扩散电阻,SEI膜的电容值,电荷在电解液中传递的等效电容值以及电荷在电解液中扩散电阻值,进而绘制出电池等效模型,进行电池性能的进一步研究。锂离子电池内阻测试浅述锂离子电池因其高电压…高比能量…无记忆效应以及高循环性能等特点,迅速发展成为最重要电源产品,已广泛应用到消费电子、汽车工业、军工航天、医疗等众多领域。随着中国对新能汽车、充电桩等产业的重点扶持,锂电池产业在中国市场也空前火爆。在《“十二五”国家战略通道锂电池充放电容量测试仪内阻,作为锂电池的关键特性之一,对它的研究成果,可以在工程制造等多个领域得到应用。内阻与电池荷电量有紧密关系,因此被应用于电池管理系统中的SOC估计 内阻直接体现电池老化程度,有人把电芯内阻作为电池健康状态SOH的评估依据 单体内阻一致性直接影响成组后的模组容量和寿命,因而被作为电芯分选配组的静态指标普遍应用 部分。电解液,锂离子在电解液中的移动速率,受电解液导电率的影响,是电化学极化电阻的主要构成部分。隔膜,隔膜自身电阻,直接构成欧姆内阻的一部分,同时其对锂离子移动速率的阻碍,又形成了一部分电化学极化电阻。集流体电阻,部件连接电阻,是电池欧姆内阻的主要组成部分。通道锂电池充放电容量测试仪而后又有密封式的蓄电池出现,主要以阀控式铅酸蓄电池(为主,由于不需加水,所以阀控式铅酸蓄电池从一开始便被称为免维护电池,而生产厂家又承诺该电池的使用寿命为10~20年(最少为8年),这样就给国内的技术和维护人员一种误解,似乎这种电池既耐用又完全不需要维护,许多用户从装上电池后就基本没有进行过维护和管理,因而在90年代初国内使用的VRLA电池出现了很多以前未遇到的新问题,例如,电池壳变形、电解液渗漏、容量不足、电池端电压不均匀等。这些现象不单在国内,就是在比我国早频法、内阻、容量1.概述自国际电工IEEE-1996为蓄电池维护制定了以定期测试内阻预测蓄电池寿命的标准以来,中国信息产业部邮电工业产品质量监督检验中心对YD/799-2002也进行了内阻规范的增补。随着国内经济的发展和社会信息的普及、通讯电源、网络供能、动力机通道锂电池充放电容量测试仪电池在线质量状态的准确了解不仅是使蓄电池能够提供稳定后备支持能力的重要保证和依据,而且有利于蓄电池资源进行优化整合。2.蓄电池的维护蓄电池的小概率损坏是当今无法解决的世界性技术难期。也正因如此对蓄电池进行检测及维护不仅是必要的,也是必须的!现在比较通用的维护方法是:第一步:用蓄电池内阻检测仪定期对蓄电池内阻进行检测,找出可能容量不足的蓄电池。第二步:用蓄电池放电测试仪进行容量验证,找出容量不足的蓄电池。第三步:对容量不足的蓄电池进行维护或更换。
    留言咨询
  • 电荷量测试仪型号:Huace系列适用范围测量防静电工作服和纺织品的带电电量电子材料和其它元件的电荷量测试测量静电导体的电容量测量静电火花放电电量测量各种粉体、液体、固体的带电电荷量研究摩擦带电系列传感器特性分析测量物体表面电位及电荷面密度纳米电子器件特性分析产品简介4位半Huace-111、112系列静电电荷量测试仪结合了华测高灵敏度电压、电流测量仪器的技术优势以及快的速度和高的耐用性。这款经济型的仪器具有手动电荷量程和快速自动量程功能,可以测量±0.1pC到正负士20uC的电荷,其测量速度达到500读数/秒。华测Huace系列电荷量表具有极高的分辨率与高灵敏度,使它适合于低电荷测试场合,而它20uC的量程使它可以测量较高的电荷。1、检测防静电工作服和纺织品的带电电量按照国家标准GB12014--89《防静电工作服》将工作服放入滚筒擦机摩擦内使其带电,把带静电后的工作服投入法拉第筒内,从Huace-111型数字电荷仪上读出电荷量值。复零后可进行下一次测量,若是测量纺织品的带电电荷量,可按照国家标准GB/T12703-91《纺织品静电性能测试方法》进行。 2、测量各种粉体、液体、固体的带电电荷量测量粉体的带电电荷量时,可根据被测粉体的多少制作不同形状和不同规格的法拉第筒。 粉体带电的方式可以是摩擦带电或在电场中荷电。如测量粉尘在电场中的荷电。也可以让粉体从滑槽中滑下帮电。 3、测量火花放电电荷转移量当带有静电的静电非导体与接地金属体接近时会发生火花放电。用Huace-111型数字电荷仪能精que地测量出放电电量。 4、测量金属体的自电容和互电容量让金属体带上静电(电压为V)后用法拉第筒和电荷量仪测出金属球的带电电荷量Q,由公式C=Q/V计算出电容量。
    留言咨询
  • HDGC3980 蓄电池放电测试仪功耗部分采用新型PTC陶瓷电阻作为放电负载,完全避免了红热现象,安全可靠无污染。整机由微处理器控制,液晶显示、中文菜单。外观设计新颖,体积小、重量轻、移动方便。各种放电参数设定完成后,自动完成整个恒流放电过程。完全实现智能化。使整个放电过程更安全。   HDGC3980 蓄电池放电测试仪系列便携、智能化的专业设计使放电测试工作变得简捷、轻松,大大降低了专业维护人员的劳动强度,也提高了放电测试的科学性和智能化。
    留言咨询
  • FLIR Si2-Pro适用于局部放电、压缩气体泄漏和机械故障检测的声学成像仪FLIR Si2-Pro 可帮助您显著降低与机械轴承问题和电气设备局部放电相关的成本。它还可以大幅减少设施泄漏,降低与压缩空气和气体泄漏相关的费用。Si2 系列能让您体验到出色的性能、决策支持、设备集群管理和企业数据集成。对于特殊需求,您可以选择其他型号:高级泄漏检测方面可以选择 Si2-LD,在电力行业应用方面可以选择 Si2-PD。在下面的相关产品部分探索这些型号,找到适合您需求的型号。先进的泄漏检测精确检测、定位和测量压缩空气泄漏、气体泄漏和局部放电。可从 200 米远处识别和量化微小和难以察觉的问题,从而提高运营效率并确保安全。轴承故障分析可在造成设备故障之前发现轴承缺陷,从而节省高昂的维修成本、减少停机时间并提高维护效率。设备集群管理功能通过设备集群管理、云数据集成和 OTA 软件更新,确保设备在大规模工业环境中的最佳使用和维护。在同一报告中将声学图像与红外图像相结合。更多参加,敬请访问FLIR官网。
    留言咨询
  • 一、设备概述充电枪放电综合测试仪用于检测充电枪放电的指示灯是否正常、每个插孔的与线尾的导通是否正常,以及每两根线之间的绝缘和耐压测试,所有功能自动实现一次性检测完成,效率高、省人力,适宜于工厂批量全检。二、主要技术参数:1. 指示灯检测,将火线与零线加额定电压,检测指示灯是否灯亮正常。2. 导通极性检测:检测充电枪头部与尾部出线间的导通与极性Ø 线芯根数:L1\L2\L3任意设定Ø 检测信号:电压DC24V、约10mAØ 极性判断:回路式信号判断,能够检测所有头部与尾部间的顺序是否合格;Ø 报警检测:错极性、不通电均有声光报警提示和文字信息提示;3. 绝缘阻抗参数:Ø 绝缘电压:DC100~1000V任意设定;Ø 下限设定:1M~1GΩ任意设定;Ø 准确度:±5%;Ø 阻抗指示:数显表头实时指示当前绝缘阻值大小;Ø 报警检测:当阻值小于设置值时有声光报警提示和文字提示;Ø 检测:L N线分别对PE,L N线分别对CC之间进行绝缘测试,Ø 测试结果必须大于500MΩ4. 耐电压测试参数:Ø 耐压电压:AC0~5kV/DC0~6kV任意设定;Ø 漏电流上限:AC0.1mA~20mA,DC0.01mA~5mA任意设定Ø 准确度:±1.5%+3个字Ø 显示方式:数显表头指示当前电压Ø 调压方式:自动程控式Ø 报警检测:当漏电流值大于设置值时有声光报警提示和文字提示;Ø 检测:L N线分别对PE,L N线分别对CC之间进行耐压测试,Ø 测试结果必须小于5mA5. 绝缘测试时间1~999.9s6. 耐压测试时间1~999.9s7. 外形尺寸:W1000mmxD600m×H300mm8. 重量:约100kg:9. 电源:AC220V、50Hz、约10A
    留言咨询
  • 医用电气安规综合性能测试仪产品概要TOS9300系列是一款高性能安规试验仪,可帮助您执行符合各种标准的医用电气设备的安规测试。此系列涵盖高压绝缘耐压测试,绝缘电阻,接地阻抗,泄漏电流(接触电流和保护导体电流)以及局部放电测试。该多功能测试仪提高了生产效率并节约了宝贵的生产空间,是研发,质量保证,生产线和实验室的理想选择。医用电气安规综合性能测试仪产品的特点与优势执行广泛标准的多功能测试仪四合一的TOS9303LC型让您可以执行四种电气安全测试,如耐压测试,绝缘电阻测试,接地阻抗测试与泄漏电流测试。TOS9301PD型支持局部放电测试。TOS9300系列可让您无需为上述电气安全测试创建自动化系统,并降低资产管理成本。此外,它还能提高生产效率并节约生产线上的宝贵空间。恒定的电压输出和增强的处理能力实现了高精度试验基于短路,介质击穿和局部放电等分类作出判断,实现精确检验。TOS9300系列的处理能力比传统安规测试仪快3倍,有助于降低生产线中的试验节拍时间。具有高清晰度和操作性能的彩色液晶显示器彩色液晶显示器与良好的图形用户界面让操作员得以集中注意力,免于发生操作错误。配置的通信界面(LAN/USB/RS232C)简化了试验系统控制,有助于推进测试的开展。LineupTOS9300 系列 型号交流高压绝缘耐压测试直流高压绝缘耐压测试IR*GB*LC*PD*TOS9300??TOS9301???TOS9301PD????TOS9302??TOS9303????TOS9303LC?????TOS93204ch 高压扫描仪IR: 绝缘电阻GB: 接地阻抗LC: 泄漏电流PD: 局部放电
    留言咨询
  • 绝缘耐电压击穿测试仪做实验油盒里注入25#变压器油,漫过上电极15~20mm,放入试样,关闭门,此时门位指示灯亮,按下高压启动此时绿灯亮,电脑上输入试样厚度,选择升压速率50KV 0.2~2kv/s,100KV 0.5~10kv/s,任意选,点击参数设置,选择实验方法,保存参数设置,点击实验准备一确定一开始实验,此时实验开始,直到试样击穿,步进电机归零,启点指示灯亮,实验结束,此时电脑显示的是试样击穿跌落值,数据表格里显示是实际值,点击序号2,可做下个试样,一种试样可做10个,做完实验点击左上角保存,点击曲线分析,看实验结果,点击Word转换成Word报告,点击Excel转换成Excel各点数据。绝缘耐电压击穿测试仪做直流实验;把高压变压器短路销拔出来,打开软件,双击交流实验此时直流实验变实,点击直流实验此时是做直流实验,其它设置与交流是一样的,做完实验自动放电。ASTM D149-2009介电击穿电压试验方法耐电压击穿试验仪13. 计算13.1对于每次测试而言,击穿时的绝缘强度应以kV/mm或V/mil为单位来计算,对于逐步测试而言,梯度应以未发生击穿的最高电压步骤来计算。13.2计算平均绝缘强度及标准偏差,或其他变量的测量值耐电压击穿试验仪14. 报告14.1报告应包含以下信息:14.1.1测试样的鉴定。14.1.2对每一个测试样;14.1.2.1所测量的厚度,14.1.2.2能承受的最大电压(对逐步测试而言),14.1.2.3击穿电压,14.1.2.4绝缘强度(对逐步测试而言),14.1.2.5击穿强度,及14.1.2.6击穿的部位(电极的中心,边缘或外部)。14.1.3对于每个样品:14.1.3.1平均电介质承受强度(仅对逐步测试测试样),14.1.3.2平均电介质击穿强度,14.1.3.3变量的说明,最好是标准偏差和变化系数。14.1.3.4测试样的说明,14.1.3.5调节和测试样的准备,14.1.3.6环境的温度和相对湿度,14.1.3.7环境介质,绝缘耐电压击穿测试仪精度和偏差15.1表2总结了四个实验室和八种材料实验室间研究的结果。该研究采用同一电极体系和同一测试介质。915.2单一操作员精度——根据测试材料,试样厚度,电压供给方式以及控制或抑制瞬间电压脉冲的极限,变化常数(标准差除以平均值)在1%到20%之间变化。如果就同一样品的五个测试样进行重复试验,变化常数通常不大于9%。绝缘耐电压击穿测试仪力(表压)应与开关设备实际运行时的压力相同,必要时允许适当提高试验金属壳体内气体的压力,试验金属壳体内SF。气体的性能要求见表8.套管试验时应水平或垂直安装,要求安装成其他状态时,应由供需双方协议商定。试验时的环境温度及浸入介质的温度应在10℃~40℃之间。DL/T1408-20153) 升压至 U=U=1100kV,持续1min:4)降压至U2持续 1h 5) 降压至U,持续5min 6)电压降至零。在所有测试电压下都要监测局部放电量并每5min记录一次测量结果,局部放电不呈现持续增加趋势,偶尔出现的较高幅值脉冲可以不计入。试验时不应出现闪络或击穿,试验后应复测套管tanδ和电容量,若无异常,可进行下一项试验。在测试的任一阶段,套管的局部放电量上限见表4。局部放电量测量管进行局部放电量测量试验时,试验电压和持续时间要求如图2所示。DL/T1408-2015推荐的典型尺寸和特殊要求套管与开关设备和变压器的连接方式、法兰典型尺寸如图A.1~图A.4和表A.1所示,尺寸也可由供需双方协商确定。a) 套管变压器侧和开关设备侧的绝缘长度不小于1830mm。b)套管与开关设备之间的导电连接采用平面连接方式,套管应预留圆形连接平面供开关设备厂设计开关设备与套管的连接结构,预留圆形平面外径为230mm,连接结构的屏蔽罩直径应与套管开关设备侧端部的最大直径相匹配。绝缘耐电压击穿测试仪开关设备侧法兰经过一段过渡筒体与常规开关设备母线相连,过渡筒体内径为1200mm。压力监测要求油浸纸套管应配有气体压力监测装置,根据设置的压力报警值,当油-SF。套管开关设备侧 SF。气体侵入套管内部时,发出异常报警信号。试验要求与方试验的一般要求套管变压器侧应浸在装有变压器油的尺寸合适的试验油箱中,套管开关设备侧应装在充有SF。气体的尺寸合适的试验金属壳体内,套管端部的均压屏蔽罩要确保其表面场强足够低,使其在相应介质(变压器油和 SF。气体)中不发生局部放电。试验油箱中变压器油的击穿电压、水分和颗粒度应符合表7的规定。试验金属壳体内SF。气体的压力(表压)应与开关设备实际运行时的压力相同,必要时允许适当提高试验金属壳体内气体的压力,试验金属壳体内SF。气体的性能要求见表8.套管试验时应水平或垂直安装,要求安装成其他状态时,应由供需双方协议商定。试验时的环境温度及浸入介质的温度应在10℃~40℃之间。试验程序如下:1) 升压至 U3=1.1U√√3=699kV,持续5min 2) 升压至 U₂ =1.5U√3=953kV,持续5min 3) 升压至 U=Uy=1100kV,持续1min 4)降压至 U₂ 持续5min 5)降压至 U₃ 持续5min 6)电压降至零。在所有测试电压下都要监测局部放电量并记录测量结果,局部放电不呈现持续增加趋势,偶尔出现的较高幅值脉冲可以不计入。试验时不应出现闪络或击穿,试验后应复测套管tanδ和电容量,若无异常,可进行下一项试验。在测试的任一阶段,套管的局部放电量上限见表4。抽头绝缘试验应在1kV和2kV的试验电压下测量试验抽头的tanδ和电容量。套管的抽头绝缘数据及要求见本标准7.3.Ok/e方协议商定,通过套管导体的电流值应至少为本标准7.5中的标准值试验前套管应施加一个电流,使套管导体达到一个稳定的温度,该温度应与套管在最高环境温度下施加额定电流时达到的稳定温度相同。试验后没有出现绝缘损伤时,套管可进行下一项试验。悬臂负荷耐受试验为了验证套管符合本标准7.7的规定,套管应按GB/T4109-2008中8.9规定的试验方法进行试验,试验时施加的负荷为5kN。油浸纸油-SF。套管密封试验对于油浸纸油-SF。套管,在型式试验和逐个试验中都需要进行密封试验。型式试验时,充以变压器油并放入温度能持续12h保持在75℃的一个适当的加热容器内。试验时采用适当的方法保持套管内部的最小压力比其最高运行压力高出0.1MPa±0.01MPa。逐个试验时,在环境温度不低于10℃时充以最低温度60℃的变压器油,充油后应尽快对套管内部施加比最高运行压力高0.1MPa+0.01MPa的压力,保压至少12h。试验时或试验后套管应无泄漏。检测方法应符合GB/T2423.23-2013的相关规定。外部压力试验套管应按试验的要求装配好,在环境温度下其开关设备侧应安装在尽可能和正常运行时一样的箱内,箱体密封并充满适当的液体。箱内应施加3倍的最高运行气体压力,压力持续1min,套管不应有机械损伤(例如变形、破裂)。当没有出现机械损伤的迹象时,套管可进行下一项试验。法兰或其他紧固件上的密封试验a)变压器侧密封要求。套管应按试验要求装配。在环境温度下套管变压器侧应如正常运行时那样安装在一箱体上,变压器侧的箱内应充以相对压力为0.15MPa±0.01MPa的空气或任何适宜的体并维持15min,或充以相对压力为0.1MPa±0.01MPa的油压维持12h,套管应无泄漏。b)开关设备侧密封要求。套管应按试验要求装配。在环境温度下套管开关设备侧应如正常运行时那样安装在一箱体上,箱内应按正常运行要求充以最高运行气体压力的SF。气体或示踪气体。当有要求时,套管变压器侧部件应封闭在一外套内。含有液体的套管内腔应清空并开一个使气体可自由流通到外套内的窗口。在等于或大于2h的时间间隔内应测量两次外套内空气中的气体浓度。产品名称:介电击穿强度测定仪 产品型号:BDJC-50kv控制方式:微机控制 满足标准:GB1408-2006 绝缘材料电气强度试验方法GB/T1695-2005 硫化橡胶工频电压击穿强度和耐电压强度试验GB/T3333 电缆纸工频电压击穿试验方法HG/T 3330绝缘漆漆膜击穿强度测定法GB12656 电容器纸工频电压击穿试验方法ASTM D149 固体电绝缘材料在工业电源频率下的介电击穿电压和介电强度的试验方法.IEC 60243-1 绝缘材料电气强度试验方法. 液体:《中华人民共和国国家标准-绝缘油击穿电压测定法-GB/T 507-2002》 《中华人民共和国电力行业标准-绝缘油介电强度测定法-DL429.9-91》
    留言咨询
  • HDGC3988 蓄电池在线充放电测试仪用于通信机房或其他不间断电系统的固定式蓄电池组,其最主要的功能是当市电中断或整流设备出现故障时,能提供直流电流继续维持各种电信设备的正常运行。 HDGC3988 系列产品放电过程基本不损耗电能,放电结束自动充电。同时具有电压/电流监测、快速查找落后单体、预估电池组容量等。产品特点1、放电功能:将HDGC串联到被测试的蓄电池组中,让蓄电池组全在线对设备放电测试,在保证通信系统安全的前提下有效的检测蓄电池容量。2、显示功能:14寸笔记本显示屏显示工作状态、充放电总电压、充放电电流、充放电时间、充放电容量、单体电压、 最高单体电压、最低单体电压等内容。3、门限设定功能:能设定总电压、单体电压、放电时间、放电容量等控制报警门限。4、数据分析功能:可以生成总电压曲线图、电流曲线图、单体电压条形图、单体电压曲线图、容量分析表。5、安全保证功能:通过无缝连接技术将被测试蓄电池组与HDGC设备串接,在放电过程中,如果市电中断,HDGC自动停止对负载充放电测试,并把蓄电池组自动接上系统。 保证该蓄电池组始终处于安全在线状态。6、具有多种告警功能:无线巡检器告警、单体电池放电电压低于设定值告警和蓄电池组放电电压低于保护范围告警。7、保护功能:具备电池组电压、单体电压、端电压检测及电压超限保护、报警功能。8、功能齐全:HDGC创新地实现集蓄电池组全在线放电、充电和检测维护于一体。9、安全性高:HDGC在线放电过程没有任何明火现象,仅有机器本身的工作热量,温度极低。10、操作简单:HDGC测试过程提供智能化操作,操作简便,维护工作安全性高,单人即可轻松测试。11、断电记忆功能:测试过程停电或长时间不用,记忆数据也不会丢失。12、存储功能:320G硬盘,海量存储数据,可扩展性强。型号名称HDGC3988(48/300)HDGC3988(110/100)HDGC3988(380/100)HDGC3988(220/100)软件设定范围适用系统48V系统110V系统380V系统220V系统放电电流范围1-300A1-100A1-100A1-100A放电终止电压42.72-54V70-190V300-600V180-300V单体电池电压1.65-2.3V1.65-2.3V1.65-2.3V1.65-2.3V5.1-6.9V10.2-13.8V其他硬盘2G4G内存大小512M操作系统windows2000裸机重量35公斤38公斤38公斤38公斤外观尺寸370*550*640通讯接口USB、RS232、RJ45
    留言咨询
  • 一、产品的制造和检验标准1、GB14081-2016《绝缘材料电气强度试验方法》2、GB1408.2-2016《绝缘材料电气强度试验方法第2部分:对应用直流电压试验的附加要求》3、JJG 795-2016《耐电压测试仪》二、适用的试验方法标准1、GB/T1695-2005《硫化橡胶工频击穿电压强度和耐电压的测定方法》 2、GB/T3333《电缆纸工频击穿电压试验方法》3、GB12913-2008《电容器纸》4、ASTM D149《固体电绝缘材料工业电源频率下的介电击穿电压和介电强度的试验方法》三、主要技术指标输入电压:AC220V 50HZ输出电压:AC:0~50kV DC:0~50kV输出功率:3kVA测量范围:AC:0~50kV DC:0~50kV测量误差:≤3%升压速率:0.25kV/s~5kV/s耐压时间:0~4(空载耐压)漏电流:1~30mA可由计算机软件自由进行设定电源:交流220V±10%的单相交流电压和50Hz±1%的频率式验环境温度:15~30°C,相对湿度:0~85%能够稳定运行外形尺寸:长x宽x高:1000*500*1100mm设备自重:100kg接地要求:仪器需要单独接地,接地附合国家标准要求,金属棒深埋地下至少要1.5米以下。四、结构原理及性能特点GJW-50KV电压击穿试验仪主要由:升压系统(高压变压器)、测量系统、A/D转换器、放电系统、电极、油箱、电极定位架、计算机数据处理系统、软件等组成。五、计算机系统及软件包试验软件是我公司研发的功能强大、操作简单、显示直观的试验软件系统本仪器采用计算机控制,过人机对话方式,完成对、绝缘介质的工频电压击穿,,工频耐压试验。1、试验过程中可动态绘制出试验曲线,试验的曲线可以多种颜色叠加对比,局部放大,曲线上任意一段可进行区域放大分析。2、可对试验数据进行编辑修改,灵活适用3、试验条件及测试结果等数据可自动存储 4、试验报告格式灵活可变,适用于不同用户的不同需求;5、可对一组试验中曲线数据的有效与否进行人为选定;6、试验结果数据可导入EXECLWORD文档编辑;7、软件设备人员管理功能,试验人员可设置自己的试验项目和试验参数,设置自己的试验内容后别人无法进入程序:8、过电流保护装置有足够的灵敏度,能够保证试样击穿时在0.1S内切断电源;9、仪器运行的持久性:仪器可连续运行使用,不需为保护仪器而定期停机。六、高压击穿设备安全说明:1、设备要安装单独的保护地线。接保护地线,主要是减少试样击穿时对周围产生的较强的电磁干扰。也可避免控制计算机失控。2、直流试验放电报警功能在设备做完直流试验时,当开启试验门时设备会自动报警 直至使用设备上的放电装置放电后报警会自动取消(注:因为直流试验后不放电会危险到人身安全 不能直接拿取电极,起到提醒使用人员放电以免造成人身伤害)。3、试验放电装置,随主机为一体化,改进了以往单独配备一根放电杆的功能。4、该试验设备的电路设有多项保护措施,主要有:过流保护、失压保护、漏电保护、短路保护、直流试验放电报警等5、六级高压安全断电控制:1.总电源开关2高压断电开关(钥匙开关)3调压器复位开关4试验箱门安全开关5高压变压器输入侧限流空开6.漏电保护开关
    留言咨询
  • 玻璃介电常数试验测试仪电桥的特点;l桥体内附电位及指零仪,接线及少。l电桥采用接触电阻小,机械寿命长的十进开关,保证测量的稳定性l仪器具有双屏蔽,能有效防止外部电磁场的干扰。l仪器内部电阻及电容元件经特殊老化处理,使仪器技术性能稳定可靠。l内附高压电源精度3%l内附标准电容损耗﹤0.00005,名义值100pF绝缘纸工频介电常数测试仪 技术指标2-1测量范围及误差本电桥的环境温度为20±5℃,相对湿度为30%-80%条件下,应满足下列表中的技术指示要求。在Cn=100 pF R4=3183.2(Ω)时测量项目测量范围测量误差电容量Cx40pF—20000pF±0.5% Cx±2pF介损损耗tgδ0-1±1.5% tgδx±0.0001在Cn=100 pF R4=318.3(Ω)时测量项目测量范围测量误差电容量Cx4pF—2000pF±0.5% Cx±3pF介损损耗tgδ0-0.1玻璃介电常数试验测试仪测量完毕后或在暂停测量时,应将另仪的灵敏度开关降至“0”,再将测量电压降至另并切断电源开关,根据计算公式,算出被测试品的容量及介损值1. 本仪器必须有专人负责保管,使用,非专职操作者应在使用前了解和熟悉本说明书,以免造成不必要的损失和事故。2. 每次使用前应仔细检查接地线是否完好,确保以后方可通电使用。3. 接通电源前应将灵敏度开关调到低位置。4. 测量试品前应先对试品进行高压试验,证明在电桥工作电压下无噪声,电离等现象出现,然后才能进行测试(若试品己做过高压试验,该项可不必每次测量都做)。5. 对试品施加高压时缓慢升高,不可以加突变电压。6. 测试时操作人员必须集中思想,工作前做好一切准备工作,测试地点周围应有明显的标记或金属屏蔽围成高压危险区,以防止非操作人员闯入。7. 在测量过程中,如有放电管发光时,则必须及时切断电源,仔细检查接线及试品都无击穿,待检查排除故障后,再进行高压测量工作。操作方法测试前的准备工作①按图(3)所示,连接标准电容Cn(选用外接标准电容时),与被测电容Cx,并且将标准电容与被测电容尽可能远离,以防止互相之间干扰。如选用内部标准电容器,只需连接被测试品即可。②检查周围是否有强电磁场干扰,应尽量避免。③检查大地线是否牢靠,以保证操作人员的安全,应检查电桥上的(⊥)与大地是否接触良好。④检查电桥的灵敏度开关是否已回另位。⑤检查试品的绝缘强度,应符合大于2U+1的标准。⑥对试品施加试验电压(按部标或国际所规定的专业标准进行)。玻璃介电常数试验测试仪在每个高压实验室和试验中,压缩气体标准电容器是一种必要的仪器。在这些场合中,它有许多重要的作用。在电桥电路中压缩气体电容器被用来测量电容器、电缆、套管、绝缘子、变压器绕组及绝缘材料的电容和介质损耗角正切值(tgδ)。而且,还可以用作高压测量电容分压装置的高压电容。在某些条件下,还可以在局部放电测量中作高压耦合电容器。玻璃介电常数试验测试仪2.Q值量程分档:30、100、300、1000、自动换档或手动换档;3.电感测量范围:自身残余电感和测试引线电感的自动扣除功能4.5nH-100mH 分别有0.1μH、0.5μH、2.5μH、10μH、50μH、100μH、1mH、5mH、10mH九个电感组成。4.电容直接测量范围:1~460pF 5.主电容调节范围: 30~500pF 6.电容准确度 150pF以下±1.5pF;150pF以上±1% 7.信号源频率覆盖范围20KHz-100MHz (双频对向搜索 确保频率不被外界干扰)8、型号频率指示误差:1*10-6 ±1 Q值合格指示预置功能范围:5~1000Q值自动锁定,无需人工搜索9.Q表正常工作条件a. 环境温度:0℃~+40℃b.相对湿度:80%;c.电源:220V±22V,50Hz±2.5Hz。玻璃介电常数试验测试仪1. 平板电容器极片尺寸:φ25.4mm\φ50mm极片间距可调范围和分辨率:≥10mm,±0.01mm2. 园筒电容器电容量线性:0.33pF / mm±0.05 pF长度可调范围和分辨率:≥0~20mm,±0.01mm3. 夹具插头间距:25mm±1mm4. 夹角损耗角正切值:≤4×10-4(1MHz时)5、数显电极
    留言咨询
  • 一、售前服务:为您提供理化试验室电学性能测试室的规划设计方案:◎ 试验室设施和环境要求◎ 仪器、北京中航时代检测仪器设备的配置在您研制新材料时,专业工程师可为您提供材料测试服务,当收到您委托做试验的试样和试验要求后,结合试验标准要求和材料特性选择适合的设备为您完成测试,并将以电邮的方式将试验报告及图片发给您。多年材料电学解决方案的积累,结合您的实际需求,为您提供丰富的实际应用案例,您将会对试验标准的理解,试验设备的选型,试验附件的选购有更多的参照。二、售后服务:1、安装调试:协助试验机的安装,负责试验机的运输、调试。2、验收标准:试验机按订货技术附件进行验收。终验收在买方进行,对用户提供的试样进行试验,并提供测试报告。3、培训:安装调试同时,在仪器操作现场免费培训操作人员2-3名,该操作人员应是由需方选派的长期稳定的员工,培训后能够对设备基本原理、软件使用、操作、维护事项理解和应用,使人员能够独立操作设备对样品进行检测、分析,同时能进行基本的维护。4、软件升级:终生免费提供新版本控制软件。5、保修:5.1、北京中航时代检测仪器设备保修一年,长期服务,一年内非人为损坏的零部件免费更换,保修期内接到用户邀请后,迟响应时间为2小时内,在与用户确认故障后,我公司会在48小时内派工程师到达现场进行免费服务,尽快查清故障所在位置和故障原因,并向用户及时报告故障的原因和排除办法。5.2、保修期内人为损坏的零部件按采购(加工)价格收费更换。5.3、北京中航时代检测仪器保修期外继续为用户提供专业技术服务,在接到用户维修邀请后3天内派工程师到达用户现场进行维修。并享有优惠购买零配件的待遇。5.4、传感器过载及整机电路超压损坏不在保修范围内。三、选型说明:1、 介电强度和击穿电压的区别:介电强度:是一种材料作为绝缘体时的电强度的量度.它定义为试样被击穿时, 单位厚度承受的最大电压,单位是:KV/mm或MV/m,介电强度越大, 它作为绝缘体的质量越好.介电强度也可称为电气强度。击穿电压:是一种材料作为绝缘体时所能承受的最大电压值,也就是击穿破坏时的最大电压值,单位是:KV2、 北京中航时代检测仪器如何选择合适量程的电压击穿:在材料的标准要求里或者测试报告中,对材料的耐压等级通常用介电强度来表示,即KV/mm,击穿电压和介电强度的关系可以用如下公式表示:击穿电压值(KV)介电强度(KV/mm)=------------------------------------------试样厚度(mm)由如上公式可以得出结论,选择多大量程的测试仪器,取决于试样的厚度,即:击穿电压值(KV)=介电强度(KV/mm)* 试样厚度(mm) 由此公式所得出的击穿电压值是按照试样厚度测试时的有效电压值,所以得出击穿电压值后,在此电压值得基础上适当加宽些量程范围比较合理,建议计算出击穿电压值后增加10KV—20KV3、 同等电压量程不同功率的电压击穿试验仪的区别:A:在测试规程和测试标准中,测试数据是击穿电压值,而对仪器的输出电流没有要求时,可以不用考虑设备的容量值,只关注设备的量程即可,对测试数据没有影响B:在有些测试标准或测试要求中,必须要求仪器满足最大输出电流是多少,对此在选择仪器量程的同时,需要关注变压器的容量值(即功率KVA)C:输出电流、电压值及功率之间的关系用如下公式表示:变压器容量(KVA)输出电流(MA)=----------------------------------------------电压量程(KV)气体中的沿面放电电力系统中,电气设备的带电部分总要用固体绝缘材料来支撑或悬挂。绝大多数情况下,这些固体绝缘是处于空气之中。如输电线路的悬式绝缘子、隔离开关的支柱绝缘子等。当加在这些绝缘子的极间电压超过一定值时,常常在固体介质和空气的交界面上出现放电现象,这种沿着固体介质表面气体发生放电称为沿面放电。当沿面放电发展成贯穿性放电时,称为沿面闪络,简称闪络。沿面闪络电压通常比纯空气间隙的电压击穿低,而且受绝缘表面状态、污染程度、气候条件等因素影响很大。电力系统中的绝缘事故,如输电线路遭受雷击时绝缘子的闪络、污秽工业区的线路或变电所在雨雾天时绝缘子闪络引起跳闸等都是沿面放电造成的。一、界面电场分布的典型情况气体介质与固体介质的交界面称为界面,界面电场的分布情况对沿面放电的特性有很大的影响。界面电场的分布有以下三种典型的情况:(1)固体介质处于均匀电场中,且界面与电力线平行,如图1-24(a)所示,这种情况在实际工程中很少遇到,但实际结构中会遇到固体介质处于稍不均匀电场的情况,此时的放电现象与均匀电场中的放电有相似之处。(2)固体介质处于极不均匀电场中,且电力线垂直于界面的分量(以下简称垂直分量)比平行于界面的分量要大得多,如图1-24(b)所示。套管就属于这种情况。(3)固体介质处于极不均匀电场中,在界面大部分地方(除紧靠电极的很小区域外),电场强度平行于界面的分量比垂直分量大,如图1-24(c)所示。支持绝缘子就属于此情况。这三种情况下的沿面放电现象有很大的差别,下面分别加以讨论。二、均匀电场中的沿面放电在平行板的均匀电场中放入一瓷柱,并使瓷柱的表面与电力线平行,瓷柱的存在并未影响电极间的电场分布。当两电极间的电压逐渐增加时,放电总是发生在沿瓷柱的表面,即在同样条件下,沿瓷柱表面的闪络电压比纯空气间隙的电压击穿要低得多,其关系曲线如图1-25所示,图中UF为沿面工频闪络电压(幅值),S为间隙距离。这是因为:(1)固体介质与电极表面没有完全密合而存在微小气隙,或者介质表面有裂纹。由于纯空气的介电系数总比固体介质的低,这些气隙中的场强将比平均场强大得多,从而引起微小气隙的局部放电。放电产生的带电质点从气隙中逸出,带电质点到达介质表面后,畸变原有的电场,从而降低了沿面闪络电压,如图1-25曲线4所示。在实际绝缘结构中常将电极与介质接触面仔细研磨,使两者紧密接触以消除空气隙,或在介质端面上喷涂金属,将气隙短路,提高沿面闪络电压。(2)介质表面不可能绝对光滑,总有一定的粗糙性,使介质表面的微观电场有一定的不均匀,贴近介质表面薄层气体中的最大场强将比其他部分大,沿面闪络电压降低。(3)因体介质表面电阻不均匀,使其电场分布不均匀,造成沿面闪络电压的降低。(4)体介质表面常吸收水分,处在潮湿空气中的介质表面常吸收潮气形成一层很薄的水膜。水膜中的离子在电场作用下分别向两极移动,逐渐在两电极附近积聚电荷,使介质表面的电场分布不均匀,电极附近场强增加,因而降低了沿面闪络电压。介质表面吸附水分的能力越大,沿面闪络电压降低得越多。由图1-25可见,瓷的沿面闪络电压曲线比石蜡的低,这是由于瓷吸附水分的能力比石蜡大的缘故。瓷体经过仔细干燥后,沿面闪络电压可以提高。由于介质表面水膜的电阻较大,离子移动积聚电荷致表面电场畸变需要一定的时间,故沿面闪络电压与外加电压的变化速度有关。水膜对电压作用下的闪络电压影响较小,对工频和直流电压作用下的闪络电压影响较大,即在变化较慢的工频或直流电压作用下的沿面闪络电压比变化较快的电压作用下的沿面闪络电压要低。与气体间隙一样,增加气体压力也能提高沿面闪络电压。但气体必须干燥,否则压力增加,气体的相对湿度也增加,介质表面凝聚水滴,沿面电压分布更不均匀,甚至会出现高气压下,沿面闪络电压反而降低的异常现象。随着气压的升高,沿面闪络电压的增加不及纯空气间隙电压击穿的增加那样显著。压力越高,它们间的差别也越大。三、极不均匀电场中的沿面放电图1-24说明按电力线在界面上垂直分量的强弱,极不均匀电场中的沿面放电可分为以下两种类型。1.极不均匀电场具有强垂直分量时得沿面放电固体介质处于不均匀电场中,电力线与介质表面斜交时,电场强度可以分解为与介质表面平行的切线分量和与介质表面垂直的法线分量。具有强垂直分量的典型例子如图1-24(b)所示。工程上属于这类绝缘结构的很多,它的沿面闪络电压比较低,放电时对绝缘的危害也较大。现以最简单的套管为例进行讨论。图1-26表示在交流电压作用下套管的沿面放电发展过程和套管体积电容的等值图。由于在套管法兰盘附近的电场很强,故放电首先从此处开始。随着加在套管上的电压逐渐升高并达到一定值时,法兰边缘处的空气首先发生游离,出现电晕放电,如图1-26(a)听示:随着电压的升高,电晕放电火花向外延伸,放电区逐渐形成由许多平行的细线状火花,如图1-26(b)所示。电晕和线状火花放电同属于辉光放电,线状火花的长度随外施电压的提高增加,由于线状火花通道中的电阻值较高,故其中的电流密度较小,压降较大。线状火花中的带电质点被电场的法线分量紧压在介质表面上,在切线分量的作用下向另一电极运动,使介质表面局部发热,当电压增加而使放电电流加大时,在火花通道中个别地方的温度可能升得较高,当外施电压超过某一临界值后,温度可高到足以引起气体热游离的数值。热游离使通道中的带电质点急剧增加,介质电导猛烈增大,并使火花通道头部电场增强,导致火花通道迅速向前发展,形成浅蓝色的、光亮较强的、有分叉的树枝状火花,如图1-26(c)所示。这种树枝状火花并不固定在一个位置上,而是在不同的位置交替出现,此起彼伏不稳定,并有轻微的裂声,此时的放电称为滑闪放电,滑闪效电是以介质表面的放电通道中发生热游离为特征的。滑闪放电的火花长度随外施电压的增加而迅速增长,当外施电压升高到滑闪放电的树枝状火花到达另一电极时,就产生沿面闪络。此后依电源容量之大小,放电可转入火花放电或电弧。为近一步分析固体绝缘的介电性能和几何尺寸对沿面放电的影响,可将介质用电容和电阻等值表示,将套管的沿面放电问题就化为链形等值回路,如图1-27所示,当在套管上加上交流电压时,沿套管表面将有电流流过,由于R及C的存在,沿套管表面的电流是不相等的。越近法兰处(B),电流越大、单位距离上的压降也越大,电场也越强,故B处的电场最强。固体介质的介电系数越大,固体介质的厚度越小,则体积电容越大,沿介质表面的电压分布就越不均匀,其沿面闪络电压也就越低;同理,固体介质的体积电阻越小,沿面闪络电压也就越低:若电压变化速度越快,频率越高,分流作用也就越大,电压分布越不均匀,沿面闪络电压也就越低;而固体介质的表面电阻(特别是靠近B处)的在一定范围内适当减小,可使沿面的最大电场强度降低,从而提面沿面闪络电压。沿面闪络电压不正比于沿面闪络的长度,前者的增大要比后者的增长慢得多。这是因为后者增长时,通过固体介质体积内的电容电流和泄漏电流将随之有很大得增长,使沿面电压分布的不均匀性增强的缘故。长期的滑闪放电会损坏介质表面,在工作电压下必须防止它的出现,为此必须采取措施提高套管的沿面闪络电压。其出发点是:①减小套管的体积电容,调整其表面的电位分布,如增大固体介质的厚度,特别是加大法兰处套管的外径,也可采用介电常数较小的介质;2减小绝缘的表面电阻,即减少介质的表面电阻率,如在套管近法兰处涂半导体漆或半导体釉,以减小该处的表面电阻,使电压分布变得均匀。由于滑闪放电现象与介质体积电容及电压变化的速度有关,故在工频交流和电压作用下,可以明显的看到滑闪放电现象,而在直流电压作用下,则不会出现明显的滑闪放电现象。但当直流电压的脉动系数较大时,或瞬时接通、断开直流电流时,仍有可能出现滑闪放电。在直流电压作用下,介质的体积电容对沿面放电的发展基本上没有影响,因而沿面闪络电压接近于纯空气间隙的电压击穿。2.极不均匀电场具有强切线分量时的沿面放电极不均匀电场具有强切线分量的情况如图1-24(c)所示,支持绝缘子即属此情况。在此情况下,电极本身的形状和布置已使电场很不均匀,其沿面闪络电压较低(与均匀电场相比),因而介质表面积聚电荷使电压重新分布所造成的电场畸变,不会显著降低沿面闪络电压。此外,因电场的垂直分量较小,沿介质表面也不会有较大的电容电流流过,放电过程中不会出现热游离,故没有明显的滑闪放电,垂直于放电发展方向的介质厚度对沿面闪络电压实际上没有影响。因此为提高沿面闪络电压,一般从改进电极形状,以改善电极附近的电场着手。如采用内屏蔽或采用外屏蔽电极(如屏蔽罩和均压环等)。四、绝缘子串的电压分布我国35kV及以上的高压输电线路都使用由盘式绝缘子组成的绝缘子串作为线路绝缘。绝缘子串的机械强度仍与单个绝缘子相同,而其沿面闪络电压则随绝缘子片数的增多而提高,绝缘子串中绝缘子片数的多少决定了线路的绝缘水平,一般35kV线路用3片、110kV 用7片、220V用13片、330kV用19片,500kV用28片。用于耐张杆塔时考虑到绝缘子老化较快,通常增加1~2片。在机械负荷很大的场合,可用几串同样的绝缘子并联使用。悬式绝缘子串由于绝缘子的金属部分与接地铁塔或带电导线间有电容存在,使绝缘子串的电压分布不均匀,其等值电路如图1-28(c)所示。图中C为绝缘子本身的电容,CE为绝缘子金属部分对地(铁塔)的电容,CL为绝缘子金属部分对导线的电容,一般C为50~70pF、CE为4~5pF、CL为0.5~1pF。如果统缘子串的串联总电容C/n (n为绝缘子片数)远大于CE及CL,那么由CE及CL分流的电流就不会对绝缘子串上的电压分部产生显著影响、即沿绝缘子串上的电压分布基本上是均匀的。但实际上C/n一般与CE在同一数量级,当n很大时与CL接近,将导致绝缘子串上的电压分布不均匀。如果只考虑对地电容CE,则等值电路如图1-28(a)所示,当CE两端有电位差时,必然有一部分电流经CE流入接地铁塔,流过CE的电流都由绝缘子串分流出去的,由于各个CE分流的电流将使靠近导线端的绝缘子流过的电流最多,从而电压降也最大。如果又考虑对导线电容CL,则等值电路图1-28(b)听示。同样可知,由于各个CL分流的电流将使靠近铁塔端的绝缘子流过的电流最大,从而电压降也最大。实际上CE及CL同时存在,绝缘子串的电压分布应该用图28(c)所示的等值电路进行分析,由于CE>CL,即CE的影响比CL大,故绝像子串中靠近导线端的绝缘子承受的电压降最大,离导线端远的绝缘子电压降逐渐减小。当靠近铁塔横担时,CL的作用显著,电压降又有些升高。从以上分析可知,随着导线输送电压的提高,串联的绝缘片数越多,绝缘子串的长度越长,沿笔缘子串的电压分布越不均匀;绝缘子本身的电容C越大,则对地电容CE和对导线电容CL分流作用的影响要小一些,绝缘子串的电压分布也就比较均匀:增大CL能在一定程度上补偿CE的影响,使电压分布的不均匀程度减小,如用大截面导线或分裂导线,都可使导线端的第一个绝缘子上的电压降减小。随着输电电压的提高,绝缘子片数越来越多,绝缘子串上的电压分布越来越不均匀,靠近导线端第一个绝缘子上的电压降最高,当其电压达到电晕起始电压时,常常会产生电晕,它将干扰通信线路,造成能量损耗,也会产生氮的氧化物和臭氧,腐蚀金属附件和污秽绝缘子表面,降低绝缘子的绝缘性能,故在工作电压下是不允许产生电晕的。为了改善绝缘子中的电压分布,可在绝缘子串导线端安装均压环。其作用是加大绝缘子对导线的电容CL,从而使电压分布得到改善。通常对333kV及以上电压等级的线路才考虑使用均压环。绝缘子的电气性能常用闪络电压来衡量,气象条件及污秽等原因,常会影响其闪络电压。根据工作条件的不同,闪络电压可分为干闪电压和湿闪电压两种。前者是指表面清洁面且干燥时绝缘子的闪络电压,它是户内绝缘子的主要性能。后者是指洁净的绝缘子在淋雨情况下的闪络电压,它是户外绝缘的主要性能。在淋雨情况下绝缘子串表面(主要是瓷盘上部表面)附着一层导电的水膜,在水膜中较大的泄漏电流引起湿表面发热,局部泄漏电流密度大的地方也使水膜发热烘干,使绝缘子串表面的压降加大引起局部放电,从而导致整个沿面闪络。由于这种热过程发展缓慢,故在电压作用下淋雨对缘子串的闪络电压无多大的影响。在工频电压作用下,当绝缘子串不长时,其湿闪电压显者低于干闪电压 (约低15%~20%)。由于在淋雨情况下沿绝缘子串的 电压分布(主要按电导分布)比较均匀,绝缘子串的湿闪电压也基本上按绝缘子串长度的增加而线性增加; 而干燥情况下的绝缘子串由于电压分布不均匀,绝缘子串的干闪络梯度将随绝缘子串长度的增加而下降。这样,随着绝缘子串长度的增加,其湿闪电压将会逐渐接近,以致超过干闪电压,两者的比较见图1-29。绝缘子表面被雨淋湿后,其沿面闪络电压大为降低。为了防止这种情况,户外的绝缘子总具有一些凸出的裙边。下雨时仅裙边的上表面被淋湿,水流到裙边的边缘上,使水膜不能贯通绝缘子的上下电极,以提高绝缘子的沿面闪络电压。而户内绝缘子裙边则较小。五、绝缘子表面污秽时的沿面放电户外绝缘子,特别是在工业区、海边或盐碱地区运行的绝缘子,常会受到工业污秽或自然界盐碱、飞尘等污秽的污染,在干燥情况下,这种污秽尘埃的电阻很大,沿绝缘子表面流过的泄漏电流很小,对绝缘子的安全运行没有什么危险。下大雨时,绝缘子表面的污秽容易被冲掉,当大气湿度较高,或在毛毛雨、雾、露、雪等不利的天气条件下,绝缘子表面的污秽尘埃被润湿,表面电导刷增,使绝缘子的泄漏电流剧增,其结果使绝缘子在工频和操作电压下的闪络电压(污闪电压)显著降低,甚至有可能使绝缘子在工作电压下发生闪络(通常称为污闪)。污闪将使设备跳闸,引起停电事故。据某工业地区统计,雾天的污闪事故占电力线路事故的21%,污闪事故往生造成大面积停电,检修恢复时间长,严重影响电力系统的安全运行。介质表面的污闪过程与清洁表面完全不同,故研究脏污表面的沿面放电,对污秽地区的绝缘设计和安全运行有重要的意义。在潮湿污秽的绝缘子表面出现闪络的机理大致如下:污秽绝缘子被润湿后,污秽中的高导电率溶质溶解,在绝缘子表面形成薄薄的一层导电液膜,在润湿饱和时,绝缘子表面电阻下降几个数量线。在电压作用下,流经绝缘子表面污秽层的泄漏电流显著增加,泄漏电流使润湿的污层加热、烘干。由于污层沿表面分布不均匀,也由于绝缘子的复杂结构造成各部分电流密度不同,污秽层的加热也是不平衡的。在电流密度最大且污层较薄的铁脚附近发热最甚,水分迅速蒸发,表面被逐渐烘干,使该区的电阻大增,沿面电压分布随之改变,大部分电压降落在这些干燥部分。将与这些干燥部分的空气间隙击穿形成火花放电通道,由于火花通道的电阻低于原干燥部分的表面电阻,使泄漏电流增大,形成局部电孤,使污层进一步干燥,使电弧伸长。总之,绝缘子全部表面的干燥将使泄漏电流减小,而局部电弧的伸长则使泄漏电流增大。如总的结果是泄漏电流减小,则局部电弧将熄灭;如总的结果是泄漏电流增大,则局部电弧将继续伸长,多个局部电弧的发展串接起来形成沿整个绝续表面的闪络。因为局部电弧的产生及其参数与污层的性质、分布以及润湿程度等因素有关,并有一定的随机性,故污闪也是一种随机过程,如果电压增高,则泄漏电流增大,有利于局部电弧的发展,可使闪络的概率增加;如果绝缘子的沿面泄漏距离或爬电距离增加,则泄漏电流减小,从而使闪络的概率降低。污闪过程是局部电弧的燃烧和发展过程,需要一定的时间。在短时的过电压作用下,上述过程来不及发展,因此闪络电压要比长时电压作用下要高,在电压作用下,绝缘子表而潮湿和污染实际上不会对闪络电压产生影响,即与表面干燥时的闪络电压一致。对于运行中的线路,为了防止绝缘子的污闪,保证电力系统的安全运行,可以采取以下措施:(1)对污秽绝缘子定期或不定期的进行清扫,或采用带电水冲洗。这是绝对可靠、效果很好的方法。根据大气污秽的程度、污秽的性质,在容易发生污闪的季节定期进行清扫。可有效地减少或防止污闪事故。清扫绝缘子的工作量很大,一般采用带电水冲洗法,效果较好。可以装设泄漏电流记录器,根据泄漏电流的幅值和脉冲数来监督污秽绝缘子的运行情况,发出预告信号,以便及时进行清扫。(2)在绝缘子表面涂一层憎水性的防尘材料,如有机硅脂,有机硅油、地蜡等,使绝缘子表面在潮湿天气下形成水滴,但不易形成连续的水膜,表面电阻大,从而减少了泄漏电流,使闪络电压不致降低太多。(3)加强绝缘和采用防污绝缘子。加强线路绝绝缘的最简单的方法是增加绝缘子串中绝缘子的片数,以增大爬电距离。但此方法只适用于污区范围不大的情况,否则很不经济,因增加串中绝缘子片数后必须相应地提高杆塔的高度。使用专用的防污绝缘子可以避免上述缺点,因为防污绝缘子在不增加结构高度的情况下使泄漏距离明显增大。(4)采用半导体绝缘子。这种绝缘了釉层的表面电阻为106~108Ω,在运行中利用半导体釉层流过均匀的泄漏电流加热表面,使介质表面干燥,同时使绝缘子表面的电压分布较均匀,从而能保持较高的闪络电压。近年来发展很快的合成绝缘子,防污性能比普通的瓷绝缘子要好得多,合成绝缘子是由承受外力负荷的芯棒(内绝缘)和保护芯棒免受大气环境侵袭的伞套(外绝缘)通过粘接层组成的复合结构绝缘子。玻璃钢芯棒是用玻璃纤维束浸渍树脂后通过引拔模加热固化而成,有极高的抗张强度。制造伞套的理想材料是硅橡胶,它有优良的耐气候性和高低温稳定性,经填料改性的硅橡胶还能耐受局部电弧的高温。由于硅橡胶是憎水性材料,因此在运行中不需清扫,其污闪电压比瓷绝缘子高得多。除优良的防污闪性能外,合成绝缘子的其他优点也很突出,如质量轻、体积小、抗拉强度高,制造工艺比瓷绝缘子简单等,但投资费用远大于瓷质绝缘子,目前合成绝缘子在我国已得到广泛的应用,也已有一定运行经验,且已作为一项有效的防污闪措施正在推广。
    留言咨询
  • ABL静放电测定仪产地:美国SMS简介:符合标准:MIL-STD 1751, methods 1031, 1032, and 1033,STANAG 4490ABL静放电测试仪(ESD)可以让用户在室内测定高能材料对静放电的反应情况.ESD是灵敏度测试设备行业核心之一,可生成高能材料工业标准水平的灵敏度数据. ESD会对测试材料样品发出电击或火花,操作员观察样品反应,通过气体分析仪检测分解情况,或利用SMS公司的GoDetect-ESD高速摄像检测系统进行观察.样品发生反应所需的能量用于评估材料对静放电的灵敏度,灵敏度数据可用于测定生产和处理测试材料的临界安全参数. 当前主要用途是测定是否可以安全对材料进行实验、处理加工与生产,对电击有潜在敏感的材料需要某种形式的测试来评估启动所需的能量.测量的灵敏度与过程中潜在能量相比较可以测定生产或处理期间是否超过安全限制.ESD可得到与过程中能量直接相关的结果. ESD装置使用“临近针”法和“固定间隔”法,常用的临近针法会模拟两个临近的物体,一个用正电一个用负电,在有限的距离内会发生放电现象,要想完成该测试,放电针通过气动电磁阀向测试样品快速移动,当针与地面没有距离时,样品会释放电能.
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制