当前位置: 仪器信息网 > 行业主题 > >

平面光栅光谱仪原理

仪器信息网平面光栅光谱仪原理专题为您提供2024年最新平面光栅光谱仪原理价格报价、厂家品牌的相关信息, 包括平面光栅光谱仪原理参数、型号等,不管是国产,还是进口品牌的平面光栅光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平面光栅光谱仪原理相关的耗材配件、试剂标物,还有平面光栅光谱仪原理相关的最新资讯、资料,以及平面光栅光谱仪原理相关的解决方案。

平面光栅光谱仪原理相关的资讯

  • HORIBA讲座回放视频|光栅光谱仪原理简介
    课程内容 光谱测量系统组成 光栅技术 光栅光谱仪原理 小结讲师介绍熊洪武,HORIBA 应用技术主管,负责光学光谱仪的应用支持,光学背景深厚,有着丰富的光学系统搭建经验。可根据用户需求提供性能优异,功能独特的的光谱测试方案,如光致发光、拉曼、荧光、透射/反射/吸收等。课程链接识别下方“二维码”即可观看我们录制好的讲解视频了,您准备好了吗? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 我国高精度平面刻划光栅已自主可控 国产光谱仪器研发迎来新时代——访中科院长春光学精密机械与物理研究所 李晓天副研究员
    p style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  作为光谱仪器的核心部件,光栅的地位举足轻重。近年来,针对我国机械刻划光栅的刻划面积及精度不足等问题,中科院长春光学精密机械与物理研究所(以下简称:长春光机所)开展了一系列的技术攻关,不仅成功研制出大型高精度光栅刻划机,而且该刻划机已成功制作出刻划面积为400mm× 500mm的世界最大面积中阶梯光栅。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  为了更深入的了解我国光栅及光谱仪器的研究现状及未来发展态势,仪器信息网编辑特别邀请到中科院长春光学精密机械与物理研究所李晓天副研究员给大家分享其在光栅及光谱仪器研发过程中的经验。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 356px " src="https://img1.17img.cn/17img/images/202007/uepic/6a4b4291-b891-4b13-b4aa-d667cb197457.jpg" title="微信图片_20200710094424.png" alt="微信图片_20200710094424.png" width="450" height="356" border="0" vspace="0"//pp style="text-align: center "strong中科院长春光学精密机械与物理研究所 李晓天副研究员/strong/pp style="text-align: justify "span style="font-size: 14px "span style="font-family: 楷体, 楷体_GB2312, SimKai "  李晓天,博士生导师,九三社员,Opt. Express等10余个权威SCI期刊审稿专家。自2006年参加工作,主要从事光电检测、衍射光栅及其在光谱技术领域应用研究等科研工作,作为项目负责人获批空间外差拉曼方面的国内第一个自然科学基金青年基金和第一个面上项目,以及吉林省技术攻关项目等 作为分系统或子课题负责人承担国家973课题、国家重大科研装备研制项目等,曾获“航天科技四院杰出青年”、“吉林省科技进步一等奖”、“吉林省青年文明号”等荣誉。获授权发明专利28项,其中第一发明人12项 在Opt.Express等权威SCI/EI期刊发表论文40余篇,其中第一/通讯作者16篇。培养的博士和硕士研究生获得国家奖学金、中科院院长奖、中科院新生奖等10余种奖励,其中一名学生连续两年获国家奖学金后公派留学于美国哈佛大学/span。/span/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong我国高精度平面刻划光栅已处于国际领先水平/strong/span/pp style="text-align: justify "  衍射光栅是最重要的一类光学色散元件,它是绝大多数光谱仪器的核心器件,其精度高低直接决定光谱仪器性能的优劣。按制作方法, 衍射光栅可分为机械刻划光栅、离子束刻蚀-全息光栅、体全息光栅等。随着国家支持力度的加大,我国各类光栅制作技术均有显著提升,与国外最高水平的差距也越来越小,特别值得一提的是,我国的机械刻划光栅制作技术已达到国际领先水平。/pp style="text-align: justify "  机械刻划光栅的性能主要由光栅刻划机的运行精度决定。据李晓天介绍,光栅刻划机是制作光栅的母机,机械刻划光栅主要是通过光栅刻划机的金刚石刻刀在光栅基底的膜层上挤压成形出一系列具有一定规则形状和间距的刻槽,在此期间,刻划机的基底工作台要不断进行精密进给运动,而金刚石刻划刀要不断进行往复运动,光栅刻划的定位精度要达到纳米量级。因此部件的加工装调精度要求极高,运行保障环境要求也极为苛刻,光栅刻划机也被誉为“精密机械之王”。/pp style="text-align: justify "  李晓天开展的光栅研究主要是针对机械刻划光栅,采访中他给大家详细介绍了自己在这方面的工作。据介绍,李晓天通过仿真分析和科研经验等,指出国产光栅刻划机刻划系统结构不够稳定是导致刻划出的光栅杂散光较大的主要原因之一,最终通过大量的实验验证了这一结论 据此,他在导师唐玉国研究员等前辈的悉心指导下,在国内率先开展了光栅刻划系统误差修正技术研究,最终使得刻划出的光栅杂散光从10sup-3/sup量级降低至可达10sup-5/sup量级,此外他还开展了衍射波前主动补偿、光栅性能实时检测技术等研究工作,有效提高了光栅刻划机及刻划光栅的性能。目前,李晓天及其所在的大光栅团队已研制出高精度大光栅刻划机1台,主要性能指标为:最大刻划面积:400mm× 500mm;最高刻槽密度:6000线/mm;仪器运行的短期定位误差:≤3.0nm(1σ),并已成功制作出刻划面积为400mm× 500mm的世界最大面积中阶梯光栅,获得“吉林省科技进步一等奖”、“吉林省青年文明号”等荣誉。相关成果被中央电视台新闻联播、人民日报、科技日报、经济日报、光明日报等多家媒体进行报道。/pp style="text-align: justify "  谈到其开展的光栅相关工作,李晓天自豪的说,“就光栅定制而言,我们光栅产品价格要比国外产品低的多,国内的一些企业获得信息后,原本计划在国外采购的光栅也改为从我们单位定制采购了。”据悉,长春光机所的刻划光栅产品已在北京博晖创新光电公司、浙江大学、加拿大多伦多大学、中科院西安光机所、中科院上海技物所等单位研制的光谱仪器中得到了成功应用。其中,加拿大多伦多大学将他们研制的红外中阶梯光栅与美国Bach公司制作的194线/mm中阶梯光栅进行了对比,结果发现该光栅性能优于美国Bach公司产品,其中TM波的光栅衍射效率高出约20%左右;北京博晖创新光电公司将长春光机所的光栅产品与其购买的一块国外产品进行了对比,发现长春光机所的光栅产品性能更优。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong以光栅自主创新促进光谱仪器进步 核心部件国产化率亟待提升/strong/span/pp style="text-align: justify "  作为光谱仪器的核心部件,光栅技术的深入对光谱仪器的开发具有重要的指导意义。在完成了光栅刻划机研制之后,李晓天的研究重心转向光栅应用技术,其曾参与了中阶梯光栅光谱仪、光栅杂散光测量仪、傅立叶变换型光栅衍射效率测量仪和成像光谱仪等研究工作。特别是近几年,他开始了拉曼光谱技术的研究工作。对此,李晓天表示说,由于拉曼光谱不怕水,可以在水溶液或者水环境中实现物质的检测,做完拉曼光谱仪技术的基础研究工作以后,下一步的工作重点是要将其应用到生物医学、星际探测等与国计民生息息相关的重要领域中。/pp style="text-align: justify "  现有的拉曼光谱技术,如色散型拉曼光谱仪因存在入射狭缝,导致其在高光通量、高分辨率、宽波段、无运动部件等性能方面难以兼顾。为解决以上影响拉曼光谱技术发展的关键问题,李晓天从2015年开始研发可兼具高光通量、高分辨率等以上性能的新型空间外差拉曼光谱仪,并作为项目负责人成功获批了空间外差拉曼光谱方面的国内第一个自然科学基金青年基金项目和第一个面上项目。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 312px " src="https://img1.17img.cn/17img/images/202007/uepic/0dc5b33a-9e92-4c9a-8052-ddb610c8743b.jpg" title="微信图片_20200710094022.png" alt="微信图片_20200710094022.png" width="600" height="312" border="0" vspace="0"//pp style="text-align: center "strong拼接光栅型空间外差拉曼光谱仪原理样机(左)及硫磺样品的外差拉曼干涉图(右)/strong/pp style="text-align: justify "  据介绍,空间外差拉曼光谱仪无入射狭缝,且整个仪器没有运动部件。通过探测器单次测量及分析,即可获得全波段的待测物拉曼光谱信息。而且仪器结构紧凑,其除探测器以外的核心光学模块的尺寸可以做到15cm× 15cm以内,因此仪器可兼具高光通量、高分辨率、宽波段、无运动部件等性能。空间外差拉曼光谱仪将在待测物拉曼信号较弱、有限载荷使用条件以及待测环境条件恶劣等方面具有较好的应用前景,此外在透射拉曼光谱领域也可以发挥其优势。/pp style="text-align: justify "  在拉曼光谱仪研究过程中,李晓天提出光栅拼接型空间外差拉曼及LIPS光谱仪、中阶梯光栅型空间外差拉曼光谱仪和空间外差型太赫兹拉曼光谱仪等新型仪器结构,并带领团队突破关键理论与技术,设计出具有棱镜视场展宽能力的高光通量空间外差拉曼仪器原理样机,其测得的硫磺等样品信号强度可达同等分辨率和测量波段范围的传统色散型仪器的100倍;给出基于三阶极小值和多子区间分割的光谱背景扣除算法,可有效解决背景光干扰等对拉曼光谱测量的影响 提出通过光阑和光学陷阱等抑制仪器杂散光的方法;提出基于中阶梯光栅多级次锥面衍射的空间外差拉曼光谱仪结构等等。/pp style="text-align: justify "  近几年,国内的一些知名企业和院校纷纷开展了拉曼光谱仪器研发工作,使得我国拉曼光谱仪研发力量得到了较大的提高,但整体来说与国际最高水平仍存在一定差距,在全球市场中所占份额较低。对此,李晓天分析到,光栅等拉曼光谱仪的核心光学元件在国产拉曼光谱仪中的国产化率并不高,主要原因是我国光栅技术水平的提升是在近几年发生的,目前国内的科研院所和企业大多还不清楚国内的机械刻划光栅水平已得到显著改善且定制价格远低于国外产品这一事实。相信随着时间的推移,我国拉曼光谱仪产品中的光栅国产化率会得到大幅度提升。此外,李晓天也提到,除了光栅以外,拉曼滤光片也是仪器的核心元件,特别是低波数拉曼滤光片尚未实现高性能产品国产化,制约着相应仪器的发展。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong国产光栅及光谱仪发展展望: 一代光栅对应着一代光谱仪/strong/span/pp style="text-align: justify "  从核心部件到仪器整机,李晓天在光学仪器研发领域已经工作了10余年。据悉,未来他还将继续开展新型高端光栅光谱仪研究工作,在高分辨率、高通量、高灵敏度光谱仪器研制方面继续开展深入的研究。不仅如此,他还计划尝试开展拉曼光谱技术在生物医学等领域的应用研究。/pp style="text-align: justify "  采访中,李晓天指出,目前国内的光栅刻划机只能刻划平面光栅,但是国内外市场对凹面光栅和凸面光栅等非平面光栅的需求也日益迫切,若能采用光栅刻划机进行非平面光栅研制,将能够有效解决现有的非平面光栅的衍射效率等性能难以满足诸多领域使用需求的难题,所以希望国家或地方政府可以对非平面光栅刻划机的研制进行专项资金投入。再者,国内外天文望远等领域对更大面积光栅仍有使用需求,不过如果直接研制可以刻划更大面积光栅的刻划机,对机械和精密控制等技术具有更高需求,需要的资金投入也较多,因此发展投入相对较低的大光栅拼接复制技术也是未来光栅技术的重要方向。此外,超环面光栅、大面积体全息光栅等其它光栅技术也应该开展深入研究。/pp style="text-align: justify "  对于我国光谱仪器研发的现状,李晓天分析到,衍射光栅是光栅光谱仪器的核心元件,在仪器研发中意义重大。但是现在国内大多数仪器厂家和单位在进行光谱仪器设计时,往往先在现有产品中选择一个测量波段等指标相对适合的光栅产品,然后根据该光栅参数进行仪器设计,这将导致仪器设计存在一定局限性。李晓天指出,大家应充分发挥光栅在光谱仪器研制中的重要作用,如根据仪器光路结构,去优化光栅参数再去定制该光栅,将大大提高仪器性能。一代光栅对应着一代光谱仪,若能进一步提出新的光栅设计参数或者新的光栅类型,则有望产生新一代光谱仪器!以新型的中阶梯光栅、离子束-刻蚀全息光栅、体全息光栅、超环面光栅、各类其它非球面光栅以及特殊类型光栅为核心元件的光谱仪器将逐步登上我国的历史舞台。/pp style="text-align: justify "  此外,对于大家关注的科研成果转化问题,李晓天也谈到,我国在光谱仪器研发方面已具有多年的经验积累,也取得了较好成绩,但是,企业与科研院所之间存在一定的技术脱节,也就是说科研院所把光谱仪器研发后,并没有与企业形成较好的对接。不过,他也提到,目前国家已经形成一些激励政策,相信未来科研院所和企业会形成的良好合作模式。/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  附注:李晓天副研究员课题组隶属于国家光栅制造与应用工程技术研究中心(简称为国家光栅工程中心),该中心拥有60年以上的光栅研制及光谱仪器研发经验,具有完善的光栅制造设备、丰富的光学设计及精密装调技术、光谱仪标定设备、精密微动工作台、精密光学检测仪器、光学系统计算辅助装调设备等,具有自主研制高刻线密度光栅、中阶梯光栅和多种全息光栅等能力。先后研制出中型和大型摄谱仪、红外分光光度计、紫外分光光度计、大型真空紫外单色器、空间太阳紫外光谱辐照监视器、可见和红外高分辨率成像光谱仪、中阶梯光栅光谱仪、凸面光栅光谱仪、微型生化分析仪、近红外水分分析仪、近红外粮食成分分析仪、荧光在线水中油测试仪等仪器。/span/p
  • “中国创造”的典范:多光栅折叠光谱——访复旦大学陈良尧教授
    2006年,国际两家光电子杂志Laser Focus World和Photonics Spectra的编辑曾分别主动在世界技术新闻专栏中特别介绍了复旦大学陈良尧教授课题组研发的多光栅二维折叠光谱技术,认为该技术的创新原理和方法将能够被拓广并应用于更具挑战性的高效率光谱获取和分析领域,以及推广到中远红外光谱分析领域。  上海市计量测试技术研究院的资深光学科学家袁海林教授也曾评论到,&ldquo 采用多光栅结构对成像光谱进行高密度折叠,在很宽的光谱区内实现高分辨率、快速和长时间可靠测量,将会成为现代光谱仪设计中一个主流技术和发展趋势&rdquo 。  究竟是怎样的技术让国内外一片赞誉之声?为了寻求答案,近日仪器信息网编辑采访了多光栅折叠光谱仪技术的研究者&mdash &mdash 复旦大学陈良尧教授。复旦大学 陈良尧教授  &ldquo 原理性创新&rdquo   光谱分析仪器在科学研究和工业领域有着广泛的应用,为满足应用需求,国际上已经发展了各种类型的光谱分析原理和方法,其中最主要的是采用棱镜和光栅等光学色散元件,结合高灵敏度探测器对各种光谱(如反射、透射、吸收、散射、椭圆、荧光、拉曼等光谱)进行测量和分析。但受到光电探测器光谱响应、光栅色散和机械扫描等因素的制约,只能被迫在光谱工作区宽度、分辨率和速度等参数之间做出妥协,从而严重影响和限制了其在许多重要领域的应用。这是国际学术和产业界长期未能解决的瓶颈和难题。  &ldquo 传统的光栅光谱仪需要使用机械装置对色散元件进行位移和旋转,这将限制测量速度的提高,而且机械转动部件的定位精度低,可靠性差,容易在操作过程中发生故障 另外,由于国内机械加工水平所限,使得国产光栅光谱仪的机械部件精度和可靠性不高,从而影响了光谱仪的整体性能水平,&rdquo 陈良尧说,&ldquo 另外,一块光栅难以覆盖全光谱范围,衍射效率为非均匀性分布,在其光谱衍射工作区的两端效率较低,影响了仪器的信噪比质量。&rdquo   在长期的光谱分析研究中,为克服传统仪器的这两方面局限性困难是陈良尧当初决定研发&ldquo 多光栅折叠光谱分析仪&rdquo 的原因,他希望能够研制出一种没有任何移动部件、光谱工作区宽、测量速度快的光谱仪。基于这一想法,陈良尧于90年代末开始&ldquo 多光栅折叠光谱分析仪&rdquo 的研制。&ldquo 这是原理和方法的创新,并非是&lsquo 阳春白雪&rsquo ,它的物理概念清楚,技术可靠,易于普及推广,只不过很多人没朝这方面去想。&rdquo   但是,当前光谱仪技术可以说是非常成熟了,再要尝试原理性创新,可能并不像陈良尧说的那么容易。在10多年时间的持续研究努力中,陈良尧教授经历了很多,如最初虽有设想,但缺少研究经费支持,在市场上也买不到现成的关键元器件,业内对这类极具应用前景的新原理和新技术的认识也不统一等等。不过,&ldquo 梅花香自苦寒来&rdquo ,2012年,最终实现的研究成果被选为国家自然科学基金&ldquo 十一五&rdquo 优秀成果。至今已经推出了多种可供实用的样机,集成组合的光栅数也由最初的3块增加到了10块。日前,陈良尧教授的&ldquo 极高密度二维折叠光谱成像装置&rdquo 课题入选了2014年高校自然基金国家重大科研仪器研制项目。已研制完成的二维折叠光谱分析仪的整体外形图,250mm焦距,优于0.1nm光谱分辨率,全谱测量时间小于0.1s,重约8.9公斤。  多光栅折叠光谱仪采用了时间并联模式的快速光谱信号获取的新原理和方法,利用二维面阵探测器的优点,在一台光谱仪中,同时满足宽光谱区、高分辨率和快速测量的三项关键功能要求。在10光栅二维折叠光谱分析仪中,是将具有不同闪耀角和色散特性的10块子构成一个光栅阵列,克服了面阵CCD信号接受面的张角限制,在200-1000nm光谱区将一维约276mm光谱探测区的近2万个光谱数据点进行二维10重折叠,快速成像在二维面阵探测器的焦平面上。由于无任何机械位移部件,使得最小的光谱获取时间仅受限制于将光谱从CCD传输到数据存储器件所需要的时间,实现了全光谱高精度快速测量和分析。  &ldquo 所有用到光谱测量分析的地方都可以用&rdquo   &ldquo 多光栅光谱是通用型光谱仪,所有用到光谱测量分析的地方都可以用,如可以应用于食品环境等领域的科研与日常检测,而且未来完全可能替代常见的紫外、红外等光谱分析仪器。&rdquo 陈良尧对多光栅光谱仪的应用前景非常乐观,&ldquo 随着高性能低成本面阵光电探测器的普及,二维折叠光谱将成为主流光谱分析技术在更多领域实现推广应用。&rdquo   &ldquo 而且,由于改进了传统光谱仪的一些不足,使得该仪器可以用于一些极端条件检测。&rdquo 例如:由于无任何机械转动部件,多光栅光谱仪的全谱扫描速度最快能达几毫秒至数十毫秒,所以在清华大学等离子体实验室中,能利用它在真空条件下对等离子体原子谱线进行原位全谱检测分析,在相同的实验条件下,对各种原子态谱线进行比较分析,获得较为可靠的实验数据和结果。&ldquo 并且,等离子体实验室还希望通过合作,研究该技术在真空紫外条件下的应用。&rdquo   多光栅光谱仪既可以作为一种标准配置的光谱仪独立使用,也可以成为一个载体&mdash &mdash 作为光谱分析仪器的核心部件,可以极大简化分析仪器的结构。&ldquo 光谱仪是光谱分析仪器的&lsquo 心脏&rsquo ,目前很多国产光学分析仪器采用的还都是传统扫描型光谱仪,如果多光栅光谱仪能够得到普及,将会显著促进国产光谱仪器的更新换代。&rdquo   &ldquo 探测器技术与成本亟待突破&rdquo   &ldquo 目前在10光栅集成的仪器中,使用的是美国PI公司的CCD面阵探测器,单价在7万美元左右。高性能光电探测器依然是限制我国先进光谱分析技术发展的瓶颈,也是成本无法降下来、难于大规模普及的主要原因。&rdquo 不过,陈良尧也高兴地说到,已有国内企业正从海外引进新一代CMOS光电传感器技术,&ldquo 我们将会成为他们产品的第一批实验室用户。&rdquo   另一个关键元件&mdash &mdash 光栅则可以根据具体需求,既可以购买进口产品,也可以选择国内生产的。&ldquo 我们已经在国内找到一家企业,可以研制和生产出我们所需的光栅和其他光学器件。&rdquo   对于下一步研发方向,陈良尧介绍到,&ldquo 当前最重要的是把研究项目做好,并努力将这一技术应用到不同领域 另外,组合的多光栅模块本身也可以成为一个产品,现在的组合光栅的方位角还需要人工调试,未来希望能够采用自动化激光准直技术,研制出已被封装好、不需要调节的光栅组,用户拿到手里可以直接使用。组合的光栅数也有可能进一步增大,由现在的3-10光栅增至40-50块光栅的组合,满足更高精度的光谱分析需求。&rdquo   经过持续的研究努力,多光栅光谱仪已能够被实际应用。据介绍,除了面阵探测器国内目前还做不出来,其它重要部件都实现了在自己的实验室或在国内找到企业进行加工生产。说到这里,显现出了陈良尧教授比较独特的研究态度和模式,陈良尧将项目研究经费的很大一部分用于改造实验室环境,如在高性能光学仪器研究中,将购买高精度数控机床,用于仪器核心零部件的高品质研制和加工,保证质量,这在目前中国大学的实验室还比较少,对此,陈良尧说,&ldquo 这么做一方面是希望提高科学仪器的研究水平和效率,掌握核心技术,另一方面也十分需要培养研究生们的实际动手能力,不仅进行原理和方法创新,还需要采用先进制造技术,在学生时期就有能力亲手把这些仪器做出来,可靠实现创新科学仪器的各种新功能,在这方面与发达工业化国家相比,我国在培养学生具有硬科学技术研究能力方面的差距还比较大。&rdquo   &ldquo 由于高性能探测器价格一直居高不下,不利于大范围普及,目前仅根据一些用户需求进行定制,需要不断解决问题,让用户满意,建立良好的声誉,&rdquo 陈良尧说到。  后记  据了解,在陈良尧教授的研究成果2003年正式发表后,2007年在美国Light Smyth公司的广告中也出现了采用4种不同光栅结构参数组合的二维折叠光谱分析技术。而关于这一中国自主创新原理和技术的产业化途径,陈良尧无奈的说到,&ldquo 产业化的路还会比较长。&rdquo 究其原因,一是关键部件技术的局限,另外国家的支持政策等也是重要原因。就像采访最后陈良尧所说的,&ldquo 希望能够获得国家较高强度的产业化应用研究项目的支持,并与工业界的合作伙伴一起,使得这项技术被产业化,促进我国高性能光谱分析仪器的进步和发展,将会在国际上有自己的地位,产生出中国乃至世界上最好的光谱仪。&rdquo   编辑:刘丰秋
  • 海洋光学推高透光率低杂散光全息光谱
    海洋光学(Ocean Optics – www.oceanopticschina.cn) 推出像差校正全息凹面衍射光栅光谱仪 – Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus 可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。  平场光学设计及全息凹面光栅用于光的色散:Torus 光栅的凹面用于光的反射及汇聚 光栅刻线用于光的色散 光栅的环形设计用于像差校正,提高衍射效率。  Torus 并且具有较高的光学分辨率(1.6nm FWHM,25um 狭缝)和优良的热稳定性(在0-50℃范围内,波长漂移更小,峰型保持基本一致)。  Torus 系列光谱仪可以通过 USB 接口与计算机进行交互控制,可以根据客户需要更改狭缝、滤光片及其它配件来优化配置 也可以通过 C-mount 接口与显微镜等配合使用。与海洋光学的其它光学配件一起,使您的测量更方便,更灵活。  Torus 通过海洋光学的 Spectrasuite 光谱操作软件来进行操作与分析,并且可用于 Windows, Macintosh,及 Linux 操作平台。并且还与海洋光学的 OmniDriver,SeaBreeze 软件开发平台相兼容。
  • 玩光谱的你知道什么是全息平场光栅吗?
    光栅是光谱仪器中的一个重要元器件,它就是光谱仪器的眼睛,它具有色散(分光)和成像的功能。目前光栅在摄谱仪、扫描单色仪、直读光谱仪等广泛使用,目前使用的传统凹面光栅相差偏大, 随着CCD等平面阵列探测器在光谱仪测量设备中的广泛使用,要求分光成像系统形成的光谱像位于同一平面上,科学家们面对这一需求,研发出全新的全息技术,全息平场光栅孕育而生。全息光栅的特点为:(1)无鬼线(传统机刻光栅的光谱中会出现一些不真实的谱线),杂散光极小;(2)分辨率高,由于全息技术使光栅刻线总数大幅度增加,因此色散率、分辨率也大幅度得到提高,此特点对兼顾平场和提高分辨率方面效果显著。当波长范围较宽时,传统帕邢-龙格凹面光栅很难兼顾平场和高分辨率的要求,利用全息记录技术获得的平场光栅(变间距曲线槽凹面光栅),具有校正像差能力,与传统机刻光栅相比,在像差、信噪比和成本方面更具优势,全新的全息平场光栅逐渐引起人们的关注。赛默飞世尔科技是检测领域的世界领导者。它为全球客户提供的优质分析仪器、实验室设备、试剂耗材及创新的实验室综合解决方案。赛默飞世尔在直读火花光谱仪行业拥有超过80年的经验,最近在高端台式直读火花光谱仪3460/4460之后,赛默飞世尔科技利用平场光栅(变间距曲线槽凹面光栅)技术又推出一款全新的全谱直读火花光谱仪ARL easySpark 1160。ARL easySpark 1160全谱直读火花光谱仪可快速的对固体金属样品进行分析。无论从痕量元素,还是到高浓度的元素,它都能准确、可靠的分析。赛默飞世尔在行业内多年的积累,针对有大量金属分析需求的冶炼行业和实验室,设计了这款全新的、更具性价比的全谱直读火花光谱仪,可满足客户在冶炼、汽车、航空航天、铸造等众多行业的生产需求。关于朗铎科技朗铎科技,全球科学服务领域的领导者-赛默飞世尔科技(Thermo Fisher Scientific)中国区域战略合作伙伴。作为工业检测分析系统解决方案服务商,我们致力于为中国客户提供全球高品质的分析仪器、专业的应用技术支持、优质的售后服务等系统解决方案。朗铎科技是赛默飞世尔尼通(Niton)手持式光谱仪在合金/地矿行业的中国区总经销商,也是Niton中国区售后服务及技术支持唯一授权服务商,同时也是赛默飞世尔arl全谱直读光谱仪的中国区总经销商。目前朗铎科技主要产品包括手持式合金光谱仪、手持式矿石光谱仪、全谱直读光谱仪等系列产品。关于赛默飞世尔ARL赛默飞世尔科技(Thermo Fisher Scientific,纽约证交所代码:tmo,以下简称赛默飞),全球科学服务领域的领导者。ARL是赛默飞旗下品牌,1934年生产出世界上第一台火花直读光谱仪,80多年来,ARL以其良好的操控性、稳定性、可靠性和耐用性,引领了直读光谱仪行业潮流,其尖端技术和卓越信誉让arl直读光谱产品销量和市场占有率均居世界同类产品前列。目前全球各大钢铁、有色、石化、建材等客户都选择ARL作为产品质量和生产过程控制的主要手段,中国各大钢铁、有色、科研院所都是ARL的忠实用户。
  • 聚光重大专项“光栅型近红外分析仪及其共用模型开发和应用”正式启动
    2015年4月15日,由聚光科技(杭州)股份有限公司牵头的“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”开题报告会在杭州成功召开。来自浙江省科技厅、国家粮食局质量标准中心、中国药品食品检验研究院、广东出入境检验检疫局技术中心、河南省粮油饲料产品质量监督检验站、浙江大学、杭州电子科技大学的专家和领导,东华大学、三维集团和大北农集团等单位的用户代表,以及项目课题组的代表共50余人参加会议。 开题会现场 会议由陈训龙主持,浙江省科技厅领导发表讲话,聚光科技董事长兼CTO王健发表讲话,聚光科技实验室业务部总经理韩双来汇报项目实施方案。开题报告会紧紧围绕高精度光栅光谱仪研制及工程化、高维形象几何分析的NIR技术研究与软件开发、便携和实验室及在线近红外分析仪器研制及工程化、近红外光谱在粮食(饲料、种子、生鲜猪肉及肉制品)检测应用研究及专用仪器开发、近红外光谱纺织纤维成分无损和药物快速检测应用研究等几个议题展开。 与会专家认真听取了项目组的汇报,并经过质询与专家讨论,专家组一致认为:项目拟研制的科学仪器以需求为牵引,以应用为导向,应用面广,能有效促进经济社会发展和民生改善,带动我国近红外分析技术的发展;该项目所选用技术路线符合量大面广的近红外应用需求,是贴合我国当前国情的合适的技术的路线,经过本项目研究,将形成粮食、饲料、种子、肉类、药品、纺织品等大宗农副产品的综合性检测技术,能够有效的提升整体产业竞争力。与会专家和领导合影 作为此专项的牵头单位,我们是满满的收获和重任,我们有能力有信心推出更适合用户的光栅型近红外分析仪及共用模型尽快面世。 相关产品简介: 关于“国家重大科学仪器设备开发专项—光栅型近红外分析仪及其共用模型开发和应用”更多信息 请关注聚光科技官网www.fpi-inc.com 微信或行业媒体
  • 上海技物所UIRS-1型超高光谱分辨率红外光谱仪亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院上海技术物理研究所的UIRS-1型超高光谱分辨率红外光谱仪、星载成像光谱仪、CCD探测器、高精度成像稳定控制系统亮相国家“十一五”重大科技成就展。UIRS-1型超高光谱分辨率红外光谱仪  超高光谱分辨率红外光谱仪是基于大光程差(±27cm)干涉技术的傅里叶变换光谱仪,具有光谱分辨率、稳定度高、谱段宽和效率高(无狭缝)等特点,能用于温室气体及痕量污染气体的定量检测和大气成分分布垂直探测,将对我国环境探测及资源调查等领域产生重大影响。星载成像光谱仪  该仪器利用离轴三反成像光学、凸面光栅光谱仪和大规模焦平面探测器等技术,中科院上海技术物理研究所研制了宽幅高光谱卫星成像仪原型样机。CCD探测器  国际上规模最大的CCD探测器,是相机成像的核心部件之一。通过它可以将携带着目标信息的光信号转换成便于检测和传输的电信号。高精度成像稳定控制系统  该系统主动探测卫星平台的微小振颤,并把振颤换算成相机光轴的偏转量,通过主动控制补偿卫星平台振颤造成的光轴偏转,保证相机在轨成像的稳定性。  关于中国科学院上海技术物理研究所:  中国科学院上海技术物理研究所始建于1958年10月,以固体物理和固体电子学研究为主要学科,由复旦大学物理系谢希德教授亲自创办和主持工作。1961年1月单独建制,隶属中国科学院;1964年1月,研究方向调整为红外物理与光电应用技术研究;1968年3月,划归国防科工委第15研究所,称1510所;1970年6月,又回归中科院,并恢复原称。现以红外物理与光电技术应用基础、开发为主要研究方向,重点发展先进的空间遥感、小卫星、红外凝视成像、红外焦平面、光学薄膜、微型致冷、及光电信息处理与网络等技术,设有相应的研究室及国家重点实验室10个。
  • 日立分光光度计衍射光栅技术
    日立分光光度计的衍射光栅技术 衍射光栅覆盖了从软X射线到远红外的各种波长,扩展了光谱仪中光学元件的应用领域。日立的衍射光栅在全球多个领域获得了高度评价。比如日本的国立基础生物学研究所的冈崎教授使用90cm*90cm的衍射光栅(刻有36条15cm*15cm的光栅格子)实现了一种人造彩虹,其强度是赤道处太阳光的20倍。此外,美国宇航局发射的探测卫星的极紫外分光光度计采用了日立变间距平面和凹面衍射光栅。 衍射光栅的原理图1衍射光栅衍射的过程衍射光栅是各种光学仪器的核心部件,是一种色散元件,可以将混合了不同波长的光(白光)分成单个波长的光(单色光)。其原理是根据衍射现象将入射处的白光分成不同波长的光,因此单色器中常用光栅作为色散元件。在单色器中,夹缝通常设置在光栅后面,选取特定波长的单色光。在凹面衍射光栅中,一般每毫米有几百或几千个凹槽,如图2所示。图2 凹面衍射光栅 光栅刻划机光栅刻划技术是世界上一种罕见的技术之一,使用机刻光栅能够制造出高质量的单色器。日立优异的衍射光栅刻制技术,能够将光栅刻槽精确到nm级别。光栅刻划机一般使用金刚石刀具,这样制作的光栅衍射效率高,同时凹槽设计具有像差校正功能。详细光栅种类和应用信息请参考:https://www.instrument.com.cn/netshow/sh102446/down_917717.htm 总结日立开发的反射平面光栅和凹面光栅致力于满足前沿科学领域的需求,丰富的产品线能够适应多样化的实际应用。
  • 2011年上半年上市仪器新品:分子光谱类
    相关新闻 2011年上半年上市仪器新品:原子光谱类   分子光谱仪是分析化学和生命科学实验室的常用分析工具,测量的是光与待测样品之间的相互作用情况。光波长在紫外、可见、红外等区域时,样品对光的吸收、发射、反射,特征地反映了样品不同分子振动、转动、及相互作用的一些能级变化,不同分子的这种特征吸收、发射、反射是不同的。  分子光谱可分为分子吸收光谱、分子发射光谱、拉曼光谱,紫外-可见、红外光谱等属于分子吸收光谱,分子荧光、分子磷光等属于分子发射光谱,拉曼光谱属于分子散射。分子光谱技术是非破坏性的,可用于分析液态、气态和固态样品。  2011年的上半年,分子光谱领域新产品新技术不断推出。以仪器信息网新品栏目和相关资讯中发布的分子光谱新产品10多台。其中有4台红外光谱仪、3台近红外光谱仪、2台拉曼光谱仪、3台紫外可见分光光度计、1台荧光分光光度计、5台光纤光谱仪。  从众多新品中可以看出:  (1)方便携带、坚固耐用的小型化仪器是分子光谱仪器发展趋势之一。如PerkinElmer的红外光谱Spectrum Two、HORIBA智能型倒置显微拉曼光谱仪等,特别值得一提的是国产仪器厂商——上海元析推出B-500新型紫外可见分光光度计,采用点滴测试方式,大大的节省试剂用量,是专门针对生物领域试剂金贵而设计的一款专用仪器,最低测试溶液量达5微升。  (2)行业专用仪器越来越多,是分子光谱仪器另一个发展趋势。如天瑞仪器MIR3043P便携式翡翠鉴定仪、必达泰克的Gem Ram TM 系列宝石专用拉曼光谱仪等。  各类产品更多详细内容见如下各分类,排名不分先后。    红外光谱仪:PerkinElmer发布红外新品  PerkinElmer今年隆重推出功能更为强大,扩展更为无限的新款红外光谱产品——Frontier。Frontier拥有杰出的透射谱技术、高超的灵敏度和可配置性,能够确保其在苛刻的应用领域表现优越,能够帮助检测药物的安全,分析复杂的化学材料性能,并能满足研究与学术领域各种严格的要求。Frontier的模块化设计、可再升级功能以及卓越的信噪比,保证其在近红外、中红外和远红外光谱分析中获得最佳光谱性能。PerkinElmer红外新品家族Frontier、Spectrum Two   PerkinElmer近期刚刚推出的 Spectrum Two 便携式红外光谱产品,在突出方便携带,坚固耐用的同时,更创新性的采用了无线控制系统,该系统集成了依照ASTM等要求建立的一系列标准方法,使得用户可以一键式完成检测。Spotlight 红外成像系统  利用PerkinElmer光学技术的灵活性,可以随时将Frontier 升级到Spotlight 红外成像系统,该系统将轻松完成材料微观表面信息与化学成分组成同步采集工作,并能够直观显示出同质与异质区域,从而加速材料表征分析的研究进度。天瑞仪器便携式翡翠鉴定仪面市MIR3043P便携式翡翠鉴定仪  2011年7月,天瑞仪器珠宝首饰检测系列2011年度新品——MIR3043P便携式翡翠鉴定仪正式向市场投放。MIR3043P是一款利用红外线谱分析原理,专用于检测翡翠A、B货的便携型光谱仪器,可实现对手镯、玉佩等翡翠饰品的快速鉴定,检测全程仅需10-60秒,且不会对样品造成任何损害。  MIR3043P首次将可变波长滤波器技术引入了分析测试仪器,辨假准确率可达100%。再加上微机电MEMS技术的应用,从而实现仪器的小型化,整机质量只有5 kg。另外,高发光效率的红外光源、高灵敏度红外热释电传感器、全数字调制解调等术的引入也为检测数据的精准和可靠保驾护航。  近红外光谱仪:FOSS发布两款新的近红外分析仪  2011年7月,福斯集团公司在全球发布两款高性能的多功能近红外分析仪, NIRS DS 2500 和NIRS DA 1650。这两款新一代的近红外分析仪具有以下主要特点:NIRS DS 2500多功能近红外分析仪  NIRS DS 2500光谱扫描范围宽(400-2500nm)。无论测试蛋白、水分还是高要求的指标,如纤维、灰分、氨基酸,NIRS DS 2500均可在1分钟内给出快速、准确的测定结果,确保了原料收购、生产控制和产品质量控制。  NIRS DS 2500预装定标模型,可分析多种类型样品。NIRS DS 2500 可以完全兼容NISYSTEM II分析方案和XDS分析方案,确保很好利用已有的NIR SYSTEM II和XDS数据库,直接整合,而不损失测试性能。NIRS DA 1650多功能近红外分析仪  NIRS DA 1650是一款二极管阵列型近红外分析仪,扫描范围为1100-1650nm,适合于对水分、蛋白、脂肪等指标做准确的分析,它完全兼容福斯其他的近红外分析仪,例如InfraXact 和ProFoss在线分析仪,确保定标数据的快速使用和整合。赛默飞世尔科技推出用于药品加工的全新近红外光谱仪Thermo Scientific Tru Process近红外光谱仪  2011年3月29日,赛默飞世尔科技有限公司今日宣布推出全新Thermo Scientific TruProcess分析仪——适用于实时混合分析、干燥及其他过程分析技术(PAT)应用的近红外光谱仪。Truprocess采用微电子机械系统(MEMS)技术,将传统的近红外光谱仪转化为生产线近红外传感器。Truprocess体积小,重量轻,可以与绝大部分的的药品加工设备相连接。它具有集成的位置传感器和无线通信,可以在一秒钟内完成扫描,有能力监测高达25RPM转速的混合。该分析仪也可与Thermo Scientific Method Development 软件相兼容,适用于定性分析和包括干燥、混合和水分分析在内的定量应用。  拉曼光谱仪:必达泰克推出Gem RamTM 拉曼珠宝识别系统Gem RamTM 拉曼珠宝识别系统  2011年7月,必达泰克推出宝石识别拉曼光谱仪系统—— Gem Ram TM 系列宝石专用拉曼光谱仪,轻巧便携,可以探知位置宝石样品的类型,并进行初步鉴定。配备了BWTEK公司的高性能拉曼光谱仪和GEM ID系列光谱库搜索识别软件,并且内置了GEM EXPERT机构提供的300多种宝石标准物拉曼光谱库和图片,可以方便的识别样品的相关信息。  本拉曼光谱仪系统采用785nm激光作为激发光源,配有光纤拉曼探头和采样附件,可以方便而准确的采样样品的拉曼信号,配备小型笔记本电脑,方便对仪器进行操控。所有的仪器和配件均集成在一个方便携带的检测箱里。集成度很高,方便现场使用。HORIBA新款智能型倒置显微拉曼光谱仪智能型倒置显微拉曼光谱仪XploRA INV  HORIBA Scientific发布了最新的智能型倒置显微拉曼光谱仪XploRA INV。XploRA INV 继承了XploRA 高自动化和结构紧凑占地面积小的优势,同时还具有倒置显微镜独有的分析功能,对于难度大、要求高的生物样品研究具有特别重要的意义,例如细胞研究、癌症探测、细胞内药物活性的表征、微反应器监控等。此外,XploRA INV 系统能够方便的和AFM联用,进行Raman-AFM联合分析以及TERS(针尖增强拉曼光谱)分析,使得超高空间分辨率的结构分析以及样品表面形貌分析得以同时实现。  紫外可见分光光度计:Dynamica (Asia)紫外可见双光束光度计DB20R面世DB20R紫外可见分光光度计  2011年7月,dynamica (Asia)生命动力亚洲有限公司新款DB20R紫外可见分光光度计DB20R面世。DB20R在原有DB20以及DB20S的基础上,增强了软件的控制优势,由电脑控制主机,可针对DNA/RNA以及蛋白方法做补充,功能强大,控制和存储数据更加便捷。DB20R采用实时双光束光路设计,重现性好,性价比高,操作方便,附件多样。RIGOL推出Ultra-6000系列紫外-可见分光光度计Ultra-6000系列紫外-可见分光光度计  2011年6月8日, RIGOL委托中国分析测试协会在RIGOL科技园区组织召开了RIGOL Ultra-6000系列紫-可见分光光度计专家鉴定会。RIGOL Ultra-6000系列紫外-可见分光光度计杂散光超低、重复性好、信噪比高、软件功能齐全、外观设计美观。该仪器整机结构均为自主设计,关键技术具有自主知识产权,整机主要性能指标达到国外同类产品水平。上海元析仪器有限公司推出新型紫外可见分光光度计超微量紫外可见分光光度计(BIO SPECTROPHOTOMETER) B-500  2011年,上海元析仪器有限公司推出新型超微量紫外可见分光光度计(BIO SPECTROPHOTOMETER) B-500。B-500采用点滴测试方式,大大的节省试剂用量。专门针对生物领域试剂金贵而设计的一款专用仪器,最低测试溶液量达5微升。适于DNA、RNA、蛋白样品无稀释的快速检测。  荧光分光光度计:上海棱光技术有限公司推出新品F97系列荧光分光光度计F97系列荧光分光光度计  F97系列荧光分光光度计是上海棱光技术有限公司最新研制成功的高端荧光分光光度计产品,采用双单色器、带激发光监视系统的比例双光路设计,150W滨松高品质氙灯、采用1200线/mm凹面光栅和大孔径非球面反射镜分光系统。软件设计包含多种分析功能。同时丰富的附件大大扩展仪器的应用范围,可支持液态、粉末、薄膜样品的测量,可对产生荧光互淬灭的高浓度样品实现测量,可对少至5μl的微量样品实现精确测量,也可配备自动进样系统等。产品体积小巧、结构紧凑、具有检测灵敏度高、扫描速度快、光谱测量范围宽、检测动态范围大和快速三维扫描等特点。  光纤光谱仪:必达泰克正式发布Sol™ 2.6系列光纤耦合InGaAs阵列光谱仪Sol™ 2.6Sol™ 2.6阵列近红外光谱仪  2011年1月4日,必达泰克正式发布Sol™ 2.6系列光纤耦合InGaAs阵列光谱仪。Sol™ 2.6光谱仪采用高性能线阵256元InGaAs阵列,具有高灵敏度和高动态范围的特点,致冷温度-15°C,标准光谱范围1550-2550nm。该型光谱仪最大的优势是配备自动校零功能、极低的噪声和高动态范围。四种光谱获取水平,在弱近红外应用中能够获得非常好的测量效果。Sol™ 2.6光谱仪同时配备了三级致冷,无需外部控制模块,可以直接5V DC供电,使用和集成更为方便,体积更小。Sol™ 2.6系列光谱仪在同级别的光谱仪中,具有最低的坏像素水平,非常适合应用于过程监控、质量控制和生命科学领域。杭州晶飞科技有限公司推出近红外光纤光谱仪近红外光纤光谱仪FLA6800  2011年5月,杭州晶飞科技有限公司推出近红外光纤光谱仪FLA6800,外观紧凑小巧,即插即用,操作方便,具有先进的电子系统和功能强大的探测器,高速数据采集电路系统。它的特点在于具有16位高精度高速A/D转换器、4K深度FIFO系统和USB2.0高速数据传输接口,可快速把仪器采集的数据上传到PC机中进行数据处理及显示。当通过USB与计算机连接时,将依靠计算机供电,无需外接电源,非常适合野外测试的需要。海洋光学推高透光率低杂散光全息光谱Torus 系列像差校正全息凹面衍射光栅光谱仪  2011年4月,海洋光学推出像差校正全息凹面衍射光栅光谱仪——Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。Torus具有较高的光学分辨率(1.6nm FWHM,25um 狭缝)和优良的热稳定性(在0-50℃范围内,波长漂移更小,峰型保持基本一致)。海洋光学推出低成本高性能的STS微型光谱仪海洋光学STS OEM 微型光谱仪  2010年2月25日,海洋光学研发了一种低成本、高性能的基于 CMOS(互补金属氧化物半导体)传感器的光谱仪。虽然 STS 的体积很小,只有40mm x 42mm x 24mm,但是它的功能表现丝毫不逊于大型系统。主要特色:低杂散光的全光谱分析、高信噪比(1500:1)和典型1.5纳米 (FWHM) 光学分辨率。STS 光谱仪有350-800纳米和650-1100纳米两种标准配置。北京爱万提斯科技有限公司推出超高灵敏度的光纤光谱仪新品超高灵敏度的光纤光谱仪(AvaSpec-Sensline)AvaSpec-ULS2048x16  2011年1月,北京爱万提斯科技有限公司推出超高灵敏度的光纤光谱仪新品(AvaSpec-Sensline)AvaSpec-ULS2048x16。AvaSpec-Sensline是一款为了满足一些有苛刻要求的用户而设计的具有极高灵敏度的高性能光谱仪。AvaSpec-Sensline光谱仪基于Avantes公司的超低杂散光AvaSpec ULS型光学平台,采用薄型背照式CCD探测器,量子效率高,在拥有超凡的高灵敏度的同时还具有极低的杂散光。AvaSpec-Sensline系列最先推出的产品为AvaSpec-ULS 2048x16-USB2和AvaSpec-ULS 2048x64-USB2两种。AvaSpec-Sensline光谱仪通常可用于要求极高灵敏度的光学测量,比如荧光测量和拉曼光谱测量以及弱光测量领域。  了解更多光谱仪器,请访问仪器信息网光谱专场  了解更多新品,请访问仪器信息网新品栏目
  • 蓝菲光学超均匀面光源助力机器视觉相机校准
    1、背景介绍 近年来,随着工业4.0及人工智能的发展,越来越多的自动化设备被广泛应用于生产过程中。工业4.0离不开智能制造,我国在2015年提出的“中国制造2025”宏伟计划中,第一项战略对策就是“推行数字化网络化智能化制造”,而智能制造中,最核心的一环就是机器视觉。机器视觉是指通过机器来模拟人眼的功能,对客观事物进行信息提取,处理和分析,最终实现检测和判断,最终交给计算机进行控制。中国是机器视觉产业发展最为迅速的国家,目前已经在工业,航天,医疗,交通,科研等诸多行业进行了广泛的应用。图1 机器视觉代替人眼二、目前机器视觉存在问题 典型的工业机器视觉系统包括:光源,镜头,相机,图像采集卡,软件,监视器,输入/输出等。对于光学检测来说,机器视觉系统的性能主要取决于系统中光学相关部件,比如光源,镜头,相机等的性能。此外,光学检测要求的精度一般都较高,但是大多数相机在出厂时,并没有专门针对光学检测应用进行专门校准,往往会导致机器视觉系统的精度达不到要求,结果会出现误差。 比方说,如果将刚出厂的工业相机对着一个均匀照明的发光面进行拍照,拍摄出的图像四个角往往会出现暗区,这主要是由于相机镜头的余弦响应造成的。此外,由于相机传感器(CCD/CMOS)的非均匀性,也会导致对均匀光场成像的时候,图像的亮暗,颜色不均匀,如下图所示。以上这些因素,都会导致在一些精密的光学检测(比如平板显示检测)时,检测结果和真实情况出现较大偏差。图2 校准前相机平场响应 除此之外,相机对于不同亮度的线性响应也不同。由于相机输出的信号是灰度值,并不具有真实的物理意义。因此,在做光学检测(比如说亮度检测时),需要对相机进行线性度和亮度标定,建立起相机灰度信号和真实亮度的关系曲线。三、工业相机校准解决方案 为了解决以上机器视觉系统中存在的问题,提高机器视觉系统,尤其是AOI等光学检测系统的精度,欧洲机器视觉协会EMVA提出了《EMVA1288:成像传感器和相机性能表征标准》,其中介绍了如何对成像传感器及相机的空间不均匀度,灵敏度,线性度和噪声等一些列指标进行表征和校准的办法。其中明确写到:“最好的均匀光源是积分球均匀光源”,且推荐“光源的均匀性要大于97%”。图3 蓝菲光学相机平场校正方法 用户在使用时,只需要相机对准均匀光源的开口,拍摄一张图像,再经过算法进行计算,就可以对相机的均匀性进行校正,这一过程称为平场校正。经过均匀光源校准后,相机的均匀性可以显著提高。如下图所示,为一个工业相机经过积分球均匀光源校正前后相机的均匀性测试结果。从图中可以很明显看出,校正前相机的均匀性较差,中心场的响应优于周边的响应。校正后相机平面内的响应一致。相机校正前 相机校正后图4 工业相机经过蓝菲光学LED 积分球均匀光源系统平场校正前后对比 四、完美的积分球面光源 工业相机的精度决定了机器视觉系统的检测精度,校准光源的均匀性决定了工业相机的精度。越是均匀的积分球光源,经过其校准后得到的相机均匀性越高。根据积分球的原理,入射到积分球的光在积分球内部进行多次反射,最终在输出端口得到亮度,色度都完全均匀的面光源。积分球的出光口均匀性主要取决于以下几个方面:1.积分球内壁材料的反射特性。材料的反射特性可以分为朗伯反射,镜面反射和混合反射。由积分球原理可知,积分球内壁材料反射特性越接近朗伯特性,其开口处均匀性越高。此外,当入射光是宽谱光时(比如白光),材料的光谱反射一致性决定了开口处的色度均匀性,材料的光谱反射率越一致,也就是对各个波长的反射率越一致,开口处的色度越均匀。2.积分球的设计。如何设计积分球的尺寸,入射光的位置,挡板的位置和方向,都会影响积分球开口的均匀性。 蓝菲光学积分球均匀光源Spectra-CT提供了一种超均匀,高动态范围,亮度/色温均可精细调节的面光源。该积分球光源采用蓝菲光学独有的高反射率完美朗伯反射材料Spectraflect,基于蓝菲光学40余年的光学系统开发经验,精细的积分球结构设计,是机器视觉相机校准的完美解决方案。其主要具有以下特点:出光面超级均匀,均匀性大于99.5%系统输出稳定性高,稳定性达0.1%亮度线性可调节,可实现从微弱光0.1cd/m2至25000cd/m2的亮度输出色温动态可调节,可实现从低色温2700K到高色温7500K的输出自带亮度监控,实时观测亮度输出情况软件实现光源和探测器的全部控制,界面简单易用,可提供控制指令供二次开发。系统还可定制各类色温,亮度,单色光,大视场角等不同参数的光源图5 蓝菲光学LED 均匀光源系统(Spectra-CT)及开口处光斑亮度分布 Spectra-CT LED积分球均匀光源是均匀性较高的面光源,其卓越的性能可以满足EMVA1288要求的相机均匀度,线性度,信噪比,动态范围等诸多参数测试。是从研发到生产,各类工业相机的理想校准光源。
  • 发展中的双面光伏发电
    什么是双面光伏?通过超越全球能源发电容量的吉瓦数(GW),双面光伏正慢慢找到成为主流的方向。并且,越来越多收集到的组件性能数据都有助于获得更可靠的效率增益预测。我们在本文中尝试概括叙述了双面光伏领域中的当前研究、亟待解决的疑问以及技术开发等问题。相见于“另一面”过去二十年间,光伏(PV)已发展成为一种成熟的技术,因此很难再有大幅度的效率提升。如今主要依靠缩减投资和运营成本来实现降低平准化度电成本(LCOE),而非通过技术进步提高 PV 电池的能源输出。然而,能显著提高 PV 电池效率的比较可靠的方法是将组件的背面也用于发电。因此,在不扩大组件占地的情况下,可同时利用反射或漫射的阳光进行发电。人们似乎已对双面光伏的巨大潜能达成了共识。但是,在能量输出增益的模拟和测量方法尚未普遍建立的情况下,通过双面 PV 组件预测的效率增长有着很大差异;这取决于假设的系统设置、地点和表面反照率以及所用的模拟算法。 双面光伏发电如何作用?其主要理念很简单。除了用 PV 组件的一面来收集太阳光线外,还可通过背面采集来自多个角度的反射和散射光线以生产更多电力。除了对背面材料和内部互联进行相应调整外,电池技术和几何结构均以经验证的单面组件原理为基础。也就是说,在未来 10 年内,双面 PV 很可能从一个发展远景顺利转变为被广泛应用的技术,且预计世界市场占有率将高达 30-50%。 发展中的双面光伏发电优化会对另一面的性能产生负面影响。因此,为双面 PV 电厂寻求理想设置是一个复杂的挑战。由于倾角是组件效率的一个重要因素,前后面的理想角度可以不同。 另一个参数则是组件的长度和各排组件之间的距离,即地面覆盖率(GCR)。适应太阳光束入射角度的高 GCR 值通常可提高一个发电厂的效率。但即使对单面PV 发电厂而言,较高的 GCR 值也会在太阳高度角较低的早晨或傍晚时分发生相互遮挡的情况。对于双面光伏发电厂,遮挡则是一个更大的问题。理想状态是在各排组件之间有足够的空间形成一个大小适合的表面,使地面反射不被遮挡。可是这将降低地面覆盖率和电厂的单位面积输出。 与组件设置相关的参数还包括建筑高度和扭力管。扭力管的作用是跟踪 PV 组件,因此应将双面组件放置于更高的位置,从而对更多来自地面的多角度的反照辐射光线进行转化;但建设成本也将由此增加。这一概念也同样适用于为了避免安装件构成遮蔽而修改扭力结构。 尽管早在 20 世纪 60 年代便已对双面 PV 电池进行了研究和开发,其被广泛使用的时代仍未到来。市场观察员们的普遍解释是,与单面系统相比,双面系统缺少可信赖的产量增益计算方法。因此,投资者们继续观望,因无法完全知晓准确的效率提升,而犹豫是否以更大的规模推动双面系统。即便在大数据和机器学习的年代,组件背面的太阳能辐射模拟仍是一项复杂的任务。因此,全世界的公司和研究机构持续对各种不同潜在相关参数及其对能量输出的影响进行调查研究。除了符合其他标准外,这些研究项目还覆盖了:● 地面反照率的影响● 背板材料● 系统设置和组件的几何结构● 测量背面的太阳能辐射● 系统设置&组件几何结构在单面 PV 组件中,被转化为电力的太阳光束直接来自天空。与之相反,双面组件的背面则收集在阴影迷宫、地面纹理和结构型障碍中穿行的光线。而对一面太阳辐照度进行优化会对另一面的性能产生负面影响。因此,为双面 PV 电厂寻求理想设置是一个复杂的挑战。由于倾角是组件效率的一个重要因素,前后面的理想角度可以不同。另一个参数则是组件的长度和各排组件之间的距离,即地面覆盖率(GCR)。适应太阳光束入射角度的高 GCR 值通常可提高一个发电厂的效率。但即使对单面PV 发电厂而言,较高的 GCR 值也会在太阳高度角较低的早晨或傍晚时分发生相互遮挡的情况。对于双面光伏发电厂,遮挡则是一个更大的问题。理想状态是在各排组件之间有足够的空间形成一个大小适合的表面,使地面反射不被遮挡。可是这将降低地面覆盖率和电厂的单位面积输出。 与组件设置相关的参数还包括建筑高度和扭力管。扭力管的作用是跟踪 PV 组件,因此应将双面组件放置于更高的位置,从而对更多来自地面的多角度的反照辐射光线进行转化;但建设成本也将由此增加。这一概念也同样适用于为了避免安装件构成遮蔽而修改扭力结构。
  • 南通智能感知院:高精密凸面闪耀光栅、高光谱等多项成果凸显 市场可期
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。南通智能感知研究院(简称“感知院”)坐落于风景秀美的紫琅湖畔,依托星载高光谱团队,结合南通创新人才培养、高科技产业转型升级的需要,于2019年11月1日揭牌成立,设置有数十个专业实验室,拥有5位院士和多位国家级专家组成的人才队伍,以光机电核心元部件、规模化光电探测系统、集群化商业卫星为主要发展方向,推动南通光电及航天产业发展。感知院充分发挥专家团队多年在红外、高光谱等成像探测感知领域的技术优势和航空航天有效载荷方面雄厚的研发积累,在南通建立高光谱遥感产业发展基地。在光机电核心组部件、规模化光电仪器研发和集群化商业卫星领域,补齐南通航天全产业链中的“载荷、数据”两个重要环节,促进航天遥感产业中光谱类载荷及数据的规模化制造与获取。聚焦“智能感知”领域技术研发、人才培养及产业转化,探索科研体制机制创新,提供感知探测及其配套技术、材料、部件、应用数据、软件与设备的研发等相关服务,推动光电感知和遥感技术的产业转化,进行相关学科研究生培养、继续教育与学术交流,支撑国家航天产业和空天信息技术规模化发展。以光栅微纳部件、精密光机、数字化光电仪器制造、天空地一体化即时探测、遥感大数据处理应用等核心部件和技术的研发为主,集聚多方资源,构建核心软硬件、数据获取、信息处理、信息应用全链路光电仪器研发、数据收集中心和智能遥感云服务平台,形成面向终端客户不同层级的“共建、共享、共用”智能遥感产业体系。以智能化微光/红外感知组件、微小型制冷机、精密测角装置等核心部件的研发为基础,发挥红外探测技术优势,研制高性能可迭代的“云台+嵌入式+红外/微光仪器+自动处理提取+远程传输操控”系列高端产品。应用于边防管控、城市监控、森林火灾监控、夜间生态监测、油气泄漏监控、智能预警探测等领域,开拓智能安防市场,构建面向系统应用的智能安防产业体系。一、成果简介成果一:高精密凸面闪耀光栅成像光谱仪将成像技术和光谱技术结合在一起,可同时获取目标物体的空间信息和光谱信息,具有高分辨率、测量范围广等优点,被广泛的应用于地质观测、矿物识别、水体水质监测、土壤土质监测、农作物长势与病虫害监测、碳排放监测、植被覆盖、环境污染监测、灾害应急监测等行业领域。分光系统是成像光谱仪的关键部件,直接决定了光谱仪的结构与性能。成像光谱仪的光谱分辨率越高,对地物的分辨能力就越强;当光谱分辨率需要细分到“纳米”量级时,基于多刻槽衍射效应的凸面光栅分光的难度急剧增大,然而高性能凸面光栅的制备技术受制于国外,严重制约我国自主星载高光谱相机的发展。为解决该技术瓶颈,感知院项目团队开展了:电子束抗蚀剂涂布、槽形角度变化及低深宽比槽形控制技术、高精度光栅槽形不同介质转移技术、均匀性金属反射膜镀膜技术、高精度检测等核心技术研究攻关,填补了电子束凸面光栅国内技术空白,与同类型的进口光栅比较,性能达到了国内领先、国际先进水平,面型加工精度及部分波段衍射效率等指标优于进口光栅,实现了可见光/红外宽谱段高精密凸面光栅制备核心技术的自主掌握。目前已经制备了一系列凸面/凹面光栅,已经应用到星载、机载、手持设备上。成果二:轻小型制冷机在红外光电载荷中,核心红外探测器件及光学系统需要工作于低温环境下,需要针对整个仪器及其关键部件进行科学的热规划、热设计和热实施,提升仪器性能,保障仪器可靠工作。因此,低温制冷机、高效传热元件及以此为基础的载荷仪器热管理系统是当代先进红外仪器载荷应用的核心支撑技术。特别是随着商业航天的蓬勃发展,卫星载荷趋于小型化、模块化、标准化,要求服务于商业小卫星的红外光电系统朝着低成本、紧凑化方向发展,亟需低温制冷机向着小型化、规模化、通用化方向予以发展。同时,低温集成技术是降低红外光学系统背景噪声、提高探测灵敏度的重要保障;也是红外探测仪器核心竞争力之一。感知院在产业化需求的牵引及其技术孵化下,突破了轻小型制冷机核心关键技术,形成制冷机数字化设计仿真分析平台,实现轻小型、超低温制冷机样机及制造工艺规范。开发了轻小型线性斯特林制冷机产品,性能指标达到国际先进水平;具备全周期免维护的超高可靠性,冷指接口标准化设计、集成式耦合结构,通用性强,热流密度高、温差小、能耗极低,适应性好等优点。目前已逐步实现产品规模化生产,处于行业领先水平,能有效支撑红外光电载荷产业化发展!成果三:光电芯片模组红外探测器和光学镜头组成的红外光电探测系统可以突破人类视觉局限,能在完全黑暗、烟雾、粉尘等环境下观测物体,实现全天候、全天时工作,广泛应用在军事和民用的诸多领域。探测器模组是高端红外光电探测系统的核心部件之一,直接决定了探测系统的结构和性能。相较于非制冷型探测器模组,制冷型探测器模组在探测物体信号时具有灵敏度更高、精度更高、误差更小、检测温度范围更广的优势。近几年我国的红外产品市场发展很快,但由于核心器件(如制冷型探测器)一定程度上依靠进口,价格、质量和维护等因素严重地制约了国内红外产业的发展和市场的广泛推广,远不能适应国内日益增长的市场需求。感知院基于上海技物所成熟的红外技术,以院内的VOC气体检测、中海油等项目所需的高性能制冷型长波红外机芯为设计输入,开展长波红外探测器组件项目的研发,旨在打破国外对红外技术垄断局面,解决国外进口限制、价格高昂、供货周期无法保证等问题,突破关键核心技术,实现高性能制冷型红外机芯国产自主和批量化生产。成果四:遥感大数据处理随着遥感数据在空间、时间、光谱和辐射等维度的分辨率越来越高,数据类型越来越丰富,海量数据呈井喷式爆发增长。另一方面,虽然全球尺度的遥感大数据设施蓬勃兴起,但是面向区域发展的区域高分辨遥感大数据设施和服务体系较为缺乏,严重制约遥感信息与社会经济数据的综合利用程度,导致相关产业链不够完善,不能满足行业发展的需求。当前遥感大数据发展主要存在以下两个方面的制约,一是遥感大数据设施的缺位,二是遥感数据吞吐速度、处理能力、算法效率与精度稳定性等瓶颈问题。这两方面均为当今区域遥感大数据建设中亟需解决的技术难题。感知院遥感大数据处理系统对遥感数据进行横向光谱偏差处理,盲元判别与修复、Etalon效应测试与处理、非均匀性校正和低信噪比波段的降噪处理,利用大气校正辐射计定标及数据处理联合应用技术对日数据预处理、对地数据预处理、大气参数反演,遥感应用复查等等一系列处理流程,生产出横向光谱偏差、盲元修复率、相对辐射校正精度的数据产品。目前已研制出相对辐射校正、盲元判别和修复、光谱横向偏差校正等核心算法一套;研制出GF-5星高光谱数据从L0到L1级产品生产软件一套;成果五:高端光电探测系统现有的自主国产高端仪器无法实现行业对高精度定量化遥感的需求,目前民用高光谱设备或核心部组件绝大多数都是进口产品,全面自主可控的高端仪器研发和需求是当下行业相关单位急迫需要解决的问题。感知院研制出的高精度、高性能、轻小型机载轻型高光谱相机,可模块化组装,适用于低空/高空,轻型/大型飞机高光谱遥感作业,可选择机上定标装置、惯导、嵌入式数采终端,并具有良好的温适性;研制出的多功能地物快筛扫描仪,采用高精密凸面闪耀光栅、光谱纯度高、畸变小、信噪比高、光源稳定无杂光干扰、分辨率高、数据精准;协同启东光电遥感中心自主研发出高精准、高性能、定标、反演、照明、测距一体专业级全反射波段手持式光谱仪,内置激光测距模块,实时显示被测物体观测范围,具备快速自定标及反演、终端互联远程支撑、超长待机功能;研制出多模态、大动态微光红外监测相机,可应用于边防哨所、口岸海岸、各种重要区域。二、产业化探索经过三年多的发展,感知院已在高精密光栅、红外探测器、轻小型成像光谱仪、微小型低温制冷机、微光夜视红外系统、遥感大数据等核心组部件仪器与遥感数据处理方面,形成了系列产品。1.高精密闪耀光栅产品方面,具备球面闪耀光栅产品自主研发能力,突破国外进口元器件的“卡脖子”技术,掌握自主的核心工艺控制方法。目前承担众多国家项目及课题,包括:国家重点研发计划凸面光栅课题、静止轨道全谱段卫星凸面光栅研制、产业化凹面光栅项目、核工业研究院凸面光栅项目、环保部生态环境检测凸面光栅项目。所研制光栅涉及可见、近红外、短/中/长波红外、甚长波红外,刻线密度覆盖十几线至一千多线。在中科院上海技术物理研究所以及相关航天工程单位牵引下,持续开展高精密光栅的国产化、低成本化制备技术研究和星载凸面光栅产品研制,预计未来三年产品销售额可达到1.2亿元至1.8亿元。2.微小型制冷机方面,形成不同应用场景下微型斯特林制冷机系列产品(例如:WS50090微型斯特林制冷机、WS100080微型斯特林制冷机等产品),突破了轻小型制冷机关键研制技术,形成了微小型制冷机规模化研制能力。未来3-5年,预计市场销售可达到8000万元—1.2亿元。在已有的企事业单位合作基础上,开展相关规模化、低成本化制造技术研究,在不断扩大红外探测微型制冷机市场需求的同时,将先进仪器热管理技术逐步推广到医疗低温冷箱领域,以及大数据中心散热节能减排领域,为碳中和碳达峰、绿色低碳数字经济提供技术支撑。至2025年,完成研制轻小型斯特林制冷机产品化定型、工艺体系建立,市场销售额不少于3000万元/年;至2030年,打通制冷机上下游产业应用,实现商业化推广,形成轻小型制冷机组件、热管、散热模组等产品的规模化生产,市场销售额不少于1.5亿元/年。3.光谱仪产品方面,感知院先后与国家、省、地方等40多家单位形成了广泛的技术研发和市场合作关系,如生态环境部卫星环境应用中心、上海航天电子技术研究所、核工业北京地质研究院等。目前已达到覆盖太阳辐射波段(可见、近红外、短波)的高光谱相机及软件算法的自主研发能力。未来3-5年,结合重点示范区域高光谱探测仪系统的需求,逐步扩大应用场景,拓展和实现后期全国范围内600-1000个典型区域的实地应用,相关产品的产能提升到400-500套/年的规模化生产,年销售额达1.2-1.5亿元以上,从行业应用产品转向民用高光谱产品,实现产品的规模化、批量化生产,向年销售3-4亿元迈进。4.商业遥感卫星方面,积极推动航天遥感商业卫星的整体规划和研制工作,协同江苏高分产业联盟和相关单位,积极争取实现1-2颗遥感商业卫星的研制及发射工作,通过有效获取和分析数据,重点服务江苏省和南通遥感应用及大数据等相关领域和单位,逐渐推行航天遥感商业产业链在南通当地的宏观/微观形式集聚。未来,感知院将持续推进批量化和低成本化,持续开展相关技术创新,持续扩大光电遥感仪器产能,持续拓展核心技术服务领域,实现从政府行业部门牵引式应用扩大到民品市场普适性应用,争取实现产品销售和市场达到4亿。商业遥感卫星方面,持续推进和实现星空地一体化、遥感大数据的全面服务和应用,并以行业应用为基石,实现百余颗航天遥感商业卫星的研制和发射,满足天级重访周期的全方位遥感数据覆盖,打造遥感大数据服务云平台,凝聚国内乃至国际遥感相关领域专家和团队,有效推动和实现航天遥感产业集聚,全面实现全国各省市、核心国企(例如北大荒集团、银河航天)、政府资本、民营资本等不同领域的联盟合作和分工协作,助力和推动航天遥感大产业的落地,切实提升南通百亿级光电产业集群的影响力和社会效益,争取实现产品业务体量15-30亿元。三、未来研究计划最看好的光谱技术是高光谱成像技术。高光谱成像就是收集并识别物质光谱指纹的技术,是以精细的光谱分辨率表征物质不同光谱吸收或发射特征的重要探测手段,是人类实现从“看到”到“识别”物质的得力“探针”。这些“探针”对不同光线波长的感知程度可细微到“纳米”级,能够帮助人类从一公里外看到米粒大小物体上的300多种颜色,而人眼能看到的颜色一般只有7种。与可见光相比,高光谱技术增大了波段幅宽的同时,减小了光谱弯曲畸变、提升了探测灵敏度,已经在水体水质监测、大气排放、探物找矿等领域实现了精细化分辨和大覆盖范围的业务化实用化的应用。未来感知院重点主攻方向如下:1.微纳光栅领域,未来三年内,计划将凸面光栅应用由太阳反射波段扩展至地球辐射波段,即拓展至紫外和甚长波红外波段;同时突破人工智能AR设备的核心元件“波导光栅”的研制工艺,缩短波导光栅元件的定制周期,完成小型AR样机的研制,实现AR设备数字化生产。2.制冷机领域,未来三年内,建立制冷机设计多物理场耦合的联合仿真模型,进一步改进微型杜瓦封装技术,建设低成本、批量化制冷机中试工艺线;至2025年持续进行技术突破,完成研制轻小型斯特林制冷机产品化定型、批量生产。在上述基础上,引入3D增材制造等新型工艺技术,建立通用标准件库、在线质量监测、柔性自动化装配等批量化制造工艺规范,实现低成本轻小型制冷机研制生产线,进一步实现产业化,形成轻小型制冷机组件产品规模化生产。3.探测器领域,将成熟的星载探测器技术进一步向民用化、市场化、规模化转化,突破探测器驱动及信息获取电路模块化设计关键技术;开发高性能、低功耗、低噪声、大动态范围、轻小型探测器模组,形成特有的多功能、多系列“拳头”产品,进一步降低制造成本,形成批量化生产能力。4.遥感数据处理领域,在现有基础上,搭建由高性能服务器和高容量存储设备组成的基础设施,系统数据运算能力每秒可达到1560万亿次,数据存储能力达到PB级。开展天空地一体化遥感大数据处理算法和应用软件的研发,攻克多源数据高精度配准难题,攻克遥感大数据高效训练与算法提升关键技术。在未来5年内形成面向行业大众的遥感云服务平台,形成多个行业的业务化应用示范。5.高端光电探测系统领域,在已开发出的光电探测系统基础上,采用“销售一代,预研一代”的推广模式,专注于自主迭代升级的技术研究,开展多模态一体化技术、多模信息融合、大动态范围自适应以及模块化设计的研究,建立系统全链路数字化孪生模型,为已有的用户提供各类增值迭代服务,不断拓展潜在应用领域。四、合作需求希望与多方合作:1.光谱仪的各组部件供应商(包括元器件、机械加工件、镜头、整机组装定标调试等厂商);2.遥感数据应用团队(农业土壤有机质氮磷钾、杂草、水质检测)联合开发面向农业、水质监测、环保方向的应用示范平台;3.面向土壤应用、水质检测、环保检测等研发团队开展高光谱设备的租赁合作;4.创投类和科技创新类基金的支持。(联系人:李先生 17712225916)附:专家简介和团队介绍经过三年多的发展,形成了院士领衔指导发展。形成多位院士(业内具有崇高的威望和影响力的匡定波、童庆禧、薛永祺、沈学础、褚君浩等院士)和顶尖专家领衔的高层次、高水平专业人才团队。专业覆盖遥感技术、光电仪器、微纳光学、微电子、电子信息、机械结构、制冷工程,计算机和数据处理等与光电遥感技术及应用相关的学科领域。专家团队具有多年丰富的机载/星载多光谱、高光谱及红外相机的研制经验,在国际上率先解决了星载高光谱成像载荷难以同时兼顾宽谱、宽幅、高光谱分辨率和高探测灵敏度的技术难题,打破国外在核心关键技术上的长期封锁,性能指标国际领先,成果已广泛应用于国家相关行业部门、科研院所和骨干企业,以及国外相关知名机构。匡定波:南通智能感知研究院特别顾问。中国科学院院士,红外及遥感专家,1991年当选中国科学院学部委员(院士)。现任中国科学院上海技术物理研究所研究员,博士生导师。是我国红外与遥感技术的领路人,他的学术思想和科学成就开创了中国红外应用及遥感技术领域的新纪元。童庆禧:南通智能感知研究院特别顾问。中国科学院院士、联合国科学院院士、国际欧亚科学院院士,遥感技术与应用专家,1997年当选为中国科学院院士。我国遥感技术应用领域的最早开拓者之一。长期致力于气候学、太阳辐射和地物遥感波谱特征研究。薛永祺:南通智能感知研究院技术发展委员会主任。中国科学院院士,红外和遥感技术专家,1999年当选为中国科学院院士。现任中国科学院上海技术物理研究所研究员、博士生导师,中科院空间主动光电技术重点实验室学术委员会主任。长期致力于多光谱和成像光谱技术研究,为中国建立机载实用遥感系统提供了多种先进的遥感手段,并推动了中国遥感技术的应用。先后研制成功多光谱扫描仪、成像光谱仪、超光谱成像仪。沈学础:南通智能感知研究院学术发展委员会主任。中国科学院院士,物理学家,1995年当选为中国科学院院士。现任上海技术物理研究所研究员,博士生导师,复旦大学教授,上海大学理学院名誉院长,国际巴登奖评定委员会委员和多个国际杂志编委。主要从事固体光谱和固体光谱实验方法等方面的科学研究。褚君浩:南通智能感知研究院产业发展委员会主任。中国科学院院士,半导体物理和器件专家,2005年当选为中国科学院院士。现任中国科学院上海技术物理研究所研究员、博士生导师,SCI期刊《红外与毫米波学报》主编,复旦大学光电研究院院长和上海虹口区科协主席等职。长期从事红外光电子材料和器件的研究,开展了用于红外探测器的窄禁带半导体碲镉汞(HgCdTe)和铁电薄膜的材料物理和器件研究。刘银年:南通智能感知研究院院长/首席科学家。中国科学院上海技术物理研究所研究员,博士生导师,所学术委员会副主任;中国遥感应用协会高光谱遥感技术与应用专业委员会主任;上海市十大科技英才,全国优秀科技工作者,国家级人才计划入选者;是我国星载高光谱遥感载荷的主要开拓者,先后主持了国家级重大项目10余项,是多个国家级项目的首席科学家、首席专家。带领团队率先突破了国际上光谱成像难以同时兼顾宽谱、宽幅、高光谱分辨率和高探测灵敏度的技术瓶颈,建立了星载光谱成像载荷技术研发体系,研制出国际上首台星载宽谱宽幅高光谱相机,实现了国际上4颗高光谱卫星在轨组网观测,技术水平大幅领先国际在轨和在研的同类载荷,推动了水体土壤微克量级大范围探测、数百万平方公里以上矿物填图、复杂地物精细识别、甲烷点源排放精准监测等一系列重大应用难题的突破。相关研究成果发表于《IEEE GRSM》和《Science Advances》等国际顶级期刊。孙德新:南通智能感知研究院执行院长/首席专家。中国科学院上海技术物理研究所研究员、博士生导师,中国遥感应用协会高光谱遥感技术与应用专业委员会秘书长。长期致力于红外高光谱光电遥感技术的研究,在空间信息获取与处理技术、成像技术、光电信息处理等方面具有深厚的理论功底和丰富的实践经验。先后负责或参与完成了红外及高光谱载荷研制相关国家重大科研项目及型号任务十余项。环境减灾二号A/B卫星主任设计师,国家重点研发计划“静止轨道全谱段高光谱探测技术”项目负责人。陈效双:南通智能感知研究院学术发展委员会副主任兼秘书长/微纳光电子首席科学家。中国科学院上海技术物理研究所研究员、博士生导师,红外物理国家重点实验室主任。研究领域为红外光学,微纳光子学,人工量子结构和量子操控,光电子材料与器件。先后承担国家重点研发计划量子调控与量子信息重点专项项目,国家自然科学基金重大研究计划重点项目,国家自然科学基金重大项目和重点项目,中国科学院创新工程项目,上海市科学技术委员会基础重大和重点项目等国家和省部级科研项目10余项。吴亦农:南通智能感知研究院空间制冷技术首席专家。中国科学院上海技术物理研究所研究员、博士生导师。长期致力于空间低温制冷机研发、制造和应用,以及制冷装置可靠性和长寿命技术、空间载荷低温系统集成和热管理技术等研究。负责并完成四十余项航天预研及工程型号任务,以及国家重大专项中的制冷器研制及载荷热管理技术服务项目。陈永平:南通智能感知研究院微电子技术首席专家。中国科学院上海技术物理研究所研究员、博士生导师。长期致力于硅基光电器件的研究,在CMOS图像传感器、PN/APD光电传感器、CMOS与红外MEMS集成器件等方面具有深厚的理论功底和丰富的实践经验。先后主持完成航天遥感用系列化硅基光电传感器研制、硅基光电子前沿研究、红外MEMS关键技术研发等十余项国家级重点项目。现为国家重点研发计划“超大规模红外MEMS组件”项目负责人、首席科学家。尹忠海:南通智能感知研究院人工智能首席专家。高光谱遥感与应用技术专业委员会委员。长期致力于遥感影像、自组织网络及人工智能方面的研究工作,主持或参与项目近20项。曾任卫星地面分发系统数字指纹追踪子系统的主任设计师,建立了遥感影像数据分发的追踪机制;主持了国家重点型号项目数据链分系统的总体设计工作,形成跨代新体制下的网络架构,设计了高效分簇管控机制和传输协议并予以实现;为国家973项目课题负责人、总师组主要成员,面向事件驱动的“激励与响应”机理,提出了用于复杂事件处理的事件代数系统,相关成果应用于不同场景集群系统的智能涌现和逻辑控制建模。此外,感知院已形成高层次人才占比达80%的研发团队。其中,全职人员53人,外部专家34人。
  • 美国开发“平面阵列红外线光谱仪”
    研究发现,高精度声谱仪能够早期检测疾病、化学武器和环境污染物。  美国PAIR技术公司开发一种新型传感器“平面阵列红外线光谱仪”,它可以在较低浓度下在液体和气体中识别生物和化学因子,检测时间低于1秒。新的光谱谱仪没有移动部件,依靠焦平面阵列(FPA)探测器。  “这是现有的技术的一个良好的替代技术,”该技术的创始人之一大通布鲁斯博士说,“该仪器没有移动部件,轻巧耐用,体积小,便于携带,可以随身携带它到牙医办公室。“  目前的检测技术是基于傅立叶变换红外(FT - IR光谱)光谱法,需要数十分钟的化学分子指纹识别。一傅立叶变换红外光谱法(FTIR)是一种重要的分析测试手段。近年来,仪器联用等新技术的不断发展,使FTIR的应用范围日益广泛,成为鉴别未知污染物和环境监测的重要工具。
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laser interferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 中国光谱仪器的发展——北京瑞利分析仪器公司四十年厂记
    六十年代中期以前,大型光谱仪器的研制开发及商品化生产在我国是一个空白。1968年12月,中国工业主管部门决策在北京建立一个光谱仪器定点专业生产厂—北京第二光学仪器厂(北京瑞利分析仪器公司的前身)。先后使1米平面光栅光谱仪和原子吸收分光光度计成为商品化的产品,其后它们在国内的兴起、成长、发展、更新、变化过程对于探索我国光谱仪器发展有典型意义,值得剖析研究。  六十年代末到七十年代末是我国AAS的投入期,这一时期国际光谱仪器发展的特征是是迅速商品化和产业化规模化。在此期间,国产仪器与同期的进口仪器在主要技术指标及功能上相比较。虽有差距,但并不很悬殊 发展态势确实给仪器的使用者、研究开发者、设计者、制造者以鼓舞。更多地商品仪器装备了更多的用户单位,因而使用更多用户单位的分析工作者、分析专家通过对国产仪器的应用实践,寻找出商品仪器不能满足使用要求的缺陷和问题,并动手改进它、提高它、为仪器的进一步发展创造了条件。  八十年代初国家推行开放政策,一则使中国仪器的研制者、使用者有更多机会接触、了解和使用国外先进仪器,二则微机技术的发展给世界光谱仪器技术性能带来革命性变化的微机浪潮的微机硬件和各种技术先进性能可靠的电子元器件进入了中国,因而仪器的微机化和多样化成为步入成长期的国产仪器的时代特征。  进入九十年代,追随世界仪器发展足迹,提高仪器自动化与现代化水平成为我国处于成熟期发展的主要特征,国内各企业致力于利用微机对仪器逐步实现自动控制,自动化程度高一些的仪器可直接由微机按内置诸参数值将仪器调节到最优工作状态,朝仪器现代化迈出一大步。  当前,我们仪器的现状确实使仪器的未来面临挑战,面对我国光谱仪器的发展,企业独立的、分散的、各自为战的局面应尽快改变,走合作、联盟之路,才能使中国仪器不但在国内市场生存发展,而且为真正的进入全球市场创造条件。  经历了四十年来的不断发展,北京瑞利分析仪器公司(北京第二光学仪器厂)已成为中国规模最大的光谱仪器专业制造商,汇集了众多光、机、电、计算机、化学等专业技术人员,保证了产品质量及技术上的国内领先地位。公司研发制造六大系列30多种产品:原子吸收光谱系列、原子荧光光谱系列、原子发射光谱系列、紫外/可见光谱系列、红外光谱系列、拉曼光谱系列及光栅单色仪系列等光谱分析仪器。公司拥有大型精密数控加工中心、大型精密数控冲床、数控压弯机等高精度自动化机械加工设备,具备光学加工、光栅复制等尖端技术,以及用于仪器高低温试验、耐高压试验、震动试验等可靠性实验室,为实现仪器的优良品质提供了可靠保证。1997年通过ISO-9001质量体系认证。公司产品不仅在国内国际性招标中屡屡中标,而且出口美国、东南亚、中东、韩国、欧洲等国家和地区,在国内外都具有较高知名度。公司主导产品为原子吸收分光光度计。自1970年制造出中国第一台原子吸收分光光度计商品仪器至今,40年来向国内外广大客户先后提供了20多种型号20000多台仪器,占国内市场的主导地位。自1984年起先后荣获国家科技进步三等奖、国家优质银奖、多次荣获BCEIA金奖。  创新求发展,品质铸名牌。我们将不断开发更新更好的产品,满足客户需求,为国产仪器的振兴,为光谱事业的发展贡献力量。  瑞利产品发展史:  1972年,成功推出了中国第一台商品化仪器原子吸收分光光度计WFD-Y2型和平面光栅光量计WZG-200型 同年推出企业第一台双波长紫外可见分光光度计。  1974年,成功研制WP-1型平面光栅摄谱仪。  1975年,研制成功中国第一台火焰/石墨炉原子吸收分光光度计WFD-Y3型  1978年,成功研制出WDP500-D/E型光栅单色仪。  1979年,成功研制出具有数字显示功能的WFX-1C/1D型原子吸收。  1982年,成功研制出WFX-1E型原子吸收 同年成功的研制出7501-A和7503-A型光电直读光谱仪。  1983年,成立紫外生产班组,开始批量生产800-D2型紫外可见分光光度计。  1984年,成功的研制出中国第一台具备火焰、石墨炉、火焰发射、氘灯与自吸收效应双背景校正的WFX-1F型原子吸收分光光度计,此系列仪器荣获国家科技进步三等奖、北京市技术开发优秀项目一等奖、北京市经委优秀新产品一等奖(1986年),国家经委科委优秀机械电子产品及中国出口名特产品金奖(1987年)、第三届BCEIA金奖(1989年)等。在世界银行国际招标中一举标并批量出口。同年成功研制出7502-B型ICP原子发射光谱仪。  1986年,开始生产D3型紫外可见分光光度计,同时引进生产了瑞士康强公司的810型紫外可见分光光度计。  1988年,开始生产改进型的D3A型紫外可见分光光度计。  1990年,开发、生产普及型紫外和可见分光光度计80-1、801-1  1991年,成功研制出7501-B和7503-B型光电直读光谱仪。测控系统更加小型化,计算机系统由8位升级至16位 同年生产900-D4型紫外可见分光光度计,技术指标达到了国内先进水平。具备了一定的生产规模。年产量达到近700台。  1993年,7月27日成功开发了我国第一台傅立叶变换红外光谱仪WQF-400型傅立叶变换红外光谱仪,于1994年获得北京市科技进步二等奖。  1994年,成功研制了WFX—1F2B2型原子吸收分光光度计,使微机的应用水平有了较大的提高 同年成功开发了WQF-300型傅立叶变换红外光谱仪并于1996年12月,获得机械工业部科技进步二等奖 同年成功研制出WLD-1C和WLD-3C型光电直读光谱仪。  1995年,推出双光束紫外可见分光光度计UV-2100型,技术指标达到了国内先进水平。  1996年,与著名原子荧光光谱专家张锦茂先生合作,研发成功新一代原子荧光光谱仪AF——610型。荣获国家级新产品奖(2000年)、BCEIA金奖(2001年)。  1997年,成功的研制出WFX-100系列原子吸收分光光度计,此系列荣获北京科学技术进步三等奖(1999年)、BCEIA金奖(1997年)国家重点新产品奖(2001年) 同年成功的推出了成功研制出WDD-2型电脑发光测试仪。  1998年,成功的自主研制开发了国内首台WQF-400N 型傅立叶变换近红外光谱仪 同年成功研制出WLD-2C型ICP光电直读光谱仪。  1999年,推出AF-610A型原子荧光光谱仪,采用了最新的五项专利 WQF-410/310型傅立叶变换红外光谱仪研制成功,后被列入国家经贸委颁布的2001年国家级重点新产品,并获得2001年北京市科技进步三等奖、机械工业联合会及机械工程学会颁发的机械工业科技进步奖三等奖,在2002年第十四届全国发明展览会上获得铜奖 同年我国第一台WQF-400N型傅立叶变换近红外光谱仪研制成功。  2000年, WQF-200型傅立叶变换红外光谱仪研制成功。  2001年,研制开发出WHH-1型红外测油仪。  2002年.成功的研制出高度自动化的WFX-200系列原子吸收分光光度计,此系列荣获北京市科技进步三等奖(2004年)、北京市高新技术成果转化项目(2005年)、机械工业科技进步二等奖(2004年)、国家重点新产品(2005年)。  2003年,成功的推出了WFX-310/320型原子吸收分光光度计,单片机操作,经济实用 WQF-510型傅立叶变换红外光谱仪于4月17日通过了北京市科委组织的专家鉴定。2005年WQF-510被列为国家经贸委等四部委2005年度重点新产品,并获得中国机械工业科技进步二等奖 同年,WQF-510型傅立叶变换红外光谱仪被认定为北京市高新技术成果转化项目,几年下来获得转化项目专项数十万元的资金支持。2007年2月,该产品获得北京市自主创新产品称号。  2004年,北京瑞利分析仪器公司推出世界首台环保型多元素同时测定原子荧光光谱仪AF-630/640型,荣获2005'BCEIA金奖、第十五届国家发明展览会金奖。同年成功研制出具有先进水平的WLD-4C型光电直读光谱仪,并于2005年6月,由中华人民共和国科学技术部、商务部、国家质量监督检验检疫总局和国家环境保护总局颁发了国家重点新产品证书,2006年12月,由北京市科学技术委员会、北京市发展和改革委员会颁发了北京市高新技术成果转化项目认定证书。并且该项目于2006年12月获得了由中国机械工业联合会和中国机械工程学会联合颁发的科学技术进步二等奖,2007年9月获得了由中国发明协会颁发的第十七届全国发明展览会金奖。  2005年,与中科院生态环境研究中心及美国DIONEX公司多年合作潜心研究,推出世界第一  台联用技术原子荧光光谱仪AF-610D型,开创并建立了用于As、Hg等元素形态分析的色谱  -原子荧光在线联用系统及方法 同年AF-610B/610C型原子荧光光谱仪也成功面市 同年WQF-520型傅立叶变换红外光谱仪研制成功。  2006年,成功的研制出中国第一台双原子化器的火焰/石墨炉塞曼扣背景校正的原子吸收分光光度计WFX-810型和中国第一台统一协同控制的形态分析检测仪AF-610D2 经北京科学技术文员会鉴定,WFX-810塞曼型原子吸收分光光度计技术指标优良,为国产原子吸收光谱仪创立了一个新类型,技术领先,达到了国际先进水平,2007年5月荣获中国国际科学仪器及实验室装备博览会自主创新金奖、全国发明协会第十七界全国发明展览会金奖、2007年BCEIA金奖、国家重点新产品证书 同时AF-610D2型也获得同界BCEIA金奖的殊荣 同年成功的研制出成功研制出WLD-4D型多道光电直读光谱仪。同年推出了微波消解仪MSP-6600。  2008年,WQF-660型专用傅立叶变换红外光谱仪研制成功,同时成功的研制了WQF-600N型傅立叶变换近红外光谱仪和WQF-510A型傅立叶变换红外光谱仪 成功的升级了原子荧光光谱仪630/640型,新型号为630A/640A,带联用技术接口,可升级后直接进行元素的形态分析,扩大的分析领域。同年推出微波萃取消解仪MSP8600。  结束语:四十年来,中国社会融入了世界文明的主流,通过相互学习,使人们的思想更加解放,视野更加开阔,开放意识和创新能力有了很大的提高 市场经济竞争机制,激励着我们开拓进取。我们从早期开发研制原子吸收分光光度计到今天拥有了七大系列70余个品种,理性回眸,迈步前进,我们将不断创新,不断研制出技术更先进、质量更可靠的科学分析仪器,振兴民族工业,让瑞利品牌,享誉中华!
  • 重庆研究院小型拉曼光谱仪样机研制成功
    日前,中国科学院重庆绿色智能技术研究院智能装备与仪器仪表研究中心成功研制出了光谱分辨率可达10 cm-1的小型拉曼光谱仪样机,样机通过了可靠性测试,可应用在工农业生产、食品安全和生物医药等领域的现场监测和样品快速检测。该研究得到了重庆市科技攻关(重大)计划项目的支持。  拉曼光谱是基于光与物质互相作用发出的带有物质特征信息的散射光谱。它具有非接触性、非破坏性、实时原位和样品用量极少等特点,可快速、准确地分析和鉴别物质(或分子)种类。拉曼光谱应用广泛,具有&ldquo 以光之名,把握万物之准&rdquo 的美誉。而小型拉曼光谱仪技术研究和应用开发,可为工农业生产、食品安全、生物医药、环境保护、公共安全等领域提供现场监测和快速检测,对提升人民生活质量和保障社会安全方面意义重大。  针对便携式拉曼光谱仪的小型化、高分辨和高灵敏度探测等需求,研究人员在新型消彗差交叉C-T光栅光谱仪的光学设计中,充分考虑消彗差条件,采用12度非对称C-T光路,在解决同心及非同心系统的像差问题的同时,保证了长波段的光通量,光谱仪的理论分辨率达到9 cm-1 在电学设计中,针对所用CCD型号研制了一种高增益、低噪声的信号处理电路。最后,通过选用光学探头与光栅光谱仪的匹配设计,便携式拉曼光谱仪的实际光谱分辨率可达10 cm-1。  目前,重庆研究院已完成多种外形尺寸的便携式和手持式拉曼光谱仪原理样机的研制。这些样机对若干样品的测试结果与标准库数据一致,从原理和技术上证实了小型拉曼光谱仪设计的合理性和使用的可靠性,下一步,团队研究重点将放在体积更小、性能更优的微型拉曼光谱仪上,并开展小型拉曼光谱仪的工程化和产业化应用。
  • 中科院科研装备研制项目“从超高真空到常压的 表面光谱原位表征系统”顺利验收
    p  5月26日,中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“从超高真空到常压的表面光谱原位表征系统”通过了中科院条件保障与财务局组织的专家验收。/pp  项目负责人邱恒山向专家组详细汇报了项目的实施情况和仪器装备最终所达到的性能指标。测试组专家到现场进行了各项性能指标的实际测试,验收组专家审阅了项目的相关验收材料和经费使用情况。经过测试组专家和验收组专家的综合评议,专家组给予高度评价并一致认为该研制装备的各项性能指标均达到预期目标。/pp  该项目将表面谱学的方法引入到了光催化领域的研究中,通过大量的创新性设计,实现真空腔体本底真空度优于3× 10-10 mbar,高压腔内真空度在10-9 mbar到1000 mbar之间可变并可由质谱原位检测 可传样样品则可以实现加热(1000 K)、冷却(100 K)和测温 通过高压腔与真空红外谱仪的密封连接,装备最终可以实现样品在高压腔内不同气体压力、不同温度和不同光照条件下的真空(偏振)红外谱的原位检测。与会专家一致认为该项目的实施有助于开展气固(光)催化反应机理的系统研究,在分子水平上获得反应的微观信息,是对现有研究方法的重要补充和全新发展。/pp  中科院条财局装备办公室主任张红松、新疆理化所副所长崔旺诚出席会议。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/9309c784-241c-4d39-944f-95765aa8d3d7.jpg" title="W020170531466982123675.jpg"//pp style="text-align: center "从超高真空到常压的表面光谱原位表征系统/ppbr//p
  • 安捷伦推出 Cary 620 焦平面阵列红外成像光谱仪
    红外显微成像技术是一种快速、无损、无污染的原位检测技术。该技术已经逐渐成为关注热点,并被广泛应用到材料学,生物学和生物医学研究,电子器件和半导体的缺陷和故障分析,以及制药,法医学和食品行业等领域。 满足从常规测定到前沿研究的全面应用需求,安捷伦Cary 620 焦平面阵列红外成像光谱仪采用高倍光学系统设计,能够实现与同步加速器相媲美的空间分辨率和数据质量。Cary 620具有全球最领先技术的焦平面阵列检测器,能够在数分钟内获得传统红外显微镜几个小时才能完成的谱图采集工作。空间分辨率可以达到1.1um,使得Cary 620可以轻松完成对传统红外显微镜不能测量的微小样品。 应用领域材料研究聚合物、涂层和薄膜的缺陷发现生产问题的根本原因改善产品开发过程 生物学和生物医学研究 通过对组织、细胞、牙齿和骨骼进行测定,推进癌症与疾病研究研究细胞过程和化学变化,实现疾病的早期识别测量水中的活细胞 电子器件和半导体分析LCD屏幕上的污染物鉴定半导体晶片和电子元件中的缺陷 以及制药、法医学和食品行业的应用。 请参考以下链接了解更多安捷伦 Cary 610/620 FTIR 显微镜http://www.instrument.com.cn/netshow/sh100320/C231884.htm您也可立即观看于7月14日举办的网络讲座的精彩视频回放,了解更多Cary 620焦平面阵列红外成像光谱仪的应用信息。http://www.instrument.com.cn/webinar/video/play/102708
  • 我国造世界最大面积中阶梯光栅 改变光谱仪器低端现状
    11月13日,从中科院长春光机所获悉:由该所承担的国家重大科研装备研制项目“大型高精度衍射光栅刻划系统的研制”11日通过验收,并制造出世界最大面积中阶梯光栅。这标志着我国大面积高精度光栅制造中的相关技术达到国际领先水平,结束了在高精度大尺寸光栅制造领域受制于人的局面。  衍射光栅是一种纳米精度周期性微结构的精密光学元件,在光谱学、天文学、激光器、光通讯、信息存储等领域中有重要应用。光栅面积大可获得高集光率和分辨本领,精度高可获得更好的信噪比,但制造出大而精的光栅是世界性难题。  光栅刻划机是制作光栅的母机,因其部件的加工装调精度难,运行保障环境要求高,被誉为“精密机械之王”,本项目研制的光栅刻划机,几乎所有关键部件都冲击世界极限水平。研制期间,科研人员突破了精密机械加工、精密光学加工、精密检测、高精度微位移控制等一系列关键技术,并研制出面积达400毫米×500毫米、精度为10纳米的光栅,这也是目前世界上面积最大的中阶梯光栅。  此前,只有美国能够制作300毫米以上中阶梯光栅,我国的中阶梯光栅制造能力不足300毫米,精度也达不到10纳米精度水平,战略高技术领域所需要的高精度大尺寸光栅受到国外严格限制。项目负责人、中科院长春光机所研究员唐玉国表示,大型高精度光栅刻划系统以及大面积中阶梯光栅的研制成功,能帮助我国光谱仪器行业摆脱“有器无心”局面,改变我国光谱仪器产业处于行业低端现状。
  • 专注微型光谱仪等超表面光学产品,「纳境科技」获数千万元Pre-A轮融资
    「纳境科技」成立于2020年,是一家专注于超表面光学器件设计与制造的科技企业。公司以超表面光学与半导体工艺相结合为基础,为光学行业提供轻、薄、高效的新一代光学元件。目前产品主要有超透镜和光谱仪两类,应用于机器人、智能手机、XR、自动驾驶、安防监控等领域。超表面光学能够将微观结构的精密设计与光学性质的精细调控结合在一起,操控光的传播,从而实现各种各样的光学功能。「纳境科技」CEO龚永兴介绍,以超透镜为例,随着消费电子的升级,对于产品的重量、厚度、平整度、效率、温漂等方面都提出更高的要求。超透镜就是基于超表面技术,利用微纳工艺和介质材料研发而成的透镜。它颠覆了传统光学器件中繁琐的透镜组,以微米级的厚度实现了原来几毫米甚至厘米级的透镜功能,并且集多个光学元件功能于一身,大幅减小成像系统的体积、重量,使结构简化、性能优化。“在光谱仪方面,行业最大的痛点就是形态大,产品贵,一台好的光谱仪要数万到数十万不等”,而「纳境科技」利用超表面阵列对光的调制作用研制了新形态的微型光谱仪。相较于传统光谱仪,超表面光谱仪具有体积极小、成本极低、台间差小等优势,可广泛应用于手机、环保、机器人传感等领域。微型光谱仪在智能手机上的应用,意味着消费者在日常生活中凭借手机可以实现简单的测量和检测,比如检验食品和药物的成分是否安全,检测皮肤状况,判断食物的成分组成以及环境污染等等。此外,「纳境科技」为大量客户提供设计方案,积累了大量的微结构设计数据,用于支持光学器件设计,现已具备大视场衍射器件设计技术、近红外消色差设计技术以及多波段成像光谱方案设计技术。「纳境科技」团队现有40余人,研发人员占比75%。核心创始团队来自浙江大学、麻省理工学院等科研院所,平均拥有10年以上微纳光子器件和光学芯片的设计、制备经验。创始人林宏焘是麻省理工学院博士后,主攻产品战略、设计与工艺集成。首席科学家马耀光在北大、加州大学、科罗拉多大学从事博士后研究。CEO龚永兴曾任上市公司副总经理,拥有丰富的运营管理和战略设计经验。目前,「纳境科技」超透镜产品主要包括成像、DOE、光束整形等产品,目标应用于机器人、手机、XR等领域。公司透露称,其超透镜相关产品已经拿到订单并处于样品测试阶段,预计二季度可以实现量产;微型光谱仪产品预计在明年可以实现量产。龚永兴表示,当前「纳境科技」有多款应用于不同场景的产品处于在研状态,未来超透镜所在波段也会从现在的近红外向可见光拓展。公司现已启动新一轮融资,资金计划用于产品研发与产能建设。
  • 集成有亚波长光栅的台面型InGaAs基短波红外偏振探测器
    红外辐射(760nm-30μm)作为电磁波的一种,蕴含着物体丰富的信息。红外光电探测器在吸收物体的红外辐射后,通过光电转换、电信号处理等手段将携带物体辐射特征的红外信号可视化。其具有全天候观测、抗干扰能力强、穿透烟尘雾霾能力强、高分辨能力的特点,在国防、天文、民用领域扮演着重要的角色,是当今信息化时代发展的核心驱动力之一,是信息领域战略性高技术必争的制高点。众所周知,波长、强度、相位和偏振是构成光的四大基本元素。其中,光的偏振维度可以丰富目标的散射信息,如表面形貌和粗糙度等,使成像更加生动、更接近人眼接收到的图像。因此偏振成像在目标-背景对比度增强、水下成像、恶劣天气下探测、材料分类、表面重建等领域有着重要应用。在短波红外领域,InGaAs/InP材料体系由于其带隙优势,低暗电流,和室温下的高可靠性已经得到了广泛的应用。目前,一些关于短波偏振探测技术的研究已经在平面型InGaAs/InP PIN探测器上开展。然而,平面结构中所必须的扩散工艺导致的电学串扰使得器件难以向更小尺寸发展。同时,平面结构中由对准偏差导致的偏振相关的像差效应也不可避免。与平面结构相比,深台面结构在物理隔离方面具有优势,具有克服上述不足的潜力。中国科学院物理研究所/北京凝聚态物理国家研究中心E03组长期从事化合物半导体材料外延生长与器件制备的研究。E03组很早就开始了对近红外及短波红外探测器材料与器件的研究,曾研制出超低暗电流的硅基肖特基结红外探测器【Photonics Research, 8, 1662(2020)】,研究过短波红外面阵探测器小像元之间的暗电流抑制及串扰问题【Results in Optics, 5, 100181 (2021)】等。最近,E03组研究团队的张珺玚博士生在陈弘研究员,王文新研究员,邓震副研究员地指导下,针对光的偏振成像,并结合亚波长光栅制备技术,片上集成了一种台面型InGaAs/InP基PIN短波红外偏振探测器原型器件。该原型器件具有的深台面结构可以有效地防止电串扰,使其潜在地实现更小尺寸短波红外偏振探测器的制备。图1是利用湿法腐蚀和电子束曝光等微纳加工技术制备红外探测器及亚波长光栅的工艺流程。图2和图3分别是制备完成后的红外探测器光学显微镜图片和不同取向的亚波长光栅结构SEM图片。图1. 集成有亚波长Al光栅的台面型InGaAs PIN基偏振探测器的工艺流程示意图。图2. 两种台面尺寸原型器件的光学显微镜图片 (a) 403 μm×683 μm (P1), (b) 500 μm×780 μm (P0)。图3. 四种角度 (a) 0°, (b) 45°, (c) 90°, (d) 135° Al光栅形貌。图4是不同台面尺寸的P1和P0器件(无光栅)在不同条件下的J-V特性曲线和响应光谱。在1550 nm光激发,-0.1 V偏压下,P1和P0器件的外量子效率分别为 63.2% and 64.8%,比探测率D* 分别达到 6.28×1011 cm?Hz1/2/W 和6.88×1011 cm?Hz1/2/W,表明了原型器件的高性能。图4. InGaAs PIN原型探测器(无光栅)的J-V特性曲线和响应光谱。(a) 无光照下,P1和P0的暗电流密度Jd-V特性曲线;不同入射光功率下,(b) P1和(c) P0的光电流密度Jph-V特性曲线,插图是-0.1V下光电流密度与入射光功率之间的关系曲线; (d) P1和P0的响应光谱曲线。图5表明器件的偏振特性。从图5可以看出,透射率随偏振角度周期性变化,相邻方向间的相位差在π/4附近,服从马吕斯定律。此外, 0°, 45°, 90°和135°亚波长光栅器件的消光比分别为18:1、18:1、18:1和20:1,TM波透过率均超过90%,表明该偏振红外探测器件具有良好的偏振性能。图5. (a) 1550 nm下,无光栅器件和0°, 45°, 90°和135°亚波长光栅器件的电学信号随入射光极化角度的变化关系;(b) 光栅器件透射谱。综上所述,研究团队制备的台面结构InGaAs PIN探测器,其响应范围为900 nm -1700 nm,在1550 nm和-0.1 V (300K) 下的探测率为6.28×1011 cmHz1/2/W。此外,0°,45°,90°和135°光栅的器件均表现出明显的偏振特性,消光比可达18:1,TM波的透射率超过90%。上述的原型器件作为一种具有良好偏振特性的台面结构短波红外偏振探测器,有望在偏振红外探测领域具有潜在的广泛应用前景。近日,相关研究成果以题“Opto-electrical and polarization performance of mesa-structured InGaAs PIN detector integrated with subwavelength aluminum gratings”发表在Optics Letters【47,6173(2022)】上,上述研究工作得到了基金委重大、基金委青年基金、中国科学院青年创新促进会、中国科学院战略性先导科技专项、怀柔研究部的资助。另外,感谢微加工实验室杨海方老师在电子束曝光等方面的细心指导和帮助。物理所E03组博士研究生张珺玚为第一作者。
  • 从问题出发 拉曼光谱仪器成果凸显 —— 第二十二届全国光散射学术会议报告集锦
    仪器信息网讯 2023年9月23日,由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办的第二十二届全国光散射学术会议在河南开封召开。此次会议邀请了国内外光散射,以及相关光谱原理和技术领域的诸多知名专家学者,共同探讨光散射领域的最新研究成果和发展趋势,吸引了近500人注册参会。值得一提的是,为了解决科研和实际应用中的难题,多位专家在仪器技术开发方面做了系列探索,并产出了相关的成果,吸引参会代表关注。部分报告内容分享如下:中国科学院半导体研究所 谭平恒研究员《显微共焦拉曼光谱模块及其应用》现场仪器展示:显微共焦拉曼光谱模块鉴于市场上显微共焦拉曼光谱仪的昂贵价格,是否能设计一套显微共焦拉曼光谱测量模块,可与任何光谱仪耦合成一套成本低、操作简便、光路布置合理以及后期升级方便的多功能显微共焦光谱仪是众多研究者迫切盼望的事情。22日的会前特邀讲座环节,中国科学院半导体研究所谭平恒研究员分享了其课题组的仪器成果,并在会议同期做了仪器展示。据介绍,在近25年拉曼光谱研究经验基础上,谭平恒研究员的课题组成功研制了显微共焦光谱测量模块,连续多年入选《中国科学院自主研制科学仪器》产品名录,可以实现从拉曼光谱仪到布里渊光谱仪耦合,从高信号透过率到低波数信号测量,从近红外激光到深紫外激光激发,从光栅光谱仪到光纤光谱仪耦合,从高温热台到极低温恒温器应用,从光谱多信号出口到高性价比多功能集成与升级方案,从实验室照明状态下调试和测试到超低背景噪声光谱实现等功能。中国科学院上海微系统与信息技术研究所 陈昌研究员《芯片级拉曼光谱仪的机遇与挑战》微型拉曼光谱仪使拉曼技术在更广泛的无损快速检测场景中得以应用。陈昌研究员在报告中从原理、小型化、应用等方面对色散型光栅光谱仪、迈克尔逊干涉光谱仪、空间外差干涉光谱仪等的优缺点进行了分析,并详细介绍了微型化、高性能拉曼光谱仪面临的挑战,包括高通量、高光谱分辨率等。为了攻克难题,陈昌研究员的实验室汇聚了8大类30多台拉曼光谱仪。经过课题攻关 ,其课题组开发了芯片级的空间外差拉曼光谱仪。据介绍,该产品核心部件轻于1克,实现了若干个物质的拉曼光谱重构。北京理工大学 崔晗教授《激光空间偏移/差动共焦拉曼光谱技术及应用》传统拉曼光谱技术的探测深度只有几百微米,仅可用于样品表层信息的探测,而空间偏移拉曼光谱(SORS)技术通过收集离激发光轴有一定偏移量的轴外拉曼光谱,可实现样品内部深层信息的探测。北京理工大学崔晗教授课题组提出了一种将空间偏移拉曼光谱技术与空间外差光谱技术(SHS)相结合的空间偏移外差拉曼光谱(SHORS)的方法,以对现有空间偏移拉曼光谱技术的性能进行改善。与采用光栅色散型光谱仪的空间偏移拉曼光谱技术相比,空间偏移外差拉曼光谱技术将系统的灵敏度提高了约一个数量级,为其在生物医学、地质考古等领域的进一步应用提供了技术途径。不仅如此,该课题组还基于差动共焦定焦技术构建了系列差动共焦拉曼光谱仪,实现了微区三维几何形貌和光谱信息的同步原位探测,提高了系统定焦能力,改善了系统抗漂移能力。除了以上的报告之外,还有很多老师分享了在拉曼光谱仪器技术、方法开发方面所做的系列工作,如力学拉曼光谱、紫外共振拉曼光谱、原位高温拉曼光谱、时间门控拉曼光谱等。24日,雷尼绍、牛津仪器、赛默飞、天美仪拓、光谱时代、HORIBA、长光辰英、鉴知技术等仪器企业也将分享最新的产品和技术。为期3天的报告还在继续,相关的新技术新成果精彩纷呈,鉴于篇幅的原因不能一一描述,仪器信息网也将给大家持续分享会议的精彩内容,敬请期待!
  • 追踪报道:69岁冯老汉研制出平面色谱仪
    去年,一则《68岁老人研制出新型色谱仪器 年内出样机》新闻在业内引起了不小轰动,不少人在呐喊助威时,也提出了疑问:冯老汉研制的是哪种色谱仪?目前研制工作进行到了哪一阶段?今天(4月16日),笔者意外接到了冯老的电话,交谈得知,冯老的平面色谱仪已推出试验样机,目前正在进行关键的最后一步研制工作,日前,冯老和周老还接受了《文汇报》记者的采访。以下为《文汇报》4月14日头版文章:  冯国利69岁,周海舫79岁,两个老头还在忙,使劲忙。  从2008年至今,他俩苦苦研制着一种新型的平面色谱分析仪,如今试验样机已初步完成,其间还申报了两项发明专利 他们想在今年年底前做出正式样机,然后试探市场。  “4年多了,就花自己的退休金。”冯国利说,为这台仪器,他放弃了旅游的爱好,这些年没花钱出去玩过一天。  没人要他们忙这个,是他们自己要忙,因为心里憋着股气——“就没有中国人做不出来的东西!”  被老外激起了“倔脾气”  冯国利和周海舫都跟科学仪器打了一辈子交道。  1960年起,冯国利一直在上海计量测试和科学器材部门工作 而周海舫自从1957年进了上海分析仪器厂,一直在设计研制国产科学仪器。  2001年,有法国人把他们新研制成功的平面色谱分析仪介绍给冯国利,新仪器把高效液相和薄层色谱这两种分析方法集于一体,堪称“构思绝佳”。  当年它在上海一个仪器展览会上展出,许多国内高校和科研院所都极感兴趣,然而法国人开价25万元人民币,另加近40万元提供配套器材,让人望而却步。  冯国利也很为这台仪器倾心,用起来的确简单、高效。以前做中药成分分析需要10个步骤,在这台仪器上“一推一送”就能做完,而且它能同时分析多个样品,这在当时独树一帜。  冯国利想跟法国人搞技术合作,但对方开出50万欧元“图纸费”,一下让他打消了念头,同时激起了他的“倔脾气”。  “难道就不能自己做?”念头一生,冯国利便着手筹备。先要组建队伍,可惜这时他最想拉来“入伙”的周海舫生了场大病 直到一年后,老周身体稍好些,工作才渐渐开展起来。  每一个零件都颇费心思  周海舫的儿子给他们提供了12平方米的空间,充当实验室、办公室和组装车间。面积虽小,但安排得井然有序:房间一角放着台钻床,墙壁上挂满了钳子、榔头、锉刀之类大大小小的工具,柜子里摆了不少计量器具。做精密零件需要洁净室,但条件有限,他们就在一张桌子上面遮块塑料板,用来挡灰尘。  万事开头难,而他们开头时,手边就只有那台洋仪器的一张图片 虽然有过近距离接触,但冯国利并不知道它的内部构造。查阅了国内外的有关资料,他们决定用现有的成熟技术来尝试研制。  他们先做了一个实验装置,试验原理 然后试制出实验样机,去年从亲戚朋友那里筹集来50万元,开始研发正式样机。  事非亲历不知难。每一个零件都颇费心思。小到一颗螺丝钉的长度、一个小弹簧的圈数,大到加压泵的吨位,都得来不易。  新仪器的核心部件——展开室,是老工程师的创新设计,花费了无数心血。它的底板上有一道0.2毫米深、5厘米宽、20厘米长的凹槽,难倒了两家工厂的精密加工机床。怎么办?手艺活出色的周海舫决定亲手加工,为了保证凹槽平整光滑,光刻刀的切削角度和刃口,他试验了好几十次,这才攻克难关。  又一个难关出现在面前:就凭孤零零一张图纸,找不到工厂愿意承接加工,两位老人不知道跑了多少地方,软磨硬泡,终于有人被他们的精神打动。经过6个月不断完善,国产的平面色谱分析仪终于渐渐从图纸里“走”了出来。  “感觉在登山,每天总有进步。”这是冯国利对他们这一段经历的总结。  国产科学器材可有可无?  有人不解:“这两个老头想钱想疯啦?这么大年纪了还在瞎折腾。”  误会不曾伤了冯国利和周海舫的心,但当听到国内一些实验室的人开口便说“我们这里200多台色谱仪,都是进口的”,两个老头感觉无比悲凉。冯国利不明白:为什么对“进口的”那么骄傲,国产科学器材难道真就可有可无了?  提起自己曾经的工作单位——上海分析仪器厂,周海舫语气里充满自豪,但这种自豪好像只属于过去。冯国利总在收集跟科学仪器有关的资料包括新闻报道,不少“坏消息”令他气结,“眼睛都能看出血来”:这些年国内单位总在进口仪器,国产科学仪器的生存空间被一再压缩,整个行业一再萎缩 而国内诸多仪器制造专业人才,被外资仪器厂商网罗去做了销售员。  冯国利说,好多诺贝尔奖获得者用自己设计的工具才发现了别人没能发现的东西,用进口的成型仪器搞研究,我们恐怕只能重复看到那些已被发现的东西。  他们很清楚,凭借自己微薄的力量改变不了现状,但仍然强烈地盼望着自己辛辛苦苦研发出来,价格大约只是洋仪器1/3的平面色谱分析仪能被国内的实验室认可和接受,给自己的付出一个交待,给中国人争一口气。  两位老工程师说,现在他们还有最后一里路要走,这是最艰难的一里路 至于下一步能不能生产和推向市场,这将要面世的第一台样机会不会也是最后一台,眼下还顾不上想,他们只希望,不要总身处无奈和无助的窘境。
  • 大型高精度衍射光栅刻划机:把光谱看得更通透
    科研人员在为光栅检测做准备工作。 罗浩摄(资料图片)  在1毫米距离里划出6000道刻槽,且槽型均匀,这意味着在20公里的刻距内,刻槽间距误差小于一根头发丝的千分之一。这正是不久前,中科院长春光学精密机械与物理研究所研制的“大型高精度衍射光栅刻划机”达到的刻划精度。  走进长春光机所实验室,项目组科技人员向记者介绍了一块银灰色、近似不透明“玻璃窗”的光栅,它是这套“精密机械之王”的杰作,也是目前世界上面积最大的高精度中阶梯光栅。打造这台“精密机械之王”的,正是长春光机所光栅刻划机老中青三代研制项目组。  光栅是分析万物光谱信息的“芯片”,应用遍及海陆空、吃穿用  人类如何通过光认识世界?项目负责人、长春光机所研究员唐玉国说,人类借助光认知世界有两种方式:一是光学成像,二是光谱分析。光学成像可以看到物质世界的形状、尺寸等外在信息 地球上所知的元素及其它们的化合物都有自己的特征光谱线,光谱分析可以获得物质成分信息,帮助我们看清事物的本质。  但要“抓”住光谱信息并不容易。日常生活中的光,是由红、橙、黄、绿等各种单色光组成的复色光,而单色光才能更好地记录下物质的光谱信息。光栅是一种非常精密的光学元件,它的神奇在于,它能从复色光中解析、提取出单色光。  日常生活中,人们很少看到光栅,但其实它的作用无处不在。“人们去医院抽血检验,原理就是依靠光谱仪器里的光栅,来实现观察血液里的成分是否符合健康标准。”项目组成员、长春光机所研究员巴音贺希格说,“简单地说,光谱分析需要光谱仪器,光栅之于光谱分析的作用,就如芯片之于计算机,是核心和‘大脑’。”  与血液检查原理类似,分析不同物质的光谱,可以探查出农药残留、钢材质量、爆炸物特性等许多重要信息。唐玉国表示,光栅的价值不限于光谱仪,其应用“遍及农轻重、海陆空、吃穿用等各行各业。既能看天,也能看地、看人”。在天文观测中,通过光谱测量得到天体的组成及其与地球的距离,从而揭示宇宙诞生及演化规律 在光通信领域,光栅的分光作用使得不同波长的光能够携带信息顺着光纤飞入千家万户̷̷  通常,光栅性能越强,能分析出的物质成分就更精细。光栅面积越大,集光率和分辨本领就越高 光栅的精度越高,信噪比就越高。2009年,中科院长春光机所启动光栅刻划系统研制工作,一开始就瞄准世界领先水平,攻克光栅同时“做大”和“做精”的难题。  “精密机械之王”成功刻划出了400毫米×500毫米的大面积中阶梯光栅,标志着我国大面积光栅制造技术已达到国际领先。这一块光栅有多强?唐玉国说,最有经验的油漆工能辨别出1000多种色彩的微妙变化,而光栅理论上能够分辨出超过4亿种,可谓世界上感知色彩的最强利器。  光栅刻划机是制作光栅的母机,“做大”“做精”光栅是世界性难题  以防尘服武装,再经风淋室除尘,记者才得以获准进入实验室。这里有一套精密的环境保障系统,要求在30天内温差控制在± 0.01℃之内。  项目组成员、长春光机所研究员齐向东参与了光栅刻划机的设计、研制、调试等全过程,并长期在一线担任指挥。他说,这台仪器对环境要求极为严苛,气温、气压、空气成分等哪怕极其微小的变化,在纳米的尺度下,也可能带来巨大的刻划误差。  对环境的苛刻要求源自光栅刻划机自身的高精度。它由上千个元件、部件精妙配合而成,几乎所有关键部件冲击世界极限水平。加工装调精度难、运行保障环境要求之高,前所未有。  丝杠、蜗轮、导轨是刻划系统“三大件”,项目启动之时,国内现有机床技术根本达不到精度要求,研究组不得不采取土办法——手磨加工。  丝杠被誉为刻划机的“心脏”,其精度水平直接影响整机性能。国内不能造,国外买不到,已经退休的80岁高龄老专家张泰返聘回所,并亲自上阵,带领青年团队不分昼夜加工和检测。历时近1年时间,终于研磨出这根丝杠。这也是目前世界上精度最高、行程最长的三角螺纹丝杠。  用同样的方法,项目组费时6个月加工出蜗轮,8个月加工出V形导轨。这些具有亚微米、纳米量级的关键器件,都是科研人员用双手研磨出来的。此外,项目组成员为了攻克金刚石刻划刀、光栅镀膜等技术难题,也屡屡实验、研磨、调整,方才达到了光栅刻划机的要求。“有一次,项目组去外面交流。一握手,对方都说,你们的手不像科学家,倒像工人。”巴音贺希格回忆。  立项之初,研制计划时间是三年半,但由于整个过程比预料困难太多,前后花费了近8年,成为“严重耽搁的项目”。“研制期间,我们承受着巨大的压力,往往‘按下葫芦又起了瓢’,好不容易攻克一个困难,新的问题又立马出现。”齐向东说,科研人员不停地寻找问题产生的根本原因,有时候甚至要推翻之前花了很长时间建立起来的假设,否定自己重新开始。“这8年中,我曾多次感到绝望,以为进行不下去了。大光栅通过验收时,又觉得一切都很值得。”  这项成果使我国在光栅领域不再受制于人,并将精密机械加工技术推向世界前沿  国际上掌握光栅研制技术的国家很少,大面积高精度光栅是科技强国竞争的焦点。在此之前,只有美国能够制作300毫米以上中阶梯光栅。  大面积、高精度光栅刻划机的成功研制,使我国战略高技术领域所需的光栅不再受制于人,还将我国精密机械加工技术推向了世界前沿。  “我们这一代科研人员做出这台机器,离不开长春光机所几代人的努力。我们只是属于摘桃子的人,没有前辈的积累,没有青年梯队人才的付出,都不可能完成这项艰巨任务,是老中青三代人的结晶。”齐向东感慨。  1959年,长春光机所自主研制出了我国第一台光栅刻划机和第一块光栅。项目期间,我国第一代光栅刻划机的领军人、机械刻划光栅创始人梁浩明回到长春光机所,在重要问题上给出了指导意见 带领团队手工研磨丝杠等精密零部件的张泰先生,也是我国第一台光栅刻划机研制的参与者 已经退休的郝德阜研究员参与了系统的总体结构设计。  目前,我国第一台光栅刻划机依然没有“退休”。半个多世纪前,仅仅借助少量公开发表的相关文献,梁浩明等人开始了光栅刻划机的研制工作。没有专门设计的计算机软件,设计人员就靠手工绘制来画图 没有数控机床,科研人员就靠双手打磨加工零部件,精度甚至比当今数控机床加工还要高。  上世纪80年代,长春光机所计划研制高精度大面积光栅刻划机,由于资金等种种限制,项目搁浅,我国遗憾地错失了追赶光栅制造强国的机会,制造大光栅也成为我国光栅人的梦想。  “我们有信心,也有信念能够完成项目。长春光机所具有数十年的技术积累,此外,现代精密仪器加工技艺水平更高,技术条件更好。老一辈在物质匮乏年代都能够制造出精度非凡的光栅刻划机,我们有条件也有责任把新一代刻划机做好。”齐向东说。  八年磨一剑,项目组研制的这套大型高精度光栅刻划系统,攻克18项关键技术,取得9项创新性成果。  让唐玉国欣喜的是,经过光栅刻划机项目历练,一批青年人才成长起来了,关键技术得到有效传承。他还说,研制成功并不是刻划机的重点,未来项目组还将从“精稳快新”四个方面对它进行持续改进和技术升级、提升性能,使其在满足国家重大科研对大光栅需求的同时,始终保持国际领先。
  • 北京瑞利原子荧光、专用发射光谱仪新产品通过鉴定
    仪器信息网讯 2012年8月31日,受北京市经济和信息委员会委托,由北京市技术创新服务中心组织的北京瑞利分析仪器有限公司AF-2200原子荧光光谱仪、AES-7000系列专用发射光谱仪新产品鉴定会在北京瑞利分析仪器有限公司举行。鉴定会现场  邓勃教授担任此次鉴定委员会主任,参加鉴定的委员有清华大学辛仁轩教授、中国首钢集团郑国经研究员、中国地质科学院力学研究所计子华研究员、有色金属研究总院钱伯仁教授、北京矿冶研究总院符斌研究员、北京矿冶研究总院冯先进研究员。北京市技术创新服务中心技术创新部王安居部长主持鉴定会,北京市经济和信息委员会科技标准处张刚处长出席本次鉴定会。北京市技术创新服务中心技术创新部王安居部长主持鉴定会  北京瑞利分析仪器有限公司孙兰海总经理向与会专家介绍了北京瑞利分析仪器有限公司企业概况。在致辞中,孙兰海总经理首先对与会专家的莅临表示感谢,而后对北京瑞利分析仪器有限公司进行了介绍,“北京瑞利分析仪器有限公司主要产品是光谱仪器,包括原子吸收光谱仪、原子荧光光谱仪、发射光谱仪、红外分光光度计、紫外分光光度计和样品前处理设备,产品型号数量已达38种,如果今天能够顺利验收,将达到40种。”北京瑞利分析仪器有限公司 孙兰海总经理  张刚处长在鉴定会上传达了北京市经济和信息委员会科技标准处对本次鉴定会的意见和建议,张刚处长表示,“第一,希望鉴定委员会各位专家能够对此次鉴定的AF-2200原子荧光光谱仪和AES-7000系列专用发射光谱仪新产品能够提供客观、科学、公正的鉴定意见 第二,希望与会专家能够借此机会就企业发展战略、技术发展等方面给企业提供建议 第三,通过鉴定的产品,希望企业能够尽快完成相关的后续产品上市手续,包括与税务部门的沟通等 第四,通过鉴定的产品,希望企业能够申请北京市级或者国家级相关仪器研发奖项,以争取支持仪器研发的资金,为今后更好的开展仪器研发项目做好基础工作。”北京市经济和信息委员会科技标准处 张刚处长  一、新一代高精度顺序注射原子荧光光谱仪AF-2200通过鉴定  北京瑞利分析仪器有限公司研发部梁敬副部长宣读了AF-2200原子荧光光谱仪的技术报告和工作总结报告。冯先进研究员宣读了AF-2200原子荧光光谱仪现场测试报告。北京瑞利分析仪器有限公司研发部梁敬副部长北京矿冶研究总院冯先进研究员  梁敬副部长在报告中指出,AF-2200原子荧光光谱仪采用了最先进的顺序注射进样技术,可实现高精度微量进样 注射泵阀体由传统的三阀双泵二维流路改为三维空间流路,即高度集成化的双泵双阀顺序注射流路系统,阀芯采用陶瓷和PEEK复合材料,具备优异的抗化学腐蚀性能,阀切换寿命不小于1000万次 注射器的柱塞选择UHMWPE,端帽采用PEEK材料,高鹏玻璃作为针筒,具有优异的耐腐蚀性能和长的使用寿命,存样环也在业内首次采用了热固化成型工艺技术,能够获得极小的扩散系数,该项技术获得了实用新型专利一项 AF-2200原子荧光光谱仪通过特殊的增敏试剂,将传统原子荧光的测量范围在As、Sb、Bi、Se、Te、Pb、Sn、Hg、Cd、Ge、Zn十一种元素基础上增加了Au、Ag、Cu、Co、Ni五种元素,测量范围达到16种元素。AF-2200原子荧光光谱仪已经申报的自主知识产权专利有5项。应用范围方面,AF-2200原子荧光光谱仪主要应用于食品安全、环境检测、地质普查、农业环境、临床医学、科研等领域的重金属总量分析。AF-2200原子荧光光谱仪  鉴定会委员详细审议了北京瑞利工作人员的工作总结报告、技术总结报告、财务报告、产品检测报告、产品技术标准说明、查新报告、用户使用报告、标准化审查报告、资料审查报告、现场测试报告 经过质询和现场考察仪器新品,最终形成如下鉴定意见:  AF-2200原子荧光光谱仪  1、该产品的鉴定文件齐全,符合鉴定要求。  2、该产品创新性采用了高度集成的高精度双泵双阀顺序注射进样系统,具有智能化漏液监测、高精度数字化气路系统压力监测和原子化室避光监测功能,形成了全新的蒸汽发生原子荧光仪器。  3、开发了一种全新分析方法的专用增敏剂,可测定元素扩大到16个(Cu、Ag、Au、Co、Ni等元素)之多。采用了压力平衡式四通混合模块,极大地稳定了流体的传输,保证了信号峰形的平滑度和重现度。首创了高韧性进样针,解决了石英采样针易碎和挂液的问题。  4、开发了自动进样器配合使用的全自动液体工作站软件,实现样品及标准溶液的自动稀释、自动定容等繁琐的溶液处理操作。  5、该产品结构简单可靠,具有广阔的市场前景。  6、该产品的技术文件资料齐全,符合国家规范,可以指导生产。  鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AF-2200原子荧光光谱仪”技术达到国际先进水平,同意通过新产品鉴定。AF-2200原子荧光光谱仪产品考察AF-2200原子荧光光谱仪生产车间  二、AES-7000系列专用发射光谱仪通过鉴定  北京瑞利分析仪器有限公司研发部王彦东副部长宣读了工作总结报告和技术总结报告。计子华研究员宣读了AES-7000系列专用发射光谱仪现场测试报告。AES-7000系列包含AES-7100/ AES-7200两款产品,专用于高纯金属和地质样品的测定。北京瑞利分析仪器有限公司研发部王彦东副部长中国地质科学院力学研究所计子华研究员  据王彦东副部长在报告中介绍,AES-7100/ AES-7200直/交流电弧专用发射光谱仪在国内首次将交流或直流电弧激发光源与凹面光栅分光系统及光电倍增管接收系统相结合,构成全新的组合模式,具有全新的光路、结构及外形 AES-7100/ AES-7200两种专用仪器分别做了方法开发:AES-7100直流电弧专用发射光谱仪针对高纯金属氧化钼和氧化钨中的18-19中杂质元素开发了专用的分析方法,确定了氧化钼和氧化钨光谱缓冲剂配比,而AES-7200交流电弧专用发射光谱仪针对地球化学样品中Ag、Sn、B三种比较难测定的元素开发了专门的测定方法,并可测定Mo、Pb、Au、Ni、Co等十几种元素 相对于一米光栅光谱仪采用的传统的相板记录方式,AES-7000系列专用发射光谱仪以光电直读代之,改变了我国30多年来电弧激发光谱分析现状,使电弧激发这项“古典”而又“经典”的分析技术焕发了青春。据介绍,自主知识产权方面,AES-7000系列专用发射光谱仪已申请八项专利技术。AES-7000系列专用发射光谱仪  北京瑞利分析仪器有限公司相关工作人员汇报了AES-7000系列专用发射光谱仪相关技术总结报告、工作总结报告、财务报告、产品检测报告、产品技术标准说明、查新报告、用户使用报告、标准化审查报告、资料审查报告、现场测试报告,经过鉴定会委员的详细审议、质询和现场考察,最终形成如下鉴定意见:  (1)产品(技术)名称: AES-7100型高纯金属专用发射光谱仪  1、该产品的鉴定文件齐全,符合鉴定要求。  2、该产品首次采用了直流电弧激发光源与凹面光栅分光系统和光电倍增管检测系统的全新组合,可直接对粉末状样品进行灵敏、快速的测定,属国内首创。  3、该产品采用了自动控温水冷式电极夹,增强了产品的稳定性 采用汞灯描迹装置,能够方便的进行谱线定位 设有电极成像显示屏,可直接观察到电极成像投影,便于操作。  4、该产品针对相关领域的要求设计了专用应用软件,可根据蒸发曲线分别为每条谱线设定曝光时间参数、强弱线可同步衔接测量,具有内标、背景及分析数据校正处理等功能,提高了直流电弧光量计分析信背比。  5、该产品能对有色、冶金领域高纯金属及氧化物样品中的多种微量元素进行同时测定,市场前景广阔,具有良好的社会效益及经济效益。  6、该产品的技术文件资料齐全,符合国家规范,可以指导生产。  鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AES-7100型高纯金属专用发射光谱仪”技术达到国内领先水平,同意通过新产品鉴定。  (2)产品(技术)名称: AES-7200型地质样品专用发射光谱仪  1、该产品首次采用了交流电弧激发光源与凹面光栅分光系统和光电倍增管检测系统的全新组合,研制成功的交流电弧直读光谱仪在国内尚属首创。该产品可直接对粉末状样品进行灵敏、快速的测定。  2、该产品整机设计合理、结构新颖,具有使用寿命较长的“自动控温水冷式电极夹” 在外光路全封闭防护装置上,可直接观察到电极成像投影,便于操作 采用汞灯描迹装置,能快速进行谱线定位。  3、该产品针对相关领域的要求设计了专门应用软件,具有以下特殊功能:可根据蒸发曲线分别为每条谱线设定曝光时间参数、强弱线可同步衔接测量、有出色的内标、背景及分析数据校正处理等功能、强大的数据库供历史数据处理查询。  4、该产品是—种性价比较高的电弧直读光谱仪,填补了我国在该类仪器的空白,能对地质领域样品中的多种微量元素进行同时测定。市场前景广阔,具有良好的社会效益及经济效益。  5、该产品的技术资料齐全完整,符合国家规范,具备批量生产条件。  鉴定委员会一致认为:北京瑞利分析仪器有限公司研制开发的“AES-7200型地质样品专用发射光谱仪”,其仪器性能及技术指标已达到国内领先水平,同意通过新产品鉴定。AES-7000系列专用发射光谱仪产品考察AES-7000系列专用发射光谱仪生产车间  出席本次新产品鉴定会的人员还有:北京北分瑞利分析仪器(集团)公司李源总经理、武慧忠总工程师、北京瑞利分析仪器有限公司曾伟总工程师、原总工/技术顾问章诒学研究员、副总工程师王百华女士、技术顾问:原地质科学院物化探研究所的张文华和张锦茂高级工程师、项目主管吴冬梅高级工程师。
  • 在屏幕保护玻璃上“写入”光栅,为智能手机增加光谱仪功能
    智能手机自1993年推出以来,已成为全球广泛使用并融入人们日常生活的电子设备。多年来,随着计算能力的提高,以及新的传感器及其功能的加持,智能手机集成平台不断发展。智能手机正在取代摄像机、照相机、闹钟、手表、全球定位系统(GPS)、日历、计算器、闪光灯等等过去常见的设备,变得像一台可以上网的小型计算机一样强大。新冠肺炎疫情期间的作用,也凸显了智能手机在快速向大范围人群分发应用的能力。光子学是丰富智能手机功能并提高其潜力的极具前景的技术。全球主要智能手机制造商已经将新的光子传感器集成到了一些最新款的高端产品上,例如,面向增强现实(AR)应用的激光雷达(LiDAR),或者用于采集实时血氧水平和心率的脉搏血氧计等。与此同时,许多研究小组正在积极利用现有板载传感器或开发新的传感器,在智能手机上创建新的功能。利用智能手机摄像头及算法的显微镜系统,已被证明可以计数白细胞或红细胞,以用于血样分析以及寄生虫、细菌和病毒的检测;还可以通过RGB摄像头评估蓝色和绿色光谱成分的比率来检测血糖水平;采用Mie扩散法还可以测量水的浊度水平;还有报道基于呼吸中酒精含量而造成的蒸发率差异的光学式酒精测试仪等。然而,这些新的功能通常需要添加占用空间的附加组件。对于尺寸敏感的智能手机来说,空间限制问题值得关注。为了解决这个问题,Lapointe等研究人员提出了在手机屏幕前作为保护层的750 μm厚的康宁大猩猩玻璃上蚀刻光子器件的想法。借助1030 nm飞秒(fs)激光直接写入,他们展示了在1550 nm波长0.053 dB/cm的低损耗单模波导。他们还展示了一种基于玻璃表面倏逝场相互作用损耗的折射率(RI)测量装置。Davis等研究人员在1996年介绍一种玻璃材料的飞秒激光功能化。该工艺利用多光子吸收或隧道电离等非线性效应来引起折射率的永久变化。折射率变化很大程度上取决于材料和写入条件,并受多种因素的叠加影响,例如色心形成、玻璃基质的结构变化或导致密度变化的热效应等等。在高重复率下还存在一种特殊的热积累机制,会导致较大的焦外折射率变化。继Lapointe等人的研究,研究人员对通过飞秒激光改性的保护玻璃层机械性能的完整性进行了研究,发现飞秒激光写入对玻璃强度的影响可以忽略不计。同一项研究表明,通过减少写入所需的光子数量(减少波长),折射率变化可以增加一个数量级。据麦姆斯咨询介绍,近期,加拿大蒙特利尔理工学院工程物理系的Jean-Sébastien Boisvert及其团队在Scientific Reports期刊上发表了一篇题为“Fs laser written volume Raman–Nath grating for integrated spectrometer on smartphone”的论文,研究人员首先展示了一种没有热量积累的新写入方式,可以实现具有正折射率变化的高分辨率精细写入点。正折射率变化对于波导写入特别重要,而小折射率变化区域,对于写入具有精细周期的光栅至关重要。正如研究人员在两种不同的玻璃中所展示的那样,这种机制并不局限于个别玻璃。智能手机集成光谱仪原理示意图在该研究中,飞秒激光写入采用了来自Light Conversion的8W Pharos激光系统,该系统具有250 fs脉冲长度。激光器被耦合到Orpheus OPA以将频率加倍,从原来的1030 nm到515 nm。利用50倍Olympus PLAN 0.65数值孔径(NA)显微镜物镜聚焦飞秒激光脉冲,并将样品置于由AEROTECH 3200控制器控制的3轴写入系统上。使用脉冲选择器来控制激光器的重复频率以节省脉冲能量。激光的偏振与写入方向平行。所使用的写入速度在0.1~100 mm/s之间,脉冲能量在82~825 nJ之间。用于写入的玻璃有两种类型:康宁大猩猩玻璃(一种用于保护多媒体屏幕设备的碱性铝硅酸盐玻璃)和钢化铝硅酸盐玻璃(来自Bodyguardz的一种通用屏幕保护玻璃层)。两种玻璃以101 kHz重复率不同写入速度时,飞秒激光曝光下诱导集成折射率剖面断层扫描变化的演变采用这种新颖的写入技术,研究人员展示了在智能手机摄像头前以拉曼纳斯机制运行的体相光栅(VRNG),以获得一种集成的智能手机光谱仪。其关键是产生一个弱VRNG,不会显著改变相机的传统功能,但在暴露于强光照射时会产生光谱。(a)写入钢化玻璃的VRNG,置于智能手机前置摄像头前;(b)如果没有明亮的光源,光栅不会影响相机拍摄的日光成像质量,但如果有明亮的光线靠近光栅或在弱光环境中拍摄则会出现衍射光谱在热积累范围之外,两种玻璃都发现了一种产生正折射率变化的新写入方式。对于这两种玻璃,都发现了这种无热累积写入机制的上限阈值,重复率分别小于150 kHz和101 kHz,光通量分别为8.7 × 106 J/m²和1.4 × 107 J/m²。将尺寸为0.5 × 3 mm²、间距为3 μm的弱VRNG放置在三星Galaxy S21 FE智能手机前,以使用第二衍射级记录光谱。该光谱仪覆盖了401-700 nm的可见光波段,探测器分辨率为0.4 nm/pixel,光学分辨率为3 nm。利用该光谱仪测定了水中有机激光染料Rhodamine 6G的浓度检测限为0.5 mg/L。这一概念验证为现场吸收光谱法快速收集信息铺平了道路。论文链接:https://doi.org/10.1038/s41598-023-40909-9
  • 四专家细数我国原子光谱仪器的“前世今生”
    p  strong仪器信息网讯 /strong2017年6月29日,由中国仪器仪表学会主办,中国仪器仪表行业协会为支持单位,《现代科学仪器》编辑部承办的2017中国光谱仪器前沿技术学术研讨会在京召开,近200位专家学者出席会议。/pp  本次研讨会特别设置了原子光谱专场,其中,郑国经教授等四位专家的报告详细回顾了我国原子光谱技术及仪器的发展历史,各位专家结合多年的经验积累,对未来的仪器发展方向和趋势给出了详细的阐述,令各位与会代表受益匪浅。/pp  部分内容如下:/pp style="text-align: center "img title="IMG_4165.JPG" src="http://img1.17img.cn/17img/images/201707/insimg/230afe91-011e-42ed-9539-38f0a39ba7ea.jpg"//pp style="text-align: center "strong报告题目:原子发射光谱仪器的发展、现状及其前沿技术/strong/pp style="text-align: center "strong报告人:北京理化分析测试技术学会光谱分会 郑国经教授/strong/pp  据介绍,我国的原子光谱分析真正发展始于20世纪50年代,摄谱仪的大量引入,使原子发射光谱分析在各领域中得到应用。我国最早广泛使用原子发射光谱分析的是地质部门,20世纪50年代初地矿部开始建立光谱实验室;50年代中期,建立了第一批光谱定量分析方法;50年代后期研制出具有自动控制功能的粉末撒样专用装置;60年代末发展了吹样光谱分析法;70年代开始引进国外AES直读仪器。/pp  从商品仪器发展的角度看,我国从上世纪60年代开始组织研制AES商品仪器,在北京成立了第二光学仪器厂 1969年试制成功了我国第一台WPG-100型1米平面光栅摄谱仪 1972年又研制了WPG-200型真空光量计 1974年国产平面光栅摄谱仪WP-1开始量产 1982年推出7501-A和7503-A型火花光电直读光谱仪 1992年推出测控系统小型化和计算机化的7501-B和7503-B型直读仪器....../pp  20世纪70年代,我国开始对等离子体激发光源进行研发 80年代国内对ICP-AES的研究多限于实验室组装仪器;1984年北京二光仪器厂研制了7502-B型ICP多道光电直读光谱仪;90年代以后,国内ICP-AES发展迅速......1985年,金钦汉等率先提出了微波等离子体炬新型等离子体光源;2000年,长春吉大-小天鹅生产了一批510、520和1010等型号的MPT光谱仪器。/pp  随着国家改革开放经济发展,通过引进吸收国内外先进技术,AES仪器的国产化得以全面打开,国内也涌现了一批AES直读仪器的厂家,特别是21世纪以来,在国家科技部的支持下,国内各种AES分析仪器的研发及商品化进程得到全面发展。不过,郑国经教授也谈到,虽然当前原子发射光谱虽然已经处于高端制造水平,但现代发射光谱分析仪器在宽光谱高分辨、高速获取光谱等方面的技术追求仍需向更高性能发展,其指出有几点新技术的出现值得关注:平场全息凹面光栅的设计与应用,以提高小型光谱仪定量精度;采用多光栅技术以实现真正的全谱记录;采用新型固体检测器提高光谱检测性能;微激发源的研究为新型等离子体光谱仪的研发创造条件 仪器不断向自动化、智能化和快速高通量分析发展 节能低耗、高通量分析,是新型AES商品仪器发展的又一趋势。/pp style="text-align: center "img title="IMG_4174.JPG" src="http://img1.17img.cn/17img/images/201707/insimg/e8b6c7c5-661e-4ce8-8fdd-e0bf9690b69d.jpg"//pp style="text-align: center "strong报告题目:原子荧光技术的历史与发展/strong/pp style="text-align: center "strong报告人:清华大学 张新荣教授/strong/pp  张新荣教授在报告中从原子荧光理论发现、仪器发展等角度回顾了原子荧光技术的历史,并介绍了其做原子荧光相关研究的经历和成果。/pp  张新荣教授说,在原子荧光的发展历史中有不少时间点值得大家关注。据介绍,原子荧光的现象和理论19世纪获得研究;20世纪初深入研究了碱金属的原子荧光;20世纪30年代澄清了汞的原子-分子荧光;特别值得一提的是,1964年发表了原子荧光光谱用作化学分析手段的第一篇论文(色散型火焰原子荧光)。/pp  此外,张新荣教授还回顾了原子光谱在我国的发展历史:1975年,西北大学杜文虎等研制成功原子荧光测汞仪,由西安无线电八厂商品化;1977年科学院上海冶金研究所与上海市机械制造工艺研究所合成研制成功了双道非色散原子荧光光度计,由温州天平仪器厂商品化;1979年,郭小伟等研制成功单道氢化物发生原子荧光光谱仪,次年由江苏宝应无线电厂商品化;1983年,西北冶金地质所郭小伟等与地矿部物探所张锦茂等合作研制成功WYD-2型双道氢化物无色散原子荧光光谱仪样机,首先由江苏宝应无线电厂商品化;1985年北京地质仪器厂以XDY-1型双道氢化物无色散原子荧光光谱仪实现规模化生产,从此实现了我国原子荧光光谱仪器产业化的进程....../pp  温故知新,报告结束时,张新荣教授总结了两点值得各位深思:(1)非色散氢化物原子荧光测砷、锑的论文由国外学者分别在1974和1975年发表,我国学者西北有色地质研究所郭小伟等1979年研制成功单道氢化物发生原子荧光光谱仪,我国在转化基础研究成果到产品的进度方面快得惊人;(2)杜文虎是一个分析化学教授,西安无线电八厂是一个西安市碑林区办的一个小厂,那个年代的产学研结合得如此紧密,企业创新意识如此强烈。/pp style="text-align: center "img title="IMG_4192.JPG" src="http://img1.17img.cn/17img/images/201707/insimg/fad48d76-9dd5-4c56-af88-8b726b5ca35c.jpg"//pp style="text-align: center "strong报告题目:原子吸收光谱仪技术发展探讨/strong/pp style="text-align: center "strong报告人:北京瑞利公司前总工程师 章诒学/strong/pp  原子吸收光谱仪是高灵敏度的无机元素光谱分析仪器,起步于上世纪60年代初。近五十年随着光、机、电、算各专业领域技术的进步,原子吸收光谱仪已经成为一种应用领域广泛、分析性能优良、自动化程度高的仪器品种。据章怡学介绍,在原子吸收仪器成长历程中,光源、原子化系统、光学系统、检测器系统、电学系统、数据处理系统、背景校正系统等核心部件的不断变化和发展是仪器性能与功能提升的主因。/pp  报告中,章怡学指出,现阶段我国研制的各类分析仪器,整体处于国际上世纪九十年代中期水平,而原子吸收光谱仪是少数几个技术水平接近或者达到目前国际先进水平的品种之一。作为量大面广的通用元素分析设备,国产原子吸收仪器可以满足国内化学分析的一般需求,但在仪器功能和稳定性、可靠性方面,与国际先进水平尚存差距。目前用户对原子吸收光谱法的期许还有“多元素快速同时检测”和“不需要标准样品的绝对分析”,其中后一种期望还有很长的路需要探索,期待着理想原子化方式的出现。/pp  此外,章怡学在报告中还与各位探讨了一些仪器新技术的发展,如塞曼背景校正技术、便携式原子吸收仪器、多元素宽谱光源系统的探索等。其特别指出,仪器的技术研发应该走在生产和市场的前面,良性的新仪器技术研发应该是生产一代、改进一代、研制一代、预研一代、瞄准一代。/pp style="text-align: center "img title="IMG_4232.JPG" src="http://img1.17img.cn/17img/images/201707/insimg/241ea3fd-21d7-4865-9702-e70f6b1b82fb.jpg"//pp style="text-align: center "strong报告题目:原子光谱仪器行业概览/strong/pp style="text-align: center "strong中国仪器仪表行业协会分析仪器分会秘书长 曾伟/strong/pp  在报告中,曾伟以详实的数据介绍了相关背景知识、产业历史沿革、原子光谱仪器行业概览等多方面的内容。/pp  在产业历史沿革方面,曾伟介绍了我国仪器仪表工业的四个时期,体系建立期(1950-1977)、成长壮大期(1978-2000)、高速发展期(2001-2010)、新常态期(2011-2016),特别详细介绍了2011-2016年之间主要分行业产值变化表、以及主要分行业产值占比变化情况。据介绍,2016年分析仪器占1万亿产业规模的3.42%,约340亿,其中原子光谱仪器产业规模约占分析仪器的1/6左右,原子光谱整个产业规模约55亿左右。/pp  在原子光谱仪器行业概览部分,曾伟介绍了我国原子发射光谱、原子吸收光谱、原子荧光光谱等的发展历史,并汇总了历届获BCEIA金奖的仪器和厂家。曾伟表示,原子光谱是少数几个技术水准接近国际先进水平的仪器种类,但由于我国基础工业水平与发达国家相距甚大,这一小步的迈进却会相当困难。与国际先进水平相比,我们的产品在仪器的性能、指标上几乎没有差距,距离主要表现在仪器的稳定性和可靠性上,尤其表现在仪器的长期稳定性上。/p
  • 滨松推出世界最小的光谱仪新品,即将于滨松光子展上展出
    p  滨松光电公司新开发了世界上最小的(内部调查)光栅光谱仪“SMD系列微型光谱仪C14384MA”,具有近红外线高灵敏度,体积紧凑,重量轻,成本低的特点。C14384MA的立方尺寸约为MS系列微型光谱仪的1/40,重量约为其1/30,在相同的近红外范围内灵敏度约是后者的50倍高。这使得C14384MA成为需要实时现场测量应用的理想选择,例如食品或农作物的质量检查,甚至是四轴飞行器或无人机的环境分析。滨松将从2018年11月1日(星期四)起开始接受日本国内外测量与检测设备制造商的样品订单。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/c8d3bf5c-0dc3-4b17-b243-901a2030fe7b.jpg" title="Mini-spectrometer SMD series C14384MA and currently available mini-spectrometer and micro-spectrometer.png" alt="Mini-spectrometer SMD series C14384MA and currently available mini-spectrometer and micro-spectrometer.png" width="400" height="268" border="0" vspace="0" style="width: 400px height: 268px "//pp style="text-align: center "strong微型光谱仪SMD系列C14384MA,及目前可用的微型光谱仪和小型光谱仪/strongbr//pp  该产品将于滨松光子展上首次展出,展览自11月1日(星期四)起为期3天。滨松光子展每5年举办一届,本届展会将在位于日本滨松市中区的Act City中央厅举行。/pp  小贴士:光栅是通过利用不同波长光具有不同折射角的原理,将光分离成不同波长组分的光学元件。br/br/附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201810/attachment/2e8b150e-9291-4221-8a9b-efa4e9ea7419.pdf" target="_blank" title="微型光谱仪SMD系列介绍-英文版.pdf" textvalue="微型光谱仪SMD系列介绍-英文版.pdf"span style="font-size: 16px "微型光谱仪SMD系列介绍-英文版.pdf/span/a/ppbr//p
  • 华东理工自主研制界面光电分析装置 可用于超灵敏光电生物传感器构建
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/18580eb5-c78e-4baa-a5ae-f6bc8e181e94.jpg" title="149034298047758_meitu_5.jpg"//pp 对界面上电荷传输信息的精准获取,是深入认识生命活动与光电能量转化过程的基础,可应用在超灵敏光电生物传感器的构建和敏化太阳能电池光电转化效率的提高等方面。/pp  刚刚获得2016年度上海市自然科学一等奖的“功能化界面电荷传输过程中的电分析化学基础研究及其应用”项目,所研究的正是这一领域。/pp  针对界面光电分析化学基础研究中存在的关键问题与挑战,华东理工大学龙亿涛、花建丽、应佚伦、马巍、武文俊等老师,经过10年的努力,取得了多项成果:在研制界面光电分析装置上,通过设计与制备结构可控的光电分子,聚焦功能化动态界面电荷传输过程,发展了高时空分辨的“电化学—纳米光谱”单纳米粒子动态界面传感新方法,应用于纳米粒子界面电荷传输的动态、原位、实时、高通量分析 提出纳米孔道电化学限域效应,建立纳米孔道单分子界面分析技术,实现了对多尺度界面单分子动态结构研究,为功能化复杂界面电荷传输新机制的研究提供了新方法。/pp  据介绍,该获奖团队目前正在以筹建中的“国际合作联合实验室”和“界面光电分析化学基础研究”创新研究群体项目为依托,通过构建新型功能化动态界面,对单分子水平和单颗粒水平上的电荷传输机制进行探索。/ppbr//p
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV  分析原理:吸收紫外光能量,引起分子中电子能级的跃迁  谱图的表示方法:相对吸收光能量随吸收光波长的变化  提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息  荧光光谱法FS  分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光  谱图的表示方法:发射的荧光能量随光波长的变化  提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息  红外吸收光谱法IR  分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁  谱图的表示方法:相对透射光能量随透射光频率变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  拉曼光谱法Ram  分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射  谱图的表示方法:散射光能量随拉曼位移的变化  提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率  核磁共振波谱法NMR  分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁  谱图的表示方法:吸收光能量随化学位移的变化  提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息  电子顺磁共振波谱法ESR  分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁  谱图的表示方法:吸收光能量或微分能量随磁场强度变化  提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息  质谱分析法MS  分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离  谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化  提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息  气相色谱法GC  分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关  反气相色谱法IGC  分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力  谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线  提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数  裂解气相色谱法PGC  分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型  凝胶色谱法GPC  分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:高聚物的平均分子量及其分布  热重法TG  分析原理:在控温环境中,样品重量随温度或时间变化  谱图的表示方法:样品的重量分数随温度或时间的变化曲线  提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区  热差分析DTA  分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化  谱图的表示方法:温差随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  TG-DTA图  示差扫描量热分析DSC  分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化  谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线  提供的信息:提供聚合物热转变温度及各种热效应的信息  静态热―力分析TMA  分析原理:样品在恒力作用下产生的形变随温度或时间变化  谱图的表示方法:样品形变值随温度或时间变化曲线  提供的信息:热转变温度和力学状态  动态热―力分析DMA  分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化  谱图的表示方法:模量或tg&delta 随温度变化曲线  提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM  分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象  谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象  提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等  扫描电子显微术SEM  分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象  谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等  提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等  原子吸收AAS  原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。  (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP  原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。  X-raydiffraction,x射线衍射即XRD  X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。  满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。  高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)  CZE的基本原理  HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。  扫描隧道显微镜(STM)  扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。  原子力显微镜(AtomicForceMicroscopy,简称AFM)  原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。  俄歇电子能谱学(Augerelectronspectroscopy),简称AES  俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制