当前位置: 仪器信息网 > 行业主题 > >

电池等温量热仪原理

仪器信息网电池等温量热仪原理专题为您提供2024年最新电池等温量热仪原理价格报价、厂家品牌的相关信息, 包括电池等温量热仪原理参数、型号等,不管是国产,还是进口品牌的电池等温量热仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池等温量热仪原理相关的耗材配件、试剂标物,还有电池等温量热仪原理相关的最新资讯、资料,以及电池等温量热仪原理相关的解决方案。

电池等温量热仪原理相关的资讯

  • 产品应用|使用等温微量热法测试锂离子电池的质量和性能
    由寄生反应测量推动的研究突破过去十年中,在电池研究、开发和质量控制领域,已将原位和操作中等温微量热法(IMC)用作评估锂离子电池循环期间热流的主要方法。将电池循环至失效可能需要数月的时间,但新兴的诊断测试能够在几周内预测长期行为。此类新兴诊断方法之一是测量电池在循环过程中的寄生热。Krause等人概述了将寄生热事件与总热量生成进行分离的程序,以对寄生反应进行量化,然后利用寄生反应数据以实现:√ 判断电池质量√ 协助活性材料配方的研发√ 研究添加剂的影响√ 研究固体电解质界面(SEI)的形成和增长√ 协助循环和日历寿命预测模型的制定通过了解寄生反应 加强新电池配方的研发J. Krause等人和Jeff Dahn小组研究了不同石墨以及电极配方对电池性能的影响。他们使用TAM III微量热仪测量寄生能量并将其与活性锂损失或库仑效率相关联的早期创新者,“确认寄生能量的来源是锂化电极和电解质之间发生的反应热。”已经证明,他们的方法对研究新材料组合和预测电池寿命是有效的。先前的工作表明,从石墨锂离子软包电池的电解质中去除碳酸亚乙酯(EC)可延长循环寿命和高压运行寿命。S. L. Glazier 等人通过联用TAM III微热量仪和电池循环器测量在高压运行期间的寄生热流,研究了无EC电解质的性能。该团队测量了寄生反应的时间和电压依赖性,以表征电池中复杂的内部反应。他们发现,不含EC的电解质“在较低电压下产生更高的寄生热流,但在4.3 V以上时的表现优于含EC的电解质。”此外,不含EC的电解质在高压暴露后能够更好地恢复到较低的寄生热流。他们的工作证实,不含EC的电解质可提供出色的高性能操作,进一步的研究可帮助改善电池在低电位下的性能,以获得更成功的电池电解质配方。通过高压热流测量 评估新型电池材料L. Glazier等人还通过测量寄生热流和容量保持率对天然石墨和人造石墨电池进行了比较。事实证明,他们的TAM III微热量仪有助于“了解高压锂离子软包电池中寄生反应的电压和时间依赖性。”他们使用IMC在低电压范围内研究寄生反应,以探测电解质在负电极中的反应,然后在高电压范围内进行测试,以探测氧化的正/负相互作用。结果表明,含足够电解质添加剂负载的天然和人造石墨电极将产生相似量的寄生热,人造石墨产生的热量最少。电解质添加剂负载不足会产生更大的寄生热流,并且在高电压范围内的电化学性能显著恶化。长期循环行为表明,与人造石墨相比,天然石墨电池具有更快的容量衰减速度。该小组提出,在电解质负载不足的情况下,SEI层很薄,无法有效承受锂化过程中天然石墨颗粒的机械膨胀,并且由于新的SEI在暴露表面形成,会导致不可逆膨胀和更大的容量衰减率。通过评估寄生反应 为优化高镍NMC阴极制定基线C. D. Quilty等人在研究富镍锂镍锰钴氧化物(NMC)阴极电池的研究中也评估了新型锂离子电池材料。NMC提供了高能量密度,但受到潜在的容量衰减较高的影响,因此必须谨慎限制其容量。要最大限度地提高NMC电池的寿命和高容量,需要使用一套工具来测量容量衰减机制,包括操作中IMC实验。C. D. Quilty等人使用TAM IV微热量仪实时测量(去)锂化过程中的热量,以全面了解了电池退化过程。他们指出,IMC是一个“强大的非破坏性工具,能够以超高精度捕捉循环电池释放的瞬时热流”,为他们的研究提供了帮助。他们发现,在更高电压下,容量衰减率的增加可能由更大的热能浪费或更低的电化学效率引发。他们的结论为未来的NMC阴极优化设定了基准。评估预锂化 对新型锂离子电池加工技术的影响预锂化是一种新的锂离子电池化成方法,该方法在电池单元运行之前增加活性锂含量。预锂化可补偿形成循环中的锂损失,如果操作正确完成,有望获得高能量密度和更好的循环性能。然而,对预锂化可能产生的负面影响仍处于研究阶段。Linghong Zhang等人使用TAM III微热量仪评估了预锂化过程和相关的寄生反应。第一个循环期间,预锂化电池产生了额外的寄生反应,但在三个循环后,“在预锂化电池和对照电池中观察到类似的来自寄生事件的热信号,表明预锂化的稳定性,以及可能不存在长期的副作用。”该研究首次展示了应用等温微量热法评估预锂化,并提供了有关该程序的有前景的结果。他们得出结论,“操作中等温微量热法是表征锂离子电池预锂化应用的有力工具。”未来的研究可继续优化预锂化,监测预锂化添加剂对大规模安全形成电池的影响尤为重要。研究背后的技术上述研究均使用到TA仪器的TAM系列微量热仪,这是一款先进的分析工具,可在受控温度条件下测量样品的热行为。许多研究将TAM与恒电位仪或电池循环器配对使用,使它们能够测量电池运行期间的热流,以获得可靠的结果。TA仪器全新推出的电池循环微量热仪解决方案专为这一应用而构建。该方案将TAM IV微量热仪与BioLogic VSP-300恒电位仪搭配成一个集成系统,从而形成一个端到端的运行中(in-operando)测量工具,在灵活和直观的系统中实时揭示电池在用户定义的温度和电压曲线下的详细热-电化学特性。现在,各级研究人员和科学家都可以通过无缝系统控制和数据分析来测量操作中的电池热流,从而缩短测试时间、加快决策。电池循环器微型量热仪解决方案包括两个主要系统的无缝软件和硬件集成:TAM IV 微型量热仪——可在受控温度条件下测量样品热行为的最先进的分析工具BioLogic VSP-300 恒电位仪/循环器——用于探测材料电性能的研究级电化学分析工具高级集成√ 仅通过一个软件接口,即可提供无缝系统控制√ 实时汇总数据,无需等待漫长的实验完成即可查看初步结果√ TAM ASSISTANT软件可一键进行数据可视化分析,更快提供结果和新见解卓越生产率√ 可同时循环并测量多个电池单元和外形尺寸的寄生热量√ 无需处理或操纵电线,消除了对专项工程的需求以及与定制OEM产品相关的不安全操作风险灵敏可重复√ 温度范围扩展至4℃-150℃,更好模拟现实世界中的应用√ 无与伦比的自放电测量的灵敏度和温度稳定性
  • 第一届“锂离子电池热测试主题研讨会”暨新品发布会成功召开
    近日,由中国仪器仪表学会主办,仰仪科技、泰默检测承办的第一届“锂离子电池热测试主题研讨会”暨新品发布会在杭州成功召开。此次会议召集了50余位来自知名企业、科研院所、高等院校的专家学者,针对当下锂离子电池行业发展态势、电池测试标准体系、锂电热安全与热管理技术、相关仪器仪表技术与应用的发展等议题进行了深入交流。中国计量大学教授、仰仪科技总经理叶树亮作为本次大会发起者出席活动,并发表开幕致辞。他呼吁参会嘉宾以开放、合作的精神共同推动行业整体进步。仰仪科技资深应用工程师邱文泽博士和格致检测委派嘉宾代表此次也应邀出席研讨会议,分别为锂电池热安全和热管理测试问题带来了完善的仪器与测试服务解决方案。此外,江汉大学王德宇教授、合肥学院杨续来教授、中汽研林春景博士、中国科学技术大学段强领博士,依靠各自在锂电池相关领域的深入研究为设计高性能电池产品,提升电池热管理系统安全提供了精彩的分享。仰仪科技与泰默检测重磅联手,锂电池热测试系列新品双双亮相!在大咖演讲之余,一场精心设计的新品发布会在嘉宾惊喜的掌声中揭开神秘的幕布。BIC-400A 电池等温量热仪电池等温量热仪在高集成度的台式主体外,配备了高性能油浴,使仪器控温范围达到-40℃-100℃;同时,借助可编程的恒流源控制,精确提升量热仪热焓测量准确性,为仪器带来强劲的性能提升。电池等温量热仪最大支持8通道传感器,全面测量锂电池样品各个方位的温度变化,大大降低温度分布对测试结果的影响。热腔支持多种尺寸锂电池样品测试需求,包括软包、方盒、18650、21700、26650等,基本覆盖市面上所有的电芯种类,让电池热测试拥有更加卓越的体验。TCA 3DP-160 3D热物性分析仪3D热物性分析仪依据3D传热模型和热成像测温原理研发。无须破坏制样的特点让这款仪器更适合于检测锂电池样品在实际应用场景中的性能。通过热像仪采集数据和反演分析能够获取丰富的热物性数据,让实验者在工作量大幅减少的同时还能更加准确地把握复杂样品的热物性。不仅如此,3D热物性分析仪还通过合作黑体在线校准功能、高适用性的控温样品舱及屏蔽罩等设计,大大削弱外部环境对实验过程的干扰。创新的测试原理让3D热物性分析仪拥有独一无二的竞争优势,将为锂离子电池热安全测试的应用研究工作带来全新的测试方法和优质体验。
  • 美国TA仪器——四位专家谈量热技术在锂离子电池方面的应用
    p  strong仪器信息网讯/strong 2019年的诺贝尔化学奖由锂电的三位发明者共同获得,证明了锂离子电池在科研领域具有重大意义。锂离子电池的诞生改变了人们的生活方式,促进了世界的进步。/pp  美国TA仪器整理了四个不同主题的锂离子电池量热分析课程,分别是卡尔伯克科技咨询的纳凡实验室首席咨询师的周健博士题为《锂电池失效模式解析与方法探索》,从材料科学的角度审视锂电池的失效现象,利用冷冻聚焦离子束切割材料分析平台,对PPM级别的电池失效进行研究 美国TA的马倩博士介绍了锂离子电池材料热性能和力学性能的表征方法 TA仪器的Mark Lin博士对等温微量热技术在电池量热测试案例进行了分享 沃特世科技(上海)有限公司东区应用团队钱柯君介绍了多种电离、分离手段结合解析电解液化学成分的变化,通过分析经历了不同循环次数后电解液组成的变化,鉴定变化组分的结构。/pp  具体视频如下:/ppscript src="https://p.bokecc.com/player?vid=44C2B22C08B245DE9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptbr//p
  • 等温夹套自由空间控制原理(一)
    一、自由空间是什么?在样品管安装在静态体积法仪器上时,样品管内除去样品体积外,剩余管内空间的体积称为自由空间体积。在测试过程中,需要精确地了解自由空间体积,并且必须维持自由空间体积恒定。一般情况下,会在常温状态下先测试一次自由空间,然后升起杜瓦瓶,在液体冷却剂(一般为液氮)温度下测试一次自由空间。后者称为冷自由空间。如果在分析过程中冷自由空间发生变化,会对样品管中气体量的计算带来相当大的误差。美国麦克仪器公司在20世纪80年代中期,首次引进了专利等温夹套技术用于进行冷自由空间温度控制。二、美国麦克仪器公司1987等温夹套产品介绍采用BET技术进行材料比表面积和孔径分布分析,需要通过低温气体吸附来完成。在这个过程中,需要精确地了解测试系统所有组件的压力、体积和温度,才能精确地计算出测试气体的量。由于气体吸附是发生在低温状态下的,而测试系统的其他组件都处于常温状态,所以在将低温样品连接在常温体系时,必须保证温度稳定。如果不能进行适当的控制,在这样一个互相连接且温度梯度极大的情况下,冷却剂的挥发将会引起冷却区域大小的变化,从而影响到气体量的测试和气体吸附测试结果。如下图所示,将装载着样品的样品管浸没在液氮中,直接连接到仪器的其他组件上,温度梯度空间将随着液氮的挥发和液氮液面的降低而增加。增加了样品管的不确定温度体积。 目前有一种方法是通过调整杜瓦瓶的位置来维持冷却区间体积恒定,主要是通过随着液氮液面降低,不断地抬高杜瓦瓶来实现。这种方法的确能够有效的维持浸没在液氮内的样品管体积恒定,但是必须确保最初在常温下暴露的样品管的高度足够。但是即便采用这种方法,温度梯度依然存在,并且仅能获得部分的蒸发补偿。 在20世纪80年代中期,美国麦克仪器公司采用了一种传统的方式来维持液氮液面,即使用一种转移工具,直接连接杜瓦瓶和液氮罐,随着液氮液面的挥发,不断向杜瓦瓶中加入新鲜的液氮。如下图所示。这种方法非常有效,但是需要准备以下这个转移设备: 1987年,美国麦克仪器公司引入了专利等温夹套技术,它能够为维持冷自由空间恒定提供极佳的稳定性。等温夹套由一种多孔材料制成,使用时直接套在样品管周围即可。只要等温夹套的最底端浸没在液氮中,多孔材料就能够确保液氮一直维持在样品管杆的周围,且高度不变。这样即便杜瓦瓶中仅剩少量液氮,也能够保持样品管冷自由空间维持不变。如果测试时间过长,可适时地补充新鲜的液氮。等温夹套在使用过程中没有任何损耗,是一个真正的长期解决方案,如下图所示:选自“Application Note-The Principles and Theory of the Isothermal Jacket for Free Space Control in Gas Absorption”
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开!
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了他们在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。会上,杭州仰仪科技有限公司正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技的孙昕禹工程师为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼具优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。
  • 第三届“锂离子电池热测试主题研讨会”暨新品发布会成功召开
    2023年6月20日,由浙江浙仪控股集团有限公司主办,仰仪科技、之量科技承办的第三届“锂离子电池热测试主题研讨会”在杭州顺利举办。本次大会采取线上线下相结合的方式,邀请8位锂电池领域的专家学者围绕锂电池热失控机理、锂电池产气研究、锂电池热特性分析等行业热点话题开展主题演讲。线下100余位锂电池检测领域研究与应用专家、电池材料领域专家、电池储能技术专家、相关测试仪器技术专家莅临会议现场,同时近千名行业同仁通过维科网锂电、仪器信息网两大平台观看直播并展开热烈讨论。浙仪控股市场总监张伶俐在开场致辞中介绍了此次会议的背景与目的,希望大会作为锂电池热测试领域的沟通桥梁,助力行业经验共享,推动锂电池热安全及热管理技术的创新与突破。主题演讲来自中国科学技术大学的王青松老师、广东工业大学的张国庆老师、重庆理工大学的林春景老师、国联汽车动力研究院有限责任公司的经理云凤玲、中汽研新能源汽车检验中心(天津)有限公司的平台总监马小乐、广州能源检测研究院的主任工程师邵丹、浙仪应用研究院的负责人邱文泽、比亚迪股份有限公司的高级技术工程师姬曦威,多角度、多层次地分享了各自在锂电池领域的专业见解及技术成果,旨在推动锂电池行业向高能量密度、高安全性发展。浙仪应用研究院负责人邱文泽博士,发表了题为《绝热量热技术与锂电池热安全测试》的主题演讲,分享了锂电池绝热热失控测试的最新技术应用,并为即将亮相的新品留下悬念。新品发布会上,仰仪科技正式推出BAC系列大型电池绝热量热仪。新品发布仪式由山东金特安全科技有限公司总经理姜仁龙、国家锂电池产品质量检验检测中心副主任鞠群、卡尔伯克技术服务有限公司总经理周健、重庆理工大学副教授林春景、浙江浙仪应用研究院负责人邱文泽共同启动。仰仪科技工程师孙昕禹为现场嘉宾介绍BAC系列大型电池绝热量热仪的应用背景、技术优势、实验案例及功能参数。BAC系列突破传统ARC腔体体积小、耐压/保压能力弱的局限,将为大容量、高比能量电芯提供全新的热测试解决方案。BAC系列大型电池绝热量热仪拥有泄压型和密闭型2种技术路线选型,可容纳长边尺寸≤1500mm的所有电芯;其超大容积量热腔兼备优秀的温度稳定性、温度追踪速率、自放热检测灵敏度等。此外,系列还具备气体收集和压力测量、针刺测试、视频监控、充放电测试、比热容测试、气氛模拟和低温制冷等模块化功能,为锂电池热安全与热管理提供科学可靠的数据支持。除了BAC-420A、BAC-800A两款系列产品,会议现场还展示了差示扫描量热仪、小型电池绝热量热仪、电池等温量热仪、多相高温高压爆炸极限测定仪、3D热物性分析仪、两状态法热参数分析仪等多款仪器,吸引了与会嘉宾的关注。活动回放——————————————————————————————————杭州仰仪科技有限公司成立于2006年,浙仪旗下实验室事业群成员,是专注于化工与新能源领域测试需求的国家高新技术企业。我们在温度测量与发生、测试容器制备、仪器集成与数据分析等核心技术上有深度积累,是化工领域测试仪器设备、解决方案的专业开发者。公司产品线主要有热分析与量热、理化参数测试、燃爆特性测试和化学品物理危险测试等,产品综合性能达到国际先进水平,在应急管理、货物运输、海关监管、市场监管、环境保护、高等院校、科研院所、大型企业及第三方检测等机构具有广泛应用且口碑良好。
  • 125万!南方科技大学等温滴定微量热仪采购项目
    项目编号:SZDL2022002093项目名称: 等温滴定微量热仪预算金额:125.0000000 万元(人民币)采购需求:序号货物名称数量单位备注1等温滴定微量热仪1套接受进口合同履行期限:签订合同后 90 天(日历日)内交货。本项目( 不接受 )联合体投标。
  • 140万!华东师范大学微纳中心等温滴定微量热仪采购项目
    项目编号:1069-224Z20223865(代理机构内部编号:招案2022-3865)项目名称:华东师范大学微纳中心等温滴定微量热仪、飞行时间-气溶胶化学组成监测质谱仪等设备采购项目预算金额:140.0000000 万元(人民币)最高限价(如有):140.0000000 万元(人民币)采购需求:招标项目编号: 1069-224Z20223865/01包件一: 等温滴定微量热仪 合同履行期限:合同签订后 120天交货本项目( 不接受 )联合体投标。包1华东师范大学微纳中心等温滴定微量热仪、飞行时间-气溶胶化学组成监测质谱仪等设备采购项目国际招标公告(1)-机电产品招标投标电子交易平台.png
  • 138万!马尔文帕纳科中标上海交通大学等温滴定微量热仪国际招标项目
    一、项目编号:0705-2340JDBXTXDK/01/学校编号:招设2023A00012(招标文件编号:0705-2340JDBXTXDK/01)二、项目名称:上海交通大学等温滴定微量热仪国际招标三、中标(成交)信息供应商名称:上海堃弋国际贸易有限公司供应商地址:中国(上海)自由贸易试验区富特北路211号302部位368室中标(成交)金额:138.6000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海堃弋国际贸易有限公司 等温滴定微量热仪 MALVERN PANALYTICAL MicroCal PEAQ-ITC 1 CNY 1386000
  • 美国麦克仪器公司将携最新电池材料表征技术亮相CIBF2018中国国际电池技术交流会
    今年5月22日-24日,全球电池行业规模最大的展览会—第十三届中国国际电池技术交流会/展览会(CIBF2018)将于深圳会展中心隆重举行,预计参观人数超过6万人次,盛况空前。作为材料表征仪器领域的全球领先供应商,美国麦克仪器公司将携最新电池材料表征技术解决方案亮相7B032展台,我们期待与您在现场不见不散!展会预告:第十三届中国国际电池技术交流会/展览会(CIBF2018)时间:2018年5月22日-24日地点:深圳会展中心(深圳市福田中心区福华三路)美国麦克仪器公司展位:7B032随着近年来中国锂电池行业的飞速发展,对于电池正负极材料内在结构的表征变得更为重要。正负极材料物理性质与电池的安全性、使用寿命、性能等因素密切相关。因此比表面积、真密度、振实密度、孔径分布、孔隙率等物理性质的测量也在电池材料的表征中尤为关键。作为材料表征仪器领域全球领先供应商,美国麦克仪器公司专业提供电池及电池正负极材料表征解决方案,并拥有Tristar II 3020系列全自动比表面积与孔隙度分析仪、AutoPore V系列高性能全自动压汞仪、AccuPyc 1340系列全自动真密度仪、GeoPyc 1365系列全自动包裹密度分析仪等多款高性能电池正负极材料表征分析仪器。部分电池材料分析仪器展示Tristar II 3020系列全自动比表面积与孔隙度分析仪三个分析站同时运行,但又相互独立紧凑台式气体吸附仪,体积小,便于快速操作测试速度快,比表面积测量可在20分钟内完成氮气测试比表面积最低可达0.01m2/g大容量杜瓦瓶可保证长时间分析,专有的等温夹套设计保证样品管和P0管死体积恒定AutoPore V系列高性能全自动压汞仪测试孔径范围:0.003-1100μm在0.2-50psia压力范围内,可提供0.005psia压力增量,可采集更详细的大孔数据扫描、进汞时间和进汞速率三种平衡模式可采集更高分辨率数据,精确至优于0.1μL三重安全防护,减少汞溢出和操作员接触汞的风险AccuPyc 1340系列全自动真密度仪采用气体置换法,无损检测低成本、无需维护、占地面积小分析快速,高精度,准确性和重复性好多种样品仓,满足不同大小样品测试需求满足多项美国及国际标准GeoPyc 1365系列全自动包裹密度分析仪世界首台全自动高精度堆积密度分析仪,重复性高专利的Dry Flo干粉介质,测量材料封装密度,易回收,不污染样品,样品可回收再利用满足多项美国及国际标准与AccuPyc 1340联用,可计算得到材料孔隙率和总孔体积
  • 128万!深圳国家感染性疾病临床医学研究中心等温滴定微量热仪采购项目
    项目编号:SZDL2022001901(0868-2242ZD923H-D)项目名称:等温滴定微量热仪预算金额:128.0000000 万元(人民币)最高限价(如有):128.0000000 万元(人民币)采购需求:等温滴定微量热仪1台。合同履行期限:签订合同之日起 90 日历日内交货。本项目( 不接受 )联合体投标。
  • 四大微量热仪品牌大PK 谁的产品强?
    p  strong仪器信息网讯/strong 微量热仪是测量微小热量的实验装置。它不但能测量系统在过程中放出的热量、还能检测出过程中放热的速率。实验测得的温升对时间的曲线称为热谱曲线。从热谱曲线可以计算出反应的平衡常数和反应的速率常数,特别是对速率非常小的反应。/pp  微量热仪主要有塞塔拉姆、美国TA、林赛斯、英国THT四大知名品牌。/pp  span style="color: rgb(255, 0, 0) "strong塞塔拉姆/strong/span/pp  主要仪器型号BT2.15、C80、Sensys TG、uSC、C600、MS80等。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 300px height: 300px " src="https://img1.17img.cn/17img/images/201907/uepic/b62e1aac-53ac-4bd1-9db0-8c558eb51464.jpg" title="BT2.15.jpg" alt="BT2.15.jpg" width="300" height="300" border="0" vspace="0"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C24028.htm" target="_self"塞塔拉姆 BT2.15/a/pp  使用了SETARAM独有的卡尔维3D检测器技术,可以作为开放体系进行内、外部的固-固、气-固、液-固、液-液等二相间的交换反应实验,实现真正的原位混合,如用微热测量表征混合物组分间相互作用、相容性、液体比热和催化剂的吸附/解吸等。可以在很低的温度下研究不同物质(石油、聚合物、水合物、建筑材料和超导体)的所有冷冻和结晶现象。/pp  这个量热仪可以使用不同的样品池,如压力控制、混合池等。应用:油品、聚合物、水合物、超导体和建材等。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201907/uepic/f13fd98e-efb1-43dd-b808-d8630b15b038.jpg" title="c80.jpg" alt="c80.jpg" width="300" height="300" border="0" vspace="0" style="text-align: center max-width: 100% max-height: 100% width: 300px height: 300px "//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C24029.htm" target="_self"塞塔拉姆 C80/a/pp  C80微量热仪是法国塞塔拉姆公司研发,享誉业界的经典微量热仪。借助卡尔维量热原理的三维传感器,全方位探测样品热效应。全面突破普通平板DSC量热效率低、样品量小且形态单一、无法原位混合等技术瓶颈,完全真实反映样品的物理化学性质,并提供无与伦比的测试精度。/pp  C80集等温与扫描功能于一身,配备多种样品池,具有混合、搅拌、定量加样等功能。另外C80拥有超大样品量(可达12.5ml)的反应釜,并可实时监控压力最大为 1000bar。特别适用于催化反应、水泥水化、润湿和吸附反应、CO2捕获与封存、储氢材料、过程安全的评价及火炸药、推进剂等含能材料的研究。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ed746051-b8da-4622-931f-e4af25c677c3.jpg" title="Sensys TG.jpg" alt="Sensys TG.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C107127.htm" target="_self"塞塔拉姆 Sensys TG/a/pp  不同于业内其他公司基于平面传感器结构的DSC产品(测试效率仅为20%~50%),法国塞塔拉姆公司的SENSYS Evolution DSC系统得益于塞塔拉姆公司独有的、基于卡尔维量热原理的“三维传感器”技术,能够更真实地反映样品的热性质(效率高达94%),并提供无以伦比的测试精度。而独特的三维传感器结构提供了更大的样品室容量(320uL),使得很多在其它仪器上无法实现的研究变为可能。样品室(坩埚)内加压,对传感器没有影响,使得基线稳定,并且节约气体 仪器高度模块化,可随时与热重(TG)及气体分析仪(FT-IR, MS)联用。整个量热仪所形成的隔热环境可保持恒温稳定性达到± 0.001~0.00001℃,可以作为开放体系进行气-固反应实验,如液体比热和催化剂的吸附/脱附等。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/312070b9-1b69-4f84-992e-0232eb7a2a00.jpg" title="uSC.jpg" alt="uSC.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C23933.htm" target="_self"塞塔拉姆 uSC/a/pp  uSC作为塞塔拉姆仪器研究团队的智慧制作,是法国塞塔拉姆仪器公司新一代量热仪。采用Setaram基于卡尔维量热原理的“三维传感器”技术,能够完全真实反映样品的热性质。提供传统DSC难以企及的测试灵敏度、精度及准确性,同时兼具恒温及温度扫描模式。配备多种样品池,具有搅拌、混合、定量加样等功能,模拟固液、气液及液液混合等实际反应过程。可以实现搅拌、定量加样等操作,模拟固液混合、流体混合、润湿溶解等反应过程。非常适合于医药、生命科学、食品、聚合物等领域的研发应用。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/aa5e3851-4b89-45cb-b9b2-7744e93dafdb.jpg" title="MICRO DSC7.jpg" alt="MICRO DSC7.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C58151.htm" target="_self"塞塔拉姆 MICRODSC7/a/pp  法国塞塔拉姆公司又一量热仪力作,MICRODSC3的姐妹作品,可自动制冷到-45度的微量热仪,可满足多种领域的应用要求,尤其是用于药物,生命科学,食品安全,冷冻研究,气体水合物研究等领域,如液态、固态或凝胶太蛋白质的变性、聚集,酶促反应,多糖得融合、凝胶化,凝胶等 并且可研究水泥、色素等的润湿反应。/pp /pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/3a9c1ffb-5fc6-440a-bba1-4ef612457374.jpg" title="c600.jpg" alt="c600.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C142002.htm" target="_self"赛塔拉姆 C600/a/pp  C600是法国赛塔拉姆公司近期研究开发的一款用于高温分解领域的量热仪,用于样品在高温下恒温或变温且标准压力及高压条件下的化学组分稳定性研究。温度范围从室温至600度,适用于核工业过程及工业废物化学组分分解时的吸放热研究。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/79b00c0a-bc9f-4de1-9caf-1e7c76d6c72c.jpg" title="MS80.jpg" alt="MS80.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C142000.htm" target="_self"赛塔拉姆 MS80/a/pp  MS80是法国赛塔拉姆公司卡尔维量热产品线中灵敏度最高极端的一款仪器,可以测试到极端微小的吸放热量,如电池的自放电,粉末的自分解,微生物的生热,及混合物或气体的吸热等领域。/pp  通常使用等温模式,温度范围:室温~200° C。MS80同卡尔维的其他量热产品相同,均有多种样品池可供选择。MS80有2只样品池版本及4只样品池版本可供选择。样品量:15ml或100ml可选。/pp  span style="color: rgb(255, 0, 0) "strong美国TA/strong/span/ppspan style="color: rgb(0, 0, 0) "  主要仪器型号:Nano ITC、TAM IV、TAM 48、TAM AIR等。/span/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/2d24cd6f-4f85-4b50-a5d4-757f0d05c9cf.jpg" title="NANO ITC.jpg" alt="NANO ITC.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C33992.htm" target="_self"美国TA Nano ITC/a/pp  TA仪器Nano ITC是专为来源有限的、纯的、释释的生物样品的结合与动力学研究设计的。使用Nano ITC,可以在1纳摩尔或更少量的生物聚合物中检测到低至120纳焦耳的热量。Nano ITC采用一个固态的热电加热和冷却系统来精确地控制温度,并用独特的抽取式注射器来有效精确的进行滴定。Nano ITC内置且准确的等温功率补偿设计,能在最快的响应时间(12秒)内进行及时的补偿。br//pp  Affinity ITC和Affinity ITC Auto是专为最具挑战性的生命科学实验室所设计的,满足了需要高灵敏度、高生产力和最先进ITC技术的需求。Affinity ITC的先进工艺考量了所有测试关键因素,能确保获得最高质量的ITC数据。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/ca8e66a1-ab3d-4021-a757-cf169ff8d4da.jpg" title="TAM IV.jpg" alt="TAM IV.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C243410.htm" target="_self"美国TA TAM IV/a/pp  最新的TAM IV是目前全球最灵敏、最稳定且最灵活的多功能微量热平台之一。它是完全的模块化并且以最高灵敏度和无与伦比的长期温度稳定性来量测反应程序还是其他技术手段无法实现的。响应更灵敏温度控制提供快速的温度平衡并且扩展工作温度4° C到150° C,以实现低温冷藏的应用;新的即插即用的量热计,实现快速且简易的安装;全新的附件接口盒能够搭载多达8个模块;新的模块最多可接三个独立的探头或者输入源,例如pH探针或者导入光源等;在TAM辅助仪器控制、数据采集和数据处理软件上的新的特色。/pp  TAM IV可检测多种不同形态及尺寸的样品,广泛应用于生物制品和药物、材料科学、食品科学、含能材料(电池,爆炸物以及推进剂)、环境样品(水和土壤)等领域。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/80b1ca14-b252-4148-87e4-615681a8ba12.jpg" title="TAM 48.jpg" alt="TAM 48.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C34054.htm" target="_self"美国TA TAM 48/a/pp  TAM 48是TA仪器出品的新一代多通道微量热仪。TAM 48的设计在不牺牲数据质量的前提下,达到样品测试高通量。在TAM 48中,多达48个独立的微型量热计可以同时工作,在每个通道中既可同时进行不同的实验,也可同时进行重复性的实验。它在设计上将每12个微型量热计作为一组。TAM 48使用专利技术的恒温槽,可以将水浴的温度变化精确地控制在0.0001° C以内,能够运用于等温、步阶恒温或者温度扫描模式。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/295767af-fda7-48f9-8a4f-03403cab1ce4.jpg" title="TAM Air.jpg" alt="TAM Air.jpg"/  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C34055.htm" target="_self"美国TA TAM AIR/a/pp  通过监控化学程序、物理程序和生物程序的热活性或热流,可以得到其他技术所不能提供的信息。等温量热法是一种研究热量变化的强大技术,不会对样品造成任何损坏或侵害。TAM Air具有无与伦比的灵敏度及长期的温度稳定性,可满足样品的多种分析要求。/pp  TAM Air是适用于大规模量热实验的理想工具,它能够在等温条件下同步测量多个样品。此外,该仪器尤其适用于测量耗时数天或数周的热量变化过程(如水泥和混凝土的水化过程、食物腐败、微生物活性等等)。/ppstrongspan style="color: rgb(255, 0, 0) "  林赛斯/span/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/94db9401-2a0f-465d-a3d1-b34ed727429d.jpg" title="Chip-DSC-10.jpg" alt="Chip-DSC-10.jpg"/  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C291170.htm" target="_self"林赛斯 Chip-DSC 10/a/pp  span style="color: rgb(84, 141, 212) "变革性传感器概念/span /pp  全芯片DSC传感器将DSC、炉体、传感器和电子器件的所有基本部件集成在一个小型化的外壳中。芯片布置包括加热器和温度传感器,其在具有金属加热器和温度传感器的化学惰性陶瓷装置中。 这种布置允许更高的再现性,并且由于低质量的出色的温度控制和加热速率高达300℃/min。集成传感器易于用户可交换并且可用于低成本。 芯片传感器的集成设计能够在没有热流数据的预处理或后处理的情况下进行直接分析。/pp  上市时间:2018年6月/pp  strongspan style="color: rgb(255, 0, 0) "英国THT/span/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e10ffdc2-c2b5-4555-82b4-b33bf87f9353.jpg" title="uRC.jpg" alt="uRC.jpg"/  /pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C13789.htm" target="_self"美国THT uRC/a/pp  uRC是在由THT美国公司制造的,其中有两个型号:化学高灵敏度级、生物灵敏度级。它都带有2ml的小瓶和电脑控制的注射器。使用了功率补偿技术,灵敏度高达uW级以下,并具有卓越的基线稳定性。传统测试方法或大体积量热仪上能测量的样品中大约有90%都可以在µ RC上完成,其测试速度更快,成本更低,并且没有安全问题。br//pp  uRC中集成了5种量热仪的功能分别为:反应量热仪、等温量热仪、扫描量热仪、滴定量热仪、安全量热仪。所以它是一台性价比极高,应用面极广的反应量热仪。/pp  作为量热仪它可以做下列用途:/pp  1、反应量热 – 过程研究开发和优化/pp  2、滴定量热 – 相容性研究/pp  3、恒温量热 – 针对相容性,动力学和稳定性研究/pp  4、等温步进量热 – 针对动力学,稳定性和比热研究/pp  5、扫描量热 – 相当与大剂量的DSC/pp  6、物性量热 – 测量比热,溶解热等/pp  仪器的这些模块特性,加上由于反应规模小,响应迅速,定量特征和多样性,使它可在很多领域得到都非常理想应用。/ppbr//p
  • 135万!上海交通大学等温滴定量热仪采购项目
    项目编号:0705-2240JDSMTXDK/05/招设2022A00215项目名称:上海交通大学等温滴定量热仪预算金额:135.0000000 万元(人民币)最高限价(如有):135.0000000 万元(人民币)采购需求:序号货物名称简要技术规格数量交货期1等温滴定量热仪1)量热模式:功率补偿方式;2)噪音水平:≤0.84nw;3)温度稳定性:0.12m℃@25℃;4)其他技术要求详见第八章第二部分《技术规格》。1套签订合同后4个月内合同履行期限:签订合同后4个月内交货本项目( 不接受 )联合体投标。
  • 赛默飞电镜Apreo2在质子交换膜燃料电池中的应用
    燃料电池作为一种利用氢气或醇类的发电设备,通过电化学反应将氢气或醇类的化学能直接转化为电能,不受卡诺循环(Carnot cycle)的限制,具有高效和清洁的特点,在新能源领域受到广泛的关注,并在航空航天、运载交通和便携移动设备中具有良好的应用前景。 燃料电池按照电解质和工作温度的不同,可以分为:质子交换膜燃料电池(Proton exchange membrane fuel cells,PEMFC)、固体氧化物燃料电池(Solid oxide fuel cell,SOFC)、熔融碳酸盐燃料电池(Molten carbonate fuel cell,MCFC)、磷酸盐燃料电池(Phosphoric fuel cell,PAFC)和碱性燃料电池(Alkaline fuel cell,AFC)等。其中,PEMFC被看作是新能源车辆领域中具有发展前景的动力源。图1 燃料电池的分类及技术状态 PEMFC的发展可以追溯到20世纪60年代,美国国家航空航天局(NASA)委托美国通用电器公司(GE)研制载人航天器的电池系统。但受当时技术的限制,PEMFC采用的聚苯乙烯磺酸膜在服役时易于降解,导致电池寿命很短。GE随后将电池的电解质膜更换为杜邦公司(Du Pont)的全氟磺酸膜(Nafion)部分解决了上述问题,但是阿波罗(Appollo)登月飞船却搭载了另一类燃料电池——AFC。受此挫折之后,PEMFC技术的研发一直处于停滞状态。 直到 1983年,加拿大巴拉德动力公司(Ballard Power System)在加拿大国防部资助下重启 PEMFC的研发。随着材料科学和催化技术的发展,PEMFC技术取得了重大突破。铂/碳催化剂取代纯铂黑,并且实现了电极的立体化,即阴极、阳极和膜三合一组成膜电极组件(Membrane electrode assembly,MEA),降低了电极电阻,增加了铂的利用率。20世纪90年代以后,电化学催化还原法和溅射法等薄膜电极的制备技术进一步发展,使膜电极铂载量大幅降低。性能的提升和成本的下降也促使 PEMFC逐渐从军用转为民用图2 燃料电池汽车历史 质子交换膜燃料电池(PEMFC)由阳极、质子交换膜、阴极组成,利用水电解的逆反应,连续地将氢气和氧气通过化学反应直接转化为电力,并且可以通过多个串联来满足电压需求。 PEMFC发电的基本原理:氢气进入燃料电池的阳极流道,氢分子在阳极催化剂的作用下达到 60℃左右后开始被离解成为氢质子和电子,氢质子穿过燃料电池的质子交换膜向阴极方向运动,因电子无法穿过质子交换膜,所以通过另一种电导体流向阴极;在燃料电池的阴极流道中通入氧气(空气),氧气在阴极催化剂作用下离解成氧原子,与通过外部电导体流向阴极的电子和穿过质子交换膜的氢质子结合生成纯净水,完成电化学反应。图3 质子交换膜燃料电池(PEMFC)工作原理 膜电极(Membrane Electrode Assembly, MEA)是燃料电池发电的关键核心部件。膜电极由质子交换膜(PEM)、膜两侧的催化层(CL)和气体扩散层(GDL)组成,燃料电池的电化学反应发生在膜电极中。质子交换膜的功能是传递质子,同时隔离燃料与氧化剂。目前常见的膜材料是全氟磺酸质子交换膜,代表厂家Gore公司的Gore Select增强型质子交换膜、杜邦公司的Nafion系列。 催化剂主要控制电极上氢和氧的反应过程,是影响电池活化极化的主要因素。目前氢燃料电池的催化剂主要为三个大类:铂(Pt)催化剂、低铂催化剂和非铂催化剂。Pt作为催化剂可以吸附氢气分子促成离解,是目前需要商用的;但Pt稀缺性强,我国储量也不丰富,减少铂基催化剂用量是降低燃料电池系统商用成本的重要途径。 气体扩散层的主要作用是支撑催化层,传递反应气体与产物,并传导电流。基材通常为多孔导电的材质,如炭纸、炭布,且用PTFE等进行憎水处理构成气体通道。目前市场上商业化的气体扩散层基材供应商主要包括日本Toray、德国SGL与Freudenberg、加拿大Ballard等。 三位一体检测系统是 Apreo 2 扫描电镜独特的镜筒内检测系统。它由三个探测器组成:两个极靴内探测器(T1、T2)和一个 镜筒内探测器(T3)。这一独特的系统可提供燃料电池膜电极MEA成分、形貌和表面特征等不同层次的详细信息。 图4 赛默飞电镜及三位一体检测系统示意图图5 膜电极MEA示意图对其对应的显微结构 MEA的结构设计和制备工艺技术是燃料电池研究的关键技术,它决定了燃料电池的工作性能。 另外,质子交换膜PEM是燃料电池的核心部件。它的性能高度依赖于燃料电池电堆的堆叠和系统设计,尤其是PEM所经受的工作条件。这项看似微小的技术却是关键所在。燃料电池在实际应用环境中的耐久性是另一个关键性能因素。根据美国能源部的规定,在实际环境中行驶的条件下,燃料电池使用寿命应达到约5,000小时。为了达到这些目标,PEM设计必须考虑两种类型的耐久性,机械耐久性和化学耐久性。 机械耐久性:工作过程中的相对湿度循环会导致PEM的机械性能衰减。相对湿度的升高和降低会引起PEM膨胀和收缩,从而导致MEA中出现裂纹和孔洞。久而久之,这会造成气体渗透增加以及效率损失,并导致燃料电池电堆发生灾难性故障。通常,未经增强的PEM会通过增加厚度来提升耐久性,导致电导率降低,因此功率密度也更低。业内已广泛认可,化学稳定性优异的ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂,三明治结构)可显著减少这种面内膨胀,提高RH循环耐久性,并延长电池电堆的使用寿命。图6 膜电极的横截面显微结构图,ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂) 化学耐久性: 燃料电池需要在恶劣的化学环境中工作。燃料电池工作过程中产生的有害自由基会与离子聚合物 (全氟磺酸树脂是一种离子聚合物)发生反应,造成离子聚合物性能下降,这种性能衰减会造成燃料电池性能的持续下降,增加气体渗透,并导致PEM和燃料电池失效。PEM的化学耐久性不仅受PEM的自身属性影响,还受PEM的工作环境影响。减少PEM厚度有助于改善高温下的性能。因此,对不同结构层厚度的准确测量,就非常重要。 催化层中的催化组分为催化剂,目前Pt/C载体型催化剂是PEMFC常用的催化剂,由纳米级的Pt颗粒(3-5nm)和支撑这些Pt 颗粒的大比表面积活性炭(20-30nm)构成。质子交换膜燃料电池商业化进程中的主要阻碍之一是价格高昂的贵金属催化剂,从而大量的研究工作集中于开发新型催化剂以降低铂载量和增强催化剂的耐久性。催化剂的合成方法决定催化剂的结构、表面形貌和粒径分布等,这也将直接影响催化剂的性能。图7 膜电极组催化层的纳米pt催化剂,3-5nm:(左图)T1探测器检测,(右图)T3探测器检测图8 膜电极组催化层的纳米pt催化剂,3-5nm:VeriosTLD 探测器检测 50万倍和150万倍(底片显示) PEMFC的催化层是由各种不同尺度的颗粒和孔组成的,其内部的物理化学过程十分复杂,包括电化学反应、电子的迁移、氢气和氧气的扩散、质子的迁移和扩散,还有水的迁移、扩散、渗透、蒸发和液化,这一切的实现都离不开催化层的微孔结构。 催化层是由黏结剂( 如Nafion 或PTFE) 黏结起来的 Pt /C 颗粒的团聚体组成的,各颗粒之间有许多的微孔。Watanabe 等将催化层内的孔分为两大类: 一类是颗粒团聚体内部各颗粒之间较小的空隙,被称为主孔(孔径小于100nm的孔属于主孔) 另一类则是各颗粒团聚体之间的空隙,被称为次孔(大于100nm 的孔属于次孔)1。催化层内的电催化反应主要发生在主孔内,而作为黏结剂的PTFE更容易进入次孔,次孔是气体和水传输的主要通道。 备注1:Shin 等实验发现,催化层中只有孔径在70nm 以下的孔才不会被聚合物阻塞住,表明其主、次孔的分界为 70nm;Uchida 等认为主、次孔孔径分界为 40nm,由于全氟磺酸树脂和PTFE-C只会存在于次孔中。 催化层的结构,主要指的就是其微孔结构,由于主孔和次孔的不同作用,不同的微孔总容量和主、次孔容量比将导致迥异的电池性能。根据主、次孔理论,主孔较多时,可增加活化反应位,有利于减少催化层内的活化损失 次孔较多时,有利于质量传输,可减少质量传输损失。因此,维持足够数量的孔隙率和较好的主、次孔比例成为了研究催化层结构优化所要关注的重点。赛默飞电镜的孔径分布软件可满足此需求。图9 催化层结构孔隙率检测 目前,大多数 MEA 的催化层都是由一定比例的电催化剂( 如 Pt /C) 和 Nafion 组成。在常用 MEA中Nafion 在催化层中的作用有以下 3点: ( 1) 将电化学反应活性区扩大延伸至催化层内部,并有效传导质子 ( 2)黏结作用,保持催化层的机械稳定性 ( 3) Nafion上的亲水基团有保湿作用,防止膜脱水。 尽管在催化层中加入一定量的 Nafion 能有效提高催化剂的利用率,但是催化层中 Nafion含量若过多,不仅会大量覆盖 Pt /C 颗粒,阻碍电子传导,还可能阻塞催化层内部的微型孔,导致内部水和反应气体的传输通道受阻,这样会大大减弱电池的性能,尤其是在高电流密度时的性能。因此关于催化层中 Nafion 与催化剂的比例问题,以及如何识别三相1,一直受到研究者们的广泛关注。 备注1:在PEMFC中,位于三相区(3-phase region)的Pt颗粒会参与反应,通常三相区表示载体C、催化剂Pt、离聚物(Ionomer,如全氟磺酸)图10 催化层离聚物与三相反应区。 Apreo 2可以快速识别离聚物/C、Pt/C及三相区 PEMFC的普及和商业化目前还受电池性能和价格的影响,MEA催化层结构的不断改善也是PEMFC 实现商业化的有效途径之一。参考资料1.Warshay M, Prokopius PR. The fuel cell in space: yesterday, today and tomorrow [J]. Journal of Power Sources, 1990, 29: 193-200.2.Steele BCH, Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861):3.Sharaf OZ, Orhan MF. An overview of fuel cell technology: fundamentals and applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853.4.苏凯华. 新型质子交换膜燃料电池催化层结构及其性能研究 [D]. 上海: 上海交通大学, 2015.5. 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件 [J]. 化学进展, 20156. 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构 [J]. 化学进展, 2012, 24(10): 1906-19137. Kim K H, Lee K Y, Kim H J, et al. The effects of Nafion ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method[J]. International Journal of Hydrogen Energy, 2010, 35(5): 2119-2126.8. Uchida M, Aoyama Y, Eda N, et al. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE‐loaded carbon on the catalyst layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1995, 142(12): 4143.9. Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of power Sources, 2004, 131(1-2): 41-48.10. Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—A review[J]. Journal of Power Sources, 2012, 208: 96-119.11. Proton exchange membrane fuel cells: materials properties and performance[M]. CRC press, 2009.
  • 更高效、更全能量热仪:C6000 global standard 全能型和C6000 isoperibol周边等温型量热仪
    时光进入到2014年,IKA融合长达90多年的量热仪生产制造经验和最新技术,发布了新型量热仪产品C6000系列。C6000系列有两款不同型号的量热仪,C6000 Isoperibol周边等温型提供周边等温和动态两种模式,C6000 global standard全能型可以在三种模式下运行:绝热、周边等温和快速动态(与以前相比,速度更快了),以上每一种模式,都可以根据实际需要选择22℃、25℃、30℃三个不同的起始温度。这两款量热仪都可依照通行的国际标准来测定热值,如DIN, ISO, ASTM, GOST 和GB。全新设计的燃烧分解容器(氧弹)可以让样品准备更加轻松,氧弹的盖子包括坩埚支架等都可以放置在操作台上方便一步操作,含有样品的坩埚可直接悬挂在支架上,棉线一端很容易系牢在点火线上,另一端接触样品。新氧弹的外形设计可以显著加快绝热模式的测量速度,因此每小时的测定次数将比以往增加。所有相关的测量参数通过一个触摸屏输入和读取,非常便捷,校正计算可依照DIN,ISO和ASTM等相关标准来进行,测定结果可以存储在SD卡,或以ASCII格式传输到其他程序。C6000系列量热仪拥有多种不同接口,包括传统的RS 232接口连接计算键和称量天平,连接Ethernet的网络端口,连接网络打印机的USB端口,另外还增加了一个可用于连接IKA?C 5020样品架的端口。专属的软件同时管理着许多燃烧和点火辅助备件,可以通过控制图显示校正数据,并依照当前的标准提供数据评估,所有的测试结果都清晰、详尽。每次实验测定点火能量,如果连接分析天平的话,并可以自动传输初始重量。现代量热仪需要先进的数据处理,新型的计算机控制的C6040软件为数据处理提供了许多方案、建议和选项。值得一提的是,它还具有数据库管理和分组功能,增强的数据过滤选项,热值测定的校正公式选项,数据还可以传输到一个预先设定格式的Excel数据表单中。氧弹量热仪主要用于测定样品燃烧释放的热量,可用于煤炭,废物处理、食品工业、水泥生产,材料测试机构,生物燃料的生产,发动机技术的研究(煤油、喷气燃料)和生物学,从1920年开始,氧弹量热仪就加入到了IKA?公司的产品序列中,至今已有90多年的历史。关于 IKA ( www.ika.cn )IKA 集团是实验室前处理, 量热分析, 混合分散工业技术的市场领导者. 磁力搅拌器, 顶置式搅拌器, 分散均质机, 混匀器, 恒温摇床, 研磨机, 旋转蒸发仪, 加热板, 量热仪, 实验室反应釜等相关产品构成了IKA实验室分析的产品线, 而工业技术主要包括用于规模生产的混合设备, 分散乳化设备, 捏合设备, 以及从中试到扩大生产的整套解决方案. 集团总部位于德国南部的Staufen, 在美国,中国, 印度, 马来西亚, 日本, 巴西等国家都设有子公司. IKA成立于1910年,IKA集团现在可以自豪地回顾过去100年的历史。
  • 160万!四川大学等温滴定量热仪采购项目
    项目编号:SCZZ17-ZC-2022-1282项目名称:四川大学等温滴定量热仪采购项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:详见附件。合同履行期限:(1)交货时间:【适用国产产品中标的情形】从预付款后,交货期为3个月内到场。所有技术文件及资料应在发货时一并交与需方验收人员。【适用进口产品中标的情形】交货期为6个月内到场。所有技术文件及资料应在发货时一并交与需方验收人员。(2)安装调试时间:仪器到达用户所在地后,根据采购人的通知,中标人在2周内安排仪器的安装调试,直至达到验收指标。本项目( 不接受 )联合体投标。四川大学等温滴定量热仪采购项目-采购需求.pdf
  • 高低温冷热冲击试验箱的原理及特点
    高低温冷热冲击试验箱是金属、塑料、橡胶、电子等材料行业必备的测试设备,用于测试材料结构或复合材料,在瞬间下经极高温及极低温的连续环境下所能忍受的程度,得以在最短时间内检测试样因热胀冷缩所引起的化学变化或物理伤害。分为两厢式和三厢式,区别在于试验方式和内部结构不同,产品符合标准为:GB/T2423.1-2008试验A、GB/T2423.2-2008试验B、GB-T10592-2008、GJB150.3-198、GJB360A-96方法107温度冲击试验的要求。    高低温冷热冲击试验箱制冷工作原理:高低制冷循环均采用逆卡若循环,该循环由两个等温过程和两个绝热过程组成。其过程如下:制冷剂经压缩机绝热压缩到较高的压力,消耗了功使排气温度升高,之后制冷剂经冷凝器等温地和四周介质进行热交换,将热量传给四周介质。后制冷剂经阀绝热膨胀做功,这时制冷剂温度降低。最后制冷剂通过蒸发器等温地从温度较高的物体吸热,使被冷却物体温度降低。此循环周而复始从而达到降温之目的。    高低温冷热冲击试验箱质量优势    主要核心配件均采用国际大品牌的配件如法国泰康,日本路宫/和泉/三菱,施耐德,美国快达/杜邦冷媒,丹麦(DANFOSS),瑞典(AlfaLaval)等配件,假一罚十,能确保高低温冲击测试箱正常高效的运行。相比其他同行:采用国产配件或者是使用伪劣的冒牌配件充当品牌配件,发货到客户处和所说的完全不一致,质量大打折扣。    高低温冷热冲击试验箱技术优势    1.采用7″TFT真彩LCD触摸屏,比其它屏更大,更直观,操作简单,运行稳定,并且更节能。    2.蒸发器采用水浸查漏方法,查漏彻底,确保设备稳定运行。    3.采用模块化制冷机组,能确保制造质量,且维护替换非常方便。    4.采用高均匀度的正压式风道系统,温度均匀高。    5.采用最新的自动除霜技术,使除霜时间缩短,试设备的使用效率大大增加。    6.具有多项安全保护措施,故障报警显示及故障原因和排除方法功能显示。    三箱式高低温冷热冲击试验箱相比其他同行设备:    1.控制器界面较小颜色单一,不便于观察和操作。    2.采用传统方法,肥皂水查漏,不彻底。    3.冷冻机组和机箱底板安装在一起,制造质量和维护性能不佳。    4.无自动除霜技术,需手动除霜之后方可再进行试验,使用效率不佳。    5.同行大部分高低温冲击测试箱,通常在运行一段时间后开始结霜,并且除霜时间非常长,使用效率低下。    6.同行设备为了节省成本,导致设备的安全保护措施单一,非常容易造成安全隐患。    三:三箱式高低温冷热冲击试验箱节能优势:三箱式冷热冲击试验箱采用自主研发的控制系统,精度高,稳定操作简单,控制器抛弃日本韩国等控制器的固定模式,采用最新的模糊运算技术,自动分析负载能力,合理调节冷媒流量,使设备节能高达20%。
  • 电池被刺爆破的瞬间,FLIR高速热像仪收集各项热数据!
    在很多研究实验中,都需要对设备进行热点监控,因此Teledyne FLIR高速热像仪越来越受到瞩目。今天,小菲就来说一个Teledyne FLIR 高速热像仪在进行电池滥用测试中应用的案例。选择Teledyne FLIR的原因位于印第安纳州纽伯里的电池创新中心 (BIC) ,是一家合作性非营利机构,专注于为商业和国防客户提供安全、可靠和轻量化电池的快速开发、测试、验证和商业化的服务。其部分测试过程包括各种滥用测试,将电池暴露于最恶劣的情况,以确定并解决由此产生的安全问题。近些年,我们对电池的需求急剧增加,为了满足这一需求,电池的型号在不断增加,使其性能和安全性的验证变得越来越重要。“电池的测试至关重要”,BIC 总裁兼首席执行官 (CEO) Ben Wrightsman 说。“在进行测试时,我们希望收集尽可能多的数据,并且我们希望能够确信我们的数据是准确的,”BIC项目总监Ashley Gordon解释说。为了从这些测试中收集尽可能多的数据,BIC选用了Teledyne FLIR 高速热像仪,它可显示用其他技术无法捕捉的热成像细节。在电池的使用过程中,事故是难免的,而在事故发生时,一定要知道电池会有什么反应,比方说如果电池着火,引起周围材料着火的速度有多快,可能性有多大。“我们模拟最坏的情况以收集数据,然后就知道预期会发生什么情况,”Gordon 说。BIC在2020年年底购入的FLIR高速热成像仪已成为其收集数据的关键。传统热电偶的局限性“在我们拥有热成像仪之前,主要采用体积较大的热电偶和更普通的红外 (IR) 设备,”BIC 研究总监 James Fleetwood 博士说。热电偶是一种由两根不同的导线组成的廉价温度传感器,常用于工业领域的温度测试。然而,它们也存在许多局限,特别是对于在BIC进行的电池测试。热电偶的主要缺点是一次只能测量一个点。“如果我只使用热电偶,得到的是接触点的温度读数。这意味着只有热电偶所在位置的读数,”BIC实验室技术员Rodney Kidd解释说。热电偶的放置也容易出现偏差。“这是一种自我实现反馈,”Fleetwood 博士说。“你其实并不知道热点在哪里,只有已知位置对应的测量值。”电池滥用测试中的热观察电池要接受的滥用测试之一是针刺,该测试用于模拟短路,而短路可能导致电池过热、着火甚至爆炸。“如果我们在进行针刺测试时只能使用热电偶,你实际上必须在整个电池表面放置一千个热电偶,才能清楚地了解整个电池的温度分布,”Kidd 说。了解短路和热量扩散如何导致气体积聚及这些气体和其他电池材料从哪里排出(以及它们有多热)对于工程师来说非常重要。“我们不能保证每次都能防止电池着火,”Kidd 解释说,“但我们可以减轻损害程度,并引导其进入安全的通道。”“这是我们以前用热电偶和普通红外热像仪所无法捕捉到的,”Kidd 说。虽然它们也能看到碎屑排出,但材料在接触大气时会立即冷却。“有了FLIR高速热像仪,我就可以放慢速度,并捕捉到这种材料,其温度有时可高达700℃,甚至更高”他解释说。FLIR高速热成像技术可展现全局热成像技术与热电偶不同,热电偶必须直接放置在采集温度数据的点上,而热成像则可同时提供电池上每个点的数据。“它可以提供全局视野,并且收集的数据点显然多得多,这有助于对其进行分析,并且可以帮助我们提出下一步要进行的测试。”Gordon 说。通过FLIR热成像仪,工程师不仅可以很容易看到在滥用测试时电池外部发生的情况,还可以看到内部发生的情况,以及热量的变化情况。“我们可以立即看到温度是如何传递的,并且可以看到是否出现热点,即使在那个点上没有热电偶,”Gordon 继续说。其结果是热成像比单纯的通过/失败认证提供了更多的信息。“比起系统是否着火,热图谱可以告诉你更多有关热管理系统效果的信息,”Fleetwood 博士说。热成像不仅每一帧都提供大量数据,而且还提供了一种直观了解测试过程中情况的方法。“我认为,一般而言,与包含成千上万的数字和通用图表的Excel表格相比,每一个人都更能理解图像或视频所展示的情况。”希望定格快速移动目标或定格快速升温或冷却目标的热动态画面的研究人员,需要的不只是能获得快速帧频的热像仪。真正的高速红外成像需要快积分时间(短至仅几微秒)以及能以29,000帧/秒的速度捕获数据。如今FLIR新一代红外探测器使记录640×512像素全帧高速数据成为可能,这意味着研究人员能在不损失视窗中帧区域的情况下对喷气发动机涡轮叶片、超音速射弹、爆炸等进行动态分析。
  • 聚焦锂电安全性|美国TA仪器推出TAM IV Micro XL微量热仪
    p  近期,美国TA仪器推出了新款微量热仪——TAM IV Micro XL。这是一款功能强大的等温微量热仪(IMC),专门用于测量电池内部最小的电化学反应。该仪器配备了一个大型测试室,使科学家和工程师可以制造定制尺寸的电池座,以适应其应用的具体电池几何结构。/pp style="text-align: center "img width="300" height="408" title="TAM IV Micro XL.png" style="width: 300px height: 408px max-height: 100% max-width: 100% " alt="TAM IV Micro XL.png" src="https://img1.17img.cn/17img/images/202003/uepic/bb644ffe-403d-45f6-b950-d2fddd3abd7e.jpg" border="0" vspace="0"//pp style="text-align: center "TAM IV Micro XL/pp  软包电池、扣式电池、起搏器和手机电池的实验可在自然储存条件下进行,也可与电池循环设备一同进行,以评估电池的充放电动力学。/pp  TAM-IV-Micro-XL可以检测锂离子电池在自放电过程中的亚微瓦变化。使用该仪器得出的参数可以对样品稳定性进行定量评估。IMC温度图的形状是对电池中发生的实时反应速率(反应速度)的直接测量。理解反应的速率可以用于指示产品的寿命和安全性。除了反应速率之外,还有其他重要的参数可以用来表征热稳定性。通过更多详细的分析,可以用来确定电池放电和充电过程的热力学性质,从而理解潜在的寄生反应,这对于评估电池的循环寿命和能量密度非常重要。/pp  “尽管锂离子电池市场已经成熟,但安全性、更高的能量密度和更长的电池循环寿命永远是该领域关注的焦点。” 美国TA仪器的微量热仪产品经理Neil Demarse评论说,“TAM IV Micro XL提供了一个平台,可以理解不想要的寄生反应的精确机制:这是开发下一代电池技术的关键一步。”/pp  TAM IV Micro XL IMC的高级功能包括:/pp  最佳热平衡和业界最高的信噪比电池等温微量热仪/pp  内置引线接入,与外部电池无缝集成,可用于充放电实验,/pp  模块化恒温器,可扩展多样本比较功能。/pp  该系统流线型工作流程和用户友好的数据分析软件加快了典型电池配方中先进电池电解质化学和电极材料的研究,以最少的实际操作时间快速提供可靠的结果,并推动了各技术单元的生产效率。/ppbr//p
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 核酸等温扩增技术的应用现状与思考——马学军 中国疾病预防控制中心病毒病预防控制所中心实验室主任
    目前,传统的聚合酶链式反应,简称PCR技术,因其灵敏度高、特异性强和稳定性好被认为是病毒核酸检测的首选方法。PCR技术是一个热循环的过程,整个扩增检测时间较长,需要核酸扩增仪作为辅助工具,因此PCR反应始终受到电力、成本以及空间等因素的制约,难以实现对病原的现场快速检测。核酸等温扩增是在等温条件下的核酸扩增和检测技术,无需热循环仪,等温仪器体积小,实验操作简单,具有快速、准确和易普及等特点,适用于对检测速度要求极高的海关口岸和技术力量、基础薄弱的县乡级基层医疗机构(如发热门诊等),能在短时间内完成培训,使其具备核酸检测能力。本文拟回顾和评论目前国内外主要的核酸等温扩增技术及其在新型冠状病毒核酸检测中的应用现状,并分析核酸等温扩增技术目前应用存在的不足,展望和思考核酸等温扩增技术未来发展前景,供同行参考和批评指正。国外广泛应用的核酸等温扩增技术包括依赖核酸序列的扩增技术(Nucleic acid sequence-based amplification,NASBA)、环介导等温扩增技术(Loop-mediated amplification,LAMP)、重组酶聚合酶扩增技术(Recombinase polymerase amplification,RPA)和将上述等温扩增技术与Cas酶结合的新型检测方法如SHERLOCK(Specific high-sensitivity enzymatic reporter unlocking)和DETECTR(DNA endonuclease-targeted CRISPR trans reporter)等。基于Cas酶的核酸等温扩增技术:等温扩增技术仅对靶标进行高效扩增,还需要指示剂、荧光染料或荧光探针对扩增产物进行识别与报告,识别的特异性往往受到靶标序列及扩增特异性的影响,而造成结果不准确。Cas 酶检测系统作为一种高特异性的核酸序列识别与报告方法,与等温扩增技术相结合,可提高检测结果的准确性。基于Cas酶的附属活性,SHERLOCK和DETECTR两种等温检测方法已成功用于新冠病毒核酸检测。SHERLOCK 采用逆转录RPA和T7 RNA聚合酶对病原RNA靶标进行扩增,得到大量单链RNA产物,最后利用Cas13a在向导序列的介导下与靶序列结合时被激活的附属活性,对体系中的单链报告探针进行切割产生信号,从而对扩增产物进行特异性检测。DETECTR与SHERLOCK原理类似,不同在于其所使用的Cas酶为Cas12,可识别DNA靶标,只需一步逆转录LAMP 而无需转录过程即可对靶标进行检测。SHERLOCK和DETECTR的检测灵敏度均可达到10拷贝/μL,并且均可在1h内完成。但是两者都需要在扩增反应结束后开管进行扩增产物的转移,而且试纸条检测时也需要再次开管,这增大了产物污染的风险和操作难度。为了解决这一问题,一种基于Cas12b的检测方法STOP(SHERLOCK Testing in One Pot)被开发出来。该方法所采用的Cas12b可以在LAMP反应温度(65℃)下保持活性,因此可以无需在扩增结束后开管转移产物,降低了产物污染的风险。并且为了避免试纸条检测时的开管,Joung J 等采用了弹夹式试纸条检测管进行结果检测。国内自主研发主要的核酸等温扩增技术包括实时荧光核酸恒温扩增检测技术(Simultaneous Amplification and Testing,SAT)、重组酶介导扩增技术(recombinase-aid amplification,RAA)和交叉引发扩增技术(Cross-priming amplification,CPA)等。表1 国内等温扩增技术检测新冠病毒核酸试剂比较SAT-RNA捕获探针法:SAT技术配合AutoSAT全自动核酸分析系统可以实现8h内200个样本的高通量检测,可一次性放置80个样品并实现连续上样。SAT-RNA 技术利用RNA捕获探针和分子信标技术在 NASBA 技术的基础上进一步提高了检测的灵敏度和特异性,结合全自动分析系统简化了操作并且提高了检测通量,但是并未能从原理上克服 NASBA 技术反应时间长的问题。此外,该技术仍然需要预先对样本进行常规病毒核酸提取,因此,更适合于检疫检验部门在实验室环境下进行高通量的SARS-CoV-2核酸检测。荧光RT-RAA法:荧光RAA方法可用于检测口咽拭子、鼻咽拭子、鼻拭子、肺泡灌洗液、唾液等样本中的核酸,灵敏度高(注册检报告的灵敏度两批试剂盒可以达到137copies/mL,一批试剂盒达到45 copies/mL)。配套自动化核酸提取仪器和提取试剂盒,加入提取的核酸后,在8-15分钟内完成16个样本的检测,1个小时内完成96样品的全流程检测,检测结果可用便携式等温扩增荧光仪器自动判读。操作简便和快速,检测具有灵活性,可实现随到随检,适合在县级乡镇发热门诊和口岸检测机构进行快速筛查。CPA实时荧光法:逆转录CPA实时荧光法使用了一种一体化全自动核酸检测管。这种检测管整合了核酸提取和检测,通过温度改变熔化各种核酸提取试剂和检测反应试剂之间的有机隔层,控制整个提取和检测反应有序进行。CPA扩增产物采用分子信标进行检测,荧光信号由外部荧光检测设备检测。这种全自动检测管适合疫情暴发初期的现场筛查。LAMP芯片法:基于LAMP和离心碟式微流控芯片法用于包括新冠病毒在内的6种呼吸道病原体检测。该芯片上有24个反应单元和引物预载单元环形排列,反应单元之间由连接通道连接。六种病毒对应的引物分别预载在不同的引物预载单元内,进行检测时,经过核酸提取的样本与反应体系的混合液由加样孔加入,并在离心力的作用下均匀分布进入反应单元,芯片在63℃下反应1.5 h完成扩增,扩增产物采用钙黄绿素显色法进行检测,配合多芯片反应检测仪器,一次可检测16人份的样品。LAMP芯片法实现了多种呼吸道病原体的鉴别检测,适合于医疗机构对有呼吸道疾病指征的患者进行快速分诊处治。利用肉眼观察颜色变化来判读检测结果,虽然降低了对仪器设备的要求,适合在资源有限和经济不发达地区开展核酸检测,然而主观判断颜色变化存在较大个体差异,钙黄绿素等指示剂不具有靶标序列特异性,因此影响结果的准确性。此外,LAMP芯片法尚需传统的病毒核酸提取步骤,限制了检测速度,不适于现场快速检测。曾有文献报道 LAMP 反应体系抗干扰能力较强,可对只经过简单裂解的血样或只经过沸水浴处理的拭子样本直接进行扩增检测。如果能开发出直接检测热裂解咽拭子样本的新冠病毒核酸检测方法,将有利于现场快速检测。目前的核酸等温扩增技术在扩增检测速度、仪器小型化,试剂成本、可视化判读结果等方面比PCR技术有一定优势,但现场检测难以实现,样品前处理(核酸提取)成为主要制约因素。简单的样本处理法若能与等温扩增技术匹配,才能真正缩短检测周期,发挥出等温扩增快速、灵敏、便捷的特点。其次,如何实现单管闭管条件下的多重或多靶标等温扩增检测,并同时具有高灵敏度和特异性,也是亟待解决的技术难题,否则将限制等温扩增技术的应用范围。此外,虽然有些等温扩增POCT(Point-of-care test)技术实现了样品进、结果出的终极目标,解决了核酸提取和等温扩增多重检测难点,具有现场应用的前景,然而目前的产品通量偏低,成本偏高,时间偏长或灵敏度偏低,从而限制了其应用场景。目前Cas酶系统成为技术热点,但是Cas酶系统只是一种特异性的产物检测方法,Cas酶检测系统本身灵敏度不足,必须结合扩增反应才能实现靶标的检测,另外,Cas酶检测系统对报告探针的切割无选择特异性,实现单管多重检测面临技术挑战。• 核酸检测技术的未来发展方向是信息化,小型化,简单化和自动化。核酸等温扩增技术在病原检测中仍不能替代PCR技术,但是弥补了传统 PCR 检测技术设备依赖和检测周期长的不足,极具发展潜力,使得核酸等温扩增技术在现场快速检测、全自动一体化检测等方面展现出独特的应用前景,是传染性病原体核酸检测技术未来发展的方向。微流控芯片作为一种新型的反应和检测载体,可以与不同的等温扩增反应结合开发出小巧便携的床旁检测或即时检测平台,微流控芯片也可以将多重反应整合在一起,实现多样本或者多靶标同时检测。真正实现核酸等温扩增技术的现场应用,还需要考虑仪器的小型化或无仪器的可视化判读,可接受的检测成本,智慧数据传输(如智能手机)和电池驱动装置等。新型冠状病毒疫情在全球流行,由于各国防控情况不平衡,新型冠状病毒或将在相当长的一段时间内与人类共存甚至会成为长期存在的一种呼吸道传播病原体。建议在实际应用层面上可允许采取组合检测方式,如核酸等温扩增技术用于初筛,PCR技术用于复核,可以充分发挥两种技术的优势和特点,满足口岸快速排查,基层发热门诊快速分流的实际需求。同时,鉴于与国外同类技术比较,国内核酸等温扩增技术的原创性和核酸等温扩增新技术产业化方面差距明显,建议设立新技术研发专项,鼓励探索性和原创性研究,重点扶持具有中国自主知识产权的核酸检测新技术的研发和产业化。
  • 专题约稿|电池部件的结构表征
    p style="margin-top: auto margin-bottom: auto padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""span style="margin: 0px padding: 0px color: rgb(255, 0, 0) font-size: 18px "i style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "专题约稿|/strong/i/spanstrong style="margin: 0px padding: 0px "i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-size: 18px color: red "span电池部件的结构表征/span/span/i/strong/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "——“锂电检测技术系列——形貌分析技术”专题征文/span/i/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""i style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(作者:安东帕)/span/i/pp  相关领域:负极、正极、电池隔膜、超级电容器、电池行业、能源行业/phr style="height:1px border:none border-top:1px solid #555555 "/pspan style="color: rgb(165, 165, 165) "span  /spanstrong现如今,已经有多种不同的技术手段表征诸如比表面积、孔径及密度等电池部件的结构性质。本文讨论了使用气体吸附法、压汞法和毛细管流动法测试正负极和隔膜材料实例。/strong/spanbr//phr style="height:1px border:none border-top:1px solid #555555 "/pspan  /spanspan style="color: rgb(255, 0, 0) "strong1 为什么要测试电池材料的比表面积、孔径、孔容和密度/strong/spanbr//pp  电池行业的研发人员一直在寻找最安全有效的电池技术来满足当今和未来世界的能源需求。为了优化设计,电池研发人员更加需要准确地表征负极、正极和隔膜等电池部件的物理性质。这些性质包括比表面积、孔径、孔容、孔隙率(开孔率)和密度。/pp  strong1.1 比表面积/strong/pp  对于正负极以及隔膜材料来说,比表面积是一个重要的特性指标。比表面积的差异会影响电池的容量、阻抗、充电放电速率等性能。如果样品比表面积测试结果与预期的比表面积不同,那么可以说明供应商提供的材料纯度或者粒径不符合要求。通常,使用BET比表面积测量法评估电池部件的比表面积,它可以测试极低比表面积,最低可至0.01 m2/g。对于BET比表面积的测量,有静态压力法或者动态流动法两种测试方法供选择。/pp  strong1.2 孔径和孔容/strong/pp  对于电池材料来说,孔径分布也同样重要。例如,某电极材料的孔径分布发生变化,可能导致材料在实际使用过程中的发生相变或结构变化。这些测试结果也可用于确定材料的压缩和退火温度与其孔径分布之间的关系。/pp  孔容也是一个重要的性质。例如,电池隔膜必须有足够的孔容才能容纳足够的电解液。这样的电池隔膜才有良好的导电性。/pp  通常使用压汞法和气体吸附法测试以上材料性质。依照材料的孔径范围选取不同的测试方法。气体吸附法可用于测试微孔材料(d 2 2-50=" " d=" " 5 nm)和大孔材料(d 50 nm)可采用压汞法。!--2--!--2--/pp  strong1.2.1 通孔尺寸和渗透性/strong/pp  对于电池隔膜来说,通孔(两端连通的孔)的孔径分布在某些情况下可能比孔径分布更重要。利用毛细管流动法可以对通孔进行表征,还可以进行渗透性分析来了解孔隙的结构性质。例如,一个弯曲的孔道有助于将正极材料及负极材料隔开,但也增加了隔膜产生的有效电阻,从而降低了电池效率和寿命。/pp  strong1.3 密度/strong/pp  由于电池装置的工作空间有限,容量就成为了一个重要的性能指标。电极材料本身所占的体积以及相应的内部自由空间的大小(通常称为材料的孔隙度),是预测电池性能的必要参数。/pp  在检测电极原材料时,常需要知道该粉末的质量体积比值信息,振实密度分析仪就可以用来提供该信息。其中的体积包括颗粒内部和颗粒之间的空间。气体置换法用于测量材料的真实密度或骨架密度,它排除了任何可接触到样品外部的孔隙的影响。对于规则形状的样品,由于可以测量边长,孔隙率可以直接从气体比重数据中计算出来。对于粉末或不规则形状的样品,通过气体置换法所测得的体积和密度通常需要与其他技术相结合,比如气体吸附或压汞仪,它们可以提供完整的孔隙体积信息,从而确定材料的孔隙率。/pp strong span style="color: rgb(255, 0, 0) "2 应用实例/span/strong/ppstrong  2.1 正负极材料的比表面积测定/strong/pp  石墨负极和金属氧化物正极材料(LiNiCoMnO2)的比表面积可使用N2,77k下的BET比表面积进行表征,其线性范围为P/P0= 0.05-0.3,如图1所示。计算得出负极的比表面积为2.5 m2/g,正极的比表面积为1.5 m2/g。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 490px " src="https://img1.17img.cn/17img/images/201905/uepic/be6af711-bccf-4512-8c8f-a4baef6f2da9.jpg" title="1.jpg" alt="1.jpg" width="450" height="490" border="0" vspace="0"//pp  span style="color: rgb(0, 176, 240) "图1 NovaTouch 在N2(77K)条件下测试的由石墨(负极,上图)和LiNiCoMnO2(正极,下图)的吸附等温线导出的BET比表面积图/span/pp  strong2.2 隔膜的比表面积和孔径测试/strong/pp  采用压汞法对由聚偏二氟乙烯(PVDF)组成的电池隔膜的孔径和孔容进行表征(如图2)。压汞仪所得的孔径分布包括了材料中的通孔和盲孔,代表了隔膜内所有大介孔(d:2-50 nm)和大孔(d 50 nm)的分布。通过结合汞侵入孔隙的体积与氦比重计测量的骨架密度可以获得孔隙信息。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 445px height: 705px " src="https://img1.17img.cn/17img/images/201905/uepic/3050545e-cf5e-43a1-bbf7-1d32b5c03c5a.jpg" title="2.jpg" alt="2.jpg" width="445" height="705" border="0" vspace="0"//pp span style="color: rgb(0, 176, 240) " 图2 PoreMaster 60测得的PVDF隔膜的侵入及脱出曲线(上图)及其相应的孔径分布图(下图)/span/pp  为了确定通孔的孔径分布范围,还使用Porometer对薄膜进行了测量(图2)。用压汞法和毛细管流动法孔径测量技术测得的平均孔径均为0.47 µ m,两种方法测试结果相差不大,表明这种薄膜主要由所需的有效通孔组成。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 668px " src="https://img1.17img.cn/17img/images/201905/uepic/c70d57b4-5833-492a-a594-16cc80b725a6.jpg" title="3.jpg" alt="3.jpg" width="450" height="668" border="0" vspace="0"//pp  span style="color: rgb(0, 176, 240) "图3 Porometer 3Gzh测得的PVDF隔膜的毛细管流动法孔率曲线(上图)和对应的孔径分布图(下图)/span/pp  strong2.3 微孔炭负载锂硫电池/strong/pp  气体吸附法不仅可以用来测正负极和隔膜材料,还可以用来表征锂硫电池和其他类型的电池的载体。如微孔炭载体,当其中的孔足够小(d 1 nm)就可以使用CO2吸附在273K下进行测试并计算孔径分布。图4显示了微孔炭载体上的CO2(273K)等温线及使用NLDFT模型分析所得的孔径分布和累积孔隙体积。在这种特殊的载体中,只有小于1 nm的孔存在,大多数小于0.6 nm[1]。因此,只有S2分子可以被限制在孔隙中,而更大的S4-8分子则被排除在外。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/33306e93-f78a-45e8-90bf-da35ed2da0d0.jpg" title="4.jpg" alt="4.jpg"//pp  span style="color: rgb(0, 176, 240) "图4 Autosorb-iQ测得的锂硫电池的微孔炭载体的CO2 (273 K)等温吸附线(左图)和NLDFT孔径分布和累积孔体积曲线(右图)/span/pp strong 2.4 超级电容器/strong/pp  诸如石墨烯和氧化石墨烯之类的超级电容器材料也可以使用气体吸附法来表征。在图5所示的示例中,通过结合N2(77K)、Ar(87K)和CO2(273K)吸附来表征剥落的氧化石墨烯,以计算所有的微孔和介孔孔径分布[2]。在本例中,想要得到完整的孔径分布,必须使用N2和CO2,因为材料中既含有小于N2可进入的孔,也含有大于CO2可进入的孔。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/75e3f0ca-71b0-462c-8de4-c11ab574fcc9.jpg" title="5.jpg" alt="5.jpg"//pp  span style="color: rgb(0, 176, 240) "图5 Autosorb-iQ XR测得的氧化石墨烯超级电容器的吸附等温线(上图)和对应的孔径分布图(下图)/span/pp  span style="color: rgb(255, 0, 0) "strong3 结论/strong/span/pp  通过结合气体吸附法、压汞法、毛细管流动法和气体置换法可以表征包括负极、正极、隔膜、负载材料和超级电容器在内的电池材料结构。其中,气体吸附法用于BET比表面积和微孔、中孔孔径分析 压汞法用于中孔和大孔孔径测定 毛细管流动法用于通孔孔径分布 气体置换法用于密度测定。了解电池部件的这些重要物理特性有助于研发人员设计和优化未来的电池,并有助于在QA和QC要求下验证组成成分。/pp  span style="color: rgb(255, 0, 0) "strong4 参考文献/strong/span/pp  1. Xu, Y. Wen, Y. Zhu, Y. Gaskell, K. Cychosz, K.A. Eichhorn, B. Xu, K. Wang, C. Adv. Funct. Mater. 2015, 25, 4312-4320./pp  2. Zhu, Y. Murali, S. Stoller, M.D. Ganesh, K.J. Cai, W. Ferreira, P.J. Pirkle, A. Wallace, R.M. Cychosz, K.A. Thommes, M. Su, D. Stach, E.A. Ruoff, R.S. Science 2011, 332, 1537-1541./pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""strong style="margin: 0px padding: 0px "span style="color: rgb(68, 68, 68) font-family: 宋体, " arial=""  /span/strongstrong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "附:关于锂电系列专题约稿/span/strongbr style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,根据公开数据,预计2018年全球锂电池增速维稳,产量达155.82GWH,市场规模达2313.26亿元。中国是锂电池重要的生产国之一,2018年预计全国锂电池产量达121亿只,增速22.86%。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""  为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "锂电检测系列专题内容征集进行中:/spana href="https://www.instrument.com.cn/news/20181204/476436.shtml" target="_blank" style="margin: 0px padding: 0px color: rgb(255, 255, 255) text-decoration-line: none background-color: rgb(192, 0, 0) "span style="margin: 0px padding: 0px "【征集申报链接】/span/a /ptable border="0" cellspacing="0" cellpadding="0" align="center"tbodytr class="firstRow"td width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"系列序号/span/strong/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列专题主题/span/strong/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"strongspan style="font-size:12px font-family:宋体 color:#444444"专题上线时间/span/strong/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"电性能检测技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"1/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian1" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"成分分析技术/span/p/tdtd width="126" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family: ' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size: 12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian2" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"3/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"形貌分析技术/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"2019/spanspan style="font-size:12px font-family:宋体 color:#444444"年/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/spanspan style="font-size:12px font-family:宋体 color:#444444"月/spanspan style="font-size:12px font-family:宋体 color:#00B0F0"【/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"a href="https://www.instrument.com.cn/zt/lidian3" target="_blank"span style="font-family: 宋体 color: rgb(0, 176, 240)"span链接】/span/span/a/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"4/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"晶体结构分析技术/span/p/tdtd rowspan="3" style="border: 1px solid rgb(0, 0, 0) padding: 5px "br//td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"5/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——X/spanspan style="font-size:12px font-family:宋体 color:#444444"射线光电子能谱分析技术/span/p/td/trtrtd width="53" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center"span style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"6/span/p/tdtd width="359" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all "p style="text-align:center"span style="font-size:12px font-family:宋体 color:#444444"锂电检测技术系列/spanspan style="font-size:12px font-family:' Arial' ,' sans-serif' color:#444444"——/spanspan style="font-size:12px font-family:宋体 color:#444444"安全性和可靠性分析仪器及设备/span/p/td/tr/tbody/table
  • 梅特勒托利多 | 热分析在锂电池隔膜测试中的应用
    锂电系列 | 热分析在锂电池隔膜测试中的应用近期《经济参考报》发表了《新基建提速带动锂电池产业逆势上扬》的报道。文章称,进入2020年,在促进汽车消费和“新基建”等政策的推动下,国内动力锂电池产业显示出逆势上扬的态势。近日,工信部也召开专题会,研究部署加快5G网络等新型基础设施建设,对锂电池产业发展起到了重要推动作用。由于5G使用更大规模的阵列天线、更高的带宽,能量密度更高的锂电池就成为新基建的必然选择。锂电池市场需求巨大,但行业竞争日趋激烈,行业整合正在持续进行中,已经进入快速洗牌阶段。拥有核心技术和提高产品质量是生产厂家在激烈的竞争中生存的关键。热分析技术可以帮助企业更好地了解电池材料的受热稳定性,提高研发效率和质量控制,下面小梅就以热分析技术对电池隔膜的热力学分析为例进行详细解析。锂离子电池主要由正极、负极、电解液、隔膜以及集流体、外壳和安全元件等组成。其中电池隔膜起着隔离阴阳极、吸收电解液、同时具备微孔结构并允许某些导电离子和气体顺利通过的作用。锂电池隔膜的质量直接影响到电池的充放电性能、容量和使用寿命。目前,市场上主流的隔膜生产工艺有两种,一种是熔融拉伸法(干法),另外一种是热致相分离法(湿法),且目前主要的隔膜材料都是高分子材料,而电池由于不当使用而导致内部温度剧烈上升会使隔膜孔隙率和收缩率等重要指标发生剧烈改变,因此,在使用过程中,隔膜的热稳定性就显得尤为重要。热分析技术可以检测隔膜的熔融行为、玻璃化转变、热稳定性、失效温度、热收缩率等参数,帮助我们更好的了解隔膜的受热稳定性。用DSC测试隔膜的熔融行为DSC主要是用来测试样品在升降温过程中的热量变化情况,因此用DSC可以很好地测定高分子隔膜的熔融过程,下图是PP隔膜的测试图谱,测试结果显示,一次升温时,由于薄膜状的样品在熔融时易发生卷曲,所以往往在第一次升温曲线上容易出现假象,这对熔融温度的测定可能有一定影响。为了消除热历史对熔融温度测定的影响,我们可以采用二次升温的方式消除热历史,此时测定的熔融温度为样品本身的熔融温度。目前市面上的高分子隔膜大都是PP/PE的复合隔膜,因此,在隔膜的DSC测试中,往往会出现两个熔融峰,下图是PP/PE隔膜的测试图谱,PE和PP的熔融峰分别出现在130℃和166℃。用TGA测试隔膜的热稳定性TGA测试结果可以分析样品在升温过程中的质量变化情况,以此来反映样品的热稳定性,下图是PP隔膜的TGA测试图谱,结果显示,该PP隔膜的热分解温度是437℃,且隔膜的成分较为单一。用TMA测试隔膜的膨胀系数及收缩率高分子隔膜材料在受热时会发生一定量的收缩,这对隔膜的孔隙率会有较大的影响,进而影响锂电池的性能。例如,PE隔膜在90℃条件下等温60min收缩率应小于5%。目前,常见的隔膜收缩率的测试方法为悬挂法,即将一定长度的隔膜悬挂于特定温度的烘箱中,一段时间后拿尺子测量隔膜的尺寸,比较烘烤前后隔膜的尺寸来计算收缩率,这种方法的优点是快速,可大批量测试,但缺点也很明显,测试精度较低,且若收缩率处于临界值时难以判断,因此,使用TMA可很好地测定隔膜的收缩率。下图是PP隔膜在升温过程中的收缩率和膨胀系数的测试图谱,结果显示,PP在加热至175℃时的收缩率达到了60%。同理,也可测试不同类型的隔膜材料在恒定温度下特定时间的收缩率。用DMA测试隔膜的实际失效温度为了提升隔膜材料的耐高温性能和力学性能,目前市面上一般都都采用陶瓷粉末增强PE/PP的方法制备陶瓷隔膜或使用PI增强PE/PP隔膜,若对陶瓷隔膜进行DSC测试,其熔融温度往往与纯 PE/PP隔膜一致,但其实这时陶瓷隔膜往往还能保证一定的形貌及力学强度,并没有失效。此时,采用DSC表征隔膜的失效温度往往是不准确的,而通过DMA可较好地表征隔膜实际失效温度。下图是PE隔膜的DMA测试图谱,结果显示,其失效温度为135℃。★了/解/更/多/应/用 ★想了解梅特勒托利多其它产品在锂电行业的应用信息?您可以点击“阅读原文”查看梅特勒托利多全价值链解决方案。欢迎大家在评论区留言,告诉我们你还想学习哪方面的知识~
  • 大容量9系三元锂离子电池热失控测试
    前言9系超高镍三元锂离子电池是指正极材料元素比值为Ni:Co:Mn=9:0.5:0.5的三元锂离子电池,作为短期内已经将锂电池正极材料的潜力发挥到最大的方案,9系锂电池的理论能量密度甚至超过了300Wh/kg。由于9系锂电池具有超高的能量密度,受到了致力于提高新能源汽车续航里程的主机厂的密切关注。但高能量密度伴随着潜在的高危险性,因此获得9系电池的热失控特征参数尤为重要,但是9系锂电池的热失控过程非常剧烈,有较大概率会损伤仪器,因此9系锂电池的绝热热失控实验数据十分缺乏,电池热管理设计也缺少实验数据的支撑。本文利用杭州仰仪科技有限公司BAC-420A大型电池绝热量热仪进行了130Ah的9系NCM超高镍锂离子电池的绝热热失控测试,获得该电池热失控过程的相关热力学特征参数等信息。相关结果有助于帮助研究人员明确9系电池的热失控危害性,优化电池安全设计。实验部分1.样品准备实验样品:130Ah 9系NCM锂离子电池*1,260mm*100mm*25mm,100%SOC。2.实验条件实验仪器:杭州仰仪科技BAC-420A大型电池绝热量热仪;工作模式:HWS模式、温差基线模式;标准铝块:6061铝合金材质。图1 BAC-420A大型电池绝热量热仪3.实验过程3.1 温差基线校正:利用与电池大小形状一致的标准铝块进行温差基线模式实验,对热电偶及仪器进行校正;3.2 标准铝块HWS实验:利用标准铝块进行HWS模式实验,验证温差基线校正的效果及实验过程中仪器的绝热性能;3.3 电池HWS实验:为了防止9系电池热失控损坏炉腔,因此在电池外部增加了如图2所示的金属网防护罩,以HWS模式进行绝热热失控实验;图2 9系电池实验安装示意图及实物照片3.4 标准铝块HWS实验:电池HWS实验结束后,用标准铝块重新进行HWS验证实验,用于验证热失控后仪器功能是否正常及传感器漂移程度。实验结果图3 电池绝热热失控(a)温度-压力曲线及(b)温升速率-温度曲线如图3(a)所示,电池在82.68℃下的自放热温升速率达到了0.02℃/min的Tonset检测阈值;在131.67℃达到泄压温度Tv,泄压阀打开;随后在169.49℃达到热失控起始温度TTR (60℃/min),电池发生热失控,数秒内温度快速升高至约1090℃,最大温升速率(dT/dt)max超过40000℃/min。并且通过图4所示的抗爆箱内外部的监控画面,可以发现电池的热失控过程十分剧烈,在极短的时间内喷射出强烈的射流火及大量浓烟,同时瞬间产生的高温高压气流对实验室墙面产生了一定的冲击作用。图4 (a)防爆箱内部视频及(b)防爆箱外部视频图5 电池残骸照片通过观察电池残骸可以发现,泄压阀位置完全崩裂,同时电池残骸基本仅剩外部铝壳,内部电池材料几乎全部从泄压口喷出,热失控后电池的质量损失率达到了85.97%,也侧面表明了9系电芯的热失控剧烈程度。图6 电池热失控前(a)后(b)铝块HWS模式实验曲线在电池实验前,通过标准铝块的HWS实验验证了仪器良好的绝热性能,如图6(a),每个温度台阶铝块的温升速率均小于±0.002℃/min;电池测试后,为了确认仪器能否在承受9系锂电池的剧烈爆炸后仍然能正常使用,重新进行一次标准铝块的HWS实验。通过图6(b)可以发现,实验过程中仪器运行良好,并且每一个台阶的温升速率均低于±0.002℃/min,绝热性能依然优异,说明仪器功能完好,同时传感器未出现明显漂移。结论大容量9系超高镍NCM锂电池绝热热失控的剧烈程度高,实验室应具备足够的泄压泄爆面积(建议50平米以上),同时实验室墙面应进行加固。仰仪科技BAC-420A大型电池绝热量热仪具有优异的耐压和抗爆性,能够承受大容量超高比能电芯的热失控爆炸冲击。
  • 岛津应用:电池材料的热特性评价分析
    锂离子电池被广泛应用于手机以及笔记本电脑等家用电器中。今后,作为交通工具的飞机、混合动力车(HV)以及电动车(EV)等对锂离子电池的需求也将显著增加,为此,锂离子电池需要具备更高的功率、效率,以及更长的使用寿命、更高的安全性。锂离子电池由阳极、阴极、电解液、分离器等部分组成,为提高性能,需要使用仪器对每个组成部分以及整个电池进行详细的特性评价和解析。本文向您介绍使用热分析法对锂离子电池进行热特性评价的示例。岛津热分析仪60系列 了解详情,敬请点击《电池材料的热特性评价分析》 关于岛津岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 应用故事 | 热质联用研究废旧锂电池极片在热解过程中的产气情况
    从2010年开始,随着新能源、3C电子和电动工具等领域的快速发展,对锂电池的需求量与日俱增,越来越多的企业投身于锂电池的生产制造,据统计,2015年我国动力电池装机总量为16.5GWh,2022年提高到296GWh。随着时间的推移,使用过程中电池的性能会逐渐衰减,直至报废,目前动力锂电池的平均使用寿命约为4-8年,因此从2018年开始,前期使用的锂电池已开始陆续退役,废旧电池的处理和回收规模后续将越来越大,据估计,2019-2025年我国退役动力电池装机总量预计将由0.2GWh上升至52.0GWh。对于废旧锂电池,目前主要有两种处理方法,一是梯次利用,即将退役电池用在储能等其他领域,这主要针对磷酸铁锂电池;二是拆解回收,即将退役电池进行放电和拆解,提炼原料,从而进行循环利用,有效节约生产成本,三元电池目前以拆解回收为主。回收的主要方法有火法冶金、湿法冶金和生物浸出等,其中湿法冶金回收率较高,日益成为锂电池回收的主要工艺方法。商用锂电池通常由塑料或金属外壳、正极(Al箔上的锂金属氧化物)、负极(Cu箔上的石墨)、电解液(LiPF6、DMC、EC、EMC等)、粘接剂(如PVDF)和隔膜组成,回收的主要目标是正极上的有价金属,如锂、钴、镍。但是,电池废料中的有毒物质在回收预处理过程中排放的废气和导致的潜在危险是一个需要考虑的严重问题。了解电池材料在热解过程中产生的废气种类,有助于选择合适的废气处理措施,降低相关的风险,优化回收工艺。本文以废旧三元电池为例,介绍热质联用方法分析拆解电池极片在热解过程中产生的逸出气体。先将废旧电池进行放电处理,然后在手套箱中拆解,拆出正极片,晾干后进行真空包装。测试仪器为STA-QMS,测试前在空气下打开包装,快速称量样品,放入坩埚,然后放入炉腔内,通入Ar吹扫,将炉腔内的气氛置换为纯净的惰性气氛,以10K/min从35℃升温到700℃,Ar气氛,质谱采用扫描模式,从1amu扫描到120amu。下图为正极片的失重及质谱信号(质谱信息较多,所以分成4张图显示),样品的失重过程主要分为3个阶段,失重量分别为3.62%、2.13%和3.09%。根据质谱的检测结果,第一个阶段的气体产物比较复杂,跟NIST谱库对照后,判断逸出气体可能为H2(m2)、H2O(m18)、HF(m19)、CxHy(m14、m15、m16、m26、m27、m29、m30、m42)、C2HF(m31、m44)、C2H2F(m44、m45、m46)、C3H4O3(m29、m43、m88)、POF3(m69、85、104),第二阶段产物相对简单,逸出气体可能为H2O(m18)、C2H6O(m15、29、45、46)和CO2(m44),第三阶段的逸出气体可能为O2(m16、m32)、CH3F(m33、m34)、CO2(m22、m44)和C2H2F(m44、m45、m46)。通过以上分析可知,200℃以下产生的含氟气体主要来源于电解液,除此以外还有溶剂挥发产生的烃类、酯类物质、及水(游离水或结合水)和氢气,200℃-380℃之间,气体产物主要为水(反应水)、溶剂分解产生的醚类气体和CO2,380℃-700℃间主要为PVDF分解的产物,气体产物为CO2及一些含氟气体,O2可能来源于正极活性物质的分解。利用热质联用可以对极片样品在整个热解过程中的气态产物进行连续检测,从而可以分析极片热解的演变过程,了解气体释出过程和气体类型,为电池回收工艺提供理论基础和指导。热质联用测试正极片分解1热质联用测试正极片分解2热质联用测试正极片分解3热质联用测试正极片分解4作者王荣耐驰仪器公司应用实验室
  • 等温扩增,下一个新冠检测“金标准”?获证仪器大盘点
    2022年,新冠病毒“卷土重来”,奥密克戎变异株侵袭国内多地,上海、吉林等地疫情尤为严重。奥密克戎变异株具有传播快、隐匿性强的特点,因而近期本土疫情点多、面广、频发。为控制疫情,提高疫情防控效率,居家新冠核酸快速检测自检已经成为了不可逆的趋势。今年,国家发布《区域新型冠状病毒核酸检测(新冠核酸快速检测)组织实施指南(第三版)》明确推出了“抗原筛查,核酸诊断”的监测模式。目前, 传统的聚合酶链式反应(PCR技术)是新冠病毒核酸检测的“金标准”,最主要用到的技术为荧光定量PCR技术,该方法的优势为灵敏度高、特异性强、稳定性好。但是由于PCR方法核酸检测集中采样接触易感染,需配套洁净实验室,工作繁琐且获取结果时间长,难以实现对病原的现场快速检测。新冠病毒抗原检测通过抗原和抗体结合反应在试纸条上检测,方便快检,通常30分钟内可出结果,能够实现现场快速检测。但抗原检测灵敏度低,易出现假阳性,无法代替核酸检测作为诊断标准。因此,在“抗原筛查,核酸诊断”的现行新冠检测方案之外,是否能找到一种既可靠、又快速的技术方法,以适配除“集采”和“居家自测”以外更多的现场检测场景,如社区门诊、发热门诊、海关等?等温扩增可能是最佳答案。核酸等温扩增技术是指在某一恒定温度、由特定酶作用完成靶标核酸扩增和相关信号检测的技术。相比于PCR技术,等温扩增技术无需热循环,能快速达到实验所需的温度,基于该技术开发的分子诊断系统具有操作简便、检测快速高效、仪器易小型化和易普及等多重优点。经过十多年的发展,目前已有多种等温扩增技术用于分子诊断领域,包括同时扩增和检测(SAT)、重组酶辅助扩增(RAA)、交叉引物放大(CPA)和LAMP离心盘微流控芯片(LAMP-chip)等。基于等温扩增技术的新冠核酸快速检测,将大大提升新冠核酸现场快速检测效率,是对现行新冠检测方案很好的补充。本文对我国用于新冠病毒检测的恒温扩增快检技术和产品进行梳理盘点,以飨读者。目前,已经有多款基于恒温扩增技术的新冠病毒检测产品上市。1、 上海速创全自动恒温核酸扩增分析仪全自动恒温核酸扩增分析仪MA3000(国械注准20213220473)上海速创诊断产品有限公司推出的全自动恒温核酸扩增分析仪MA3000,该产品是一款基于微流控生物芯片技术打造的集核酸提取、纯化、扩增、分析、报告于一体的全自动核酸检测平台。与公司的微流控生物芯片试剂相结合,可以实现多样本、多靶点的微生物病原体DNA/RNA检测。检测通量可达96样本/小时,检测时间在30-45分钟之间,强阳性样本最快可以15分钟出结果(5分钟核酸提取纯化,10分钟扩增出结果)。2、成都博奥晶芯恒温扩增微流控芯片核酸分析仪晶芯RTisochip™ -A 恒温扩增微流控芯片核酸分析仪(国械注准 20173401354) 恒温扩增微流控芯片核酸分析仪(型号:RTisochipTM-A)及配套碟式芯片是博奥研发的快速检测微生物核酸的新平台,博奥将微流控技术与恒温扩增技术结合,可提供 1×24、2×11、3×8三种不同型号的碟式芯片。 博奥同时自主研发和生产了呼吸道病原菌核酸检测试剂盒,与恒温扩增微流控芯片核酸分析仪一起通过国家药品监督管理局的创新审批,并获得三类医疗器械注册证。 性能指标3、上海仁度AutoSAT全自动核酸检测分析系统AutoSAT全自动核酸检测分析系统(国械注准20193220245)原理:采用SAT—RNA实时荧光恒温扩增检测技术,靶标RNA在RT酶作用下逆转录合成一条带T7启动子的双链DNA,T7 RNA聚合酶以这条双链DNA为模板进行转录,每个cDNA分子可以转录出100~1000个拷贝的RNA,合成出的RNA与分子信标结合,发出荧光,可以被荧光检测仪检测到。与此同时,新合成的RNA继续在RT酶和T7 RNA聚合酶的作用下循环逆转录和转录的过程。如此往复,以达到高效扩增的目的。检测通量:90分钟报告第一个样本结果,之后平均2分钟报告一个结果,8小时可检测200样本,24小时可检测500-700个样本;样本容量:可一次性放置80个样本并实现连续上样。4、上海伯杰一体化核酸快速检测系统BG-NOVA-X8一体化核酸快速检测系统(国械注准20213220715)伯杰医疗自主研发的BG-Nova-X8,集成CRISPR技术、磁珠提取、高精度机械臂,42℃恒温扩增检测,快速完成扩增反应,40分钟即可全自动出结果,2021年公司新型冠状病毒2019-nCoV核酸检测试剂盒(恒温CRISPR法)获批上市,国械注准20213400714。5、长光辰英Home Lab便携式恒温核酸扩增分析仪Home Lab便携式恒温核酸扩增分析仪长光辰英自主研发的Home Lab便携式恒温核酸扩增分析仪,基于光信号即时判读技术与环介导等温扩增技术(LAMP)结合,自动判读核酸检测结果。根据产品介绍,Home Lab分析仪搭配新冠核酸快速检测试剂盒(环介导等温扩增法),组成系统化快速检测方案,通过鼻拭子取样,12-30分钟内可完成4个样品的核酸检测,在感染早期即可进行病毒检测。目前,Home Lab分析仪已实现量产化生产,并于2021年末顺利通过了欧盟CE医疗许可认证。6、江苏奇天RAA快检平台系列仪器F1628 恒温核酸扩增分析仪原理:重组酶介导等温核酸扩增技术(Recombinase Aided Amplification)是一种全球领先的分子检测技术,简称RAA技术,该技术利用重组酶、单链结合蛋白、DNA聚合酶在等温(37℃)条件下进行核酸扩增,结合荧光探针实现即时检测,是一种精准、方便、快速的核酸检测技术,实现5-15分钟完成检测输出结果,灵敏度高达到1 拷贝/测试。2020年1月,奇天基因与中国疾病预防控制中心联合研制的新型冠状病毒(2019-nCoV)核酸等温扩增快速检测试剂盒, 实现了8-15分钟快速检测出结果。2021年,江苏奇天新型冠状病毒(2019-nCoV)核酸检测试剂盒(荧光RT-RAA法)获批上市,国械注准20213400656。7、杭州尤思达即时分子诊断系统新型冠状病毒(2019-nCoV)即时分子诊断系统系统基于交叉引物放大(CPA)原理,检测全流程时长约80分钟,通量为2个样本。今年以来,有更多等温扩增核酸检测仪研发成果被报道。据中科院苏州医工所官方网站报道,苏州医工所医学检验室尹焕才研究员联合马富强研究员及相关科研力量,在苏州医工所自主部署项目的支持下,开展了基于LAMP技术(Loop-mediated isothermal amplification,环介导等温扩增技术)的传染性病原体检测系统研制。从特异性引物筛选设计、LAMP反应核心酶研发、高灵敏反应体系构建、到配套便携式荧光检测仪器,进行了全链条部署研究,取得阶段性进展。半小时内完成测试,试剂可常温运输,无需冷链,便于居家、床旁及现场快速检测使用,已初步具备转产条件。呼吸道病原体快速检测系统构成4月,据有关媒体报道,香港理工大学研发的便携式新冠病毒检测仪,利用反转录恒温环状扩增法(RT-LAMP)及金纳米粒子(作为核酸扩增显示剂),已成功进行精准的新冠病毒检测。临床样本测试结果与反转录聚合酶连锁反应(RT-PCR)标准完全吻合。检测仪在25分钟内可以确认新冠病毒阳性样本,整个检测约40分钟内完成,结果亦可凭肉眼辨识。据介绍,检测仪可同时放置六个样本,撇除两个阳性及阴性对照样本之外,可同时检测最多四个样本。采集样本后,即可使用检测仪在现场进行检测,无需将样本送回实验室。香港理工大学研发的“便携式新冠病毒检测仪”
  • 差示扫描量热仪的扩展
    p  差示扫描量热仪除常规的热通量式DSC和功率补偿式DSC外,还有数种特殊的应用形式。/ppstrong超快速差示扫描量热仪/strong/pp  超快速DSC是最新发展起来的创新型快速差示扫描量热仪,采用动态功率补偿电路,属于功率补偿式DSC的一类。/pp  瑞士梅特勒-托利多公司于2010年9月推出了世界上首款商品化超快速差示扫描量热仪Flash DSC(中文名称:闪速DSC)。升温速率可达到2400000K/min,降温速率可达到240000K/min。/pp  闪速DSC的心脏是基于微机电系统(micro electro mechanical systems-MEMS)技术的芯片传感器,传感器置于有电路连接端口的陶瓷基座上。如图所示为闪速DSC芯片传感器和测量原理示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/b5b7573d-a532-4a86-95d9-b7ec0e2ba93d.jpg" title="闪速DSC芯片传感器和测量原理示意图.jpg" width="400" height="325" border="0" hspace="0" vspace="0" style="width: 400px height: 325px "//pp style="text-align: center "strong闪速DSC芯片传感器和测量原理示意图/strong/pp style="text-align: center "1.陶瓷板 2.硅支架 3.金属连线 4.电阻加热块 5.铝薄涂层 6.热电偶/pp  试样面和参比面各有电阻加热块,加热块由动态功率补偿控制。补偿功率即热流由排列于样品面和参比面的各8对热电偶测量。热电偶呈星形对称排列,可获得平坦和重复性好的基线。样品面和参比面由涂有铝薄涂层的氮化硅和二氧化硅制成,可保证传感器上的温度分布均匀。传感器面厚约2.1μm,时间常数约为1ms,可保证快速升降温速率下的高分辨率。/pp  在常规DSC中,为了保护传感器,将试样放在坩埚内测试,坩埚的热容和导热性对测量有显著影响。典型的试样质量为10mg。在闪速DSC中,试样直接放在丢弃型芯片传感器上进行测试。试样量一般为几十纳克(ng)。由于试样量极小,必须借助显微镜制备试样。/pp  闪速DSC能分析之前无法测量的结构重组过程。极快的降温速率可制备明确定义的结构性能的材料,如在注塑过程中快速冷却时出现的结构 极快的升温速率可缩短测量时间从而防止结构改变。不同的降温速率可影响试样的结晶行为和结构,因此闪速DSC是研究结晶动力学的很好工具。闪速DSC在其升、降温低速段可与常规DSC交叠,如闪速DSC的最低升温速率为30K/min、最低降温速率为6K/min。因此,闪速DSC与常规DSC可互为补充,达到极宽的扫描速率范围。/ppstrong高压差示扫描量热仪/strong/pp  将DSC炉体集成于压力容器内,可制成高压差示扫描量热仪。高压DSC一般有3个气体接口,各由一个阀门来控制:快速进气口用来增压 炉腔吹扫气体入口用于进行测试过程中的气流控制 气体出口用于进行压力控制。测试炉内的实际压力由压力表显示。通过压力和气体流量控制器,可实现静态和动态程序气氛下的精确压力控制。/pp  加压将影响试样所有伴随发生体积改变的物理变化和化学反应。在材料测试、工艺过程开发或质量控制中,经常需要在压力下进行DSC测试。高压DSC仪器扩展了热分析的应用。/pp  压力下进行DSC测试可缩短分析时间,较高压力和温度将加速反应进程 可模拟实际反应环境,在工艺条件下测试 可抑制或延迟蒸发,将蒸发效应与其他重叠的物理效应及化学反应分开,从而改进对重叠效应的分析和解释 可提高气氛的浓度,加速与气体的多相反应速率 可在特定气氛下测量,如氧化、无氧条件或含有毒或可燃气体(如氢气) 可通过不同压力下的实验,更精确地测试吸附和解吸附行为。/ppstrong光量热差示扫描量热仪/strong/pp  光量热组件与DSC结合,可生成DSC光量热仪,测量材料在不同温度下用一定波长的光照射引发固化反应所产生的焓变。主要应用于材料的光固化领域,测试光引发的反应。可用于研究各种光敏材料的光效应,如光活性固化过程、光引发反应以及紫外线稳定剂影响、加速测试或老化研究中聚合物稳定性的光强度效应。/pp  如图所示为光量热DSC仪光学部分的示意图。光源一般为紫外线,也可为其他光源,如可见光。通过遮光器的开闭来控制光照时间,光强度由光源控制。光由光纤透过石英炉片(用作炉盖)照射到试样和参比坩埚上,由DSC传感器测量固化反应焓。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/2da48264-bd5e-4dc3-8c3f-1cea1d15ca90.jpg" title="光量热DSC系统的光学设计示意图.jpg" width="400" height="421" border="0" hspace="0" vspace="0" style="width: 400px height: 421px "//pp style="text-align: center "strong光量热DSC系统的光学设计示意图/strong/ppstrong差示扫描量热仪显微镜系统/strong/pp  DSC与装备有摄像技术的显微镜的结合可生成DSC显微镜系统,在DSC加热或冷却过程中可对试样进行光学观察,得到与DSC测试同步的图像信息。这种图像信息对于DSC测试到的现象作出精确的解释往往非常有用,而且显微镜能对极少或无焓变的过程摄录信息,达到极高的测试极限。/pp  典型的应用有粘合剂或固体涂料的流延性测试,薄膜或纤维收缩的光学观察,药物或化学品从溶液结晶、热致变色、汽化、升华及安全性研究,食物脂肪和食用油的氧化稳定性、与活性气体的反应,等等。/ppstrong温度调制式差示扫描量热法/strong/pp  DSC的传统温度程序是以恒定的速率将试样升温或降温。温度调制式差示扫描量热法的升温速率以更复杂的方式变化,是在线性温度程序上叠加一个很小的调制温度。/pp  典型的温度调制式DSC方法有等温步阶扫描法、调制DSC法和随机调制DSC法3种。/pp  等温步阶扫描法的温度程序由一系列等温周期步阶组成。调制DSC方法的温度程序为在线性温度变化上叠加一个周期性变化(通常为正弦)的调制,也可叠加其他调制函数(如锯齿形)。随机调制DSC为最先进的温度调制式技术,它的温度程序是在基础线性升温速率上叠加脉冲形式的随机温度变化。/pp  温度调制技术的优势在于可将热流分离为两个分量,一个对应于试样的比热容,另一个对应于所谓的动力学过程,如化学反应、结晶过程或蒸发过程等。/p
  • 仰仪科技发布仰仪科技小型电池绝热量热仪BAC-90A新品
    p style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/c3db3efd-00a7-4aca-bcd0-ce1fa9cf2d8c.jpg" title="1.jpg" alt="1.jpg"//pp style="text-autospace:ideograph-numeric line-height:150%"span style="font-family: 宋体 line-height: 150% color: rgb(102, 102, 102) letter-spacing: 0 font-size: 14px background: rgb(255, 255, 255)"span style="font-family:宋体" /span/span/pp  近日,杭州仰仪科技有限公司在仪器信息网发布仰仪科技小型电池绝热量热仪BAC-90A新品。BAC-90A小型电池绝热量热仪是在仰仪科技绝热加速量热仪基础上研发的、面向小型电池安全测试的绝热量热仪,将绝热加速量热仪的应用扩展至电池热安全评估领域。BAC-90A小型电池绝热量热仪兼容经典绝热加速量热仪功能,可用于电池电解液及其它电池材料的热稳定性评估,同步采集电池电压、电流、电量、温度、压力、时间等数据,帮助电池及电池组研发和测试人员实现全方位的安全性能评估。/ppstrong  产品特点/strong/pp  1) 模拟理想绝热环境,可直接测得更加准确的电池热失控起始温度、最大热失控速率、绝热温升等热行为参数;/pp  2) 集成电池充放电模块可实现充放电模式切换、恒流/恒压充电模式设置、充电/放电电流设置、实时电池电量计算;/pp  3) 电池电压、电流、温度、压力数据同步采集,用于分析电池热失控过程中的电流/电压变化;/pp  4) 兼容经典绝热加速量热仪功能,可实现电解液等电池材料热稳定性评估;/pp  5) 具备绝热模式,可准确反映电池在充放电过程的吸放热及热失控过程;/pp  6)具有超压、超温报警功能,炉盖自动升降,保证安全,方便操作。/ppstrong  技术规格/strong/ptable border="1" cellspacing="0" width="489"tbodytr class="firstRow"td width="204" valign="center" style="padding: 0px 7px border-width: 2px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"工作环境/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 2px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"5℃~/spanspan style="font-family:宋体 line-height:150% font-size:16px"4/spanspan style=" font-family:宋体 line-height:150% font-size:16px"0℃, 85%RH/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"控温范围/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"室温~500℃/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"温控/spanspan style=" font-family:宋体 line-height:150% font-size:16px"模式/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"恒温/spanspan style=" font-family:宋体 line-height:150% font-size:16px"、扫描、HWS、绝热模式/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"温度检测阈值/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"0.005℃/min~0.02℃/min/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"温度跟踪速率/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"0.005℃/min~/spanspan style="font-family:宋体 line-height:150% font-size:16px"4/spanspan style=" font-family:宋体 line-height:150% font-size:16px"0℃/min/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"温度显示分辨率/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"0.001℃/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"压力范围/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"0~/spanspan style=" font-family:宋体 line-height:150% font-size:16px"20/spanspan style="font-family:宋体 line-height:150% font-size:16px"M/spanspan style=" font-family:宋体 line-height:150% font-size:16px"Pa/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"压力分辨率/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style="font-family:宋体 line-height:150% font-size:16px"1/spanspan style=" font-family:宋体 line-height:150% font-size:16px"kPa/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"充放电电流范围/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"-10A/spanspan style="font-family: ' Times New Roman' line-height: 150% font-size: 16px"~/spanspan style=" font-family:宋体 line-height:150% font-size:16px"10A(可扩展)/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"充放电电流分辨率/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"1mA/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"充放电电压范围/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style="font-family:宋体 line-height:150% font-size:16px"0/spanspan style="font-family: ' Times New Roman' line-height: 150% font-size: 16px"~/spanspan style=" font-family:宋体 line-height:150% font-size:16px"10V(可扩展)/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"充放电电压分辨率/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"1mV/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"样品池规格/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"样品池/spanspan style="font-family:宋体 line-height:150% font-size:16px"、/spanspan style=" font-family:宋体 line-height:150% font-size:16px"样品/spanspan style=" font-family:宋体 line-height:150% font-size:16px"支架/spanspan style=" font-family:宋体 line-height:150% font-size:16px"(选配)/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"炉腔尺寸/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"直径/spanspan style=" font-family:宋体 line-height:150% font-size:16px"9cm/spanspan style=" font-family:宋体 line-height:150% font-size:16px", 深/spanspan style=" font-family:宋体 line-height:150% font-size:16px"11cm/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"接口/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"USB或者/spanspan style=" font-family:宋体 line-height:150% font-size:16px"串口/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 1px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"电源/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 1px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"220V/50Hz/span/p/td/trtrtd width="204" valign="center" style="padding: 0px 7px border-width: 1px 1px 2px 2px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"功率/span/p/tdtd width="285" valign="center" style="padding: 0px 7px border-width: 1px 2px 2px 1px border-style: solid border-color: rgb(84, 141, 212) "p style="line-height:150%"span style=" font-family:宋体 line-height:150% font-size:16px"3000W/span/p/td/tr/tbody/table
  • 电弛观察:电池气体内压测试与固态电池安全技术
    传统锂电池内的气体释放通常是由高度电解的阴极分解和SEI的形成和分解引起,对电池安全构成极大威胁,会导致电池膨胀、变形、热失控等安全危害。由于固态电池采用固态电解质取代了传统的液态电解质,在消除传统锂电池的安全焦虑方面,人们对固体电池有很高的期望。 那么是不是固态锂电池就不会有内部产气和压力升高的顾虑了呢? 德国卡尔斯鲁厄理工学院的Timo Bartsch等人研究了一种基于β-Li3PS4固体电解质和富镍层状氧化物阴极的典型全固态电池的产气行为。研究显示,在45°C时,Li/Li+在4.5 V以上电位时检测到明显的氧气和二氧化碳产气。 中科院物理所聂凯会等人对PEO基固态电池体系,结合实验和计算系统地研究了其在高电压状态下的产气行为,发现了尽管PEO基聚合物电解质的电化学窗口只有3.8V,但是单纯PEO电解质直到负载电压达到4.5V时才开始出现明显的产气分解的行为。 以上研究说明固态电池同样存在电池内部产气并产生内部压力的问题, 因此对固态电池的产气行为和内压研究同样重要。 电弛的解决方案2023年,武汉电弛新能源有限公司研发团队经过技术攻关,成功推出了DC IPT原位气体内压测定仪,为锂电池测试提供了全新的解决方案。该产品方案得到了行业内先进企业的认可,其具有以下优点: (1)直接穿刺,精准测量大道至简,摒弃“间接法”测量方式,采用类似于外科穿刺方式,直接对锂电池内部气体及压力进行取样和测量。通过锂电池穿刺取样这种直接测量方法,可以快速获取真实、准确的数据,从而极大地提升检测质量效率。这种直接测量方法的实现原理是,利用专门设计的密封穿刺装置在电池表面制造一个局部密封的小孔,然后将电池内部气体导出到测量探头,直接测量电池内部的压力或进行进一步的气体成分分析。这种测量方式不仅可以避免系统漏气而产生的误差,还可以实现对不同类型锂电池(如软包电池、方形电池、圆柱电池等)的快速取样。 (2)气体采样,兼容并包“间接法”测量的另一大弊端在于其兼容性。由于这种方法只能针对特定类型的锂电池进行测量,这无疑增加了测试成本和时间。为了解决这一问题,我们开发了一种全新的锂电池气体采样接口,该接口具有广泛的兼容性,可以同时测量不同类型的锂电池,包括软包电池、方形电池和圆柱电池等。这一创新性接口的设计与开发基于我们对电池内部气压监测的深入理解和多年的专业经验。通过这种新型气体采样接口,我们可以快速、准确地获取各种类型锂电池的气体内压数据,从而更好地评估其安全性能。这种兼容并包的测量方式不仅提高了测试效率,也降低了测试成本和风险。① 兼容性强:DC IPT创新性地引入了“锂电池气体采样接口(GSP)”这一技术,类似于广泛使用的Type-C接口,实现了不同品牌和类型电池测试的兼容性和互换性。DC IPT锂电池气体采样接口(GSP)打破了传统测量方法的局限性和弊端,可同时进行软包电池、方形电池、圆柱电池的测试,无需因不同类型的电池更换不同的测量设备或方法。② 高效便捷:用户无需在不同的测量设备之间切换或等待适配,提高了测试效率,降低了时间和人力成本。③ 数据准确:采用先进的测量技术和算法分析,确保数据的准确性和可靠性。④ 高重复性:由于采用了标准化的接口设计和测量流程,保证了测量结果的可重复性和一致性,有利于结果的比较和分析。 (3)网络接口,云端数据数据也是生产力,高效率的信息传递可以提升企业测试效率,对每块电池的质量状态做出快速预判。为了满足这一需求,DC IPT预设网络接口,实现了数据联云上网,以及与其他测试设备或系统进行数据交互和共享。这使得企业可以构建一个完整的电池测试和管理系统,实现对电池测试数据的全面管理和分析。用户可以跨平台(PC 、手机、Pad等)访问每块电池的气体内压测试数据,掌握质量情况。 (4)多通道定制,高通量测试在电池测试中,通道数量是衡量设备测试能力的重要指标之一。单台设备的通道数量越高,可承载的测试容量就越大,高通道带来的经济优势,不言而喻。DC IPT标准款为8通道设计,可以大大提高测试效率,降低测试时间和成本。也可以根据客户需求,定制设计更多通道提高测试通量,使得设备可以适应多种测试场景和需求,具有更强的灵活性和可扩展性。无论是大型企业还是研究机构,都可以根据自身的测试需求和规模,选择适合的通道数量和配置。此外,DC IPT的多通道设计还具有优秀的稳定性和可靠性。每个通道都采用了独立的测量电路,确保了测试的准确性和一致性。 参考文献Increasing Poly(ethylene oxide) Stability to 4.5V by Surface Coating of the Cathode. DOI: 10.1021/acsenergylett.9b02739Gas Evolution in All-Solid-State Battery Cells. DOI: 10.1021/acsenergylett.8b01457
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制