当前位置: 仪器信息网 > 行业主题 > >

泥层界面仪工作原理

仪器信息网泥层界面仪工作原理专题为您提供2024年最新泥层界面仪工作原理价格报价、厂家品牌的相关信息, 包括泥层界面仪工作原理参数、型号等,不管是国产,还是进口品牌的泥层界面仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合泥层界面仪工作原理相关的耗材配件、试剂标物,还有泥层界面仪工作原理相关的最新资讯、资料,以及泥层界面仪工作原理相关的解决方案。

泥层界面仪工作原理相关的资讯

  • 网络讲座:二维材料界面结构与性质的原子力探针显微学研究(4)- 界面插层结构
    Interfacial Structures and Properties of 2D Materials with Atomic Force Microscopy(4)- Intercalated Structures讲座内容简介: 近年来,由于其潜在的巨大应用价值,关于二维层状材料的基础和应用研究方兴未艾,核心工作是理解和控制其多种多样的有趣性质。之前的研究工作主要集中在二维材料的面内结构,多种多样的层间相互作用在调控其力学、电学、热学以及光学等性质方面也有重要作用。虽然已有许多实验和理论研究工作来表征和理解这些界面结构,但对于界面行为是如何影响其物理与化学行为的仍然不是特别清楚。一个重要原因是,内部界面结构的直接微观成像和性质研究在实验技术上是相对比较困难的。石墨烯内部界面水分子插层的高分辨成像研究 在之前,报告人已经针对的AFM的基础知识、基本模式以及功能化AFM探测模式进行了介绍。本系列报告,将基于我们在原子力显微术的技术研究工作,利用多种先进原子力显微术针对二维材料的本征界面、异质界面以及材料/基底界面开展的研究工作。在每次报告中,我们首先将在较为详细地介绍主要使用的先进AFM模式的基本原理、技术实现及其相关应用。在此基础上,介绍我们利用该AFM模式所开展的关于二维材料界面结构与性质方面的研究工作。希望通过本系列报告有助于相关AFM使用者能够利用比较复杂的AFM功能模式开展研究工作。 本次报告是《二维材料界面结构与性质的原子力探针显微学研究》系列的第四次报告。在本次报告中,将介绍我们通过发展和利用多频原子力显微术,针对二维材料体系的内部界面插层结构等的高分辨成像表征和力学性质探测开展的一些工作。 #主讲人介绍 程志海,中国人民大学物理学系教授,博士生导师,基金委优青,中国仪器仪表学会显微仪器分会理事,中国硅酸盐学会微纳米分会理事。2007年,在中国科学院物理研究所纳米物理与器件实验室获凝聚态物理博士学位。2011年8月-2017年8月,国家纳米科学中心(中科院纳米标准与检测重点实验室),任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”(技术百人计划)和首届“卓越青年科学家”,卢嘉锡青年人才奖获得者,青年创新促进会会员并获首届“学科交叉与创新奖”等。目前,主要工作集中在先进原子力探针显微分析技术方法及其在低维材料与表界面物理等领域的应用基础研究。网络讲座时间:北京时间 2021年11月29日 上午10:00-上午11:00申请方法:请关注“Park原子力显微镜”公众号查看首页内容,即可参与。
  • 科众精密-解析气-液-固界面接触角的测量原理
    一、液-固界面接触角的测量的实验目的1. 了解液体在固体表面的润湿过程以及接触角的含义与应用。2. 接触角测定材料表面接触角和表面张力的方法。二、接触角测量的过程 : 用接触角测量仪注射器针头将一滴待测液体滴在基质上。液滴会贴附在基质表面上并投射出一个阴影。投影屏幕千分计会使用光学放大作用将影像投射到屏幕上以进行测量。三、接触角测量原理 润湿是自然界和生产过程中常见的现象。通常将固-气界面被固-液界面所取代的过程称为润湿。将液体滴在固体表面上,由于性质不同,有的会铺展开来,有的则粘附在表面上成为平凸透镜状,这种现象称为润湿作用。前者称为铺展润湿,后者称为粘附润湿。如水滴在干净玻璃板上可以产生铺展润湿。如果液体不粘附而保持椭球状,则称为不润湿。如汞滴到玻璃板上或水滴到防水布上的情况。此外,如果是能被液体润湿的固体完全浸入液体之中,则称为浸湿。上述各种类型示于图1。 光学接触角测量仪可以记录液滴图像并且自动分析液滴的形状。液滴形状是液体表面张力、重力和不同液体样品的密度差和湿度差及环境介质的函数。在固体表面上,液滴形状和接触角也依赖于固体的特性(例如表面自由能和形貌)。使用液滴轮廓拟合方法对获得的图像进行分析,测定接触角和表面张力。使用几种已知表面张力的液体进行接触角测试可以计算得到材料的表面自由能。 作为光学方法,光学接触角测量仪的测量精度取决于图片质量和分析软件。Attension光学接触角测量仪使用一个高质量的单色冷LED光源以使样品蒸发量降到zui低。高分辨率数码镜头、高质量的光学器件和精确的液体拟合方法确保了图片质量。图1 各种类型的润湿当液体与固体接触后,体系的自由能降低。因此,液体在固体上润湿程度的大小可用这一过程自由能降低的多少来衡量。在恒温恒压下,当一液滴放置在固体平面上时,液滴能自动地在固体表面铺展开来,或以与固体表面成一定接触角的液滴存在,如图2所示。图2 接触角假定不同的界面间力可用作用在界面方向的界面张力来表示,则当液滴在固体平面上处于平衡位置时,这些界面张力在水平方向上的分力之和应等于零,这个平衡关系就是著名的Young方程,即γSG - γSL = γLGcosθ 式中γSG,γLG,γSL分别为固-气、液-气和固-液界面张力;θ是在固、气、液三相交界处,自固体界面经液体内部到气液界面的夹角,称为接触角,在0o-180o之间。接触角是反应物质与液体润湿性关系的重要尺度。在恒温恒压下,粘附润湿、铺展润湿过程发生的热力学条件分别是:粘附润湿,铺展润湿, 粘附润湿、铺展润湿过程的粘附功、铺展系数。 以上方程说明,只要测定了液体的表面张力和接触角,便可以计算出粘附功、铺展系数,进而可以据此来判断各种润湿现象。还可以看到,接触角的数据也能作为判别润湿情况的依据。通常把θ=90°作为润湿与否的界限,当θ>90°,称为不润湿,当θ<90°时,称为润湿,θ越小润湿性能越好;当θ角等于零时,液体在固体表面上铺展,固体被完全润湿。
  • 金属所在非共格界面的结构与物性研究方面取得进展
    功能材料界面由于经常表现出不同于体材料的新颖物理、化学现象与性质而备受关注。比如,人们在材料界面上发现了二维电子气、界面超导、界面发光和界面磁性等。这些有趣的界面现象与性质通常归因于界面上强烈的物理与化学交互作用,因此它们大多数出现在共格界面和半共格界面上。从共格界面到半共格界面、再到非共格界面,界面上的晶格失配不断增大,从而导致了材料界面上存在不同的晶格失配调节机制和界面结构。共格界面的晶格失配小,界面失配由两相邻晶格的弹性变形来调节,界面上形成了原子间完美匹配的界面结构;半共格界面的晶格失配适中,通过形成周期性排列的界面失配位错来补偿晶格失配。非共格界面的晶格失配非常大,界面两侧相邻晶体将保持各自原有的晶格而刚性堆叠在一起,不容易形成界面失配位错。虽然非共格界面比其他两类界面更常见,但由于它的晶格匹配度差并且界面键合强度弱,导致界面上的交互作用非常弱,因此非共格界面上很少表现出独特的界面现象与性质,这极大地限制了非共格界面的相关研究与应用。为了探索非共格界面上的新颖界面现象与物性,中国科学院金属研究所研究团队围绕非共格界面的原子与电子结构及界面交互作用开展了系统地研究工作,发现大晶格失配(~ 12 %)的AlN/Al2O3(0001)非共格界面上存在不寻常的强界面交互作用。强烈的界面交互作用显著调控了AlN/Al2O3界面的原子与电子结构及发光特性。透射电镜显微结构表征的研究结果表明,在AlN/Al2O3非共格界面上形成了界面失配位错网络和堆垛层错,这在其他非共格界面上是很少见的。原子层分辨的价电子能量损失谱表明,AlN/Al2O3非共格界面的带隙降低为~ 3.9 eV,显著小于AlN和Al2O3体材料的带隙(分别为5.4eV和8.0eV)。第一性原理计算表明,界面上带隙的减少主要由于在界面处形成了畸变的AlN3O四面体和AlN3O3八面体,从而导致了界面上存在Al-N键和Al-O键的竞争及键长的增大。阴极荧光光谱分析表明,该非共格界面具有界面发光特性,可发射波长为320 nm的紫外光,发光强度比AlN薄膜的本征发光高得多。该研究表明具有大晶格失配的非共格界面可表现出强烈的界面交互作用和独特的界面性质,深化和拓展了人们关于非共格界面的认识,可为开发基于非共格界面的先进异质结材料和器件提供借鉴与参考。相关研究工作得到国家杰出青年科学基金、中国科学院前沿研究重点项目和广东省基础与应用基础研究重大项目等的资助。相关研究成果以Interfacial interaction and intense interfacial ultraviolet light emission at an incoherent interface为题于5月15日在《自然-通讯》(Nature Communications)上在线发表。
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
  • 【案例】innoLev 400超声波污泥界面仪现场安装案例-田集发电厂
    安装时间:2020年1月安装地点:淮沪煤电有限公司田集发电厂仪表品牌:Jensprima(杰普)仪表类型:innoLev 400超声波污泥界面仪 田集电厂是国家电力投资集团公司上海电力股份有限公司和淮南矿业(集团)有限责任公司双方均股投资建设,采用“煤电一体化”模式经营的坑口电站,是“皖电东送”的首选项目,也是我国第一个建成投产的两淮亿吨级大型煤电基地的主力电厂,4台机组所发电量全部通过淮南至上海1000千伏特高压交流输电线路送往华东地区。规划容量4×600MW燃煤机组并预留扩建场地,配套建设一对设计年产500万吨的丁集煤矿。田集一期建设容量2×630 MW国产超临界燃煤发电机组,分别于2007年7月26日和10月15日投产。一期工程自投产以来,先后荣膺“中国建筑工程鲁班奖”,“改革开放35周年百项经典暨精品工程”。1号、2号机组多次荣获“全国发电机组供电煤耗标杆先进值”机组,“全国600MW火力发电机组可靠性金牌机组”称号等荣誉。 田集二期建设容量2×660 MW国产超超临界燃煤发电机组,于2012年8月18日开工建设,3号、4号机组分别于2013年12月22日、2014年4月28日投产。二期工程定位是创“国优金奖”。采用先进的27MPa/600℃/620℃的装机方案,是目前国内乃至世界首次采用再热蒸汽温度达到623摄氏度的60万千瓦级超超临界π型燃煤锅炉,代表了当前世界上60万千瓦等级火电机组的最高参数技术水平。 innoLev 400超声波泥位计用于各种沉淀池的泥位测量,通过超声波回波处理和先进的算法来锁定真正的污泥界面水平,并忽略漂浮的固体颗粒和碎布层的影响。超声波传感器安装在水面下方,直接指向水池底部。 使用一个简单的3键键盘来输入探头至池底的高度,innoLev 400会自动完成其余部分的高级回波处理和信号增益调整。标配4-20mA信号和继电器输出,可选配自动清洗装置。 应用:用于监控和控制沉降池中的泥位,广泛用于工业废水/污水处理厂沉淀池。 此案例由杰普公司售后服务技术部提供,在此感谢用户现场技术人员及代理商的支持和配合。杰普公司(上海)有限公司是一家专注水测量领域的,集专业为客户提供在线水质测仪器研发、组装、销售和服务一体的创新型公司,专业为客户提供在线水质测量解决方案,亦可为客户提供量身定制的解决方案量解决方案,亦可为客户提供量身定制的解决方案。 售后服务部:陈工、曹工 2020年02月20日
  • 材料表面与界面分析技术及应用
    表面和界面的性质在材料制备、性能及应用等方面都起着重要作用,是材料科学领域研究的重要课题。2023年12月18-21日,由仪器信息网主办的第五届材料表征与分析检测技术网络会议将于线上召开,会议聚焦成分分析、微区结构与形貌分析、表面和界面分析、物相及热性能分析等内容,设置六个专场,旨在帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作。其中,在表面和界面分析专场,北京师范大学教授级高工吴正龙、国家纳米科学中心研究员陈岚、暨南大学 实验中心主任/教授谢伟广、上海交通大学分析测试中心中级工程师张南南、岛津企业管理(中国)有限公司应用工程师吴金齐等多位嘉宾将为大家带来精彩报告。部分报告内容预告如下(按报告时间排序):北京师范大学教授级高工 吴正龙《X射线光电子能谱(XPS)定量分析》点击报名听会吴正龙,在北京师范大学分析测试中心长期从事电子能谱、荧光和拉曼光谱分析测试、教学及实验室管理工作。熟悉表面分析和光谱分析技术,积累了丰富实验测试经验。主要从事薄膜材料、稀土发光材料研究及石墨烯材料表征技术、表面增强拉曼光谱技术的研究,在国内外期刊发标多篇学术论文。现任全国表面化学析技术委员会副主任委员,主持和参与多项电子能谱分析方法标准。近年来,在多场国内电子能谱应用技术交流培训会上担任主讲人。报告摘要:X射线光电子能谱(XPS)作为最常用的表面分析技术,表面探测灵敏度高,可以检测表面化学态物种的表面平均含量、表面偏析;分析薄膜组成结构;评估表面覆盖、表面分散、表面损伤、表面吸附污染等。本报告在简要介绍XPS表面定量分析原理基础上,通过实际工作中的一些实例,探讨XPS定量结果解释,帮助大家正确理解XPS定量分析结果,更好地利用XPS技术分析表面。岛津企业管理(中国)有限公司应用工程师 吴金齐《岛津XPS技术在材料表面分析中的应用》点击报名听会吴金齐,岛津分析中心应用工程师,博士毕业于中山大学物理化学专业,博士毕业后加入岛津公司,主要负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展不同行业材料表征相关研究,具有多年XPS仪器使用经验,熟悉XPS数据处理及解析,合作发表多篇SCI论文。报告摘要:介绍相关表面分析技术及XPS在材料表面分析中的应用。国家纳米科学中心研究员 陈岚《纳米气泡气液界面的检测》点击报名听会陈岚,爱尔兰国立科克大学理学博士,剑桥大学居里学者,2014年至今,先后任国家纳米科学中心副研究员、研究员及博士研究生(合作)导师;主要从事纳米界面微观检测及纳米界面光电化学性能调控方面的研究;ISO/TC281注册专家,全国微细气泡技术标准化技术委员会(SAC/TC584)委员,中国颗粒学会微纳气泡、气溶胶专委会委员,Frontiers in Materials及Catalysts客座编辑,科技部在库专家,北京市科委项目评审专家;主持科技部发展中国家杰出青年科学家来华工作计划1项,参与国家重点研发计划“纳米科技”重点专项、“纳米前沿”重点专项各1项;共发表论文近60篇,授权专利9项,编制国家标准10部。报告摘要:体相纳米气泡具有超常的稳定性及超高的内压,高内压的纳米气泡在溶液中稳定存在的机制一直众说纷纭。因此,研究纳米气泡边界层对于解释纳米气泡的稳定性具有重要的意义。由于纳米气泡气液界面的特点,检测体相纳米气泡边界层十分困难,常规的方法和技术手段很难实现。在本工作中,首次采用低场核磁共振技术(LF-NMR)对体相纳米气泡边界层中水分子的弛豫规律进行了系统研究,提出了纳米气泡边界层测量的数学模型,并成功地测得了不同尺寸纳米气泡的边界层厚度。研究发现,纳米气泡粒径越小,边界层所占比例越高,因而也越可以对更高内压的气核进行有效保护,纳米气泡的稳定性也可以据此进行定量解释。暨南大学 实验中心主任/教授谢伟广《范德华异质结光电探测及光电存储器件》点击报名听会谢伟广,暨南大学物理与光电工程学院教授,博导。2007年博士毕业于中山大学凝聚态物理专业,导师为许宁生院士;研究方向是微纳尺度多场耦合行为及应用,半导体光电转换过程、器件及集成;在Advanced Materials, ACS Nano等期刊发表SCI论文80多篇,代表性成果包括:实现了多种二维半导体氧化物的CVD制备,首次发现了极性二维氧化物长波红外低损耗双曲声子极化激元现象;发展了钙钛矿薄膜的真空气相制备方法,实现了高效气相太阳能电池及光电探测阵列的制备。研究团队发展的多项方法已被国内外同行广泛采纳,并在Nature、Sciecne等著名期刊正面评价。主持国家基金面上项目、重点项目子课题、广东省自然科学基金杰出青年基金项目等多项项目;于2022年(排名第一)获得中国分析测试协会科学技术(CAIA)奖一等奖。报告摘要:二维钙钛矿(2DPVK)具有独特的晶体结构和突出的光电特性,设计2DPVK与其他二维材料的范德华异质结,可以实现具有优异性能的各类光电器件。本报告主要介绍下面两种异质结器件:(1)光电探测器:制备了2DPVK/MoS2范德华异质结器件,由于II型能带排列中层间电荷转移所诱导的亚带隙光吸收,器件在近红外区域表现出了单一材料均不具备的光电响应。在此基础上引入石墨烯(Gr)夹层,借助Gr的有效宽光谱吸收和异质结中光生载流子的快速分离和输运,2DPVK/Gr/MoS2器件的近红外探测性能进一步得到了大幅提升。(2)光电存储器:开发了基于MoS2/h-BN/2DPVK浮栅型光电存储器,其中2DVPK由于其高光吸收系数,能同时作为光电活性层与电荷存储层,器件展现了独特的光诱导多位存储效应以及可调谐的正/负光电导模式。上海交通大学分析测试中心中级工程师 张南南《紫外光电子能谱(UPS)样品制备、数据处理及应用分享》点击报名听会张南南,博士,2019年毕业于吉林大学无机化学系,同年入职上海交通大学分析测试中心,研究方向为材料的表界面研究,主要负责表面化学分析方向的X射线光电子能谱仪(XPS)及飞行时间二次离子质谱(ToF-SIMS)方面的测试工作。获得上海交通大学决策咨询课题资助,授权一项发明专利,并在 J. Colloid Interf. Sci., Catal. Commun.等期刊发表了相关学术论文。报告摘要:紫外光电子能谱(UPS),能够在高能量分辨率水平上探测价层电子能级的亚结构和分子振动能级的精细结构,广泛应用在表/界面的电子结构表征方面。本报告主要介绍UPS原理、样品制备、数据处理以及在钙钛矿太阳能电池、有机半导体、催化材料等领域的应用。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 《Nature(IF69.504)》譚海仁團隊-最新研究3D/3D 雙層異質結抑制界面結構
    《Nature(IF69.504)》谭海仁团队最新研究-钙钛矿界面结构优化,叠层太阳电池效率28.5%。 【重点摘要】研究团队在铅锡混合钙钛矿/电子传输层界面引入双层钙钛矿异质结,有效抑制了界面复合损失,提高了电荷提取效率。通过在铅锡混合钙钛矿顶部沉积一层铅卤化物宽禁带钙钛矿形成双层异质结,混合钙钛矿太阳能电池的效率提高到23.8%。在混合钙钛矿子电池中应用双层异质结结构,全钙钛矿叠层太阳能电池实现了28.5%的记录效率。封装的叠层电池经过600小时光照后,效率仍保持在90%以上。【研究背景】全钙钛矿叠层太阳能电池具有利用光谱范围广、热损耗低的优点,被视为下一代光伏技术的有力候选。但是先前报道的铅锡混合钙钛矿底层电池存在开路电压和填充因子不足的问题,主要是钙钛矿与电子传输层之间的界面发生严重的非辐射复合造成的。构建混合2D/3D异质结是目前研究最多的抑制界面复合的方法,但2D层会增加电阻,影响电荷传输。【研究成果】南京大学谭海仁团队在铅锡混合钙钛矿/电子传输层界面引入了II型能带结构的3D/3D双层钙钛矿异质结。先在混合钙钛矿表面沉积一层铅卤化物宽禁带钙钛矿,再通过溶液处理转化为钙钛矿,形成双层异质结。这种结构有利于电荷提取,混合钙钛矿太阳能电池的开路电压和填充因子显著提高,效率达到23.8%。在混合钙钛矿子电池中应用双层异质结,全钙钛矿叠层太阳能电池达到28.5%的记录效率。封装后的叠层电池在连续600小时光照条件下,效率仍能保持在90%以上。这主要是因为双层异质结抑制了界面复合,提高了电荷转移速率。【研究方法】利用溶液处理和蒸发方法,在混合钙钛矿表面覆盖铅卤化物钙钛矿薄层,形成双层异质结。通过扫描电镜、X射线衍射等手段表征双层异质结的形貌和结构。测量并比较带异质结和不带异质结的混合钙钛矿太阳能电池的光伏参数。采用稳态和时间分辨光致发光、超快瞬态吸收等方法研究异质结的载流子动力学。在混合钙钛矿子电池中引入双层异质结,制作钙钛矿叠层太阳能电池。测试并优化子电池的参数,实现高效率。对叠层太阳能电池进行封装,测试其在光照条件下的稳定性。【结论】本研究在混合钙钛矿太阳能电池的界面引入3D/3D双层异质结,有效抑制了界面复合,获得了23.8%的高效率混合钙钛矿单电池。这种双层异质结结构应用于全钙钛矿叠层电池,进一步提升了效率至28.5%,表现出良好的稳定性。该成果为钙钛矿太阳能电池的界面设计和高效叠层电池的开发提供了新思路。宽禁带、窄禁带亚电池和叠层太阳能电池的光伏性能。a,带原VNPB和修改SAM的NiO空穴传输层的宽禁带钙钛矿太阳能电池的J-V曲线。b,控制组和PHJ窄禁带钙钛矿太阳能电池的J-V曲线。c-d,不同亚电池叠层太阳能电池的J-V和EQE曲线。从EQE光谱中获得的宽禁带和窄禁带亚电池的积分Jsc值显示不同叠层太阳能电池之间具有良好匹配的电流密度(光伏性能参数见补充表13)。宽禁带钙钛矿太阳能电池的光伏性能。a, 62个器件中的光伏参数统计。b-c, 性能最佳的宽禁带器件的J-V、EQE和总吸收度(1-R)曲线。
  • 物理所在对称性失配诱导的界面铁磁性研究方面取得进展
    4d钌酸盐(ARuO3)作为复杂氧化物体系中一个重要家族,表现出巡游铁磁性、磁性Weyl费米子、磁单极、非常规超导、非费米液体等一系列丰富多彩的物理性质。SrRuO3作为唯一天然具有铁磁性和强自旋轨道耦合(SOC)的钙钛矿氧化物,成为该体系研究的明星材料。 SrRuO3高达160K的铁磁居里温度和良好的金属导电性使它在自旋电子学器件研究中具有巨大潜力,而由铁磁性和强SOC共存所导致的巨大反常霍尔效应、拓扑霍尔效应甚至量子反常霍尔效应等新奇物性也备受人们关注。然而,在各种4d、5d过渡金属氧化物中,SrRuO3的巡游铁磁性似乎成为一个特例,给以此为基础的新型自旋/轨道器件设计带来局限性。 4d、5d氧化物虽然具有较强的SOC,但由于d轨道能带的扩展导致电子关联性下降,通常难以形成长程磁序。人工设计出更多集强SOC和时间反演对称性破缺(即铁磁性)于一体的新材料体系,是目前自旋电子学研究中高度关注的问题。  CaRuO3的块体材料具有与SrRuO3完全相同的GdFeO3型正交晶体结构和电子构型。但由于Ca离子半径较小,使得CaRuO3的Ru-O-Ru键角仅为148°,远低于SrRuO3的 163°。因此CaRuO3体材料或薄膜材料在整个温区中均表现为顺磁金属性。中国科学院物理研究所研究团队近年来致力于氧化物异质界面物性设计及调控方面的研究工作,希望利用异质界面晶体场、应力场、电荷重组、轨道重构等效应,诱导出完全不存在于体相材料的界面新物态。 近日,团队研究人员等成功利用结构近邻效应在CaRuO3体系中诱导出了长程铁磁序。他们利用脉冲激光沉积技术在衬底基片上交替生长抗磁SrTiO3 (a0a0a0)和顺磁CaRuO3(a-a-c+)两种对称性失配薄膜,获得了高质量的外延超晶格样品;利用界面氧八面体的耦合畸变,成功抑制了CaRuO3层中RuO6八面体的倾斜/旋转。 扫描透射电镜的结果表明,界面处约3个晶胞厚度的CaRuO3层的RuO6八面体的扭转度被大幅度地调控,其Ru-O-Ru键角从~150°增加至~165°,与SrRuO3薄膜中的Ru-O-Ru键角较为接近。这种界面结构耦合的调控必然会带来电子结构的改变。第一性原理计算表明,RuO6八面体的倾斜/旋转的抑制将大幅提高CaRuO3费米面处的态密度【N(EF)】,最终使得界面3个晶胞层CaRuO3层将满足巡游铁磁性的Stoner判据【IN(EF) 1,I为Stoner系数】,由块体的顺磁态进入铁磁有序态。 霍尔输运测量以及宏观磁测量给出了该体系出现界面铁磁相的充分证据,其最高居里温度约为120K,最大饱和磁化强度为~0.7μB/f.u.。各向异性磁电阻测量进一步表面CaRuO3界面铁磁相的磁易轴在面内方向。该工作报道了一种完全基于界面氧八面体耦合畸变设计产生界面铁磁性的示例,特别是构成异质界面的两种氧化物各自均不具备长程磁序,其部分原理也将适用于其他具有类似对称失配的氧化物体系,为探索多功能氧化物材料和器件提供了新思路。   相关成果以Symmetry-mismatch-induced ferromagnetism in the interfacial layers of CaRuO3/SrTiO3 superlattic为题发表在《先进功能材料》 (Advanced Functional Materials)上。相关研究工作得到科学技术部、国家自然科学基金委项目、中科院战略性先导科技专项和中科院重点项目的支持。
  • TOF-SIMS在半导体领域的应用(二)——浅层、薄层、界面的深度分析
    TOF-SIMS在半导体领域有着广泛的应用,如表面痕量金属的检测和定量、工艺过程的有机污染、超浅层深度剖析、超薄介电层分析、界面/bond pad/test pad的分析等等。TOF-SIMS技术的性能优势主要体现在高质量分辨率、高质量精度和良好的数据速率等方面。另外,低能量、小束斑、高电流的新型双束离子溅射源可以实现溅射快、精度高的深度分析,深度分辨<1nm。且TOF-SIMS技术无需复杂的样品前处理,可以对样品进行直接测试。本文主要分享半导体器件的浅层、薄层、界面的深度分析的应用案例。(表面的痕量金属的检测和定量、表面污染检测等方面的分析测试案例请参考之前的推文。)一、包埋500nm深度处的多膜层深度分析Profiling Conditions: sputtering Cs 2 keV, 45°, analysis Bi 25 keV, 50 kHz interlacedSpeed: 2 µ m in 1200 s, 3 datapoints per s, 1.7 nm/s (102 nm/min), 0.5 nm per datapoint二、N, C, O, 和 Cl离子注入的深度分析三、浅层注入的深度分析四、SiGe Testpad中B注入的深度分析Analysis Beam:Bi1 @ 15 keV, 1 pA,35 x 35 µ m2Sputter Beam:O2 @ 500 eV, 90 nA,200 x 200 µ m2Total time for analysis including pad alignment: ≈15 min五、SiCP Testsample的深度分析Analysis Beam:Bi1 @ 15 keV, 8 pA,50 x 50 µ m2Sputter Beam:O2 @ 500 eV,80 nA,200 x 200 µ m2Total time for analysis: ≈10 min六、GaAs/InGaP多膜层深度Analysis Beam:Bi1 @ 15 keV, 7 pA,00 x 100 µ m2Sputter Beam:Cs @ 1000 eV,100 nA,300 x 300 µ m2Total time for analysis: ≈20 min关注公众号“IONTOF-CHINA”,更多TOF-SIMS案例分享和实际应用技术解读。
  • 岛津原子力显微镜-铅酸电池界面研究
    岛津原子力显微镜铅酸电池 以铅酸电池和锂离子电池为代表的二次电池,为了提高充放电特性、耐久性等性能,一般会向电解液中添加添加剂。到目前为止,已有种类繁多而且性能优异的添加剂被广泛使用到各类二次电池中。然而,迄今为止,这些添加剂如何提高电池性能的原理仍不甚明了。观察电解质中负极附近的界面状态对于阐明添加剂的贡献很重要。 铅酸电池是一种具有多种优点的二次电池,包括出色的安全性、宽工作温度范围和大电流放电。由于这些原因,它们被广泛应用于不间断电源(UPS)设备、公共设施应急电源设备以及汽车发动机启停系统的启动电池,成为社会基础设施不可或缺的一部分。然而,铅酸电池在使用过程中会发生负极的硫酸盐化,并因此导致电池性能劣化。在电解液中增加添加剂可以缓解这一问题。磺化木质素是一种具有代表性的添加剂。然而,但木质素如何促进电化学反应和硫酸化的缓解直到现在仍未阐明。 SPM-8100FM使用调频(FM)方法可以检测到比传统原子力显微镜(AFM)更小的力。因此使用SPM-8100FM高分辨率原子力显微镜和电化学溶液电池,观察稀硫酸环境下铅的固液界面状态,有助于理解添加剂的作用原理。 以上两张图显示了在初始还原反应后对垂直于铅表面的截面进行成像得到的负极(铅)固液界面处的图像。图像的上半部分是电解液,图像下半部分变暗的位置是铅表面。探针检测到力(排斥力)的部分看起来很亮。 在左图仅有稀硫酸的情况下,在铅表面上方没有观察到明显的特异变化。但在右图中,使用“稀硫酸+木质素”的情况下,可以在铅表面上方看到明显的不同亮度分层,如图中红色箭头所示区域。判断该层为木质素-铅络合物,该层的存在有助于铅表面硫酸化程度降低,从而有效抑制了硫酸铅的结晶形成。木质素-铅层的与铅表面、液体部分的不同亮度对比表明探针已经深入到该层中,同时也表明木质素-铅层以柔软的状态吸附在铅表面。这是使用原子力显微镜第一次在铅表面上看到厚度为50nm至100nm的木质素-铅层。 该实验证明了用高分辨原子力显微镜对电化学表面进行观察的可能性,有助于获得更多的电催化过程中界面处的信息,从而提高我们对反应过程的理解。因此可以期待利用SPM-8100FM进行电解质的界面成像来分析其他类型的二次电池充放电过程固液界面处的状态变化。请点击查看视频:https://mp.weixin.qq.com/s/G-1nBKLAxmwPW3FUHYbouASPM-8100FM 本文内容非商业广告,仅供专业人士参考。
  • 汪福意团队:表界面分析的原位液相二次离子质谱技术新进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。  近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。  汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。  汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。  研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。  液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • 实验型冻干机的工作原理和应用
    实验型冻干机的工作原理和应用 随着科学技术的不断进步,各种新型实验仪器也层出不穷,其中实验型冻干机就是一种近年来应用越来越广泛的一种实验室设备。该产品可以将溶液、材料等在低温下冷冻成固体,然后在真空环境下将其中的水分蒸发掉,从而得到干燥的样品。下面我们来详细了解一下该产品的工作原理和应用。  一、工作原理  实验型冻干机的工作原理是利用制冷技术和真空技术相结合,将待处理物质在低温下冷冻成固体,然后在真空环境下对其进行加热升温,使其从固体状态变为液体状态,最后通过蒸发除去其中的水分,从而得到干燥的样品。具体步骤如下:  1. 预冻:将待处理物质放入该产品的容器中,然后在低温环境下进行预冻,使其变成固体状态。  2. 冻干:将预冻后的物质放入该产品的干燥室中,然后在真空环境下进行加热升温,使其从固体状态变为液体状态。此时,被冻结的水分会逐渐蒸发掉。  3. 重复以上步骤直至完成干燥过程。  二、应用  该产品广泛应用于生物医药、化学化工、食品等领域。以下是几个具体的应用案例:  1. 生物药品生产:该产品可以用于生物药品的生产过程中,如生产血浆、疫苗等。通过冻干处理,可以保证生物药品的质量和稳定性。  2. 化学试剂制备:该产品可以用于化学试剂的制备过程中,如制备氨基酸、维生素等。通过冻干处理,可以使化学试剂长期保存并且方便使用。  3. 食品加工:该产品可以用于食品加工过程中,如制作汤圆、饼干等。通过冻干处理,可以使食品保持原有的口感和营养成分。 冻干机冷冻干燥机LGJ-18N普通型亚星仪科主要特点:1、本机采用进口压缩机制冷,制冷迅速,冷阱温度低。2、冷阱开口大,无内盘管,带样品预冻功能,无需低温冰箱;3、采用7寸真彩触摸液晶屏控制系统,操作简单方便,且功能强大,作为人机界面,中文(英文)可转换界面,以曲线和数字形式显示工作时间、冷凝器温度、样品温度、真空度,并记录干燥曲线;。4、工业嵌入式操作系统,ARM9核心控制电路设计,32M内存128M FLASH,操作响应速度快,存储数据量大。本机可存储多次冻干数据,FAT32文件系统,EXCEL文件存储,可存储一个月以上测量数据128M FLASH,并配置USB通讯接口,实验数据U盘一键提取。 5、控制系统自动保存冻干数据,并能以实时曲线和历史曲线的形式查看,整个冻干过程清晰明了。6、干燥室采用无色透明一次注塑成型聚碳干燥室,耐腐蚀、不易碎、无粘接、透明度高、密闭性强、样品清楚直观,可观察冻干的全过程。7、真空泵与主机连接采用国际标准KF快速接头,简洁可靠。 总之,实验型冻干机作为一种新型的实验室设备,其应用领域越来越广泛,为企业提高产品质量和降低成本提供了有力的支持。
  • 科研人员利用透射电镜破解氢致界面失效之谜
    当“安静”的铝制品遇见“淘气”的氢原子,为何“肌肤”表面就会冒出“痘痘”?  这一谜团已存在超过50年。  西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心的科研人员破解了这一难题。此项成果6月29日在线发表在世界著名期刊《自然-材料》上(原文链接http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4336.html)。  人们知道,生活中常见的铝制品通常稳定耐用,因为它的表面会自然形成一层致密而坚硬的氧化铝保护膜,俗称“刚玉”。但在含氢环境中,铝制品常常会在表面鼓出气泡,最终导致氧化膜保护层脱落,乃至材料失效。这一现象,被称为“氢鼓泡”。  西安交大科研人员发现,原来,对于“纤瘦”的氢原子而言,刚玉中的原子间隙如此之大,以至于它们可以在其中来去自如。氢原子的随性“游走”会破坏金属铝和刚玉之间“手拉手”的紧密联系,从而使一部分铝原子“重获自由”。这些铝原子也会在氧化物和金属铝的界面上自由运动,并在金属铝的一侧形成很多微小的坑。随着坑的不断长大,氢原子拥有足够的空间重新结合形成氢分子并对氧化膜产生压力。当坑的直径大到某一临界尺寸时,氧化膜就会被撑得发生塑性变形,并向外鼓出形成气泡。而气泡密度足够大时,氧化膜保护层便会脱落,最终导致材料失效。  这种氢致界面失效是在石化、海洋、核、航空航天及半导体等工业里常见的金属材料失效原因之一。尽管此前不同国度的研究人员进行了大量的研究,但对其原子尺度的机理一直不甚明了。传统的表面鼓泡理论只能解释气泡的生长,对于气泡的形核则缺乏理论及实验证据。西安交大微纳中心的这一研究发现填补了氢致界面失效现象起源的实验和理论空白,有助于人们找到防止氢致界面失效的方法,提高材料在含氢环境中的服役寿命。  “举一个激动人心的例子:太阳帆,”微纳中心博士生解德刚介绍说,宇宙中氢的质量分数在70%以上,人类造的任何飞行器在太空航行时都必须考虑氢对材料性能的影响。太阳帆的原理就是利用大面积镜面般光滑的薄膜反射太阳光以获得动力航行。目前最有可能的薄膜材料就是铝箔,科学家已经意识到太空环境中铝箔表面易发生鼓泡的现象,而太阳帆表面一旦发生鼓泡,其反射能力就会大打折扣,影响飞行器的动力性能。“希望我们的发现对于太阳帆的防氢设计有着积极的指导意义”,解德刚对此十分期待。  “这项发现对很多与氢有关的未解之谜都有着重要的启示,”微纳中心主任单智伟教授告诉记者,“比如半导体芯片中的导线基底界面劣化、电厂的汽轮机叶片的氧化皮脱落、核电站中有大量的质子辐射环境以及高温水汽环境等等。”  此项研究中,微纳中心的科研人员一改以往楔形的样品设计,采用微纳尺度的金属铝圆柱体,通过环境透射电子显微镜观察氢气氛围下金属和氧化界面的动态演化过程,以令人信服的证据无可争辩地证明了氢致表面氧化物鼓泡的晶向依赖性。  据了解,绝大多数金属制品在实际使用时表面都会有一层保护膜,有的是自然形成,有的是人为添加。这层保护膜通常起着防氧化、防腐蚀、耐磨损等作用。一旦被破坏,材料的氧化、腐蚀、磨损就会加速,发生到一定程度就会使材料彻底失效。单智伟教授指出,降低表面防护层的粗糙度,选择合适的金属基底取向,对界面进行有目的改性等可有效减缓甚至防止氢致界面失效的发生。接下来,研究小组将继续聚焦氢致材料失效机理研究,致力于进一步推动人们对氢影响的认知,以减少和避免由氢脆等材料失效所造成的巨额经济损失和重大安全事故。  该文章的作者依次为博士生解德刚、王章洁博士、孙军教授、马恩教授、李巨教授和单智伟教授。此项研究工作得到中国国家自然科学基金、973项目及111项目的资助。
  • Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应
    Nature Communications:纳米红外研究无机纳米颗粒-聚合物复合材料界面效应布鲁克纳米表面事业部 魏琳琳 博士英文题目:Nature Communications: Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites摘要以聚合物为基体,无机纳米粒子为填料的聚合物纳米复合材料具有优异的力学、电学和热学性能。纳米颗粒和聚合物之间的界面效应通常被认为是实现这些性能增强的关键因素。然而,如何理解界面效应以及界面微区的结构与性能是聚合物纳米复合材料领域长期面临的基础性难题。近期,来自武汉理工大学、清华大学、伍伦贡大学等学校的科学家们将Bruker的光热诱导纳米红外技术与其他先进技术相结合,直接探索纳米颗粒-聚合物纳米级界面区域。研究发现无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构,包括10纳米厚的内层和大于100纳米的外层界面。分子动力学及相场模拟结果表明纳米颗粒表面电势以及颗粒间距的协同作用是形成界面极性构型的关键作用机制。这项研究的结果有助于阐明界面处的相互作用机制,并为制备纳米复合材料以获得最佳性能提供有价值的见解。利用无机纳米粒子/聚合物复合材料的高极性“双界面层”行为,科学家们在具有超低无机填料含量的纳米复合材料中获得了显著增强的介电及压电性能。相关研究成果以Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites为题,发表在Nature Communications上。实验内容实验选择典型的铁电聚合物PVDF作为基体,填充TiO2纳米颗粒。其中PVDF膜层的厚度低于纳米颗粒的直径,使TiO2能够暴露在膜层表面(图1 a)。图1b,c 样品表面和横截面的SEM图像显示颗粒表面存在约10nm的包裹层。HADDF和碳成像图(图1d,f)进一步表明10nm的结合层富含碳元素,为有机碳链键合在纳米颗粒表面。采用布鲁克nanoIR3纳米红外系统进一步研究了界面区域的化学结构(图1 e f)。采用PVDF极性构象的波数(866cm-1)和非极性构象的吸收波数(766cm-1)进行红外成像,分别对应图1f中图和右图。红外成像图显示纳米颗粒周围存在100nm以上强极性构象区域。压电力显微镜(PFM)采集平行于膜平面和垂直于膜平面的L-PFM图像及面外V-PFM图像,结果显示颗粒的L-PFM呈现一半亮一半暗的结构,V-PFM呈现全亮的结构。表明纳米颗粒/聚合物的内层界面区域内偶极子的极化方向垂直于纳米颗粒表面。综合以上的观测结果,作者揭示了无机纳米颗粒与聚合物基体的界面存在强极性构型的“双界面层”结构, 由10nm的极性偶极子内层界面的和100nm强极性构象的外层界面组成。 图1 直接观测无机纳米颗粒与聚合物基体的“双界面层”结构作者采用nanoIR3纳米红外系统进一步研究了纳米颗粒的间距对界面效应的影响(图2)。距离较远的纳米颗粒会形成强极性构象结构界面(图2 b左图);距离相对较近的纳米颗粒,其界面区域相互重叠,将抑制极性构象的形成(图2 b中图);纳米颗粒相互连接时,界面区域也倾向于相互合并(图2 b右图)。FTIR检测不同TiO2纳米颗粒含量的宏观材料中极性构象的比例(840 cm&minus 1/766 cm&minus 1及 1279 cm&minus 1/766 cm&minus 1峰强比),TiO2纳米颗粒含量0.35%时极性构象最多,继续增加纳米颗粒含量,由于纳米颗粒间距变小,界面区域相互重叠使极性构象含量降低。分子动力学及相场模拟表明极性构象界面的形成取决于纳米颗粒表面电势以及颗粒间距的协同作用。图2 纳米颗粒/聚合物复合材料界面极性区域采用纳米叠层设计(Al2O3/PVDF/ Al2O3)表征单一界面层的贡献。纳米叠层纳米复合材料的介电常数εr与PVDF的膜厚具有很大的相关性,并随着PVDF膜厚的减小而增加。由于界面极性层的影响,纳米叠层纳米复合材料显示出比Al2O3(εr~9.8)和PVDF(εr~7.8)更高的εr。而Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm)/PVDF (10 nm)/Al2O3 (15 nm),包含两层内层界面层结构,表现出86 J/cm3的超高介电能量密度,远高于文献报道的纳米复合材料的介电能量密度。同时具有76%的能量效率,与大多数介电聚合物或纳米复合材料相当。图3 内层界面层增强复合材料介电性能 总结借助于布鲁克纳米红外系统,直接观测到纳米颗粒-聚合物复合材料的极性界面构象,并研究了颗粒间距对极性构象的影响。结合其他科学工具的结果,本文的工作促进了对聚合物纳米复合材料中界面基础科学问题的理解,可为高性能极性聚合物复合材料的设计与开发提供指导,并推动介电储能、电卡制冷、柔性压电传感等高新前沿技术领域的发展。 本文相关链接:Unraveling bilayer interfacial features and their effects in polar polymer nanocomposites [J] Nature Communications volume 14, Article number: 5707 (2023)https://www.nature.com/articles/s41467-023-41479-0
  • 看清真相,探索固液界面微观结构
    探索固液界面微观结构 材料的物理化学性质不仅由其内部的组分、结构决定,而且与其周围的介质环境及表界面性质息息相关。而水作为最常见的介质环境,不仅与材料产生多种不同的作用力,如亲水作用力、疏水作用力,甚至会与材料发生各种物理和化学过程,从而对材料的性能产生重要影响。因此,在分子层面解析水与材料表面的相互作用与化学过程,对深入研究材料的表界面性质、形成机理具有重要的推动作用,同时有助于指导人们开发更好的材料与器件。 岛津 SPM-8100FM 图1 岛津SPM-8100FM 当前市场上扫描探针显微镜(SPM)有多个品牌,大多数都是使用调幅模式(AM),但是在原理上调频模式(FM)可以获得更高的图像分辨率。岛津SPM-8000FM就是采用调频检测方法,成为世界上首个商品化调频模式的扫描探针显微镜(注:原子力显微镜只是扫描探针显微镜的一种),并荣获2014年第57届“十大新产品奖”。而SPM-8100FM为SPM-8000FM的升级款,与之相比不仅分辨率有了进一步的提升,稳定性也得到了大幅提升。它不仅在大气及液体环境中达到了超高分辨率的观察,还实现了对固液界面的水化层作用或溶剂化作用层的观察,恰好适用于水-材料表界面性质的研究。下面小编就向大家介绍岛津SPM-8100FM(图1)在研究水与不同材料表界面作用中的应用。 采用SPM-8100FM 测试样品 图2 固定在液体池中三个样品的光学图片 小编通过三种不同的样品向大家展示:亲水的云母片、疏水的高定向热解石墨(HOPG)以及可以与水发生反应的方解石(图2)。采用SPM-8100FM的调频模式即可对样品的固液界面进行Z-X方向测试,也就是测试垂直于样品表面的水分子排布,测试示意图如图3所示。 图3 液体样品池测试示意图 测试结果 图4 测试所得三种体系的SPM图及水分子分层信息 所得结果(图4)中的下方黑色区域为固相(即方解石、云母和HOPG),紧靠其上表面的规整区域就是排布在固相表面的水分子层,图中红色虚线框标记的就是一个水分子哦。仔细对比,我们可以发现方解石和云母表面的水分子排布十分相似,但与HOPG表面的水分子排布相差很大。 对三者进行定量分析可知,第一层水分子距方解石、云母及HOPG的表面距离分别为0.15nm 、0.21nm 和0.38nm ,而第二层水分子的距离分别为0.34nm 、0.35nm 和0.92nm。有力地证实了水分子易在亲水材料表面铺展,而在疏水表面具有较大的水分子层间距,这也是水在普通纸张和荷叶表面具有不同铺展性的原因。 撰稿人:刘仁威
  • SPM系列丨润滑油固液界面特性表征
    润滑油是各种机械设备上用以减少摩擦,保护机械及加工件的液体或半固体润滑剂。润滑油如发动机机油,润滑原理是其中所含的添加剂成分会在金属表面形成吸附膜,从而减少摩擦作用,并通过防止金属与金属间的直接接触来阻止金属磨损。 但目前常用的测试方法并不能直接观察吸附膜,因此在实际的润滑油开发过程中,需要使用大型装置进行重复测试,例如采用真实车辆测试和发动机测试,以缩小改性剂候选范围和最佳浓度范围。此类开发方式需要大量的时间与物料成本,因此迫切需要一种新的方法。 原子力显微镜是一种通过检测纳米级针尖和样品间作用力获得信息的高分辨工具。但是传统原子力显微镜对力的检测分辨率不够高,因此需要使用调频模式的原子力显微镜。调频模式下探针可以检测到一个或几个分子对探针的扰动,非常适合对润滑油吸附膜这种单分子膜进行观测。 SPM-8100FM调频原子力显微镜仅需500μl润滑油样品,即能够以分子级分辨率观察润滑油-氧化铁界面。 使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析基油为PAO 4(聚α-烯烃),添加剂为C18AP(正磷酸油酸酯)。 图示为4组对照实验,分别是仅使用PAO(不添加C18AP)和添加了浓度为0.2 ppm、 2 ppm、20 ppm和200 ppm的C18AP的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向已被C18AP破坏,即C18AP在氧化铁基片上的形成了吸附膜。氧化铁基片在浓度为2ppm时部分覆盖,在20ppm和200ppm时完全覆盖。可以推断,随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。 在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。 SPM-8100FM界面图像表明,PAO中C18AP的浓度高于20ppm时,C18AP吸附层完全覆盖了氧化铁基片表面。 尽管对滑动条件和静态条件下实施表面分析的动态环境存在差异,但是这些实验结果表明,使用SPM-8100FM对润滑油-氧化铁界面实施分析进而评估滑动表面摩擦特性是可行的。该技术对于润滑油开发,可有效加快润滑油开发进度,在研发的初期阶段就可以在实验室中进行测试,完成开发初始阶段筛查。
  • 动态可逆粘附的高分子复合材料助力长期稳定的跨界面热传导
    四川大学傅强教授和吴凯副研究员报道了一种基于聚合物分子结构和填料表面设计的新型软物质热界面材料。研究团队通过力化学作用将液态金属(LM)包裹在球形氧化铝(Al2O3)表面形成核壳结构的填料,并将其嵌入具有动态粘附性的弹性体(PUPDM)中制备了三元复合材料。巧妙的PUPDM分子设计使得材料与各种热源/冷槽之间形成动态可逆的氢键相互作用,实现了零压状态下的低接触热阻和耐多次热循环的长期稳定性。而液态金属改性填料不仅可以作为导热桥梁,同时有利于聚合物链段在室温下的松弛,平衡了传统功能复合材料中导热性能与表面黏附可逆性的矛盾。这种在导热界面材料上构筑动态可逆键的概念在新型热管理材料和技术领域有广阔的应用前景。相关成果以“A Thermal Conductive Interface Material with Tremendous and Reversible Surface Adhesion Promises Durable Cross-Interface Heat Conduction”为题发表于《Materials Horizons》期刊(Mater. Horiz., 2022, DOI: 10.1039/D2MH00276K)。图1 具有可逆粘附能力的高导热/电绝缘/柔性软材料的分子设计和复合结构示意图随着现代电子设备朝着高度集成化和小型化发展,器件内部指数式增长的热严重影响到电子设备的工作性能、可靠性和使用寿命。因此,导热材料和先进的热管理技术引起广泛的关注。典型的热界面材料已经被大量应用去促进电子设备内部的界面热传导,并且评价其热管理效率的有两个重要的指标:材料本身的热导率和材料与接触基板的接触热阻。近年来,大量的研究人员致力于开发高导热的材料,然而随着电子设备尺寸的日益减小,解决接触热阻的问题变得同样重要。现有的一些降低接触热阻的方法有制备具备触变性和顺应性的材料或者施加外界应用压力。这些方法的目的都是增加接触界面的实际接触面积去实现更好的界面几何匹配。一些微纳尺度界面热传导的研究也表明界面相互作用有助于提高界面热导率,但在宏观热界面领域还缺乏系统的研究。更值得关注的是,由于热界面材料与接触基板的热膨胀系数不匹配,因此在经历长期热循环后,界面几何失配或者界面脱粘仍然会发生,阻碍着热管理的长期稳定性。图2 复合材料的导热和可逆粘附能力展示 为了解决上述问题,本工作采用的策略主要分为三个步骤:1)制备出具有可逆黏附能力的柔性弹性基体,提高热界面材料与基板的相互作用,并通过动态界面热管理实现跨界面热传导的长期稳定性。2)加工得到具有优异导热性能并且不影响柔性基体动态键的可逆性和活动性的导热填料。3)复合加工得到所需复合材料。基于独特结构的LM/Al2O3二元核壳填料结构设计, 结合具有动态可逆粘附弹性基体的合成,该工作中得到的复合材料完美地平衡了导热、柔性和粘附力的可逆性之间的矛盾。随着LM/Al2O3二元填料的加入,聚合物复合材料表现出出色的热导率(6.23 Wm-1K-1),允许材料内部的各向同性的热传导。同时,受益于二元填料的独特结构,绝缘的LM/Al2O3能有效地隔绝液态金属之间的电渗透网络,保证了复合材料的电绝缘性。此外,由于合成的PUPDM基体展现出超高的适用于多种基板的可逆粘附力(4.48 MPa, Al板,80℃),以及LM在基体和刚性填料的界面处为聚合物分子链链段的运动提供更多的自由度,有利于动态氢键的可逆解离与缔合,因此所得到的PUPDM/LM/Al2O3复合材料同样表现出出色的可逆黏附力(1.50 MPa, Al板,80℃),可以承担起一个10.66 kg的水桶。图3 PUPDM/LM/Al2O3复合材料的界面热管理展示 复合材料与基板之间出色的氢键结合作用实现了零压状态下的低接触热阻(18.28 mm2K W-1)。此外,这种动态可逆的氢键作用保证接触界面拥有良好的长期稳定性,即使复合材料与铝板的热膨胀系数不匹配,但是经过7500次热循环,接触热阻仍然没有明显上升。这种在高导热热界面材料上构筑动态可逆的界面相互作用的概念在微电子冷却技术、热电装置、大功率可穿戴设备等先进电子设备中具有广阔的应用前景。
  • 大连化物所通过调控原子界面催化过程实现高效储钠
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究组(509组)邓德会研究员团队与郑州大学张佳楠教授团队合作,通过界面化学工程将二维2H-MoS2纳米片组装在氮掺杂碳限域的铁原子催化剂(Fe(SA)-N-C)载体上,并将其作为钠离子电池的负极材料,在Fe(SA)-N-C的催化作用下,有效调控了1T/2H-MoS2在充放电过程中的相变和结构演化过程,从而实现高效储钠。  在“双碳”目标下,可再生能源逐步成为能源消费增量的主体。在推动可再生能源利用的关键技术中,储能技术的发展已成为实现“双碳”目标的重要支撑技术之一。与技术相对成熟的锂离子电池(LIBs)相比,钠离子电池(SIBs)因钠资源丰富、成本低廉等优势,在大规模储能领域中展现出广阔的应用前景。MoS2已被认为是最有前途的SIBs的负极材料之一,但由于其结构不稳定,且在充放电过程中MoS2结构变化而导致部分容量不可逆。因此,在充放电过程中精准调控MoS2的结构稳定性以及相变可逆性是提高其储钠性能的关键。  邓德会团队在前期二维MoS2表界面调控和催化研究(Nat. Catal.,2021;Nat. Commun.,2020;Nat. Commun.,2017;Energy Environ. Sci.,2015)的基础上,发现并证实多孔MoS2在钠离子存储中表现出优异的电化学性能(J. Energy Chem.,2022;Mater. Today Energy,2018),并揭示金属—氮—碳(M-N-C)电极储钠性能的增强机制与固体电解质界面(SEI)膜之间的关联性(Energy Environ. Sci.,2022;Nano Res.,2022)。  在此基础上,研究团队通过界面化学工程将二维2H-MoS2纳米片组装在Fe(SA)-N-C载体上,发现在功函数差异的驱动作用下,Fe(SA)-N-C的电子会向2H-MoS2转移,进而增强了富电子MoS2上的S位点对钠离子的吸附作用,而缺失电子的Fe(SA)-N-C上的Fe位点的自旋态会发生改变,从而优化了Fe位点的电子结构和催化活性,相较于氮掺杂碳(N-C)和纯碳,Fe(SA)-N-C限域的Fe位点可以在充放电过程中有效促进1T/2H-MoS2的相变和结构演化过程,从而实现高效储钠。因此,MoS2/Fe(SA)-N-C展现出优异的循环稳定性,在2.0 A g-1的大电流密度下经过2000次循环后,储钠容量仍保持在350 mA h g-1左右。该研究为设计高活性和高稳定性的钠离子负极材料提供了新思路。  相关研究以“Evolution of Stabilized 1T-MoS2 by Atomic-Interface Engineering of 2H-MoS2/Fe-Nx towards Enhanced Sodium Ion Storage”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上,并被选为VIP(Very Important Paper)文章。该工作的第一作者是我所509组联合培养博士研究生夏会聪。以上研究工作得到了国家自然科学基金、中科院B类先导专项“功能纳米系统的精准构筑原理与测量”、丹麦Haldor Topsoe公司国际合作等项目的资助。
  • 面向动态表界面分析的原位液相二次离子质谱新技术研究获进展
    表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。近年来,中国科学院化学研究所活体分析化学实验室研究员汪福意课题组,针对动态表界面分析问题以及诸多重要表界面过程处于“黑箱”状态的研究现状,基于高化学稳定、高真空兼容的微流控装置,将一系列液体表面以及固液界面引入超高真空的SIMS分析系统中,发展了多场景适用的具有高界面敏感(ppm)、高时间分辨(μs)、超薄信息深度(nm)和“软”电离等特性的原位液相ToF-SIMS新技术,以直接分子证据可视化追踪液体表面/固液界面的微观弱相互作用,并原位实时监测界面电化学双电层结构、反应中间体、鉴定电催化活性位点等。迄今为止,原位液相ToF-SIMS是唯一已知可原位探测固液界面的质谱分析技术,为揭示电化学、能源、环境、生命等领域重要表界面微观结构的时空演化机理及界面构效关系提供了高效、独特的研究平台。汪福意课题组与中国科学院生态环境研究中心曲久辉院士/胡承志研究员团队合作,将原位液相SIMS技术拓展至纳米孔道膜分离过程中的固液界面分析,原位捕获了离子水簇在纳滤膜孔道传输过程的水合形态变化,提供了基于水簇结构转化与其膜孔传输适配的纳滤膜分离技术原理,为高性能纳滤膜材料开发与膜分离系统优化提供了实验依据。相关成果发表在《科学进展》(Science Advances 2023, 9, eadf8412)和《美国化学学会纳米杂志》(ACS Nano 2023, 17, 12629)上。汪福意课题组与南昌大学教授陈义旺/胡笑添团队合作,发展了原位液相SIMS技术,研究了钙钛矿太阳能电池领域饱受困扰的前驱体溶液老化问题,以直接分子证据揭示了三阳离子混合卤化物钙钛矿前驱体溶液在长期存储过程中的老化反应机制。进而,该团队针对前驱体离子老化机制提出了Lewis酸/碱添加剂减缓钙钛矿溶液老化的策略,并阐释了添加剂化学结构与添加剂抑制老化效果之间的构效关系。研究表明,原位液相ToF-SIMS新技术可作为“分子眼”促进对钙钛矿溶液化学的认知,推动了钙钛矿器件产业化策略的设计和开发。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202215799)上。进一步,该团队以低维钙钛矿前驱体溶液中的胶体粒子作为研究对象,应用原位液相ToF-SIMS可视化间隔阳离子参与的胶体组装行为,揭示了氢键作用与量子阱结构优化的新机制,为实现高效低维钙钛矿太阳电池印刷提供了实验依据。相关成果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2023, 62, e202303177)上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。液相ToF-SIMS原位剖析钙钛矿溶液老化化学及抑制老化作用机制
  • 气液界面+质谱,点燃“新引擎”——对话“质谱青年奖”获得者张新星
    气液界面在自然中无处不在。无论是江河湖海还是云雾的表面,均为气液界面,因此气液界面的表面积极其庞大。分子在气液界面跳跃、旋转、碰撞、融合,创造着化学奇迹。如此庞大的表面积上发生的化学反应,通常又有着速率极快的特征,因此,气液界面化学反应的研究对理解天气和气候的生成和变化,以及污染的生成等环境和健康领域都有着重大的意义。然而,严格定义的气液界面极薄,通常为水面上的一层或者几层分子。因此要对这薄得几乎不可察觉的界面进行分析,并跟踪其中的化学反应,面临着极大的技术挑战。 为此,南开大学化学学院张新星研究员通过在质谱电离进样过程的物理原理上的创新,层层递进地开发了三代“场致液滴电离-质谱(FIDI-MS)”技术,该技术可以以极高的选择性采样气液界面物种,而不受到溶液内部物种的干扰。利用该技术,张新星在气液界面上的关键有机和无机物种的化学反应分析中取得了系列重要发现,将目前气液界面的化学反应研究推向纵深。因其在气液界面质谱方法学开发极其应用等方面的杰出成果,张新星研究员获得了由中国物理学会质谱分会设立并颁发的“质谱青年奖”(该奖项的设立是为了推动我国质谱事业的发展,提升其国际地位和影响力,针对青年质谱工作者设立的最高学术奖励,每两年评选一次,以此鼓励和表彰四十周岁以下青年学者在质谱领域取得重大创新性研究成果,每次评选不超过两人)。当前气液界面研究的最新进展有哪些?气液界面的化学反应研究面临哪些难题与挑战?未来气液界面质谱学研究的应用前景有哪些?带着这些问题,仪器信息网特别采访了南开大学化学学院张新星研究员,与他进行了深入的交流。南开大学化学学院 张新星研究员气液界面化学反应研究为何重要?张新星介绍到,气液界面在自然界中无处不在,同时气液界面上发生着丰富多样的化学反应和相互作用,这些反应对于理解大气化学、环境污染和生物体内的生化过程至关重要。通过研究气液界面化学反应的机理和动力学,可以揭示关键反应路径、开发环境友好型化学过程等,对推动大气化学、生物化学发展以及解决环境和能源等关键问题具有重要意义。创新质谱装置攻关实战,破解气液界面选择性采样难题怎样的背景下将质谱技术与气液界面化学反应研究结合在了一起?张新星坦言,在技术上,有选择性地研究气液界面非常困难,这是由于气液界面层极薄,很难在不受到体相物种干扰的前提下,高选择性地采样界面层。国际上能够研究气液界面的技术非常有限,常见的方法有非线性光学技术、常压光电子能谱技术、全内反射荧光法等。而质谱作为化学测量学中最常见的分析技术之一,在分析物质成分和分子结构、跟踪反应机理等方面有着天然的优势。然而常见的质谱电离进样技术使待测溶液发生库仑爆炸,溶液中的物种无差别进样,无法对气液界面进行选择性进样。针对以上技术难题,张新星团队通过对质谱电离过程进行创新,发展了系列具有极高气液界面选择性的“场致液滴电离-质谱装置(FIDI-MS)”,装置操控液滴实现从液滴的气液界面上撕扯出待测物的行为,实现了很高的气液界面选择性。不过,新装置的开发也并不是一帆风顺的,张新星团队不断摸索创新,从敞开式气液界面质谱分析→进样气体氛围精确可控的封闭式气液界面质谱分析→悬浮式气液界面质谱分析,通过技术的层层递进,实现了气液界面精准分析的逐步提高。张新星团队开发的系列递进式FIDI-MS装置气液界面研究发力 揭示雾霾隐藏成因在气液界面质谱分析方法研发的基础上,张新星团队还开展了一系列气液界面化学反应的精准分析研究,取得了多项重要成果。谈到至今仍然时有爆发的雾霾天,张新星介绍其团队还曾研究雾霾中二氧化硫氧化成硫酸根的形成途径。近年来,我国秋冬季雾霾天气呈现常态化趋势,造成严重的空气污染,对人类身心健康均造成极大威胁。“中国华北地区雾霾成分的很大特点之一在于其含有质量分数极大的硫酸根。尽管已有大量关于硫酸根形成原因的研究,但在雾霾中观测到的硫酸根浓度和实际观测到的硫酸根含量间仍存在巨大差距,这表明雾霾中仍存在有未知的二氧化硫氧化成硫酸根的途径。基于此,我们团队利用自搭建的新型质谱技术手套箱FIDI-MS ,精确控制环境的气体氛围,发现二氧化硫在气液界面处可以吸收UVA光子,以自旋禁阻的方式跃迁到其三线态,然后与氧气和水反应,并快速形成硫酸根。这一交叉了分析化学、量子化学和大气化学的综合发现填补了对二氧化硫激发态氧化化学反应认知的空白,说明了在气液界面处太阳光引起的二氧化硫的光化学氧化可能是雾霾中硫酸根的重要来源。”张新星补充道。此外,张新星团队近期的成果中值得一提的还有其利用FIDI-MS技术发现了违反常识的实验现象。大气中含量第二高的碳氢化合物——异戊二烯,作为挥发性极强、极性极小的有机化合物,被发现不但可以吸附在气液界面上,还能以极高的速率被氧化成上百种产物,这一成果开辟了气液界面上异戊二烯氧化化学分析的新赛道。张新星研究员及其团队在实验室在采访的最后,张新星也坦言道,“国际上关于气液界面相关的研究正不断取得新的进展,而国内相关的研究起步相对较晚。不过,在过去的两年中,我们已经看到一些团队陆续开始从事气液界面的研究工作,这个领域在国内逐渐兴起,众人拾柴火焰高,这是值得我们从事气液界面研究的工作者感到高兴的事情。”在谈到下一步的研究计划时,张新星表示,团队目前主要聚焦在气液界面相关的化学反应研究工作,而自然界中有着多种形式的界面,包括气固界面、液固界面、液液界面等。团队未来将致力于通过改进和创新现有技术,提高界面质谱的选择性,探索多种形式的界面化学反应研究,从而更好地揭示界面化学反应的细节和动态过程。合影采访编辑:万鑫
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • 锂电池界面电化学过程原位研究获进展
    pspan style="font-family: 微软雅黑, Microsoft YaHei "  由于化学电源的电化学性能与电极/电解质的界面过程密切相关,涉及电荷转移、离子输运、相的生成和转化等步骤,在纳米尺度上深入理解界面过程对于器件设计和材料优化具有重要意义。然而能源体系的运行环境非常复杂,涉及无水无氧环境、有机/离子液体电解质体系、多相界面、多电子反应过程等,因此,针对性发展复杂体系下电化学界面高分辨原位成像方法,从而实现电化学反应过程的实时追踪和原位分析,也是电分析化学的挑战和难点之一。br//span/ppbr/span style="font-family: 微软雅黑, Microsoft YaHei "  中国科学院化学研究所分子纳米结构与纳米技术院重点实验室文锐课题组致力于锂电池界面电化学过程的原位研究并取得系列进展。在前期工作中,他们利用氩气环境下的原位原子力显微镜(AFM),在以[BMP]sup+/sup[FSI]sup-/sup为代表的离子液体中,捕获纳米尺度上锂离子电池中高定向热解石墨(HOPG)表面固态电解质界面膜(SEI)的初始成核、逐步生长及成膜的系列演化过程,并揭示了不同离子液体中SEI膜的界面性质及与电池性能相关性。相关成果发表在 ACS Applied Materials & Interfaces 上。br/br/  进一步,研究人员开展了具有高理论能量密度(2600 Wh/kg)锂硫电池中界面电化学反应的系列研究。利用电化学 AFM 及谱学分析表征,实现了在锂硫充放电过程中还原产物硫化锂和过硫化锂在界面形貌演变及生长/溶解过程的原位监测(图1),并提出过硫化锂在循环过程中不可逆反应产生的界面聚集是导致电极钝化及电池性能衰减的原因之一。恒电流控制下的原位成像研究表明,电流密度大小影响界面形貌及沉积物种类,直观揭示了结构-性能关联性。相关成果发表在 Angewandte Chemie International Edition 上。br/br/  近日,科研人员利用电化学 AFM 进一步探究了在高温条件下锂硫电池在LiFSI基电解液中的界面行为与反应机制(图2)。研究发现,在高温60℃时,阴极/电解质界面在放电过程中会原位形成一层由LiF纳米颗粒构成的功能性界面膜,并通过物理尺寸效应及化学吸附作用捕获电解液中的长链多硫化锂。此过程有利于抑制多硫化物穿梭效应及副反应的发生,并增强界面电化学反应的可逆性。该研究通过原位表征与分析为高温电化学行为在纳米尺度提供了直接的界面机理解释,也为锂硫电池的电解液设计及性能提升提供了思路和指导。相关成果发表在 Angewandte Chemie International Edition 上。br/br/  研究工作得到了科技部、国家自然科学基金委和中科院的支持。/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/0a9eee39-49a2-4c61-9964-34c61b6891a0.jpg" title="1.jpg"//ppspan style="font-family: 微软雅黑, Microsoft YaHei "strong图1.原位AFM电化学池示意图(左)及放电中锂硫界面反应过程的原位AFM图像(右)/strong/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/f9c7499b-e1eb-4d46-8f9d-0cdc07b1cc1b.jpg" title="2.jpg" style="width: 500px height: 252px " width="500" vspace="0" hspace="0" height="252" border="0"//ppspan style="font-family: 微软雅黑, Microsoft YaHei "strong图2.高温60℃下锂硫电池中阴极/电解质界面过程示意图/strong/span/p
  • 中国科大在电催化界面过程成像分析上取得新进展
    近日,中国科大环境科学与工程系在电催化界面动态过程的原位成像分析方面取得进展,研究成果以“Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts”为题发表于Nature Communications上(Nature Communications 2022,13: 7869)。   污染物的电催化转化是水污染控制技术的重要方法。纳米催化剂的表界面是电催化反应发生的场所,因此在微观上理解电催化反应过程,建立纳米催化剂结构与催化转化性能的构效关系是提高催化剂活性的关键。传统电催化研究通过电极电流密度和催化产物,评估催化剂性能,难以在微纳尺寸上原位实时分析单个催化剂的活性分布或反应动态过程。 图1.单个二硫化钼纳米片的充电和催化过程成像分析示意图   针对上述问题,刘贤伟教授课题组博士生赵小娜和周晓丽博士通过表面化学调控,充分发挥了表面等离子体成像技术对电极表面电荷密度高度敏感的特性,原位成像分析了层状二维电催化材料的充电电荷密度分布和电催化界面电荷交换过程。该方法消除了电极表面充放电流的干扰,分别定量了催化剂表面的充电和氧化还原电流分布,结合课题组前期发展的表面等离子激元原位蚀刻技术(Chem, 2021, 7: 1626-1638),发现了二硫化钼催化性能和层数之间的依赖性,建立了催化剂导电性和电催化性能之间的关系。该研究对于设计新型高效污染控制电催化纳米材料具有重要的意义。 图2.单个二硫化钼纳米片随层数变化的电催化过程   该项工作得到了国家自然科学基金的资助,也获得了环境科学与工程系陈洁洁教授课题组在量化计算方面的支持。
  • 浅析电化学型气体传感器的工作原理和检测方法
    p  要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。/ppstrong1.电化学型气体传感器的结构/strong/pp  电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。/pp  电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。/ppstrong2.电传感器工作原理/strong/pp  电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。/ppstrong表1 各种电化学式气体传感器的比较/strong/ptable cellspacing="0" cellpadding="0" border="1"tbodytr class="firstRow"td style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"种类/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"现象/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"传感器材料/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"特点/span/strong/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"恒电位电解式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"气体扩散电极,电解质水溶液/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"通过改变气体电极,电解质水溶液,电极电位等可测量CO、Hsub2/subS、HOsub2/sub、SOsub2/sub、HCl等/span/p/td/trtrtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子电极式/span/strong/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电极电位变化/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子选择电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量NHsub3/sub、HCN、Hsub2/subS、SOsub2/sub、COsub2/sub等气体/span/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电量式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量Clsub2/sub、NHsub3/sub、Hsub2/subS等/span/p/td/trtrtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质式/span/strong/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"测定电解质浓度差产生的电势/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"适合低浓度测量,需要基准气体,耗电,可测量COsub2/subsub、/subNOsub2/sub、Hsub2/subS等/span/p/td/tr/tbody/tablep表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。/pp2.1 恒电位电解式气体传感器/pp  恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示:/pp    I=(nfADC)/ σ/pp  式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。/pp  在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。/pp  自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、Nsubx/subOsubY/sub(氮氧化物)、Hsub2/subS检测仪器等产品。这些气体传感器灵敏度是不同的,一般是Hsub2/subS NO NOsubb/sub Sq CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。/pp  以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如Hsub2/subS、NO、NOsubb/sub、Sq、HCl、Clsub2/sub、PHsub3/sub等,还能检测血液中的氧浓度。/pp2.2离子电极式气体传感器/pp  离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。/pp  现以检测NHsub3/sub传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NHsub4/subsup+/sup,同时水也微弱离解,生成氢离子Hsup+/sup,而NH4sup+/sup与Hsup+/sup保持平衡。将传感器侵入NHsub3/sub中,NHsub3/sub将通过隔膜向内部渗透,NHsub3/sub增加,而Hsup+/sup减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NHsub3/sub浓度。除NHsub3/sub外,这种传感器海能检测HCN(氰化氢)、Hsub2/subS、Sq、C0sub2/sub等气体。/pp  离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。/pp2.3电量式气体传感器/pp  电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。/pp  现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成Hsup+/sup,在两铂电极间加上适当电压,电流开始流动,后因Hsup+/sup反应产生了Hsub2/sub ,电极间发生极化,发生反应,其结果,电极部分的Hsub2/sub被极化解除,从而产生电流。该电流与Hsub2/sub浓度成正比,所以检测该电流就能检测Clsub2/sub浓度。除Clsub2/sub外,这种方式的传感器还可以检测NHsub2/sub、Hsub2/subS等气体。/ppstrong3.传感器的检测/strong/pp  电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NOsub2/sub、Osub2/sub、SOsub2/sub等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。/pp  综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。/p
  • 应用 | 检测方法对电气绝缘油界面张力的影响
    研究背景变压器油是变压器内部重要的绝缘材料,油品质量直接影响到变压器的电气性能和运行寿命。在运行中,变压器油在电气设备中因受湿度、光线、金属催化、水分及电场等因素的影响,会生成羧酸、醇等亲水极性物质在油-水界面的定向排列会改变界面上分子排列状况,从而降低界面张力。因此,界面张力是变压器油标准中的一项重要指标,能够反映新油在精炼时的纯净程度和在运行中油的氧化程度。实验仪器仪器:本文采用德国KRÜ SS力学法表界面张力仪K11测定界面张力。最新款表界面张力仪型号Tensíío。KRÜ SS 力学法表面张力仪Tensíío方法:不同产品标准所采用的界面张力检测方法不同,具体如表1和2所示。可以看出,各方法的测量原理相同,测定绝缘油的界面张力的方法大都采用的是圆环法,主要区别就是界面形成后即非平衡条件、接近平衡条件及平衡条件下测试的保持时间不同。表1 变压器油界面张力检测方法表2 不同界面张力检测方法试验条件对比结论与讨论由表3和图1可得,界面张力均随界面保持时间延长而降低。其中,新变压器油的酯类油比矿物油的界面张力低很多,这是由于酯类油的分子结构具有亲水性,使其界面张力相应减小。 表3 新油不同试验条件界面张力检测结果对比 图1 新油的界面张力随时间变化曲线表4和图2试验结果表明,老化后的矿物油和酯类油的界面张力也随界面保持时间延长而降低。与新油比,老化后变压器油的界面张力均比新油的界面张力低,尤其是矿物油D油的界面张力从新油46mN/m左右降至16mN/m左右。表3数据显示该样品抗老化、氧化性较差,因此容易生成醛、酮、羧酸等老化产品,而这些老化产物均为极性物质,在油水界面上做定向排列,从而使油品老化后油水间界面张力降低。E和F油为合成酯变压器油,虽然本身界面张力不高,但其氧化稳定性较好,老化前后界面张力变化不明显。表4 老化油不同试验条件界面张力检测结果对比 图2 老化油的界面张力随时间变化曲线对比图3和图4发现,老化油界面张力随着两相界面的保持时间呈较明显下降趋势,说明这一过程在老化变压器油中比在新变压器油中更为明显。图3 新矿油和老化矿油的界面张力随时间的变化曲线 图4 新酯类变压器油和老化酯类变压器油界面张力随时间变化的曲线IEC62961:2018方法介于ASTMD971方法和EN14210方法之间,在界面形成180s时测量界面张力更加符合实际,同时测量时间对测量结果影响较小。从图3和图4也可以看出,老化油的界面张力随时间变化较为明显,主要表现在界面张力曲线从30s到180s的变化斜率较大,而在界面形成的180s时测量界面张力数值与300s的测量数据很接近,可以提供一个较为真实的界面张力值,并且检测时间相对较短。新颁布的变压器油国际标准IEC60296:2020《电工流体电气设备用矿物绝缘油》,其界面张力检测规定采用ASTMD971-2020方法和IEC62961:2018两种方法,为了得到更有效的数据和满足实验室快速高效的日常检测工作,推荐采用IEC62961:2018方法为宜。结论界面张力是反映变压器油精制过程中洁净程度的指标,并与油品的老化程度密切相关。国内外检测变压器油界面张力方法的主要区别在于界面形成后的保持时间不同。实验室通过采用圆环法考察测量时间对界面张力值的影响,结果表明老化油的界面张力受时间影响较为明显,同时也说明变压器油的界面张力与油的劣化程度密切相关。通过考察不同方法测量时间对测量结果的影响,推荐采用IEC62961:2018方法对变压器油进行界面张力的检测,该方法既能减小因测试时间不同而引起的误差,又能快速进行检测。参考文献[1]张绮,张昱,周东等.不同检测方法对电气绝缘油界面张力的影响[J].润滑油,2024,39(01):43-47.DOI:10.19532/j.cnki.cn21-1265/tq.2024.01.009.
  • 2018颗粒及表界面检测仪器盘点:八方求索 深耕用户心
    p style="text-align: justify text-indent: 2em "哲学家说,除了变,一切都不能持久。生命和社会岂不就是在新变中不断延续、更替和发展的?具体到颗粒及表界面检测圈也不例外,纵观整个2018年,诸多厂家推出了相关的新品仪器,本文将对粒度仪和比表面及孔径分析仪两种代表性较高、应用较广泛的仪器进行盘点,并对走访、调研中得到的现象进行不完全归纳,与有兴趣的读者朋友们一同参考交流。/pp style="text-align: justify text-indent: 2em "strong粒度仪新品现象1:粒度粒形分析一体机热度高/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201812/uepic/77c0b2da-2acf-4fbc-b233-ac505ae48aab.jpg" title="120a9350ee52d8042828b5bbf783162c_看图王.jpg" alt="120a9350ee52d8042828b5bbf783162c_看图王.jpg"//pp style="text-align: justify text-indent: 2em "粒度仪种类繁多,激光粒度仪是其中应用最广泛的一种,使用激光粒度仪进行粒度分析可以追溯到遥远的1968年。半个世纪以来,仪器的发展经过了散射理论的变迁、探测器的排布、光路系统的更迭、分散方法的变换等等,激光衍射技术(散射技术)测量粒度和粒度分布的技术和应用不断成熟。而对粒形的观测则主要有动态法和静态法两种方法,粒形信息,如球形度、长宽比、凹凸度等,对生产工艺、粉末流动性、溶出度等因素有着重要的影响。近年来,越来越多的用户渴望在同一台仪器上能够一并得到粒度和粒形信息,特别是大学、科研院所的基础研究,以及制药、3D打印、电池、水泥等行业应用领域,对粒度粒形一体机的需求不断上升。/pp style="text-align: justify text-indent: 2em "在2018年,多家厂商推出了粒度粒形一体的新品仪器。麦奇克的激光粒度粒形分析仪Sync则将激光衍射法粒径测量和动态图像法粒形检测结合在了一起。仪器最大的特色是可在同一仪器,同一样品,一次进样,同一样品池,一次测量,同时得到粒径粒形结果。仪器能够提供每个单独颗粒的多于30种的大小和形态参数,从而为以数量和体积分布的结果提供较多的数据源。另外,在检测中,sync的激光衍射法粒度测量和动态图像法粒形测量可以智能化自动切换,总测量时间在10-30秒之间。以陶瓷工业中非常重要的填料硅灰石为例,使用sync动态图像法即可对硅灰石的白色针状形貌参数进行分析,来确定究竟应该以何种特定比例添加硅灰石,以获得最佳增强效果。除sync外,据不完全统计,2018年推出的动态法粒度粒形一体机新品还有珠海欧美克的DS-1000动态图像仪。/pp style="text-align: justify text-indent: 2em "著名粒度仪厂商马尔文帕纳科则从静态图像分析的角度切入,推出了Morphologi 4系列静态粒度粒形及化学组分分析仪。不同于动态图像法,M4采用了自动静态显微成像的观测方法,颗粒样品被均匀分散至水平的观测平台上,在同一焦平面的移动中,用高达1800万像素的CIMOS相机对颗粒粒度和形貌进行观测。静态法测量粒形参数的时间要长于动态法,但是准确度更高,此外,该仪器还支持对测量样品中某单个颗粒进行多次重复观察。/pp style="text-align: justify text-indent: 2em "strong粒度仪新品现象2:多款纳米粒度仪新品涌现/strong/pp style="text-align:center"strongimg src="https://img1.17img.cn/17img/images/201812/uepic/8675b9fd-bf13-46c8-b8e5-3abc78597406.jpg" title="bbb_看图王.jpg" alt="bbb_看图王.jpg"//strong/pp style="text-align: justify text-indent: 2em "纳米粒度仪一般采用动态光散射(DLS)的原理,悬浮液中的纳米颗粒、乳液液滴和分子,在液体分子布朗运动的碰撞下,也在进行类似分子布朗运动的运动,激光照射动态的颗粒或分子,动的颗粒会引起散射光强度波动,这种波动频率通过颗粒运动的速度,与粒径产生联系,从而得出粒径值,粒径越小,分子在布朗运动下移动的速度就越快。纳米粒度仪具有准确、快速、可重复性好等优点,在诸如能源、材料、医药、化工、冶金、电子、机械、轻工、建筑及环保等众多领域有重要的应用,纳米材料的粒度分析都是十分必要的。/pp style="text-align: justify text-indent: 2em "据不完全统计,2018年,多家知名粒度仪厂商都有新品纳米粒度仪推出,这里面包括:HORIBAnano partica SZ-100V2动态光散射纳米颗粒分析仪、马尔文帕纳科Zetasizer® Pro和Zetasizer® Ultra纳米粒度电位仪、珠海欧美克NS-90纳米粒度分析仪、盈诺 TSM 纳米粒度仪等。这其中,SZ-100V2的样机在analytica China 2018上正式亮相。该仪器最大的特点是可同时实现对纳米粒子粒径、Zeta电位和分子量三类参数的测量。该仪器采用动态光散射原理(DLS)测量粒径大小及分布,测量范围在前代产品的基础上有所延展,为0.3nm-10um;采用激光多普勒电泳法测量Zeta电位,测量范围在-500—+500mv之间;分子量的测量则通过静态散射强度得出,其中分子量的测定支持Mark Houwink方程和德拜记点法两种方法,测量范围在1000-2000万之间。/pp style="text-align: justify text-indent: 2em "Zetasizer® Ultra纳米粒度电位仪的最大亮点则是采用了马尔文帕纳科独家的ZS Xplorer软件。该软件具有多种操作模块,集智能化和进阶化于一体,更适合不同的新老用户按需使用。软件还能为用户测量结果提供即时反馈,以及对于低质量数据的改进提供可操作的建议。新的分析功能得到的曲线,能够从结果中更好地滤除尘埃和团聚体,有助于得到更真实的样品信息。/pp style="text-align: justify text-indent: 2em "strong比表面、孔径分析及吸附仪新品现象:省时高效成追求/strong/pp style="text-align:center"strongimg src="https://img1.17img.cn/17img/images/201812/uepic/61476e2f-9fc6-40fe-8341-d806fb4059f6.jpg" title="8acc9934807812b1d8950257a9ee358d_看图王(1).jpg" alt="8acc9934807812b1d8950257a9ee358d_看图王(1).jpg"//strong/pp style="text-align: justify text-indent: 2em "现代社会,时间和效率是王道。而比表面及孔径分析的时间却怎一个“长”字了得,其中单纯的比表分析往往要1小时左右,而如果涉及到孔径分析则动辄需要十几小时甚至几十小时的分析时间,着实让从事相关工作的科研人员们“脑壳疼”。因此如何在保证分析精度的前提下,尽量节省分析时间,成为了国内外比表面及孔径分析类仪器新品的普遍追求之一。以目前推广的新品来看,厂商们追求于节省时间主要有两种思路:一种是增加分析站数量,另一种是通过各种设计和处理方法缩短单次测量的时间。/pp style="text-align: justify text-indent: 2em "9月份发布的Belsorp miniX,其“省时核心”是专利的GDO配气优化技术,对曾测过的同类样品可自动识别“路径”,并自动匹配给气量。运用这种方法,该仪器实现了孔径分析时间的减半,原需十多个小时的检测现在仅需几个小时,原需几十小时的检测,现在仅需十几个小时。另外仪器将通量提升至4站,每站都具有独立的压力传感器,提升单次分析的样品量,仪器还可配置快速比表面测试附件,将单纯测量比表面积的时间也减半,控制在30分钟左右。/pp style="text-align: justify text-indent: 2em "精微高博的新品JW-ZQ200 静态容量法蒸气吸附仪则在投气方式方面卓有特色,不但有定点投气模式,还有定量投气模式,比表面及孔径分析时间之所以慢,重要原因之一,就是需要往复寻找特定的P/P0定点,采用定量投气模式,则采用了先以尽可能多的P/P0点绘制完整等温吸附曲线,再用公式反算特定点的方式,在提升效率的同时,依然能够保证精度。另外,仪器也将通量提升至4站。/pp style="text-align: justify text-indent: 2em "据不完全统计,其他在2018年上市的新品比表面及孔径分析类仪器还有贝士德BSD-MAB多组分竞争吸附穿透曲线分析仪、京科瑞达JK-B3000比表面积及孔径测试仪、彼奥德膜孔径分析仪MPS-1000等。篇幅有限,在此不再一一列举。/pp style="text-align: justify text-indent: 2em "总的看来,无论是激光粒度仪还是比表面及孔径分析仪的新品,都暂时缺少原理维度的颠覆性创新。但是在满足用户实际需求方面则有很大突破。创新的基础尺度有限,但创新的应用维度广阔,创新的温度也真挚,这或许就是2018年颗粒及表界面检测仪器发展的特色吧。2019年,这方天地又将发生怎样的变化呢?让我们拭目以待。/pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(84, 141, 212) "延伸阅读:/span/strong/pp style="text-align: justify text-indent: 2em "strongSync其他特点概览:/strong/pp style="text-align: center text-indent: 0em "strongimg src="https://img1.17img.cn/17img/images/201812/uepic/722f61d6-9a93-4f7d-8500-ccc33e001bde.jpg" title="1.jpg" alt="1.jpg"//strong/pp style="text-align: justify text-indent: 2em "该仪器的测量范围为0.01-4000um,支持干湿法双重进样系统,具有151个探测器,重现性小于1%。该仪器在高校科研院所、制药、金属粉体、工业矿物、陶瓷、玻璃珠、电池、油气、化工、涂料/颜料、制药、涂层、水泥、3D打印等行业有广泛的应用。/pp style="text-align: justify text-indent: 2em "strongMorphologi 4其他特点概览:/strong/pp style="text-align: center text-indent: 0em "strongimg src="https://img1.17img.cn/17img/images/201812/uepic/7d7e8fe9-7f9d-44d2-afa1-b5a8bfe100ed.jpg" title="2.jpg" alt="2.jpg" width="300" height="300" border="0" vspace="0" style="width: 300px height: 300px "//strong/pp style="text-align: justify text-indent: 2em "M4测量的粒径范围在0.5-1300um之间,此外,仪器还具有 “Sharp Edge”的自动分割/阈值算法,更容易检测和确定粒子。制药行业是M4最突出的应用领域,非常适合科研工作者进行细微研究,仪器还可以集成拉曼光谱仪升级成M4-ID,可以对混合物中的不同颗粒进行化学成分鉴定。/pp style="text-align: justify text-indent: 2em "strongSZ-100V2其他特点概览:/strong/pp style="text-align: center text-indent: 0em "strongimg src="https://img1.17img.cn/17img/images/201812/uepic/755ca843-ac0e-4d2e-ae17-1da6aa3ee70f.jpg" title="3_看图王.jpg" alt="3_看图王.jpg" width="300" height="300" border="0" vspace="0" style="width: 300px height: 300px "//strong/pp style="text-align: justify text-indent: 2em "SZ100 V2使用绿色激光光源,具有较强的信号强度,其光源功率较大,可以完成对2nm胶体金颗粒等特定材料特定粒径的应用性测量。仪器还配备了PMT检测器,具有较好的灵敏度和信噪比。双角度检测器则能满足不同浓度样品的测试需求。该仪器开发的一次性Zeta电位测量样品池可杜绝样品污染,而专用的超微量样品池,简单易用,且适合分析稀释的样品。该仪器在金属材料、高分子材料、碳纳米管、蛋白质等生物样品的测量分析领有着广泛应用。/pp style="text-align: justify text-indent: 2em "strongZetasizer® Ultra其他特点概览:/strong/pp style="text-align: center text-indent: 0em "strongimg src="https://img1.17img.cn/17img/images/201812/uepic/d272fd08-9477-4f48-9ec8-15c9802114f9.jpg" title="4.jpg" alt="4.jpg" width="300" height="300" border="0" vspace="0" style="width: 300px height: 300px "//strong/pp style="text-align: justify text-indent: 2em "Zetasizer Ultra还采用了马尔文帕纳科专利的MADLS® 技术,可以通过多角度自动检测不同粒径范围的颗粒浓度。新的可抛弃性毛细管粒径检测池实现了无损检测,将低容量(3微升)分析的粒度上限扩展到了10微米,在降低成本的同时还可提高数据质量。/pp style="text-align: justify text-indent: 2em "strongBelsorp miniX其他特点概览:/strong/pp style="text-align:center"strongimg src="https://img1.17img.cn/17img/images/201812/uepic/5b6303da-132f-4b76-a3b0-e1de557b00bf.jpg" title="5.jpg" alt="5.jpg" width="300" height="450" border="0" vspace="0" style="width: 300px height: 450px "//strong/pp style="text-align: justify text-indent: 2em "miniX的比表面积范围为0.01m2/g至无上限,孔径分布为0.35-500nm,售价约在4.5-6万美金之间。该仪器很适合高校研究所进行科学研究,在催化剂、材料类、电池、化工、医药行业、陶瓷、半导体等行业也有广泛的应用。/pp style="text-align: justify text-indent: 2em "strongJW-ZQ200 其他特点概览:/strong/pp style="text-align: center text-indent: 0em "strongimg src="https://img1.17img.cn/17img/images/201812/uepic/e5cc40f1-1990-4155-b70b-05a6e26ee134.jpg" title="6_看图王.jpg" alt="6_看图王.jpg" width="300" height="300" border="0" vspace="0" style="width: 300px height: 300px "//strong/pp style="text-align: justify text-indent: 2em "JW-ZQ200实现了蒸气吸附特性和比表面测试特性的融合。仪器采用不锈钢模块作为气路的主体,不同于空气热传导的加热方式,模块内置加热棒加热,使得模块温度控制更快速更精准。该仪器可以测量大于等于0.01m2/g的比表面积,2-500nm的介孔孔径和0.35-2nm的微孔孔径。仪器的预处理站和分析站均配备冷阱,双冷阱结构可以部集多余废气,实现绿色排放。仪器还使用了全氟醚密封圈,可耐受绝大部分有机溶剂,能够测试除超强腐蚀性外的所有气体。/p
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 工欲善其事,必先利其器——从重大科学仪器基金看表界面化学表征方法的发展
    ■ 高飞雪,吴凯,伊晓东本文总结了国家自然科学基金委员会化学科学部催化与表界面化学学科相关的国家重大科研仪器研制项目的资助概况及已批准项目的研制目标、仪器构成与应用领域,在此基础上,提出了项目申请与管理的一些建议与思考。前言 “创新科学仪器”是科学发展的原动力。运用科学仪器进行实验可以判定科学理论的正确性和准确性,发现新的现象,提出新问题,从而促进技术进步,推动相关领域的发展。国家自然科学基金委员会(以下简称“基金委”)于2011年设立国家重大科研仪器研制项目,面向科学前沿和国家需求,以科学目标为导向,资助对促进科学发展、探索自然规律和开拓研究领域具有重要作用的原创性科研仪器与核心部件的研制,以提升我国的原始创新能力【1】。我国“催化与表界面化学”近十年来得到了快速发展,某些领域的研究成果得到了国际上的肯定和关注,特别是在创新仪器研制方面瞄准国际前沿,超前部署,为今后做出原创性工作提供有力的技术支撑。希望这些与“催化与表界面化学”相关的创新仪器的成功研制将进一步推动“催化与表界面化学”的发展。一、重大科学仪器基金项目资助概况国家重大科研仪器研制项目包括部门推荐和自由申请两个亚类。自重大科学仪器研制项目设立以来,化学科学部共资助6项部门推荐的重大科研仪器项目,其中与“催化与表界面化学”相关的有4项,具体的重大仪器项目(部门推荐和自由申请)资助情况见表1和表2。表1 “催化与表界面化学”相关重大仪器研制项目(部门推荐)信息表表2 “催化与表界面化学”相关重大仪器研制项目(自由申请)信息表二、部门推荐类重大仪器研制项目在这里,我们重点介绍部门推荐类重大仪器研制项目的研制目标、仪器构成以及应用领域。1、高分辨多功能化学成像系统问题的提出:化学成像是近年来兴起的新型表征技术,它将光学成像与谱学测量相结合,可同时获得化学成份的含量和空间分布信息。由于时间和空间分辨率的限制,现有化学成像技术大多难以实现分子水平的原位检测;而且基本上是单一模式成像,难以进行分子结构和分子间相互作用的多组分/多参数分析和验证。研制目标:复杂体系中表界面分子结构和性能变化的原位、实时研究,突破材料化学、生命化学等前沿交叉领域研究的技术瓶颈。仪器构成与功能:高分辨多功能化学成像系统,以超分辨受激辐射耗尽STED光学成像为基础,将具有超高空间分辨的光学成像和质谱、光谱等谱学技术及扫描探针显微成像技术相结合,在对物质的形貌进行成像的同时,对其化学组成、表界面分子结构、分子间相互作用及其动态变化等进行分子水平的原位、实时、多参数表征。在此基础上,发展了纳米尺度和分子水平的化学成像新技术和新原理。仪器构成示意图见图1。应用领域:该仪器的建成和使用促进纳米化学、能源化学和生命化学等领域的研究取得新突破,为绿色化学、生物医药、电子工业、环境治理、能源资源等高新技术产业的发展提供高水平的综合实验平台。图1 高分辨多功能化学成像系统示意图2、基于可调极紫外相干光源的综合实验研究装置问题的提出:绝大部分现有能源和新洁净能源都涉及原子分子的物理化学过程,因此研究原子分子在气相和表面的化学物理过程一直是能源基础研究极其重要的方向。极紫外波段光源在气相原子分子和表面物种的探测中发挥着不可替代的作用。但是, 现有光源亮度较弱大大限制了在这一方向的研究能力。研制目标:研制一套基于高增益谐波产生模式的、超高亮度且具有超快时间特性的可调极紫外相干光源的综合实验装置,将先进相干光源的发展和原子分子和自由基的高灵敏度探测方法发展紧密结合起来, 将先进相干光源装置的研制与能源相关的基础物理化学研究装置的研制紧密结合起来, 希望在较短的时间内使该综合实验研究装置成为世界上独特的的基础物理化学实验研究平台。仪器构成与功能:该大型综合实验装置主要由高品质的电子直线加速器、极紫外激光高增益谐波产生放大器、极紫外光束线和实验站(含基元反应实验装置、表面光化学反应实验装置、分子束表面散射化学反应实验装置、生物质谱实验装置、中性团簇实验装置等)组成,产生的极紫外激光脉冲能量超过100 uJ,重复频率可达50 Hz,波长在极紫外区域(50-150 nm)完全连续可调,脉冲长度可实现30 fs/100 fs/1 ps切换。结合传统激光技术、离子成像技术、原子分子和自由基高灵敏度电离技术、高分辨质谱技术以及独特的UV-EUV泵浦-探测技术,该装置可以被广泛地用于研究光化学动力学、团簇结构及动力学、表面化学动力学、燃烧化学动力学、生物分子结构等能源化学相关过程的重要基础科学问题。仪器构成示意图见图2。图2 基于可调极紫外相干光源的综合实验研究装置结构图应用领域:该大型综合实验装置可用于燃烧、能源催化、大气化学、星际化学、表面科学和生物质谱分析等领域的研究。3、基于可调谐红外激光的能源化学研究大型实验装置问题的提出:化石能源的高效利用、能量转换与储存中的多相催化反应和电化学反应都是发生在表面和界面上的物理化学过程。研制基于可调谐红外激光的能源化学研究大型实验装置,从微观的原子分子尺度检测上述物理化学过程涉及的多种表面反应关键中间物种、自由基和激发态,对化石能源的优化利用和洁净能源的开发起着非常关键的作用。研制目标:国内第一个红外自由电子激光用户装置,同时也是国际上第一个面向能源化学研究的红外自由电子激光装置,使我国在低增益FEL振荡器装置研究方面达到国际先进水平,解决能源化学前沿科学问题。仪器构成与功能:结合当前自由电子激光等技术领域最新成果,该仪器由中红外到远红外波段连续可调的红外自由电子激光,和以其为光源的表界面反射吸收红外光谱、纳米红外光谱(空间分辨光谱)、和频光谱(时间分辨光谱)、光解离光谱和光激发光谱五条实验线站组成。该大型实验装置显著提升了从原子分子水平研究多相表界面过程(如(电)催化剂活性中心位本质、(电)催化剂作用机理和(电)催化反应机理)、团簇结构及其反应动力学和红外振动态激发分子反应动力学的能力。实现了原位/在线/工况探测过去只能间接推测而无法直接从实验上获知的能源化学反应关键中间体(如氧物种、表面-吸附分子成键振动等)的结构、解析相关的团簇结构及其动力学、获取分子振动激发对化学反应影响等全新的信息。发现新现象、揭示新规律,取得实验和理论的突破。仪器构成示意图见图3。应用领域:该仪器的建成将为解决能源化学的瓶颈问题的提供研究平台,使能源化学和材料化学相关领域研究取得突破性进展。图3 基于可调谐红外激光的能源化学研究大型实验装置结构图4、超高时-空分辨的离子化学研究系统问题的提出:离子是物质科学中的基本粒子之一,是稀土分离、核废料处理、离子电池、分子磁体、发光、相转移催化、土壤污染修复和离子通道等领域中重点研究对象。溶剂介质中离子化学的核心科学问题是离子溶剂化效应。溶剂化离子的结构复杂而动态,造成研究手段匮乏,理论处理棘手。研制目标:建造一套具有超高时-空分辨能力的离子化学研究系统,探索与发现离子化学中的新现象和新性质。仪器构成与功能:该系统的建成将为相对稳定的金属正离子和非金属负离子的制备提供普适的方法;所产生离子束通过电化学系统的加速、抽取、偏转、漂移和减速,软着陆到介质表界面或其它指定位置;综合利用软着陆离子束、分子束、低温和超高真空技术,实现原位制备单离子、溶剂化离子、离子对、离子配合物和聚集体等;结合超高空间分辨成像技术和超高时间分辨的超快多维光谱技术、测量单个离子的本征结构,研究受控的离子溶剂化过程,探究溶剂化离子的大小、结构、电荷和能量转移等;监控单一离子在多相表界面的迁移动力学,研究离子迁移与介质表界面结构、离子种类、离子大小和溶剂化效应等之间的内在关系;对具有特殊功能性质的稀土发光和磁学配合物,测量单个裸露离子或配位(或溶剂化)离子的光学及磁学性质等。整套仪器的主要参数指标包括:在空间分辨上约为0.01 ~ 0.1 Å;时间分辨上为fs ~ ns(不同能量测量范围);在能量分辨上能达到0.1 ~ 1 meV;为达到软着陆目的,离子束的能量小于1 eV。仪器构成示意图见图4。应用领域:该仪器将在我国超纯稀土萃取、高端稀土功能材料开发、土壤污染中重金属处理、核废料处理中的放射性离子提取与转化、磁性分子材料的设计与制备、离子电池和储能材料的研制等重大应用过程提供技术平台。图4 超高时-空分辨离子化学研究装置的主要系统功能划分上述四项仪器研制项目(部门推荐)从可调谐极紫外自由电子激光到中远红外自由电子激光,使原可探测的光谱段扩展和增强。利用其对表界面活性中间物种等进行探测,特别是对很难探测到的甲烷等的关键中间物种、自由基和激发态进行有效探测及其随时间演化的动力学过程,以及中间体物种与催化剂表面成键的探测(大多在远红外区)等,为催化及能源化学领域反应路径和机理的理解提供了重要的直接实验证据。同时,成像与光谱和质谱结合,可同时获取表界面反应的物种定量和定性以及化学组成信息,为反应机制提供可视化证据。特别是结合超高空间分辨的成像技术和超快时间分辨的多维光谱技术,研究离子的本征性质和行为,是离子化学研究的前沿,将为能源、材料和环境等领域提供重要的技术平台。上述仪器的成功研制和发展的实验方法将进一步推动“催化与表界面化学”的发展,加速创新性原创成果的产生,为“催化与表界面化学”未来发展提供了重要技术储备,同时也反映了表界面化学表证方法的发展趋势。三、创新仪器和表征方法的发展态势表界面结构与性质的演变是表界面化学的研究核心,必须借助于先进的实验技术和表征方法,既要注重挖掘和综合利用现有的实验技术,又要注重利用新的科学原理来建立新的表征方法【2】。在材料结构表征技术中,原子分辨电子三维/四维技术、基于X射线、自由电子激光和同步辐射光源的三维相干衍射成像技术、4D扫描透射显微技术(4D-STEM)和电子叠层成像术(Electron ptychography)在原子水平上研究材料体系的组成、分布、结构与性质的时空变化,对于表界面物理化学至关重要。在真实催化反应条件下与同一时间尺度下,综合使用原位X射线吸收谱学(XAS, X-ray adsorption spectroscopy)、原位X射线掠入式衍射(GID, grazing incidence X-ray diffraction)、原位傅立叶变换红外光谱(IR,infrared Fourier transform spectroscopy)、引入外加扰动(如同位素切换)的瞬变动力学分析(TKA,transient kinetic analysis)、原位光电子能谱、原位固体核磁、光催化电荷转移过程全时空域成像、球差校正扫描透射电镜二次电子成像等多种表征技术,可以同时获得多种信息,有助于人们深入理解真实催化过程和催化作用机制,总结催化活性与催化剂的内在规律,为新型高效催化剂的研制提供科学依据。通过反应器的创新设计,在电极材料与电化学表界面(固液两相及气液固三相界面)工作条件下,协同联用和同步耦合原位X光吸收光谱、表面增强振动(红外和拉曼)光谱、扫描探针显微技术(SPM)与微分电化学质谱等原位表征技术是电化学前沿研究的强大工具。原位界面和频振动光谱(SFG)、液体环境中的电化学STM、引入光、电、力、温度等外场和液体、气氛等化学环境的透射电镜(TEM)、液固界面AFM、介质环境下的X射线吸收精细结构谱(XAFS)、液相体系中的圆二色谱法等是目前介质环境下表征技术的重点与难点。基于石英音叉轻敲模式的非接触原子力显微镜(Qplus NC-AFM)技术、非弹性电子隧道谱(IETS)、针尖增强拉曼光谱(TERS)、二维飞秒红外光谱、秒X射线激光脉冲、时间,空间与能量分辨的超快超宽频多维光谱、将皮秒级太赫兹脉冲耦合到STM针尖的太赫兹(THz)STM等技术是化学键与能量迁移表征技术发展的方向。四、建议与思考我国表界面化学的研究起步较晚,作为跨度宽广、应用普遍和意义重大的一门交叉学科,表界面化学在我国经过几十年的艰苦发展,其触角已经深入到物理、化学和其他相关学科的诸多研究方向,受到人们越来越多的重视。得益于我国经济的快速发展以及国家对基础科学研究的大量投入,近十几年来一批高端精密设备被引进、改造、创制并投入到实际研究之中,在解决催化及相关方向的关键科学问题取得了重要进展。但是,目前我国高端精密仪器的制造和创制能力还不足。一方面,重要的表面分析仪器和设备都是国外垄断,制约我国表面化学乃至基础科学的发展。另一方面,我国表界面化学的研究也在一定程度上依然存在着“跟风”和急于求成现象,导致研究创新性相对缺乏,在一些需要啃硬骨头和相对冷门的方向和领域的研究动力不足。例如,人们更多关注表面反应的静态表征,但对于表面反应的动态过程研究十分有限,理论研究也比较薄弱。再如,表面扩散动力学以及低维结构的生长动力学研究等缺乏足够的重视和深入的探讨,在表面量子态调控等方面也几乎是空白。重大科学仪器研制项目是科学基金资助体系中环境支撑的重要部分,是推动科学问题导向的创新仪器研制和原创成果产生的重要平台。科学基金在持续资助创新仪器的同时,不断完善仪器基金的后续管理和支撑条件。2018年化学部学科重组后,设立了仪器创制与大科学装置应用的申请代码(B0407)。表界面化学(B02)仪器项目的申请可选择任一代码。仪器基金的会评是在学科或学部函评的基础上,学部推荐后统一由计划局组织评审。近三年来,表界面化学相关仪器项目(自由申请)的申请数不多,结题项目的优秀率也不高。对于已经结题的仪器(部门推荐)项目,结题两年后还要开展后评估工作。主要考察仪器的科学目标和应用目标完成情况、依托仪器取得的重大科研成果情况、关键核心技术的掌握和推广应用情况、仪器核心器件自主可控情况和仪器运行及其稳定性,另外还考察组织管理情况,例如:依托单位履行职责情况(包括基础设施和配套设施建设、人员配备、运行经费保障、国有资产管理等)。同时注重考察仪器研制技术团队建设和人才培养情况,成果转化及对经济社会的影响。建议依托大科学装置和基金委资助的仪器研制项目,充分发挥研制仪器在解决相关科学问题中的重要作用。针对表界面的关键科学问题,鼓励高端精密仪器的制造和基于新原理的原创性仪器研制,注重挖掘和提升现有仪器的综合有效利用,发展基于大数据和AI技术的表界面研究新方法和新范式,注重培养仪器研制、设计加工和维护专业技术人才队伍,提升我国表界面化学创新仪器的研制能力,促进学科的全面快速发展。【参考文献】[1] 2021年度国家自然科学基金项目指南[2] 高飞雪, 伊晓东. 催化与表界面化学“十四五”发展规划概述, 中国科学: 化学, 2021, 51(7): 932. doi: 10.1360/SSC-2021-0121
  • 日立电镜新发现 揭示氢致界面失效之谜
    当“安静”的铝制品遇见“淘气”的氢原子,为何“肌肤”表面就会冒出“痘痘”?这一谜团已存在超过50年。  日前,这一难题被西安交通大学单智伟教授及其课题组成员成功攻关。此项成果6月29日在线发表在世界著名期刊《自然-材料》上。单智伟教授团队采用原位、动态的先进技术手段,在纳米尺度揭示了稳定的铝制品在含氢环境下界面失效的反应机理。  (原文链接http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4336.html)  这项科研成果主要依赖的科研工具是日立的原位环境透射电镜H-9500,原位环境透射电子显微镜是研究不同外界环境对材料影响的相关研究人员不可或缺的实验仪器。日立对原位环境电镜的设计和应用一直处于全球领先水平,原位环境透射电镜设计有H-9500和HF3300两个型号。目前,国内配备有日立H-9500的单位有浙江大学电子显微镜中心、西安交通大学微纳尺度材料行为研究中心。区别于市场上其他原位环境电镜,H-9500和HF3300除可以使用特定的原位样品杆(如加热样品杆、通气样品杆等)对纳米材料进行原位观测和分析,H-9500和HF3300还可以在电子枪仍保持较高真空度的情况下,在镜筒内通入无腐蚀性的气体,在更接近常压的气氛环境中对材料进行各种性能测试,实验重现性较好,因此研究结果更为准确可靠。那么,西安交大单智伟教授团队是如何攻破这一难关的呢?生活中常见的铝制品通常稳定耐用,因为它的表面会自然形成一层致密而坚硬的氧化铝保护膜,俗称“刚玉”。但在含氢环境中,铝制品常常会在表面鼓出气泡,最终导致氧化膜保护层脱落,乃至材料失效。这一现象,被称为“氢鼓泡”。  单智伟教授团队发现,原来,对于“纤瘦”的氢原子而言,刚玉中的原子间隙如此之大,以至于它们可以在其中来去自如。氢原子的随性“游走”会破坏金属铝和刚玉之间“手拉手”的紧密联系,从而使一部分铝原子“重获自由”。这些铝原子也会在氧化物和金属铝的界面上自由运动,并在金属铝的一侧形成很多微小的坑。随着坑的不断长大,氢原子拥有足够的空间重新结合形成氢分子并对氧化膜产生压力。当坑的直径大到某一临界尺寸时,氧化膜就会被撑得发生塑性变形,并向外鼓出形成气泡。而气泡密度足够大时,氧化膜保护层便会脱落,最终导致材料失效。  这个重要发现意义非凡。传统的表面鼓泡理论只能解释气泡的生长,对于气泡的形核则缺乏理论及实验证据,西安交大单智伟教授团队的这一研究发现填补了氢致界面失效现象起源的实验和理论空白。该研究成果有助于人们找到防止氢致界面失效的方法,提高材料在含氢环境中的服役寿命,在石化、海洋、核、航空航天及半导体等工业领域有着重要的指导意义。  祝贺西安交大单智伟教授团队取得如此傲人的科研成就,也希望日立电镜能够一如既往地为广大科研工作者提供科学的解决方案,在科学道路上贡献一份力量。公司简介:   天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制