当前位置: 仪器信息网 > 行业主题 > >

水中丁二醇气相检测

仪器信息网水中丁二醇气相检测专题为您提供2024年最新水中丁二醇气相检测价格报价、厂家品牌的相关信息, 包括水中丁二醇气相检测参数、型号等,不管是国产,还是进口品牌的水中丁二醇气相检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水中丁二醇气相检测相关的耗材配件、试剂标物,还有水中丁二醇气相检测相关的最新资讯、资料,以及水中丁二醇气相检测相关的解决方案。

水中丁二醇气相检测相关的资讯

  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 水中VOC检测 | 捕集阱顶空VS吹扫捕集
    国标生活饮用水卫生标准(GB 5749-2006)中规定了水质检测指标共106项。其中挥发性有机化合物指标一部分使用顶空进样方式运行样品,另一部分使用传统的萃取方式提取待测组分实现样品检测。萃取提取的检测结果存在较大人为因素,又费时费力。因此,如何简化实验过程,同时保证检测灵敏度是诸多检测部门需要解决的问题。生活饮用水标准检验方法-有机物指标(GB/T 5750.8-2006)中除了给出常规检测方法外,另附了吹扫捕集-气质联用仪(PT-GCMS)同时测定多种挥发性有机物的方法。鉴于捕集阱顶空进样器也具备提取和富集挥发性有机物的功能,因此PT-GCMS与捕集阱顶空-气质联用仪(HS-GCMS)的性能对比,也成为检测部门需要考察的指标之一。珀金埃尔默捕集阱顶空进样器是颇具特色的一款前处理仪器,既简化操作步骤,又具备富集功能,在一定范围内有优异的线性和灵敏度,在水质监测项目中,配合GC/MS使用,具有极大潜力。我们探讨了捕集阱顶空-气质联用仪(HS-GCMS)测试水中挥发性有机物项目的可行性;对比了PT-GCMS与HS-GCMS的性能指标,并给出对应仪器方法和结果讨论。HS-GC/MS:一次进样,完成所有组分分析参照《环境监测分析方法标准制修订技术导则》(HJ 168-2010),得到生活饮用水卫生标准(GB 5749-2006)中规定的VOCs组分检测结果。可见绝大部分项目的检出限均大大低于国标限值。而使用捕集阱顶空-气质联用系统最大的优势就是可以实现单针进样,一次得到所有组分含量,并满足参照国标的水质检测项目工作。捕集阱顶空优异的重现性来自相同浓度标准品六次进样结果的相对标准偏差。PT结果的相对标准偏差为0.4-19%(5ug/L)或0.2–14%(100ug/L),HS为2-5%(10ug/L),均满足国标规定的相对标准偏差小于20%的要求,且HS结果好于PT。简便高效的系统采用具有自动进样功能,且定量环体积为5mL的PT,需配制样品15-20mL,以保证采样平行性;而手动进样的PT,每次配制样品后,需要人工进样5mL,整个过程需要大量人为参与。若采用HS进样,配制样品量仅为5mL,且后续进样过程可以自动控制,无需人为参与。因此对于样品量较大的状况,则可实现过夜工作,大大提高工作效率。PT每个样品均要在鼓泡管内完成待测组分的提取,提取完成后,引入超纯水清洗鼓泡管,再烘干,清洗过程耗时较长。而HS每个样品分别放置于各自样品瓶中,进样后,进样针接触的样品气体会被HS内惰性气体及时清洁,且清洗速度快。因而,若多个样品浓度高低不等,或样品基质较复杂,对于PT则更需要考虑样品间是否交叉污染问题,并且样品间要预留出更多的间隔时间用于清洗。欲了解试验详情,请扫描二维码获取完整研究报告。扫描上方二维码即可下载右侧资料?
  • 【水中抗生素检测】博纳艾杰尔帮您找“药”水!
    【背景】近日,《科学通报》上的一篇文章称,我国地表水中含有68种抗生素,且浓度远高于国外。其主要污染来源是水产养殖业,人们为追求水产品养殖速度,滥用抗生素。这些抗生素,不仅污染了水,也会通过食物链进入人体……当13亿国人开始喝“药水”,环境问题被又一次提上议题!博纳艾杰尔陪您一探到底,辨析身边究竟是“药”还是“水”!【藏在水里的药是什么】PPCPs(Pharmaceuticals and Personal Care Products)是药品和个人护理产品的统称。 PPCPs种类繁杂,包括各类抗生素、人工合成麝香、止痛药、降压药、避孕药、催眠药、减肥药、发胶、染发剂和杀菌剂等,作为新兴污染物日益受到人们的重视。【如何快速找出“药水”】目前对环境中的PPCPs污染的系统研究相对较少,本文节选了两篇博纳艾杰尔“卓越用户文章奖励”活动中收集到的论文内容,供相关分析人员参考。特例举了如下产品及推荐理由,邀请广大分析同仁共同体验!1)亲水、相对通用型固相萃取柱----Cleanert PEP鉴于样品的亲水性及分析物的多样性,样品前处理首推Cleanert PEP、PEP-2固相萃取柱。该萃取柱采用的极性官能化的聚乙烯基二乙烯基苯材料,使其具有良好的亲水亲脂性,可实现水样多种PPCPs的同时萃取和富集。此外,回收率高、重现性好,操作简单等优点也是笔者首推此产品的重要原因。2)传统固相萃取柱的升级--------------Cleanert LDC 大体积水处理柱LDC 独特的设计,可以直接将样品瓶倒扣在柱子上端,采样便捷;样品采样速度快,不易堵塞,适用于环境大体积样品的采集处理;低本底,高灵敏度,通用性强,适于各类极性与非极性样品的富集分析;其中AQ C18 等材料,可以用于EPA525方法。3)大体积水处理装置----------------SPE-D6多位通道:多位通道可独立使用处理快速:流速最高可达100mL / min上样简便:1L 样品瓶直接倒置上样配置简单:负压驱动,真空度达-0.1MPa适用性强:专用大体积水固相萃取柱该装置可适用于大体积水样分析,如:PPCPs、微囊藻毒素、有机磷农药、除草剂、多环芳烃、酚类、甲胺磷、丙烯酰胺等4)亲水能力、分离能力的完美平衡----------Venusil MP C18(2)液相色谱柱Venusil MP-2 C18完美平衡了亲水能力、反相保留能力、分离能力和耐污染能力的关系,为极性范围大的混合物样品提供了均衡了保留能力,是环境中多种PPCPs的同时分析的首选。* 以上产品,均可在博纳艾杰尔官方网站环境水中 PPCPs 的应用分析方法(访问地址:http://www.agela.com.cn/application/detail/253)——【订货信息】页面进行购买!【文献】博纳艾杰尔“卓越用户文章奖励”活动(访问地址:http://www.agela.com.cn/home/thesis)中收集的两篇文章:固相萃取-超高效液相色谱串联质谱法对杭州市不同环境水中13种痕量药物残留状况的检测及分析作者:李晓娟单位:浙江大学环境与资环学院涉及产品:Cleanert PEP固相萃取柱;规格:500mg / 6mL ;订货号:PE5006摘要:本文应用固相萃取和超高效液相色谱-串联质谱(UPLC-MS/MS)技术,建立了同时定量检测水中13种目标药物残留的方法。建立的方法满足日常分析需要,同时也成功地应用在了杭州市不同水环境中目标药物残留状况的调查中。从医院→污水处理厂→地表水分别检测和分析13种目标药物的浓度空间分布特征上看:医院出水检出药物的总浓度在3083.4-5878.3ng/L之间。检出频率最高的几种药物是甲氧苄胺嘧啶、红霉素、诺氟沙星、氧氟沙星和阿替洛尔,但是不同药物在不同医院的污水残留浓度相差甚大,尤其是喹诺酮类药物诺氟沙星和氧氟沙星在所有医院中的检出浓度相对较高,总浓度在9000ng/L左右,超过了国外一些学者预测的对地表水菌群产生影响的无效浓度3000ng/L (Predicted No-effect Concentration)。由于药物性质和污水处理厂进水性质的不同,污水处理厂的去除率和进水中药物的组成也存在差异。在所调查的污水处理厂中,PPCPs并不能完全去除,这一结果表明污水处理厂的处理工艺主要侧重于常规水体污染物的去除,并没有考虑到痕量药物的去除。钱塘江流域18个监测点中目标药物残留总浓度为13.8ng/L~1189.3ng/L。其中抗生素占很高比例,检出浓度和比例最高的抗生素类药物是喹诺酮类药物诺氟沙星。钱塘江中上游药物残留相对较低,下游由于人类活动相对集中,药物残留浓度较高,这也证明地表水中的药物残留在很大程度上受人类活动的影响。在所有的水环境中,检出药物的组成均有所不同,浓度在ng/L-μg/L之间,与其他药物相比,抗生素类药物尤其是诺氟沙星的检出率和浓度相对较高,证实了该类药物的广泛来源和使用率。在后续试验阶段,需要更进一步加强对该类药物的调查和研究。原文链接:http://cdmd.cnki.com.cn/article/cdmd-10335-1011052371.htm 固相萃取-液相色谱法同时检测4种酸性PPCPS作者:陈方荣,吴波等单位: 湖北大学化学化工学院发表期刊:湖北大学学报(自然科学版)涉及产品:Cleanert C18 固相萃取柱;规格:1g / 6mL;订货号:180006摘要:建立了固相萃取-液相色谱法同时分析环境水样中水杨酸、酮洛芬、萘普生和双氯芬酸钠等4种酸性PPCPs的方法.水样用0.22μm水系膜过滤两次,C18固相萃取小柱分离富集,甲醇洗脱液直接进行液相色谱分析.实验结果显示,工作曲线范围分别为水杨酸5~200μg/L 酮洛芬2~200μg/L 萘普生0.5~50μg/L和双氯芬酸钠5~200μg/L.检测限(LOD)分别为水杨酸0.15μg/L 酮洛芬0.18μg/L 萘普生0.03μg/L和双氯芬酸钠0.6μg/L.加标回收率在80.2%~104.3%范围内.该方法操作简单?快速?低成本?提取回收率和富集倍数高,适合于环境水样中PPCPs残留的检测.原文链接:http://www.cnki.com.cn/Article/CJFDTotal-HDZK201102011.htm * 更多检测方法请持续关注博纳艾杰尔官方网站:www.agela.com.cn
  • 海能仪器对“毒淀粉”中顺丁烯二酸(酐)推出的检测解决方案
    顺丁烯二酸又称马来酸,是一种重要的化工原料,曾经作为酸处理剂,在牙齿保健方面有广泛的应用,另一个方面,顺丁烯二酸作为淀粉处理剂,能有效的提高淀粉的粘度和稳定性,近年来业界发现有少量技术能力较低的企业,为了提高淀粉的性能,在食用淀粉中加入大量的顺丁烯二酸淀粉酯,但是由于技术条件的限制,造成淀粉中大量的顺丁烯二酸残留,从而留下巨大的安全隐患,台湾所谓的&ldquo 毒淀粉&rdquo 事件就由此而发,目前,我国国家标准中仍未将顺丁烯二酸酐列为食品添加剂。方法简介 由于顺丁烯二酸在水中良好的溶解性(788g/L),其前处理基质组分也不复杂,所以,其前处理提取方式较为简单,另顺丁烯二酸在紫外检测器中具备相应良好响应(其定量限可达250ug/mL),总体说明:此方法前处理操作简单,灵敏度高,稳定性好,适用于淀粉及其制品中顺丁烯二酸(酐)含量的测定。 实验部分主要仪器与试剂:仪器:海能LC7000高效液相色谱仪 配置:LC7011二元高压泵LC7020紫外/可见检测器LC7031 柱温箱7725i手动进样器Hanon-Clarity色谱工作站 试剂:顺丁烯二酸标准品(浓度99.5%以上)、乙腈(色谱纯)、超纯水、磷酸(分析纯)色谱条件色谱柱: C18,250 mm × 4.6 mm,5 &mu m 流动相:乙腈-0.1%磷酸溶液(3∶97)流速:1.0 mL/min柱温:30 ℃进样量:15 &mu L波长: 215 nm标样制备: 称取0.05g顺丁烯二酸标准品(精确到0.1mg),用超纯水定容在25mL容量瓶中,得到2mg/mL的标准液 样品前处理 称取5 g样品(精确到0.01 g)于50 mL比色管中(样品磨碎后称取),加入40 mL的超纯水,超声提取12 min后用超纯水定容至50 mL,放入冰箱至-5摄氏度环境中静置5min,放入离心机离心5 min后,用0.45um水滤膜过滤后进样测试。 图例 以下是使用海能LC7000高效液相色谱系统在淀粉中加入顺丁烯二酸标准品测试的结果,谱图中的主峰为顺丁烯二酸,与其他的杂质分离度良好,响应值高,完全适合在实验室中做批量测试应用。
  • 火眼“金”睛:测定水中丁基黄原酸的在线监测解决方案
    黄金抗腐蚀性强,极为稳定,是首饰业、电子业、现代通讯、航天航空业等部门的重要材料,因为稀有而逐渐成为了珍稀品,甚至成为了一个国家的财富象征。“点石成金”的神奇药水丁基黄原酸盐“点石成金”的故事众所周知,仙道点铁石而成黄金,化腐朽为神奇。跟传说的手指一点而成金不同的是,21世纪的今天,“点石成金”靠神奇药水---丁基黄原酸盐。丁基黄原酸盐为黄色粉末固状,俗称“丁基黄药”,是一种重要的金属硫化矿捕集药剂,被广泛应用于各种重金属硫化矿(如PbS、ZnS、CuS等)和部分贵金属硫化矿(如Au2S3、Ag2S等)的浮选捕收。Tips:浮选捕收剂的目的是通过在被浮矿物表面选择性吸附形成疏水层,从而使疏水性矿粒附着气泡上浮至泡沫产品中,成为精矿,实现了真正的“千淘万漉不辛苦,吹尽狂沙始到金”。浮选捕收剂的结构示意图浮选捕收剂与矿物作用的原理图“危害健康”的有毒药水丁基黄原酸盐丁基黄原酸盐也是会对身体造成伤害的有毒药水,金矿在提炼过程会产生大量的毒副产品,如部分丁基黄原酸盐随废水排入地表水,污染饮用水源和土壤。此外,金矿提炼过程中还伴随着如铅、汞、镉等重金属污染,严重者会导致该地三十年内寸草不生!Tips:丁基黄原酸盐对人体和畜禽的危害主要表现在伤及神经系统和肝脏器官,对造血系统也有不良影响。谱育科技全新工业污染物监测方案根据《水质 丁基黄原酸的测定 吹扫捕集/气相色谱-质谱法》(HJ 896-2017)中的描述:水样中需加入硫代硫酸钠、氢氧化钠、氟苯及磷酸对丁基黄原酸进行衍生(衍生方程式如下),通过测定二硫化碳,间接测定水中丁基黄原酸的浓度。C4H9OCSSK(Na) + HCl→CS2↑+ C4H9OH + K(Na)Cl谱育科技EXPEC 2100 水中挥发性有机物在线监测系统可以实现对丁基黄原酸的在线监测。吹扫捕集-气相色谱-质谱法测定水中的丁基黄原酸我国在《集中式生活饮用水地表水源地特定项目标准限值》(GB 3838-2002)中对生活饮用水中丁基黄原酸的含量进行了严格限定。谱育科技可为您提供吹扫捕集-气相色谱-质谱法 对水中的丁基黄原酸进行分析,该方法具有灵敏度高、重复性好、无人化操作等优点。方案特点★ 丁基黄原酸在0.2-4μg/L线性相关系数R2>0.999,连续6针进样的重复性RSD为8.24%;★ 丁基黄原酸的检出限为0.03μg/L,达到实验室检测水平;★ EXPEC 2100产品提供高精度压力控制,保证卓越的保留时间稳定性和峰面积稳定性;★ 搭配EXPEC 2100可实现无人化操作,可以实现对水中挥发性有机物的在线监测。EXPEC 2100水中挥发性有机物在线监测系统可实现对丁基黄原酸的全自动在线监测,助力实现“既要金山银山,也要绿水青山”这一美好愿望。
  • 包装饮用水中溴酸盐检测经济解决方案
    近日,国家卫生计生委办公厅下发了《包装饮用水》、辐射食品等14项食品安全国家标准(征求意见稿),其中《包装饮用水》国标中新增溴酸盐指标。在目前的纯净水生产中,臭氧消毒因副产物的危害性小,成本较低而被广泛应用。然后,使用臭氧对纯净水消毒的过程中,会将水体中自然存在的溴化物氧化为对人体有害的溴酸盐,而溴酸盐则是被国际癌症研究机构定为2B级的潜在致癌物。虽然溴酸盐含量短期内不会对饮用者的身体健康带来任何危害,但是长期饮用这种高溴酸盐含量的饮品,将增加癌症的患病率,过量食用溴酸盐会损害人的血液、中枢神经和肾脏等。 在目前的国家标准中饮用水的溴酸盐含量不得高于10μg/L,这就对溴酸盐的检测技术提出更高的要求。由于饮用水中的溴酸盐的含量较低,目前常用的测定方法是离子色谱法以及一些新型的联用技术,然而由于这些大型仪器设备的费用昂贵,仪器操作相对复杂,检测过程中易受氯化物等物质的干扰,在实际生产应用中存在一定的局限性。针对这些弊端,默克密理博采用简单而高精度的分光光度法测量饮用水中微量的溴酸盐含量,已成为许多瓶装水生产企业溴酸盐检测方案的首选。 默克密理博纯净水中溴酸盐检测经济解决方案,主要是利用分光光度法的原理,仪器内置溴酸盐标准测量曲线,无需校准。使用者只需进行简单的水样预处理即可,该方法是基于3,3二甲基萘啶与碘化物和溴酸盐的化学反应产生红色色团,使用默克Nova60或Pharo系列分光光度计测定其在550nm处的吸光度得出样品中溴酸盐的含量。此方法的检测范围为0.003–0.120 mg/l。并在实际样品的对照实验中,得到了满意的结果。分光光度法具有灵敏度高、简便、快速、维护量小、易操作、成本低廉的特点,是测定饮用水中溴酸盐含量的理想方法之一,同时默克密理博的分光光度计内置了170多条标准曲线,涵盖了所有的常规水质分析项目。所有Spectroquant?测试盒带有条形码自动识别功能,仪器自带试剂空白值,节约用户成本和时间。AQA质量保证功能,确保用户每次测量的准确性。其中,很多中测试方法被德国DIN以及美国USEPA认证,并提供完整的批次文件和分析质量证书。德国默克饮用水中溴酸盐检测经济解决方案所需试剂和附件:碘化钾 GR(1.05043.0250)3,3二甲基萘啶(1.03122.0001)乙酸100% GR(1.00063.1000)高氯酸70-72% GR(1.00519.1000)高纯水GR(1.16754.9010)50 mm方形比色皿(1.14944.0001)0.45 μm滤膜(测试浑浊样品时用)所需测量仪器:Spectroquant? NOVA-Photometer (NOVA 60/60A)Spectroquant? Pharo Spectrophotometer(Pharo 100/ 300)测试试剂配置方法:试剂1:将1g的碘化钾溶于100ml的高纯水中,将此溶液避光室温密闭保存,有效期1年左右。试剂2:将0.125g3,3二甲基萘啶溶于25ml加热后的乙酸(温度不能超过50°C),直至二甲基萘啶完全溶解。该溶液避光密闭保存可长期使用,放在冰箱里保存可以延长使用寿命。建议尽量使用新配制的试剂,以保证分析质量。样品的预处理:需使用干净的水样,如有必要,可使用0.45μm滤膜进行过滤(针对浑浊样品)。在一个400ml玻璃烧杯放入200ml的样品进行蒸发至干,将剩余残留物用高纯水定容到20ml的标准容量瓶中。测试步骤简介:取10ml经过预处理的样品至一个空白试剂管中,首先加入0.10ml的试剂1后摇匀,然后加入0.20ml的试剂2后摇匀。接着加入0.20ml高氯酸摇匀后静置30分钟。最后将反应后的样品转移至50mm方形比色皿中,放入仪器测量槽,选择方法号195即可得到最终测试结果。
  • 乐枫科普:浅谈超纯水TOC检测方法(二)
    上一篇我们列举了在不同的应用领域不同的TOC检测方法,而实验室纯水、超纯水行业,最常见的检测方法是什么呢?答案是紫外光氧化法。 紫外光氧化方法过程如下: 进水水流流经第一个电导率传感,接着流过UV氧化反应器,水中的有机物被氧化成CO2,再次流经第二个电导率传感,两次电导率的变化即反映水中TOC的含量。 其原理是:水中的某些分子流经UV氧化反应器时,从UV辐射吸收能量后,其化学键断裂产生自由基,而自由基是具有很高活性的物质,可以氧化有机分子。自由基使有机物电离,随后产生水的电导率变化。 更细一点区分,紫外氧化法又可分为全氧化法和部分氧化法二种。顾名思义,前者就是把被测水中的有机物100%氧化,直到电导率不再变化,测出TOC值。完全氧化水中的有机物,对检测装置的要求极高,氧化时间至少需要5分钟以上,测的是氧化曲线,所以结果也更准确。而后者只是氧化了被测水中的部分有机物,从而推算水中的TOC值,检测的是点,氧化时间很短,几乎是即时显示结果。这种氧化方法的检测结果与实际值误差较大,无法准确的反应实际TOC值。 目前的纯水器市场,部分高端水机具备TOC检测功能,那么,如何区分它采用的是全氧化法还是部分氧化法呢?这里介绍两个简单的辨别方法: 1.从结构上看,全氧化法检测的是氧化曲线,检测单元与紫外灯合为一体;部分氧化法检测的是点,检测单元与紫外灯互相独立。 2.从检测时间上看,全氧化法检测一个结果至少需要5分钟以上,甚至更多(为确保有机物100%转换),部分氧化法几乎是即时显示结果。 水中有机物的成分复杂:小分子、大分子、蛋白质、微生物。各种有机物氧化需要消耗的能量不同,部分氧化法无法准确估算水中的各类有机物成分,所以,它的检测结果与实际值误差较大。可以这样想象:部分氧化就是一个渔夫,用渔网捕鱼,来推测鱼池中有一共有多少鱼,全部氧化就是把鱼池抽干,鱼都清点一遍。都自称带有TOC检测的纯水系统,孰优孰劣,也就一目了然了。 乐枫在2017年初推出的纯水TOC检测技术采用的就是全部氧化方法,其检测结果绝对是经得起推敲的。关于上海乐枫生物科技有限公司上海乐枫专业从事高端水纯化和实验室分离纯化产品的研发、设计和制造,致力于,为生命科学和生物技术提供精锐品质、高附加值的创新产品。乐枫产品线包括实验室纯水系统、密理博纯水兼容耗材和实验室分离纯化产品。成立十年,乐枫创立出了自己的品牌RephiLe(瑞枫),拥有30多项专利和多个软件著作权。产品销往全球近90个国家和地区。
  • 废水中余氯的检测方法
    余氯是指水中加氯后会与水中的细菌、微生物、有机物等作用,这个过程会消耗一些氯,一段时间后水中还剩下一些氯。这些氯通常被称为余氯,通常是游离氯。一般饮用水、自来水、泳池池水、医疗废水等都需要检测余氯,余氯含量过高,对人体健康有较大的危害,因为其可以刺激眼鼻喉等呼吸道系统,浓度过高还会麻痹中枢神经,长期饮用或接触含余氯的水也会慢性中毒,致癌。基于以上危害,对于水中余氯我们要如何实现快速检测呢?解决方案检测方法:DPD法依据标准:HJ586-2010 水质游离氯和总氯的测定 N.N-二乙基对苯二胺(简称:DPD法) 分光光度法方法原理:在PH6.2-6.5条件下,游离氯直接与(DPD)发生反应,生成红色化合物,在相对应的波长下,采用分光光度法测定其吸光度。检测仪器:SH-3900A型多参数水质分析仪SH-3900A型多参数水质分析仪用于水样检测的智能仪器,可以快速、准确的检测水中主要污染物,如氨氮、总磷、总氮、化学需氧量(COD),各类阴离子如氯化物、硫酸盐、硝酸盐、亚硝酸盐、氰化物、挥发酚、余氯、总氯等,重金属元素等,广泛应用于环境、医疗、卫生、食品、造纸、印染、石化、冶金等行业的水质检测。仪器特点:◆显示界面:8寸彩色触屏液晶显示,中文菜单人机交互,数据直读;◇仪器光源:进口光源,稳定可靠,自动开启与关闭,延长使用寿命;◆测试方式:支持比色管360°旋转比色及4联池比色皿自动比色两种测定方式;◇项目参数:支持所有水质常规项目及可定制化扩展项目;◆曲线调用:分类别标准曲线,简单直观,支持客户自定义及编辑曲线;◇曲线校准:具有标样一键校准功能;◆数据编辑:可对测量数据实时编辑及保存,方便客户整理检测结果;◇仪器校准:开机自动校准及预热;◆数据平台:支持物联网功能,数据实时上传至盛奥华云数据服务中心,方便客户日常管理及分析,为污水处理的平稳运行提供数据支持;◇光学结构:采用凹面闪耀全息光栅,性能卓越,3秒内切换至任意波长;◆领域扩展:支持光度计功能,可实现光度测量及全波长扫描功能;◇软件升级:可实现软件版本远程升级;◆散热方式:优化结构,配以大风量静音风扇高效降温,延长仪器使用寿命;◇流程优化:配套专用检测试剂及配件,减少客户操作步骤,简便安全;技术参数:性能参数物理参数波长范围190-1100nm屏幕参数8寸高清触摸彩屏光路稳定性≤±0.002Abs/h比色方式比色杯(皿),比色管光度重复性0.2%T用户曲线>240条杂散光≤0.005%T数据传输远程物联网光谱带宽2nm打印方式内置热敏型光度准确性±0.5%T操作界面中文AOS操作波长分辨率1nm仪器电源AC(220±10%)50Hz波长准确度±1nm使用环境温度0-50℃湿度10-90%波长重现性0.2nm仪器尺寸460*320*350mm吸光度重现性±0.003Abs仪器重量约20kg吸光度准确性230-900nm±0.005abs额定功率60W序号测定项目测量范围序号测定项目测量范围1COD5-6000mg/L(分段)21氰化物0-0.5mg/L2氨氮0.01-100mg/L(分段)22磷酸盐0-0.5mg/L3总磷0.001-8mg/L(分段)23铜0-2.5mg/L4总氮0.01-100mg/L(分段)24铁0-5mg/L5色度0-400度25锌0-1mg/L6浊度0-200NTU26镍0-5mg/L7悬浮物0-200mg/L27银0-1mg/L8硫化物0-1mg/L28锰0-5mg/L9总油0-16mg/L29总铬0-2mg/L10余氯0-3mg/L30六价铬0-2mg/L11苯胺0-2mg/L31氨氮(水杨酸)0-1mg/L12挥发酚0-2.5mg/L31硝酸盐氮(可见光)0-10mg/L13高锰酸盐指数0-10mg/L(分段)33总氮(可见光)0-10mg/L14硝酸盐氮(紫外)0-10mg/L34总硬度10-600mg/L15亚硝酸盐0-0.2mg/L35二氧化氯0-3mg/L16硫酸盐1-150mg/L36铝0-0.25mg/L17氟化物0-1.5mg/L37硅酸盐0.2-40mg/L18臭氧0-2mg/L38二氧化硅0.2-30mg/L19总氯0-3mg/L39氯离子10-400mg/L20甲醛0-4mg/L40阴离子表面活性剂0.1-2.5mg/L检测试剂:余氯试剂量程:0-3mg/L应用范围:适用于地表水、工业废水、医疗废水、生活污水、中水和污水再生的景观用水中的游离氯的测定。实验步骤:1、向试管1/2中加入水样2、分别加热专用试剂1和试剂2 0.5ml3、试管1/2中分别加入纯净水5ml4、摇匀调出曲线57号5、试管外壁擦干净后放入仪器中读数
  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB 30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
  • 淀粉中顺丁烯二酸和顺丁烯二酸酐高效液相检测方法
    近日台湾被曝&rdquo 毒淀粉&rdquo 事件,即食品中发现含顺丁烯二酸的有毒淀粉。珍珠奶茶、甜不辣、粉圆、板条、鸡排等这些台湾经典美食均中枪。顺丁烯二酸又名马来酸酐,是工业原料,加入淀粉后可增加食物的弹性、黏性及外观光亮度,在食品中属非法添加物,会对人体肾脏造成极大损伤。 天津博纳艾杰尔科技有限公司采用Venusil MP C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的高效液相色谱检测方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的定量检测。样品制备 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL乙醇-水(5:95,v:v)混合溶液,涡旋2min,超声提取20 min后用乙醇-水混合溶液定容至50 mL,摇匀,8000 r/min离心5 min,取上清液过0.45&mu m尼龙滤膜,待测。色谱条件色谱柱:Venusil MP C18 5&mu m 100Å 4.6× 250mm流动相:水(磷酸调pH至3.0):乙腈=90:10波 长:215nm流 速:1mL/min柱 温:30℃进样量:20ul 色谱图图1 0.1ug/ml标准溶液色谱图图2 淀粉空白样品色谱图图3 10mg/kg淀粉添加样色谱图订货信息名称规格订货号Venusil MP C185µ m;100Å ;4.6*250 mmVA952505-01.5mL样品瓶短螺纹透明带书写处,100/PK1109-05191.5mL样品瓶盖100/PK0915-1819微孔滤膜(Nylon)13mm,0.45&mu m,200个/包AS021345一次性注射器2ml无针头,100支/包LZSQ-2ML乙腈4L/瓶,色谱纯AH015-4
  • 环境激素|关注环境水中壬基酚检测
    导读 环境激素是普遍存在于环境中的一类化学物质,能够引起人体内分泌系统功能紊乱,其特殊的生物学性质可严重影响人类健康。壬基酚(Nonyl Phenol,NP)是环境激素的一种,也是联合国环境保护署制定的27种优先控制的持久性污染物之一。欧盟水框架指令把壬基酚及其短链母体化合物制定为优先控制危险物质。 壬基酚 来源:洗涤剂中的壬基酚聚氧乙烯醚分解类属:环境激素危害:干扰内分泌引起幼儿性早熟、性器官发育异常、不孕等代表性事件:长江鲤鱼、鲶鱼检出壬基酚,知名服装品牌检出壬基酚 相关法规及分析难点 欧盟于2018年2月1日通过了EU饮用水指令的修改案,将壬基酚、β-雌二醇、微塑料追加到了监视列表中。 美国国家环保局(EPA)推荐标准要求淡水中壬基酚的含量不应高于6.6 μg/L,在咸水中不应高于1.7 μg /L。由于壬基取代的结构差异,污水中NP大约有十几种同分异构体,难于完全分离,可作为一个整体分析,因此水质中NP的定量检测,是复杂基体中痕量或超痕量多种同分异构体混合组分的分析技术,提取富集和分离检测难度大。 岛津解决方案 岛津气相色谱三重四极杆质谱仪(GCMS-TQ8040 NX)当作单四极杆质谱使用时亦可获得媲美单四极杆的灵敏度,利用GCMS-TQ8040 NX建立了SIM和MRM方法对环境水样中的壬基酚进行检测。 岛津气相色谱三重四极杆质谱仪GCMS-TQ8040 NX 分析条件 样品前处理标准品色谱图图1 混合标准溶液TIC图(0.5 μg/mL) 采用Q3SIM方式及MRM方式绘制标准曲线并对河水样品进行测试,图2显示了对河水样品加标0.05 μg/mL后部分物质的SIM色谱图和MRM色谱图。从图中可以看出当基质复杂时,MRM方法抗干扰能力更强、信噪比更高、灵敏度更好。 图2 河水样品中NP1、NP4、NP12的SIM色谱图 (上) 和MRM 色谱图 (下)(加标浓度0.05 μg/mL) 表2 替代物加标回收率结论 NP作为环境激素的一种,不断在生物体内累积放大,通过干扰内分泌系统,正在悄悄偷走人类和动物的未来。通过先进的分析检测技术让这个隐形杀手及早显形,是我们检测人员的使命。“假舆马者,非利足也,而致千里”,性能优异的分析仪器设备能让分析工作事半功倍,岛津气相色谱三重四极杆质谱仪灵敏度卓越、抗干扰能力强、当作单四极杆使用灵敏度亦不受影响,帮助分析工作者轻松建立SIM、MRM方法,应对壬基酚检测。
  • 安捷伦水中抗生素检测方案
    安捷伦水中抗生素检测方案安捷伦科技液相色谱质谱仪产品和技术可以提供多种类新兴环境污染物分析方案。安捷伦与美国环保局已经多年合作检测水质,是最早建立筛查PPCPs方法的厂商(根据EPA 1694方法),而且近年来不断的根据法规扩展检测对象。关于水中抗生素,安捷伦与国际顶级机构长期合作并取得了丰富的研究成果,以下是相关水中药物检测文献,欢迎点击链接或者在安捷伦官网:www.agilent.com搜索5990开头的出版号进行下载。1,采用配置iFunnel 技术的Agilent 6490 三重四极杆液质联用系统优化检测废水中的类固醇 5990-9978CHCN http://cn.chem.agilent.com/Library/applications/5990-9978CHCN.pdf 2,采用双离子漏斗技术的安捷伦6490 三重四极杆液-质联用仪直接检测水用ppt 浓度水平的药物化合物 5990-6431CHCN http://cn.chem.agilent.com/Library/applications/5990-6431CHCN.pdf 3,采用具备喷射流技术的Agilent 6460 LC/MS/MS 系统和超灵敏的EPA 1694方法测定水中的药品和个人护理产品 5990-4605CHCN http://cn.chem.agilent.com/Library/applications/5990-4605CHCN.pdf 4,水质分析应用 -- 纯度检测 5991-0350CHCN http://cn.chem.agilent.com/Library/brochures/5991-0350CHCN.pdf 5,采用高分辨质谱分析法(LC/Q-TOF/MS) 检测水中的药物 (PDF) 5991-3261CHCN http://cn.chem.agilent.com/Library/applications/5991-3261CHCN.pdf 6,EPA 方法 1694:使用 HPLC/MS/MS 检测水、土壤、沉积物和生物固体中的药物和个人护理用品的 Agilent 6410A LC/MS/MS 解决方案 5989-9665CHCN http://cn.chem.agilent.com/Library/applications/5989-9665CHCN.pdf 安捷伦环境解决方案专题页面:http://www.agilent.com/chem/environmental-cn
  • 水中油检测新标准或带来仪器市场巨变
    仪器信息网讯 仪器信息网(www.instrument.com.cn)获知,水中油检测标准将发生较大变化,将由目前的红外分光光度法向分子荧光方法转变。  目前,我国水中油的测定方法以四氯化碳萃取+红外分光光度法为主。四氯化碳的使用对臭氧层形成极大破坏,且对人体有一定毒害,世界各国已先后禁止使用四氯化碳。我国于1991年签署加入《关于消耗臭氧层物质的蒙特利尔议定书》,议定书要求除了原料和必要用途之外,我国应在2010年1月1日之前淘汰四氯化碳和三氯乙烷的生产和使用。我国已于2003年禁止以四氯化碳作为清洗剂和干洗剂,但在水中油分析检测中,由于现行标准方法仍为《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),因此四氯化碳仍被使用。  为完成四氯化碳的淘汰,我国一直在研究替代的萃取剂和水中油测定方法。2012-2013年,湖南环境监测中心站、天津环境监测中心站等多家单位和机构举办了水中油检测方法改进及替代技术研讨会、交流会。而环保部于2013年1月,就水中油测定的方法替代及标准修订项目进行了招标,计划修订现行水中油测定国家标准《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),据悉,新标准可能在今年发布,2015年开始实施。  就水中油的新检测方法,仪器信息网编辑咨询了多位环境监测、水务等行业的水质分析专家。相关专家认为,目前对水中油的测定存在气相色谱法、荧光分光光度法、紫外荧光法、紫外吸收光度法、浊度法等多种方法,各有其优缺点。如气相色谱法,有一定可行性,并能与国外一些标准方法接轨,但水中油类往往是混合物,并不都适合以气相色谱法进行检测,而且气相色谱法不易在基层普及,因此成为新标准方法的可能性较小。分子荧光检测方法(荧光分光光度法/紫外荧光分光光度法)被相关专家认为是新标准最可能采用的方法。  而在溶剂方面,专家认为四氯化碳的被取代已成定局,而由于S316和H997等溶剂价格非常高,普及的可能性极小,专家认为正己烷和环己烷将取代四氯化碳。  另据相关专家表示,水利部已在推广正己烷/环己烷萃取及分子荧光分析方法,环保部也将发布新标准方法并进行推广。目前,我国实验室型水中油测定仪年需求千余台/套,产值超亿元,而使用四氯化碳和红外分光光度法的仪器设备在其中有着相当大的比例,将要到来的新标准或将给这一市场带来剧变。撰稿:魏昕  声明:此为仪器信息网研究中心的研究信息,未经仪器信息网书面形式的转载许可,谢绝转载。仪器信息网保留对非法转载者的侵权责任追讨权。如需进一步信息,请联系刘先生,电话:010-51654077-8032。
  • 关注海洋污染|海水中多环芳烃检测
    导 语 随着海洋资源的开发和海上交通运输业的发展,在推动社会经济发展的同时,也增加了溢漏油等突发事故风险,再加上陆地工业带来的污染物排放,海洋生态环境污染问题越来越严重。有研究表明近海工业的发展程度及都市化进程与海洋环境中多环芳烃的浓度存在明显的正相关系,因此监测海洋环境中的多环芳烃的污染含量,对保护海洋生态环境质量可起到预警指示作用。多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)是一类典型持久性有机污染物,是目前自然界中发现最早、数量最大的一类强致癌物质。 煤炭燃烧、机动车尾气排放、石油泄漏、有机物质燃烧等都会向环境中释放PAHs,通过大气干–湿沉降、地表径流以及点源排放等方式进入海洋,在海洋环境中累积,对生态系统和环境带来潜在的威胁。参考《GB/T 26411-2010 海水中16种多环芳烃的测定 气相色谱-质谱法》,使用C18固相萃取柱富集、净化,建立了一套快速、准确分析海水中18种PAHs的检测方法,该方法抗基质干扰能力强,检出限低,重现性好,回收率高,从而为污染控制和环境治理提供依据。 岛津GCMS-QP2020助力海水PAHs检测分析条件色谱柱:SH-Rxi-35MS(30m ×0.25mm × 0.25μm)柱温程序:50 ℃(2 min)_10 ℃/min_200 ℃_ 5℃/min_310℃(10min)进样口温度:300℃线速度:36.3 mL/min离子源温度:230℃接口温度:300℃ 样品前处理准确量取1000mL水样经滤膜过滤后,加入100mL异丙醇,倒入已经活化过的C18(1g/6mL)固相萃取柱中,加入6mL甲醇:水=3:1(V/V),待液体全部流出后吹干C18柱。加入3mL丙酮浸润并淋洗C18柱,之后用6mL二氯甲烷洗脱,重复一次。收集合并以上洗脱液。洗脱液经旋蒸浓缩后,正己烷复溶至1mL,上机待测。 标准溶液色谱图以及各组分信息图1.18种多环芳烃TIC图(1000μg/L)图2.部分多环芳烃标准品溶液质量色谱图(10μg/L)(左右滑动查看全部内容) 表1.多环芳烃各组分信息标准曲线、检出限以及精密度分别配制1~200 μg/L的多环芳烃混合标准溶液进样检测,外标法定量。18种多环芳烃线性良好,相关系数均在0.999以上,检出限在0.14~0.31 ng/L之间。部分化合物标准曲线如下图所示。取5μg/L标准品溶液,连续进样7次,考察仪器的重复性,峰面积RSD均小于3.81%,精密度良好。加标回收率将海水空白样品进行0.05 μg/L浓度加标后,按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,具体结果如下:0.05 μg/L加标浓度的加标回收率为71.57%-105.81%,RSD为3.51%~12.73%,回收率高,重现性好。 海洋生态系统是全球最重要的生态系统,影响着全球生态系统的稳定与安全,人类生存及其经济、政治、文化和社会发展均与海洋息息相关。海洋生态环境在支撑社会经济发展的同时,承受着巨大的压力。岛津公司充分发挥光谱、色谱和质谱仪器产品线齐全的优势,将LC-MS/MS、GC-MS、FTIR、UV、DIA-10、TOC、ICP-OES、ICP-MS、EPMA和EDX等机种在海水和海洋沉积物中微塑料、有机污染物和重金属检测以及海洋矿产资源表征和元素分析等方面的应用进行了汇总,精心汇编了《岛津海洋环境与矿产资源分析测试综合解决方案》数据集册,请识别二维码下载。
  • 纯净水测试结果骇人 专家提示多数检测纯为误导
    您在购买净水机时是否也遭遇过销售员进行的纯净水与自来水对比试验?电解器、TDS笔轮番上场,让您认为自来水简直就是“地沟水”,只有纯净水才是王道?这些测试靠谱吗?普通消费者有必要在家自测水质吗?本期,京华家居请来权威专家为您解析。  □网友晒经历  自来水太“脏”  记者近日看到某网友在论坛上晒出照片,为自家安装净水器的师傅做了过滤后的纯净水与自来水的对比试验,结果让他十分吃惊,“自来水也太脏了吧?”  按照描述,安装师傅首先用一个笔式的测试仪检测自来水,显示数值为301,而纯净水只有15,以此显示自来水含杂质很多。接着,他用一个电解器,分别电解一杯纯净水和自来水。不一会儿,自来水变得十分浑浊,呈黑黄色,纯净水则没什么变化。师傅解释,这是电解器把自来水的杂质都析了出来,用他们的净水器过滤出的纯净水就什么杂质都没有。  □专家解析大多数试验误导消费者  专家表示,以上出现的两种检测方法都是在误导消费者,通过“打压”自来水水质来宣传净水设备。另外,很多坊间流传的测试水质方法也多为无效。  1、TDS测试笔  与水污染值无关  记者按图索骥,在淘宝上找到了帖子中出现的测试器——TDS测试笔,发现其销售异常火爆,某商家月销售量在百支以上。买家们更是好评一片,“自来水141,纯净水8,真的很好用!”但是记者发现,该商家并没有在宝贝说明中明确表示该测试仪是测试哪些项目的,显示的数值到底代表什么。  北京保护健康协会健康饮用水专业委员会会长赵飞虹研究员表示,TDS笔实际测试的是水中溶解性总固体,也就是矿物质的总量。弄清了这个,以上的检测结果就很容易解释了。自来水的矿物质含量一定高于纯净水,因此显示的数值较高。重要的是,矿物质含量的高低并不是评判水中是否含有有害物质的标准,因此,用TDS笔测试家里的水质是没有意义的。  赵飞虹介绍,在北京地区,自来水中矿物质总量应该在300—400毫克/升。网友家测出的自来水数值在正常范围。而净化后的纯净水测试数值是15毫克/升反而不是标准数值。她介绍,根据国家规定,纯净水的电导率应该小于10μS/cm,在TDS笔上反映的数值应该为1。  2、水质电解器  宣传纯水机的恶意竞争手段  网友描述中最吓人的莫过于用所谓的水质电解器来分别电解自来水和纯净水。自来水确实变得像“地沟”水一样混浊,而且泛黄。记者在网络上也看到了出售这种电解器的商家,其介绍中明确指出“本产品广泛应用于纯水机推广中的演示……”还详细列出,水出现各种颜色分别代表的是水中还有哪类杂质及可能导致的疾病。比如黄色,代表含有氧化铁,会导致尿毒症等 白色,则含有钙,可导致结石等。  真相到底如何?“这个把戏在上世纪90年代就出现在台湾,早就已经被确定为误导消费者,在宣传纯水机时使用的一种恶意竞争手段了。”赵飞虹表示。据介绍,这种电解器正负两极分别是铁棒和铝棒,她不久前刚与同事做了针对它的实验。电解自来水确实会出现混浊、变黄现象,而电解后的纯净水虽然没有变色,但经检测铁离子的含量飙升。最后,他们向纯净水中放入一些食盐再进行电解,纯净水也出现了与自来水同样的现象。  “这其实就是正常的电解现象。”赵飞虹介绍,自来水中含有的离子更多,所以电解反应强烈。大家看到的黄色,其实就是铁棒和铝棒在电解时,析出的铁离子。而纯净水所含离子少,反应较弱,看不出变化,但加入食盐时,反应自然就加剧了。至于商家所说的各种颜色的代表意义,赵飞虹表示:“没有科学根据,消费者不要轻信。”  3、水质检测龙头  实为简易过滤器  记者还在发现一款可以检测水质的龙头被很多商家推荐。商家介绍,这个龙头里装有优质PP棉,平时加装在正常龙头上,如果一段时间后,PP面变黄,那么说明自来水有污染,需要净化。  赵飞虹表示,其实这就是一种简易的过滤器,如果里面的PP棉黄了,那就代表该换新的了,和水质好坏没关系。她解释,PP棉之所以会变黄,是因为某些老旧铸铁管道中会存在铁锈。但是,大家也不必过于担心。她提示,如果在长时间不用自来水的情况下,刚开龙头时可以多放一会儿,开头的水不要拿来饮用。只要管道里的水处于流动状态,就基本不用担心这个问题了。  4、钙镁测试剂  完全无意义  对于一些人推荐使用钙镁含量的试剂检测饮用的行为,赵飞虹显得十分惊讶:“现在还有这种试剂?这个对饮用水完全没意义!”她解释,饮用水中的钙、镁离子对人体是十分有利的,含量多,反而好。而且,大家也不必担心超标问题,“钙、镁含量如果超标,水的口感会很差,人根本喝不下去。只要大家在口感上没有感觉有变化,就没什么问题。”  记者了解到,水中含钙、镁高,水的硬度就大,这样洗出的衣服会变黄,这样的水难道不会对身体造成伤害吗?赵飞虹解释,之所以白衣服变黄,是因为过量使用洗涤用品,其残留物和钙反应产生了皂化物并留在衣物上导致的。硬度高的水,对人体则没有危害。  5、PH值测试剂  碱性只关乎口感  赵飞虹表示,水的pH值大小,并不影响水质。大家都认为北京的水含碱大,坊间还盛传这样的自来水会造成结石。实际上,赵飞虹介绍,含碱量大,只影响口感,对人体不会造成影响。所以大家不必特别关注。  6、余氯检测剂  推荐使用注意毒性  这是唯一被赵飞虹肯定,并推荐大家使用来测试家中纯水质量的产品。她表示,平时大家在使用净水机的时候,可能更多关注的是它能不能除去细菌或是水碱,但是其实纯水机最大的功效应该是除去水中的余氯。  赵飞虹介绍,在自来水中加入氯是为了杀菌,并对一些有机物进行预氧化,使其达到卫生学安全。但是这也是一把双刃剑,加入氯后,产生的消毒副产物,确实对身体有害,而净水器中的活性炭便可以去除余氯及消毒副产物。但是炭芯随着使用时间增长,效用会降低。这时就可以使用余氯检测剂,看净水器除氯效用是否合格。正常情况下,水样的颜色和色卡对比显示是无色的,那么表示合格。如果泛黄,则表示余氯去除不净,需要更换滤芯。  赵飞虹提醒消费者,一般净水器商家都会表示滤芯几个月换一次即可,其实这是不对的。国产活性炭滤芯应该每月一换,还应自己多检测其除氯情况。另外,需要大家注意的是,此种试剂为剧毒物,测试之后应立即洗手、刷洗容器、弃置。  那么,家中没有净水器的消费者该怎样去除余氯呢?“其实很简单,晾一晾,再烧开就行了。”赵飞虹介绍,氯挥发的很快,刚接出的自来水,稍微静置一会儿,余氯就已经跑得差不多了。  □误区提示纯净的并非绝对好  很多消费者认为,普通自来水杂质多,用净水机过滤后的纯净水饮用起来更放心。不过赵飞虹提醒大家,虽然过滤后的纯水可以去掉余氯等物质,但是也并非百分百对身体有益。专业上将矿物质总含量﹤50毫克/升的纯净水称为极软水。世界卫生组织的研究结果表明,其微量元素含量太少,长期饮用对中老年人以及儿童将产生不良影响。另外,用这种水烹调,还会造成食物营养大量流失。专家建议长期饮用极软水的消费者应该额外补充钙质。  杜绝净水机二次污染  使用净水机并不能保证喝到放心的纯净水,还需要经常维护。首先应该经常更换滤芯,如果活性炭需要每月一换,前置的PP棉就应该换得更勤,稍微变黄就应该更换。  净水器的储水罐等需要经常消毒、清洗,否则滋生细菌,造成二次污染。赵飞虹表示,北京的自来水质量监控很严格,极少会发生细菌超标的问题,但净水器二次污染反倒会让消费者喝到“脏水”。很多净水器宣传净化后的水可以直饮,但鉴于二次污染等问题,建议大家还是烧开饮用。  由于普通消费者很难判断净水器换芯时间和二次污染情况,赵飞虹建议使用自动化程度高,带有反冲洗功能的净水器,这样会更加方便、安全。
  • 整体解决方案推荐丨生活饮用水中全氟化合物检测样品前处理
    01 全氟化合物全氟化合物作为一种表面活性剂和保护剂,广泛应用于工业生产和日常用品中。同时,全氟化合物也是一种具有高毒性、持久性、生物累积性和远距离迁移性等特性的持久性有机污染物。今年6月,中国生态环境部强调:将持久性有机污染物纳入全国环境监测体系;前不久发布的《生态环境部发布生态环境监测规划纲要(2020-2035年)》,也重点强调了加强持久性有机污染物的监测能力和水平。生活污水中的全氟化合物通过污水处理厂排放到环境中,再通过水、土壤、空气等介质进入环境及生物体,由于饮用水是人群暴露全氟化合物的主要途径之一,因此对生活饮用水中多种全氟化合物,尤其是短碳链(碳数<8)和中长碳链( 8≤碳数≤10)全氟化合物同时测定,对于保障生活饮用水安全是十分必要的。全氟化合物的检测方法气相色谱质谱法毛细管电容法液相色谱质谱超高效液相色谱串联质谱法全氟化合物的主要前处理方法固相萃取方法固相萃取法具有操作简单、溶剂消耗少、减少分析步骤及分析时间和适用面广等优点。睿科提供自动化样品前处理解决方案,针对生活饮用水中全氟化合物的分析,将自动化前处理设备带入检测的全流程,协助实验员对生活饮用水中的全氟化合物的检测进行快速无污染前处理,保证检测的快速、高效、准确。02 前处理流程水样处理1L水样,加入100μg/L内标100μL,混匀加入乙酸铵调节pH为6.8-7.0活化柱子5mL 0.1%氨水-甲醇溶液7mL甲醇和10mL超纯水活化富集以8mL/min流速上水样淋洗5mL 25mmol/L乙酸铵溶液(pH4)和12mL超纯水淋洗干燥小柱干燥15分钟洗脱5mL 甲醇和7mL 0.1%氨水-甲醇溶液进行洗脱浓缩氮吹至近干(水浴温度≤40℃)定容待上机30% 甲醇溶液(3:7,V/V)进行复溶,定容至1mL,涡旋混匀后上机测定分析03 推荐仪器和耗材1.仪器 睿科Fetector Plus高通量全自动固相萃取仪 睿科Auto EVA-60全自动平行浓缩仪 2.全氟化合物耗材包
  • 国内自动滴定仪首次成功运用于双氧水中控分析检测
    截至12月11日,巴陵石化化肥事业部为年产10万吨双氧水装置配套引进的两台“自动点位滴定仪”试运行“满月”,双氧水的氢化效率和氧化效率的分析检测时间由原来的半小时缩短到了10分钟以内,每年可节约人工及试剂成本12万元,该仪器的投用,也填补了国内自动滴定仪运用于双氧水中控分析检测的空白。   双氧水生产过程中氧化液的氧化效率、氢化液的氢化效率分析是工艺控制的重要项目,检测数据能否及时准确报出,直接影响双氧水的产量和质量。一直以来,这两项分析都是分析人员手动分析,存在做样时间长、化学试剂消耗大的情形。今年3月,化肥事业部年产10万吨双氧水新建装置投产后,质检中心双氧水分析班“原班人马”的工作量增加了三分之一,样品数据准时报出存在一定难度。  对此,该事业部决定在国内首次将“自动点位滴定仪”应用于双氧水中控分析检测领域。分析技术人员通过近10个月的反复调试和验证,于10月份建立了新仪器的最佳分析条件,完成了其可行性和可靠性证明。新仪器投用后,双氧水中控分析数据做到了及时准确报送。
  • 为健康护航 | 监测废水中的新冠病毒
    随着新冠疫情下全球经济的进一步开放,大部分国家都通过采取保持社交距离、隔离封锁等措施控制病毒传播,但也随时面临着病毒卷土重来的风险。而通过监测废水中新冠病毒(SARS-CoV-2)的浓度推算病毒在当地人群中的感染情况,可以实现对城市总体感染水平的实时监测和预警,为公共卫生部门决定是否采取禁闭等措施赢得时间。废水监测一直是追踪病毒在人群中流行的有效手段,可以用来监测针对病毒传染干预措施的有效性。例如,科学家们通过废水监测评估了脊髓灰质炎疫苗接种的有效性。据《自然》杂志报道,全球已有十多个研究小组正通过监测废水中新冠病毒颗粒推算当地的新冠肺炎感染情况。患者感染新冠病毒后3天内,其粪便中即可检出病毒。排泄物随着排水系统流入废水处理厂之后,研究人员可通过废水中病毒RNA的含量揭示城市新冠病毒感染人数的规模,从而为及时阻断疫情传播的风险拉响早期警报。废水中SARS-CoV-2的监测有望成为新冠病毒流行的监测方法和预警手段之一,为新冠病毒疫情的实时监控提供了新的分析工具。PerkinElmer 废水监测新冠病毒检测方案PerkinElmer废水监测新冠病毒检测方案包含了新冠病毒检测试剂;自动化病毒RNA提取试剂及仪器;分别用于原始样品转移、QPCR体系构建的JANUS自动化工作站系统。通过完整的新冠检测解决方案,PerkinElmer可以帮助您的实验室建立灵活的工作流程,用于废水中新冠病毒的监测。新冠病毒检测试剂PerkinElmerSARS-CoV-2新冠病毒核酸检测试剂盒具有灵敏度高、特异性强等特点,为基于废水的流行病学监测提供了优化的解决方案。PerkinElmerSARS-CoV-2新冠病毒核酸检测试剂盒优点:灵敏度高:检测下限低,敏感的SARS-CoV-2检测准确性高:全过程控制,包括外部、内部控制特异性强:SARS-CoV-2orf1ab和N基因的检测灵活性高:灵活性:自动化操作,可提供灵活的通量病毒RNA提取Chemagen核酸提取技术特点:安全:专利M-PVA亲水性磁珠,提取全流程在室温条件下进行,无需加热,在保证核酸高得率与高纯度的同时,有效防止加热可能导致的气溶胶污染。高效:专利的电磁分离技术,可实现独有的磁棒自旋转式混匀,充分混匀反应体系,液面平稳,有效避免孔间交叉污染。省力:内置自动化分液器,提取过程中自动添加试剂,大大减少手工操作时间。灵活:样品通量灵活,可实现提取1-96样本/批。Chemagic360是基于电磁原理进行磁珠分离的高通量自动化核酸提取仪,可从各种类型样本中提取核酸,通过金属棒自我旋转混匀而不是上下震荡方式进行反应体系的混匀,可以有效降低样本间交叉污染的风险;该系统内置自动分液器,除样本和部分小体积试剂需要手工加入提取体系之外,其余核酸提取试剂均自动加入,可大大减少手工操作时间。内置控制电脑,触摸屏操作。结合chemagic自动化病毒RNA提取试剂盒,可得到高质量的病毒RNA,一次可实现1-96个样品的灵活通量。JANUS G3 自动化液体处理工作站JANUS G3 原始样品分装工作站:用于自动化离心后原始管样品的转移及部分核酸提取试剂的准备。可对样品进行安全、可追踪的条形码扫描,并将来自原始管中多达192个样品重新格式化到对应样品孔板中,用于病毒核酸提取;同时也用于部分核酸提取试剂的准备。JANUS G3 PCR体系构建工作站:自动化病毒RNA的qPCR体系构建。2块96孔板PCR板的制备只需16min,四块板32min,最大限度地提高通量,具有样品通量灵活、移液精准度高等优点。PerkinElmer提供了用于完整的基于废水监测的新冠病毒检测方案,客户可以根据情况建立灵活的废水监测新冠病毒监控工作流程。同时,PerkinElmer可以提供explorer G3自动化整合系统,可实现样本从原始管上样、核酸提取到QPCR检测全流程的高通量、自动化检测。该系统采用模块化设计、可扩展升级的explorer G3自动化整合系统,每天可处理10000份样品,可最大限度地提高您实验室的新冠病毒检测能力。欲了解详细内容,请扫描下方二维码即刻获取水质检测应用相关资料1监测废水中的敏感SARS-COV-2病毒2饮用水中亚硝胺类化合物的检测3捕集阱顶空-气质联用仪(HS-GCMS) 用于分析水中挥发性有机物(VOCs)4高通量进样系统在电感耦合等离子体质谱(ICP-MS)分析饮用水中的优势(方法200.8)5QSightLC-MS/MS 测定污水中毒品整体解决方案6用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
  • 油田水中间氟苯甲酸的检测——SPE-HPLC法
    一.实验目的在油田开发中,注水是确保地层能量,降低油田递减、实验油田稳产高产、提高最终采收率的最直接、最简单和最有效的方法。在井间示踪的过程中,选择适当的示踪剂是非常重要的。氟苯甲酸是目前国内外应用较为广泛的理想的非分配型示踪剂。本实验建立了一种油田水中间氟苯甲酸的检测方法,采用博纳艾杰尔科技的Cleanert&trade PS固相萃取小柱富集,Venusil&trade MP C18液相色谱柱和LC-10F液相色谱仪检测,该方法快速准确,稳定性高。二.实验方法样品信息设备和试剂u 乙腈,色谱纯;u 磷酸二氢钠:分析纯;u 0.01mol/l盐酸;u pH=4.0水(稀盐酸调节pH);u 5%氨化乙腈:取5ml氨水至100ml容量瓶中,加乙腈定容并稀释至刻度;u PS小柱:200mg/6ml;u 间氟苯甲酸标准贮备液(1mg/ml):称取间氟苯甲酸10mg于10ml容量品中,加水稀释并定容至刻度;u 氮气吹干仪;u 雷磁pH计;u 溶剂过滤器;u 高效液相色谱仪:LC-10F(配紫外检测器);u 高效液相色谱柱:Venusil&trade MP C18 5&mu m 150Å 4.6*150mm。 实验步骤样品制备取客户样品(4号)过滤,用稀盐酸调PH至4.0,分成2份,各400ml。其中一份添加间氟苯甲酸标准溶液100&mu g/L 1ml混匀后作为样品;另一份为空白溶液。 净化处理取PS小柱(200mg/6ml),依次用5ml 5%氨化乙腈,10ml水(稀盐酸调pH至4.0)活化小柱,将上样液以小于10ml/min流速全部通过小柱,将小柱抽干后用10ml乙腈洗脱至10ml定量浓缩管中,35℃氮气吹至近干,用缓冲盐定容至1ml,过0.45um尼龙滤膜,待测。液相条件缓冲盐:10mmol/L磷酸二氢钾溶液(用磷酸调节pH=3.0);流动相:缓冲盐:乙腈=75:25;色谱柱:Venusil&trade MP C18 5&mu m 150Å 4.6× 150mm;波 长:223nm;柱 温:30℃;流 速:1ml/min;进样量:100&mu l。三.实验结果液相条件的选择间氟苯甲酸分子结构上有一个羧基,酸性解离常数PKa=3.74,所以流动相的pH通常调节在3左右,以便抑制间氟苯甲酸在流动相中解离。本方法选用10mmol/L磷酸二氢钾(磷酸调节pH至3.0)为流动相,间氟苯甲酸可得到很好的峰型。通过对流动相比例的调节和色谱柱的选择,最终确定当缓冲盐和乙腈的比例在75:25时,选用Venusil&trade MP C18(5&mu m 100Å 4.6*150mm)色谱柱,间氟苯甲酸的保留时间在12.5min,且可以与杂质很好的分离。线性范围及定量限取适量的间氟苯甲酸标准贮备液,依次用水稀释成100ng/ml、200ng/ml、500ng/ml、1000ng/ml、2000ng/ml和10000ng/ml,按照液相条件依次进样检测,以浓度为横坐标,间氟苯甲酸峰面积为纵坐标,拟合标准曲线方程。逐级稀释标准溶液至间氟苯甲酸的信噪比S/N=10时,此时标准溶液的浓度为间氟苯甲酸的最低定量浓度,结果详见表2准确度和精密度分别取不同体积的pH=4的水,加入1ml 100&mu g/L间氟苯甲酸标准溶液,按照净化方法处理,计算添加回收率,实验结果见表3: 四.实验结论使用博纳艾杰尔科技的Cleanert&trade PS(200mg/6ml)SPE小柱和Venusil&trade MP C18(5&mu m 100Å 4.6*150mm)液相色谱柱和LC-10F高效液相色谱仪,可以对油田水中的间氟苯甲酸进行检测,该方法快速、准确,可靠性高,上样体积可以达到1L以上,配合全自动固相萃取仪操作,可极大提高实验效率。附录A图1 &mu g/L间氟苯甲酸标准溶液谱图 图2 油田水空白谱图 图3 250ng/L油田水标样添加谱图 附录B表4 实验耗材和试剂订货信息名称规格订货号分析型高效液相色谱仪10ml/min,等度系统,200-400nm双波长检测器FL-LC010分析型色谱柱温箱室温+5-50℃,箱内一对夹套CC-100Venusil MP C185um,150A,4.6*150mmVA951505-0Cleanert PS200mg/6mlPS20061.5mL样品瓶短螺纹透明带书写处,100/PK1109-05191.5mL样品瓶盖100/PK0915-1819针式过滤器(Nylon)13mm,0.45&mu m,100个/包AS021345-T一次性注射器2ml无针头,10支/包LZSQ-2ML乙腈4L/瓶,色谱纯AH015-4
  • 干货分享 | HPLC柱后衍生法检测生活饮用水中的草甘膦
    Q:什么是草甘膦?A: 草甘膦化学名称为N-(磷酸甲基)甘氨酸,化学式为C3H8NO5P,是一种有机膦类除草剂,是一种内吸传导型广谱灭生性除草剂。几十年来一直被用于保护各种各样的农作物,由于在农业上被大量的使用,是世界上使用量最多的除草剂。 图片来源于网络 Q:草甘膦的致癌风险你知道吗?A: 2015年3月20日世界卫生组织(WHO)在日内瓦总部与联合国粮农组织(FAO)召开联合会议。公布了一份研究报告,认定孟山都的农药草甘膦,商品名“农达”可能致癌,这份研究报告来自WHO下属的国际癌症研究机构(IARC)官方网站,研究表明长期接触草甘膦会增加患非霍奇金淋巴瘤癌症的风险。 草甘膦如何通过水和土壤危害人体及环境 Q:如何监管草甘膦的使用?A: 面对使用量如此巨大的草甘膦,对其严苛管理是至关重要的,特别是应对其进行严格的检测和监控,将其的危害降到最小。目前世界各国都对大豆等作物及饮用水中草甘膦限量做出规定,甚至禁止使用草甘膦。2014年:斯里兰卡禁止使用和销售含有草甘膦,是全球首个禁用草甘膦农药的国家。2016年 :马耳他全面禁止使用草甘膦,欧盟出现首个禁用草甘膦国家,葡萄牙禁止在所有公共场所使用草甘膦。2017年:比利时禁止本国的园丁使用草甘膦,法国开始禁止在公共场所使用除草剂草甘膦。泰国限制使用草甘膦,限制使用地点,标签区域内禁止使用。2018年:丹麦政府出台了禁止在收获前喷洒草甘膦,印度旁遮普邦禁止草甘膦在该地区销售。2019年: 法国开始在农业生产上禁止使用草甘膦。 印度喀拉拉邦也宣布禁止销售、分销和使用草甘膦产品。 美国禁止将草甘膦作为干燥剂在燕麦收获前喷洒。 越南禁止进口草甘膦。 非洲马拉威暂停草甘膦进口许可。 奥地利全面禁用草甘膦。 我国在面对农药残留严重的这个棘手问题上,在对有致癌风险的草甘膦使用也是逐步收紧。其中,贵州省率先做出全面禁止草甘膦的决定,加强对农产品和生活饮用水及其水源中草甘膦残留量的检测与监管。点击可放大图片 Q:如何检测草甘膦?A:国家标准GB5749规定生活饮用水中的草甘膦限量值是0.7mg/L(与美国环保署EPA限量值一致 ),GB5750中对其检测方法做了详细描述。 作为柱后衍生的标杆企业,Pickering的应用科学家们,根据标准规定的柱后衍生方法,提供了完美的操作方法。草甘膦检测中易出现不出峰、峰型差等一系列问题,德祥售后团队凭借多年的服务经验,总结出一套成熟的应对方案,让客户无后顾之忧。 饮用水中的草甘膦可直接进样到带有柱后衍生的HPLC中。草铵膦包含一个伯胺基团也可以和邻苯二甲醛(OPA)试剂反应。利用离子色谱柱直接进样来开发一种简单方法来分离水中的草铵磷和草甘膦。这种方法消除了复杂的和繁琐的样品预处理步骤(LC/MS分析时需要)。柱后衍生利用OPA试剂确保高灵敏度的分析,消除了基质的干扰或者信号的抑制。 此方法不需要在进样前进行复杂的提取和衍生样品,避免繁琐的样品前处理步骤,减少分析时间和成本,也尽可能大程度上减少误差。 方法标准曲线草甘膦和草铵膦标准曲线范围从25 ug/L到1000 ug/L。草铵膦的二次校准曲线R2=0.9998,草甘膦的线性校准曲线R2=0.9998。 样品制备用0.45 um的尼龙滤膜过滤水样,进样 。 分析条件色谱柱:阳离子色谱柱色谱柱温度:55℃ 流速:1.0 mL/min流动相:85%的K200,15%的ACN2进样量:100 uL 柱后衍生条件柱后衍生系统:Onyx PCX 或者Vector PCX加热反应器体积:0.5 mL温度:36 ℃ 室温反应器:0.1 mL试剂1:次氯酸钠氧化剂溶液试剂2:OPA衍生试剂溶液(Picering配备加压试剂瓶,可延长试剂保留时间至两周)试剂流速:每种试剂0.3 mL/min检测器:荧光检测器 λ EX 330 nm, λ EM 465 nm Pickering柱后衍生系统用有优异的产品性能及完整的测试方案,可为企业自检、政府部门监督提供一整套优化的游离甲醛检测方法,一站式解决您所有难题。01可与任何HPLC系统一起工作02完整的分析方案03保证优越灵敏度和重现性04惰性流路设计,提高使用寿命,缩减维修成本05自动活塞冲洗,保护系统,延长使用寿命06整机安全保障,减少维护成本07快速实现方法拓展
  • 中瑞祥便携式水中二氧化碳检测仪 型号ZRX-30171
    便携式水中二氧化碳检测仪 型号ZRX-30171主要技术参数3.1测量范围:a)pCO2值:(2.00~4.40)pCO2; b)CO2浓度值:1.75mg/L~0.44g/L。 c) mV值:(-1800~1800)mV。3.2分辩率:0.01 pCO2 。3.3电子单元基本误差:±0.02pCO2±1个字。3.4仪器基本误差:±0.05pCO2。3.5pCO2值~[CO2]浓度值转换的计算误差:±0.3%(读数)。3.6仪器重复性误差:不大于±0.03pCO2±1个字。3.7被测溶液温度补偿范围:(5.0~ 50.0)℃3.8 电子单元稳定性:±0.1pCO2/3h。
  • Think-lab思科莱博纯水中标国家质检总局2015年专用仪器设备采购项目
    2015年05月29日,中国北京,Think-lab思科莱博纯水中标国家质检总局2015年专用仪器设备采购项目。 5月份最后一个工作日,Think-lab思科莱博中国团队迎来新的喜讯,Think-lab思科莱博纯水中标国家质检总局2015年专用仪器设备采购项目,这是对Think-lab思科莱博中国团队与全国广大合作伙伴辛苦付出的莫大鼓励和肯定。 在Think-lab思科莱博纯水接连进入清华大学、北京大学、中国中医科学院、上海交通大学、2013年诺贝尔奖得主实验室等顶级高校、科研机构、实验室后,Think-lab思科莱博纯水进入中国国家质检总局系统,为广大的科研检测人员提供有力的工具。 纯水在实验检测过程中广泛使用,大学、医院、研究所、政府检测机构、药物研发机构等单位都会用到,广泛应用在生命科学、医学、农学、环境、电子、高分子材料等方面研究中。随着Think-lab思科莱博客户群体的不断扩大,Think-lab思科莱博会为越来越多的客户提供顶尖的产品和专业、贴心的服务。 关于Think-lab思科莱博: Think-lab思科莱博是一家总部位于美国波士顿的全球化公司,专注于生命科学研究相关的实验室设备及实验室信息系统领域的研发与销售服务,为了更好服务中国市场,成立了Think-lab思科莱博中国区技术服务中心。Labonova是Think-lab思科莱博旗下专注于高端实验室纯水/超纯水业务的品牌,产品生产线位于德国,工厂拥有超过30年的实验室纯水/超纯水生产经验,从实验室中央供水系统,到实验室小型纯水/超纯水系统,以工艺精湛、品质稳定著称,拥有业内最精准的技术,成为广大科研工作者提供新选择。目前,Think-lab思科莱博产品已经进入北京、上海、广州、深圳一线城市的高端用户,包括清华大学、北京大学等国内顶级科研机构,并完成了全国市场布局。发布者:Think-lab中国区技术服务中心联系电话:400-888-3365E-mail:Labwater@think-lab.com.cn
  • 水中“PM2.5”引发忧虑 盘点各国如何检测严控水质安全
    p  据中国之声《全球华语广播网》报道,清华大学环境学院 国家环境模拟与污染控制重点实验室 的课题组,日前发表了一项关于我国城市 自来水消毒副产物 的测试结果显示,其中含有健康风险很大的消毒副产物类别,消息一出,引发强烈关注。央广记者就此进行了求证并采访了相关领域专家。/pp  清华大学环境学院国家环境模拟与污染控制重点实验室陈超副研究员日前表示,其课题组近三年中,他们从全国23个省、44个大中小城市和城镇采集了包括出厂水、用户龙头水和水源水样本。研究中测试了当前已知的全部9种亚硝胺类消毒副产物,其中亚硝基二甲胺的浓度最高。而流行病学研究表明,亚硝胺与消化道癌症密切相关。/pp  尽管民众对亚硝胺、亚硝基二甲胺之类化学术语存在不小的认知隔膜,可水中“PM2.5”、或“致癌”等词眼,依旧引发不少人的忧虑。/pp  记者拨通了同样来自清华大学环境学院,饮用水安全研究所前所长刘文君教授的电话。他表示:研究有价值,炒作无意义。有些媒体误读了研究的意义。这个研究是有价值的。简单一句话:不用担心,咱们国家的(饮用水)标准是世界级的,如果标准中没有涉及到,表明危害还没有那么大。不要引起不必要的恐慌。/pp  其实,在我国从水源头到水龙头这个过程,水到底安不安全,是由不同部门来负责的。中国环境科学研究院水环境研究所研究员苏一兵表示,自来水是这样的,在进入水厂之前的检测一般是由环保部门来做,出场的水,是由卫生部门,也就是疾控中心来做。这两个标准实际上是不对等的。也就是自来水的进水和出水是由两个部门的不同标准来检测的,可能这就有些差异,需要将来要改进的。第二个更加关注的是,我们现在真正饮用水的安全的指标还不够完善。/pp  苏一兵表示,由于地域水质的关系,我国各地饮用水安全面临的问题不一样。有评论认为,尽量避免有指标遗漏,也应成为水质标准继续升级的方向。他说:“住建部已经关注这个事情了,就是怎么减少(自来水)消毒副产物的影响。如果这些事不提出来,可能永远不会有人知道。所以这个科研成果,是有非常好的指导作用。能够促进环保、住建、卫生真几个部门联合起来就好了。我们讲的就是,从水源头到水龙头是全过程的控制。”/pp  水是生命之源。我们应该对水质安全给予更多的关注。其他国家的水质安全和监测情况又如何呢?跟随世界各地的观察员去了解下。/pp  欧洲的英国、法国、德国等都以欧盟饮用水质作为基础和重要参考来来制定本国的标准。《全球华语广播网》英国观察员侯颖介绍,英国是第一个对饮用水中的 隐孢子虫 提出量化标准的国家。/pp  侯颖介绍,英国政府在1999年就颁布了新的水质规则,要求水源存在隐孢子虫的供水企业,应对出水厂进行隐孢子虫的连续监测,同时对饮用水中隐孢子虫提出了强制性限制标准,即出厂水中隐孢子虫卵囊要少于每十毫升一个。对于违法该限制的企业,即使没有造成疾病爆发的证据,也将予以起诉并予以罚金。/pp  而英国的水资源监管是通过三个机构来实现,分别是水服务办公室,饮水监管局和环境署,水服务办公室主要是保护消费者利益,如设置水价限额,使有能力的公司为客户提供需要的服务,而饮水监管局则要确保水务公司向客户提供安全有质量的饮用水。由于客户不能随便的选择供水商,实际上就是不能对供水商提供的水质进行比较,因此这是一项特别重要的职能。而环境署则是要保证水资源开采和污水的排放不会影响环境。当然英国政府还鼓励水务公司不断的创新提高效率,凭借有竞争力的价格和更好的服务为客户带来更大的效益。/pp  上世界七十年代,德国的水污染还是很严重的,由于工业和生活污水无节制的排放,德国的母亲河 莱茵河 已经成为一条泛着白沫的黑水沟。而如今,莱茵河碧波荡漾,达到了饮用标准。德国的自来水现在也可以直接饮用。《全球华语广播网》德国观察员薛成俊介绍,这源于德国环境政策的转型,对污水排放的立法以及对净化设施的严格规定。/pp  薛成俊介绍,德国对于水质的保护是从严格控制污水排放开始的,德国的水费里面包括了两部分,一部分是用水费,一部分是污水排放费。所有工业和家庭产生的污水都会通过下水道进入污水处理厂,经过一系列的净化工艺达到一定标准后才能排到江河或者二次利用,所以一些城市会有相应的配套政策。绿化用水可以免除水费中的污水排放费。德国家庭很多有花园,浇花用的水可以单独计算水费。除此之外,在德国会按照屋顶的面积收取雨水排污费,或者自家院子下面埋设过滤材料。在德国的高速公路两侧都有雨水收集池,雨水经过收集池过滤之后才能渗入地下,从而保持地下水的洁净。/pp  澳大利亚的自来水是达到直接饮用标准的,人们一般不会顾虑自来水的纯净问题,而水中的矿物质是不是含量太多导致水质过硬反倒是澳大利亚居民经常担心的问题。《全球华语广播网》澳大利亚观察员胡方介绍,因为自来水可直接饮用,所以澳洲的自来水厂和瓶装水公司经常打口水仗。/pp  胡方介绍,出品瓶装纯净水的公司经常和当地的自来水厂打口水仗,因为这些瓶装水就是灌装的当地的自来水,进行二度洁净措施,包装上市。消费者权益保护组织经常质疑为什么自来水装了个瓶子就要比自来水贵200多倍。而瓶装水公司的回答都比较含糊,甚至有些公司说,“我们主要是给人们提供便携的瓶子而已,我们主要卖的是瓶子”。/p
  • 汪尔康院士课题组发布免标记比色检测水中Hg2+的简便方法
    中国科学院长春应用化学研究所电分析化学重点实验室汪尔康院士课题组创新出Hg2+调节的四极子DNAzyme用于比色检测Hg2+的方法,相关工作发表在国际著名杂志美国《分析化学》(Anal. Chem. 2009, 81, 2144–2149)上。该工作发表以后,引起了世界范围内的广泛关注,据中国科学技术信息研究所最新统计结果显示,该文章被评为2009年中国百篇最具影响国际学术论文。  Hg2+调节的四极子DNAzyme用于比色检测Hg2+的示意图  Hg2+是水环境中的一种重金属污染物,毒性高,损害人类健康,因此,大力监测水环境中汞污染的呼声越来越高。为此,人们发展了许多高灵敏、高选择性的Hg2+传感器,其中研究比较热门的是以含T碱基的寡聚核酸作为传感元件来传感分析水中的Hg2+ 。有研究显示,Hg2+可以结合DNA双链中的两个T碱基而形成稳定的T―Hg2+―T碱基对,能够诱导DNA发生变构现象,这是利用含T的DNA分析检测Hg2+的基本工作原理。在大多情况下,一般需要用特定的指示剂如荧光团来标记、修饰DNA传感元件,这固然会带来很多好处,但实验成本较高。相比之下,免标记的检测方法则不需要标记/修饰步骤,因而较为简便、经济。  汪尔康院士课题组通过利用Hg2+与AGRO100的T碱基之间的特异作用,来调节其DNAzyme活性,从而发展一种比色检测水中Hg2+的免标记的简便方法。由于Hg2+与四极子DNAzyme中的T碱基结合形成T-Hg2+T碱基对,使其无法正常折叠,从而抑制了其DNAzyme活性,这可以利用ABTS-H2O2反应体系进行监测。通过这种无标记比色方法,可检测到50 nM (即10 ppb)的Hg2+,在屏蔽剂PDCA的辅助下,该分析方法对Hg2+具有较好的选择性。  此外,这项研究工作的另一层意义就是证明了即使少量的Hg2+也具备破坏四极子结构的能力,而四极子结构可发现在人类线粒体末端(端粒DNA),这为Hg2+对人类毒害提供了新的认识。该论文发表后,受到广大同行的关注,成为利用核酸尤其是利用四极子DNAzyme进行Hg2+检测的必引文献之一。
  • TD-500D水中油份检测仪中标:上海海洋大学
    美国特纳/Turner Designs公司是一家专业生产水中油监测的专业制造商,公司生产的便携式水中油份检测仪型号:TD-500D是专业为环保行业设计,广泛应用于:环保局、中石油、中石化、化工厂、污水处理厂、环境监测站、渔业局、海事局、大学等行业。 2013年3月份,我公司代理的便携式水中油份检测仪型号:TD-500D中标上海海洋大学。便携式水中油份检测仪型号:TD-500D产品特点:■采用先进的紫外荧光光度法检测技术;■高精确度和高重复性,与红外法具有优良的相关性;■双通道双量程检测技术减少了由于操作而带来的误差,大大提高了浓度检测范围,高浓度测量无需稀释水样;■双通道双量程检测技术: 量道“A”用于低浓度油份和精炼的烃类油的检测。量程“B”可检测含原油、润滑油等高浓度油份的水样(1000mg/L),而不需要稀释;■快速的分析方法。最少的分析步骤,最快可以3分钟完成一个样品的检测;■优良的溶剂兼溶性,适用于大多数常规萃取溶剂,还可以采用最新研究技术:“无需溶剂的测定方法”来检测;■校准简便,CheckPOINT校准器可供野外作业所需的快速校准和重复校准而不需要标准溶液反复标定;■检测不受甲醇等极性物质的干扰;■一次性使用的测量试管,避免样品间重复污染干扰。技术参数:仪器名称:TD-500D便携式水中油分析仪; 原理:紫外荧光法(UV); 检测对象:水中的碳氢化合物:原油、凝析物、柴油、润滑油、燃油、机油、柴油类有机物; 测量方法:溶剂萃取; 适用溶剂:配套试剂正己烷,Vertrel,AK-225,二甲苯,氟利昂,Horiba;5L正己烷;线性范围:0.01ppm ~ 1000ppm,取决于碳氢化合物的种类; 准确性:优于全标度的2%; 重现性:优于全标度的2%; 灵敏度:优于0.1ppm,取决于碳氢化合物的种类; 校准:单点校准; 预热时间:5秒; 响应时间:5秒; 测量时间:4分钟或用户偏好; 尺寸:4.45cm×8.9cm×18.4cm; 重量:0.4kg; 外壳材料:非金属; IP防护级别:符合IP67标准;防尘,防水; 工作环境温度:5oC~40oC (41F~104F); 适用试管:API比重45,微型试管;API比重45,8mm试管,适用于所有溶剂; 电源:四节AAA电池(可连续检测1000个以上样本); 自动断电:被闲置3分钟后; 信号显示:有,液晶显示; 输出信号:无; 警报:电池电量不足、线路故障、高空白样本; 保修期:1年,出厂零件及售后服务。
  • 饮用水中痕量重金属的快速检测方法介绍
    p style="text-align: center "strong饮用水中痕量重金属的快速检测/strong/pp style="text-align: center "上海仪电科学仪器股份有限公司/ppstrong摘要:/strong饮用水中痕量重金属的快速检测是分析测试技术上的一个难点。本文尝试使用阳极溶出伏安法,实现了饮用水中痕量重金属离子的检测。结果显示,饮用水中痕量的铅、镉和汞离子可以通过阳极溶出法进行检测,其检测下限可以达到ppb级。与其他分析测试技术相比,阳极溶出伏安法具有设备体积小,操作简单,使用成本低廉等独特优点,使得其在饮用水的现场快速分析中拥有广阔的应用前景。/ppstrong关键词:/strong饮用水,重金属,阳极溶出伏安法/pp /ppstrong一、实验原理/strong/pp长期以来电化学溶出伏安法一直被认为是检测水环境中痕量重金属的一个有效方法[8]。溶出伏安法是基于电化学原理进行的(如图1)。在一定电压条件下,先将溶液中的待测元素通过还原反应沉积在电极表面,随后通过施加反向电压,使沉积在电极表面的重金属发生氧化反应而溶解,形成峰电流,峰电流的大小或峰面积与被测金属离子浓度成正比。由于电沉积过程中的富集作用,溶出伏安法可以达到1 μg/L以下的检测下限。/ppbr//ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/09550700-f887-41a8-947c-4d9cb9759796.jpg" title="1.png" style="width: 402px height: 309px " width="402" vspace="0" hspace="0" height="309" border="0"//pp style="text-align: center "strong图1. 溶出伏安法原理图/strong/ppstrong二、 使用仪器/strong/pp便携式重金属分析仪(SJB-801,上海仪电科学仪器股份有限公司),工作电极为玻碳电极,辅助电极为铂电极,参比电极为银/氯化银双盐桥电极;纯水机(GT-30,上海仪电科学仪器股份有限公司);微量进样器(WKYVI-1000,上海求精生化试剂仪器有限公司);分析天平(BSA224S,德国赛多利斯科学仪器有限公司)。/ppstrong三、溶液和试剂/strong/pp铅标准溶液(标准物质编号GBW(E)082058,浓度1000mg/L),镉标准溶液(标准物质编号GBW(E)082061,浓度1000mg/L),汞标准溶液(标准物质编号BW085523,浓度100mg/L)采购自深圳市华测标准物质研究所,使用18.2 MΩ实验室超纯水稀释到指定浓度。/pp铅/镉电解液、汞电解液、汞清洗液、镀金液等为便携式重金属分析仪的配套试剂,由上海仪电科学仪器股份有限公司提供。/pp浓硝酸、浓盐酸等试剂为分析纯,采购自国药集团试剂有限公司。/ppstrong四、操作过程/strong/pp1、电极的准备/pp工作电极:工作电极为玻碳电极。每次使用之前需要在抛光绒布上加抛光粉进行打磨,并用去离子水冲洗,处理好的工作表面应该覆盖一层均匀的水膜。/pp参比电极:参比电极为饱和氯化钾式银/氯化银双盐桥电极。第一次使用参比电极时,配置好内溶液,打开加液塞将配备好的参比内溶液加入到参比电极内腔中(注意参比内腔要保留一小段空隙),然后将该参比电极在盛有饱和氯化钾溶液的保护瓶中浸泡至少1小时,最好浸泡一上。参比电极平时不用时要塞上加液塞和底部浸泡在保护瓶中,保护瓶中要保持有饱和氯化钾溶液。每次使用前,将电极的保护瓶拿掉用水将氯化钾溶液清洗干净,开始测试时,将加液塞打开。/pp对电极:对电极为铂电极,一般不需要处理,可直接使用。/pp2、重金属离子的分析/pp溶出伏安法测定铅、镉、汞标准溶液:准确量取超纯水100mL至烧杯中,加入1mL铅镉电解质溶液,取20mL溶液至测量杯中。仪器选择“铅镉”测定模式,扫描溶出伏安法曲线,测定结束后,记下峰面积。随后依次添加10μL、20μL、30μL、40μL20mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。仪器选择“预镀金膜”模式,在镀金液中完成金膜于都操作。准确量取超纯水100mL至烧杯中,加入汞电解质溶液20mL,取20mL溶液至测量杯中。仪器选择“汞”测定模式,扫描溶出伏安曲线,测定结束后,记下峰面积。随后分别添加5次40μL 1mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。/pp饮用水中铅、镉、汞的测定(标准曲线法):测定水中铅和镉离子时,先使用40 μg/L和100μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入铅/镉电解质溶液1mL。量取20mL测试水样至测量杯中。仪器设定为测定“铅镉”,测定3次浓度值,记下数据;测定结束后,往测量杯中添加20μL 20mg/L铅/镉离子标准溶液,测定3浓度值,记下数据。测定水中汞离子时,先对工作电极进行预镀金膜操作,随后使用4 μg/L和10μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入汞电解质溶液20mL。量取20mL测试水样至测量杯中。仪器设定为测定“汞”,开始测定3次浓度值,记下数据;测定结束后,往测量杯中添加40μL 1m g/L汞离子标准溶液,测定3次浓度值,记下数据。/pp饮用水中汞的测定(二次添加法):准确量取自来水样100mL至烧杯中,加入汞电解液20mL得到测试水样。量取20mL测试水样至测量杯中。选定测定金属“Hg”,选择标准添加法,设定第一次和第二次分别添加40μL 1mg/L汞标准液,确认后开始测量,测试结束后,记下测定的汞离子的浓度值。/ppstrong五、结果与讨论/strong/pp1、溶出伏安法测定铅、镉、汞标准溶液:/pp为验证溶出伏安法对于重金属铅、镉离子的测量性能,对0μg/L、10μg/L、30μg/L、60μg/L、100μg/L铅镉标准溶液进行分析测试。由于支持电解液中含有一定浓度的铋离子,在富集过程中,铅离子、镉离子和铋离子可以在玻碳电极表面形成共沉积。在随后的伏安扫描过程中,几种元素又可以被氧化和释放,形成尖锐的溶出峰,如图2所示。铅离子和镉离子的溶出电位分别为-0.5V和-0.8V,峰形尖锐,对称性较好,相互之间不产生干扰,因此铅离子和镉离子可以使用溶出伏安法同时测定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/5b435af9-24f2-4698-9f3c-c62f714dd98a.jpg" title="2.png"//pp style="text-align: center "strong图2 铅离子和镉离子标准溶液的测定曲线/strong/pp采用峰面积作为相应信号,根据峰面积和浓度关系,绘制标准曲线(图3),R2分别为0.9961(Pb),0.9952(Cd),标准曲线的线性均良好,可见在0-100μg/L的浓度范围,铅离子和镉离子可以通过溶出伏安法进行同时测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/066e6e59-eae1-4430-baa3-d45c431d2e2a.jpg" title="3.jpg" style="width: 600px height: 194px " width="600" vspace="0" hspace="0" height="194" border="0"//pp style="text-align: center "strong图3(a)铅离子标准曲线;(b)镉离子标准曲线/strong/pp汞离子标准溶液使用类似的方法进行分析。为提高汞离子的富集效果,在富集和测定前,需要对玻碳电极进行预镀金膜操作。该操作可以通过使用仪器自带的预镀金膜模式和镀金液进行。随后,不同浓度的汞离子标准溶液通过循环伏安法进行分析测试,结果如图4A所示。汞离子在金膜上的溶出电位约为0.55mV,峰形较好,对称性良好。/pp汞离子的标准曲线如图4B所示,R2为0.9878,标准曲线线性良好,可见浓度范围在0-10μg/L的汞离子,可以通过溶出伏安法进行测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6512c3c9-4202-40c0-91fb-7e5f1e594607.jpg" title="4.jpg"//pp style="text-align: center "strong图4 (A)汞溶出伏安曲线;(B)汞离子标准曲线/strong/pp2、饮用水中铅、镉、汞含量的测定/pp饮用水中铅镉汞离子含量采用标准曲线法进行测定,结果如表1所示。饮用水中的铅离子浓度约为1.90μg/L,重复性为± 0.4μg/L;镉离子浓度约为0.01μg/L,重复性为± 0.01μg/L;而饮用水中的汞离子浓度极地,低于溶出伏安法的最低检出限。/pp为验证溶出伏安法在饮用水中测定的可靠性,在饮用水样品中添加铅、镉、汞离子标准溶液,使得离子浓度分别提高了20μg/L、20μg/L和2μg/L。加标后的样品溶液在同样方法下进行测试,结果显示,对于铅离子、镉离子和汞离子,其加标回收率分别为98%,81%和50%。通过三种离子加标回收率,可以看出,标准曲线法在测定饮用水中铅、镉离子时,回收率较高,测试具有较高的可靠性。而对于饮用水中的汞离子,标准曲线法的测试回收率较低,测试可靠性和误差较大,这可能是由于饮用水中背景离子的存在干扰了汞离子的富集和测试过程。/ppstrong表1 使用标准曲线法测定饮用水中铅、镉、汞离子/strong/ptable width="577" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="86" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="175" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="200" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定值/span/pp style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style="font-size:15px font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="116" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"回收率/span/p/td/trtr style=" height:4px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"铅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.90/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "98%/span/p/td/trtr style=" height:4px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "21.40/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"镉/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.01/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.01/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "81%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "16.20/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.20/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "50%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.99/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.6/span/p/td/tr/tbody/tablep二次添加法是电化学分析中的常用方法,该方法通过将一定已知浓度的标准溶液加入到待测样品中,通过对加标前后的样品溶液进行分析建立标准曲线,从而进行浓度分析。由于该方法标准曲线的建立是在样品溶液背景下进行的,可以降低实际样品中背景离子的干扰,实得测量结果更准确。饮用水样样品、以及加标后的饮用水样品使用二次添加发进行了分析测试,结果显示,使用二次添加法进行测试时,汞离子测试的回收率提高到了92%,相对于标准曲线法,其测试的可靠性和准确性得到了大幅提高。/pp表2 使用二次添加法测定饮用水中汞离子含量/ptable width="570" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:32px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="83" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="180" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="170" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"测定值(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="137" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:宋体"回收率/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="83" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水水样/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="137" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:' Arial' ,' sans-serif' "92%/span/p/td/trtr style=" height:7px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样/span span style=" font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.83/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.16/span/p/td/tr/tbody/tablepstrong六、结论/strong/pp本文研究了阳极溶出伏安法在重金属离子铅、镉、汞测定中的应用。对标准溶液的测定结果表明,阳极溶出伏安法在0-100 ug/L的范围内可以实现铅、镉离子的同时检测,在0-10 ug/L的范围内可以实现汞离子的检测,结果呈现良好的重复性和线性相关性。阳极溶出伏安法可以被应用到生活饮用水中痕量重金属的检测中来。通过简单的两点校准,饮用水中的铅离子和镉离子即可被同时检测,其加标回收率在80%-100%,显示出方法具有较好的可靠性。由于饮用水中背景离子的干扰,汞离子使用标准曲线法测定的回收率仅为50%。二次添加法可以显著降低样品的背景干扰,通过采用二次添加法,饮用水中汞离子测量的可靠性和准确性得到明显改善,其测定回收率提高到92%。/pp本文使用基于溶出伏安法的便携式重金属分析仪,测定饮用水中的铅、镉、汞离子含量。实验中重金属的质量浓度和与阳极溶出的峰面积呈良好的线性关系,获得较高的回收率,实验结果较为满意,符合快速检测的要求。该设备操作简单,便于携带和操作,灵敏度和准确度高,选择性好,运行费用低,体积小,特别适合现场的快速检测。/ppbr//ppstrong作者:/strong孟旭,工程师,18616817423,mengxu@lei-ci.com, br//ppstrong通讯地址:/strong上海市嘉定区安亭镇园大路5号。/p
  • 使用 GC-MS 检测废水中的 NPS
    氯胺酮 (KET) 类似物作为新型精神活性物质 (NPS) 的娱乐用途和滥用正变得越来越流行。应用基于废水的流行病学,中国大连海事大学的一组科学家通过使用固相萃取 (SPE) 结合气相色谱-质谱(GC-MS), 分析了从废水处理厂获得的样品,监测了 KET 类似物 2-氟去氯氯胺酮 (2F-DCK) 在中国城市的使用情况。  氯胺酮类似物使用新出现的健康问题  新精神活性物质 (NPS) 的使用是许多国家的公共卫生问题,对使用者造成不可估量的伤害,尤其是与其他非法物质结合使用时。 NPS 在许多国家是非法的,但由于非法药物制造商试图逃避检测,它们经常在欧洲和中国市场上被发现。氯胺酮 (KET) 是一种麻醉药物,其类似物以 NPS 的形式出现在市场上,例如 2-氟去氯氯胺酮 (2F-DCK)。欧洲毒品和毒瘾监测中心于2016年报告在西班牙检测到2F-DCK,并分别在丹麦和中国的血液和尿液样本中进一步鉴定。  缺乏人体药代动力学数据意味着很难使用传统方法可靠地确定 2F-DCK 随时间的使用情况。因此,来自大连海事大学的中国科学家团队应用基于废水的流行病学 (WBE) 来监测中国七个城市的 2F-DCK 和 KET 使用情况。他们开发并验证了一种采用固相萃取 (SPE) 和气相色谱-质谱联用 (GC-MS) 测定废水进水样品中 2F-DCK 和 KET 及其代谢物的方法。  废水提取物的 GC-MS 分析  2018年至2020年间,使用自动采样器采集了中国7个城市9个污水处理厂的进水样品。24小时内每30分钟采集一次废水样品,然后合并制成复合样品,通过0.45和0.22 μm 过滤器去除固体颗粒。对于 SPE,甲醇 (6 mL)、水 (4 mL) 和酸性水 (4 mL,pH = 2) 依次通过 MCX 柱。然后将废水样品 (50 mL) 装入小柱,真空干燥后,用甲醇 (4mL) 和 5% 氨-甲醇 (4 mL) 洗脱 SPE 柱。洗脱液在氮气下干燥并重新溶解在 180 μL 乙酸乙酯中。然后添加萘-d8 (20 µL) 作为标准,以确定实际分析的进样效率。  对于提取的废水样品的 GC-MS 分析,使用连接到配备 HP-1 色谱柱(内径 0.25 mm,膜厚 0.25μm)的 Agilent 5977 质谱仪(电子电离:70 eV)的 Agilent 7890B GC。初始烘箱温度为 90 ℃,以 15 ℃/min 的速率升至 240 ℃。质谱仪的传输线和进样口温度均设置为 230 ℃,四极杆保持在 150 ℃。通过评估线性度、检测限和定量限来验证该方法。  废水基质中的稳定性是此类 WBE 研究的一个重要因素,因此还在室温 (25 ℃) 和冷冻温度 (-20 ℃) 和两个 pH 水平下测试了废水样品中 2F-DCK 和 KET 15 天的稳定性( pH = 7 和 pH = 2)。发现两种化合物在规定的储存条件下在废水中相对稳定 15 天,残留量在 90% 到 110% 之间。作者指出,未来还应调查下水道的稳定性。  转向实际废水样品的分析,在所有样品中都检测到 KET,而仅在四个城市(广州、深圳、泉州和南宁)的样品中检测到 2F-DCK。值得注意的是,这是首次在废水样品中鉴定出 2F-DCK。根据废水样本中发现的水平,四个城市的估计 2F-DCK 消耗量为 3.71±0.05 至 55±0.09 mg/天/1000 名居民,而 KET 的范围为 1.3±0.04 至 76.5±4.63 mg/天/ 1000名居民。  GC-MS 对 WBE 有用  带有 WBE 的 GC-MS 为监测 NPS 消耗趋势提供了一种很有前景的方法。 GC-MS 成功提供了中国城市 KET 和 2F-DCK 使用变化的实时数据,这有助于政府制定新的药物政策和应对措施。对于未来的研究,同时测定其他非法药物的分析方法将很有用,因为 NPS 经常与其他物质一起食用。此外,为了使 WBE 方法更可靠,还应确定下水道中 NPS 的稳定性。  相关链接  [1] Shao XT, Yu H, Lin JG, Kong XP, Wang Z, Wang DG. Presence of the ketamine analog of 2-fluorodeschloroketamine residues in wastewater. Drug Test Anal. 2021. (https://doi.org/10.1002/dta.3098)  [2] Du P, Li K, Li J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res. 2015.( https://doi.org/10.1016/j.watres.2015.07.025)  (编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)
  • J of Extracellular Bio. :ExoView直接检测房水中的极微量外泌体,助力小儿眼部疾病研究
    小儿眼病的病情准确诊断与监测一直是临床上的一大难题,往往需要通过临床症状来评判。因此,小儿眼病的诊断评估急需新的分子诊断技术的帮助。房水是眼球眼房中,介于角膜和晶状体之间的无色透明水样液体,主要作用为屈光、为眼内组织提供营养和氧气、排出其代谢产物和维持眼内压。使用前房穿刺术可以安全地取出房水,作为液体活检样本用于诊断和监测眼病。 研究表明,外泌体在视觉系统中可能有重要作用,如外泌体与青光眼和黄斑变性的病理生理相关。由于血-视网膜屏障存在,房水中的外泌体主要由眼内组织分泌,使得外泌体在眼病研究中更具有针对性。先前的研究中并未涉及房水外泌体的来源与分布,且由于技术手段的限制,至今尚未将房水外泌体与小儿眼病联系起来。 基于以上研究成果与客观需要,研究组获取了患有不同眼病,包含先天性白内障(CAT),先天性青光眼(GLC),小儿视网膜疾病(PRD)和视网膜母细胞瘤(Rb)的19个不同患者的房水样本,再将Rb患者根据治疗情况分为经过初步治疗(诊断+初步切除)(Rb_Tn)和经过主动治疗(二次切除+化疗)(Rb_Tx)两组,使用全自动外泌体荧光检测分析系统 ExoView的配套芯片,通过抗原抗体结合捕获了房水中的特异性外泌体,无需纯化,直接检测了房水中存在的不同亚群的外泌体的含量。 在非肿瘤眼病(CAT+GLC+PRD)和Rb_Tx组中,CD63+外泌体数量显著高于其他表型,表明房水CD63+外泌体占大多数(图1c)。Rb_Tn组的外泌体数量要高于Rb_Tx,说明在化疗前房水中可能含有大量肿瘤分泌的外泌体(图1d)。图1 ExoView检测不同患者样本的外泌体跨膜蛋白的表达。(a)不同眼病样本的外泌体荧光图像(红色:CD63;绿色CD81;蓝色:CD9);(b)不同患者样本经过IgG阴性对照标准化的荧光颗粒计数表;(c)(d)不同组别样本经过IgG阴性对照标准化的荧光颗粒计数的柱形图。 对不同组别的各个外泌体亚群进行统计分析发现,非肿瘤眼病(CAT+GLC+PRD)和Rb_Tx组中,仅表达CD63的外泌体数量多,Rb_Tn组的亚群则更加多样化(图2b&图2c); CAT/GLC/PRD/Rb_Tx组中CD63+外泌体在CD63捕获位点中比例高(图2d&图2e),而在Rb_Tn组的比例则显著小于其他组,但CD9+/CD63+,CD63+/CD81+和CD9+/CD63+/CD81+则相对更多(图2f)。以上结果说明,仅表达CD63的外泌体是房水中所特有的,Rb_Tn组的其他亚群则与肿瘤相关,肿瘤的治疗改变了外泌体的亚群组成比例。图2 ExoView检测不同组别样本的外泌体跨膜蛋白的共定位(a)荧光图像示例(红色:CD63;绿色CD81;蓝色:CD9);(b)(c)不同组别的各个外泌体亚群数量;(d)(e)(f)不同组别的各个外泌体亚群比例。 为确认ExoView芯片捕获的是膜结构完整的外泌体,研究人员将两份样本经Triton-X 100处理破坏外泌体膜结构后,再使用ExoView检测。与未经处理的样本对比,荧光颗粒计数有显著下降,证明实验检测到的外泌体是脂双层结构完整的外泌体(图3)。 图3 Triton-X100处理过的房水样品的跨膜蛋白表达。 在人的其他体液,如血浆和淋巴液中,CD63+外泌体占比仅为≤10%,而房水中CD63+外泌体的含量很高,说明CD63+外泌体可能是房水特有的。有研究表明,鼠视网膜色素上皮分泌的CD63+外泌体参与了巨噬细胞的细胞间通信。因此,CD63+外泌体可能与眼部的免疫调节相关。Rb患者房水中表型更加多样化的外泌体来源可能是肿瘤细胞;经治疗后,CD63+外泌体比例上升,说明眼部趋向正常,因此,CD63+外泌体,以及肿瘤相关外泌体亚群的含量有作为肿瘤病情监测指标的潜力。在今后的研究中,使用ExoView检测含有更多种蛋白标志物和内容物的外泌体,可以检测并识别更多疾病相关的蛋白标志物和内容物,助力小儿眼病的诊断和治疗。 本研究中,科学家借助美国NanoView Biosciences公司研发的全自动外泌体荧光检测分析系统ExoView,直接检测病人样本中微量的外泌体,无需纯化,操作简单。一次结果直接输出外泌体粒径,数目,蛋白表型,不同亚群的含量。多角度全方位的佐证了外泌体或可作为液体活检样本用于诊断和监测眼病。也说明了ExoView的无需纯化,全面表征的特点是临床液体活检,尤其是微量检测的一大利器。 为了更好的服务中国客户;Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据: 欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!服务推出至今,短短一年时间已经助力多个单位客户发表高水平文献:☛ 上海大学肖俊杰课题组在《Journal of extracellular vesicles》发表文章 ☛ 中国科学院深圳技术研究院杨慧课题组发表在《Lab on a Chip》发表文章 ☛ 北京天坛医院张力伟课题组、纳米科学中心梁兴杰课题组、北京航空航天大学陈军歌课题组在《Advanced Science》发表文章☛ 同济大学附属上海市肺科医院、上海思路迪转化医学团队在《Journal of Nanobiotechnology》发表文章【参考文献】[1] Peng, C. C., Im, D., Sirivolu, S., Reiser, B., Nagiel, A., Neviani, P., ... & Berry, J. L. (2022). Single vesicle analysis of aqueous humor in pediatric ocular diseases reveals eye specific CD63‐dominant subpopulations. Journal of Extracellular Biology, 1(4), e36.
  • 一文读懂饮用水中溴酸盐的危害与检测
    近日,香港消费者委员会《選擇》月刊发布的30款瓶装水的检测与评价报告,被媒体援引、转载,引起广大消费者密切关注。7月18日消息,香港消费者委员会(以下简称“香港消委会”)就“农夫山泉事件”在其官方网站上发布了一则澄清及更正声明。饮用水中的溴酸盐是怎么来的?在自然界的水源中几乎不存在溴酸盐,但普遍含有一定量的溴化物。饮用水中的溴酸盐是臭氧消毒工艺的副产物。臭氧能够高效杀死病毒、细菌等微生物,保障饮用水的安全,是国际上通用的饮用水消毒工艺。但同时,臭氧也会与自然界的水源中含有的溴化物形成微量的溴酸盐。溴酸盐对人体有危害吗?饮用水中的溴酸盐是水中溴化物被臭氧氧化形成的盐类,如溴酸钾、溴酸钠等。针对溴酸盐是否有害有很多研究。美国纽约州卫生部的研究表明,摄入大量溴酸盐会出现胃肠道症状,如恶心、呕吐、腹泻和腹痛。可能导致以上症状的溴酸盐摄入量是饮用水标准限量的数千倍。世界卫生组织的相关研究表明,没有足够证据证明溴酸盐对人体有致癌性,但是大剂量试验对动物的致癌性比较明确。所以,溴酸盐没有被确认为“致癌物”,而是放在“可能的致癌物”类别。国内外标准对饮用水中溴酸盐的限量是怎么规定的?国际上基于对溴酸盐安全性的充分研究和评估,就其安全限量标准达成共识。目前,世界卫生组织、国际食品法典委员会、欧盟、美国、日本、中国香港等国际组织和主要国家与地区均规定饮用水中溴酸盐限量≤10微克/升。我国的《生活饮用水卫生标准》和《食品安全国家标准 饮用天然矿泉水》《食品安全国家标准 包装饮用水》中同样规定溴酸盐限量≤10微克/升。欧盟在一项针对“使用富含臭氧的空气处理天然矿泉水和泉水的条件”的指令中规定,如果用臭氧对天然矿泉水和泉水进行处理,溴酸盐的限量应控制在≤3微克/升。饮用水都有哪些类别?饮用水通常以水源、工艺的不同来进行分类。我国饮用水的分类原则与世界上主要国际组织、国家和地区基本保持一致,但也略有差异。根据《生活饮用水卫生标准》和国家标准《饮料通则》,我国的饮用水主要有以下类别:生活饮用水(也就是俗称的自来水)和包装饮用水(饮用天然矿泉水、饮用天然泉水、饮用天然水、饮用纯净水等)。国际食品法典委员会将饮用水主要分为:市政饮用水(生活饮用水)、天然矿泉水、包装饮用水;欧盟将饮用水分为:(生活)饮用水、天然矿泉水、泉水。我国的饮用水安全状况如何?我国通过持续优化构建“最严谨的标准”体系,不断提高检验检测能力,构建全过程监管体系,使人民群众饮食饮水安全得到保障。从饮用水的标准体系来看,《生活饮用水卫生标准》设置了97项指标,《食品安全国家标准 包装饮用水》设置了21项指标,《食品安全国家标准 饮用天然矿泉水》设置了39项指标。标准体系涵盖了所有的饮用水类别,严谨地规定了食品安全指标和限量。对于广大消费者而言,正规企业生产的符合标准规定的包装饮用水是安全的,可以放心饮用。香港消委会此次的评价报告也给出了“全部30款样本的化学安全和微⽣ 物测试结果理想,没有发现有害物质超出相关准则值,均可安心饮用”的结论。哪些方法可以检测出饮用水中溴酸盐?目前饮用水中溴酸盐含量的测定方法主要有离子色谱法、高效液相色谱法、毛细管电泳-电化学检测法。其中离子色谱法因具有快速、简便、灵敏、选择性好、检测费用低等优点被推广使用,且我国现行的标准gb8538-2016《食品安全国家标准饮用天然矿泉水检验方法》中溴酸盐检验方法也是利用离子色谱法测定饮用水中溴酸盐的含量。更多解决方案:点击获取》》》》》》》饮用水中溴酸盐检测方案面包中溴酸盐检测方案(离子色谱仪)饮用水中无机阴离子检测方案饮用水中溴酸盐检测方案
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制