材料微结构分析原理

仪器信息网材料微结构分析原理专题为您提供2024年最新材料微结构分析原理价格报价、厂家品牌的相关信息, 包括材料微结构分析原理参数、型号等,不管是国产,还是进口品牌的材料微结构分析原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合材料微结构分析原理相关的耗材配件、试剂标物,还有材料微结构分析原理相关的最新资讯、资料,以及材料微结构分析原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

材料微结构分析原理相关的仪器

  • 产品简介蔡司晶格结构光超高分辨率显微镜Lattice SIM 5针对亚细胞结构成像进行优化,实现60nm分辨率高质量活细胞超高分辨率成像。在活细胞超高分辨率成像中不仅实现三维空间分辨率的全面提升,更能快速真实的捕获亚细胞结构的动态变化。产品特点&bull 60 nm的分辨率精确捕获快速动态过程&bull 灵活多样的物镜和成像方式,满足不同样品的需求&bull 高速图像采集模式,提高速度和实验效率应用领域&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos 7活细胞成像,Calreticulin-tdTomato 标记内质网(品红),EMTB-3xGFP标记微管(绿色),右图显示放大区域样品细节分辨率。
    留言咨询
  • [ 产品简介 ]蔡司新一代场发射扫描电子显微镜Sigma系列,具有高质量的成像和分析能力,将先进的场发射扫描电子显微镜技术与优秀的用户体验完美结合。利用Sigma系列直观的4步工作流程,在更短的时间内获得更多的数据,提高测试与生产效率。可选配多种探测器,以满足半导体、能源等新材料、磁性样品、生物样品、地质样品等不同的应用需求。结合蔡司原位电镜实验平台,可以实现自动智能化的原位实验工作流程,高效率获取高通量、高质量的原位实验数据。领先的EDS几何设计保证了出色的元素分析性能,分析速度高、精度好、结果可靠。高分辨、全分析、多扩展、强智能、广应用,全新Sigma系列是助力于材料研究、生命科学和工业检测等领域的“多面手”。[ 产品特点 ]&bull 独特的Gemini镜筒设计,低电压高分辨,无漏磁&bull 广泛全面的应用场景&bull 丰富灵活的探测手段&bull 智能高效的工作流程&bull 先进可靠的分析系统&bull 强大完善的扩展平台[ 应用领域 ]&bull 材料科学,如纳米材料高分辨成像,高分子聚合物等不导电样品成像,电池材料成分衬度成像,二维材料分析&bull 生命科学,如生物样品超微结构成像,冷冻样品高分辨成像&bull 地质矿物学,如地质样品高分辨成像、成分分析以及原位拉曼联用分析&bull 工业应用,如组件失效分析,工艺诊断&bull 电子半导体行业,如质量控制与分析,6英寸Wafer快速换样,电子束曝光技术(EBL)&bull 钢铁行业,如夹杂物分析,金属材料自动原位成像分析&bull 刑侦、法医学&bull 考古学、文物保护与修复NanoVP lite模式下断裂的聚苯乙烯表面成像氧化铝颗粒高分辨二次电子成像ETSE探测器氧化锌枝晶成像InLens SE探测器氧化锆&氧化铁复合材料成像Sense BSD探测器刺毛苔藓虫超微结构成像aBSD探测器超导合金成像
    留言咨询
  • 一,超连续白光光源用六边形微结构光纤一,超连续白光光源用六边形微结构光纤超连续白光光源基于非线性效应产生的脉冲光谱展宽。与其他材料或普通光纤相比,我们设计的超连续白光光源用微结构光纤具有优秀的色散调整能力,可获得高效的光频率转换。光源系统可广泛应用于光谱分析、光纤测试、传感等领域。光纤类根据数量价格,合同金额原则上不低于3500元 超连续白光光源用六边形微结构光纤,超连续白光光源用六边形微结构光纤通用参数产品特点耐高温耐久性、高抗弯曲强度和密封性实现了嵌入光纤、光纤束及尾纤进入高真空环境焊接的可能性光谱输出平坦输出波段可定制化设计高稳定性、使用寿命长产品应用材料表征、光谱分析共聚焦成像、光学相干断层成像生物应用技术研究、流体细胞仪高温环境苛刻的化学环境核辐射环境高功率激光传输医疗应用光纤束焊接光学性能产品编码:MOF_SC_SCP5/150/270纤芯直径:5.0±0.3 μm微结构周期:3.3±0.1 μm零色散点:1.06 μm 可定制包层直径:150±3 μm涂覆层直径:270±3 μm材质:纯石英涂层材料:聚酰亚胺/丙烯酸树脂涂层材料:聚酰亚胺/丙烯酸树脂筛选强度:100 kpsi微结构空气孔直径1.6 ± 0.1µ m几何参数交货长度1 - 500 m包层直径150 ± 1 µ m涂敷层直径270 ± 5 µ m芯包层同心度≤3 µ m包层不圆度≤0.5筛选强度100 kpsi光源系统参数:超连续谱光源重复频率:15~30 kHz光谱展宽:450~2400 nm总输出功率:>200 mW脉冲宽度:<2 nm光束质量 TEM00:M21.1产品结构:超连续光谱发生用微结构光纤及其色散曲线二,超连续白光光源用六边形微结构光纤二,超连续白光光源用六边形微结构光纤多芯光纤作为一种先进的特种光纤,可以拥有多达 37 个纤芯。不同于利用包层掺氟的技术制备的传统实芯多芯光纤,此种多芯微结构光纤在包层中引入超高占空比的微结构,此种技术可提高光纤纤芯和包层的折射率差至少两个量级。此外此种特种光纤具有全硅材料的特性,光纤内无需引入掺杂离子,大大提高光纤使用寿命。此种特种光纤用于大容量光通讯系统中,最高可提高单根光纤信息容纳能力 37 倍,并使各通道之间拥有极小的串扰。光纤类根据数量价格,合同金额原则上不低于3500元 多芯微结构光纤 7/19/37/51芯 / 微结构保偏光纤 / 大模场微结构光纤,多芯微结构光纤 7/19/37/51芯 / 微结构保偏光纤 / 大模场微结构光纤通用参数 技术参数光学性能:光纤材料:高纯SiO2通道间串扰: -80 dB/100 km衰减系数@1550nm 1 dB/km零色散波长:1050 nm色散值:@1550nm20 ps/nm.km单模截至波长:1060 nm模场直径 @1550nm 1.7 ± 0.3 μm数值孔径:0.48 ± 0.05几何参数:交货长度:1 - 5000 m纤芯数量7、19、37、51芯纤芯直径:2.1 ± 0.3 μm纤芯间距 12.5 μm 裸纤直径:150 ± 3 μm 涂敷层直径:250 ± 3 μm(丙烯酸酯)180 ± 3 μm(聚酰亚胺)芯包层同心度:≤ 3 µ m包层不圆度:≤ 0.5涂敷性能:涂层材料:聚酰亚胺/聚丙烯酸树脂/硅胶等机械性能:筛选强度: 100 kpsi两种七芯微结构光纤截面微结构保偏光纤产品简介:保偏光纤被广泛应用于航天航空、工业制造、无人驾驶、通信等多个领域。基于模场几何形态非中心对称性提高纤芯的双折射,实现保偏,这种实现方式的光纤结构复杂,需要较高的制备技术。在以光学相干检测为基础的干涉型光纤传感器中,使用保偏光纤能够保证线偏振方向不变,提高相干信噪比,以实现对物理量的高精度测量。保偏光纤作为传感单元,光纤陀螺及光纤水听器等可被用于军事,而保偏光纤又是其核心部件,因而保偏光纤曾被西方发达国家列入对我国禁运的清单。大模场微结构光纤产品简介:大模场面积的光纤已经广泛应用于激光传能、光纤传感、生物成像等领域。该光纤不仅仅可以在医疗上应用与激光美容,激光碎石,更能适应在高温、强腐蚀、高辐照的恶劣环境下用于激光传能,传感。通过包层引入空气孔,提高了纤芯的数值孔径,急大的避免了光纤的弯曲损耗。此外由于采用纯石英材料,避免通过掺杂改变玻璃折射率。这一方式使光纤具备了较高激光损伤阈值,良好的透过率,并避免了光暗化效应。同等模场面积下,性能远超传统的阶跃型光纤。聚酰亚胺涂覆大模场微结构光纤已通过生物相容性认证,为世界首创。三,微结构多芯传感光纤三,微结构多芯传感光纤相较于普通阶跃型光纤,特殊设计的微结构光纤可具有超低损耗、更好的光学模式、耐受氢腐蚀以及采用单一材料(纯石英,无掺杂)等优异特性,可急大提高分布式光纤传感系统的感知灵敏度、系统稳定性、测量空间精度以及光纤使用寿命。光纤结构和参数可定制化生产。光纤类根据数量价格,合同金额原则上不低于3500元 微结构多芯传感光纤,微结构多芯传感光纤产品特点● 耐高温● 耐久性、高抗弯曲强度和密封性● 实现了嵌入光纤、光纤束及尾纤进入高真空环境焊接的可能性产品应用● 高温环境● 苛刻的化学环境● 核辐射环境● 高功率激光传输● 医疗应用● 光纤束焊接技术参数光学性能参数属性纤芯材料高纯二氧化硅模场直径@1310 nm 2.8 ± 0.5 µ m@1550 nm 3 ± 0.5 µ m衰减系数@1310 nm 1 - 2 dB/km@1550 nm 1 - 2 dB/km几何参数交货长度1 - 30 km包层直径150 ± 1 µ m涂敷层直径180 ± 5 µ m芯包层同心度≤3 µ m包层不圆度≤0.5涂层材料聚酰亚胺长期使用温度-55 - 300 ℃短期耐受温度400 ℃筛选强度100 kpsi产品结构制作平台
    留言咨询

材料微结构分析原理相关的方案

材料微结构分析原理相关的论坛

  • 【分享】材料显微结构分析

    材料显微结构分析课件。有急需的请到资料中心下载,不急的请10天后下载,我会修改成低分。http://www.instrument.com.cn/download/shtml/043021.shtml

材料微结构分析原理相关的耗材

  • 7芯 高纯SiO2 多芯微结构光纤
    多芯微结构光纤作为一种先进的特种光纤,可以拥有多达37个纤芯。不同于利用包层掺氟的技术制备的传统实芯多芯光纤,此种多芯微结构光纤在包层中引入超高占空比的微结构,此种技术可提高光纤纤芯和包层的折射率差至少两个量级。此外此种特种光纤具有全硅材料的特性,光纤内无需引入掺杂离子,大大提高光纤使用寿命。此种特种光纤用于大容量光通讯系统中,最高可提高单根光纤信息容纳能力37倍,并使各通道之间拥有极小的串扰。通用参数 技术参数光学性能:光纤材料:高纯SiO2通道间串扰: -80 dB/100 km衰减系数@1550nm 1 dB/km零色散波长:1050 nm色散值:@1550nm20 ps/nm.km单模截至波长:1060 nm模场直径 @1550nm 1.7 ± 0.3 μm数值孔径:0.48 ± 0.05几何参数:交货长度:1 - 5000 m纤芯数量7、19、37、51芯纤芯直径:2.1 ± 0.3 μm纤芯间距 12.5 μm 裸纤直径:150 ± 3 μm 涂敷层直径:250 ± 3 μm(丙烯酸酯)180 ± 3 μm(聚酰亚胺)芯包层同心度:≤ 3 μm包层不圆度:≤ 0.5涂敷性能:涂层材料:聚酰亚胺/聚丙烯酸树脂/硅胶等机械性能:筛选强度: 100 kpsi两种七芯微结构光纤截面
  • 光子晶体光纤_微结构光纤(PCF)
    光子晶体光纤/微结构光纤(PCF)所属类别: ? 光纤/光纤器件 ? 其他特种光纤/光子晶体光纤 所属品牌: 产品简介 昊量光电提供各种定制型光子晶体光纤(PCF,微结构光纤)!光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。昊量光电提供各种光子晶体光纤。 关键词:光子晶体光纤,Photonic Crystal Fibers, PCF,微结构光纤,Micro-Structured Fibers, 结构光纤 光子晶体光纤(Photonic Crystal Fibers,PCF)又称为微结构光纤(Micro-Structured Fibers, MSF),这种光线的横截面上有较复杂的折射率分布,通常含有不同排列形式的小孔,这些小孔的尺度与光波波长大致在同一量级且贯穿器件的整个长度,光波可以被限制在低折射率的光纤芯区传播。光子晶体光纤(微结构光纤)按照其导光机理可以分为两大类:折射率导光型(IG-PCF)和带隙引导型(PCF)。折射率引导型光子晶体光纤(微结构光纤,PCF)具有无截止单模特性 、大模场尺寸 /小模场尺寸和 色散可调特性等特性。广泛应用于色散控制 (色散平坦,零色散位移可以到800nm),非线性光学 (高非线性,超连续谱产生),多芯光纤 ,有源光纤器件(双包层PCF有效束缚泵浦光)和光纤传感等领域。空隙带隙型光子晶体光纤(微结构光纤,PCF) 具有易耦合,无菲涅尔反射,低弯曲损耗、低非线性和特殊波导色散等特点被广泛应用于高功率导光,光纤传感和气体光纤等方面。光子晶体光纤的发展为光纤传感 开拓了广阔的空间,尤其是在生物传感和气体传感方面为光纤传感技术带来新的发展。昊量光电提供各种光子晶体光纤及光子晶体光纤的定制化服务,昊量可以提供的产品及服务:材料:石英或硫化物提供各种定制服务可提供各种套管,接头及相应光线器件各种解决方案设计及模拟主要产品:1,基于石英的各种有源及无源光纤:保偏型光子晶体光纤,定制色散型光子晶体光纤,光子晶体光纤预制棒空气包层、双包层光子晶体光纤,LMA空心光纤,光子带隙光纤掺杂光子晶体光纤多心光子晶体光纤2,基于硫化物的光子晶体光纤超高非线性光纤(50,000/W*km)中红外光子晶体光纤定制化服务3,各种解决方案基础研究传感激光器光谱学主要应用:高功率低损耗近红外激光传输脉冲整形脉冲压缩非线性光学光纤传感超连续激光产生可调谐光纤耦合器多波长激光器光纤耦合 指标参数: 常规产品: 相关产品 覆盖紫外波段超连续激光器(320~1750nm) FROG 超短脉冲测量仪 啁啾布拉格光栅
  • 大模场面积无截止波长单模光纤, 耐高温单模微结构光纤 35um
    这种单模微结构光纤通过结构上的优化,实现了导光窗口上的无截止单模传输特性。光纤的无截止单模特性使光纤在大模场面积实现单模传输,保证基模模场的光束质量,且与光纤纤芯尺寸无关。该光纤可应用于大模场面积的高功率激光传能,并极大降低了非线性效应的发生。技术参数特点无截止单模:导光窗口内所有波长单模传输,低数值孔径,与激光器耦合时,无需模式匹配,保持基模传输;提供定制设计生产:可以定制模场面积(MFD)大小、光纤零色散点可设计;结合保偏光纤:通过结构设计调整,提高光纤双折射,形成无截止波长单模传输保偏光纤;激光传能:纯石英材质无杂质,高激光损伤阈值、低光斑暗化;应用:模式滤波; 短脉冲传输;传能光纤、光缆;单模激光大功率传输; 多波长传输,波分复用;高精度激光熔接(单模高斯光斑)性能参数:MOF_SC_ESM20/153/173PIMOF_SC_ESM35/255/275PI纤芯直径:20 μm35 μm包层直径:153±3 μm255±3 μm 衰减系数:@1064 nm 20 dB/km@1064 nm 20 dB/km@1550 nm 15 dB/km@1550 nm 10 dB/km模场面积(*):225±30 μm2730±50 μm2芯包层材料:高纯熔融石英玻璃涂敷层直径:173±5 μm275±5 μm包层不圆度:≤0.1≤0.1涂层材料:聚酰亚胺/丙烯酸树脂长期使用温度:-55~300 ℃(聚酰亚胺)短期耐受温度:400 ℃(聚酰亚胺)筛选强度:100 kpsi*可定制更大模场面积光纤,定制模场面积范围:15~1200 μm2

材料微结构分析原理相关的资料

材料微结构分析原理相关的资讯

  • 球差校正技术助力材料微结构与性能关系解析
    2021年10月30日,科学服务领域的世界领导者赛默飞世尔科技与中国分析测试协会高校分析测试分会合作,首次冠名设立的“赛默飞高校分析测试优秀青年人才奖”在线揭晓获奖名单。作为微纳结构分析室负责人和重庆大学分析测试中心的助理研究员,张斌博士凭借优秀的技术成果荣获赛默飞高校分析测试优秀青年人才奖二等奖。对此,仪器信息网走进重庆大学分析测试中心并特别视频采访了张斌。电子显微镜发明于上世纪30年代,距今已90年,电子显微镜有两大特点:第一是超强的空间分辨能力,可以达到纳米甚至原子尺度;第二个是强大的分析能力,可以分析一些化学成分、电子结构等。张斌从研究生起便开始了电子显微学的研究,主要从事相变存储材料、热电材料等功能材料的微结构研究。在此基础上,为了解决一些问题,投身开发一些新的显微学分析方法。这一路走来,丰富的研究经历奠定了他今后在电子显微学的研究方向:电子显微学方法的开发和应用,以及材料微结构与性能关系的解析。当谈及这次的获奖技术成果“基于透射电子显微分析的材料微结构定性/定量研究”时,张斌谦虚地表示,“获奖核心技术不能说是太好的一些成果,就是有一点点小的进步而已。”其中,图像分析、数据处理分析的技术最早被用于相变存储材料微结构研究中空位分布的解析,其主要利用图像上点阵的位置和强度来描绘空位可能的占据以及定量化的动态演变过程。去年张斌团队将这套方法加以改进,首次应用在原子尺度的构型解析实践上,并取得突破。另一个核心技术成果经典案例就是制样,在做显微学分析时,观测100纳米及以上的Cu5FeS4颗粒存在尺度太大的问题,通过超薄切片和引入酸刻蚀腐蚀等方法,张斌团队将其内部结构解析得更加清楚。正是通过这种制样方法,张斌团队发现了二十面体、五次孪晶结构和独到的核壳结构等一系列丰富的结构信息,对热电材料的性能提升带来很大帮助。科研技术的发展离不开仪器技术的发展。张斌表示,这些成果的取得离不开球差校正技术的突破和发展,因为大部分实验图像来源于赛默飞的球差校正电镜,所有的图像分析都是基于球差校正获得的HAADF图像,正是有了这些清晰的照片和先进的技术,才能获得更多的实验结果。采访最后,张斌向我们展示了他的“收藏品”——上万片承载研究观察样品的小铜环。这里的每一片铜环都代表着一个人一次研究的样品,张斌从电镜装好的那一天就开始把这些铜环收集到玻璃皿中,近4年的积累,如今铜环数量已达上万片。关于重庆大学分析测试中心重庆大学分析测试中心,于2014年正式挂牌成立,是面向学校和社会开放的校级仪器共享机构和学科交叉融合平台。2018年3月通过国家级实验资质认定,具备为社会提供公正、科学、准确数据的条件和资格,成为可提供具有法律效力检验检测报告的第三方检测基地。中心遵从源于需求、重在统筹、共建共享、优化资源、科学管理、高效运行的建设原则,致力于为校内科研工作的顺利开展提供高水平测试服务,同时也为重庆市高校、企业及科研院所自主创新能力的提升提供服务与支持。
  • 力学所在镁基室温热电材料Mg3Bi2-xSbx半无序微结构预测方面取得进展
    热电材料是能够实现热能和电能直接相互转化的新型能源材料,在低品位废热发电、固态制冷、深空探测、局域空间精准温控等领域有重要应用。较低的转换效率是制约热电材料应用的瓶颈,Bi2Te3基化合物是目前唯一规模化应用的近室温热电材料,热电发电转换效率仅有~7% 。Mg基热电材料Mg3Bi2-xSbx具有低成本和在室温工作区的高热电性能,有望取代Bi2Te3基化合物成为下一代室温商用化材料。确定Mg基热电材料的微结构是认识和提升热电性能的前提。然而,Mg3Bi2-xSbx(02)的微结构确认面临着Sb/Bi位点占据无序性、体系尺寸变化和体系计量比变化等多重维度的挑战。 中国科学院力学研究所非线性力学国家重点实验室微结构计算力学课题组和山西煤炭化学研究所/中科合成油联合团队,进一步改进了先前工作发展的化学无序材料的微结构预测方法——“辣搜方法”,增加了模型预训练和随机采样功能。模型预训练基于先前已有小样本小体系数据预训练机器学习势模型,提高了数据利用率和模型精度;在原来的枚举采样基础上增加了随机采样(随机采样可使得“辣搜”方法的预测能力由有限体系扩展到准无限体系)。研究利用改进的“辣搜”方法,探索了Mg3Bi2-xSbx(02)的原子晶胞结构,考察了在晶胞内原子数目N=10、40和90三种不同尺寸的情况。计算结果显示,三种不同尺寸下的结构均具有负的形成能,表明它们在理论上有可能稳定存在。尽管形成能相似,但键序参数分析表明这些相的晶体结构非常不同。体系的尺寸在确定预测晶体结构的有序度方面具有重要作用。随着体系尺寸的增加,预测结构的无序度也会增加。在较小的系统中,例如10和40原子系统,Sb倾向于局域在有限数量的位点上,由于占据的位点数量有限,致使结构更加规则。然而,在较大的系统(如90原子系统)中,径向分布函数表明Sb在预测结构中的分布更加多样化,且分布在整个结构空间的概率更高。该工作在理论上为后续研究Mg3Bi2-xSbx(02)热电性质奠定了重要的结构基础,并为预测准无限体系的其他化学无序材料的微结构铺平了道路。 相关研究成果以Active-learning search for unitcell structures: A case study on Mg3Bi2-xSbx为题,发表在《计算材料学》(Computational Materials Science)上。研究工作得到国家重点研发计划和力学所力英计划等的支持。 图1. (a)用于有限尺寸化学无序材料结构预测的流程图,(b)用于准无限尺寸化学无序材料结构预测的流程图图2. (a) “辣搜”方法在Mg3Bi2-xSbx(x=0.5,N=90)体系搜索过程中总能量随搜索代数的演化;(b) 三种不同尺寸(N = 10、40和90)的搜索过程中第一性原理计算所需的时间;(c) 三种不同尺寸(N = 10、40和90)下Mg3Bi2-xSbx(02)的形成能曲线;(d)三种不同尺寸(N = 10、40 和 90)下Mg3Bi2-xSbx(02)的无序参数曲线。图3. (a)三种不同尺寸(N=10、40和90)在 x=0.5、1.0和1.5下预测的晶体结构;(b)在x=0.5时三种不同尺寸(N=10、40和90)预测的晶体结构q4和q6分布;(c)在x=1.0时三种不同尺寸(N=10、40和90)预测的晶体结构q4和q6分布;(d)x=1.5时三种不同尺寸(N=10、40和90)预测的晶体结构q4和q6分布。图4. Mg3Bi2-xSbx(x=0.5)中Mg-Sb和Sb-Sb的径向分布函数(RDF)
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制