当前位置: 仪器信息网 > 行业主题 > >

平面光栅光谱仪原理

仪器信息网平面光栅光谱仪原理专题为您提供2024年最新平面光栅光谱仪原理价格报价、厂家品牌的相关信息, 包括平面光栅光谱仪原理参数、型号等,不管是国产,还是进口品牌的平面光栅光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合平面光栅光谱仪原理相关的耗材配件、试剂标物,还有平面光栅光谱仪原理相关的最新资讯、资料,以及平面光栅光谱仪原理相关的解决方案。

平面光栅光谱仪原理相关的论坛

  • 还有人使用平面光栅摄谱仪吗?

    我在使用平面光栅摄谱仪时,遇到测微光度计的使用还有不懂得地方,如被测物质黑度与浓度的计算方法,想请了解这方面知识的老师指教。谢谢!

  • 【讨论】微小型光栅光谱仪的内光路系统。

    在一个文档里看到的,贴出来分享下。摘自:文献1光谱仪微型化设计的实现得益于摄谱结构,最初的光学平台采用对称式 Czerny-Turner 分光结构, 荷兰 Avantes 公司生产的微小型光纤光谱仪即使用了这种光学平台设计 (图 1 所示) 。光信号由光纤传导经过一个标准的 SMA905 接口进入光谱仪内部,经球面镜准直,然后由一块平面光栅分光后,将入射光分成按一定波长顺序排列的单色光,再由聚焦镜聚焦到一维线性 CCD线性阵列探测器上进行检测。[center][img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902072108_131755_1786353_3.gif[/img][/center]全球最大的光纤光谱生产商美国 Ocean Optics 公司的 Michaeal J.Morris 等人研制的微小型光纤光谱仪则使用非对称交叉式 Czerny-Turner 分光结构(图 2 所示) ,此光学平台的设计是在 Czerny-Turner 结构基础上进行光路的改进,使光谱仪内部构件布局更紧凑,可进一步小型化(USB4000 系列光谱仪的尺寸规格仅为 89.1×63.3×34.4mm, 可以安装在一个小到足以放入手掌的测量平台)。与对称式 Crerny-Turner 结构相比,由于缩短了光程,使聚焦镜投射到线性CCD 阵列检测器的平行排列单色光展成呈一定角度的圆弧排列,会对光信号的检测会产生一定的非线性误差。 [center][img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902072108_131756_1786353_3.gif[/img][/center]摄谱结构的光学平台设计使微小型光纤光谱仪内部无活动构件,光学元件都采用反射式,可在一定程度上减少像差,并使工作光谱范围不受材料影响。仪器小型化全固定件的光学系统设计可适应高震动、狭窄空间等复杂的工况环境检测的需要。文献1:微小型光栅光谱仪在过程检测中的应用 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=131782]微小型光栅光谱仪在过程检测中的应用 [/url]pdf格式的。

  • 【分享】《紫外平面刻划光栅杂散光数值分析及测试》

    摘要:杂散光是光栅的重要技术指标,它直接影响光栅的信噪比,紫外波段的杂散光对光谱分析尤为不利.为了考察平面刻划光栅用于光谱仪器时产生的杂散光,采用标量衍射理论数值分析了杂散光产生的原因.数值模拟结果表明,紫外平面刻划光栅刻槽周期随机误差以及刻槽深度随机误差是杂散光的主要来源,而光栅杂散光对光栅表面小尺度随机粗糙度并不敏感.提出了平面光栅光谱仪出射狭缝相对宽度的概念,数值分析了仪器出射狭缝高度及出射狭缝相对宽度与杂散光强度的关系,从而分别为在光栅制作工艺中从根源上降低光栅杂散光以及在光栅应用过程中从使用方法上降低光栅杂散光提供了理论依据.最后,为了与采用滤光片法测得的光栅杂散光实验值进行比较,给出了理论求解杂散光总强度的求和公式,并对4个不同波长的杂散光进行了多次测量.结果表明,当刻槽周期随机误差、刻槽深度随机误差和表面随机粗糙度分别取0.8 nm、 0.5 nm和1.2 nm时,理论值和实验值的相对误差可控制在13%左右地址:http://bbs.instrument.com.cn/download.asp?ID=272139

  • 组合光栅光谱仪定义

    请问各位大侠,光栅光谱仪是种什么仪器,用来检测样品的什么指标呢?与荧光光谱仪有什么关系呢?

  • 平面光栅衍射效率的测试与分析

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[b]陈刚[/b][/b][*]【题名】:[b][b][b]平面光栅衍射效率的测试与分析[/b][/b][/b]【期刊】:[font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://gb.global.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201302&filename=1013229762.nh&uniplatform=OVERSEA&v=y8cL9QIbWUiTegZB2k3i7JQ_aacaGWymyUB0MvWafRqp4fdfQzAYxocYl3d-2mEo]平面光栅衍射效率的测试与分析 - 中国知网 (cnki.net)[/url][/b]

  • 真空压力精密控制技术在阶梯光栅光谱仪中的应用

    真空压力精密控制技术在阶梯光栅光谱仪中的应用

    [color=#990000]摘要:为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案,其中特别介绍了控制效果更好的双向控制模式。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题提示[/color][/size] 阶梯光栅光谱仪作为一种全谱直读的光谱仪器广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域,但阶梯光谱仪的灵敏度会受到环境温度和压力的严重影响,因此阶梯光谱仪普遍要求对工作温度和压力进行精密控制,特别是压力控制要求达到很高精度,如果控制精度不够,则会带来以下几方面的影响: (1)压力波动会使得阶梯光谱仪内的气体折射率发生改变。 (2)压力波动也会造成光谱仪内外压差不同而造成光谱仪光路(特别是光学窗口处)的微小变形。同时,温度变化也会直接造成气压随之改变。 总之,为了实现阶梯光栅光谱仪的高精度测量,要在全过程中对温度和压力进行长时间的精密恒定控制。本文将针对阶梯光栅光谱仪中压力的精密控制,介绍压力的自动化控制技术,并详细介绍了具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 阶梯光栅光谱仪的压力控制系统结构如图所示。在具体实施过程中,需要根据具体情况需要注意以下几方面的内容:[align=center][color=#990000][img=阶梯光谱仪压力控制,550,355]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211541151559_1872_3384_3.png!w690x446.jpg[/img][/color][/align][align=center][color=#990000]阶梯光栅光谱仪压力控制系统示意图[/color][/align] (1)阶梯光谱仪的工作压力一般在一个大气压760torr附近,因此要选择在此压力下测量精度能满足设计要求的压力传感器。 (2)压力自动控制采用24位高精度PID控制器,如果24位测量精度还是无法匹配压力传感器精度,则需要更高精度控制器。 (3)压力控制采用双向模式,即同时调节进气和出气流量,但对于一个大气压附近的压力控制,一般是固定进气流量后自动调节排气流量实现压力恒定控制。 (4)针对不同尺寸的阶梯光谱仪工作腔室大小,需选择不同的出气流量控制阀。对于大尺寸空间工作室,出气流量控制可选用出气口径较大的电动球阀;而对于小尺寸空间工作室,出气流量控制则需要选择出气口径较小和更精密的电动针阀。抽气用的真空泵也是如此。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 原子吸收:关于光栅的知识

    1 衍射光栅  平行、等宽而又等间距的多缝装置称为衍射光栅。它是利用光的衍射和干涉现象进行分光的一种色散元件,衍射光栅有透射式和反射式两种,光谱仪常用的是反射光栅,它的缝是不透明的反射铝膜。在一块极其平整的毛坏上镀上铝层,刻上许多平行、等宽而又等距的线槽,每条线槽起着一个“狭缝”的作用,每毫米刻线有1200条、2400条或3600条,整块光栅的刻线总数几万条到几十万条。  反射光栅从形状上可分为平面光栅,凹面光栅和阶梯光栅,  从制作方法上又可分为机刻光栅和全息光栅。  在一般的反射光栅中,由于光栅衍射中没有色散能力的零级衍射的主极大占去衍射光强的大部分(80%以上),随着主极大的级次增高,光强迅速减弱(见下图)。因此,使用这种反射光栅时,其一级较弱,二级衍射更弱。为解决这个问题,将光栅的线槽刻成锯齿形,使其具有定向“闪耀”能力,把能量集中分布在所需的波长范围。光栅复制技术的发展,大大降低了生产成本并缩短生产周期,使光栅得到广泛应用1.1平面反射光栅  1) 光栅方程  根据光的衍射和干涉原理,当平行光束以α角入射于光栅时,则在符合下述方程的角β方向上获得最大光强。  d(sinα+sinβ)=ml (m=0 ±1 ±2)  其中d-光栅常数,即相邻两缝的间距,α-入射角,β-出射角,m-衍射级次,或称为光谱级次,l-衍射光的波长。  2) 平面反射光栅的特点  a) 根据光栅方程,当光栅常数d为定值时,对于同一方向(α一定)入射的复合光在同级光谱(m一定)中,不同波长l有不同的衍射角β与之对应,因而可在不同的衍射方向获得不同波长的谱线(主极大)。这就是光栅的色散原理。  b) 对一定波长l的单色光而言,在光栅常数d和入射角α固定时,对于不同级次m(m=0 ±1 ±2……)可得到不同角β的衍射光,即同一波长可以有不同级次的谱线(主极大)。  c) 对于复合光,当m=0时,在β=-α的方向上,任何波长都可使光栅方程成立,即在此方向上,光栅的作用就象一面反射镜一样,将得到不被分光的零级光谱,入射光束中的所有波长都叠加在零级光谱中。当d和α为固定值时,对于不同波长、不同级次的光谱,只要其乘积ml等于上述定值,则都可以在同一衍射角β的方向上出现,即  m1l1=m2l2= m3l3=……  例如,一级光谱中波长为l的谱线和波长为l/2的二级谱线,波长为l/3的三级谱线…… 重叠在一起(如图)。这种现象称为光谱级次的重叠。它是光栅光谱的一个缺点,对光谱分析不利,应设法予以清除。在平面光栅光谱仪中,常用不同颜色的滤光片来消除这种级次重叠。同时为了获得足够的光能量,在ICP光谱分析中,通常选择第一级次(m=1)或第二级次(m=2)的光谱谱线。  3) 平面光栅光谱仪的主要性能  a) 色散率:光谱在空间按波长分离的程度称为色散率,其表示方法有角色散率(dβ/dl)和线色散率(dl/dl)两种,通常以线色散率倒数dl/dl表示仪器的色散能力,其单位为nm/mm。  光栅的角散率:dβ/dl=m/(d٠cosβ)  由此可见,角色散率与光谱级次m成正比。对于给定的波长范围,由于平面光栅的β较小(0-8°),cosβ变化不大(1-0.99),因而在同一个级次下,角色散率几乎不变;二级光谱的角色散率为一级光谱角色散率的两倍。  在Ebert装置的平面光栅仪中,焦平面与光轴垂直, β=0-8°时,cosβ»1。此时线色散率倒数为:  dλ/dl@d/(f·m) f为成像物镜的焦距。  可见,线色散率倒数与成像物镜的焦距f、衍射光谱级次m成反比,即采用长焦距和高衍射级次的光谱有利于提高线色散率。同时平面光栅光谱仪的线色散率倒数只有在β角很小的情况下才接近常数,即随波长的增加,线色散率倒数几乎不变。  b) 分辨率:仪器的分辨率又称分辩本领,是指仪器两条波长相差极小的谱线,按Rayleigh原则可分开的能力。所谓Rayleigh原则,指一条谱线的强度极大值恰好落在另一条强度相近的谱线的强度极小值处,若此时这两条谱线刚能被分开,则这两条谱线的平均波长λ与波长差Δλ之比值,称为仪器的理论分辨率 R,即R=λ/Δλ。对于平面光栅,理论分辨率R=λ/Δλ=m·N,由此表明光栅的分辨率为光谱级次m与总刻线N的乘积,不随波长改变而改变。  当级次m增加时,角色散率、线色散率及分辨率均随之增加。这时光栅偏转的角度也越大,它在衍射方向的投影也越少,因而光栅的有效孔径也随之越小,因此,光谱强度也相应减弱。  实际分辨率由于受许多客观误差因素的影响,总是比理论分辨率差,一台单色仪的分辨率是它能分辨的最小波长间距,这个波长间距不但有赖于仪器的分辨本领,而且也与狭缝的宽度、狭缝的高度及光学系统的完善性有关。在扫描式单色仪中,分辨率通常用半强度带宽值报出  1.2闪耀光栅  前面介绍的一般光栅具有色散能力。但衍射能量的80%左右集中在不分光的零级光谱中,而有用的一、二级光谱依次减弱,因而实用价值很低。为了克服这一缺点,适当地改变反射光栅的刻槽形状,使起“狭缝”作用的反射槽面和光栅平面形成一定的倾角e,如图,即可将入射光的大部分能量集中到所需衍射级次的某个衍射波长附近,该波长称为“闪耀波长”,这种现象称为光栅的闪耀作用,这种光栅称为闪耀光栅,也称小阶梯光栅,倾角e为闪耀角。  闪耀光栅的主要好处在于可使光能量集中在第一光谱级次(m=1)的λb与第二光谱级次(m=2)的λb/2附近。  a) 在“自准”条件下(a=b=e),闪耀波长与闪耀角的关系为2dSine=m·λbm,可根据需要的闪耀波长λbm来设计相应的闪耀角e。  b) 光栅的闪耀并非只限于闪耀波长,而是在该闪耀波长附近的一定范围内也有相当程度的闪耀。  c) 闪耀光栅的特性。这种光栅的一级闪耀波长λb1=560nm,有86%的光强集中在一级,而其余14%被分配在零级和其他各级中。从该图可以看出,该光栅的二级光栅光谱的闪耀波长λb2=560/2=280nm,实际上,光强的分布难与理论值完全相符,因为光栅刻线形状不可能精确

  • 光谱仪的不同分类及构成组件

    光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有 红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的 光谱仪器,常与其他分析仪器配合使用。 一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分: 1. 入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。 2. 准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。 3. 色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。 4. 聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。 5. 探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。

  • 【分享】光谱仪工作原理

    光谱仪工作原理光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面都发挥着极大的作用。无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,获得单波长辐射是不可缺少的手段。由于现代单色仪可具有很宽的光谱范围(UV-IR),高光谱分辨率(0.001nm),自动波长扫描,完整电脑控制功能,极易和其它周边设备配合为高性能自动测试系统,使用电脑自动扫描多光栅光谱仪已成为光谱研究的首选。在光谱学应用中,获得单波长辐射是不可缺少的手段。除了用单色光源(如光谱灯、激光器、发光二极管)、颜色玻璃和干涉滤光片外,大都使用扫描选择波长的单色仪。尤其是当前更多地应用扫描光栅单色仪,在连续的宽波长范围(白光)选出窄光谱(单色或单波长)辐射。  当一束复合光线进入光谱仪的入射狭缝,首先由光学准直镜准直成平行光,再通过衍射光栅色散为分开的波长(颜色)。利用不同波长离开光栅的角度不同,由聚焦反射镜再成像于出射狭缝。通过电脑控制可精确地改变出射波长。光栅基础  光栅作为重要的分光器件,他的选择与性能直接影响整个系统性能。为更好协助用户选择,在此做一简要介绍。  光栅分为刻划光栅、复制光栅、全息光栅等。刻划光栅是用钻石刻刀在涂有金属的表面上机械刻划而成;复制光栅是用母光栅复制而成。典型刻划光栅和复制光栅的刻槽是三角形。全息光栅是由激光干涉条纹光刻而成。全息通常包括正弦刻槽。刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。光栅方程  反射式衍射光栅是在衬底上周期地刻划很多微细的刻槽,一系列平行刻槽的间隔与波长相当,光栅表面涂上一层高反射率金属膜。光栅沟槽表面反射的辐射相互作用产生衍射和干涉。对某波长,在大多数方向消失,只在一定的有限方向出现,这些方向确定了衍射级次。如图1所示,光栅刻槽垂直辐射入射平面,辐射与光栅法线入射角为α,衍射角为β,衍射级次为m,d为刻槽间距,在下述条件下得到干涉的极大值:mλ=d(sinα+sinβ)  定义φ为入射光线与衍射光线夹角的一半,即φ=(α-β)/2;θ为相对与零级光谱位置的光栅角,即θ=(α+β)/2,得到更方便的光栅方程:  mλ=2dcosφsinθ  从该光栅方程可看出:  对一给定方向β,可以有几个波长与级次m相对应λ满足光栅方程。比如600nm的一级辐射和300nm的二级辐射、200nm的三级辐射有相同的衍射角。  衍射级次m可正可负。  对相同级次的多波长在不同的β分布开。  含多波长的辐射方向固定,旋转光栅,改变α,则在α+β不变的方向得到不同的波长。如何选择光栅选择光栅主要考虑如下因素:刻槽密度G=1/d,d是刻槽间隔,单位为mm。闪耀波长  闪耀波长为光栅最大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实际需要波长附近。如实际应用在可见光范围,可选择闪耀波长为500nm。光栅刻线  光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择。光栅效率  光栅效率是衍射到给定级次的单色光与入射单色光的比值。光栅效率愈高,信号损失愈小。为提高此效率,除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。光栅光谱仪重要参数:分辨率(resolution)  光栅光谱仪的分辨率R是分开两条临近谱线能力的度量,根据瑞利判据为:  R==λ/Δλ  光栅光谱仪有实际意义的定义是测量单个谱线的半高宽(FWHM)。实际上,分辨率依赖于光栅的分辨本领、系统的有效焦长、设定的狭缝宽度、系统的光学像差以及其它参数等。  R∝M.F/WM--光栅线数  F--谱仪焦距  W--狭缝宽度色散  光栅光谱仪的色散决定其分开波长的能力。光谱仪的倒线色散可计算得到:沿单色仪的焦平面改变距离χ引起波长λ的变化,即:Δλ/Δχ=dcosβ/nF  这里d、β、F分别是光栅刻槽的间距、衍射角和系统的有效焦距,n为衍射级次。由方程可见,倒线色散不是常数,它随波长变化。在所用波长范围内,改变化可能超过2倍。根据国家标准,在本样本中,用1200l/mm光栅色散的中间值(典型的为435.8nm)时的倒线色散。带宽  带宽是忽略光学像差、衍射、扫描方法、探测器像素宽度、狭缝高度和照明均匀性等,在给定波长,从光谱仪输出的波长宽度。它是倒线色散和狭缝宽度的乘积。例如,单色仪狭缝为0.2mm,光栅倒线色散为2.7nm/mm,则带宽为2.7*0.2=0.54nm。波长精度、重复性和准确度  波长精度是光谱仪确定波长的刻度等级,单位为nm。通常,波长精度随波长变化,本样本中为最坏的情况。  波长重复性是光谱仪设定一个波长后,改变设定,再返回原波长的能力。这体现了波长驱动机械和整个仪器的稳定性。卓立汉光的光谱仪的波长驱动和机械稳定性极佳,其重复性超过了波长精度。  波长准确度是光谱仪设定波长与实际波长的差别。每台单色仪都要在很多波长检查波长准确度。F/#  F/#定义为光谱仪的直径与焦距的比值。这是对光谱仪接收角的度量,这是调整单色仪与光源及探测器耦合的重要参数。当F/#匹配时,可用上光谱仪的全部孔径。但是大多数单色仪应用长方形光学部件。这里F/#定义为光谱仪的等效直径与焦距的比值,长方形光学件的等效直径是具有相同面积的园的直径

  • 微型光纤光谱仪的性能特点

    光纤光谱仪是一种用于检测电磁谱中特定区域的光特性的仪器。它收集光,然后将其进行光谱色散,最后将光信号重构像为一系列的单色影像,从而对其进行检测。 入射狭缝:是指将入射的光学信号构建成一个明确的物像;准直部分: 使光学信号的光线平行。该准直器可以为透镜、反射镜或色散元件的部分功能,如在凹面光栅光谱仪中的凹面光栅的部分功能;色散部分:通常采用光栅,将平行光在空间上进行色散;聚焦部分:收集色散的光学信号,使得大部分入射狭缝的单色影像聚焦于焦平面;阵列检测器:放置于焦平面,从而检测大部分单色影像的光强度。该检测器可以是CCD阵列或其它的光检测阵列。光纤光谱仪的性能可以用以下六个参数来体现:光谱覆盖范围:指的是光信号能被光纤光谱仪检测到的波长范围。光谱分辨率:能被光纤光谱仪分辨开的最小的波长差值,光谱分辨率与光谱仪的光谱覆盖范围、狭缝宽度、检测器的像元宽度及像元数密切相关。灵敏度:能被光纤光谱仪检测到的最小的光能量,它取决于光谱仪的光通量与检测器的光感应灵敏度。动态范围:可被光纤光谱仪测量到的最大与最小光能量的比值。信噪比:光纤光谱仪的信号能量水平与噪声水平的比值。光谱获取速度:在一定的入射光能量水平下,光纤光谱仪产生可测量到的信号并获得谱图所需的时间。对于光纤光谱仪来说,这六个参数是密切相关,互相影响的。

  • ICP光谱仪三大组成部分

    ICP光谱仪是当前光谱分析中非常迅速非常灵敏的一种仪器。  ICP光谱仪三大主要部分:  一是激光光谱的光源   二是光谱仪系统,使不同波长的光聚焦在仪器上的特定位置。  三是用置于焦点上的探测器来量光的强度。近代的光谱仪大都采用微型计算机处理实验结果。  它是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。  它具有样品用量少,应用范围广且快速,灵敏和选择性好等特点。  ICP光谱仪包括以下几个主要部分:  1、入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。  2、准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。  3、色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。  4、聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。  5、探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是ccd阵列或其它种类的光探测器阵列。

  • ICP光谱仪三大组成部分

    ICP光谱仪是当前光谱分析中非常迅速非常灵敏的一种仪器。  ICP光谱仪三大主要部分:  一是激光光谱的光源   二是光谱仪系统,使不同波长的光聚焦在仪器上的特定位置。  三是用置于焦点上的探测器来量光的强度。近代的光谱仪大都采用微型计算机处理实验结果。  它是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。  它具有样品用量少,应用范围广且快速,灵敏和选择性好等特点。  ICP光谱仪包括以下几个主要部分:  1、入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。  2、准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。  3、色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。  4、聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。  5、探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是ccd阵列或其它种类的光探测器阵列。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制