当前位置: 仪器信息网 > 行业主题 > >

痕量检测仪工作原理

仪器信息网痕量检测仪工作原理专题为您提供2024年最新痕量检测仪工作原理价格报价、厂家品牌的相关信息, 包括痕量检测仪工作原理参数、型号等,不管是国产,还是进口品牌的痕量检测仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合痕量检测仪工作原理相关的耗材配件、试剂标物,还有痕量检测仪工作原理相关的最新资讯、资料,以及痕量检测仪工作原理相关的解决方案。

痕量检测仪工作原理相关的资讯

  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10 Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 拉曼智能模块如何解决常规拉曼毒品痕量检测难题?—拉曼光谱仪痕量解决方案
    拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,根据每种分子如人类指纹一样,都有其独特的光谱指纹,可以很好的识别分子物质,当前,随着拉曼光谱技术的发展,各样式拉曼检测仪不断涌现,如便携式科研拉曼检测仪、手持式拉曼检测仪等。它们为拉曼技术的推广提供了条件。  普识纳米在现有常规拉曼技术研究的基础之上,针对不同拉曼检测仪性能不同导致的采集拉曼谱图与比对标准谱图差异大,拉曼检测仪物质识别能力不强、检测限等问题,设计并开发了通用拉曼智能识别模块,解决了拉曼谱图的自适应采集、多维度校准和多核加速技术等问题,提高了谱图识别的准确性和速度。  拉曼智能模块对常规拉曼升级包括以下几点:  (1)针对信号强度不确定性样品,设计了拉曼自动积分控制算法,通过实时评价拉曼信号的信噪比或峰强,自动控制拉曼积分时间、激光功率等参数,使得针对不同的样品,不同性能的拉曼信号采集模块都能自动获得高质量的拉曼谱图数据。  (2)为提高拉曼谱图智能识别算法的通用性和准确度,设计了多维度的拉曼谱图校准算法,在对拉曼谱图进行滤波去噪的基础上,设计了基于多物质的标定的拉曼位移校准方法和相对强度校准方法,改进了不同性能拉曼信号采集模块获得的拉曼谱图的特征信息差异,从而提高了谱图识别的准确性。  (3)基于嵌入式系统,实现了智能识别算法的并行加速。通过采用多核多线程并行处理、哈希表数据库检索方法等,提高了拉曼谱图智能识别算法的计算速度,大幅提高了智能识别模块的性能。  (4)同时还开发了基于串口通讯的通信桥,实现了基于http通讯的前后端程序在串口下的通信。 本文开发设计了微型的拉曼智能识别模块,编写了算法和控制程序,进行了实验分析和算法验证,表明了拉曼智能识别模块能适配不同性能的拉曼光谱检测模块,可以提供离线式和在线式的拉曼谱图快速识别服务。  根据以上四大方面升级,解决了不同厂家常规拉曼的数据匹配问题,结合普识纳米SERS增强技术,完美实现了常规拉曼毒品痕量检测难题。  例如第三代毒品“芬太尼”,常规拉曼是无法检测芬太尼类强荧光干扰和低浓度的两大核心问题,集合普识纳米SERS智能处理器,升级后灵敏度可达ppb级别(可以在毒贩或者吸毒人员摸过的纸币上面采样)。基于拉曼光谱SERS原理,采用独特的便携设计,具有简单、精准、高效、便携等特点。满足现场使用需求,并可根据要求支持扩容升级万条数据库,还可以随时自建谱图库,检测新出现的芬太尼。
  • 高通量检测:痕量毒品瞬间毕露
    小型化SPRi原型机  新闻背景  当前,我国已由毒品过境为主转变为过境与国内消费并存,2008年我国在册吸毒人数累计已达112.67万人。近年来,设计型毒品也在不断出现,对毒品检测鉴定提出了更高要求。然而国内对毒品及代谢物的快速分析,主要利用进口的免疫试剂盒,此方法干扰因素多,经常出现假阳性,因此必须结合案情或其他分析才能准确得出结果。另外,常规仪器分析检测技术每次只能对一个样品或一种毒品成分进行检测鉴定,在遇到严打专项斗争和发生突发事件,成百上千样本测定和几十种毒品需要定性筛查时,现有技术便显出通量小、速度慢的缺陷,严重制约了对毒品犯罪的严厉打击。  该组合技术为公安机关打击毒品犯罪提供了快速筛选分析的专业设备,具有快速、准确、不消耗检材的特点  微全分析系统是世界前沿研究领域,尽管现在还没有真正意义上的微全分析系统出现,但它代表了分析科学发展的趋势。“组合型常见毒品快速检测仪技术”是“十一五”国家科技支撑计划项目课题,包括“表面等离子体共振及高通量分析仪器在毒品分析中的应用”、“高通量毒品、毒物快速检测系统——生物芯片的研究”、“毒品微流控芯片研究”三个子课题。课题组在表面等离子体共振技术的基础上,研制开发了基于两瓣电流式光电位置测定技术的现场毒品检测系统,现场一次性高通量检测多种毒品成分的生物芯片系统,窄缝进样高灵敏微流控电泳芯片等,力求在微全分析系统研究有所突破,并运用到毒品的快速检测中。  SPR现场毒品检测系统:替代进口金标免疫试剂盒  目前,在国际上对毒品的分析方法主要是利用气相色谱—质谱联机法、气相色谱法、高效液相色谱法和红外光谱法等常规方法,对液体中痕量毒品的监测主要采用进口金标免疫试剂盒进行初选,利用气相色谱—质谱联机法进行确认分析。对现场查获的可疑毒品吸食人员的体液主要采用点滴试验和金标免疫试剂盒进行初选,对预试验呈阳性的样品还需送实验室进行确认。刚刚通过公安部科技信息化局组织验收的,高灵敏度的表面等离子体共振及高通量分析仪器,是在纳米技术的基础上结合膜修饰技术的一种新的检测方法,在国内外毒品检测领域中尚未见到相关报道。  表面等离子体共振(SPR)及高通量分析仪器采取化学修饰离子选择性渗透的方式,对体液中常见毒品进行快速筛选分析。此项研究主要是建立对苯丙胺类常见毒品及其代谢物的系统分析。通过目的物离子的选择性渗透、与底物的化学反应和电极电位的三次分离,提高定性分析的准确度,同时通过内置工作曲线法对待测目的物进行定量分析,可代替国内普遍使用的进口试剂盒。  课题组自主研发了基于时间分辨测量技术的SPR仪器,并将其用于吗啡、苯丙胺、氯胺酮及大麻等组合型毒品的检测,该方法具有高灵敏度、检测限低和抗干扰能力强等优点,其检测限可以到达100微克/毫升。  课题组在吉林省公主岭市安康医院进行了阴性、阳性实验样品测试,实际样品为精神类药物或者吸毒后人尿液,得到较好结果。测试表明,对服用精神类药物的样品无干扰信号出现,对吸毒人员尿样检测全部出现阳性信号。  专家圈点:  课题负责人、吉林省公安厅物证鉴定中心高级工程师谢文林:  这个课题研究主要技术特点在于从多个不同方面,如离子选择性电位检测、电催化氧化安培检测及基于生物传感器的分析等,综合评估筛选对安非他命类分子具有高选择性的传感器材料,使其能够真正应用到实际样品的分析检测中,并将这一方法及电极传感器等部件仪器化,从而实现现场的快速分析。  课题组完成了便携式微机版多通道电位仪的研制,采用USB供电,无需任何外接电源。同时研制的常见毒品及其衍生物的选择性膜,与电位仪联用,可以快捷、灵敏的检测溶液中的安非他命及其衍生物。  生物芯片:多种毒物快速检测 解决批间差难题  修改后的《刑法》和《刑事诉讼法》对案件检测鉴定提出了更高、更新、更严的要求,送检的毒品检材日益增多,在数量和种类上都比以往明显增加。  目前,在检验鉴定中国内外均没有高通量快速检验鉴定毒品及其体内代谢物的方法,而常规仪器分析检验技术存在检测通量低,每次只能对一个样品或一种毒品成分进行检验的不足,不能满足成百上千样本测定和几十种毒品需要定性筛查的需求,同时,现有检测速度慢,分析操作周期长,一个样品的检测时间约需几个小时,难以在广大基层单位推广,严重影响了办案进度。  目前,分子生物学领域用于高通量定性筛查的方法首推生物芯片。生物芯片的特点是将所涉及的样品反应、检测、分析等过程连续化、集成化、微型化。由于其检测信号的高通量、良好的检测灵敏度和数据回收率,生物芯片技术迅速成为生命科学研究领域发展最快的技术之一。  生物芯片基于抗原和抗体专一性结合原理,将多种蛋白质结合在固相基质上,检测生物样品中可与之专一性结合的对应蛋白质。课题组利用免疫竞争原理,将多种毒品的抗体结合在固相基质上,通过酶标记的抗原和化学发光底物所发出信号,可以在短时间内定性、定量检测几百个样品中多种物质的成分和含量。  据子课题负责人、上海市公安局刑事侦查总队曾立波主任法医师介绍,课题组制备了9种毒品完全抗原和5种毒品单克隆抗体,该生物芯片可以检测我国9种常见毒品种类。在同步测量体液中可卡因类、苯丙胺类、吗啡类、氯胺酮、大麻类毒品时,最低检测限均在100微克/毫升,误报率小于3%。  值得一提的是,课题组解决了制备生物芯片批间差这一国际难题,实现了生物芯片无批间差的愿望。此项技术具有自主知识产权,国内外无相关报道。课题组选择氧化铝陶瓷基片制备生物芯片,氧化铝基片发生散射后,会导致基片产生批间差,他们使用Kubelk-Munk定律的矫正散射系数有效矫正其散射,其他基片均难以矫正。  专家圈点:  公安部物证鉴定中心研究员于忠山:  本项目研发的生物芯片实现了我国可以一次性高通量快速检测吗啡、苯丙胺、甲基苯丙胺、氯胺酮、大麻、丁丙喏啡、可卡因、美沙酮等十类毒品成分的愿望,这些检测指标基本涵盖了国内外的常见毒品成分。将生物芯片应用于刑事技术领域,属国内外首创。  就目前仪器市场而言,分离分析设备几乎完全被国外产品垄断,国家每年要花费数亿元人民币来进口仪器。进口质谱仪器的平均价格一般在2万美元,其昂贵的价格使众多潜在用户望而却步,不仅影响了分离仪器在国内各行业的广泛应用,也给以分离检测和快速检测为主的公安和环保等行业执法带来巨大影响。课题组研制的微流控检测设备和生物芯片检测技术将填补国内外空白,解决战斗在禁毒斗争一线的公、检、法、司、社区、戒毒所和有关医院等广大基层单位无法对毒品成分及其代谢物进行高通量快速检测的难题。  ■技术动态  微流控电泳芯片检测仪:少量毒品快速分离  常用毒品微流控芯片检测仪是采用毛管电泳、芯片集成检测方法研制的毒品分离检测设备,对现场收缴的可疑毒品和体液中常见毒品进行分离检测。  课题组基于现有微流控芯片的优缺点,考虑到毒品、毒物检测现场、快速、一次性使用、便携以及高效的要求,结合石英芯片和聚二甲基硅氧烷(PDMS)芯片的优点,设计并制作了一种以PDMS材料为基体,基于窄通道进样的一次性石英毛细管微流控电泳芯片。窄通道进样可以有效防止样品分离管道的泄露,无需一般微流芯片所需的防泄露高压电源,简化了仪器和操作,同时,可以大大缩短进样时间,利于降低样品区带展宽,提高分离效率,减少样品消耗量,大大降低了假阳性率。  ■延伸阅读  社会效益不可估量  “组合型常见毒品快速检测仪技术”主要是为公安机关打击毒品犯罪提供了一套对可疑毒品和吸毒人员体液中毒品及其代谢物进行快速筛选分析的专业设备,具有快速、准确、不消耗检材的特点。为打击与毒品犯罪相关案件提供科学证据,具有不可估量的社会效益。  同时,此项技术不需要消耗其他材料,仅需要少量电能,在使用过程中不会污染环境,于目前使用的进口金标免疫试剂盒互补,可以满足不同层次执法人员的需求。更重要的是,此项研究所提供的各种方法具有操作简便、成本低,不需进行后处理的优点,所以可以降低使用单位的检验鉴定费用和能源消耗,无疑将具有广阔市场。
  • 哈希发布哈希痕量金属分析仪 EZ6000 新品
    - 工作原理:Hach EZ6000 的分析技术为阳极溶出伏安法(ASV),是一种经过时间检验的,灵敏的电化学分析方法,根据电极表面氧化过程中的电流-电压曲线行分析。此方法包括金属离子向电极表面的富集和溶出,溶出阶段在此电极上会发生选择氧化反应。分析过程的所有步骤,包括采样,样品传输,清洗和数据交换均通过工业级PC面板进行控制。- 应用行业:地表水、饮用水、矿泉水、污水排口- 仪器特点:? 灵活的分析性能? 内置样品消解装置,用来处理含复杂金属物质水样或高有机物含量的水样? 操作简单,维护便捷? 电子气元件和仪表湿区实现了完全分离? 最多可达八通道分析? 通过工业面板计算机进行控制和通讯? 具有扩展数据通信和交换功能? 较低的样品和试剂消耗? 与标准实验室方法的关联性优异? 高级设置:自动校准和自动清洗功能? 工厂配置,测试和校准创新点:哈希EZ6000痕量金属分析仪是一款阳极溶出伏安法(ASV)重金属检测仪,灵敏的电化学分析方法,性能优良,操作简单。该重金属检测仪内置样品消解装置,用来处理含复杂金属物质水样或高有机物含量的水样,相比其他重金属检测仪,EZ6000痕量金属分析仪对样品和试剂消耗更低。哈希痕量金属分析仪 EZ6000
  • 科学岛团队在痕量气体光声检测研究方面取得进展
    近日,中科院合肥研究院安光所方勇华研究员团队在痕量气体光声检测研究方面取得新进展,相关研究成果发表在国际知名光学期刊Optics Express上,并被选为“Editor’s Pick” 文章。博士生李振钢为论文第一作者。   光声光谱是一种间接吸收光谱技术,通过检测气体吸收光能产生的光声信号来反演气体浓度,具有灵敏度高、选择性好、零背景检测等优点,广泛应用于环境监测、医疗诊断、燃烧分析、电力检测等领域。然而,光声检测性能容易受到各类噪声的影响,如气体流动噪声和电子学噪声等非相干噪声,以及光声池壁吸收光能产生的相干噪声等。此前,在同时抑制相干与非相干噪声、增强光声信号方面业内鲜有报道。   该团队基于光声检测原理,研制了一种新型的差分式亥姆霍兹光声池,其特殊结构使光束能够在镀金内壁上多次反射,以激发出更强的光声信号。同时,采用波长调制与二次谐波技术抑制了光声池壁因吸收光能产生的相干噪声。此外,由于该光声池的差分特性,使非相干噪声得到极大抑制。该光声池经过详细的仿真优化,在获得高检测性能参数的同时,进一步提高了待测气体的置换速度。在甲烷气体检测实验中,该光声传感器表现出了良好的线性度和灵敏度。当激发光源为较低功率(6 mW)的近红外(1653 nm)分布式反馈激光器时,在1 s的检测时间内实现了甲烷气体177 ppb的最低检测限,对应的归一化噪声等效吸收系数为4.1×10–10 cm–1 WHZ–1/2(此前报道的归一化噪声等效吸收系数通常为10–8至10–10量级)。新型差分式亥姆霍兹光声池的(a)声压仿真和(b)多次反射示意图待测气体置换速率仿真;(a)连接管位置优化前(b)连接管位置优化后(a)光声检测装置原理图和(b)光声池机械结构图
  • 广东发布《车室内空气痕量组分在线快速检测方法》团标
    人们若感觉所驾乘的汽车室内有异味,考虑需对车室内空气质量快速进行检测筛查,广东省标准化协会2022年11月28日发布团体标准《车室内空气痕量组分在线快速检测方法》,将可以帮上一忙。该标准由广物汽贸股份有限公司、广州禾信仪器股份有限公司、暨南大学、广东省广州生态环境监测中心站、生态环境部华南环境科学研究所、广东省麦思科学仪器创新研究院、广东智检检测技术有限公司、广东省标准化协会共同起草。据起草组负责人介绍称,该标准是为满足市场和消费者需求而制定的。我国随着现代化进程加快,汽车已成为寻常百姓家的代步工具,据报道,目前全国汽车保有量已达3.02亿辆,驾乘人员在车内的时间大大增加,近年来汽车室内空气污染投诉随之大量增加。据有关机构统计,2021年全国投诉汽车室内空气质量的达29213宗,其中超过半数诉称出现“头晕、头痛”、“咳嗽、咽喉不适”以及“恶心、呕吐”等症状,对车内空气质量进行检测的诉求呈急剧上升之势。我国对汽车室内空气检测现行标准是环保行业标准《车内挥发性有机物和酫酮类物质采样测定方法》(HJ/T 400—2007)。据介绍,该标准检测准确率达国际先进水平,但主要适用于新车出厂检测,因其检测耗时起码24小时,且操作较繁琐、技术要求高,费用不菲,目前一般市价每车次检测收费达2000至3000元。这与市场大量存在的要求快速、低费用的检测诉求不相适应。于是,适应市场诉求的《车室内空气痕量组分在线快速检测方法》应运而生。该项团标发布的新的检测方法的突出特点是快速和低成本费用。检测时间在1小时内,成本费用更是大幅度降低。其技术创新之处在两方面,一是以“置换平衡”和“释放亚平衡”方法缩短样品采集时间。采集车室内空气样品是检测的重要环节。HJ/T 400—2007规定的采样程序是先将受检车辆放入符合要求的采样环境舱中,打开受检车辆全部可以开启的车窗、门,静态放置不少于6小时,完成准备阶段后进入封闭阶段,完全关闭受检车辆的门、窗,保持密封状态16小时以上,之后开始样品采集。团标则规定把受检车辆放入采样环境舱后,在让车辆保持密闭静止状态下,利用置换装置将洁净空气置换车室内空气,空气中痕量气体组分(主要指各类VOCs)浓度快速降低,经过15分钟,车室内空气被洁净空气置换达平衡状态,即停止供气,使车室内各类VOCs污染物开始释放,空气中污染物浓度开始上升,过15分钟左右达到释放亚平衡状态,最终释放速率趋向于零达到释放平衡状态,即开始样品采集。这样把采用行标检测的样品采集准备和密封阶段所需22小时缩短为30分钟。二是相对于行标规定采集样品后要妥善保管、运输、送实验室检验,团标则用在线质谱仪快速检测,实时自动观测,减少了流程环节和手工操作。检测组分包括苯、甲苯、乙苯、二甲苯、甲醛、成苯乙烯等18种常见有机化合物(包括联用在线高精度甲醛分析仪快速检测甲醛的释放速率和释放浓度)。为保证检测质量,团标除对在线快速检测方法相关的术语和定义、检测原理、检测流程、检测系统设置、要求及操作规程等作出规定外,还专门规定了检测质量保证和控制措施。专家组评审认为,该团标的在线快速检测方法,相比行业其他方法具有操作简单、快捷便宜的特点,有助于消费者了解车内空气状况,对治理车内空气,减少车内VOCs对人体的危害有一定的促进作用。
  • 【HORIBA学术简讯】环境、痕量检测、检测领域 | 2021年第18期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对环境、痕量检测、检测领域,涉及SPRI、X射线荧光、拉曼光谱技术。环境痕量检测检测更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • 饮用水中痕量重金属的快速检测方法介绍
    p style="text-align: center "strong饮用水中痕量重金属的快速检测/strong/pp style="text-align: center "上海仪电科学仪器股份有限公司/ppstrong摘要:/strong饮用水中痕量重金属的快速检测是分析测试技术上的一个难点。本文尝试使用阳极溶出伏安法,实现了饮用水中痕量重金属离子的检测。结果显示,饮用水中痕量的铅、镉和汞离子可以通过阳极溶出法进行检测,其检测下限可以达到ppb级。与其他分析测试技术相比,阳极溶出伏安法具有设备体积小,操作简单,使用成本低廉等独特优点,使得其在饮用水的现场快速分析中拥有广阔的应用前景。/ppstrong关键词:/strong饮用水,重金属,阳极溶出伏安法/pp /ppstrong一、实验原理/strong/pp长期以来电化学溶出伏安法一直被认为是检测水环境中痕量重金属的一个有效方法[8]。溶出伏安法是基于电化学原理进行的(如图1)。在一定电压条件下,先将溶液中的待测元素通过还原反应沉积在电极表面,随后通过施加反向电压,使沉积在电极表面的重金属发生氧化反应而溶解,形成峰电流,峰电流的大小或峰面积与被测金属离子浓度成正比。由于电沉积过程中的富集作用,溶出伏安法可以达到1 μg/L以下的检测下限。/ppbr//ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/09550700-f887-41a8-947c-4d9cb9759796.jpg" title="1.png" style="width: 402px height: 309px " width="402" vspace="0" hspace="0" height="309" border="0"//pp style="text-align: center "strong图1. 溶出伏安法原理图/strong/ppstrong二、 使用仪器/strong/pp便携式重金属分析仪(SJB-801,上海仪电科学仪器股份有限公司),工作电极为玻碳电极,辅助电极为铂电极,参比电极为银/氯化银双盐桥电极;纯水机(GT-30,上海仪电科学仪器股份有限公司);微量进样器(WKYVI-1000,上海求精生化试剂仪器有限公司);分析天平(BSA224S,德国赛多利斯科学仪器有限公司)。/ppstrong三、溶液和试剂/strong/pp铅标准溶液(标准物质编号GBW(E)082058,浓度1000mg/L),镉标准溶液(标准物质编号GBW(E)082061,浓度1000mg/L),汞标准溶液(标准物质编号BW085523,浓度100mg/L)采购自深圳市华测标准物质研究所,使用18.2 MΩ实验室超纯水稀释到指定浓度。/pp铅/镉电解液、汞电解液、汞清洗液、镀金液等为便携式重金属分析仪的配套试剂,由上海仪电科学仪器股份有限公司提供。/pp浓硝酸、浓盐酸等试剂为分析纯,采购自国药集团试剂有限公司。/ppstrong四、操作过程/strong/pp1、电极的准备/pp工作电极:工作电极为玻碳电极。每次使用之前需要在抛光绒布上加抛光粉进行打磨,并用去离子水冲洗,处理好的工作表面应该覆盖一层均匀的水膜。/pp参比电极:参比电极为饱和氯化钾式银/氯化银双盐桥电极。第一次使用参比电极时,配置好内溶液,打开加液塞将配备好的参比内溶液加入到参比电极内腔中(注意参比内腔要保留一小段空隙),然后将该参比电极在盛有饱和氯化钾溶液的保护瓶中浸泡至少1小时,最好浸泡一上。参比电极平时不用时要塞上加液塞和底部浸泡在保护瓶中,保护瓶中要保持有饱和氯化钾溶液。每次使用前,将电极的保护瓶拿掉用水将氯化钾溶液清洗干净,开始测试时,将加液塞打开。/pp对电极:对电极为铂电极,一般不需要处理,可直接使用。/pp2、重金属离子的分析/pp溶出伏安法测定铅、镉、汞标准溶液:准确量取超纯水100mL至烧杯中,加入1mL铅镉电解质溶液,取20mL溶液至测量杯中。仪器选择“铅镉”测定模式,扫描溶出伏安法曲线,测定结束后,记下峰面积。随后依次添加10μL、20μL、30μL、40μL20mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。仪器选择“预镀金膜”模式,在镀金液中完成金膜于都操作。准确量取超纯水100mL至烧杯中,加入汞电解质溶液20mL,取20mL溶液至测量杯中。仪器选择“汞”测定模式,扫描溶出伏安曲线,测定结束后,记下峰面积。随后分别添加5次40μL 1mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。/pp饮用水中铅、镉、汞的测定(标准曲线法):测定水中铅和镉离子时,先使用40 μg/L和100μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入铅/镉电解质溶液1mL。量取20mL测试水样至测量杯中。仪器设定为测定“铅镉”,测定3次浓度值,记下数据;测定结束后,往测量杯中添加20μL 20mg/L铅/镉离子标准溶液,测定3浓度值,记下数据。测定水中汞离子时,先对工作电极进行预镀金膜操作,随后使用4 μg/L和10μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入汞电解质溶液20mL。量取20mL测试水样至测量杯中。仪器设定为测定“汞”,开始测定3次浓度值,记下数据;测定结束后,往测量杯中添加40μL 1m g/L汞离子标准溶液,测定3次浓度值,记下数据。/pp饮用水中汞的测定(二次添加法):准确量取自来水样100mL至烧杯中,加入汞电解液20mL得到测试水样。量取20mL测试水样至测量杯中。选定测定金属“Hg”,选择标准添加法,设定第一次和第二次分别添加40μL 1mg/L汞标准液,确认后开始测量,测试结束后,记下测定的汞离子的浓度值。/ppstrong五、结果与讨论/strong/pp1、溶出伏安法测定铅、镉、汞标准溶液:/pp为验证溶出伏安法对于重金属铅、镉离子的测量性能,对0μg/L、10μg/L、30μg/L、60μg/L、100μg/L铅镉标准溶液进行分析测试。由于支持电解液中含有一定浓度的铋离子,在富集过程中,铅离子、镉离子和铋离子可以在玻碳电极表面形成共沉积。在随后的伏安扫描过程中,几种元素又可以被氧化和释放,形成尖锐的溶出峰,如图2所示。铅离子和镉离子的溶出电位分别为-0.5V和-0.8V,峰形尖锐,对称性较好,相互之间不产生干扰,因此铅离子和镉离子可以使用溶出伏安法同时测定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/5b435af9-24f2-4698-9f3c-c62f714dd98a.jpg" title="2.png"//pp style="text-align: center "strong图2 铅离子和镉离子标准溶液的测定曲线/strong/pp采用峰面积作为相应信号,根据峰面积和浓度关系,绘制标准曲线(图3),R2分别为0.9961(Pb),0.9952(Cd),标准曲线的线性均良好,可见在0-100μg/L的浓度范围,铅离子和镉离子可以通过溶出伏安法进行同时测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/066e6e59-eae1-4430-baa3-d45c431d2e2a.jpg" title="3.jpg" style="width: 600px height: 194px " width="600" vspace="0" hspace="0" height="194" border="0"//pp style="text-align: center "strong图3(a)铅离子标准曲线;(b)镉离子标准曲线/strong/pp汞离子标准溶液使用类似的方法进行分析。为提高汞离子的富集效果,在富集和测定前,需要对玻碳电极进行预镀金膜操作。该操作可以通过使用仪器自带的预镀金膜模式和镀金液进行。随后,不同浓度的汞离子标准溶液通过循环伏安法进行分析测试,结果如图4A所示。汞离子在金膜上的溶出电位约为0.55mV,峰形较好,对称性良好。/pp汞离子的标准曲线如图4B所示,R2为0.9878,标准曲线线性良好,可见浓度范围在0-10μg/L的汞离子,可以通过溶出伏安法进行测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6512c3c9-4202-40c0-91fb-7e5f1e594607.jpg" title="4.jpg"//pp style="text-align: center "strong图4 (A)汞溶出伏安曲线;(B)汞离子标准曲线/strong/pp2、饮用水中铅、镉、汞含量的测定/pp饮用水中铅镉汞离子含量采用标准曲线法进行测定,结果如表1所示。饮用水中的铅离子浓度约为1.90μg/L,重复性为± 0.4μg/L;镉离子浓度约为0.01μg/L,重复性为± 0.01μg/L;而饮用水中的汞离子浓度极地,低于溶出伏安法的最低检出限。/pp为验证溶出伏安法在饮用水中测定的可靠性,在饮用水样品中添加铅、镉、汞离子标准溶液,使得离子浓度分别提高了20μg/L、20μg/L和2μg/L。加标后的样品溶液在同样方法下进行测试,结果显示,对于铅离子、镉离子和汞离子,其加标回收率分别为98%,81%和50%。通过三种离子加标回收率,可以看出,标准曲线法在测定饮用水中铅、镉离子时,回收率较高,测试具有较高的可靠性。而对于饮用水中的汞离子,标准曲线法的测试回收率较低,测试可靠性和误差较大,这可能是由于饮用水中背景离子的存在干扰了汞离子的富集和测试过程。/ppstrong表1 使用标准曲线法测定饮用水中铅、镉、汞离子/strong/ptable width="577" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="86" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="175" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="200" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定值/span/pp style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style="font-size:15px font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="116" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"回收率/span/p/td/trtr style=" height:4px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"铅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.90/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "98%/span/p/td/trtr style=" height:4px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "21.40/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"镉/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.01/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.01/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "81%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "16.20/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.20/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "50%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.99/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.6/span/p/td/tr/tbody/tablep二次添加法是电化学分析中的常用方法,该方法通过将一定已知浓度的标准溶液加入到待测样品中,通过对加标前后的样品溶液进行分析建立标准曲线,从而进行浓度分析。由于该方法标准曲线的建立是在样品溶液背景下进行的,可以降低实际样品中背景离子的干扰,实得测量结果更准确。饮用水样样品、以及加标后的饮用水样品使用二次添加发进行了分析测试,结果显示,使用二次添加法进行测试时,汞离子测试的回收率提高到了92%,相对于标准曲线法,其测试的可靠性和准确性得到了大幅提高。/pp表2 使用二次添加法测定饮用水中汞离子含量/ptable width="570" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:32px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="83" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="180" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="170" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"测定值(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="137" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:宋体"回收率/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="83" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水水样/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="137" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:' Arial' ,' sans-serif' "92%/span/p/td/trtr style=" height:7px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样/span span style=" font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.83/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.16/span/p/td/tr/tbody/tablepstrong六、结论/strong/pp本文研究了阳极溶出伏安法在重金属离子铅、镉、汞测定中的应用。对标准溶液的测定结果表明,阳极溶出伏安法在0-100 ug/L的范围内可以实现铅、镉离子的同时检测,在0-10 ug/L的范围内可以实现汞离子的检测,结果呈现良好的重复性和线性相关性。阳极溶出伏安法可以被应用到生活饮用水中痕量重金属的检测中来。通过简单的两点校准,饮用水中的铅离子和镉离子即可被同时检测,其加标回收率在80%-100%,显示出方法具有较好的可靠性。由于饮用水中背景离子的干扰,汞离子使用标准曲线法测定的回收率仅为50%。二次添加法可以显著降低样品的背景干扰,通过采用二次添加法,饮用水中汞离子测量的可靠性和准确性得到明显改善,其测定回收率提高到92%。/pp本文使用基于溶出伏安法的便携式重金属分析仪,测定饮用水中的铅、镉、汞离子含量。实验中重金属的质量浓度和与阳极溶出的峰面积呈良好的线性关系,获得较高的回收率,实验结果较为满意,符合快速检测的要求。该设备操作简单,便于携带和操作,灵敏度和准确度高,选择性好,运行费用低,体积小,特别适合现场的快速检测。/ppbr//ppstrong作者:/strong孟旭,工程师,18616817423,mengxu@lei-ci.com, br//ppstrong通讯地址:/strong上海市嘉定区安亭镇园大路5号。/p
  • 大连化物所利用离子迁移谱首次实现痕量无机炸药的快速检测
    近日,中国科学院大连化学物理研究所快速分离与检测组李海洋研究团队在无机炸药现场快速检测方面取得新进展:基于原位酸化增强技术,利用离子迁移谱首次实现了快速检测痕量无机炸药,测量周期小于5秒,检测灵敏度达到100皮克,该成果已经发表在Nature 子刊Scientific Reports 上。  无机炸药在我国是一类非常重要的炸药,由于其原料易得、制造方法简单且成本低廉,监管极其困难,每年由于非法制造、运输及使用,经常导致财产损失和人身伤亡事件。目前缺乏适合现场检测无机炸药的仪器和方法,离子迁移谱虽然已经成为爆炸物检测的主要手段,但由于无机炸药中含有难挥发性的无机盐成分,其检测效果并不理想,长期以来一直是国际难题。李海洋创新性地提出了通过在采样片上添加磷酸对无机炸药进行原位酸化,利用热解析进样,实现离子迁移谱快速、高灵敏地检测无机炸药中难挥发性无机盐(硝酸钾、氯酸钾和高氯酸钾)。通过采样片上原位酸化无机炸药,5秒内实现10-12克级别无机炸药(如鞭炮、黑火药和火柴头)的快速痕量检测,将检测灵敏度提高了3000多倍以上 同时该技术保持了对传统有机炸药(硝基爆炸物如硝铵、梯恩梯和太安等)的高灵敏检测性能。  该新型无机炸药和有机炸药检测新技术和新仪器非常适合爆炸物的现场快速高灵敏检测,在机场、车站等重要场所的安检领域具有广阔的应用前景。  大连化物所实现快速检测痕量无机炸药
  • 赋能创“芯”| 把控化学品中超痕量金属元素污染,应对极致检测需求!
    随着半导体制程线宽已达纳米时代,细微的污染都可能改变半导体的性质,湿电子化学品是电子行业湿法制程的关键材料,需要直接与硅片接触,其金属离子的控制对于确保产品良率至关重要。赛默飞可提供从ICP-OES到ICPMS(单杆、三重四极杆到高分辨)的全产品线解决方案,适用于不同制程的痕量污染物检测需求,确保 QA/QC 一致性,助力提升良率!► ► 突破高纯有机溶剂行业壁垒高纯度有机溶剂被广泛使用在集成电路行业中,包括异丙醇、甲醇、丙酮、N-甲基吡咯烷酮(NMP)、丙二醇甲醚醋酸脂(PGMEA)、乳酸乙酯、二甲基乙酰胺等。如异丙醇因其低表面张力和易挥发性而用于晶片清洗和干燥,在封装测试、化学中间体以及油墨生产中异丙醇的需求量也很大;NMP和PGMEA作为高级溶剂可与水互溶,并且能溶解大部分的有机和无机化合物,具有良好稳定性,被广泛应用于光刻胶溶剂等。 赛默飞可为高纯有机溶剂提供QA/QC检测,遵循国际半导体设备和材料组织SEMI标准中规定用ICPMS法来测定超痕量金属离子杂质,此外,还可以提供创新R&D检测方案,准确地对杂质进行鉴定和监测,可以有利于工艺方案的优化及产品质量的控制,以及不同批次产品间的组分差异,助力突破研发壁垒。 ► ► 高纯有机溶剂ICPMS测试的挑战有机溶剂直接进样对于ICPMS测定有较大的挑战,高挥发性增加了等离子体负载,导致炬焰收缩而熄火,炬管和接口的积碳导致检测强度下降影响长期稳定性,甚至于堵塞锥孔。因此传统测试上采用挥发蒸干用酸提取,对于水溶性溶剂也使用稀释法进样。固态聚合物更多地使用高温灰化或微波消解的前处理方法。但随着试剂纯度的提高,对于其中要求的杂质限量值越来越低,样品前处理步骤往往会有引入污染的风险,尤其是前处理条件不能满足洁净度要求的情况下。 iCAP TQs最新变频阻抗匹配设计的RF发生器,对于有机溶剂直接进样具有及其快速的匹配,并结合高效Peltier雾化室制冷模块,在雾化室连接管上接入高纯度氧气,与样品气溶胶混合后导入离子体,加氧消除积碳保持进样稳定性,即便在600w冷等离子体条件下也能获得稳定的测定结果。串联四极杆技术结合碰撞与反应模式可进一步去除碳、氮、氩等基体产生的多原子离子干扰,可获得低背景值并更为准确的结果。分析操作流程也更为简单、快速,可有效控制外来污染并提高分析工作效率。► ► 应用案例:电子级N-甲基吡咯烷酮(NMP)电子级NMP在半导体产业用途广泛,可作为光刻胶溶剂、除胶剂、清洗剂等。NMP密度为1.028g/cm3与水的密度相当,沸点202℃其在室温下挥发性低,粘度较低并可以与水互溶。结构中存在N-甲基使NMP直接进样ICPMS分析时,其基体效应相对于异丙醇要强,将抑制待测元素的信号强度。通过等离子体条件优化,结合标准加入法定量测定可消除基体效应。在NMP的检测中,采用赛默飞三重四极杆iCAP TQs半导体专用ICPMS,将ICPMS雾化室制冷至-5℃,减少有机溶剂进样量,50ml/min等离子体加氧避免锥口积碳。有机溶剂直接进样测定时,碳、氮、氩基体离子将对待测离子产生严重的干扰,如¹ ² C₂ +对² ⁴ Mg+,¹ ³ C¹ ⁴ N+对² ⁷ Al+,¹ ⁴ N¹ ⁶ O¹ H+和¹ ² C¹ ⁸ O¹ H+对³ ¹ P+,以及¹ ² C+的峰拖尾对M-1的¹ ¹ B+的干扰等等,方法中采用冷等离子体模式,可有效降低C、 N、Ar等电离,同时在Qcell中加纯氨反应以获得低背景值。¹ ¹ B的测定采用Q1和Q3的高分辨模式,提高丰度灵敏度消除¹ ² C+的影响。³ ¹ P采用热等离子体氧反应模式,Q3选择³ ¹ P¹ ⁶ O+消除CNHO的多原子离子的干扰。分析结果 iCAP TQs ICPMS稳定可靠的RF发生器在等离子体加氧下,可适合于直接进样测定有机溶剂,冷等离子体可有效抑制碳基多原子离子的干扰,结合TQ氨气和氧气反应模式,在一次测定中可稳定切换各种测定模式,提高易用性和分析效率,可满足半导体行业超痕量ppt级的痕量金属杂质检测要求。 一键获取赛默飞半导体材料检测文集 赛默飞为半导体材料开发了全面的痕量无机阴离子、阳离子和金属离子的检测方案,在晶圆表面清洗化学品、晶圆制程化学品、晶圆基材和靶材等各方面,全方位满足半导体生产对相关材料的质量要求,并开发了通过高分辨质谱Orbitrap技术对于材料未知物研发检测的需求,从完整制程出发提供全面可靠的分析技术,助力半导体材料国产化乘风破浪! 长按识别下方二维码即可下载《赛默飞半导体材料检测应用文集》,或点击阅读原文进入半导体解决方案专题页面获取更多解决方案!
  • 赛默飞发布地表水和饮用水中痕量生物胺的检测方案
    2015年3月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布的地表水和饮用水中痕量生物胺的检测方案。腐胺、尸胺、组胺、亚精胺和精胺是最常见的五种生物胺,摄入过量将会诱发恶心、心悸、呼吸紊乱等强烈过敏反应,甚至危害生命安全。我国水产品卫生标准GB2733-2005就曾明确限定了市售、非活水产品中组胺的含量。目前生物胺的准确定量测定方法主要有气质联用、液相色谱法和离子色谱法等。其中仅离子色谱法无需将生物胺经过繁琐的柱前衍生或预衍生处理,以离子交换分离为基础,简单而迅捷地实现了这五种生物胺的分离测定。毛细管离子色谱的诞生,标志着离子色谱进入了低消耗、低成本、高效率时代。其微升级的流量,极大地降低了淋洗液的消耗,配合淋洗液自动发生装置使用,有效地保证了各种突发事件发生时,离子色谱总能在第一时间内完成对应的应急样品测定。赛默飞地表水和饮用水中痕量生物胺的检测方案,采用通用高压离子色谱ICS-5000+为依托,选用高效阳离子交换分离柱IonPac CS19,以甲基磺酸淋洗液发生器在线产生甲基磺酸溶液,梯度淋洗,完成了地表水、自来水样品中痕量腐胺、尸胺等五种常见生物胺的分离分析。方法重复性较好,准确性较高,在所选定条件下,可准确完成地表水、自来水中痕量腐胺、尸胺、组胺、亚精胺和精胺的分离测定工作。通用高压离子色谱ICS-5000+产品详情:www.thermo.com.cn/Product6544.html 下载应用纪要请点击:www.thermo.com.cn/Resources/201501/211561786.pdf---------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 质谱和光谱是解决新精神活性物质现场微痕量检测的有效方法
    5月25日,普拉瑞思在北京参加并学习了毒pin毒物、新精神活性物质的现场查缉及实验室快速分析研讨会,这次活动展现了质谱现场检测的前瞻实力,清谱科技作为业内领xian的现场质谱解决方案提供商,为缉毒等工作带来了“检测利器”,我们也看到了业内zui顶jian团队的研发实力。与此同时,光谱方法也是质谱之外另一种现场检测的有效技术,普拉瑞思公司专注于表面增强拉曼光谱技术的研究及应用,开发了多种增强基底及配套前处理方案,广泛应用于食品安全、公共安全、药品安全等多个领域。我司的增强拉曼方法为新精神活性物质含量检测提供了上百种的解决方案和数据库,为目前国内领xian的解决方案提供商。公司拥有完善的研发团队和技术积累,已获得国jia级、省级多份检测、检验报告,覆盖硬件、软件、检测能力、试剂等多个方面。1. 检测能力介绍1.1 普通拉曼数据库接近8000种:现有毒pin、精神药品、麻醉品的常量数据库约360种,检测项目齐全,涵盖如芬太尼类、卡西酮类、大麻类、阿片类、苯丙胺类等;另外有易制毒化学品、易燃易爆品、危险化学品、一般化学品、毒气及毒剂、珠宝矿物、聚合物、食品包材及添加剂等不同种类约近8000种常量数据库。1.2 增强拉曼数据库约300种:食品类增强数据库约200种,包括非食用化学物质、滥用食品添加剂、兽药残留、农药残留、保健品非法添加、化妆品非法添加、环境污染物、植物激素、抗生素类药物残留等多个类别,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。 表1食品类增强拉曼数据库类别统计表毒pin类增强数据库约100种,包括传统毒pin类、新精神药品类、麻醉品类等,例如芬太尼类、卡西酮类、苯丙胺类、吗啡类、大麻素类、哌嗪类等。适用于常见的生物样品检材比如毛发、唾液、尿液等,环境样品如污水、废水等,食品检材如饮料、糖果、咖啡、面粉、调味料等样品中均可实现快速、灵敏检测,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。预计未来6个月内,微痕量毒pin数据库将在现有基础上新增检测项目100项以上,其中新增芬太尼结构类似物20种以上、卡西酮结构类似物15种以上、苯胺类结构类似物10种以上、合成大麻素等50种以上。表2 毒pin类增强拉曼数据库明细表2. 检测案例介绍案例1:食品检材、污水及生物检材中芬太尼的测定-表面增强拉曼光谱法污水、饮料等液体类样本:向10毫升离心管中加入1毫升样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。毛发,体毛等:按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。面粉、奶粉、咖啡粉等固体类:向10毫升离心管中加入1克样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中加入4增强试剂A,待测液,增强试剂B2,混匀,置于检测池中,开始检测。上述解决方案的标准品检出限为0.001ppm,实际样品中的最di检出限可达0.01ppm。 图1 样品中芬太尼的表面增强拉曼光谱图 图2 样品中不同种类芬太尼的表面增强拉曼光谱图 3. 总结普拉瑞思科学仪器(苏州)有限公司拥有强大的产品研发能力,在拉曼光谱仪快速检测行业领域具备完善、齐全的检测方案,在食品安全、公共安全、药品安全等领域均有深厚技术积累和对应的产品方案,不仅具有多种类别的常量拉曼数据库,另外还配备目前国内最全面的毒pin类增强拉曼数据库,对芬太尼类等新精神活性物质有齐全的检测和解决方案,可为各级食药、公安、海关、口岸等部门提供强大技术保障。
  • Optics Express | 方勇华研究员团队在痕量气体光声检测研究方面取得新进展
    近日,中科院合肥研究院安光所方勇华研究员团队在痕量气体光声检测研究方面取得新进展,相关研究成果发表在国际知名光学期刊Optics Express上,并被选为“Editor’s Pick” 文章。博士生李振钢为论文第一作者。光声光谱是一种间接吸收光谱技术,通过检测气体吸收光能产生的光声信号来反演气体浓度,具有灵敏度高、选择性好、零背景检测等优点,广泛应用于环境监测、医疗诊断、燃烧分析、电力检测等领域。然而,光声检测性能容易受到各类噪声的影响,如气体流动噪声和电子学噪声等非相干噪声,以及光声池壁吸收光能产生的相干噪声等。此前,在同时抑制相干与非相干噪声、增强光声信号方面业内鲜有报道。该团队基于光声检测原理,研制了一种新型的差分式亥姆霍兹光声池,其特殊结构使光束能够在镀金内壁上多次反射,以激发出更强的光声信号。同时,采用波长调制与二次谐波技术抑制了光声池壁因吸收光能产生的相干噪声。此外,由于该光声池的差分特性,使非相干噪声得到极大抑制。该光声池经过详细的仿真优化,在获得高检测性能参数的同时,进一步提高了待测气体的置换速度。在甲烷气体检测实验中,该光声传感器表现出了良好的线性度和灵敏度。当激发光源为较低功率(6 mW)的近红外(1653 nm)分布式反馈激光器时,在1 s的检测时间内实现了甲烷气体177 ppb的最低检测限,对应的归一化噪声等效吸收系数为4.1×10–10 cm–1 WHZ–1/2(此前报道的归一化噪声等效吸收系数通常为10–8至10–10量级)。文章链接:https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-16-28984&id=481186新型差分式亥姆霍兹光声池的(a)声压仿真和(b)多次反射示意图待测气体置换速率仿真;(a)连接管位置优化前(b)连接管位置优化后(a)光声检测装置原理图和(b)光声池机械结构图
  • 多家仪器厂商赞助“2018年度危爆品痕量检测技术学术研讨会”
    p 由中国仪器仪表学会主办,中国科学院新疆理化技术研究所及爆炸物安全科学自治区重点实验室承办,新疆自治区科协、新疆物理学会及中科院青年创新促进会新疆理化所小组协办,上海新漫传感技术研究发展有限公司、赛默飞世尔科技(中国)有限公司及华信中安(北京)智能科技发展有限公司赞助的“2018年度危爆品痕量检测技术学术研讨会”于7月20日-21日在新疆理化所成功召开!来自全国各地的110余名危爆品痕量检测领域的专家学者齐聚一堂,共同探讨痕量检测领域出现的新方法、新技术、新应用等科技成果。/pp 新疆公安厅刑事侦查总队、特警总队、科信总队相关领导、自治区科技厅社基处郑玉果处长、韩咏菊副处长、中国仪器仪表学会张莉副秘书长、新疆科协叶健副部长、北京理工大学刘吉平教授、陕西师范大学房喻教授、公安部物证鉴定中心田保中教授、新疆理化所蒋同海所长、崔旺诚书记等领导参加了本次会议。/pp 开幕式由崔旺诚书记主持。蒋同海所长代表承办方致欢迎辞,郑玉果处长代表爆炸物安全科学自治区重点实验室的主管部门讲话,新疆公安厅刑侦总队领导代表应用单位讲话。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/7cb29649-fdbf-4f31-9b11-1d81bf336268.jpg" style="float:none " title="大会报告现场"//pp style="text-align: center "大会报告现场/pp 开幕式后,由来自全国各地科研院所的专家学者带来了43个精彩的学术报告(包括7个大会报告和36个分论坛报告)。专家们带来了各自在荧光传感技术、离子迁移谱技术、气敏传感技术、比色传感技术、表面增强拉曼技术、太赫兹光谱技术等多种爆炸物、毒品痕量检测技术领域的最近研究进展。报告既有纳米发电机、DNA水凝胶、微纳柔性传感器件、感知方法等前沿技术研究,又有火工品科普、一线实际需求等公安实战应用介绍 报告内容从石墨烯到MOFs,从比色检测到荧光检测,从爆炸物检测到毒品检测,从气体传感器到光学传感器,覆盖面广泛。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/ef7ae79a-1a15-489f-bae5-5c52865cb083.jpg" title="与会领导和专家学者合影" style="float: none "//pp style="text-align: center "与会领导和专家学者合影 /pp 本次研讨会的成功召开,不仅激发了危爆品痕量检测领域的科技工作者创新研究的热情,而且拓展了学术交流平台的广度和深度,促成学者和公安专家面对面,使得学术研究和应用需求紧密对接。会议得到与会专家学者的一致好评,并期望将会议持续举办下去,为学者们提供相互交流、加强合作的优质平台。/ppbr//p
  • 质谱助力亲水性藻毒素痕量检测研究取得新进展
    近年来,自然资源部第一海洋研究所科研人员利用所公共分析测试平台的大型仪器,通过系统的方法学研究,攻克了天然淡水资源及海水中多种痕量高亲水性藻毒素精准检测的技术瓶颈。近日,研究结果先后在环境科学与生态学期刊《总体环境科学》和《化学层》上发表。近几十年来,全球地表水及近海水生环境有害藻华发生频率和危害明显增加,尤其是蓝藻和甲藻释放的藻毒素一定程度上影响了饮用水安全和渔业资源的健康发展。加强对天然水体中高亲水性藻毒素的监/检测技术,有利于对高亲水性藻毒素潜在的生态风险进行客观评估,并将大大促进我国对饮用水、农业用水及海洋养殖环境等天然水体中藻毒素的全面监测和污染防控。针对这些情况,第一海洋研究所科研人员创新地将石墨化碳黑离线固相萃取技术与亲水相互作用在线固相萃取技术相结合,对天然水体样品中的多种亲水性藻毒素进行两步高效富集,采用超高效液相色谱-三重四极杆串联质谱技术进行精确定量,二维液相色谱-四级杆飞行时间质谱辅助定性鉴别,成功建立了适用于天然水体中15种主要亲水性蓝藻毒素同步精准测定的新方法。据介绍,该方法仅需80mL天然水样品即可实现鱼腥藻毒素-a、柱孢藻毒素、石房蛤毒素、新石房蛤毒素、N-磺酰氨甲酰基类毒素、脱氨甲酰基类毒素以及各种膝沟藻毒素等的鉴别和准确定量。与国外报道的方法相比,该方法大幅提升了可检测亲水性藻毒素的种类,并且方法的灵敏度显著提高。该研究系首次基于两步固相萃取富集技术和液质联用分析技术,实现了天然水体中各类高亲水性蓝藻毒素高灵敏度检测,可为我国淡水资源及近海水生环境亲水性藻毒素污染监测、预警提供技术支撑。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 滨海正红发布满足ICP、痕量、超痕量分析用酸高纯酸提纯器新品
    酸提纯器一、 产品简介:酸提纯器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,实验室工作中常常由于酸的纯度较差,造成分析结果的偏差与错误。市售的纯酸往往由于价格较贵,难满足日常分析中对酸的大量需求。因此,提纯优化酸的质量,是为经济可行的途径,我厂的酸纯化器可用于实验室如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。二、工作原理:高纯酸提纯器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,多应用于样品处理及分析实验中。三、我厂高纯酸蒸馏纯化器优势:1、密闭环境下提纯酸,不受环境污染,确保酸纯度;2、节约成本、方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求;3、可以满足ICP、ICP-MS低的检测限需要及苛刻的分析应用中提供实验室超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸;4、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数;5、可拆卸清洗,避免腔体里面长期提纯,造成金属杂质含量沉积越来越多,影响提纯的质量;四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称高纯酸提纯器高纯酸提纯器高纯酸提纯器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯FEP、PTFE材质制造,值低无腐蚀3.结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,少量酸气逸出五、使用注意事项:1、所有配件(控制器、电源线、加热片等除外)放入按实验要求一定浓度的酸液中浸泡,去除杂质。2、加酸前必须做好个人防护如:防溅眼镜、防酸手套等(蒸水除外)。实验数据(仅供参考):仪器:CH-I 高纯酸提纯器;试剂:优纯HF蒸馏后,经中国地质大学地质过程与矿产资源重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)Be0.01Ba0.01Mg0.02La0.01Sc0.01Ce0.01V0.01Pr0.01Cr0.03Nd0.01Mn0.01Eu0.01Co0.01Gd0.01Ni0.01Tb0.01Zn0.02Er0.01Ga0.01Tm0.01Rb0.01Yb0.01Sr0.02Lu0.01Zr0.01Hf0.01Cd0.01Pb0.01Sn0.01Th0.01Cs0.01U0.01南京滨正红仪器有限公司 创新点:加大了提取酸的容量,使用中可拆卸清洗,方便操作,无需人员值守,提取的酸的纯度可达到0.01PP满足ICP、痕量、超痕量分析用酸高纯酸提纯器
  • 毒品现场确证 | EXPEC 3600 移动式GC-MS快速检测毛发中痕量毒品
    概述甲基苯丙胺(Methamphetamine, MA)俗称冰毒,是一种具有精神活性的苯丙胺类兴奋剂,是联合国精神药品公约管制的精神活性物质。滥用冰毒不仅会对吸食者个人的身体和心理造成严重的危害,也会滋生出各种违法犯罪活动。与传统的血液、尿液检测相比,毛发检测具有时效长、检测毒品信息全面、样本易于提取保存等独特优势。实现现场快速筛查毛发中的毒品,对于执法人员精准打击毒品犯罪具有重大意义。如何能快速检测毛发中的毒品呢?目前最常见的毛发现场快速筛查技术主要有表面增强拉曼光谱法(SERS)、便携式质谱法(MS)、量子点荧光法和GC-MS法。相较于其他方法,GC-MS技术能在现场进行快速准确定性定量分析,是行业的毒品检测“金标准”,可进一步辅助实验室精准检测,为执法人员快速确定嫌疑人是否吸毒,及时有效地打击毒品犯罪提供有效依据。谱育科技研发的EXPEC 3600 移动式GC-MS具有移动性好、分析速度快、定性能力强、人机界面简单等优点,与EXPEC 230固相微萃取综合前处理仪相结合,能够实现对毛发中甲基苯丙胺的快速定性定量分析,实现痕量毒品的现场确证。方法应用,现场确证 SPME前处理 毛发前处理过程 标准曲线配制浓度为0.2ng/mg、0.5ng/mg、1.0ng/mg的甲基苯丙胺/氢氧化钠水溶液,并参照SPME前处理实验条件对样品进行前处理后,按照分析条件进行测定,最后采用最小二乘法绘制标准曲线,甲基苯丙胺在线性范围内所得校准曲线相关系数R2大于0.998,线性良好。检出限配制浓度为0.2ng/mg的甲基苯丙胺/氢氧化钠水溶液,按照优化的条件参数进行处理后平行测定7组,计算标准偏差,MDL=3.143*s,从而获得本方法的检出限为0.0474 ng/mg。 毛发中甲基苯丙胺的含量测定按照上述前处理条件对毛发进行处理,具体如下:取疑似阳性毛发50 mg置入萃取瓶中,加入5 mol/L的氢氧化钠溶液5 mL,密封,于60°C加热10 min至毛发完全消解。按照EXPEC 3600参数对毛发样品进行测试,总离子流图如下,带入甲基苯丙胺的标准曲线可以得到毛发中甲基苯丙胺的含量为0.423 ng/mg,大于公安部《涉毒人员毛发样本检测规范》(公禁毒[2018]938号)规定的毛发样品中甲基苯丙胺检测的0.2 ng/mg含量阈值。小结EXPEC 3600移动式GC-MS结合EXPEC 230固相微萃取综合前处理仪能够实现对毛发中甲基苯丙胺的快速定性定量分析,可积极发挥仪器体积小、易携带等优势,更适用于在毒品检测中的现场确证。 移动式GC-MS检测时间分布图 【温馨提示】远离毒品,珍爱生命!!!
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 中科院兽药痕量残留检测系列技术实现产业化
    由中科院生物物理所研究员唐宏牵头研制的兽药痕量残留快速检测系列技术不久前落户江苏泰州,进入产业化阶段并投放市场。  据介绍,该系列技术最短10分钟内可检测出动物源性食品中的抗生素、违禁化学药品等。通过与江苏省合作,依托该技术的8大类80多种食品安全快速检测产品已经面市。此举成为中科院在构筑食品安全技术保障体系中迈出的坚实步伐。  “由于兽药残留检测的科目繁多,标准也不一样,加之违禁添加药品无奇不有,检测技术也必须覆盖广。这要求研发人员能‘魔高一尺,道高一丈’,在国家监管部门预警信号启动之际,就能迅速拿出相应产品。”唐宏说。  据了解,在中科院院地合作局的领导下,中科院生物物理所泰州成果转化中心早在2年前就与泰州国家生物医药高新技术园区共建了泰州蛋白质工程研究院。该研究院在过去两年中,已获得了十几种有自主知识产权的单克隆抗体,并与江苏省质监局一起确定了产品标准近30项。  泰州蛋白质工程研究院目前已建设胶体金试纸和酶联免疫试剂盒生产基地,年产能分别达到100万条和1万盒,年产值逾5000万元。  唐宏认为,中科院若能整合物理、化学、材料、生物、遥感、环境、自动化与智能化、声光电等领域中与食品安全相关的理论与技术优势,在国家食品安全检测方面,一定能创制出更多便携、精密的智能仪器和检测试剂等,并制定食品安全风险评估标准,从而推动我国食品安全事业向前发展。  另据悉,北京市政府近日得知中科院拥有此类技术后,已表示将与中科院携手构筑北京食品安全屏障。
  • 前沿应用丨在线 SPE-LC-ICP-MS检测环境样品中超痕量二价汞和烷基汞
    汞(Hg)是一种剧毒持久性污染物,广泛存在于环境介质和生物体中,包括植物、动物甚至人体中,汞的形态决定其毒性和迁移转化能力。但环境介质中汞的浓度较低,多为ppt量级。因此需要发展可对环境中超痕量汞的定性定量检测方法。 高效液相色谱(HPLC)-电感耦合等离子体质谱(ICP-MS)可以用来对多形态汞进行检测,且其与离线的预富集联用的方法可用于对环境样品中的低浓度的汞进行检测,预富集的方法包括液液微萃取,固相萃取(SPE)。然而,离线固相萃取富集-HPLC-ICP-MS的检测方法会浪费部分富集的汞,阻碍灵敏度的进一步提高。因此本文采用在线固相萃取富集-HPLC-ICP-MS的装置和方法,实现了环境样品中超痕量二价汞和烷基汞的富集分离检测。 岛津在线SPE-LC-ICP-MS系统 应用实例首先使用富集活化试剂活化富集萃取小柱,再将超痕量的二价汞和烷基汞的溶液1 ng L-1注入至富集萃取小柱上进行富集,最后使用洗脱试剂对富集在柱上的汞溶液进行洗脱并注入至液相分离柱中进行色谱分离后进入ICP-MS中进行定量检测,流程示意图如上图所示。另外,对本方法用于超痕量二价汞和烷基汞的富集检测进行方法学评估,结果如下表所示。 注:a:样品量为5mL。RSD是基于多次测量0.5 ng L-1的二价汞和烷基汞得到的相对标准偏差。 在本方法中,CH3Hg(II)、Hg(II)和C2H5Hg(II)在超痕量(0.2-10 ng/L)和低浓度(10-1000 ng/L)的条件下均获得了良好的线性。此外,该方法也具有很好的重现性,CH3Hg(II)多次测量的相对标准偏差(RSD)为4.0%,Hg(II)为7.9%,C2H5Hg(II)为2.5%(n = 7)。位于pg/L水平的低检测限(LOD)和定量限(LOQ)使得本方法适用于天然水中超痕量的二价汞和烷基汞的检测。 进一步对海水、河水和湖水中的二价汞和烷基汞进行了分析,以验证在线固相萃取富集检测方法的可行性和准确性,见下图。结果表明Hg(II)是这些天然水中主要形态的汞,其浓度为0.46至1.30 ng/L。在湖水中,也检测到超痕量的CH3Hg(II),为0.07 ng/L。 另外,我们在水样中添加1 ng/L的CH3Hg(II)、Hg(II)和C2H5Hg(II),以评估该方法的回收率,见下图。在这些环境水体中,Hg(II)、CH3Hg(II)和C2H5Hg(II)的回收率分别为82-106%、100-101%和82-88%。这一结果表明,本方法可用于分析自然水体中的超痕量二价汞和烷基汞,准确度高。 结论 岛津在线SPE-LC-ICP-MS系统适用于天然水中超痕量的二价汞和烷基汞的检测,其方法的稳定性、准确性及回收率均满足方法学要求,可用于环境研究及环境常规监督检测。 本文内容非商业广告,仅供专业人士参考。
  • 【赛纳斯】手持式痕量爆炸物探测器,快速识别可疑物
    所谓爆炸物泛指能够引起爆炸现象的物质,例如雷管、炸药、黑火药等,粉尘、可燃气体、燃油、锯末等在特定条件下引起爆炸的物质,广义上也属于爆炸物。如电视剧《开端》里高压锅内的爆炸物,如果能提早发现,也能杜绝犯罪,保障人民群众生命财产安全。现如今特殊环境下所拥有的检测仪效果多样,通常使用环境复杂,针对检测爆炸物这一点,具体环境的差异存在而导致各自不同的使用功能。手持式痕量爆炸物探测仪 SHINS-P200SHINS-P200是赛纳斯联合嘉庚创新实验室公共安全联合研究中心,研发的最 新一款手持式痕量爆炸物探测仪,采用蓝牙无线连接技术,通过非接触式抽气采样,5秒快速识别爆炸物,可连续实时监测,当仪器周围环境炸药浓度或采样质量达到探测限时,仪器能快速发出报警指示。“电子鼻”即是仿照生物的嗅觉系统而研制出的检测气体的传感器或集成系统。赛纳斯SHINS-P200产品基于功能仿生狗鼻的启发:狗鼻内部粘膜有约3亿个气味受体细胞,气体分子与这些受体细胞接触,引起级联放大的生化反应,进而识别气体成分。基于功能仿生材料设计,具有“一点接触、多点响应”的链效应特点的荧光淬灭爆炸物检测技术被普遍认为是灵敏度最高、选择性最好的可实用化、可微型化的技术,有利于“电子鼻”传感薄膜的制备。赛纳斯SHINS-P200型产品基于自主技术产权,打破了目前国外企业垄断荧光淬灭安检产品的现状,达到国际领先水平。颠覆了现有检测方法局限,创新性的发展了微型化、智能化、非接触式爆炸物检测的超灵敏“仿生电子狗鼻”,对未来战争、航线保障、反恐防爆、国防安全具有重要意义。应用领域 1、反恐排爆侦查 2、应急响应部门探测危化品 3、公共治安巡防安检 4、海关查验可疑物品 5、公共交通、货物运输安检 6、高级别防护目标、重大活动安检 产品特点与优势1、手持式、重量500克,方便携带 2、一键式操作、简单方便、易学易用、使用性强 3、耗材元件更换简单,无需复杂拆机操作 4、警用安全防护设计 5、仪器报警后,按复位键即可重新检测,无需校准或等待步骤 6、环境适应性强 7、开机时间小于3秒 8、可检测40 余种爆炸物,包括: 民用炸药(硝酸铵、黑火药、鞭炮药、点火药、TATP 等) 军用炸药(TNT、DNT、特屈儿、苦基胺、黑索金、太安等 液体炸药(硝基甲烷等) 应用案例 1、城市及边境检查站可疑物安检排查 2、重要场所日常安检爆炸物排查
  • 美国TraceDetect痕量金属分析仪登陆德祥
    美国TraceDetect(微检)公司以化学传感器的微处理技术而著称,目前是世界上最专业的重金属分析仪表制造商。 公司具有Nano-Band电极*技术并研制出系列重金属分析仪,可对水样中的金属含量快速测定,灵敏度为全球最高,可达ppt级。 三大产品线 便携式: Nano-Band Explorer II-------------------专门用于分析现场水样中的痕量金属浓度◆ *的Tri-TrodeTM电极技术,集Nano- Band的工作电极、参比电极和辅助电极于一身◆ 测试金属种类:铅、铜、镉、锌、砷、汞◆ 测试过程简单快速◆ 与ICP-MS具有极好的相关性(+/-10%)◆ 支持多种测量及技术(溶出伏安法、循环伏安法、安培测量法、氧化还原电位、离子电极等)◆ 自动生成报告 全自动:SafeGuard------------全自动痕量分析技术,操作简单且功能强大当把样品放入仪器后,只需轻轻一按&ldquo 开始测量&rdquo 按钮,就可在30分钟内给出1ppb精度的数据◆ 全自动化操作,自动传输,确保操作者的安全◆ 采用Nano- Band*技术◆ 测量种类:砷、铅、镉、汞、铜、锌◆ 与ICP/MS有极好的相关性◆ 内置数据存储器可自动生成报告并将结果存档现推出最新的SafeGuard II& III:可应用于更多金属的监测---------铜、铅、镉、锌、镍、钴、铬、钒、锑、铁 在线式:Arsenic Guard--------------在线总砷分析仪,对砷监测提供了完整的过程控制*台完全自动化,监测饮用水中砷含量在线分析仪。◆ 全自动在线操作◆ 消除操作误差,精度达1ppb◆ 与ICP-MS具有极好的相关性(+/-10%)◆ 最多可支持四个样品流◆ 全自动数据采集和自动化信息数据管理系统界面◆ 低操作成本,易于维护和保养还根据客户的不同需求推出Metal Guard----------------在线金属分析仪可分别用于铜、铅、镉、锌、镍、钴、铬、硒、钒、锑、铁的在线监测 应用:饮用水------------- TraceDetect提供适用于各种市场和应用的产品类型废水---------------- 通过自动化与在线监测控制砷处理费用和步骤的完整性食品饮料---------- 可视配料、工艺路线和产品的污染物检测工业---------------- 在你的控制下进行现场产品污染物和过程残留污染物的识别学术研究------------即时、准确、低成本进行实验室或现场金属测量半导体---------------金属污染物的在线检测,防止灾难性的产量损失,降低废物处理成本矿产业---------------在确保员工和社会健康与安全的同时,降低运营成本 更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822邮箱:info@tegent.com.cn
  • 《样品前处理技术及痕量金属定量分析方法交流会》
    上海光谱联合广东省分析测试协会、中国广州分析测试中心 共同举办《样品前处理技术及痕量金属定量分析方法交流会》 由中国广东分析测试协会、中国广州分析测试中心,上海光谱仪器有限公司联合举办的样品前处理技术及痕量金属定量分析方法交流会于2008年11月28日在中国科学院广州分院学术报告厅顺利举行,中国广州分析测试中心李忠军处长受广东省分析测试协会、中国广州分析测试中心的委托,主持了本次交流会。 来自广东省100多个科研院所、质检、商检、卫生、农业、高校、企事业的230多位专家、学者、工程师和用户代表也参加了本次交流会。由上海光谱仪器有限公司多位产品经理和技术支持组成的团队为本次交流会提供了全面的服务和支持。 (来自各个领域的分析测试工作者踊跃参加此次交流会) 在现代分析测试技术中,样品前处理已经成为制约分析速度、分析质量和分析成本的重要因素。在多种萃取新技术中,快速溶剂萃取技术具有有机溶剂用量少、萃取速度快、回收率高等突出优点。但是,由于进口产品价格较高,制约了这一技术的推广与普及。 上海光谱仪器有限公司此次推出的SP-100QSE型快速溶剂萃取仪,是国家十五重大科技攻关项目,产品性价比远远优于进口产品。同时,广州分析测试中心和上海光谱应用研发中心的应用技术人员针对国内市场需求,开发了许多应用方法,为产品的推广与普及做了大量的基础工作。(广州分析测试中心和上海光谱仪器有限公司的工程师介绍前处理技术) 交流会上,以“样品前处理技术及痕量金属定量分析方法”为主题,做了多场专题讲座。中国广州分析测试中心工程师杨运云先生、上海光谱仪器有限公司应用工程师安强先生、中国广州分析测试中心工程师王畅女士及上海光谱仪器有限公司应用工程师王伟女士,分别做了主题为《固体样品前处理技术简介及加速溶剂萃取的原理和应用》、《SP-QSE系列快速溶剂萃取仪高温高压全自动样品前处理系统》、《原子吸收光谱法分析原理和分析技巧》及《原子吸收分光光度计结构、功能、使用、维护简介》的专题报告。专题报告对上海光谱仪器有限公司的“SP-QSE100快速溶剂萃取仪”的原理、应用方法、与国际上同类产品的比较等方面进行了学术上的分析,列举了大量的应用实验数据报告,提出了广泛的使用前景,引起了与会专家、学者、应用工程师和经销商的兴趣,上海光谱仪器有限公司的产品经理还一一解答了与会者的提问,许多参会者纷纷表达了求购、合作经营的愿望。 (上海光谱仪器有限公司研发生产的“SP-QSE100快速溶剂萃取仪”是目前国内唯一投产的商品化“快速溶剂萃取”设备,与国际同类产品相比,具有安全可靠、操作简便、物美价优等特点) 上海光谱仪器有限公司还在本次会议上,展示了获得2008BCEIA金奖的“SP-3800系列原子吸收分光光度计”,详尽的向参会者介绍了该产品的创新思想、技术特征、应用特点,许多代表踊跃索要产品样本和应用手册,表达了对国产分析仪器的尊重和支持。(上海光谱仪器有限公司技术支持人员在解答与会者的提问。) 此次交流会获得了广大分析工作着的积极响应,与会人数超过250人,无论是交流会规模,用户的反响的热烈程度、都是类似交流会少见的。此次交流会的成功举办,使上海光谱仪器有限公司更加坚定了“通过产、学、研、用合作,发展国产分析仪器”的信心,公司还将在近期通过与北京、上海、四川等地专业机构的合作,分别举办类似的技术交流会,使更多的用户了解发展中的国产优质分析仪器,支持中国分析仪器产业。 在提倡高效、节能、安全、环保的今天,上海光谱仪器有限公司积极响应市场需求、努力提升自身价值,踊跃参与国产仪器开发,本着“诚实诚信、用户第一”的原则,提供最优质的产品、最优秀的服务,为国产仪器事业做出自己的贡献。(撰稿:上海光谱市场部朱颖奇)
  • 北京博赛德科技有限公司汽车用燃料氢气痕量杂质分析解决方案上市了!
    北京博赛德依据《质子交换膜燃料电池汽车用燃料氢气》(GB/T37244-2018)的要求及氢气中杂质实际分析中的难点和常见问题,推出了《汽车用燃料氢气痕量杂质分析解决方案》,该解决方案主要内容包括:BCT9700D动态稀释仪、BCT9900H氢能源杂质分析仪及后续分离检测系统。方案可实现单针进样分析汽车用燃料氢气中的硫化物、甲醛、甲酸等各目标组分检出限均低于其标准限值1个数量级以上。检出限低、性能稳定、准确度高精密度均小于10%,准确度均在90%-110%之间,优秀的检出限、精密度、准确度水平可以准确反映氢气中杂质的含量,有利于评估杂质对燃料电池的影响。BCT9900H氢能源电池杂质预浓缩仪北京博赛德基于近二十年VOCs检测分析经验,和中国石化石油化工科学研究院强强合作,共同开发了BCT9900H氢能源电池杂质分析仪。整套系统结合了EPATO15和HJ759标准方法对浓缩系统硬件及质控要求,同时针对氢气中杂质组分的特点和氢燃料电池行业的特有要求,在常规预浓缩仪的基础上进行了硬件升级改造,让捕集系统更加适合杂质的痕量分析,并结合开发优化后的专用氢杂质分析方法,可实现12种杂质组分的样品检测分析。产品特点专用捕集阱专用的捕集阱设计,克服了填料阱易残留、解析速度慢、载气流速大(需要分流进样)、被测物质易分解(如甲酸)等问题体积计量准确通过EVC电子体积控制,进样精度≤1ml,且可实现不同基质的样品体积测量,如氢气基质等,体积计量准确,精密度高系统无吸附样品流路全部经过惰性化处理,并经过严格的惰性测试,可避免吸附目标物质,保证高回收率避免交叉污染数控阀设计可实现将阀芯旋转到任意位置,能完全隔离捕集阱和样品,更好的避免了交叉污染适用性强测试浓度范围可达0.01ppb-ppm级别,适用于氢气成品中痕量杂质分析、氢气半成品中杂质分析应用范围:分析汽车用燃料氢气中的硫化物、甲醛、甲酸等组分检出限低:检出限低于国家标准中最大允许浓度限值的1个数量级以上BCT9700D动态稀释仪BCT9700D动态稀释仪基于理想气体状态方程的原理,采用限流器结合电子压力控制器(EPC)的方式,对气体流量进行控制和调节,实现对样品/标气的稀释。BCT9700D动态稀释仪BCT9700D可实现标气/样品稀释后直接进样分析,为气体质量检测、现场样品检测、仪器标定与质控等工作的准确性提供保障。产品特点采用动态稀释的原理,稀释后的样品/标气可直接进行分析,无需存储容器,降低目标组分的反应机会;采用限流器结合EPC进行流量控制,不使用质量流量计,避免交叉污染,稀释精度高,结果更准确;稀释倍数范围大,单次最大稀释倍数可达2000倍,可显著增加被测样品的浓度范围;整个稀释系统无需庞大的混合腔体,且气体经过的所有管线均经过惰性涂覆,避免目标组分在稀释过程中产生吸附和交叉污染;仪器内置加热单元和温度控制器,系统温度稳定,仪器稳定性更高。应用案例更多详情,欢迎来电垂询!
  • 赛默飞推出色谱及痕量元素分析药物分析解决方案
    2014年6月26日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出色谱及痕量元素分析药物分析解决方案。全球范围内的制药行业正面临着严峻的挑战:许多常用的药品专利到期,而开发一种新的药物代价高昂、耗时长,且往往需测试超过10,000种化合物才有一种得到最终的上市批准;全球各地政府都在控制医疗成本;国际机构正在对风靡全球的生物制药寻求统一的监管控制等。在这些挑战之下,全球医药市场萎靡。 赛默飞了解制药行业各个环节的需求并可提供帮助。无论是新药的发现及开发,还是后期的制造、分析及控制,每个环节都可提供优质的技术和服务,提高您的工作效率并降低成本。我们拥有的分离和检测技术可为制药行业中遇到的各种复杂的分析难题提供全方位的解决方案。 赛默飞色谱以及痕量元素分析产品,将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为药物分析创造出全新的可能性,帮助客户解决在分析领域所遇到的复杂问题与挑战,促进制药行业发展,提高实验室生产力。色谱及痕量元素分析药物分析解决方案 制药行业全面解决方案 此次赛默飞推出的药物分析解决方案以产品为单位共分为五个章节:离子色谱、液相色谱、元素分析、气相/气质、加速溶剂萃取。每一章节均介绍了该类仪器的原理,赛默飞产品的特点和典型的应用案例。全文共呈现了约90个典型应用,涵盖了化药、中药、抗生素、生化药物、生物制品、药用辅料等几乎所有的药物种类;分析类型包括了有效成分、有关物质、降解产物、溶剂残留、有毒有害元素以及方法比较等方面,系统地展现了赛默飞在药物分析领域全面且无可挑剔的解决方案,是我们为制药行业提供的又一利器。下载色谱及痕量元素分析药物分析解决方案请点击:http://www.instrument.com.cn/netshow/SH100650/down_323500.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 新疆理化所在痕量肼超快响应荧光传感方面取得重要进展
    肼是农医药、化学化工及航天军事领域的重要原料,其易挥发、高毒等特性可严重损伤人体肺部、肾脏及中枢神经系统。鉴于肼对环境生态与生命健康领域的巨大威胁,其快速、高灵敏、准确检测对保障生产和生命安全、提升环境和社会预警能力具有重要意义。而提高肼检测响应速度是实现其快速预警的关键,也是该领域的难点。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危化品光学探针设计、识别检测原理方面取得了一系列研究成果(Angew. Chem. Int. Ed. 2022, e202203358、Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 7, 2002991)。团队近期针对危化品肼的快速定性检测难题,提出了一种探针识别位点与肼分子间非共价相互作用的精确调控策略,成功实现了肼的超快荧光点亮检测。研究人员从反应型荧光探针与目标物分子相互趋近角度出发,以探针识别位点与肼分子间非共价相互作用为着眼点,通过带有不同吸电子基团的R-苯甲酸与荧光素分子间的酯化反应,构建了系列以酯键为识别位点的荧光探针分子F-R(R=-CN、-NO2、-F)。系统的密度泛函理论计算与分子动力学模拟表明,利用R基团的不同吸电子性质控制酯键识别位点表面电荷性能,从而精确调控了识别位点和肼分子间的非共价作用力强度。该调控策略有效增强了两者在反应前相互趋近过程的结合效率,进而显著提升了检测体系的响应速度。相比较于已报道的荧光点亮型探针分子(响应时间范围:600-3600 s),本研究中调控优化后的F-CN探针分子实现了对肼2-3 s内的超快荧光点亮检测。该研究成果有望为基于识别位点与目标物亲和力调控提升反应型荧光探针体系响应速度提供理论和实验指导,为环境检测领域的快响应探针定向设计提供崭新思路和理论依据。相关研究成果发表于Cell Press出版社旗下期刊Cell Reports Physical Science上,中科院新疆理化所为唯一完成单位,博士研究生李继广、马志伟和雷达博士为共同第一作者,窦新存研究员为通讯作者。该工作得到了国家自然科学基金面上项目、中科院西部之光人才项目、中科院青促会人才项目、中科院从0到1原始创新项目、新疆维吾尔自治区杰出青年基金等项目的资助。文章链接:https://doi.org/10.1016/j.xcrp.2022.100878F-R系列荧光探针识别位点调控策略
  • 艾威仪器举办样品前处理技术及痕量金属定量分析方法交流会
    2008年11月28日,为促进广大分析工作者对快速溶剂萃取及石墨消解等前处理技术的交流,广东省分析测试协会与中国广州分析测试中心、艾威仪器科技有限公司等共同举办了“样品前处理技术及痕量金属定量分析方法交流会”。 在交流会上,艾威仪器科技有限公司的雷华卫经理向大家重点讲解了“石墨消解样品前处理技术的原理和应用”。 来自广东省的250多位科研院所、质检、商检、卫生、农业、高校、企事业的专家、学者、工程师和用户代表参加了本次交流会,他们均表示对交流会的效果感到满意。为答谢众多用户的支持,艾威仪器科技有限公司会持续地开展此类技术交流会活动,感兴趣的客户请关注我们的网站。 艾威仪器科技有限公司 市场部 网址:www.evertechcn.com 电话:020-87688215 传真:020-87688280 邮箱:info@evertechcn.com
  • 中国计量院“超痕量物质精密测量关键技术及应用”荣获国家科技进步二等奖
    p  分析化学中的“超痕量”是指物质含量在10-9g/g及以下的极微小量。单细胞成分量、早期肿瘤诊断标志物含量、高纯标准物质中杂质含量等往往都在超痕量级。检出并准确量化这些超痕量物质往往有着“见微知著”的效果。例如,单细胞成分量间的超痕量差异很可能是区别细胞功能、判断细胞是否病变的依据 血液中超痕量的诊断标志物则可能是肿瘤和心脑血管疾病等早期诊断的最有效途径。然而,“超痕量”已接近主流分析测试方法的检出极限,更难以在样品量极少、基质复杂的情况下保障超痕量成分测量的可靠和稳定。/pp  为此,中国计量科学研究院(简称“中国计量院”)针对超痕量物质精密测量的系统解决方案、核心技术和关键部件,与复旦大学等单位联合展开技术攻关。经近六年的努力,项目组成功开辟了超痕量物质精密测量的新途径,破解了关键测量环节的世界技术难题,将目标分析物的检出限下拓至主流方法的千分之一。项目组自主研发的核心器件和测量系统,成功将我国相关仪器的自主研制能力提升至国际领先水平,为我国物质科学、生命科学重大研究的突破提供了有力支撑。日前,中国计量院领衔的“超痕量物质精密测量关键技术及应用”项目获得了2017年度国家科技进步二等奖。/pp style="text-align: center "img width="500" height="676" title="001.jpg" style="width: 500px height: 676px " src="http://img1.17img.cn/17img/images/201801/noimg/ced4e547-3372-4c84-854b-a44fa0f88ab6.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong图1 项目负责人方向研究员在国家科学技术奖励大会现场/strong/span/pp  据项目负责人、中国计量院院长方向研究员介绍,对全技术链条的系统创新和对关键环节的重点攻关是项目取得突破的两大核心。项目组首先从主流色谱-质谱技术路线各个环节出发,分析了制约测量精度的根本原因,提出了以气相离子为研究对象、基于离子精确测量技术的全新测量系统模型。与此同时,项目建立了基于超算的多物理场离子运动模拟仿真系统,促进了全研发过程多种新技术、新方法的快速验证、优化和实现。在此基础上,项目聚焦系统关键环节,成功构建了可精确调控的多物理场,发明了新场型调控离子操控新技术,研制出系列关键部件和三类基于不同原理的科学装置,实现了离子选择性高效传输、富集和精准分离,最高离子富集效率可达10000倍。/pp  项目还针对弱极性、易降解化合物,研制出高效的辉光放电离子化装置,实现了纯物质中全杂质的精确扣除,大幅提升了我国基准纯物质的自主研制水平,2种生命科学领域标准物质定值方法被国际发布为参考方法,彰显了我国化学计量的国际地位和水平。项目针对单细胞分析中样品量极少、基质复杂等难题,开发出基于电场诱导解析电离离子化的独特科学装置,成功实现了pL(10-12L)级单细胞中基质和待测分子的分离,检测限达fmol(10-15mol)以下,可同时观测到单细胞中上千种代谢物含量的极微小变化,为我国生命科学前沿和尖端研究提供了可靠支撑。/pp style="text-align: center "img title="002.jpg" src="http://img1.17img.cn/17img/images/201801/noimg/eff03197-7557-449c-9ee8-e58c8df88845.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "图2 三类科学装置国际首创、核心技术国际领先/span/strong/pp  除支撑计量科学、生命科学等前沿尖端研究外,项目组与相关科研单位和企业合作,聚焦质谱仪器新产品自主研发、技术升级和产业化,依靠创新引领我国基础前沿研究自主装备能力和原始创新水平,形成的关键技术和部件应用于多个企业和多种质谱仪的研制,在一些重要领域打破国外垄断,增强了国产质谱仪器的国际竞争力。/p
  • “起底”有毒有害痕量元素大气排放
    不管是资源利用还是污染控制,摸清家底都是基础且必须的工作。近日,北京师范大学教授田贺忠团队基于多源数据融合,评估了“大气十条”(《大气污染防治行动计划》)实施期间,不同排放控制措施对各部门有毒有害痕量元素大气排放变化的驱动。并利用大气传输模型及暴露风险评价模型,量化分析了典型行业(燃煤、冶金等)排放变化对有毒有害痕量元素大气暴露浓度及健康风险的影响。5月1日,相关论文在《一个地球》在线发表。痕量元素大气传输及暴露风险示意。受访者供图痕量元素关乎健康国际癌症研究机构(IARC)曾将砷、镍、镉、六价铬、铅、钴、锑及其化合物认定为致癌物质。这些重金属元素在大气中含量极少,但具有毒性、累积性和致癌性的特点,长期暴露在较高浓度有害痕量元素大气环境中,会对人体呼吸系统、心血管系统等构成严重威胁。2013年9月,国务院印发《大气污染防治行动计划》,多措并举展开大气污染防治。从重点行业整改关停,到全面整治小锅炉、控制机动车保有量、治理餐饮污染,再到大力发展清洁新能源。一系列举措很快显现成效,我国重点区域空气质量明显好转,重污染天气大幅度减少。2017年,第一次全国污染源普查对减排效果有了整体了解,但这些减排措施如何影响我国大气中有害痕量元素排放、其暴露浓度水平及相关健康风险仍不清楚。“‘大气十条’中的治理措施和围绕该措施进行的普查主要针对颗粒物、二氧化硫和氮氧化物等常规大气污染物,实际上我们还应该关注其中对人体健康危害较大的有毒有害微量元素,比如砷、铅、镉等。”田贺忠告诉《中国科学报》,“这项研究基于多源数据融合,建立了中国有毒有害痕量元素网格化大气排放清单模型,评估了不同排放控制措施对各部门、各省区有毒有害痕量元素排放变化的驱动,并利用大气传输模型及暴露风险评价模型,量化分析研究了典型行业排放变化对有害痕量元素暴露浓度及健康风险的影响。”“协同减排”效益明显“总体来讲,‘大气十条’实施期间有毒有害痕量元素的排放减少成效明显,但其风险依然值得关注。”田贺忠说。通过调查研究全国燃煤电厂、黑色金属冶炼、有色金属冶炼、水泥生产、垃圾焚烧电厂等典型工业排放源的点源排放量及各省煤炭消耗量和装机容量空间分布,研究人员发现,中国五大城市群(华北平原、长三角、珠三角、川—渝和汾渭平原)有害痕量元素排放量占全国总排放量的42%;五大城市群以外,湖南、内蒙古、云南、辽宁及河南省也是有害痕量元素排放量较高省份;“大气十条”期间,全国11种有害痕量元素年均暴露浓度约减少28.1%。其中,燃煤部门的排放削减对钴、砷、硒、铬和锌浓度减少的驱动最显著,贡献在50%以上;而黑色金属冶炼部门的排放变化则主导了镉和铅浓度的降低。“尽管如此,2017年中国有毒有害痕量元素污染依然严重。较高的痕量元素浓度主要集中在中国东部、华北和西南部分地区。”该论文第一作者、海南大学南海海洋资源利用国家重点实验室副研究员刘姝涵(北师大环境学院博士)说,“此外,六价铬的全国年均浓度比国家空气质量标准高出15倍,其中最大值出现在山东省。砷、镍元素浓度在山东省和上海市略高于标准限值。”研究发现,“大气十条”期间,7种致癌元素的全国年均致癌风险下降了约39.5%。其中钴、六价铬和砷元素下降幅度最大。然而,2017年,有害痕量元素年均致癌风险值仍超过阈值,较高致癌风险主要出现在中国东部。山东和上海砷和镍元素致癌风险分别达风险阈值的9倍和1.6倍。情景分析表明,2012年至2017年,燃煤部门排放变化主导了致癌风险降低,带来了1.5×10-6 致癌风险的下降。黑色金属冶炼和有色金属冶炼部门排放变化分别带来了0.8×10-6和0.3×10-6 致癌风险的下降。“‘大气十条’主要针对PM2.5等常规污染物展开,但对有害痕量元素起到了很好的‘协同减排效益’。”田贺忠解释说,“燃煤电厂超低排放改造等重点工业行业的除尘、脱硫、脱硝工艺升级改造同时减少了有害痕量元素排放。”多源数据融合显威力“‘大气十条’的施行,不但减排效果显著,还推动了各行业部门相关信息的公开,这为我们进行定量研究提供了很多基础数据。此外,地理信息技术、数字化和人工智能技术的发展,也让我们使用‘多源数据融合’,进行更精细的‘点源化’研究成为可能。”田贺忠说。进行污染物调查研究,过去的数据来源单一,通常统计年鉴等宏观数据不显示排放源的具体位置。近年来,随着各行业信息公开化程度不断提高,各省、区,各行业、企业,甚至一些协会、组织也会从不同的角度披露一些重点排放源的信息和数据。这些数据虽然源自不同部门,服务于不同对象,甚至数据侧重点、统计方法、呈现方式各不相同,但经过数据清洗和技术处理,这些不同来源的数据却可以相互补充验证。“比如,各省的统计年鉴和月度统计公报中有每年和每月水泥产量数据,我们会结合当地的经济数据,结合水、煤、电量等相关数据信息,排污许可证允许排量等,通过多渠道分析研究,弄清它的排放量。”田贺忠补充说,“了解一家企业使用什么生产工艺装备,掌握它的除尘、脱硫、脱硝技术路径,知道它消耗了多少煤和原材料等信息,就可以建立一套技术方法去核算它排放多少砷、铅、镉等元素,这就是‘多源数据融合’。”利用这些数据,研究人员将我国主要燃煤电厂、黑色冶炼、有色冶炼、水泥生产、垃圾焚烧等重点工业源进行精确经纬度定位,利用各种直接和间接的数据,结合当地GDP、人口、土地利用、交通流等数据,再通过实地调研和现场实测等抽样验证,利用数理统计分析方法精确核算出趋近实际的排放量,并将其精准定位在网格上。“重金属成分的健康风险是精细控制空气污染的先决条件。”该论文匿名审稿人评价说,“本文的创新贡献在于提供了最新的排放清单和健康风险估计。该研究基于对具体措施的效益评估,为减缓有毒有害痕量元素污染和相关健康风险提供了关键见解。为中国实施清洁空气和低碳政策下精准控制有毒痕量元素提供了科学依据,也为其他国家和地区量化痕量元素排放提供了参考。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制