当前位置: 仪器信息网 > 行业主题 > >

模拟运输测试仪标准

仪器信息网模拟运输测试仪标准专题为您提供2024年最新模拟运输测试仪标准价格报价、厂家品牌的相关信息, 包括模拟运输测试仪标准参数、型号等,不管是国产,还是进口品牌的模拟运输测试仪标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合模拟运输测试仪标准相关的耗材配件、试剂标物,还有模拟运输测试仪标准相关的最新资讯、资料,以及模拟运输测试仪标准相关的解决方案。

模拟运输测试仪标准相关的论坛

  • 如何检验设备是否通过模拟运输振动试验

    [color=#333333][url=http://www.dongguanruili.com/news/418.html]模拟汽车运输振动试验台[/url][/color]专用于模拟汽车在行驶过程中对车内货物造成的冲击、撞击等环境因素,常用于包装、物流、仓储等行业的货物测试,以帮助企业找到更好产品运输保护方法。[align=center][img=模拟汽车振动试验台,500,309]http://www.dongguanruili.com/d/file/191993c0d6ae966a7591f11814c21e35.jpg[/img][/align]  模拟汽车运输振动试验台是如何来检验产品是否通过运输振动测试呢?我们是通过对模拟汽车振动试验台设定了一定的振幅和频率以后,对具备包装的产品进行检测,让其在振动试验台上受到类似于汽车运输中的颠簸情况,经过一定的试验时间后,我们再来观察产品的包装是否出现破损、变形,然后查看包装内产品是否受损,是否能够正常使用。经过这些判断以后,来确定该包装和产品是否通过模拟运输振动试验。  模拟汽车运输振动试验台主要的振动方式是机械式振动,采用垂直和水平方向的双重振动方式,来综合的模拟汽车运输过程中因路面不佳造成的各种颠簸和冲击情况。一般试验的时间较长,这也是由于在物流运输中,汽车运输的时间也比较长,所以在模拟时,要尽可能贴近于实际情况。如果经过振动试验后,包装内产品能够正常使用,且无任何损害,就能够通过模拟运输试验。

  • 如何检验设备是否通过模拟运输振动试验

    [url=http://www.dongguanruili.com/product/6.html][color=#333333]模拟汽车运输振动试验台[/color][/url]专用于模拟汽车在行驶过程中对车内货物造成的冲击、撞击等环境因素,常用于包装、物流、仓储等行业的货物测试,以帮助企业找到更好产品运输保护方法。[align=center][img=模拟汽车振动试验台,500,309]http://www.dongguanruili.com/d/file/191993c0d6ae966a7591f11814c21e35.jpg[/img][/align]  模拟汽车运输振动试验台是如何来检验产品是否通过运输振动测试呢?我们是通过对模拟汽车振动试验台设定了一定的振幅和频率以后,对具备包装的产品进行检测,让其在振动试验台上受到类似于汽车运输中的颠簸情况,经过一定的试验时间后,我们再来观察产品的包装是否出现破损、变形,然后查看包装内产品是否受损,是否能够正常使用。经过这些判断以后,来确定该包装和产品是否通过模拟运输振动试验。  模拟汽车运输振动试验台主要的振动方式是机械式振动,采用垂直和水平方向的双重振动方式,来综合的模拟汽车运输过程中因路面不佳造成的各种颠簸和冲击情况。一般试验的时间较长,这也是由于在物流运输中,汽车运输的时间也比较长,所以在模拟时,要尽可能贴近于实际情况。如果经过振动试验后,包装内产品能够正常使用,且无任何损害,就能够通过模拟运输试验。

  • ABREX具有真实模拟的人体指尖磨损和手磨损测试仪

    ABREX具有真实模拟的人体指尖磨损和手磨损测试仪[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304050442518701_3488_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304050442519866_9742_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304050442518701_3488_1602049_3.png[/img]

  • 太阳模拟器光源等级对太阳能电池测试的影响

    光伏行业发展初期,晶体硅电池和组件达到批量化生产时,BAA级的模拟器被行业普遍使用,但随着行业的发展和科学技术的进步,尤其是现在各种不同技术类型和不同规格的光伏电池/组件的产品的涌现,其B级光谱的限制性和对多标准板的要求以及测试误差的过大,对AAA级的模拟器成为行业的必然需求,即  A(光谱等级)A(辐照不均匀度等级)A(辐照不稳定性等级,通常指LTI)。  1.光谱对测试结果的影响  不同基材的电池光谱响应差别很大。实际上,即使基材相同的电池在生产过程中由于晶体生长或其它条件和工艺等的差异,也会导致光谱响应的差异,由于无法保证校准设备时使用的标准电池和其它被测电池的绝对一致性,因此如果要得到更为准确的结果,就需要高等级光谱的太阳模拟器。  2.光强均匀性对测试结果的影响  晶体硅太阳电池组件中单体电池之间焊接不良及同串单体电池IV特性不匹配等因素会导致输出功率降低。在工业上,为了防止由以上原因造成的热斑效应和功率消耗,在组件制造时一般都会在每十几片串联的电池片两端并上旁路二极管。这样做虽可降低组件的热斑效应,但同时也可能会使组件的IV特性曲线出现畸变。造成热斑效应的原因有很多,其中两个主要的原因是:一是电池组件本身工艺或品质造成的单体电池IV特性不匹配,二是遮盖等外界原因造成的组件受光不均匀。  因此,一个光强均匀性良好的太阳模拟器,可以通过测试从一定程度上反映出太阳电池组件的单体电池IV特性不匹配的问题。  模拟器的光均匀性还会影响测试结果的FF,如果模拟器的光均匀度不好,一般情况下,测试IV曲线的FF就会比实际值偏小。  3.辐照不稳定度对测试结果的影响  辐照稳定度对测试结果的影响是很容易理解的,模拟器辐照不稳定,就必然会造成测试结果不稳定,辐照稳定度保证了所测试的I-V特性是在同一条件下量测的,为数据的可参考性提供了前提。

  • 【分享】通信综合测试仪校准规范宣贯将在成都举行

    全国无线电计量技术委员会将于2011年6月下旬在四川成都举行通信综合测试仪校准规范宣贯会。此次宣贯会由全国无线电计量技术委员会主办,上海市计量测试技术研究院和工信部通信计量中心协办。  此次宣贯会由上海市计量测试技术研究院和工信部通信计量中心负责校准规范的起草人进行宣讲,主要宣贯以下国家计量校准规范:《无线局域网测试仪校准规范》、《蓝牙测试仪校准规范》、《CDMA2000综合测试仪校准规范》、《WCDMA综合测试仪校准规范》、《TD-SCDMA数字移动通信综合测试仪校准规范》、《无线信道模拟器校准规范》。

  • 【原创大赛】模拟运输振动台的使用

    【原创大赛】模拟运输振动台的使用

    为了保证产品在运输过程中抗振能力(如运输过程中路况不同发生的样品间摩擦,样品与车箱摩擦等),成品包装完成后,需要在公司内部实验室做振动测试,提前发现样品包装是否有破损,产品能质量是否有问题,以便更好的改进,确保产品品质。http://ng1.17img.cn/bbsfiles/images/2013/08/201308011418_455285_1678646_3.png首先将待测样品放在样品台上,安装好固定夹具,将螺丝锁扣旋紧,放样品前要注意样品台最大所承重量,不可超载,以防损坏设备。样品最好固定在样品台中心。其次:固定好待测样品,打开设备电源开关,设置好所需试验时间:单位有H小时,M分钟,S秒选择;可通过表盘“+”“-”按钮进行调节,依次为数字1~9,可拨打到所需档位。http://ng1.17img.cn/bbsfiles/images/2013/08/201308011419_455286_1678646_3.pnghttp://ng1.17img.cn/bbsfiles/images/2013/08/201308011419_455287_1678646_3.png最后就是根据对应标准,调节相应频率,由于该设备是通过转速来对应相关频率的,所以需要通过调速旋钮来设置转速,选转调速旋钮时,转速会同步在显示屏中显示。http://ng1.17img.cn/bbsfiles/images/2013/08/201308011421_455288_1678646_3.png试验时间到后,设备不会立刻自动停止,而是转速会降至很慢,此时需先关闭电源后,再取走试验样品,切记不可在设备工作中取样品,以免误伤到自己。注意事项:1.设备需安装在平整地面,不能出现前后左右晃动现象。 2.测试时间的计算,可通过试验总次数除以测试速度,速度快则时间短,速度慢则时间长,当然前提要根据标准要求的频率来调整对应转速。 3.试验前样品台和控制主机要保持适当的距离,过程中人员不可接近样品台,以免出现伤害。 4.开机如果发现异常,应关闭电源,查询原因,重新启动设备,正常才能进行试验,否则需联系厂商维修,切记设备不可“带病工作”。

  • 阳光模拟测试技术 标准

    阳光模拟测试系统执行的标准包括:GR-487-COREElectronic Equipment CabinetsAECTP 300 Method 305Solar RadiationAK LV 01Airbag TestASTM E927Standard Specification for Solar Simulation for Terrestrial Photovoltaic TestingBMW PR 306.4Solar Simulation for equipment partsDBL 4571Interior Trim PartsDBL 5471Covering and Form Padding PartsDBL 7384"Soft Feeling" Paint on Plastic Parts - Interior ComponentsDessault Aviation Solar Simulation TestDIN EN 60068-2-5Electrical engineering - Basic environmental testing procedures - Part 2-5: Tests - Test Sa: Simulated solar radiation at ground levelDIN EN 61646 VDE 0126-32Thin-film terrestrial photovoltaic (PV) modules - Design qualification and type approvalDIN EN 61853-1Photovoltaic (PV) module performance testing and energy rating - Part 1: Irradiance and temperature performance measurements and power ratingDIN IEC 68-2-9Electrical engineering - Basic environmental testing procedures - Part 2-9: Tests - Guidance for solar radiation testingDIN SPEC 18035-7Sports grounds - Part 7: Synthetic turf areasDVM 0006-EXExterior Lighting-SunloadDVM 0074-MAAgeing of interior components by sunload simulationEN 12975-2Thermal Collector TestingEPA 40 CRF Part 86Control Air Pollution from New Motor Vehicles and New Motor Vehicles EnginesFiat 9.03141Instrument PanelsGM 9310PVariabel Surface temperature heat exposure testGOST 20.57.406Testing of Electrical ComponentsIEC 51345UV Test for photovoltaic ModulesIEC 61215Crystalline silicon terrestrial photovoltaic (PV) modules - Design qualification and type approvalIEC 904-9Photovoltaic devices - Part 9: Solar simulation performance requirementsISO 12097-2Road vehicles - Airbag components - Part 2: Testing of airbag modulesJSS 5555-No.25Enviromental Test for Electronic and Electrical equipmentsLH 259001Electronical EquipmentsMIL-STD 810[img]https://ng1.17img.cn/bbsfiles/images/2019/12/201912112139596551_1344_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/12/201912112140000031_9213_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/12/201912112140002451_1906_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/12/201912112141016902_5057_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/12/201912112141017412_9425_1602049_3.png[/img]

  • 【原创】为什么泄漏电流测试仪器的输入电阻都没有达到新国标的要求?

    我公司须购买安标测试仪器,其中泄漏电流测试仪,要求符合《GB-4793.1-2007 测量、控制和实验室用电器设备的安全要求 第一部分:通用要求》。《GB12113-2003-T 接触电流和保护导体电流的测量方法》(是测量接触电流、泄漏电流仪器的基础性标准) 上述两个标准对测试仪器的输入电阻有了新的规定,要求在100Hz和1MHz以下能够模拟人体电阻,使测试结果符合人体接触电流的实际情况。但是,经过咨询,目前所了解的仪器生产厂都不能达到标准要求。新的标准《JJG 843-2007 泄露电流测试仪(检测规程)》却不符合上述标准?这是为什么?[em0715]

  • 求问新标准31604.1-2015迁移实验模拟物取样多少

    标准里面规定尽量取S/V最大可能。S:与模拟物接触面积 V:模拟物体积 如果S/V无法估计时,取6平方分米的接触材料和1kg模拟物我要做一个炒锅的迁移实验,难道我要把炒锅切割成6平方分米的碎片 再浸泡在1kg模拟物中吗? 求大神解答!!

  • 继电保护测试仪的用途有哪些?

    继电保护测试仪的用途有哪些?

    众所周知,继电保护系统是电力系统中的组成部分。当电路出现故障时,它可以快速准确地切除故障部分,让电力系统的安全稳定运行。然后,为了提前发现和查出继电保护系统的故障和问题,通常需要使用继电保护测试仪。大多数人都知道这个设备,但很多人可能对它了解不多。今天我们就来盘点一下4点[url=http://www.whfulude.com/jbq/]继电保护测试仪[/url]的用途和6点功能!让我们来看看。[align=center][img=继电保护测试仪,484,300]https://ng1.17img.cn/bbsfiles/images/2023/12/202312272135327993_4717_6337156_3.jpg!w484x300.jpg[/img][/align]  [b]一、继电保护测试仪的用途如下:[/b]  1、故障模拟和测试:继电保护测试仪可以模拟短路、断路等各种类型的电力故障,为继电保护系统提供测试环境。通过模拟故障,可以检查继电保护装置在故障发生时是否能够准确快速地移动,从而让电力系统安全。  2、性能评估:继电保护测试仪可以通过测量动作时间、动作值等参数来判断继电保护装置的性能,从而评估继电保护装置的性能。这有助于及时发现和更换性能差的继电保护装置,提高电力系统的正常性。  3、调试和维护:继电保护测试仪可用于新继电保护装置的安装或维护过程中的调试和维护。通过测试,可以检查设备的所有功能是否正常,参数设置是否正确,让设备正常运行。  4、培训教学:继电保护测试仪也广泛应用于电力系统的培训教学中。它使学生能够实际操作,了解和掌握继电保护装置的工作原理和操作方法,提高实际操作技能。  [b]二、继电保护测试仪的功能如下6个:[/b]  1、测量:继电保护测试仪具有测量的电压、电流、电阻等测量功能,能准确评估继电保护装置的性能。  2、数据处理能力:继电保护测试仪可以快速、准确地处理和分析测量数据,并提供各种参数的报表和图形显示。  3、自动化测试:继电保护测试仪能实现自动化测试,降低了人工操作的难度和工作量。  4、远程控制功能:通过计算机或网络连接,可对继电保护测试仪进行远程控制,实现远程测试和数据分析。  5、自我诊断和报警:继电保护测试仪具有自我诊断功能,能在设备出现故障时显示故障,方便用户快速定位和解决问题。  6、录音报告:继电保护测试仪可以记录测试过程和结果,生成详细的报告,方便用户查看和分析。  更多关于继电保护测试仪的产品及相关信息,欢迎来武汉福禄德电力查看:http://www.whfulude.com/gongsi/1662.html

  • 采用Modelica语言建模模拟分析研究相变材料比热容动态热流计测试方法

    采用Modelica语言建模模拟分析研究相变材料比热容动态热流计测试方法

    [color=#990000]摘要:本文针对测试定形相变材料热性能的ASTM C1784动态热流计法(DHFM),采用基于Modelica语言的SimulationX软件,建立测试热焓和比热容的模拟仿真模型,对测试方法开展更深入的研究。通过对不锈钢和沙子样品材料的测试模拟仿真,优化了试验参数,使得动态热流计法更容易被理解、掌握和推广应用。[/color][color=#990000]关键词:定形相变材料 热性能 动态热流计法 热焓 比热容 导热系数[/color][align=center][color=#990000][img=,690,402]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302108149726_8347_3384_3.png!w690x402.jpg[/img][/color][/align][color=#990000][/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#990000][b]1. 概述[/b][/color]  随着建筑节能以及能量存储的需要,相变材料技术得到了飞速发展,出现了各种新型的定形相变复合材料,而定形相变复合材料的热焓、比热和导热系数等是相变材料设计、研制和生产过程中的重要物理性能参数。为了保证新型定形相变材料的热物理性能测试的准确性,ASTM 在2013年制定了一个新的测试标准:ASTM C1784-13“采用热流计装置测量相变材料及其产品储热特性的标准测试方法”,并在2014年颁布的修订版。  ASTM C1784方法是一种基于传统稳态热流计法隔热性能测试技术(HFM)的动态测试方法,称之为动态热流计法(DHFM),是为了解决板状大尺寸相变材料热性能测试的一种实验室级别测试方法,样品尺寸一般为边长100~300 mm之间的正方形板材,这种尺寸易于从定形相变复合材料实际板材中取样测试,与DSC测试中毫克量级样品形式相比更具有材料的代表性。  本文针对测试定形相变材料热性能的ASTM C1784动态热流计法(DHFM),采用基于Modelica语言的SimulationX软件,建立测试热焓和比热容的模拟仿真模型,对测试方法开展更深入的研究。通过对不锈钢和沙子样品材料的测试模拟仿真,优化了试验参数,使得动态热流计法更容易被理解、掌握和推广应用。  [b][color=#990000]2. 动态热流计法基本原理[/color][/b]  动态热流计法(DHFM)是基于传统稳态热流计法(HFM)测量仪器上的一种动态测试方法,在稳态时可测量样品的导热系数,在动态时可测量样品的热焓和比热容。如图2-1所示,动态热流计法测试仪器结构与稳态热流计法测试仪器基本相同,不同之处是在样品的上下两面都安装有热流传感器,而且上下加热板的温度变化使用相同且同步。[align=center][color=#990000][img=,690,210]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302111544136_4772_3384_3.png!w690x210.jpg[/img][/color][/align][align=center][color=#990000]图2-1 动态热流计法测量原理[/color][/align]  按照ASTM C1784规定,两个热板为台阶式升降温方式,如图2-1所示,当样品和上下热板在初始温度T1时达到稳态,将上下两个热板台阶式升温到另一个温度T2并达到恒定。这个温度变化过程中的测量不再时稳态测量而是非稳态测量,但记录了样品两侧的温度和热流密度随时间的变化,经过一定时间后两个均热板再次冷却到初始温度T1,这是一个典型的台阶式升降温测试过程。在此温度变化ΔT范围内,样品吸收的总热焓Δh可以通过对热流密度进行时间积分计算得到,而热容Cp则等于Δh/ΔT。[b][color=#990000]3. 测试仿真模型和参数[/color][/b]  为了建立仿真模型进行瞬态分析计算,使用了SimulationX软件。SimulationX是基于Modelica语言模型的一维仿真软件之一,而Modelica是基于模型设计的基础设计研究的语言模型之一,采用模块式结构可以非常快速的设计仿真模型,仿真模型的物理意义直观和明确,能完美结合传统的热阻网络分析方法,非常适合瞬态传热的快速仿真计算,较传统的有限元瞬态分析方法的速度大为提高,可以在几秒内完成整个瞬态传热过程的模拟分析计算。  在采用SimulationX建模中,样品尺寸设置为300 mm×300 mm×20 mm,初始温度为20℃,对样品的两个表面按照相同的温度波形程序同时进行加热到30℃。  建模分析中采用了两种典型材料,其中不锈钢304的热物性参数分别是:导热系数为14.9 W/mK,比热容为0.477 J/gK,密度为7900 kg/m3。沙子的热物性参数分别是:导热系数为0.60 W/mK,比热容为0.80 J/gK,密度为1515 kg/m3。[b][color=#990000]4. 无热损情况下的模仿仿真[/color][/b]  首先在无热损的理想条件下对准稳态法进行仿真模拟。在无侧向热损条件下,分别有两个热流计检测进出样品的热流量大小,同时假设样品是中心截面对称,并不考虑样品侧面的边缘热损。由此采用SimulationX软件设计的仿真模型如图4-1所示,分别模拟仿真不锈钢和沙子两种典型不同导热系数材料的比热容动态热流计法测试过程,计算得到比热容结果。最终将模拟仿真计算结果与设定的参数值进行比较,由此考核动态热流计法在理想情况下的测量准确性和合理的试验方法。[align=center][color=#990000][img=,690,225]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302112235746_5820_3384_3.png!w690x225.jpg[/img][/color][/align][align=center][color=#990000]图4-1 使用SimulationX软件建立的无侧向热损仿真模型[/color][/align][color=#990000]4.1. 不锈钢比热容测量的模拟计算[/color]  首先对不锈钢304材料进行模拟仿真计算,按照ASTM标准方法规定,加热采用一个方波形式。在方波加热过程中,方波加热时温度变化,以及仿真模拟计算得到的不锈钢样品中心温度和进出样品的热流变化如图4-2所示。通过对上述热流随时间变化曲线按照时间进行积分,最终得到此波形加热过程中的单位质量不锈钢样品的热焓值变化曲线,如图4-3所示。[align=center][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302112410398_6514_3384_3.png!w690x395.jpg[/img][/align][align=center][color=#990000]图4-2 矩形加热波形时不锈钢样品温度和热流变化曲线[/color][/align][align=center][color=#990000][img=,690,375]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302112525839_1676_3384_3.png!w690x375.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图4-3 矩形加热波形时单位质量不锈钢样品热焓值变化曲线[/color][/align]  根据图4-3所示的模仿仿真结果,可以计算出20~30℃温度范围内不锈钢平均比热容为0.450 J/gK,与设定值0.477 J/gK的相对误差为5.7%。  通过图4-2所示的热流量随时间变化曲线可以看出,对热流量变化曲线进行积分相当于求此曲线相对于时间坐标轴所包含的面积,而对图4-2中如此突变的尖峰信号进行积分,由于时间间隔选取不可能无限小,这势必会带来积分误差,由此可见,对于方波加热形式,温度的突变是造成仿真计算误差的直接原因。在试验测试过程中,由于数据采集速度不可能很快,时间间隔也不可能非常小,这同样会带来相应测量误差。[color=#990000]4.2. 沙子比热容测量的模拟计算[/color]  同样,在方波加热过程中,计算得到的沙子样品中心温度和进出样品的热流变化如图4-4所示。通过对上述热流随时间变化曲线按时间进行积分,最终得到此波形加热过程中的单位质量沙子样品的热焓值变化曲线,如图4-5所示。[align=center][img=,690,393]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113091809_7935_3384_3.png!w690x393.jpg[/img][/align][align=center][color=#990000]图4-4 矩形加热波形时沙子样品温度和热流变化曲线[/color][/align][align=center][color=#990000][img=,690,373]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113298077_3554_3384_3.png!w690x373.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图4-5 矩形加热波形时单位质量沙子样品热焓值变化曲线[/color][/align]  根据图4-5所示的模仿仿真结果,可以计算出20~30℃温度范围内沙子平均比热容为0.750 J/gK,与设定值0.80 J/gK的相对误差为6.3%。[color=#990000]4.3. 改变加热波形的模拟计算结果[/color]  鉴于上述方波加热波形仿真计算结果有较大误差,对于304不锈钢材料样品,将加热波形调整为梯形,如图4-6中的红线所示,用时30分钟温度从20℃线性升温到30℃后恒温40分钟,然后按照相同的变温速率用时30分钟再降到20℃。[align=center][img=,690,392]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113448695_2143_3384_3.png!w690x392.jpg[/img][/align][align=center][color=#990000]图4-6 改变加热波形后的不锈钢样品温度和热流变化曲线[/color][/align]  在这种加热波形下,计算得到的样品中心温度和进出样品的热流变化如图4-6所示。通过对上述热流随时间变化曲线按照时间进行积分,最终得到此波形加热过程中的单位质量不锈钢样品的热焓值变化曲线,如图4-7所示。[align=center][color=#990000][img=,690,375]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302113558613_3754_3384_3.png!w690x375.jpg[/img][/color][/align][align=center][color=#990000]图4-7 梯形加热波形时单位质量不锈钢样品热焓值变化曲线[/color][/align]  根据图4-7所示的模仿仿真结果,可以计算出20~30℃温度范围内的304不锈钢平均比热容为0.473 J/gK,与设定值相比没有误差,这说明通过改变加热波形,降低加热温度突变速率,可显著提高积分计算精度,大幅度减少最终计算结果误差。  同样,对于沙子材料样品,将加热波形调整为梯形,如图4-8中的红线所示,用时30分钟温度从20℃线性升温到30℃后恒温40分钟,然后按照相同的变温速率用时30分钟再降到20℃。[align=center][color=#990000][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114079115_6329_3384_3.png!w690x387.jpg[/img][/color][/align][align=center][color=#990000]图4-8 改变加热波形后的沙子样品温度和热流变化曲线[/color][/align]  在这种加热波形下,计算得到的样品中心温度和进出样品的热流变化如图4-8所示。通过对上述热流随时间变化曲线按照时间进行积分,最终得到此波形加热过程中的单位质量样品的热焓值变化曲线,如图4-9所示。[align=center][img=,690,377]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114186965_4185_3384_3.png!w690x377.jpg[/img][/align][align=center][color=#990000]图4-9 梯形加热波形时单位质量沙子样品热焓值变化曲线[/color][/align]  根据图4-9所示的模仿仿真结果,可以计算出20~30℃温度范围内的平均比热容为0.799 J/gK,与设定值相比没有误差,这说明通过改变加热波形,降低加热温度的突变速率,可显著提高积分计算精度,大幅度减少最终计算结果误差。[b][color=#990000]5. 有热损条件下的模仿仿真[/color][/b]  上述仿真模拟是假设样品侧向无热损,而在实际测试条件下,样品侧面尽管采用了低导热材料进行防护,但还是存在侧向热损。为此,针对热流计法导热仪结构建立带热损效应的仿真模型,如图5-1所示。[align=center][color=#990000][img=,690,163]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114302217_9430_3384_3.png!w690x163.jpg[/img][/color][/align][align=center][color=#990000]图5-1 使用SimulationX软件建立的存在侧向热损仿真模型[/color][/align]  其中假设样品侧向热防护材料为软木,软木导热系数为0.048 W/mK,比热容为2.03 J/gK,密度为86 kg/m3,软木截面积为300 mm×20 mm,厚度为50 mm,软木的外侧温度始终保持为20℃。考虑到样品的四个侧面都有软木隔热材料,所以侧面仿真模型中的软木尺寸应为截面积为300 mm×80 mm,厚度为50 mm。  为了便于观察热损的影响,对沙子样品进行了有热损情况下的模拟仿真计算,结果如图5-2所示。从图5-2中可以看出,当有侧向热损存在时,样品达到热平衡后,焓值随时间的变化并未呈水平方向的曲线形式,而是向上倾斜,而且焓值要比无热损时要大(误差将近10%左右),这证明其中有一部热量被侧向热损带走,因此在实际测试中要对测试曲线进行侧向热损修正。[align=center][color=#990000][img=,690,360]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114412688_54_3384_3.png!w690x360.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图5-2 沙子样品有热损、无热损和修正后的模拟仿真计算结果[/color][/align]  从图5-2中的修正后结果可以看出,修正后的结果与无热损计算结果完成重合,修正后的比热容为0.80 J/gK,与设定值0.8 J/gK的相对误差基本为零。  同样,对不锈钢样品进行有热损存在时的模拟仿真计算结果证明也存在相同规律,如图5-3所示,修正后的误差基本为零。[align=center][color=#990000][img=,690,382]https://ng1.17img.cn/bbsfiles/images/2019/01/201901302114517112_2150_3384_3.png!w690x382.jpg[/img][/color][/align][align=center][color=#990000]图5-3 不锈钢样品有热损、无热损和修正后的模拟仿真计算结果[/color][/align][b][color=#990000]6. 结论[/color][/b]  综上所述,采用SimulationX软件的动态仿真模拟,计算了不锈钢和沙子材料的热焓和比热容动态热流法测量结果,由此可得出以下结论:  (1)采用动态热流计法以及相应的修正手段,可以准确测量样品的热焓和热容随温度的变化,证明了ASTM C1784的有效性。  (2)在动态热流计法实际应用中,并不能完全采用ASTM C1784中规定的方波加热方式,因为这种突变型的变温方式会对测量数据处理带来较大误差,更准确的变温方式应为变化较缓慢的梯形的升降温方式。  (3)动态热流计法本质上还是属于一种稳态法,只是将大的温度区间分割为许多个小温度区间进行测试,按照ASTM中的规定,单个测试温度区间一般设定为1.5℃±0.5℃,由此来覆盖相变材料的相变温度变化范围,由此带来的问题就是测试时间十分漫长,通过上述仿真分析也得到了证明这个特点。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • FDA 175.300 关于测试时加模拟液体积

    求助专家们:一个削苹果器,有红色涂层,客户要求做FDA175.300,样品是不规则,无法盛装的。标准里面关于加模拟液是说“加到距离容器顶部1/4 英寸处”,那对于无法盛装的样品,按什么原则来加模拟液。 谢谢!!!另外,测试温度选哪个更合适(D或E),客户提供的是室温下使用,接触时间不限制:[table=100%][tr][td]D. Hot filled or pasteurized below 150 deg. F[/td][td]II, IV-B, VI-B[/td][td]150 deg. F, 2 hr[/td][td] [/td][td] [/td][/tr][tr][td] [/td][td]III, IV-A[/td][td]do[/td][td]100 deg. F, 30 min [/td][td] [/td][/tr][tr][td] [/td][td]V[/td][td] [/td][td]do [/td][td] [/td][/tr][tr][td] [/td][td]VI-A[/td][td] [/td][td] [/td][td]150 deg. F, 2 hr. [/td][/tr][tr][td]E. Room temperature filled and stored (no thermal treatment in the container)[/td][/tr][/table]

  • 织物测试仪器 透气性测试仪测试原理及常规标准介绍

    透气性是指对于具有一定气体阻隔性能的材料进行特定的渗透性的检测,透气性作为物理性能检测的项目之一,用于检测的材料首先具有透气性能。常见的材料有纺织品、皮革、纸张、纸板、泡沫塑料、多空瓷砖等等。目前透气性测试仪主要分为两种测试原理的仪器:压差法和等圧法。其中最为广泛的是压差法,压差法透气性测试仪可检测的实验范围也比较广泛。今天主要介绍一下[b]测试原理及常规标准[/b]:纺织透气性测试仪的原理:样品通过设备的夹紧手柄固定在测试区域上, 通过按下夹紧手柄以开始进行测试,一个强有的吸泵便开始在一个圆形开口处通过可互换的测试头抽取空气。预设好的测试压力被自动启动并维持了数秒钟后;,受测试样的透气度就会以预设的测量单位显示出来。再按下夹紧手柄一秒钟后,测样品便被松开,抽吸泵关闭。常用标准:[align=left]AFNOR G 07-111法国标准协会 透气性测试[/align][align=left]ASTM D 737纺织织物透气率的标准试验方法[/align][align=left]ASTM D 3574软质多孔材料测试方法[/align][align=left]BS 5636英国标准 纺织品透气性的测定方法[/align][b]DIN 53887纺织物空气透气度的测定[/b][align=left]EDANA 140.1 欧洲用可弃和非织造布制造协会[/align][align=left]EN ISO 7231软质泡沫聚合材料.恒定压降下的空气流量评估方法[/align][align=left]EN ISO 9237纺织品.纤维织物透气性的测定[/align][align=left]JIS L 1096- A日本工业标准:一般织物试验方法[/align]TAPPI T 251多空纸,织物、手抄纸的透气性[align=left]GB/T5453纺织品 织物透气性的测定[/align][align=left]GB/T 22819高透气纸张透气性的测定[/align][align=left]仪器参数:[/align][align=left]测试单位: mm/s, cfm, cm3/cm2/s, l/m2/s, l/dm2/min,m3/m2/min, m3/m2/h, dm3/s[/align][align=left]测量精度: ± 2 % 显示值[/align][align=left]测试压力: 10~ 2,500 Pa[/align][align=left]测试面积: 20cm2 (标配),5, 25, 38, 50 and 100 cm2 (可选配)[/align]

  • 国仪量子(合肥)技术有限公司诚聘模拟电路工程师,坐标合肥市,你准备好了吗?

    [b]职位名称:[/b]模拟电路工程师[b]职位描述/要求:[/b]岗位职责:1、负责公司产品电源相关电路设计,如高压电压,高性能电流源等;2、负责公司产品模拟电路部分的仿真、实现和调试;3、配合完成产品各个设计阶段的评审、验证和确认;4、配合解决产品生产和调试中的相关技术问题;5、负责产品的问题反馈、技术维修,形成产品迭代更新;6、完成技术文档的撰写与归档等相关工作。任职要求:1、熟练使用Allegro、PSPICE等模拟电路设计仿真工具;2、能进行模拟电路以及相关测试仪器接口电路的开发;3、有高稳定电流源设计经验、开关电源调试经验、直流高压电源设计经验者优先;4、有嵌入式系统或数字电路知识者优先。[b]公司介绍:[/b] 国仪量子(合肥)技术有限公司是一家以量子精密测量为核心技术的高新技术企业,致力于为全球范围内高校、科研院所和企事业等单位提供核心关键器件、高端仪器装备、核心技术解决方案等产品和服务。公司源于中国科学技术大学中科院微观磁共振重点实验室,实验室在大型科学仪器、关键核心器件的研制领域深耕十余年,多项技术、产品突破国际封锁和禁运,并获得“中国科学十大进展”、“国家自然科学二等奖”、“中国分析测试协...[url=https://www.instrument.com.cn/job/user/job/position/56123]查看全部[/url]

  • 模拟测试系统使用系统

    模拟使用系统标准和定制的“交钥匙”模拟系统,包括用于开发和培训的临床相关血管通路和血液动力学。[img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303010742054545_1492_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303010742059010_7782_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303010742059303_8488_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303010742059322_7749_1602049_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/03/202303010742059732_9693_1602049_3.png[/img]

  • 锂电池过度充电测试

    锂电池以其能量密度高等特点,广泛应用于工业自动化、新能源汽车、消费电子产品等领域。然而,在日常使用中,电池过度充电等问题时有发生,这可能对电池造成不可逆的损害,轻则缩短电池寿命或导致彻底失效,重则可能引发电池燃烧爆炸,危及电气设备和人员安全。为确保锂电池在使用和运输过程中的安全性,必须进行严格的测试和检测,以评估其对过度充电的承受能力。其中,UN38.3过度充电测试是锂电池在运输前必须通过的安全检测,由联合国发布,具备高度的公信力。在锂电池行业中,注重安全标准和测试的重要性,是为了推动科技发展的同时,最大程度地降低潜在的风险和安全隐患。通过这一测试,可以有效避免用户在使用锂电池时发生意外,保障设备和人员的安全。[align=center][img=,690,411]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181624110174_6281_6387980_3.png!w690x411.jpg[/img][/align][b]什么是UN38.3(可充电型锂电池操作规范)[/b]UN38.3(可充电型锂电池操作规范)是联合国危险物品运输专门制定的《联合国危险物品运输试验和标准手册》的第3部分38.3款,为确保锂电池在运输前的安全性,规定了一系列严格的测试要求。这些测试包括高度模拟、高低温循环、振动试验、冲击试验、55℃外短路、撞击试验、过度充电试验、强制放电试验等。如果锂电池与设备没有安装在一起,并且每个包装件内装有超过24个电池芯或12个电池,则还须通过1.2米自由跌落试验。[b]解决方案[/b]在这些测试中,过度充电试验是其中难度较大的一项。该测试要求在2倍最大连续充电电流和2倍最大连续充电电压的条件下,将待测锂电池连续充电24小时。测试的主要目的是评估锂电池对过度充电的承受能力,要求电池在过度充电过程中及之后七天内没有发生电池解体或燃烧爆炸的情况。这一系列的测试确保了锂电池在运输过程中的高度安全性,尤其是过度充电试验,关系到用电设备与用户的安危,具有极其重要的意义。为应对UN38.3标准中的过度充电测试。利用直流电源为电池进行持续供电,同时结合SBT300电池测试仪,全面监测电池充电过程中的电压、交流内阻等关键参数。通过这些先进的测试设备,工程师能够深入分析锂电池的衰化效应和稳定性,为研发制造更加安全可靠的锂电池提供有力支持。[align=center][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181625312538_6416_6387980_3.png!w690x460.jpg[/img][/align][b]主要优势[/b]交流四端子法测量:SBT300电池测试仪采用交流四端子法测量交流内阻和电压,能够分离提供电流的导线和测量器件上电压降的导线,进而消除电缆和探针接触电阻的阻抗。校正功能:SBT300电池测试仪能够补偿仪器内部电路的偏置电压或者增益漂移等,对测量数据进行校正以提高测量精度,并且可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。模拟输出:SBT300电池测试仪可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录电阻值的变化,便于使用数据采集仪进行需要长期记录的测量和锂电池的评估等。

  • 企业应选择高低温测试仪器还是恒温恒湿试验箱,只为您抉择

    企业应选择高低温测试仪器还是恒温恒湿试验箱,只为您抉择

    为了把控产品的品质,检测试验设备是企业必不可少,而且高低温测试仪器和[b]恒温恒湿试验箱[/b]都是很多行业都常用的检测试验设备,那企业应选择高低温测试仪器还是恒温恒湿试验箱?[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/05/202105101006283264_9223_1037_3.jpg!w348x348.jpg[/img][/align]  企业在高低温测试仪器与恒温恒湿试验箱之间的选择标准:  一、依据应用行业开展挑选  1、高低温测试仪器是检测商品在高溫、低温综合性自然环境下各类特性的指标值,也有溫度环境破坏后的主要参数转变,现阶段是航空公司、轿车、家用电器、科学研究等行业必需的检测设备。  2、恒温恒湿设备试验箱有很大的温度湿度操纵范畴,能做多种的实验,关键用以实验各种各样原材料耐高温、耐低温、耐干、耐水等不一样自然环境下的特性检验,现阶段适用纺织品贸易、电子电工、食品类、塑胶硫化橡胶、汽车工业、照明灯具、化工厂、装饰建材、化学变化等行业领域。  二、从要求上开展挑选  1、高低温测试仪器只具有调整溫度的作用,可以开展各种各样高溫、低温自然环境下的转变检测,也被称作高低温交替变化试验箱,可是不可以开展环境湿度的检测。  2、恒温恒湿试验箱是既可以测试高温、低温的环境,同时还能加入湿度进行测试,能够同时控制温度和湿度条件,要求温度和湿度按照设定的速率同时变化,营造模拟逼真的环境情况,可以满足品质检验需求。  高低温测试仪器与恒温恒湿设备试验箱很大的不同,就取决于环境湿度的仿真模拟检验层面,二种设备在价钱和应用作用上,是有一定的差别,在购置的全过程,好的是依据本身的具体要求开展挑选。设备现阶段可出示几款高质量的高低温测试仪器,和恒温恒湿设备试验箱的高品质设备,可依据顾客的要求状况推荐适合的设备计划方案。

  • 在线语音研讨会——符合国际标准的太阳能模拟器测量系统(主讲:熊利民老师)

    报名地址: http://webinar.ofweek.com/activityDetail.action?activity.id=4555178&user.id=2在线研讨会介绍研讨会主题:符合国际标准的太阳能模拟器测量系统举行公司:海洋光学亚洲分公司研讨会简介: 1、 熊利民老师太阳模拟器等级评定测试技术。2、 Michael Matthews作为海洋光学(Ocean Optics)引进的新型光学测量方案——RaySphere,主要用于太阳光模拟器和其他辐射源的绝对辐照度测量。作为一款用于检验太阳能闪光灯输出、太阳光过滤器功效、以及新型活性材料性能的工具,该款便携式RaySphere光谱仪对于太阳光模拟器和光电研发实验室的生产商和终端用户来说特别实用。 太阳能闪光灯尤其被广泛用于根据光谱反应设计的光生伏打电池以及关键光电模组功效测量设备的光电制造流程。为了取得IEC、JIS和ASTM等行业标准颁发的太阳能闪光灯认证,以及为了分析闪光灯的性能和稳定性,需要一款高度准确和精确的测量系统。RaySphere光谱仪将光学测量性能与先进的超低频振动式光学/电气触发电子元件相结合,用于关联闪光灯的光学和电气测量。德国物理技术研究院(PTB)的认证实验室对RaySphere的校准进行了确认,并授予太阳能闪光灯和模拟器光谱分布合格证书,证明其准确性和可靠性达到了前所未有的水平。研讨会议题安排 会议时间 会议内容 演讲嘉宾 会前 预先提问环节 网友可自行在线预先提问 有专家在线解答 09:50-10:00 会议即将开始 主持人介绍演讲专家和演讲内容情况 OFweek 杨秋妮 10:00-10:15 太阳模拟器等级评定测试技术。 演讲专家:熊利民 专家职务:中国计量科学研究院光学所 光通信与光探测实验室主任 10:15-10:45 符合国际标准的太阳能模拟器测量系统 演讲专家:Michael Matthews 专家职务: 10:45-11:00 现场提问互动环节 答疑专家: 丁海峰 专家职务: 光学工程师 11:00 研讨会结束 主讲人介绍http://webinar.ofweek.com/upload/users/ofweek/image/xiongliming.jpg演讲专家: 熊利民专家职务: 中国计量科学研究院光学所光通信与光探测实验室主任专家简介: 1996年哈尔滨工业大学工程热物理专业硕士毕业,其后分配到中国计量科学研究院光学所工作至今,长期从事光电探测器及太阳电池光谱响应度研究。已完成并正主持承担多项科技部项目、国家质检总局科研项目。曾获国家质检总局一等奖二项,二等奖一项,中国计量科学研究院一等奖一项;并被评为2003年国家质检总局岗位能手、2006年国家质检总局优秀青年。被誉为“国内太阳能模拟器计量第一人”。http://webinar.ofweek.com/upload/users/ofweek/image/michael.jpg演讲专家: Michael Matthews专家职务: 专家简介: Michael Matthews作为2009届凯洛格商学院生产管理硕士(MMM)研究生,除了拥有罗拉-密苏里大学非金属工艺学的学士和硕士学位外,他还在美国西北大学凯洛格商学院和麦考克工程学院取得工商管理和工程管理双学位。Michael现定居德国,带领海洋光学相关团队,致力于发展用于太阳光模拟器和其他辐射源的绝对辐照度测量新型光学测量方案——RaySphere。答疑人介绍http://webinar.ofweek.com/upload/users/ofweek/image/dinghaifeng.jpg演讲专家: 丁海峰专家职务: 光学工程师专家简介: 1982年出生,2008年毕业于上海交通大学 光学工程专业,硕士; 2010年3月加入海洋光学以来,一直致力于光学传感、光度测量及光谱分析方面的工作,侧重于技术研发及应用支持,尤其在LED光度、颜色测量及荧光粉测量方面。奖品介绍http://webinar.ofweek.com/upload/users/ofweek/image/j1.jpghttp://webinar.ofweek.com/upload/users/ofweek/image/j2.jpghttp://webinar.ofweek.com/upload/users/ofweek/image/j3.jpg参加预先提问活动人员里面抽5个幸运奖(限量纪念版4G U盘,价值100元)参加现场提问活动人员里面抽5个幸运奖(限量纪念版4G U盘,价值100元)研讨会结束后 再抽3个大奖(精美真皮钱包,价值500元)公司介绍 美国海洋光学作为微型光纤光谱仪的发明者,一直致力于光纤光谱仪,化学传感器的研究,是全球领先的光传感解决方案提供商,自1989年来在全球共售出近200,000套光谱仪,为OEM客户提供灵活多样的产品选择,为工业科研用户提供性能优越的系统解决方案,涉及领域涵盖生物,环保,医药,光电,化工,教育等。 海洋光学是英国豪迈(Halma)集团的分公司,豪迈集团主要经营用于探测潜伏危险和保护人们生命安全的产品,是专业性电子、安全和环

  • 【原创大赛】蒙特卡洛模拟评定不确定实例

    10^6 随机数的生成可以借助matlab等工具软件;也可以自行编程解决,依托开发工具提供产生的均匀分布随机数来产生其他分布的随机数。 4、模拟结果升序排列,计算模拟结果的均值和标准偏差,然后依据给定的概率划定不同的包含区间,以最短的包含区间为评定结果。蒙特卡罗模拟法评定不确定度的简单例子假设测试模型为z=x+y,x符合分布标准正态分布x~(0,1);y符合(0,1)之间的均匀分布U(0,1),给出置信概率95%下的z的置信区间和标准差。 1、确定测试函数 2、确定模拟次数 3、按要求生成各分量的随机数,依据测试模型计算模拟结果 4、计算模拟结果平均值和标准差 5、依据给定的置信概率,划分置信区间,以最短的置 信区间作为评定结果评定结果: 模拟次数10000次,均值:0.505,标准差:1.04,95%置信概率下的置信区间(-1.55,2.47)。这个模型均值的理论值0.5,标准差的理论值是1.04。可见,用MCM法模拟10000次,模拟值和理论值吻合较好。这个模型用GUM法评定的结果为:置信概率95%(k=2),置信区间为:(-1.58,2.58)。两种评定方法结果接近,但是GUM法认为分布函数是对称的,和实际不符。

  • 【求助】盐雾测试的模拟试验

    各位高手,有件事想请教,我们的产品大多是锌合金镀镍,要求作盐雾测试,但是我们没有盐雾测试箱,所以想问问有没有模拟的测试,时间短一点,好操作一点,但是也能测出效果,还望有经验的朋友告诉我~~~~~非常感谢!

  • 山东省计量科学研究院创新泄漏电流测试仪测量网络校准方法

    [color=#3f3f3f]日前,山东省计量科学研究院电子与电磁计量研究所根据泄漏电流测试仪的实际工作状态,提出了采用宽频电流源法对测量网络进行校准的方案,研制了高频电流源,理论推导了输入输出电流的关系,设计了利用高频电流源对泄漏电流测试仪测量网络进行校准的方法,通过直接输入电流的方式对泄漏电流测量网络进行校准,最终通过实验验证了方法的可行性,相对于高频电压源法,该方法更符合实际工作状态。[/color][color=#3f3f3f]据介绍,泄漏电流测试仪通过模拟人体阻抗网络,仿真人体接触电气设备时的实际状况,以此测量电气设备的泄漏电流。电气设备一般采用交流供电,随着电子开关技术被广泛应用于电源系统和设备中,电路中产生了高频谐波电压和高频谐波电流,这些高频信号流过人体时同样对人体造成伤害,因此泄漏电流的测量不仅局限于工频,同样要考虑高频信号。[/color][color=#3f3f3f]根据泄漏电流的人体效应(感知或反应、摆脱、电灼伤),GB/T 12113(IEC 60990接触电流和保护导体电流的测量方法)分别定义了不同的测量网络。目前国际上主要利用高频电压源对泄漏电流测试仪的测量网络进行计量,GB/T 12113给出了采用高频电压源进行校准的方法。[/color][color=#3f3f3f]2018年7月,国际精密电磁测量大会(CPEM2018)在法国巴黎举行,来自美国NIST、中国NIM、英国NPL等50个国家的500多位电磁领域计量专家参会,山东省计量院研究员马雪锋参加了此次会议并现场张贴了论文《利用宽频电流源法对泄漏电流测试仪测量网络的校准》,得到了与会专家的关注,实验方法得到了同行的认可。[/color]

  • avantes太阳模拟器光谱测量

    太阳模拟器作为光源,在某种意义上说,可以等同于太阳光源,可以模拟太阳光照射。太阳模拟器广泛应用于太阳能电池特性测试,光电材料特性测试,生物化学相关测试,光学催化降解加速研究,皮肤化妆用品检测,环境研究等。 随着太阳能光伏产业的蓬勃发展,太阳能模拟器的光谱匹配性能测试也越趋重要。针对大多数采用脉冲氙灯作为光源的设备,最理想的测试状态是采集一个脉冲周期内不同时间点的绝对辐射光谱,进而判断该太阳能模拟器的光谱等级。目前采用微小型的光纤光谱技术是实现太阳能模拟器光谱测量最简单可靠的方法。设备和方法 1、稳态光谱采集 根据IEC60694-9标准要求,太阳模拟器有效光谱范围是400-1100nm,这就需要光谱测试设备可同时采集到400-1100nm范围的绝对光谱数据,并且在整个波段范围内都具有较高的信噪比,以保证测试数据的可靠性。荷兰Avantes公司的AvaSolar光纤光谱仪,采用高信噪比的薄型背照式CCD探测器,其在200-1100nm均具有良好的光谱响应,以确保得到高质量的光谱数据。同时该套系统出厂时就进行了NIST可溯源的绝对辐射标定,可直接得到稳态的模拟器的辐照度光谱信息。 2、 瞬态光谱采集 基于AvaSolar光谱仪特有的快速采集功能,也可应用在瞬态模拟器的光谱检测中。AvaSolar最多可实现每秒钟450幅光谱的采集,不管模拟器的工作模式是单次脉冲、多次频闪,无论脉冲弛豫时间是小到2ms,还是较长的6s,AvaSolar系统均可得到真实可靠的辐照度数据。 3、光谱匹配度太阳模拟器的光谱匹配度是指在6个指定光谱范围内强度积分的百分比。任何与标准光谱的偏离百分比都必须在一定的范围内,这也正是衡量太阳模拟器等级的一项标准。对于A类太阳模拟器,光谱匹配度必须在75% - 125%之间。Ideal Spectral Match Defined by IEC StandardsSpectral MatchSpectral Range (nm) Ideal %400 - 500 18.4500 - 600 19.9600 - 700 18.4700 - 800 14.9800 - 900 12.5900 - 1100 15.9 利用AvaSoft-Solar软件特有的能量积分功能,可得到不同光谱范围内的辐照度总和(单位:µW/cm2),从而帮助判断该太阳能模拟器的光谱等级。如下图所示,同时对上述6个指定光谱范围的辐照强度进行能量积分计算。 4、 模拟器等级判断 AvaSoft-Solar软件可按照IEC60694-9标准上所述要求,根据测试得到的模拟器辐照度光谱数据直接给出模拟器的等级,可给出不同波段范围内的匹配度,以帮助用户更好的判断模拟器的性能。 5、 扩展功能 ⑴紫外老化仪光谱测量 对于设有可靠性试验室的用户来说,紫外老化也是检测光伏产品性能必不可少的环节,这也就需要针对紫外老化仪的光谱及辐照度进行有效的检测。由于AvaSolar主机可覆盖200-1100nm的光谱范围,因此AvaSolar该套系统可以直接用来进行紫外老化仪的光谱检测。 ⑵光伏组件玻璃板透过率测量 AvaSolar光谱仪不但可进行绝对辐照光谱的检测,同时可对光伏组件厂所用的大面积玻璃进行透过率的测量。仅需要在原有AvaSolar系统的基础上额外配置照射光源、积分球及光纤即可。对于工业用大尺寸的玻璃的透过率的检测,需要用户根据不同的现场测试要求自行设计积分

  • 采购盐雾测试仪价格是多少

    采购盐雾测试仪价格是多少

    因为用户的试验样品不同所以需要模拟的环境也不同,这就导致在购买[b]盐雾测试仪价格[/b]也会有所差别,但是就算是参数相同的盐雾测试仪在价格方面也可能会有些不同,因为有些厂家在生产设备是是真材实料,而有些厂家则是偷工减料。所以在购买该设备时还是需要用户自己进行判断。[align=center][img=,481,481]https://ng1.17img.cn/bbsfiles/images/2021/08/202108161708432088_5502_1037_3.jpg!w481x481.jpg[/img][/align]  该设备在市场的价格七零八落,所以客户在选择盐雾测试仪时,先要了解自己的产品需要什么样的试验环境以及样品的尺寸大小,基本上在了解这两个因素之后,就能够让销售人员快速的帮您判断您所需要的设备了。产品的使用环境决定了盐雾测试仪价格的类型,尺寸大小决定了盐雾测试仪的大小,两者综合决定一台盐雾测试仪的价格。  在购买盐雾测试仪价格时一定要选择有自主生产能力的厂家,因为自主生产厂家会对自己所生产设备的性能以及构造会更加了解,如果设备出现故障还能够更快的判断出故障原因并及时解决。

  • 国标标准SH/T0300曲轴箱模拟试验方法

    SH607内燃机油成焦倾向性测定仪是根据石油化工行业标准SH/T0300《曲轴箱模拟试验方法》设计、制造的。适用于评定添加剂和含添加剂内燃机油的热氧化安定性,是科研工作中评选清净剂、抗氧抗腐剂和油品复合配方的一种模拟试验方法。 本仪器由控制箱和主机两部分组成,上下结构。控制箱部分用两个数显温控表、两个数显计时表。数显温控表分别控制油箱及试验板温度,具有显示直观、操作方便及控温精度高等特点;计时表可实现工作总计时及自动控制电机的转、停。主机部分采用不锈钢制成,具有造型简洁、美观、耐腐蚀等特点[b]主要技术参数[/b]1、电源电压:AC220V ±10% 50Hz2、输入功率:1KW3、温控范围:室温~399℃4、控温范围:油温±2℃5、计时范围:0~99小时6、电 机:双向可逆电机7、环境温度: ≤30℃ 。8、相对湿度: ≤85%。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制