当前位置: 仪器信息网 > 行业主题 > >

电池内阻测试仪原理

仪器信息网电池内阻测试仪原理专题为您提供2024年最新电池内阻测试仪原理价格报价、厂家品牌的相关信息, 包括电池内阻测试仪原理参数、型号等,不管是国产,还是进口品牌的电池内阻测试仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池内阻测试仪原理相关的耗材配件、试剂标物,还有电池内阻测试仪原理相关的最新资讯、资料,以及电池内阻测试仪原理相关的解决方案。

电池内阻测试仪原理相关的资讯

  • 动力电池安全性能检测实验室场地建设规划条件
    p  近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。/pp style="text-align: center "img title="1.png" src="http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg"//ppstrongspan style="color: rgb(31, 73, 125) " span style="color: rgb(84, 141, 212) " span style="color: rgb(0, 112, 192) "一、(规划)锂电池实验室设计依据及设备部署:/span/span/span/strong/pp  strong1、依据标准规范:/strong/pp  满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。/pp  实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。/pp  1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。/pp  3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。/pp  strong2、(规划)锂电池实验室设备布局:/strong/pp  在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区:/pp  1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。/pp  2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。/pp  3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。/pp  4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。/pp  5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。/pp  strong注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。/strong/pp  span style="color: rgb(0, 112, 192) "strong二、(规划)锂电池实验室测试程序:/strong/span/pp  strong1. 电池材料检测/strong/pp  电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。/pp style="text-align: center "img title="2.png" src="http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg"//pp  工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。/pp  strong2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="3.png" src="http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg"//pp  strong3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测/strong/pp  电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。/ppimg title="4.png" src="http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg"//pp  strong4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测/strong/pp  电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。/pp  电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。/pp  电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。/pp  工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。/pp style="text-align: center "img title="5.png" src="http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg"//pp  strong5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险:/strong/pp  1)着火、燃烧、爆炸/pp  磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。/pp  电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。/pp  2)有毒气体的排放/pp  由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。/pp  3)漏液的污染性/pp  电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。/pp  span style="color: rgb(0, 112, 192) "strong三、(规划)锂电池实验室——通风系统特点:/strong/span/pp  1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。/pp  2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。/pp  3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。/pp  4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。/pp  5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。/pp  6、实验室的通风换气次数取每小时10~20次。/pp  7、支管内风速取6~12m/s,干管内风速取8~14 m/s。/pp  8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。/pp  strongspan style="color: rgb(0, 112, 192) "四、(规划)锂电池实验室——内部装饰/span/strong/pp  strong1、天花/strong/pp  (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。/pp  (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。/pp  (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。/pp  (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。/pp  (5)洁净室采用彩钢板天花板。/pp  strong2、地面/strong/pp  (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。/pp  (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。/pp  (3)在装修过程中,抛光砖的铺设最适合于办公场所。/pp  (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。/pp  (5)洗涤室利用原有地面,节约成本。/pp  (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。/pp  strong3、墙体/strong/pp  (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。/pp  (2)采用其他墙体全部贴500*500抛光砖/pp  (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。/pp  (4)采用玻璃间隔的设计使得开放式实验成为一种可能。/pp  (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。/pp  strong4、门窗/strong/pp  (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。/pp  (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。/pp  span style="color: rgb(0, 112, 192) "strong四、(建议)锂电池实验室注意事项:/strong/span/pp  实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。/pp  strong1.爆炸前预警:/strong由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。/pp  strong2.爆炸过程控制:/strong电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。/pp  strong3.污染物可回收:/strong污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。/pp  strong4.试验室防爆系统:/strong房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。/pp  strong5.每个防爆室配置有防爆灯,视频监控探头。/strong视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。/pp  strong6.充放电区:/strong设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。/pp  strong7.消防要求:/strong在人员操作区和样品区设置有消防烟感探头。/pp  strong8.视频监控要求:/strong共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。/pp  strong9.实验室噪音:/strong实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。/pp  strong10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。/strong设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。/pp  strongspan style="color: rgb(0, 112, 192) "五、(规划)锂电池实验室水电要求:/span/strong/pp  1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /pp  2.独立地线:接地电阻≤4Ω /pp  3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /pp  4.排水:配管连接直径Φ100。/pp  span style="color: rgb(0, 112, 192) "strong六、(设计)锂电池实验室测量系统精度:/strong/span/pp  1.所以控制值的准确度应在以下范围内/pp  2.电压:± 1.0% /pp  3.电流:± 1.0% /pp  4.温度: ± 2℃ /pp  5.时间:± 1.0% /pp  6.尺寸:± 1.0% /pp  7.容量:± 1.0%。/pp  strongspan style="color: rgb(0, 112, 192) "七、锂电池防爆实验室典型设计应用:/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "img title="6.png" src="http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg"//span/strong/pp style="text-align: center "(锂电池实验室效果图)/pp style="text-align: center "img title="7.png" src="http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg"//pp style="text-align: center "(测试系统综合交钥匙工程)/pp style="text-align: center "img title="8.png" src="http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg"//pp style="text-align: center "(电池整体实验室正面)/pp style="text-align: center "img title="9.png" src="http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg"//pp style="text-align: center "(电池整体实验室背面)/pp  strong作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器)/strong/p
  • 蔡司《新能源汽车电池质量保证白皮书》:工业检测助推动力电池高质量发展
    新能源汽车行业竞争迈入新阶段,市场呈现多元化趋势,产品不断升级与创新。在此竞争环境下,动力电池企业成为关键角色,致力于提高电池性能、安全性和降低成本,以满足市场需求。加强质量管控成为动力电池企业提升竞争力和行业可持续发展的关键举措。近日,蔡司正式发布《新能源汽车电池质量保证白皮书》,该报告通过趋势解读、技术解析和未来挑战等方面,解析了动力电池企业如何运用质量控制手段来实现技术创新和降本增效,并从"更高性能、更高安全、更优成本"三个角度出发,阐述了工业检测在动力电池研发和生产中扮演的重要角色。白皮书首先从电芯入手,分析多种检测维度,如何通过探索电池材料和结构,提高电池性能,推动新能源汽车电池基础研究取得更大突破。一、对新型电芯的探索,永无止境动力电池产品的高安全性、高能量密度、高倍率性能、经久耐用和更低成本,是决定其是否能取得市场成功的关键因素。竞争打法的全面升级,意味着在"性能"、"安全性"、"成本"这三 个方面的全面升级。电池企业都想在这些关键因素上表现优异,这就需要超过同行的质量控制手段。首先就要在研发环节,充分了解和控制电池相关材料的特性,选择良好的材料。材料从根本上决定着电池性能。通过改进材料提高电池性能、优化电池老化机制、应用新型材料、改变电芯结构是电芯研发的主要方向。例如,材料体系方面,采用新型材料体系(高镍正极、硅基负极、锂金属负极、固态电解质等),提高单体能量密度;或者研制出磷酸锰铁锂,探索钠离子电池的商业化应用,降低成本;或者加快固态电池的研发进程,使电池性能更高,更耐久。电芯形状方面,方形电池,尤其是LFP短刀兼顾性能、集成与制造,成为主流企业的优选方案之一;大圆柱电池也是热门方向,特斯拉和宝马均已提出具体的实施规划。快充技术方面,多家主机厂开始导入800V高电压平台,并联合电池企业推出2C~4C快充方案。材料的改性、新型材料的研制、电芯结构的设计,往往多策并举,促成电池的升级和创新。诸如,从2020年到现在,由特斯拉开局,国内电池企业共同推进的大圆柱电池拥有极其独特的杀手锏:1. 由于采用钢壳的圆柱外壳以及定向泄压技术,电芯本身的束缚力比较均匀,有效抑制膨胀,为电池包的整体安全提供第一层的有力保障。这也使大圆柱电池在材料上的探索更加大胆,当下高比能路线下的主流用材,高镍三元正极材料、硅基负极材料在大圆柱电池上的使用更为广泛。2. 全极耳设计,电池直接从正极/负极上的集流体引出电流,成倍增大电流传导面积,缩短电流传导距离,从而大幅降低电池内阻,提高充放电峰值功率。对于更低成本的锰铁锂电池体系,宁德时代的M3P电池将在第三季度搭载于特斯拉国产Model 3改款车型。网络不断有消息指出M3P电池就是LFMP磷酸锰铁锂电池。宁德时代则在调研中表示,准确说来,M3P不是磷酸锰铁锂,还包含其他金属元素——该公司将其称为"磷酸盐体系的三元"。容百科技在8月10日的全球化战略发布会上指出,其LFMP率先实现了73产品(锰铁比)大批量供货,并以此为基推进LFMP与三元的复合产品M6P以及下一代工艺产品。他们认为,到2030年,广义的三元材料和磷酸盐仍旧占据主体,三元里面的高镍材料、磷酸盐里面锰铁锂以及钠电都会迎来非常高速的增长。另一方面,行业也需要支持更高倍率的动力电池。这就需要电池企业在加强电池热管理的同时,还要从电池材料(尤其是负极材料的选择和微观结构的设计)、电极设计、电池形状等出发,降低内阻、加强散热,提高电池的倍率性能。目前已有多个企业推出快充电池方案。欣旺达在今年上海车展着重推出其闪充电池,在核心材料上部署了专有技术,自主设计闪充硅材料技术、高安全中镍正极和新型硅基体系电解液技术等关键技术,支持电动汽车10分钟可从20%充至80%SOC,让充电像加油一样快。二、工欲善其事,必先利其器在电池企业为大众剖析"高性能"、"高安全"、"低成本"电池新品之时,"自研"、"微观"、"纳米级包覆"、"掺杂"、"原位固态化技术"等关键词频频闪现,为主流电池材料进行改性之外,加速LFMP、固态电池等新类型电池的应用。以近年火热的LMFP为例,该类型电池原存在导电性能、倍率性能以及循环性能较差等问题,但随着碳包覆、纳米化、离子掺杂等改性技术的进步,其电化学性能得以改善。甚至,目前企业正在研究将LFMP或NCM组合使用,兼具低成本、高安全性及高能量密度的优势。蔚来使用的150kW半固态电池,由卫蓝新能源提供,采用了原位固态化技术。该技术是通过注液保持良好的电解质与电极材料的原子级接触,之后将液体电解质部分或全部转换为固体电解质,这样的好处是能够做到原子尺度的结合,而不是宏观的把电极材料和固态电解质压在一起。凡此种种,不一而足,充分展现出电池基础研发人的耐心值和创造力,犹如炉火纯青的雕刻家,对微观结构有着清晰的掌握,将每一个微小的纹路都打磨得精雕细琢。正所谓"工欲善其事,必先利其器",更优秀的动力电池产品离不开更高效有力的检测工具。材料的微观结构表征是电芯研发的关键,目前多种材料表征方法被推出并得到广泛应用。在研发环节,工程师利用光学显微镜、X 射线显微镜、3D 检测来观察电极材料,检测电极缺陷并分析电池失效原理。还可观察材料的粒径尺寸、各种成分的配比及分布情况等,加深研发人员的认识和理解。这些都可以在提高研发效率的同时更好的改善电池性能,进而为材料、工艺的改进提供依据。三、电池材料的二维显微成像和表征光学显微镜利用光学原理对物体进行放大,最早成型于 17 世纪。光学显微镜的分辨率与可见光的波长(390~780nm)有关,其最大放大倍数可达 1000 多倍,实现微米级别分辨率,在生命科学、材料科学等领域被广泛应用。在动力电池研发中,光学显微镜可用来观察电极结构,检测电极缺陷并分析电池失效原理、观察锂枝晶的生长行为等,进而为材料、工艺的改进提供依据。不过,由于受制于可见光的波长,光学显微镜的放大倍数有限,无法实现对更微观结构的观测,而电子显微镜则很好的解决了这个问题。电子显微镜最早由英国物理学家卢卡斯于 1931 年发明,利用电子束代替光束,最大放大倍数可达 300 万倍,实现纳米级别分辨率。由于电子显微镜具备更高的分辨率,在电池研发中,搭配不同的探头,可以得到多维度的信息(成分、表征信息,粒度尺寸,配料占比等),实现对正负极材料、导电剂、粘结剂及隔膜等更微观结构的检测(观察材料的形貌、分布状态、粒径大小、存在的缺陷等)。常用的观察样品表面形貌的电子显微镜是扫描电子显微镜(SEM)。由于具备高分辨率,SEM 能清楚地反映和记录材料的表面形貌特征,因此成为表征材料形貌最为便捷的手段之一。配合氩离子抛光技术(又称 CP 截面抛光技术),SEM可以完成对样品内部结构微观特征的观察和分析。这也是目前最有效的制备锂电池材料极片解剖截面的制样方式。SEM还可以用来观测电池颗粒循环老化的情况。目前,经分析发现,颗粒碎裂表征成为学者改善正极材料性能的切入点。四、电池检测:从 2D 走向 3D传统的检测手段通常局限在 2D 平面,但 2D 图像会有局部偏差(比如,制备样品时刚好切到没有问题的部位),3D 图像可以更好的表征材料结构,使检测结果更为直观,有助于加深研发人员的认识和理解,提高研发效率的同时更好的改善电池性能。在不对电池进行拆解的情况下,通过 X 射线显微镜可以对电池内部特定区域进行高分辨率成像,实现样品的 3D 无损成像,分辨电极颗粒与孔隙、隔膜与空气等,可以大大简化流程,节省时间。高分辨率显微 CT 可以实现电池内部结构的三维可视化,解决因拆卸等原因造成的内部结构二次损伤等难题,清晰地展示出电池内部的真实情况。在此,X 射线显微镜技术得到应用。当前,CT 成像的精度进入亚微米阶段,可以对电池材料及孔隙进行分析检测。在 X 射线显微镜的基础上,蔡司推出了可以实现随时间(4D)变化的微观结构演化表征方法。利用空间分辨率可达 50nm、体素尺寸低至 16nm 的真正的纳米级三维 X 射线成像,可以获得更多信息,识别更微小的细节特征。目前,X 射线显微镜可达到最高 50nm 级别的分辨率,当需要研究更高分辨率的细节时,则需要用到新一代聚焦离子束(FIB)技术。FIB 利用高强度聚焦离子束(通常为镓离子)对材料进行纳米加工,配合扫描电镜(SEM),可同时实现对样品的加工和观察。目前,蔡司和赛默飞都推出了聚焦离子束显微镜。蔡司双束电镜 Crossbeam 系列结合了高分辨率场发射扫描电镜 (FESEM) 的出色成像和分析性能和 FIB 的优异加工能力,无论是用于多用户实验平台还是科研或工业实验室,利用 Crossbeam 系列模块化的平台设计理念,都可基于自身需求随时升级仪器系统(例如使用Laser+FIB 进行大规模材料加工)。在加工、成像或是实现三维重构分析时,Crossbeam 系列将大大提升 FIB 的应用效率。当需要分析各种成分的分布,需要模拟仿真,需要看到内部结构时,FIB 可以依托低电压成像,能扫描更多 3D 细节,可以做多种测试,令研发工作成效更高。五、电池的原位测试和多技术关联应用无论是光学显微镜,电子显微镜,还是 X 射线显微镜和工业 CT,不同的测试手段各具优势,适用于不同的场景。但一种检测手段常常无法完全表征材料属性。所以,行业将不同的测试设备协同应用,实现多手段的关联,则可以在测试中得到多维度的信息,使结果更为直观。早期,多手段关联的出发点,是以不同分辨率来观察被测对象的需求。例如,CT和X 射线显微镜可以无损探测,但分辨率相对较低,因此,初看材料时,就可以利用二者先观看形貌特征。扫描电镜具有更高分辨率,例如蔡司以扫描电镜为基础,推出 FIB-SEM 产品,可以实现高分辨率(3nm)的 3D 成像。如此,利用 CT→X 射线显微镜→ FIB-SEM,选定区域并逐级放大,就可以得到更为全面和精确的信息,同时可以实现快速定位,使检测更为高效。电子显微镜上设有多个拓展口,来添加不同的探头。但在电池研发中,配备的 SE、BSE 和 EDX 探测器,不足以完全表征材料的属性。尤其在样品尺寸大的情况下,不容易聚焦到同一特定颗粒。拉曼探头则可以帮助分析分子结构与组成,界面结构等。但一般情况下,拉曼电子显微镜是独立分开的。因此,如果能对同一被测对象使用BSE、EDS 和拉曼,拍摄三重图像的重叠信息,就能实现原位多角度分析。显微镜厂商在做如上努力。如德国 WITec、捷克 Tescan、蔡司等推出了 RISE 系统,可以实现拉曼成像与 SEM 等技术的联合应用,通过电池表面形貌(SEM)、元素分布(EDS)与电极材料分子组成信息(Raman 图谱)结合,实现材料的原位多角度分析,了解电池状态以及不同位置材料的形貌、元素和分子组成,进而评价电池性能。材料测试通常伴随制样过程,由于 FIB-SEM 需要对同一个样品进行多次制样测试来构建 3D 图像,采用常规制样方法需要消耗很长时间。为解决这个问题,蔡司提出了一组非常巧妙的联合方案。首先,可以用 Versa 大视野范围、无损情况下得到 3D 成像,发现可疑位置。然后,为了对可疑位置进行更深入的分析,需要剖切到指定位置。使用 Fs-laser 飞秒激光可以实现样品高速率切割(107μm3/sec),进行快速粗制样,迅速完成样品深处的分析,同时不影响 FIB-SEM的高性能和高分辨率。最后,再用 FIB 精细抛光,并拍照分析。通过 Versa、FIB-SEM 和 Fs-laser 的联合应用,实现对检测对象的快速定位和制样,使检测更为简单快捷,帮助研发人员提高工作效率。
  • Delta德尔塔仪器告诉您——如何才能杜绝电动自行车电池自燃
    5月10日晚上,成都市丛树家园小区一电梯内电瓶车起火,导致包括一名婴儿在内的多人烧伤视频在网上传播后,牵动人心。 电梯监控视频显示,10日19时33分,一男子乘电梯下楼,随后电梯停在某层楼,一名妇女怀抱着一名婴儿进入电梯,电梯继续下行。19时34分23秒,电梯再次停下,一男子推着一辆电瓶车进入电梯,身后还有一名双手提着物品的男子也紧跟进入。19时34分34秒,就在电梯门关闭瞬间,一秒钟时间不到电瓶车底部突然冒起浓烟,瞬间闪起了火光,电梯内迅速被火光和浓烟覆盖。视频显示,冒烟发生同时,推电瓶车的男子迅速伸手按了一下电梯开关。事发时,电梯内有4名大人和1名幼儿。对此很多网友表示,坚决反对电瓶车上楼! 对于网友的评论,我有不同的看法,作为主动方面,禁止电动自行车车进入电梯确实是可行的,但我们不能一昧的谴责推电动自行车进入电梯的男子,却往往忽略了z大的危害源头是电动自行车的电池。电动自行车是为了方便市民的工具,而不是成为大家“闻风丧胆”、相互嫌弃的工具。只有生产厂家按照国家的标准,做好安全检测才投放到市场,这才是遏制电动自行车电池自燃最有效的方法。由国家市场监督管理总局、国家标准化管理委员会批准的GB/T 36972-2018《电动自行车用锂离子蓄电池》国家标准于2018年12月28日正式发布,将于2019年07月01日正式实施,该标准对推动电动自行车用锂离子电池综合标准化工作及电动自行车锂离子电池推广应用具有重要意义和作用,同时也为电动车用锂离子电池领出了一条健康、可持续发展的道路。 Delta德尔塔仪器专业致力于GB/T 36972-2018《电动自行车用锂离子蓄电池》的研发和定制,可为客户提供锂电池安全检测实验室整体打包、一站式交钥匙工程服务。客户只需要提供试验场地,其他的交给我们为您搞定! (电动自行车锂电池安全测试系统综合交钥匙工程)《电动自行车用锂离子蓄电池》(GB/T 36972-2018)检测设备推荐清单序号测试项目本标准条款关键设备设名称辅助功能/引用标准能力说明要求试验方法1. I2(A)放电5.2.16.2.1① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1) 可选配充放电测试通道数和测试额定电流、电压;2) 防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。2. 充电6.2.1.13. 放电6.2.1.24. 2I2(A)放电5.2.26.2.25. 低温放电5.2.36.2.3① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配高低温试验箱内箱容积和温度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。6. 高温放电5.2.46.2.47. 荷电保持能力及荷电恢复能力5.2.56.2.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT6030)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)③ 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和电流、电压;2)可选配恒温箱内箱容积和温度、湿度范围;3)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。8. 荷电保持能力6.2.5.19. 荷电恢复能力6.2.5.210. 长期贮存后荷电恢复能力5.2.66.2.611. 循环寿命5.2.76.2.712. 内阻5.2.86.2.8① 电池内阻测试仪(推荐型号:HK3561R)② 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。13. 过充电5.3.26.3.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。14. 强制放电5.3.36.3.315.外部短路5.3.46.3.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路16.挤压5.3.56.3.5① 电池挤压试验机(0-35KN)(推荐型号:GS-MST930)1) 可选配挤压+针刺(穿刺试验)功能;2) 可选配红外摄像监控系统、自动灭火器装置、废气回收净化装置。17.机械冲击5.3.66.3.6① 机械冲击试验机(600g)(推荐型号:GS-MST980)可选配峰值加速度和试验负载18.振动5.3.76.3.7① 电磁振动试验机(0~400Hz)(推荐型号:GS-MST970)X,Y,Z三轴向振动;可选配振动频率、振幅范围及试验负载。19.自由跌落5.3.86.3.8① 电池跌落试验机(定向X,Y,Z)(推荐型号:GS-MST960)X/Y/Z定向跌落;可选配热成像相机、自动灭火器装置。20.低气压5.3.96.3.9① 高空低气压试验箱(11.6KPa)(推荐型号:GS-MST950)可选配试验箱体积(内容积)21.高低温冲击5.3.106.3.10①高低温冲击试验箱(-40℃~150℃)(推荐型号:GS-THE8002)可选配高低温试验箱内箱容积和温度范围22.浸水5.3.116.3.11① 电池水浸泡试验箱(推荐型号:GS-MST10)可选配实验水箱容积及温度控制范围23.过充电保护5.4.26.4.2① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。24.过放电保护5.4.36.4.325.短路保护5.4.46.4.4① 外部短路试验机(3000A)(推荐型号:GS-MST920)可选配常温外部短路和高温外部短路26.放电过流保护5.4.56.4.5① 电池充放电测试系统(60V/30A)(推荐型号:GS-CT60V/30A)② 过充过放防爆试验箱(4箱式)(推荐型号:GS-MST940)1)可选配充放电测试通道数和测试额定电流、电压;2)防爆箱标配防爆泄压口、强力排风扇、补风口、可移动式地脚。27.静电放电5.4.66.4.6 ① 静电放电发生器(20kV)(推荐型号:ESD61002TA)引用标准:GB/T 17626.2-200628.模制壳体应力5.5.16.5.1① 恒温恒湿试验箱(-40℃~150℃)(推荐型号:GS-THK6008)可选配恒温箱内箱容积和温度、湿度范围。29.壳体承受压力5.5.26.5.2① 电池壳体抗压试验装置(推荐型号:GS-KYL503)试验压力:250N30.壳体阻燃性5.5.36.5.3①水平垂直燃烧试验机(PLC+触摸屏)(推荐型号:GS-HUVL90)引用标准:GB/T 5169.16-201731.外形尺寸5.6.16.6.1① 游标卡尺(推荐型号:0-300mm)选配指针式/数显,测量量程可选32.充放电接口5.6.26.6.2目检引用标准:QB/T 442833.外观5.6.36.6.3目检/34.极性标志5.6.46.6.4酒精耐磨试验机(推荐型号:GS-YCR02)/合计需要仪器数量:约18台(国家纳米科学中心——锂电池实验室交付现场图片)设备已经成功运用到各大专业测试机构和生产厂家提供服务。第三方检测机构例如:广州SGS通标实验室,上海天祥ITS实验室,昆山出入境技术检验中心,广东质检院,深圳计量院,福建质检院(马尾基地),东莞标检产品检测有限公司(STC),各大企业例如:爱玛电动车,绿源电动车,喜德盛电动车等生产厂家品质研发部,深受客户好评。未来,Delta德尔塔仪器将持续用高品质的产品和服务,为电动自行车和电动助力车行业的发展添砖加瓦,为市民便捷出行、公共交通领域保驾护航,让人们生活的更加安全、舒适、和谐。张工yi八1,28零28677(WX同号)
  • 锂电池新国标出台,原位产气量测试助力电池安全研发
    日前,为了进一步提高电动自行车锂电池质量安全谁,工业和信息部组织起草了《电动自行车用锂离子蓄电池安全技术规范》(GB 43854—2024)。从此,电动自行车的锂电池有了强制性国标。在我国城市街头,电动自行车社会保有量超过3.5亿辆,是千家万户的重要出行工具,超过20%的电动自行车配备了锂电池。锂电池在我们的生活中无处不在,带来了前所未有的便利,也隐藏着一些鲜为人知的威胁——那就是锂电池的产气行为。锂离子电池在正常使用过程中,由于电解液的氧化还原反应、正负极材料分解以及SEI膜分解等多种因素,可能会产生一定量的气体。这些气体在电池内部积聚,虽然初期可能不会对电池性能产生显著影响,但随着时间的推移,它们却可能成为潜在的“定时炸弹”。因此,为避免锂电池产气带来的潜在危害,我们需要深入研究产气行为规律,积极探索电池安全技术,并致力于开发更高品质的锂电池产品。(锂电池的产气成分研究)1、电池产气导致电池内部压力升高当压力超过电池外壳的承受极限时,电池可能会发生膨胀、泄漏甚至爆炸。这样的后果不仅可能损坏设备,更可能对用户造成人身伤害。(手机锂电池膨胀形变)2、电池产气影响电池性能和寿命由于产气行为的存在,电池内部有效空间被压缩,导致锂离子传递速度减慢。这不仅会降低电池的放电速率和能量密度,还会增加电池阻抗,电池更容易发热。日积月累,电池性能会加速衰减,寿命大大缩短。3、电池产气对环境造成污染虽然这些气体在正常情况下不会大量释放到环境中,但在电池损坏或回收处理不当的情况下,可能会泄漏到大气或水体中,对生态环境造成不良影响。面对这些潜在威胁,如何减少锂电池产气风险?1、源头上控制气体产生电池制造商通过不断优化生产工艺和材料配方,减少电解液和正负极材料中可能产生气体的杂质和残留物。同时,加强电池外壳的密封性和耐压能力也是必不可少的措施。2、注重电池保养和维护避免过充、过放和高温环境等恶劣条件对电池造成损害。此外,定期检查和更换老化的电池也是保障安全的重要手段。3、加强电池回收和处理建立健全的电池回收体系和处理机制可以最大限度地减少废旧电池对环境的影响和潜在危害。避免危机电池流入市场,引发安全事故。(锂电池热失控)《电动自行车用锂离子蓄电池安全技术规范》规定了电动自行车用锂离子蓄电池单体的安全要求,从电气安全、机械安全、环境安全、热扩散、互认协同充电、数据采集、标志等7个方面入手,从源头上提升锂离子蓄电池的本质安全水平。强制性新国标出台意味着市场需要更安全的锂电池产品。多个方面入手加强管理和控制减少气体产生的风险保障锂离子电池的安全和可靠性。通过专业测试仪器,了解电池在不同阶段的产气速率与产气总量,获取电池性能、质量和环境影响的重要信息。 (GPT-1000原位产气量测定仪)武汉电弛新能源有限公司推出了GPT-1000原位产气量测定仪,可实时、在线、连续、原位监测电池的产气行为,包括产气量和产气速率等参数,实现化成产气、过充产气、循环产气、存储产气等各阶段产气行为研究。GPT-1000原位产气量测定仪应用广泛,满足软包电池、方形/硬壳电池、圆柱电池、固态电池、钠电池等测试需求。
  • 锂电池鼓包是怎么回事,如何进行测试?
    锂电池鼓包是由于电池内部化学反应导致的,通常是由于过充或过放引起的,也有可能是因为生产制作工艺的问题导致的。过充会使锂电池内部的化学物质过度反应,导致电池内部压力增大,从而引起电池鼓包。而过放则是因为电池内部的化学反应未能完全进行,导致电池内部的化学物质浓度过低,也会引起电池鼓包。要测试锂电池是否鼓包,可以使用以下方法:1.观察外观:正常的锂电池应该是平坦的,如果电池外包装出现明显的凸起、膨胀或变形,就可能是鼓包的迹象。2.检查密封性:锂电池的外包装应该具有良好的密封性能,如果电池的外包装出现漏液、漏气等现象,也可能是电池鼓包的迹象。3.测量电池电压:使用电压表或多用途测试仪测量电池的电压。如果电池电压异常高或异常低,也可能是电池鼓包的迹象。4.检查电池电极触点:电池的电极触点应该干净、无杂质,如果触点脏污或者接触电阻太大,也可能会导致电池鼓包。5.直接测试:可以通过专业的测试设备测试里面是否有气体,从而得到科学准确的判断。武汉电弛新能源有限公司的GPT-1000M原位产气量测定仪, 可直接将待测气体引入测试单元,流量变化分辨率精确至1μL。相较基于采⽤ 传统的阿基⽶ 德浮⼒ 法、理想⽓ 体计算法等⽅ 法的仪器,GPT-1000M可直接监测⽓ 体的微量体积变化,结果精准可靠,重复性⾼ ,尾⽓ 可直接收集,同时该设备可串联GC-MS、DEMS等多种⽓ 体成分检测⼿ 段,能为为材料研发和锂电池电芯产⽓ 机理的分析研究提供了真实可靠的数据⽀ 持。最后,如果怀疑锂电池鼓包,建议立即停止使用并更换,以避免安全事故的发生。同时,在使用锂电池时,应该遵循正确的使用和充电方法,避免过度充电或过度放电,保持电池的正常状态。
  • 岛津原子力显微镜在锂电池行业应用集英
    锂离子电池广泛用于手机、相机、玩具等小型电子设备以及混合动力汽车和电动汽车中。锂离子电池由阴极、阳极、隔膜和电解质组成,其中构成阴极和阳极的粉末状材料往往通过粘合剂保持聚集状态。无论是现有锂电池的各部分材料、工作性能,还是新型锂电池的开发,原子力显微镜均深入应用其中。01隔膜材料的工作状态下的孔隙变化目前最常用的隔膜材料是聚乙烯(PE)、聚丙烯(PP)或者两者的混合物。制作工艺有干法和湿法两种,制作过程又包括流延、拉伸、定型等步骤。工艺和过程都会影响隔膜的孔隙孔径、孔隙率等。常用的观测方法是扫描电镜法,但是因为PE、PP都是绝缘材料,会形成严重的荷电效应,导致观察图像失真。因此,原子力显微镜是非常合适的观察工具。对于锂电池隔膜,除了常温下的孔隙结构,还需要测试孔隙在不同温度下的变化。因为当电池体系发生异常时,温度升高,为防止产生危险,隔膜需要实现在快速产热(温度120~140℃)开始时,因热塑性发生熔融,关闭微孔,隔绝正极与负极,防止电解质通过,从而达到遮断电流的目的。岛津原子力显微镜具备完善的环境控制功能。使用样品加热单元从室温梯度加热到125°C和140°C,并观察其表面形状。范围为5μm×5μm。随着温度的升高,可以看到由于隔膜熔化,孔隙逐渐收缩。对于该实验,使用岛津专门设计的环境控制舱既可以在真空环境下进行,也可以完全模拟锂电池内部的温度/湿度/电化学环境进行。02锂电池正极材料工作状态观察为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。另一方面,正极中的三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图1至图3示出了EPMA数据,图4至图6示出了SPM数据。在EPMA结果中,图1是成分图像(COMPO),图2是C和F分析的叠加图像,图3是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图2中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图3中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图4是SPM获得的表面形貌图像,图5是低偏压激励下小电流分布图像,图6是高偏压激励下大电流分布图像。结合图4和图2,对比可知道活性材料的分布与形貌;结合图2,可认为图5中电流区域为导电剂;同时对比图5和图6,从图5中扣除图6的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图5和图3,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解各个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。03新型负极材料的开发最常用的负极材料是石墨,但近年来硅(Si) 因其理论容量高于石墨而被视为下一代负极材料。但是由于Si负极材料在充放电过程中随着Li离子的进出而显着膨胀和收缩,因此Si材料的短板是容易破裂且寿命短。为了弥补这个问题,需要选择合适的硬粘合剂以牢固地粘合Si材料。我们设置了两种环境观察Si负极材料的不同,一种是现实中锂电池使用的电解液,另一种是N2气体环境。样品由附着在玻璃基板上的三种聚丙烯酸粘合剂(1)、(2)和(3)组成。在电解液环境为(A),N2气环境为(B)中进行观察。(A)将样品在含有1mol/LLiPF6的碳酸二甲酯(DMC)和碳酸亚乙酯(EC)的混合溶液中浸泡24小时。24小时后进行观察,同时样品仍浸入电解液中。(B)将上述样品置于密闭环境控制室中,用N2置换室内气氛后,在N2气体中进行观察。实验结果如上图所示。(A)在电解液中的样品(1)上观察到约10nm的突起,而样品(2)和(3)都是平坦的。该结果表明样品(粘合剂)(2)和(3)均匀分布在电解液中。(B)在N2气体中观察时,样品(1)和(2)是平坦的,但在样品(3)上观察到20nm的突起。该结果不同于在电解质中观察到的结果,并证明了在实际用例环境中进行测量的重要性。04固态锂电池开发研究目前的锂离子电池内部使用有机溶剂电解液,在制作、运输、使用过程中电解液可能泄漏,从而造成燃爆事故。而固态电池是采用固态电解质的锂离子电池,不含有任何液体。相比传统的液态锂离子电池,固态电池首先安全性能高,固体电解质取代可燃的液体电解质,有望克服锂枝晶的产生;其次能量密度高,负极可采用锂金属负极,极大提高能量密度;再次循环寿命长,可避免液体电解质再充放电过程中持续形成和生长固体电解质界面膜,理论上循环寿命可提高10倍以上;此外,固态电池电化学窗口宽达5V,高于液态锂离子电池的4.25V,适用于高电压正极材料;最后,固态电池无废液,处理相对简单,回收更加方便。当然,固态电池技术也存在一些很棘手的问题。粉体颗粒在电池充放电循环中会发生体积膨胀与收缩,由于不含有液体,因此颗粒与颗粒之间、层与层之间容易产生缝隙,带来接触不良,影响离子和电子的传输,电池内阻就会增加,在充放电过程中就会发生极化问题,导致倍率性能下降。因此,对固态电池的测试,除了要观察其形貌外,更重要的是获得表面形貌与其导电性之间的联系,分析不同形态与聚集状态对其工作状态的影响。为此,设定实验对两种固态电池材料进行分析,分别是钴酸锂(LiCoO2:以下称为LCO)和钛酸(Li4Ti5O12:以下称为LTO)。为了模拟固态电池内部工作环境,使用环境控制舱调节气氛,氧气0.7ppm或更少,水蒸气0.75ppm或更少。30微米范围内LCO形貌图像与电流分布图像30微米范围内LTO形貌图像与电流分布图像30微米LCO形貌图像和30微米LTO形貌图像均显示出2μm左右的高度差,并且表面粗糙度(Sa)分析显示,二者分别为341.5nm和333.6nm,非常相近。在LCO中还发现了几个缺口。相比之下,在LTO中没有发现间隙,表面较为完整。在30微米LCO电流分布图像中,表面电流分布不均匀,在41.7%的面积上检测到电流(使用颗粒分析软件分析)。在30微米LTO电流分布图像中,没有检测到电流,可能的原因是在未充电状态下LTO具备高电阻特性。5微米范围内LCO形貌图像、电流分布图像、粘性力分布图像5微米范围内LTO形貌图像、电流分布图像、粘性力分布图像5微米LCO形貌图像显示该电极材料中的晶粒尺寸约为2-5微米左右,并且它们之间存在间隙。同时也存在几百纳米大小的颗粒,如箭头所示。LTO形貌图像显示电极材料为板状晶体结构,箭头所示。在5微米LCO电流分布图像中,可发现电流在黄色虚线的左右两侧明显不同。对比5微米LCO形貌图像,可推测黄色虚线是裂缝的边界。此外,很明显箭头所指的几个几百纳米大小的晶粒处没有电流。推测其原因是这些颗粒因破碎脱落隔离于其他材料,未能形成电流通路。在5微米LTO电流分布图像中依然没有检测到电流。对比以上图像发现,5微米LCO粘性力图像与5微米LCO高度图像(e)和5微米LCO电流图像中的分布相关。同时5微米LTO粘性力图像与5微米LTO高度图像中的板状晶体(箭头所示)分布相关。通常,粘性力被认为是由毛细力、范德华力或样品表面水膜导致的电荷聚集引起的。然而,在本次测量中,水蒸气浓度为75ppm或更低,因此毛细力的影响很小。所以,粘性力图像可能代表范德华力或电荷力,这两种力可被用于展示电极材料的组成分布。根据上述信息,很可能LCO电流分布反映了材料的成分分布,并且电流的路径受晶粒之间的裂纹或间隙影响。LTO在这种情况下无法获得电流图像,可尝试充电以降低其内阻,然后进行测量。由以上案例可知,原子力显微镜可以广泛适用于现行的锂电池材料测试,同时在各类新型电池的研发中,也具备非常重要的作用。本文内容非商业广告,仅供专业人士参考。
  • 激光粒度分析仪在锂离子电池行业中的应用
    锂离子电池产业作为我国“十二五”和“十三五”期间重点发展的新材料、新能源、新能源汽车三大产业中的交叉产业,国家出台了一系列支持锂离子电池产业发展的支持政策,直接带动了我国锂离子电池行业的持续高速增长。为了规范锂离子电池行业的健康稳健发展,国家相关部门先后制订了涉及到锂离子电池全产业链的相关行业标准,而相关电池材料的粒度分布检测就是其中一项重要检测指标。下面,我们看一看这些行业标准对粒度分布的相关规定。锂离子电池材料粒度分布要求电池材料的粒度分布影响电池材料的物理性能及电化学性能,进而影响锂离子电池的容量、能量密度、充放电性能、循环性能及安全性能等。在锂离子电池材料中,需要检测粒度的粉体材料主要有正极材料及原材料、负极材料及原材料、导电添加剂、电解质、隔膜涂覆材料。正负极材料正极材料颗粒的粒径越小,越有利于Li+的嵌入和脱嵌,有利于提升锂离子电池的倍率性能;同时,粒径越小的材料首次容量越高。但是,粒径越小的材料比表面积越大,颗粒表面能升高,易团聚并与电解液发生副反应,电池内阻升高,充放过程中会积聚过多能量,温度升高,从而导致安全隐患;同时,粒径越小的材料不可逆容量增加,降低电池的循环性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。粒径较小的负极材料具有较大的首次容量,但不可逆容量也较大;随着粒径增大,首次充放电容量降低,不可逆容量减少。同时,粒径越小的颗粒,越有利于Li+的嵌入和脱嵌,有利于提升电池的倍率性能。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。正极材料和负极材料原料的颗粒的粒径大小影响到正极材料和负极材料的生产工艺控制及成品性能。比如,三元前驱体的粒度影响三元材料的煅烧时间及晶粒大小一致性。粒径越小的前驱体煅烧时间越短;粒径分布越窄的前驱体,煅烧时热量从材料表面传导到材料中心的时间一致性越高,晶粒生长时间一致性越高,晶粒大小一致性也越高。碳酸锂作为正极材料的锂源材料,粒度大小对正极材料的生产工艺和性能也有着重大影响。导电添加剂导电添加剂颗粒的粒径太小,容易发生团聚,不能与活性物质充分接触,导致导电作用降低;如果粒径太大,导电添加剂颗粒不能嵌入到活性物质中,同样会降低导电添加剂的导电作用。如果材料中混入少数超大颗粒,会导致在极片生产过程中出现划痕、断带现象,严重影响产品质量。对于电解液的电解质来说,电解质颗粒大小越均匀,电解液性能的一致性越好。电解液作为锂离子电池的血液,承担着运输锂离子的重任,质量的好坏直接影响锂离子电池的电化学性能,并很大程度上影响锂离子电池的安全性能。涂覆隔膜涂覆隔膜是在基膜的单面或双面涂覆一层氧化铝、二氧化硅等粉体无机材料,从而提升隔膜的高温性能、穿刺强度、亲液性能等。涂覆材料粒度大小及分布对涂覆隔膜的性能起着决定性的作用。以最常用的氧化铝涂覆隔膜为例,一般采用亚微米级别的α相氧化铝材料,颗粒大小适中且粒度均匀的氧化铝能很好地粘接到隔膜表面,不会堵塞膜孔,成孔均匀,能够提高隔膜的耐高温性能和热收缩率,能够改善隔膜对电解液的亲和性,同时保持较好的机械性能,从而提高锂电池的安全性能。氧化铝涂层的粒径越大,隔膜的厚度会增加,隔膜的化学性能会迅速下降。综上所述,粒度分布测试已成为提升锂离子电池性能的重要检测手段,选择一款高性能的激光粒度分析仪就成为了研发机构、材料生产厂家、电芯生产厂家的共同需求。一款好的激光粒度分析仪应该具备良好的测试结果的真实性、重现性、分辩能力、易操作性等。测试结果的真实性是指测试结果能够反映颗粒的真实大小,尽管粒度测量不宜引用“准确性”这一指标,但这并不意味着测量结果可以漫无边际地乱给。测试结果的真实性是激光粒度分析仪最根本的分析性能,如果没有测试结果的真实性做基础,仪器的重复性、重现性等其它性能就失去了讨论的意义。测试结果的重现性是指将同一批样品多次取样的测试结果的重复误差,误差越小,表示重现性越好。重现性的好坏取决于仪器获取光能分布数据的稳定性、对杂散光的控制能力、对中精确度、光源和背景的稳定性、进样器的分散性能等。只有具备良好重现性的仪器才能对测试样品的粒度分布进行可靠的评价,有利于用于多个样品之间差异的准确识别。激光粒度分析仪的分辨能力指的是仪器对样品不同粒径颗粒的测量分辨能力以及对给定粒度等级中颗粒含量的微小变化识别的灵敏程度。一般来说,除了影响重现性的因素外,散射光能分布角度和光强的获取,低背景噪声的光学电子设计,高精度的模数转换及反演计算水平都对仪器的分辨能力有较大影响。只有高分辩能力的仪器才能准确识别测试样品的细微粒径变化。激光粒度分析仪的原理结构激光粒度分析仪的易操作性是指操作简单、故障率低、易于日常维护保养。如果仪器的易操作性不高,即便有良好的测试性能,也不能高效满足用户的测试需求。Topsizer激光粒度分析仪和Topsizer Pus激光粒分析仪就是这样两款在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。● 测试范围:0.02-2000μm(湿法),0.1-2000μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±1%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer激光粒度分析仪Topsizer激光粒度分析仪是珠海欧美克仪器有限公司于2010年被英国思百吉集团全资收购后,利用思百吉集团的全球资源全新打造的旗舰产品,具有量程宽、重现性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿。● 测试范围:0.01-3600μm(湿法),0.1-3600μm(干法)● 重复性:≤0.5%(标样D50偏差)● 准确性:≤±0.6%(标样D50偏差)● 测量速度:常温测量10秒内完成欧美克Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度分析仪是继广受赞誉的Topsizer 后,作为马尔文帕纳科的全资子公司,珠海欧美克仪器有限公司推出的又一款高端粒度分析仪器。该仪器引入了国际先进的光学设计,结合欧美克近30年的技术积累,采用全球化的供应链体系,使激光衍射法的测试范围达0.01-3600um。Topsizer Plus保持了Topsizer量程宽、重复性好、分辨力高、真实测试性能强和智能化程度高等优点,通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围以及实际测试性能,代表了当前国产激光粒度仪的技术水平。
  • 锂电池老化测试的目的是什么
    锂电池老化测试的目的是什么? 锂电池老化通常是指在电池组装注液完成后次充电化成后的放置,既可以有常温老化,也可以有高温老化,目的都是为了保持第一次充电后形成的 SEI膜的性质和组成的稳定性。对锂电池来说,老化的原则和目标一是让电解液充分渗透,二是让正、负极活性材料中的一些活性成分经过一定的反应而失去活性,从而使电池的整体性能更加稳定。在高温老化之后,电池的性能会更加稳定,大部分的锂离子电池厂家在生产的时候,都会选择高温老化的工作方式,在45到50摄氏度之间,进行1到3天的老化,之后在常温下放置。在高温下,电池会暴露出一些可能存在的问题,例如电压变化、厚度变化、内阻变化等等,这些问题都会对电池的安全性和电化学性能产生直接影响。高温老化仅仅是为了缩短电池的生产周期,对于新生成的电池来说,在高温下只会加快电池的化学反应速度,不会给电池带来太大的益处,甚至还会对电池造成伤害,所以在常温下,要保持三个星期以上,让正负极,隔膜,电解液等发生化学反应,从而使电池的性能更加稳定。手机中使用的锂电池除了老化测试,还需要做循环寿命测试、高低温放电测试、倍率测试、内阻、电压、安全性测试等等。手机锂电池测试中为了更稳定的传输电流,可用弹片微针模组作为电池测试模组,来起到稳定的连接作用。它能在1-50A 的范围内保持很好的电流传输,使过流稳定。弹片微针模组还能应对手机锂电池高频率的测试需求,平均使用寿命可达到20w次,弹片头型的自清洁设计还能保持弹片不受污染,保证测试的长期稳定性。测试中应用不同的头型接触不同的测试点,有利于电流的导通和信号的传送。欲了解更多详情欢迎和Lab Companion 沟通交流www.oven.cclabcompanion.cn labcompanion.com.cn labcompanion.com.cn lab-companion.com labcompanion.com.hk labcompanion.hk Lab Companion Hong Konglabcompanion.de Lab Companion Germany labcompanion.it Lab Companion Italy labcompanion.es Lab Companion Spain labcompanion.com.mx Lab Companion Mexicolabcompanion.uk Lab Companion United Kingdomlabcompanion.ru Lab Companion Russia labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion India labcompanion.fr Lab Companion Francelabcompanion.kr Lab Companion Korea
  • 注射针尖穿刺力测试仪----原理与应用解析
    注射针尖穿刺力测试仪在制药与包装行业中,注射针尖作为药物传递的直接媒介,其性能的稳定与安全性直接关系到患者的健康与安全。随着医疗技术的不断进步和药品包装的多样化发展,注射针尖在各类薄膜、复合膜、电池隔膜、人造皮肤乃至药品包装用胶塞、组合盖、口服液盖等材料的穿刺应用日益广泛。这些材料不仅需要具备良好的阻隔性以保护药品免受外界污染,还需在针尖穿刺时展现适宜的力学特性,以确保药物输送的顺畅与安全。注射针尖在制药包装行业的应用概述在制药过程中,注射针尖常被用于穿透药品包装材料,以实现药物的精准注入或抽取。无论是液体药品的密封瓶、预充式注射器,还是复杂的医疗装置,都离不开注射针尖的高效与准确。同时,随着环保和可持续性理念的深入人心,制药包装材料正逐步向轻量化、可降解方向发展,这对注射针尖的穿刺性能提出了更高的要求。为何需要注射针尖穿刺力测试仪鉴于注射针尖在制药包装中的核心作用,其穿刺性能的优劣直接影响到产品的使用体验和药品的安全性。因此,对注射针尖在不同材料上的穿刺力进行测试显得尤为重要。注射针尖穿刺力测试仪应运而生,它专为评估针尖在穿透各种材料时所需的力值及拔出时的阻力而设计,能够有效帮助制造商、质检机构及研究人员评估材料的适用性,优化产品设计,确保产品质量。广泛应用领域注射针尖穿刺力测试仪广泛应用于质检中心、药检中心、包装厂、药厂、食品厂等多个领域,成为保障产品安全与质量的重要工具。通过精确测量不同材料在穿刺过程中的力值变化与位移情况,可以深入了解材料的物理特性,为材料选择、工艺改进及质量控制提供科学依据。测试原理详解注射针尖穿刺力测试仪的测试原理基于力学原理与精密测量技术。测试时,首先将待测样品装夹在仪器的两个夹头之间,通过精确控制两夹头的相对运动,使标准要求的穿刺针以设定速度刺入样品。在穿刺过程中,仪器会实时记录并显示穿刺力及拔出力的变化曲线,同时监测针尖的位移情况。这些数据不仅反映了材料对针尖的抵抗能力,还能揭示材料内部的力学结构特性,为材料性能评估提供全面而准确的信息。
  • 电弛观察:电池气体内压测试与固态电池安全技术
    传统锂电池内的气体释放通常是由高度电解的阴极分解和SEI的形成和分解引起,对电池安全构成极大威胁,会导致电池膨胀、变形、热失控等安全危害。由于固态电池采用固态电解质取代了传统的液态电解质,在消除传统锂电池的安全焦虑方面,人们对固体电池有很高的期望。 那么是不是固态锂电池就不会有内部产气和压力升高的顾虑了呢? 德国卡尔斯鲁厄理工学院的Timo Bartsch等人研究了一种基于β-Li3PS4固体电解质和富镍层状氧化物阴极的典型全固态电池的产气行为。研究显示,在45°C时,Li/Li+在4.5 V以上电位时检测到明显的氧气和二氧化碳产气。 中科院物理所聂凯会等人对PEO基固态电池体系,结合实验和计算系统地研究了其在高电压状态下的产气行为,发现了尽管PEO基聚合物电解质的电化学窗口只有3.8V,但是单纯PEO电解质直到负载电压达到4.5V时才开始出现明显的产气分解的行为。 以上研究说明固态电池同样存在电池内部产气并产生内部压力的问题, 因此对固态电池的产气行为和内压研究同样重要。 电弛的解决方案2023年,武汉电弛新能源有限公司研发团队经过技术攻关,成功推出了DC IPT原位气体内压测定仪,为锂电池测试提供了全新的解决方案。该产品方案得到了行业内先进企业的认可,其具有以下优点: (1)直接穿刺,精准测量大道至简,摒弃“间接法”测量方式,采用类似于外科穿刺方式,直接对锂电池内部气体及压力进行取样和测量。通过锂电池穿刺取样这种直接测量方法,可以快速获取真实、准确的数据,从而极大地提升检测质量效率。这种直接测量方法的实现原理是,利用专门设计的密封穿刺装置在电池表面制造一个局部密封的小孔,然后将电池内部气体导出到测量探头,直接测量电池内部的压力或进行进一步的气体成分分析。这种测量方式不仅可以避免系统漏气而产生的误差,还可以实现对不同类型锂电池(如软包电池、方形电池、圆柱电池等)的快速取样。 (2)气体采样,兼容并包“间接法”测量的另一大弊端在于其兼容性。由于这种方法只能针对特定类型的锂电池进行测量,这无疑增加了测试成本和时间。为了解决这一问题,我们开发了一种全新的锂电池气体采样接口,该接口具有广泛的兼容性,可以同时测量不同类型的锂电池,包括软包电池、方形电池和圆柱电池等。这一创新性接口的设计与开发基于我们对电池内部气压监测的深入理解和多年的专业经验。通过这种新型气体采样接口,我们可以快速、准确地获取各种类型锂电池的气体内压数据,从而更好地评估其安全性能。这种兼容并包的测量方式不仅提高了测试效率,也降低了测试成本和风险。① 兼容性强:DC IPT创新性地引入了“锂电池气体采样接口(GSP)”这一技术,类似于广泛使用的Type-C接口,实现了不同品牌和类型电池测试的兼容性和互换性。DC IPT锂电池气体采样接口(GSP)打破了传统测量方法的局限性和弊端,可同时进行软包电池、方形电池、圆柱电池的测试,无需因不同类型的电池更换不同的测量设备或方法。② 高效便捷:用户无需在不同的测量设备之间切换或等待适配,提高了测试效率,降低了时间和人力成本。③ 数据准确:采用先进的测量技术和算法分析,确保数据的准确性和可靠性。④ 高重复性:由于采用了标准化的接口设计和测量流程,保证了测量结果的可重复性和一致性,有利于结果的比较和分析。 (3)网络接口,云端数据数据也是生产力,高效率的信息传递可以提升企业测试效率,对每块电池的质量状态做出快速预判。为了满足这一需求,DC IPT预设网络接口,实现了数据联云上网,以及与其他测试设备或系统进行数据交互和共享。这使得企业可以构建一个完整的电池测试和管理系统,实现对电池测试数据的全面管理和分析。用户可以跨平台(PC 、手机、Pad等)访问每块电池的气体内压测试数据,掌握质量情况。 (4)多通道定制,高通量测试在电池测试中,通道数量是衡量设备测试能力的重要指标之一。单台设备的通道数量越高,可承载的测试容量就越大,高通道带来的经济优势,不言而喻。DC IPT标准款为8通道设计,可以大大提高测试效率,降低测试时间和成本。也可以根据客户需求,定制设计更多通道提高测试通量,使得设备可以适应多种测试场景和需求,具有更强的灵活性和可扩展性。无论是大型企业还是研究机构,都可以根据自身的测试需求和规模,选择适合的通道数量和配置。此外,DC IPT的多通道设计还具有优秀的稳定性和可靠性。每个通道都采用了独立的测量电路,确保了测试的准确性和一致性。 参考文献Increasing Poly(ethylene oxide) Stability to 4.5V by Surface Coating of the Cathode. DOI: 10.1021/acsenergylett.9b02739Gas Evolution in All-Solid-State Battery Cells. DOI: 10.1021/acsenergylett.8b01457
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • 锂电池材料试验第一讲|锂离子电池隔膜拉伸测试
    随着科技的日新月异,智能手机、清洁机器人、无人机、新能源汽车等已越来越多的走进人们的日常生活。作为能量与动力的重要载体 - 锂离子电池也在被越来越多的应用。锂离子电池的性能,直接决定了科技设备的续航时间、行驶里程、载荷能力和安全性等因素。锂离子电池主要由正极材料、负极材料、隔膜和电解液等四个主要部分组成,其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。其中隔膜是核心关键材料之一,是制约电池安全性、循环寿命、电性能的关键组件。隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(Lloyd材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。今天我们首先来介绍阿美特克锂电池材料试验解决方案第一讲——锂电池隔膜拉伸测试。锂电池隔膜拉伸测试隔膜的主要作用是分隔电池的正、负极材料,防止两极接触而短路,同时还能使电解质离子通过其中。在厚度尽可能薄的前提下,需保证具有一定的物理力学强度,以满足隔膜在生产和使用过程中的种种环境。因电池生产工艺中,隔膜需要与正负极材料一同卷曲以形成我们常见的圆柱体或软包电池,足够的拉伸强度可保证隔膜在卷曲过程中不发生破裂,顺利成型。LLOYD隔膜拉伸测试采用气动夹具夹紧,在避免操作人员往复手动操作夹紧的同时,极大的提高了测试速度;同时气动夹紧排出了人为夹持过松导致的打滑现象,进一步的提高了数据稳定性。脚踏式开关可解放出操作人员的双手,以更方便和轻松的放置试样。同时为满足不同人员的操作习惯,还可通过气动辅具上的手动开关进行闭合、松开操作,为用户提供极大的便利性。拉伸试验可测定材料的一系列强度指标和塑性指标、弹性极限、伸长率、弹性模量、比例极限、面积缩减量、拉伸强度、屈服点、屈服强度和其它拉伸性能指标等。LLOYD 具有多种测试行程的主机可满足多类型隔膜的拉伸试验,同时还有单柱1400mm行程的机型可选,充分满足定制化需求的同时兼顾经济性。LLOYD材料力学试验机(Lloyd材料试验机)LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 梅特勒卤素水分仪测定锂离子电池浆料固含量方法
    我们知道,锂电池浆料分为正极浆料和负极浆料两种,正极浆料由粘合剂、导电剂、正极材料等组成;负极浆料则由粘合剂、石墨碳粉等组成。正、负极浆料的制备都包括了液体与液体、液体与固体物料之间的相互混合、溶解、分散等一系列工艺过程,而且在这个过程中都伴随着温度、粘度、环境等变化。 锂离子电池浆料的混合分散过程可以分为宏观混合过程和微观分散过程,这两个过程始终都会伴随着锂离子电池浆料制备的整个过程。合浆后的浆料需要具有较好的稳定性,这是电池生产过程中保证电池一致性的一个重要指标。表征浆料稳定性的主要参数有流动性、粘度、固含量、密度等。 浆料的固含量和浆料稳定性息息相关,同种工艺与配方,浆料固含量越高,粘度越大,反之亦然。在一定范围内,粘度越高,浆料稳定性越高。固含量越高,浆料搅拌时间越短,所耗溶剂越少,涂布干燥效率越高,节省时间。高固含量的浆料还可以减少涂层间厚度,降低电池内阻。 锂电池的生产包括极片制造工艺阶段的浆料制备、浆料涂覆工序是整个锂电池制造的核心内容,浆料的固含量等参数就关系着电池电化学性能的好坏,我们就来探讨一下主流的测量锂离子电池浆料固含量的方法。锂离子电池正负极浆料目前的标准的测试方法为GB/T18856.2-2008 水煤浆试验方法第2 部分 浓度测定。浆料试样的采取与制备按锂离子电池浆料采样方法进行。BINDER FD115 (固含量测定烘箱)1.1 取充分搅拌均匀的浆料试样(3.0±0.2g) 置于预先干燥并称量(称准至0.0002g)过的称量瓶中,迅速加盖,称量(称准至0.0002g),晃动摊平。1.2 打开瓶盖,将称量瓶和瓶盖放入预先鼓风并已经加热到120~125℃的干燥箱中,在鼓风条件下,干燥2h。1.3 从干燥箱中取出称量瓶,立即盖上盖在空气中冷却约3min后放入干燥器中,冷却至室温,MT电子分析天平称量。1.4 进行检查性干燥,每次30min,直到连续两次干燥的试样质量的减少不超过0.003g或质量增加后为止。在后一种情况下,应才有质量增加前一次的质量作为计算依据。由此我们看出此方法的局限性: 目前主流采用是梅特勒的经典型HC103及超越型HX204这两款卤素红外水分仪测量电池浆料的固含量,其测定方法是如何简化测试流程又能和烘箱法的结果保持一致呢? 一:HX204 超越型的卤素水分测定仪,主要的优势为:创新的悬挂式秤盘设计避免了加样腔的热量对秤盘的影响,通过消除对称量单元的负面热效应,改善测定结果。高性能 MonoBloc 称量单元可提供最大量程和最佳分辨率(200g,0.1mg),可满足要求最严苛的任务,可在最短的时间内获得非常可靠的结果。快速加热:先进的卤素灯技术是确保极为精确的快速加热和精确温度控制的关键。第二代卤素加热技术最大程度减少了热物质,通过缩短加热/冷却循环及精确的温度控制增强性能。采用冷仪器进行首次测量,与随后采用热仪器进行测量的精确程度相同。一键水分测定 :One Click™ Moisture 的图形化用户界面可快速、顺畅地执行操作,同时提供实时的干燥曲线和控制图表。了解测量,自动化控制图表可显示每个样品的固含量的含量变化趋势。具有测试方法开发功能。 具有终点判定方法选择功能 二:梅特勒-托利多全新经典HC103水份测定仪 使用 HC103 卤素水份测定仪轻松执行浆料固含量的测定。借助触摸屏操作和用户指导,HC103 使用起来十分方便。 2. 坚固耐用的设计均可确保今后数年内获得可靠的结果。 3. 图形化用户界面:让您倍感舒适自在,只需轻轻一击即可立即开始水份测定。4. SmartCal功能:确保可信水份结果的性能验证,应当在保养间隔期间定期测试卤素水份测定仪,以确保水份测量结果始终正确。通过 SmartCal,我们可提供一种在简单的 10 分钟测试中对您卤素水份测定仪的整体性能进行验证的独特测试物质。5.HC103 和HX204 的最小浆料的称量量为0.1g, 为了保证浆料固含量的准确性及重现性,建议称量量在0.5-3.5 g 左右。对于浆料而言,需要选用可重复使用的不锈钢样品盘及玻璃纤维盘进行测试。 根据正负极浆料水分残留及NMP残留物质的特性,一般可以进行120-155度左右的方法开发,通过测定方法开发功能,以烘箱法的结果进行比对修订及优化,最终形成固定的正负极浆料固含量的标准方法,保存在仪器界面的快捷键中,均匀放置好浆料样品好,一键开始测量,约2-10min自己显示结果。 结论梅特勒公司的HX204和HC103 卤素红外水分仪,非常适合于工厂车间和实验室进行原料,半成品和成品的水分或者固含量的测定。可以在几分钟内提供精确可靠的水分或固含量的信息,确保最佳的产品质量和至高的生产力,助力于锂电池正负极浆料固含量测定,有力保障锂离子电池的性能品质。
  • 精邦LIMS促进新能源电池检测实验室智能化管理方向发展
    作为战略性新兴行业之一,中国新能源汽车近年来发展迅速。数据显示,2018年中国新能源汽车产销量突破100万辆,产销规模连续三年位居全球第一。但同时,新能源汽车自燃、电池寿命短等与动力电池安全有关的事件和问题的频发为新能源汽车行业敲响了警钟。什么是新能源汽车检测试室呢?为什么要建设新能源汽车检测实验室呢?新能源电池实验不同于家用电器和汽车电子产品实验,由于电池的危险性,电池测试过程中可能会产生有害气体、冒烟、明火、爆炸,这些问题可能导致环境空气污染、设备损坏、人员受伤,甚至对人身财产造成巨大损失。因此,电池试验室的规模大小,场地建设,设备购置,以及日常的运营成本都需要引起重视。实验室主要分为电池性能测试评价、环境可靠性测试评价、安全滥用性测试评价三大平台,其测试能力覆盖动力电池单体、模组、Pack(电池包)及系统级别的各项产品,可满足多项国际标准及中国国家标准。通常具有完整测试能力的电池检测实验室 ,可规划成如下功能分区:1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等。2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合试验台。3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等。4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水侵泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、温度箱等。另一方面,为此建立的电池安全检测标准有: 国际标准(IEC)、欧盟标准(EN)、中国标准(GB QC)、美国标准(SAE UL)、日本标准(JIS),针对新能源汽车应用较为广泛的标准是UN 38.3、QC 743、SAND 2005-3123、UL 2580、ISO 12405。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。新能源汽车检测实验室为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况应运而生。通过电池安全检测标准的新能源汽车才能在安全上有长久的保障,相信未来新能源汽车的安全性会得到大大改善。精邦实验室信息化管理平台针对未来汽车实验室科学管理,开发出汽车行业LIMS系统软件,该系统是一款以ISO/IEC17025、ISO9000等精细化管理标准为基础,采用现代化的电子信息技术和数据库系统,专业为汽车企业实验室和质量检验平台设计方案的综合型业务管理系统。汽车实验室精邦LIMS系统关键程序模块:1. 样品管理:是检测中心的关键工作之一。精邦LIMS针对取样、来样加工、试样、留样、余样等差异环节特征的样品,提供样品接收、确认、前处理、派发、传递、检测、保存、处理、退回等全程管理功能模块运用条形码标签建立样品的唯一性界定和查询精准定位。2. 检测管理,具备分配任务、分配管理、结果备案、评价、审核等检测流程管理功能模块,支持数值、字段、文档、报表、图谱等各类结果类别。可设置计算方法、判定指标值等业务流程标准,根据实验仪器接口功能模块,同时导入初始检测统计数据运用电子签章技术性审核结果,保证网络安全;3. 设备维护: 提供设备台账,申购采购,应用记录,维修保养,计量检测,出现故障检修,借还备案,状态控制,销毁报废,利用率统计分析等管理功能模块。较大底限地提升实验室设备等设施自动化技术管理能力;4. 规范管理,为实验室应用的规范丰富多彩提供数字化管理,便捷相关技术人员免费在线查看,并对规范方式的追踪,非标准方式的制订、确认和应用推行有效管理。5. 人员管理针对检测中心的各类技术人员,精邦LIMS提供健全的人员管理方案如技术人员基本资料、人事关系、专业能力确认、资质确认、授权管理、工作记录、监管、评价、学习培训、绩效考评等6. 物资管理精邦LIMS提供实验室物资管理,合格供应商管理,耗材申购、采购、项目验收、入库管理,领用备案,库存量智能提醒(有效期限、库存值)等管理功能模块建立耗材的标准化管理,动态性管控并有效控制耗材使用量,减少检测成本费7. 质量控制精邦LIMS针对实验室內部审核、管理评审、能力验证、实验室间核对、外部审查(如资质证书评定、实验室认可)等相关品质活动,提供了活动计划、活动变更、活动执行、不良整顿 等质量管理和质量控制功能模块8. 数据分析精邦LIMS针对各检测业务的对象、业务流程阶段、业务流程状态智能生成月表、年报表或阶段性可视化报表,同时强大功能的报表设计构思器,允许客户自定义报表格式和內容来源,定期进行或实时生成各类的可视化图形报表,为业务流程分析、市场拓展、领导层管理决策填报数据支持9. 流程优化精邦LIMS嵌入工作流引擎,可为检测中心量身定做定制最贴切的工作流程,将信息流(凭证)、商品流(样品)、审批流(每日任务)有机化学融合成一体化,建立检测业务流程的全程动态性管理, 能够迅速响应检测中心业务流程飞速发展的需求精邦LIMS系统面向生产制造产业,技术专业的质量检验实验室LIMS系统软件提升规范性与智能化管理能力,全方位覆盖了实验室和质量检验平台的经营范围,为汽车产品质量检验的每个阶段提供全方位、精细的管理解决方法,并将各部门日常任务工作中有机地相结合,形成个完整性、统一性的业务流程管理平台,全部工作都能够使用LIMS协调工作。10.智能数据分析 数据智能分析中心主要是针对系统已经存在的检测数据进行多维度、多层级的单向、多项目组合分析管理。通过数据分析能够把数据之间的逻辑关系清晰的展现出来,以满足企业对历史检测数据的纵向、横向分析,以便为产品研发、生产、采购提供科学的建议,同时有效的减低产品研发成本、提高产品的质量、缩短研发周期。精邦数据智能分析中心通过可视化的展现可以快速、精准的对检测数据进行分析,图表与图形智能的展现,帮助实验室从历史检测数据中提取数据进行综合排优比对与建议。◆ 精邦数据智能分析中心不仅仅是前端报表,还包括元数据管理与数据中心(数据仓库);◆ 不仅仅是数据可视化,不仅仅是敏捷数据智能分析中心,精邦 BI 独有的多维动态分析与智能钻取轻松实现智能分析;◆精邦 BI 开发平台,包括数据转换管理(ETL)、OLAP 数据库设计、元数据管理、WEB多维报表设计、多维动态分析、智能钻取、智能报告、数据填报、移动应用、微信应用、单点登陆等 10 余项功能,专注企业级应用,更符合第一方实验室的信息化现状及需求;通过数据匹配组成最佳产品体系分析,形成研发数据库为研发部提供数据支撑; 根据不同的测试安排和类型,数据分析的功能分为数据对比和 SPC 监控两部分。 1 数据对比主要是同一测试项目可直接较 ,如客户需 60 度 7 天后 厚度膨胀(内阻、 厚度膨胀(内阻、 OCV OCV、恢复容量剩余处理方式一样),可以将不同阶段,不同规格的试验单,在一表中展示(busbar 形式,或客户要求的其他),并可以直接导出比较图表、原始数据。 2 SPC 监控主要针对品质稳定性监控,比如量产电池的厚度、容量、倍率、存储、循环 150 次的结果,做长期跟踪,并依据时间、批次,给出某一关键指标的趋势变化图,若出现超规格情况,可依据严重程度,系统自动给出预警(比如邮件、短信)通知,可设置不同层级(工程师、经理、总监、副总、总经理等); 3 数据对比 选择测试用例及需要进行对比的测试任务进行数据可视化对比分析,包括不限于倍率、循环、存储、高低温测试,可针对不同项目不同关注点进行比较,比如容量(保持率)、厚度(增长)、放电能力、内阻增加等各个方面进行展示。对于原始的充放电数据(放电数据),循环数据,都可以直接叠加比较。 该软件可以查询相关的功能,并设置了重置,可以一次性对比几个测试,选择重置,可以清空这些对比信息,主要的对比包括如下几点: 4 倍率放电测试记录在不同倍率(0.1C,0.2C,0.5C,1C,1.5C,2C)下,电芯的放电曲线
  • 麻雀虽小,五脏俱全——奥豪斯与电池世界的不解之缘
    作为人类活动的物质基础,能源就如一只扼住人类社会发展咽喉的手,我们的日常生活处处离不开能源的使用。而在这个能源有限的蓝色星球,能源的发展,能源和环境,能源的存储和再生,是全世界、全人类共同关心的问题。随着科学技术的不断发展,诸如多晶硅太阳能电池,电动汽车,生物质能等新能源技术如同雨后春笋般在我们的生活中流行开来,人们对便携式能源存储设备的需求比以前更加庞大,并继续保持指数级增长。 为了顺应这种潮流,电池技术的发展和生产变得越来越多样化,以满足人们对电池全面功效的需求。小到随身携带的电子设备,大到出行的交通工具,电池几乎遍布于我们生活的每一个角落。今天,小编就来给大家说道说道这小小电池世界里的大学问! 步入有趣的电化学世界 在电池世界里面,首先要提到的就是使用普遍的且有着近150年发展历史的铅酸电池,其广泛应用于交通、通信、电力、军事、航海、航空等领域。从结构上来说,铅酸电池的电极主要由有毒的重金属铅及其氧化物制成,电解液是腐蚀性很强的硫酸溶液。铅酸电池在放电状态下,正极主要成分为二氧化铅,负极主要成分为铅;充电状态下,正负极的主要成分均为硫酸铅。 铅酸电池在耐用性、便携性和环保性方面有比较大的局限。一般深充深放电在300次以内,且有记忆,寿命在两年左右,并且电池内的液体在消耗一段时间后,如果发现电池发烫或者充电时间变短,就需要补充液体;同时,一般铅酸电池的重量是16~30公斤,体积较大,不易携带;此外,电池在生产过程或回收过程容易造成环境污染。 为了倡导可持续发展,对环境无毒害的绿色电池技术正在成为主流。最常见的有碱性电池和锂电池。碱性电池也称碱性干电池、碱性锌锰电池、碱锰电池,是锌锰电池系列中性能最优的电池品种,适用于需放电量大及长时间使用。相比铅酸电池,碱性电池在某些应用中被证明是一种更有效率和安全的替代品,因为它们不含有剧毒和腐蚀性的成分。 碱性电池在结构上采用了与普通电池相反的电极结构,采用二氧化锰与石墨粉的混合物为正极,锌和其他添加物为负极,增大了正负极间的相对面积,而且用高导电性的氢氧化钾溶液替代了氯化铵、氯化锌溶液为电解液,允许离子在两极间移动。特别是负极锌也由片状改变成粉末状,增大了负极的反应面积,加之采用了高性能的电解锰粉,所以电性能得以很大提高。 总的电池反应式为:Zn+MnO2+2H2O+4OH-=Mn(OH)42-+Zn(OH)42- 碱性电池是成功的高容量干电池,也是最具性价比的电池之一。由于它的防漏性相当好,所以可被使用在任何环境。 最后来带大家来看看目前电子设备中流行最广泛的锂电池。锂系电池可分为锂金属电池和锂离子电池。由于金属锂非常活泼的化学性质导致的安全问题尚未完全突破,因此目前广泛使用的锂系电池均为锂离子电池,而非锂金属电池。 锂离子电池是一种充电电池。一般是使用锂合金金属氧化物为正极材料,石墨为负极材料,使用非水电解质的电池。主要依靠锂离子在正负极之间的往返嵌入和脱嵌来工作,实现能量的存储和释放。锂离子电池常见的正极材料主要有钴酸锂、锰酸锂、镍酸锂、磷酸铁锂等。在这里,我们拿拥有较好安全性的磷酸铁锂电池举例。 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质。电池分左右两边,左边是橄榄石结构的LiFePO4组成的电池正极,由铝箔与电池正极相连,中间是把正、负极隔开的聚合物隔膜,锂离子Li+可以通过而电子e-不能通过;右边是由石墨组成的电池负极,由铜箔与电池的负极相连。电池的上下端之间是电池的电解质,主要成分是六氟磷酸锂LiPF6,整个电池由金属外壳密闭封装。充电时,正极中的Li+通过聚合物隔膜向负极迁移;放电时,负极中的Li+通过隔膜向正极迁移。 锂电池耐用性较强,消耗慢,寿命长,且无记忆,同时便于携带。虽然价格相对比较昂贵,但是非常绿色环保,是一款清洁的能源存储设备,是电池行业的发展趋势。 水分仪跟电池也能扯上关系? 看完了上面对电池知识的普及,是不是有种回到了似曾相识的化学课堂的感觉?其实在电池生产过程中,还有一项指标对电池的性能和可制造性起到至关重要的作用,这就是电池的水分含量。有人会觉得匪夷所思了吧~ 拿碱性电池来说,电池正负极材料成分被混进一种黏性物质,形成并产生合适的形状以构造电池。黏性混合物必须符合严格而又精确的水分含量规定,如果水分含量过多,导电性就会变差,因而电池容量就会不足;反之,如果水分含量不足,电池就很难成形。 全国乃至全球许多的电池生产商都信任奥豪斯的水分测定仪用来测定电池中的水分含量。下面拿来自我国华东地区的一家生产磷酸铁锂电池的客户举例。据相关实验显示,锂电池循环性能及倍率性能与电极水分含量密切相关,当电极水分含量超过0.06%时,电池循环性能和倍率性能降低,放电比容量严重衰减,循环200周后容量衰减近40%,且电池内阻增大,电化学阻抗增加。同时,电池极片在实际生产中的专配环节也会吸收水分,导致其电化学性能衰减。【1】因此在锂电池的生产当中,电极材料需要极其严格地控制水分。 奥豪斯MB 120水分测定仪配有全新的加热腔设计,同时精确控制的卤素加热系统可快速升温并均匀加热,结合高精度称重传感器可确保样品水分测试可读性达到0.01%/1mg。客户在电池生产过程中,每次仅需对电极材料粉末取样3~5g,根据样品的特性选择合适的温度进行测定,很快就能显示精准而又稳定的测定结果。整个过程不仅大大提升了测量的准确性,更节约了时间并提高了产能。 奥豪斯的设备不仅能在实验室中提供快速和重复性的结果,而且也能在工业环境中提供值得信赖的日常测量服务。如果你有更多关于工业生产中原料及成品水分测定方面的疑难咨询,或正在寻求更专业细致的水分仪选型指导,请及时联系我们,我们专业的工程师们届时将会在第一时间为您提供最满意的解答! 参考文献:【1】牛俊婷,孙琳,康书文,赵政威,马紫峰. 电极水分对磷酸铁锂电池性能的影响[J]. 电化学,2015,21(5):465-470.
  • 环球分析测试仪器有限公司亮相2024氢燃料电池 技术创新与应用大会
    2024年4月18日-4月19日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在上海美仑国际酒店举办的“2024氢燃料电池技术创新与应用大会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借优异的硬件和专业的软件功能等优点吸引许多参会科研学者的驻足咨询交流。 此次活动由士研咨询主办,同时得到了同济大学燃料电池汽车技术研究所、上海市汽车工程学会、江苏省汽车工程学会、日本氢能燃料电池株式会社、韩国电池工业协会(KBIA)、嘉定氢能港等业内机的大力支持,力求将此次大会打造为业内交流合作的最佳平台。本次大会的主题定为“创新赋能,降本增效",聚焦氢燃料电池产业的前沿科技创新与高效发展,呼唤氢能行业精英汇聚上海,共同探讨氢燃料电池产业未来的新实践、新思路和新洞见。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 公安部四川消防研究所更新百万阻燃测试仪器
    近日,莫帝斯燃烧技术(中国)有限公司为公安部四川消防研究所国家防火建材质检中心提供百万阻燃测试仪器,包含铺地材料热辐射测试仪、IMO 热辐射测试仪、可燃性测试仪、建筑材料烟密度测试仪、不燃性测试炉、泡沫垂直燃烧测试仪、UL94 水平垂直燃烧仪、氧指数测定仪、纺织品多功能燃烧测试仪、水平燃烧测试仪、DIN 54837大型燃烧箱、氧弹量热仪、外保温材料灼热燃烧炉等阻燃测试仪器。此次合作,标志着莫帝斯燃烧技术(中国)有限公司正式进入建筑材料阻燃测试仪器领域,有信心为其他客户提供优质的建筑材料阻燃测试仪器。 同时莫帝斯也深深的知道自己的不足,在此次合作过程中,四川消防研究所的专家及学者,提出了大量的宝贵建议,同时将他们多年的测试经验积累,无私的传递给了我们,在不断的修订自身错误的过程中,让我们深深体会到做好一台仪器,其生长的土壤,不仅仅要有认真的态度、科学的方法,同时需要有一批专业、敬业、负责任的客户。&ldquo 不积硅步无以致千里,不积小流无以成江海&rdquo ,同时也让我们认识到,只有不断的思考、不断的学习、不断的优化,才能将看似简单的产品真正的做好。 再次,对那些给予我们无私帮助的人们,再次表示真挚的感谢!!! 自2008年以来,莫帝斯专注于高铁阻燃材料测试仪器的发展,已经同国内众多知名高铁材料阻燃实验室保持着良好的合作关系,如TUV莱茵、TUV 南德、SGS 通标、中国铁道科学研究院、中国南车等,其研发的阻燃测试仪器填补了许多国内阻燃测试的空白,如独立研发德国高铁DIN 54837 大型燃烧箱、法国高铁铺地材料热辐射测试仪、法国高铁电线电缆燃烧测试仪、英国高铁BS 476 中表面火焰传播测试装置及火焰蔓延指数测试仪等,我们相信自己,有能力为各类测试领域提供高性价比的测试仪器。 客户介绍: 国家防火建筑材料质量监督检验中心(以下简称质检中心)是经公安部和原国家标准局批准建立,于1987年经原国家标准局正式验收并授权成为全国首批具有第三方公正性地位的、法定的国家级产品质量监督检验机构。质检中心行政上受公安部消防局领导,检验业务上受国家认证认可监督委员会和公安部消防局指导。质检中心成立二十多年来,特别注重实验室建设、人才培养和质量管理体系运行的持续有效。按照中国合格评定国家认可委员会《检测和校准实验室能力认可准则》和国家认监委《国家产品质检中心授权管理办法》的要求建立质量管理体系,并通过了国家认监委和中国合格评定国家认可委员会每三年一次的实验室认可、资质认定和计量认证的"三合一"复评审、监督评审和扩项评审及国家认监委的专项监督。2003年通过了中国船级社的评审,被授权成为船用耐火材料与耐火构件等产品质量验证检验机构。中心的组织机构为一科一部四室,即技术管理科、技术发展部、办公室、防火建材检验室、耐火建筑构(配)件检验室、阻燃电缆及防火涂料检验室),拥有建筑面积15000多平方米的试验场馆,仪器设备200多台套, 固定资产5000余万元。通过多年的建设和发展,目前质检中心已被国家认监委授权承担防火建筑材料及涂料、耐火建筑构(配)件、阻燃及耐火电缆、消防器材等四大类77余种产品的国家监督抽查、地方监督抽查、型式检验、仲裁检验、认证认可检验和委托检验等检验工作。质检中心除了承担检验任务外,还开展建筑材料燃烧性能、电线电缆燃烧性能、防火材料产品等标准的制定(修订)、检测技术的研究和检验设备的研究开发等工作。 www.motis-tech.comwww.firetester.cn
  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到智能全自动薄膜阻隔性测试仪
  • 什么是固态电池 ——迎接国际新一轮动力电池技术竞争
    固态电池是一种使用固态电解质替代传统液态电解质的电池,其电解质可以是聚合物、氧化物、硫化物等多种材料。固态电池的结构主要包括正极、负极、电解质和隔膜四部分。与液态电池相比,固态电池具有更高的安全性、更大的能量密度和更长的寿命。来源:《中国固态电池行业研究报告》,前瞻产业研究院固态电池的工作原理与液态电池类似,都是通过正负极之间的离子传递来实现电荷的存储与释放。在充电过程中,正极释放电子,负极吸收电子,同时离子从正极向负极移动,嵌入负极材料中;在放电过程中,电子从负极流向正极,离子从负极向正极移动,释放出储存的能量。工作原理上,固态锂电池和传统的锂电池并无区别。两者最主要的区别在于固态电池电解质为固态,相当于锂离子迁移的场所转到了固态的电解质中。而随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度。另外,固态电解质的绝缘性使得其良好地将电池正极与负极阻隔,避免正负极接触产生短路的同时能充当隔膜的功能。固态电池的优势安全性:固态电池采用固态电解质,可以有效防止电池内部短路和漏液,降低热失控风险。同时,固态电解质的化学稳定性较好,不易燃烧,因此在高温、撞击等极端条件下,固态电池的安全性明显优于液态电池。能量密度:固态电池具有较高的能量密度,一方面是因为固态电解质可以承受更高的电化学窗口,使得电池可以使用更高电压的正极材料;另一方面,固态电池可以采用更薄、更轻的隔膜和集流体,减轻电池重量,提高能量密度。寿命:固态电池的寿命较长,一方面是因为固态电解质可以有效抑制电池内部副反应,降低自放电速率;另一方面,固态电池的充放电循环稳定性较好,可以承受更多的充放电次数。来源:《全固态电池技术的研究现状与展望》,许晓雄固态电池的挑战1、固态电解质材料研究目前,固态电解质材料的研究尚不充分,需要进一步优化和筛选具有良好离子导电性、机械强度和化学稳定性的材料。此外,固态电解质与电极材料的界面问题也需要解决,以提高电池的性能。2、制造成本固态电池的制造成本较高,主要原因是固态电解质和电极材料的制备工艺复杂,且生产规模较小。此外,固态电池的生产设备和技术也与传统液态电池有所不同,需要投入大量资金进行研发和产业化。3、充放电速率固态电池的充放电速率相对较慢,主要受限于固态电解质的离子导电性。提高充放电速率需要进一步优化固态电解质材料,以及开发新型电极材料和结构。固态电池的国际竞争势态美国在固态电池领域具有较强的研发实力,拥有多家知名企业和研究机构,如QuantumScape、Solid Power、Ionic Materials等。美国政府也高度重视固态电池技术,将其列为国家战略项目,投入大量资金支持相关研究。欧洲在固态电池领域同样具有较强的竞争力,拥有多家知名企业和研究机构,如德国的Varta、比利时的Solvay等。欧洲联盟也推出了“欧洲电池联盟”计划,旨在推动固态电池技术的发展和产业化。日本在固态电池领域具有领先地位,拥有全球最大的固态电池制造商丰田和全球领先的电池材料供应商村田制作所。日本政府和企业对固态电池技术的研究投入巨大,力求保持在该领域的竞争优势。韩国在固态电池领域同样具有较强实力,拥有全球领先的电池制造商LG化学和三星SDI。韩国政府和企业也在积极推动固态电池技术的发展,以应对全球动力电池市场的竞争。固态电池的发展对于我国新能源汽车产业具有十分重要意义。通过加强固态电池的研发和应用,不仅可以提升我国新能源汽车的核心竞争力,还可以推动我国在全球动力电池市场中的地位提升。因此,我国应加大对固态电池技术的研发力度,加强与国际先进企业的合作与交流,共同推动固态电池技术的快速发展。固态电池的主要研究课题尽管固态电池有着巨大的潜力和商业价值,但目前仍存在很多技术难点需要研究和攻克。尤其是固态电解质离子传输动力学、固/固界面物理和化学接触问题。这其中,对于固态电池的电解质/电极材料的电导率、内部产气/压力、膨胀行为的评估依然是对电池材料、电池性能、生产工艺等的重要研究手段。电弛的解决方案固态电池中的固体电解质和电极界面并不是完全稳定,仍会存在一定程度的副反应。因此,对于固态电池产气、内部压力、膨胀行为等的研究依然受到高度关注。武汉电弛新能源有限公司自主研发的原位产气量测试系统,原位气体内压测试系统、原位电池膨胀力测试系统,可对多种电池种类和电池形态的电池进行产气量、内压、膨胀行为的测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池、软包电池、方壳电池、圆柱电池、电芯模组。系统高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。同时,可为不同形态电池提供定制化夹具,开展不同测试模式的研究。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。
  • 大型动力电池电化学测量方法技术讲座
    大型动力电池的电化学测量方法技术讲座--EIS(电化学交流阻抗测试)应用-- 电化学交流阻抗测试(EIS)、是把电池内部的化学反应置换为电气特性的等效电路,进行详细解析的唯一方法。在很早以前,此方法就应用于基础电化学、金属腐蚀、蓄电池、燃料电池等的测试。 其具有通过扫频的方式可以分离时间常数的特点,如果应用于电池测试,可以在不破坏复杂的电池内部状态的情况下,对电池进行解析,这是在充放电测试中无法达到的。在高性能电池研发技术处于领先地位的日本,EIS测试在电动汽车用大型电池的评价测试领域也已经广泛普及。而在目前的中国大部分企业偏重于实际生产,忽略了基础研发,基本上没有进行大型电池的EIS测试。 本次讲座,以已经进行着大型电池的研发或者将来有意进行大型电池研发的技术人员为对象,结合我公司测试设备的演示,以简单易懂的方式讲解EIS测试的基本原理以及在大型动力电池领域上的应用。■主讲人:佐佐木 浩人 (尖端应用测量部 部长)■现场翻译:郑海林■内容: 交流阻抗与直流电阻的区别 EIS的测试原理、设备选型、测试注意事项 EIS测试事例简介 大型动力电池上的应用和现场演示 大型动力电池测试的注意事项、误差因素 问题的解决方法:介绍我公司的解决方案 ※采用模拟和现场演示的方法进行说明。 ※讲座结束后,举办交流晚餐■时间:2011年12月22日(星期四)13:30-16:30■地点:上海市内酒店会议室(另行通知)■参加人数:30人■参加费:免费(需要事先登记报名)■登记报名: 使用E-mail登记 请写清楚所在公司、部门、姓名、电话、邮箱地址, 并注明"报名参加大型动力电池的电气化学测试方法应用技术讲座", 发邮件至bfc@toyochina.com.cn  ※讲座内容可能部分发生变化。  ※由于参会人数有要求,超过定员将停止接受报名,请您尽早登记报名。  ※我们可能拒绝同行业的竞争对手以及与此相关的人员参会。■咨询 东扬精测系统(上海)有限公司 尖端应用测量部 郑海林、沈利 TEL: 021-6380-9633 Email: bfc@toyochina.com.cn URL: http://www.toyochina.com.cn
  • 2024固态电池元年,安全是关键,电弛电芯原位产气如何解
    2024年,被誉为固态电池元年。随着新能源汽车市场的持续扩大,固态电池作为一种具有高能量密度、长寿命、高安全性的新型电池,逐渐成为未来新能源汽车的主流动力电池。然而,在固态电池的研发和产业化过程中,安全性问题始终是关键因素之一。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。 固态电池安全性问题1、高温性能固态电池在高温环境下容易出现性能衰退,甚至热失控。高温会导致固态电解质和电极材料发生分解、氧化等化学反应,释放出气体,从而产生内部压力。当压力超过电池壳体的承受能力时,电池可能会发生爆炸。()2、过充与过放过充和过放是固态电池安全性的重要隐患。在过充过程中,电池内部会产生大量的气体,导致电池内部压力升高。而过放会导致电池内部产生锂枝晶,容易引发内部短路,进一步加剧电池的热失控风险。3、内部短路固态电池在制造和使用过程中,可能会出现内部短路现象。内部短路会导致电池局部热量积累,进而引发热失控。此外,内部短路还可能引起电池内部的气体产生和压力升高,增加电池爆炸的风险。 电芯原位产气的原因及解决方法原位产气的原因电芯原位产气是指在电池充放电过程中,由于电极材料、电解质或其它电池组件的化学反应,导致电池内部产生气体的现象。原位产气会降低电池的性能,增加电池内部压力,甚至引发热失控。固态电池中原位产气的主要原因包括:(1)电极材料的热分解:在充放电过程中,电极材料可能会发生分解反应,产生气体。(2)电解质的热分解:固态电解质在高温或高电压环境下,容易发生分解反应,产生气体。(3)电池组件的化学反应:电池内部的其他组件,如隔膜、粘结剂等,也可能会发生化学反应,产生气体。 (锂电池的内部产气原因) 解决方法为了解决电芯原位产气问题,可以从以下几个方面进行优化和改进:(1)优化电极材料:选择稳定性好、耐高温的电极材料,减少电极材料的分解反应。同时,对电极材料进行表面修饰,提高其结构稳定性。(2)改善电解质:选用具有高离子导率、低界面阻抗的固态电解质,提高电池在高温或高电压环境下的稳定性。此外,可以开发新型固态电解质,如聚合物、硫化物等,以提高电解质的化学稳定性。(3)优化电池结构:设计合理的电池结构,如采用柔性电极、三维导电网络等,以降低电池内部的应力集中,减少内部短路的风险。(4)严格制造工艺:在电池制造过程中,严格控制工艺参数,如温度、湿度等,以降低电池内部产生气体的可能性。 2024年是固态电池元年,安全性问题成为关键因素。电芯原位产气作为固态电池安全性问题的重要表现,亟待解决。通过优化电极材料、改善电解质、优化电池结构和严格制造工艺等方法,可以有效降低电芯原位产气的风险。然而,固态电池安全性问题的解决仍需要持续的技术创新和产业化推进。未来,我国应继续加大研发投入,推动固态电池技术走向成熟,为新能源汽车产业的可持续发展提供有力支撑。 电弛GPT-1000S 解决方案 电弛DC GPT-1000S 解决方案,通过特殊设计的GSP采气装置,可从软包电池、方壳电池、圆柱电池直接将电池产气已入到产气体积测量装置。该产气体积测量装置采用超微量气体流量测量技术,可原位、实时、在线、连续地监测电池的产气行为,包括产气量和产气速率等参数。其原理是为由于气体进入特定的介质中,介质分子与气体分子之间的相互作用破坏了介质表面的力平衡,使介质表面张力减少,从而在介质中形成微小气泡。由于该介质具有惰性与电池内产生的气体不发生反应,其形成的气泡可等同于电池产气体积。然后通过光学,超声波,电磁等传感器测量气泡,即可得到产气量。相较于传统的Jeff Dahn法(基于阿基米德浮力原理)、理想气体状态方程计算法等方法,本设备可直接测量微量产气的体积数据(μL),无需数据转换或换算,数据直接、结果精准、重复性高。且测量后的气体尾气可直接进行收集或直接串联GC、GC-MS、DEMS等多种气体成分分析设备,实现产气体积测量和成分分析联动测试,为材料研发和锂电池电芯产气机理的分析研究提供了真实可靠的数据支持。 (计量认证与方法验证) (定制集成化系统多因子耦合测量方案)
  • 环球分析测试仪器有限公司助力第三届中国国际氢能及燃料电池高峰论坛
    2024年4月11日-4月13日环球分析测试仪器有限公司应邀携德国札纳电化学工作站及美国艾德茂电化学工作站参加了在重庆帕格森蒂两江蒂苑酒店举办的“第三届中国国际氢能及燃料电池高峰论坛暨展览会"。德国札纳电化学工作站及美国艾德茂电化学工作站凭借其性能优异、简洁易用操作软件、强大离线数据分析软件、优越性价比及强大的拓展功能等诸多亮点受到广大参会科研学者的支持。 本次大会以“氢助双碳、引向未来"为主题,邀请来自政府主管部门、行业精英、涉氢企业、社会组织负责人、专家学者、企业家等齐聚美丽山城。旨在促进氢能产业技术“政、产、学、研、用"协同发展,推进氢能产业链基础设施建设,深入拓展氢能产业领域相关新技术、产品示范应用,助力实现双碳目标,推动氢能产业高质量发展。 环球分析测试仪器有限公司是德国札纳公司和美国艾德茂公司在中国的总代理。在此次会议展出了德国札纳公司生产的ZenniumPro和ZenniumX新型电化学工作站,以及CIMPS光电化学谱仪、瞬态光电响应测试模块、IPCE模块、透射/吸收光谱测试系统、光电化学发射测试系统等;并展出了美国艾德茂公司生产的Squidstat Plus、Squidstat Prime、Squidstat Solo、Squidstat Penta、Squidstat Decka、Squidstat Venta、Squidstat Cycler等型号的电化学工作站。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • GPT-Li在锂电池原位产气量和气体组分分析中的应用
    锂离子电池在首次充电过程中,电解液与负极材料发生反应在表面形成固体电解质界面膜(SEI,Solid Electrolyte Interface),并伴随产气,如氢气、二氧化碳、甲烷等。该过程属于正常产气,被称为化成阶段。当锂电池在过充放电过程时,也会异常产气,导致电池形变、封装破损、内部接触不良,从而引起安全事故。因此,准确掌握电池的产气量大小、深入了解产气规律,有助于优化电池材料体系和电解液,对电池制作工艺优化至关重要。以往,对于从软包锂电池中提取气体样本一直是一项具有挑战性的工作。传统的方法是用一根锋利的针穿透软包电池,这样可以一次性测量气体,但在此过程中会破坏软包电池。而且,这种方法不适合与多种时间、不同电压或充电状态(SoC)相关的测量,也不允许连续监测电池内部的产气过程。因此,该传统方法存在的问题是测试具有破坏性,不能用于非侵入和重复气体取样。它也没有提供一种从软包电池中提取永久性气体而不损坏它的方法。为了克服这些限制,德国明斯特大学(University of Münster)的Jan-Patrick组于2020年引入了一种气体采样端口(GSP,Gas Sampling Port)用于从锂离子软包电池中原位采集产气(DOI 10.1149/1945-7111/ab8409)。GSP是一种基于聚丙烯(PP)的套管系统,它被热封到袋箔的内层。它允许非破坏性和重复气体采样,而不会显着影响袋状电池的电化学性能。通过引入GSP,研究人员能够对软包电池内形成的气体进行原位分析。这使他们能够在不损害电池完整性的情况下研究气体的产量和组成。关于产气量的测定,作者仍然采用的是传统的“阿基米德法”。这种方法的基本原理是将软包电池悬挂于流体中,如MilliQ水中。由于软包电池受到的液体浮力会对小型薄膜测压传感器施加一个力,则传感器中应变片的变形会导致电阻变化形成电信号,然后再转化为力数据。通过阿基米德浮力公式,其产生的浮力与同体积排开的液体的重量相等,即可换算出软包电池的产气量。但此方法为间接计算产气量,操作装置较为复杂、误差较大、精度不足、重复性不足。且此方法仅能用于软包电池的产气量测量,不具有兼容方形电池、圆柱电池的广泛性。GPT-Li原位锂电池产气量测定仪采用GMC(Gas Metering Cell)超微量气体流量测量专利技术,其原理为直接将锂电池产气引入GMC测量模块,当气体流过特殊设计的流道中的惰性液体时,会产生均匀的气泡并计数累计产气量。该技术的直接测量精度可达约30 μL,且支持连续或非连续气流的测量。将该技术结合不同的接口,可实时在线连续原位监测软包、方形、圆柱等各种类型电池的产气行为,并得到如产气量、产气速率等数据。同时,GMC测量模块可直接与GC、DEMS等气体组分分析设备串联,用于进一步的气体组分分析。相较于传统的排水法(基于阿基米德浮力定律)、集气法(基于理想气体状态方程),GPT-Li可实现直接动态监测气体的微量体积变化并与气体成分分析设备进行联动分析,有助于锂电池材料研发和电芯产气机理的分析研究。
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 科技引领!植入光纤传感器为电池做“体检”
    手机爆炸、电动汽车行驶或充电过程中的火灾事故在生活中经常可见,让人们在享受锂电池带来的便利的同时,也担心其在安全方面的重大问题。如何降低这一风险?近日,中国科学技术大学教授孙金华、研究员王青松团队与暨南大学教授郭团团队研制出一款可植入电池内部的高精度光纤传感器。相关研究成果日前在线发表于《自然-通讯》。“这款高精度光纤传感器可以在1000摄氏度的高温、高压环境下正常工作,同步测量出电池热失控全过程内部温度和压力,为快速切断电池热失控链式反应提供预警手段。”王青松向《中国科学报》介绍。破解国际性科学难题手机、笔记本电脑、电动自行车、电动汽车中都有一个关键部件——锂离子电池。随着全球范围内能源危机的出现、“双碳”目标的驱动,锂离子电池产业迅速发展。然而,锂离子电池常常会发生爆炸,也就是热失控,这是威胁电池安全的“癌症”,是制约电动汽车与新型储能规模化发展的瓶颈。研究表明,电池热失控源于电池内部一系列复杂且相互关联的“链式反应”。“这可以从电池内部和外部两方面讨论。从内部来看,电池由正负极、电解液、隔膜等组成,其中电解液和隔膜都是易燃物,正负极和电解液在一定温度下又会产生化学反应,进而产生热量和可燃气体。也就是说,电池内部本身就是一个热不稳定的体系。”王青松说。从外部来看,电池在使用过程中容易出现各种外部滥用:电滥用,如过充、过放等;热滥用,如高温、局部发热等;机械滥用,如撞击、挤压等。这些外部滥用会造成电池内部材料发生一系列连锁化学反应,电池内部温度快速提升,最高可达800摄氏度,导致电池起火或爆炸。如何科学、及时、准确地预判电池安全隐患,是当前电池安全领域的国际性科学难题。为攻克这一难题,研究团队提出一种可植入电池内部的高精度光纤传感器,在国际上率先实现对商业化锂电池热失控全过程的精准分析与提早预警。《自然-通讯》的一位审稿专家评价道,“该研究有助于电池健康状态监测,并在不可逆损害前发出预警信号。”小巧光纤实时监测电池健康状态将光纤植入电池,并非王青松等人首创。因光纤传感器具备体积小、重量轻、耐受高温高压、耐受电解液腐蚀等优势,前人将其植入电池。但他们主要测量的是电池循环过程中的内部参数,从未涉足电池热失控监测领域。于是,王青松等人想将光纤植入电池内部,以监测电池热失控过程,并探索电池内部参数能否为电池热失控预警提供新思路。研究思路有了,做起来却非常难,因为现有的大多数光纤传感器无法在热失控过程中“幸存”。王青松解释说,电池热失控过程中,内部压力高达2MPa、温度高达500至800摄氏度,在这种高温高压的冲击下,光纤信号会中断,无法测得电池内部温度和压力数据。研究的关键是开发一款“健壮”的光纤传感器。他们与郭团团队联合攻关,多次改进光纤结构,开展热失控实验,反复修改和验证,最终通过对光纤进行套管保护,在保证内部信号传输的同时解决了光纤容易断的难题。“这款高精度光纤传感器总长度12毫米、直径125毫米,能够植入商业18650电池,实时监测电池热失控期间的内部温度和压力影响。”王青松向《中国科学报》介绍了光纤传感器的结构。相比现有的外部监测技术,内部光纤传感技术更具有及时性、灵活性。“就好比人们患病,当感知到疼痛时,往往为时已晚。这就像电池外部特征的变化一般都是滞后的。”王青松解释道,“而去医院体检,可以通过CT等看到内部器官变化,从而预知疾病的发生,并通过治疗手段阻止疾病进一步发展。但这种大型设备体积庞大,无法随时随地监测内部状态变化。如果在人体内植入芯片,就可以做到实时跟踪预警。就像在电池内部植入光纤传感器,可以做到实时监测预警。”值得一提的是,该研究通过解析压力和温度变化速率,首次发现温度和压力变化速率的转变点可作为电池热失控早期预警区间。该发现适用于不同电量的电池,能够在电池内部发生“不可逆反应”之前发出预警信号,保证了电池后续的安全使用。用于同时监测电池内温度和压力的FBG/FPI传感器工作原理适合大规模推行量产在王青松看来,光纤传感器尺寸小、形状灵活,具有抗电干扰性和远程操作的能力和适合大规模生产的标准制造技术,并且可以实现一根光纤在电池的多个位置同时监测温度、压力、气体组分、离子浓度等多种关键参数。光纤传感技术与电池的结合将在新能源汽车、储能电站安全监测等领域发挥重要作用。为此,研究团队将探索光纤传感器在大容量储能电池中的应用。“大容量储能电池热失控相比此次研究中的18650电池更加剧烈,并且其热失控特性和机理与小电池有所差异,这将是对我们研究的进一步考验。”王青松说。另一方面,团队将与电池制造商合作,希望在电池制作过程中植入光纤传感器,避免对电池二次破坏,加快光纤传感在储能和新能源汽车电池管理系统中的应用进程。相关论文信息:https://www.nature.com/articles/s41467-023-40995-3
  • 锂电池材料试验第四讲|锂离子电池的强制内短路测试
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。 在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。 LLOYD材料力学试验机(LLOYD材料试验机)提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统(LLOYD材料试验机)可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第四讲——锂离子电池的强制内短路测试。锂离子电池的强制内短路测试。强制内短路测试既可以应用在18650,21700等圆柱形电池,也可以应用于方形软包电池。测试前,需要在规定环境的手套箱中对电池进行拆解,在混入模拟微小金属颗粒的标准金属镍片后对电池进行封装。在达到规定的温度和时间条件后,放置于强制内短路测试系统中以0.1mm/s的速度对电池放置镍片的位置进行施压,在匀速达到规定的压力同时,实时监测锂电池压力的变化和表面温度的变化。当观测到电压发生50mV压降或者当施压载荷达到400N(方形电池)或800N(圆柱形电池)时,停止加压并保持30s,然后撤压。如果在达到规定的压力前发生50mV压降,说明此电池未达到强制内短路测试的安全标准;如果当压力达到400N或800N而为发生电压降,说明此电池可极大程度的避免因外部颗粒原因造成内短路现象。而一套高精度的强制内短路测试系统,需要一台高精度、高采样率载荷施加系统,此系统需同时监测和记录锂电池微量的电压变化和温度变化,并可以灵活的设定试验条件以满足更为严苛的测试和研发需求。强制内短路测试系统在载荷量的施加与记录方面,LLOYD LD系列测试系统可实现0.5%读数级的载荷精度,并以1000Hz的采样率记录载荷的变化。此系统采用32位A/D转换,具有极高的力值分辨率。在达到载荷精度和分辨率的同时,其电压和温度记录也可高达250Hz,是目前业内同类测试中精度最高,采样率最高的测试系统。此系统配有防爆高低温环境箱,即可满足标准强制内短路测试的温度要求,可以变换温度模拟不同温度下的电池的力学性能研究。温箱本身达到防爆级,即使在电池发生剧烈燃烧、爆炸等情况下依然可以保障试验人员与系统的安全性,并带有主动排风系统,可将测试中电池的烟气排出,有效的保障实验室环境。锂电池的力学测试在满足强制内短路测试要求的同时,LLOYD LD测试系统还可以兼顾各种高精度的电池力学强度测试,如锂电池三点弯曲强度,抗压强度,锂电隔膜拉伸强度、延伸率测量,锂电隔膜穿刺强度,铝塑膜的拉伸和穿刺性能等。LLOYD测试系统专注于各类定制化解决方案,协助您完成更为专业的标准化和定制化测试,助力锂电产品的测试和研发。更多详细方案,请垂询AMETEK 中国区办事处或各地分销商。LLOYD材料力学试验机(LLOYD材料试验机) LLOYD(劳埃德)测试系统(LLOYD材料试验机)源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。 LLOYD材料测试系统(LLOYD材料试验机)可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 质检总局发布《热式气体质量流量计检定规程》等27个国家计量技术规范
    日前,国家质量监督检验检疫总局发布《热式气体质量流量计检定规程》等27个国家计量技术规范。其中,热式气体质量流量计检定规程、掠入射X射线反射膜厚测量仪器校准规范、转速测量仪检定规程、热重分析仪检定规程等21项仪器计量技术规范在内。编号名称批准日期实施日期备注JJG1132-2017热式气体质量流量计检定规程2017-2-282017-5-28JJG1133-2017煤矿用高低浓度甲烷传感器检定规程2017-2-282017-5-28JJG1134-2017转速测量仪检定规程2017-2-282017-5-28JJG1135-2017热重分析仪检定规程2017-2-282017-5-28JJG1136-2017扭转疲劳试验机检定规程2017-2-282017-5-28JJG1137-2017高压相对介损及电容测试仪检定规程2017-2-282017-5-28JJG1138-2017煤矿用非色散红外甲烷传感器检定规程2017-2-282017-5-28JJG1139-2017计量用低压电流互感器自动化检定系统检定规程2017-2-282017-5-28JJF1609-2017余氯测定仪校准规范2017-2-282017-5-28JJF1610-2017电动、气动扭矩扳子校准规范2017-2-282017-5-28JJF1611-2017顶板动态仪校准规范2017-2-282017-5-28JJF1612-2017非接触式测距测速仪校准规范2017-2-282017-5-28JJF1613-2017掠入射X射线反射膜厚测量仪器校准规范2017-2-282017-5-28JJF1614-2017抗生素效价测定仪校准规范2017-2-282017-5-28JJF1615-2017太阳模拟器校准规范2017-2-282017-5-28JJF1616-2017脉冲电流法局部放电测试仪校准规范2017-2-282017-5-28JJF1617-2017电子式互感器校准规范2017-2-282017-5-28JJF1618-2017绝缘油介质耗损因数及体积电阻率测试仪校准规范2017-2-282017-5-28JJF1619-2017互感器二次压降及负荷测试仪校准规范2017-2-282017-5-28JJF1620-2017电池内阻测试仪校准规范2017-2-282017-5-28JJF1621-2017诊断水平剂量计校准规范2017-2-282017-5-28JJF1622-2017太阳电池校准规范:光电性能2017-2-282017-5-28JJF1623-2017热式气体质量流量计型式评价大纲2017-2-282017-5-28JJF1624-2017数字称重显示器(称重指示器)型式评价大纲2017-2-282017-5-28JJF1625-2017数字式气压计型式评价大纲2017-2-282017-5-28JJG147-2017标准金属布氏硬度块检定规程2017-2-282017-8-28代替JJG147-2005JJG2064-2017气体流量计量器具检定系统表2017-2-282017-8-28代替JJG2064-1990
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 赛默飞离子色谱助力锂离子电池品质提升
    赛默飞离子色谱助力锂离子电池品质提升关注我们,更多干货和惊喜好礼您是否留意到,有一样东西,没有它就没有智能手机和平板电脑,没有它也没有重生的苹果及现在的小米,没有它您也享受不到微信带来的各种便利,当然您更不能坐在舒适、安静及环保的新能源汽车里环游世界,这都是锂电池的功劳。不管您是生活在繁华的大都市还是宁静的小乡村,它影响着我们工作和生活的方方面面。锂电池是1912年由Gilbert N. Lewis早提出并研究,1991年索尼公司商品化了锂离子电池,2019年诺贝尔化学奖颁给了约翰B古迪纳夫等三人,以表彰他们在锂电领域做出的贡献。我国也非常重视锂电产业,近几年出台多部政策鼓励新能源汽车的发展,在政策的推动下,中国锂电产业规模迅猛增长。2018年,中国锂电产业规模约占产业规模的41%,跃居首位,且持续高速增长,据专家预测到2025年,我国锂电产业规模将超过6000亿元,市场前景广阔。锂离子电池的四大关键材料为正极、负极、电解液及隔膜,其中电解液在电池正负极之间进行离子和离子化合物的传输,它的含量和性能直接决定了电池的电导率、容量和输出电压,因此电解液中不同锂盐含量和配比直接影响电池的性能,故锂盐含量的监控就变得尤为重要。 赛默飞解决方案赛默飞Integrion高压离子色谱仪可助您轻松实现锂盐监控,若您选择小粒径柱,分析速度能让您有点小激动。 Thermo Scientific™ 图 常见6种锂盐快速分离色谱图(点击查看大图)Thermo Scientific™ Dionex™ Integrion 高压离子色谱仪图 碳酸酯溶剂在线去除系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析电解液中锂盐具有以下特点:仪器高耐压可达6000psi(PEEK材质),兼容小粒径色谱柱;分析效率高,15min内可完成常规锂盐的分析;柱容量高,分离度好,目标物之间无相互干扰,定量结果准确可靠;选配在线处理系统,兼容碳酸酯溶剂直接进样,无需担心样品水解。赛默飞离子色谱交流群飞飞Hi 老兄,新买的新能源汽车充满电放几天就没电了,咋回事呢?赛老师是电池里的杂质离子引起的“自放电”。飞飞杂质离子来自哪呢?赛老师电解液中碳酸酯和锂盐、正极和负极材料、隔膜和阻燃剂等都能引入杂质离子,即使ppb级别的杂质离子都能影响电池性能。飞飞什么手段能监控ppb级别的杂质离子呢?赛老师赛默飞家的Integrion离子色谱可以助您轻松实现ppb级别杂质离子准确定量,并且配备“只加水”特色技术,省去您配淋洗液的麻烦。图 电解液中常见杂质阴离子分离图谱(点击查看大图)图 “只加水”离子色谱仪原理图(点击查看大图)图 淋洗液自动发生器(Eluent Generator,EG)原理图(点击查看大图)图 在线浓缩、中和、去除重金属离子及疏水性化合物系统(点击查看大图) 滑动查看更多 赛默飞-Integrion高压离子色谱分析锂离子电池材料杂质离子特点:配备“只加水”技术,可帮您消除每次配制淋洗液的烦恼;多步高压梯度,多组分同时分析时,可兼顾分离度及分析效率;OH体系灵敏度优于碳酸体系,适用于痕量杂质分析;淋洗液和再生液通道完全隔离的微膜抑制器,无交叉污染;可满足电解液碳酸酯溶剂及锂盐、正极和负极材料、隔膜、阻燃剂及粘胶中ppb级别杂质离子监控;可满足标准GB/T 24533-2019及GB/T 18282-2014的要求;选配在线处理系统,实现样品在线浓缩、中和、去除重金属离子及疏水性化合物。赛默飞为电池研发者提供了离子与质谱联用方案,为电池充放电过程中副反应产物定性、为活性物质降解机理提供监控方案,助力研发者掌握电池内部化学变化规律,为我们提供更高性能的电池。图 六氟磷酸锂降解机理途径研究图 电解抑制器原理图(点击查看大图)图 离子色谱串联质谱(IC-MS/MS)(点击查看大图) 滑动查看更多 赛默飞离子色谱与质谱联用特点:Chromeleon变色龙统一操作软件,可实现离子色谱与质谱的同时控制;联用接口——在线电解抑制器,持续稳定的在线脱盐,无需修改IC分离方法,完美对接质谱;质谱检测器平台提供单杆质谱、三重四极杆质谱以及高分辨质谱等完整质谱选项;可助您探索电池充放电过程内部化学变化的奥妙。 总结从电解液中锂盐含量的监控,到电池材料杂质离子检测,再到电池内部物质转化的研究,赛默飞离子色谱均能为您提供优质的解决方案。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制