当前位置: 仪器信息网 > 行业主题 > >

温度校准仪工作原理

仪器信息网温度校准仪工作原理专题为您提供2024年最新温度校准仪工作原理价格报价、厂家品牌的相关信息, 包括温度校准仪工作原理参数、型号等,不管是国产,还是进口品牌的温度校准仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温度校准仪工作原理相关的耗材配件、试剂标物,还有温度校准仪工作原理相关的最新资讯、资料,以及温度校准仪工作原理相关的解决方案。

温度校准仪工作原理相关的资讯

  • 制药行业温度校准方案(一) | 安装于工艺设备卫生型温度传感器校准
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发-生产-包装-运输-存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测大都由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,盈利变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关制药行业温度校准方案(一)安装于工艺设备卫生型温度传感器校准解决方案:RTC-156B 超级标准体炉配短支校准套件✔ 专业套件:定制套管保证与卫生型卡盘传感器充分热平衡,补偿热损失,外接参考传感器与被检传感器位置保持一致,精准控温。✔ 洁净 无液体介质,不易污染探头,尤其适用于对探头洁净度有严格标准的企业 。✔ 性能: 双区加热配合 DLC 动态负载补偿 ,保证垂直温场均匀稳定,不受被检传感器 插入深度影响 。✔ 便携 干体炉 便于携带至 现场 ,可以 进行 全回路校准,减少分离回路校准的附加误差 。✔ 安全: 无液体挥发,不会对操作人员健康产生危害,也不会污染实验室工作空间✔ 快捷: 升降温速度远快于 液槽,成倍提高 工作效率关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,干体炉的发明者,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 我国首部《温度数据采集仪校准规范》颁布
    近日,国家质检总局发布了《温度数据采集仪校准规范》,对温度数据采集仪的校准设备、校准方法等进行了统一规定。这部校准规范将从2013年1月8日开始正式实施,届此,我国广泛使用的各类温度数据采集仪将拥有统一的性能评价方法,并有望建立起完善的量值溯源体系,实现温度数据采集仪温度测量的准确、可靠。   按照该规范的规定,温度数据采集仪就是可直接置于被测环境中进行测量,具有自动采集被测温度信号、数据存储、记录、通讯等功能的温度测量仪表。该规范的主要起草人、浙江省计量院高级工程师沈才忠介绍,温度数据采集仪包括冷链温度记录仪、灭菌温度记录仪、环境温度记录仪以及炉温跟踪记录仪等,应用领域非常广泛。  以冷链温度记录仪为例,这类温度数据采集仪主要用于农产品、水产品以及药品、疫苗、血液等冷藏、冷冻运输中的温度监测,即用于冷链温度的监测。“现在,基于物联网技术的现代冷链物流技术蓬勃发展,其中,冷链温度监控系统至关重要。为冷藏、冷冻、保鲜产品的全过程控制提供技术保证的核心就是冷链温度记录仪,它的运用可有效保证农产品、水产品以及药品、疫苗、血液的保鲜度,使产品质量在运输、储存过程中得到有效保证。”沈才忠强调,整个冷链物流系统的运转都要以实时的温度监控为基础,所以必须保证温度数据采集仪的计量准确。  在食品、药品生产以及疾病诊疗中用以消杀毒、灭菌温度监测的灭菌温度记录仪也是被广泛使用的一类温度数据采集仪。封闭式的灭菌温度记录仪可以置于消毒、杀毒物品内部,也可投入到需要灭菌的液体或流质之中,以监测、验证消杀毒、灭菌温度是否达到了规定要求,从而保证药品、食品生产的灭菌工序控制能够按照工艺要求进行,以保证药品、食品的安全。  沈才忠还介绍了另两类温度数据采集仪:环境温度记录仪和炉温跟踪记录仪。环境温度记录仪主要用于冷库、仓库、实验室等空间的温度监测,确保需要冷藏储存的物品得到有效保存,实验室环境符合实验要求,使各类科学实验能够正确实施。当需要对环境温度进行连续监控时,环境温度记录仪可实现最小记录间隔为1秒的数据测量,保证监控的连续性和有效性。环境温度记录仪还主要用于育种、育苗的温度监测。在高效生态农业中,可连续监测农作物种苗的生长环境,实现高产稳产,并且帮助农作物新品种的研究 在人工繁殖、养殖中,可监控繁殖、养殖温度,促进养殖、繁殖的顺利进行。炉温跟踪记录仪主要用于工业生产过程中有关工艺过程的温度验证。如玻璃窑炉温度、热处理炉温度、电子产品老化温度、电子线路板贴焊温度的监测、验证等等,以确保工业产品的温度处理工艺符合要求,保证产品质量。  “温度数据采集仪的应用如此广泛,而且很多是涉及人们的食品、药品安全领域,但以前,我国却没有统一的校准设备和校准方法,导致采集仪的计量性能无法得到保证。”沈才忠说,很多温度数据采集仪的使用者对采集仪需要定期校准才能保证计量准确这一点认识不够,他们往往不会主动送检。而温度数据采集仪的量值溯源方法也各不相同,评价标准不一致,导致采集仪应用的通用性、互换性受到限制,阻碍了它的进一步发展。因此,需要制定温度数据采集仪的校准规范,以统一该类测量仪表的性能评价方法,完善温度计量的量值溯源体系,确保温度数据采集仪计量性能的准确可靠。  规范提出,“本规范适用于内置传感器、测量范围为(-50~ 150)℃以及外置传感器、测量范围为(-80~ 500)℃的温度数据采集仪的校准。”规范还对校准设备、校准项目、校准方法都做出规定。同时,规范还建议,为了确保采集仪在其规定的技术性能下使用,复校时间间隔最长不应超过1年。
  • 如何实现超短支温度传感器校准?
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发、生产、包装、运输、存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测系统由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,应力变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关如何实现超短支温度传感器校准?解决方案:RTC-158B 干体-液槽两用温度校准仪配特殊专用套管✔ 干湿两用:干体炉-微型液槽均可使用,对于插入深度小于30mm的传感器可选择液槽。✔ 温场直径大:特殊设计的专用恒温块可匹配超短或异形传感器,即使是卡盘超短卫生型传感器也可使用 。✔ 性能: D LC 动态负载补偿 及外部参考控温,保证垂直温场均匀稳定,控温准确。✔ 快捷: 升降温速度远快于传统液槽,成倍提高工作效率。关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,AMETEK JOFRA生产和销售干体炉有三十多年历史,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 差示扫描量热仪温度如何校准呢?
    dì一篇 简要描述   差示扫描量热仪的差热分析法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域,是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要仪器。第二篇 标定物的选择   不定期的进行温度校正,以保证测试准确度。根据样品的实际测试温度,选择标定物。标定物选择的原则:标定物的外推温度与样品待测项目的温度要比较接近,以保证测试的准确性。  下表为常用标定物的熔点及理论热焓数值。标准物质理论熔点℃理论熔融热焓J/g铟In156.628.6锡Xi231.960.5锌Zn419.5107.5一、测试仪器:久滨仪器2020年升级款JB-DSC-600差示扫描量热仪第三篇 温度校准操作步骤1、打开电脑,将仪器数据线与电脑连接,插上仪器电源,打开仪器背面的开关打开软件,点击菜单栏中设备信息—管理员通道—456进入—输入理论和测量值—保存2、关机重启、重新打开软件、仪器,连接成功后再次测量锡的熔点值,若实际测量的温度若不在231.9±1℃范围内,重复上述操作,直到锡的熔点值在231.9±1℃范围内为止。第四篇 技术参数温度范围室温~600℃温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min任意可选控温方式升温、恒温、降温(PID温度调节)DSC量程0~±600mW自动切换DSC灵敏度0.01mg恒温时间建议<24h气体控制氮气、氧气(仪器自动切换)气体流量0~300ml/min显示方式24bit色,7寸大屏幕液晶显示参数标准配有标准校准物(锡),带一键校准功能,用户可自行对温度进行校准电源AC 220V 50HZ或定制软件软件可以设置数据采集频率,适应各分辨率电脑屏幕;支持笔记本,台式机,支持WIN2000、XP、WIN7、WIN8、WIN10等操作系统,可以导出EXECL数据包、PDF报告
  • 全国温度技术委员会关于《微波消解仪温度参数校准规范》征求意见函
    各位专家:2021 年 7 月全国温度计量技术委员会向中国计量科学研究院下达了“微波消解仪温度参数校准规范”的制定任务,计划任务书为国家市场监督管理总局市监计量发 [2021] 50 号,完成时间为 2022 年四季度。请您在百忙之中审阅或组织有关专业技术人员讨论,提出修改意见,并按征求意见表要求反馈给起草人或专业委员会秘书处。附件:《微波消解仪温度参数校准规范》征求意见稿、编写说明及征求意见表 全国温度计量技术委员会秘书处2022年5月18日
  • ​《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范拟立项公示
    根据计量工作的总体安排,现将2022年申请立项的《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范计划项目(附件1)和项目建议书(附件2)予以公示,截止日期为2022年4月10日。如对上述申请立项的行业计量技术规范项目有不同意见,请在公示期间填写《行业计量技术规范立项反馈意见表》(附件3)并反馈至工业和信息化部科技司,电子邮件发送至wangjianhao@miit.gov.cn(邮件主题注明:计量技术规范立项公示反馈)。地址:北京市西长安街13号 工业和信息化部科技司邮编:100804联系方式: 010-64102953 010-68205243 联系人:黄雪吟 王建豪 公示时间:2022年3月11日-2022年4月10日附件1:《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范制计划项目.pdf附件2:《粉尘层最低着火温度测定仪校准规范》等142项行业计量技术规范计划项目建议书.zip附件3:行业计量技术规范立项反馈意见表.pdf工业和信息化部科技司2022年3月11日
  • AMETEK 推出全新 RTC-168 干液两用温度校准炉
    RTC-158是AMETEK校准仪器上一代干液两用温度校准炉,因其便携、快速升降温、大腔体等优点,在制药,食品、计量、电力以及气象等行业被广泛应用,并深受好评。针对制药、食品和饮料行业广泛使用的卫生传感器校准,技术人员必须将传感元件放置在温度校准器的均匀温场区域,然而,由于卫生级传感器的长度较小或传感器上方的法兰较大,因此传感器元件往往很难放入要求的温场区域;同时针对电力行业主变温度控制器的校准,原先的RTC-158不能完全满足温度范围的要求。针对以上困难,AMETEK STC 与客户进行密切合作,了解其需求,现在推出 RTC-168 干液两用温度校准炉以及相关的解决方案,解决用户痛点。RTC-168干液两用温度校准炉 :RTC-168 VS RTC-158✔ 温度范围扩展:RTC-168扩展到 -30~165℃✔ 更快的升降温时间,其中-30至165℃升温时间为24分钟,RTC-158的-22~155℃则需要60分钟,效率提升了一倍以上;✔ 增加了新的附件--液体容器,使干液模式切换更简便,配合带有泄压阀的保护盖,易于运输;✔ 推出新的恒温套管适配器,兼容使用RTC-156的恒温套管,可以减少设备的投资;✔ 可以校准大法兰的卫生型传感器,最大可达84mm;✔ 新的控温技术显著提高了轴向温场均匀性,在80mm轴向温度偏差优于 ±0.03℃;✔ 新设计的磁性搅拌装置以及软起动方式,有效防止搅拌棒脱落,以及获得更高的搅拌效率;✔ 新的IP68防护等级的外置参考传感器。液体容器及带泄压阀的保护盖恒温套管适配器RTC-168 干液两用温度校准炉的应用✅ 卫生型传感器(干体及液槽模式)。✅ 压力式温度计及温度开关。✅ 标准直杆传感器。✅ PH计和电导率计温度部分。✅ 同时校准多支温度传感器。✅ 校准粗大的温度传感器。卫生型传感器 压力式温度计(开关)PH计关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,引领干体炉校准技术近40年,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 福禄克携5款温度、压力、电学计量校准产品亮相世界传感器大会
    仪器信息网讯 8月23日,为期三天的2022世界传感器大会在郑州国际会展中心完美落幕,此次传感器大会由中华人民共和国工业和信息化部、中国科学技术协会与河南省人民政府主办,郑州市人民政府、河南省工业和信息化厅、河南省科学技术协会、中国仪器仪表学会承办。福禄克(FLUKE)展位本次世界传感器大会,众多知名传感器公司携新品和主推产品参展,同时也吸引了多家仪器企业参加,福禄克(FLUKE)公司也携一系列计量校准产品亮相。据了解,福禄克早在2000年就收购了Wavetek Wandell Goltermann的精密测量部门,从而稳固了其在电气校准市场内已经获得的地位。近几年,福禄克公司又先后收购了以温度计量和校准著称的 HART公司,以及以压力计量和校准而著称的DHI公司,从而使福禄克公司的计量和校准技术和产品覆盖了电学、温度以及压力,成为全面提供计量和校准产品的仪器仪表公司。1586A高精度多路测温仪(下)和外置接线模块(上)1586A高精度多路测温仪可以扫描测量并记录直至40通道的直流电压和电流,电阻,扫描速度可达每秒10个通道。1586A可以配置为多通道的记录仪在现场使用,也可以配置为参考温度计连接方式用于实验室的温度传感器校准。1586A高精度多路测温仪可满足制药,生物,食品,航空航天以及汽车行业的大量的温度分布,传感器校准,温度测量的应用。2271A工业压力校准器这款仪器兼容两个不同精度级别的模块。PM200模块为大部分量程提供 0.02% FS。PM500模块提供0.01%的读数不确定度,确保2271A可用于测试或校准更高精度的变送器和数字仪表。2271A的压力量程达到-100 kPa至20MPa(-15 psi至3000psi),满足较宽范围的压力计和传感器需求。仪器内置支持HART功能的电学测量模块(EMM),因此能够对4-20 mA设备(例如,智能变送器、压力计和开关)进行闭环、全自动校准。此外,该仪器顶部的双测试端口可安装两台被测设备(DUT),提升工作效率。9173高精度干式计量炉干井炉是早期最传统的现场热源。而福禄克最早开发的干式计量炉,其不确定度要远远小于干井炉的不确定度。不确定度越低,客户就越有能力校准准确度更高的传感器。干式计量炉提供了接近恒温槽的性能,但是却不需要昂贵的恒温槽液体。干式计量炉达到预定温度点并且稳定的时间比恒温槽快5到10倍,这样即可节省技术人员的工作时间,提高检定速度。干式计量炉的便携性使其能够到现场进行校准的工作,从而解决了恒温槽在运输上的困难。而此次参展的福禄克9173高精度干式计量炉采用了双段控温技术。传统的炉子在轴向(垂直方向)的温度场很难做到均匀,越接近炉口温度变化就越大。所谓双段控温就是在垂直方向上使用上下两层双路控温的方式,这种新型的模拟和数字控制技术提供了高达±0.005 C的稳定性。而且利用两段控温技术,轴向(垂直方向)的均匀性在60 mm区域内可达到±0.02 ℃。7109A便携式恒温槽在制药、生物科技和食品生产等行业,过程制造工厂大量使用卫生型温度传感器,这些传感器需要定期校准,在校准时必须停止生产。因此,校准效率越高意味着工厂停工时间越短。此外,在有些生产过程中,0.1摄氏度的误差就会造成严重成本损失,温度准确度对于保证质量至关重要。而本次展出的这款7109A便携式校准恒温槽与市面上许多恒温槽相比,系统准确度提高了两倍,能在更短的时间内校准更多的卫生型传感器,工作效率提高四倍。用户可以将4支卡箍式卫生型传感器同时置于恒温槽中进行校准,温度显示准确度达±0.1°C。对于小法兰或没有法兰的卫生型热电阻,校准效率甚至更高。7109A恒温槽覆盖温度范围可达-25°C至140°C,内置测温仪直接用于连接外部参考探头以及被校温度探头。8588A八位半数字多用表8588A是一款八位半数字化标准多用表,专门为校准实验室量身打造,拥有直观的用户界面和彩色屏幕和超过12项的测量功能,包括新增的数字化电压、数字化电流、电容、射频(RF)功率,以及用于交/直流电流的外部分流器,帮助用户将实验室级别的系统测试成本统一整合到单台测量仪器中。8588A拥有1年期直流电压准确度(2.7μV/V@95%置信区间,或3.5μV/V@99%置信区间)和最佳的24小时稳定度(0.5 μV/V@95%置信区间,或0.65 μV/V @99%置信区间),使其能够傲视市场上其他标准数字多用表。8588A还能够在短短1秒内产生稳定的八位半读数,进一步提高速度覆盖范围。
  • 美国Q-lab创新性万能校准仪
    【翁开尔是美国Q-LAB一级指定代理商,40年专业代理美国Q-LAB系列产品】美国Q-LAB万能校准仪Universal CalibratorUC(Universal Calibrator)万能辐照度校准仪是一款创新的产品,适用于所有Q-lab公司耐候试验箱产品,如QUV,Q-SUN。UC(Universal Calibrator)万能校准仪美国Q-lab公司推出全新的通用辐照度校准仪,一种新型手持设备, 能用于校准所有 Q-Lab老化试验箱的温度和辐照度。与其他方法相比,UC万能校准仪的"智能传感器 "具有廉价、模块化和可抛弃的特点,大大简化了校准和降低了用户的使用成本。如果您需要做更多的测试标准,只购买一个UC和光过滤片就可以啦~工作原理UC万能辐照度校准仪被设计用于校准任何集成有SOARY EYE辐照度校准功能的QUV紫外老化试验箱或者Q-SUN氙灯老化试验箱产品。其本身携带了一个手持式的触摸屏以及各种传感器,内置的电池可用于在未接电情况下记录各种数据。独立的辐照度传感器和温度传感器在使用时可自动识别辐照度或者温度,并且自动进行校准。特点优势1. 独立的手持触屏显示器 (UC1) 使用第7代TFT彩色触摸屏;2. 模块化的辐照度和温度智能传感器将总的使用成本降至最低;3. 独立的辐照度智能传感器 (340 nm、420 nm 或 TUV) 可以校准多种 (UV) 滤光片配置;4. 当需要更换 (或重新校准) 智能传感器时,会在屏幕上进行提醒;5. 价格优廉的智能传感器在过了有效期后,用户可以选择更换或重新校准;6. 八种语言可供选择: 英语、西班牙语、德语、法语、意大利语、中文、韩语和日语;【翁开尔是美国Q-LAB一级指定代理商,40年专业代理美国Q-LAB系列产品】,请联系我们
  • 中国环境监测总站顺利完成数字式温湿度计计量建标与试校准工作
    近日,中国环境监测总站(以下简称总站)建立了生态环境部最高的二等铂电阻温度计量标准装置(2022国量标环境证字第006号)和精密露点仪湿度计量标准装置(2022国量标环境证字第007号),并正式启动环境空气数字式温湿度计的校准工作。温湿度计量标准考核证书 环境空气温湿度的精准测量与精准控制通过影响PM10和PM2.5的动态加热系统影响其监测结果,保障环境温湿度的测量准确是保障PM10和PM2.5的监测准确与量值统一的重要前提。总站建立的二等铂电阻温度计量标准装置其测量范围为(-40-150)℃,不确定度为±0.1℃;精密露点仪计量标准装置的测量范围为(5-95)%RH ,不确定度为±1.0%RH,满足《数字式温湿度计校准规范》(JJF 1076-2020)和《计量标准考核规范》(JJF 1033-2016)要求。目前计量中心已完成数字温湿度计的试校准工作,通过了与中国计量院的计量比对,保证数字温湿度计校准结果的准确可比。在此基础上,已经完成了部分国控网运维、检查单位数字温湿度计的校准工作,并出具了试校准证书,能够从量值源头有效保障PM10和PM2.5动态加热系统的测量准确。温湿度计试校准证书
  • 明华电子发布明华MH4031型 全自动流量/压力校准仪新品
    MH4031型全自动流量/压力校准仪(以下简称校准仪)采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。 校准器内置自动校准协议,仅需一根数据线就可实现流量全自动校准的功能,如本公司生产的MH1200系列采样器,后续会陆续开放本公司MH1205恒温恒流大气颗粒物采样器和MH3300型烟气烟尘颗粒物浓度测试仪的自动校准功能,校准器同时也开放外部接口协议,其他公司生产的采样器若采用该协议,亦可实现流量的全自动校准。执 行 标 准HJ/T 368-2007《标定总悬浮颗粒物采样器用的孔口流量计》主 要 特 点功耗低,噪音小,重量轻,超小型化设计,结构紧凑,外形美观,携带方便;多路大范围流量校准,包括两路(10~300)mL/min,两路(0.3~3)L/min,一路(5~130)L/min,一路(200~1200)L/min;大范围自动加压,微压:(0~4000)Pa,表压:(-30.00~+30.00)Kpa;常用PT100烟温标定(包括0℃、80℃、100℃、120℃、200℃以及500℃);孔板集成于仪器内部,在进行流量校准时,不需要频繁的更换孔板;超大7寸触摸电容屏,触感更优,简单明了的界面风格,操作简单易学;内置电池,可供仪器连续工作4小时以上。应 用 领 域环境监测及环境评价卫生防疫及劳动安全科研院所采样分析大专院所教学仪器创新点:与同类产品相比,MH4031型全自动流量/压力校准仪采用孔口流量测量原理,内置高精度压力传感器。一机多用,可用于VOCs采样器、大气采样器、中流量环境空气颗粒物采样器、便携式烟尘采样器的流量校准,微压、表压的校准以及PT100部分温度的标定。而且本仪器体积小,便于携带。明华MH4031型 全自动流量/压力校准仪
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 气相分子吸收光谱仪的计量校准方法
    p  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"建立一种科学合理且可操作性强的气相分子吸收光谱仪校准方法。从仪器的工作原理及结构入手,对该类仪器提出了检出限、线性相关系数、定量重复性等性能评价参数。利用国家相关标准物质对其检出限的测量不确定度进行了评定,统一了校准方法,有力地保证了测量数据的准确性、溯源性。对计量技术机构开展该类仪器的校准工作规范的制定有一定的指导意义。/span/pp  气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段,利用基态的气体分子吸收特定紫外光谱进行定量的一种测量方法。在水质监测领域中,主要是对水中亚硝酸盐氮、硝酸盐氮、总氮、硫化物、氨氮等物质的测量,通过在特定的分析条件下,将待测成分转变成气体分子载入测量系统,测定其特征光谱吸收[1–3]。这种分析技术在国内发展逐渐成熟,已有不少报道和国家标准的发布[4–7]。/pp  气相分子吸收光谱仪的技术性能优劣直接影响测量的准确性,但是至今国家还没有气相分子吸收光谱仪的校准规范。笔者通过开展对气相分子吸收光谱仪校准方法的研究,将测量数据进行量值溯源,并对仪器检出限进行不确定度的评定,保证测量数据的量值溯源与传递的唯一性,为各类标准和方法的制定提供技术保障。/pp  1.气相分子吸收光谱仪工作原理及特点/pp  气相分子吸收光谱仪是基于被测成分转变成气体分子对特定波长的辐射光具有选择性吸收,且光的吸收强度与被测成分浓度的关系遵守朗伯–比耳定律从而实现对待测成分进行定量分析的仪器。气相分子吸收光谱仪主要由光学系统、进样系统、在线加热及反应分离器系统、检测系统组成,具有分析速度快、抗干扰能力强、自动化程度高、测量范围宽等特点。/pp  2.校准用主要仪器与试剂/pp  气相分子吸收光谱仪:GMA3202C,上海北裕分析仪器有限公司 /pp  盐酸溶液:4.5mol/L,取81mL盐酸,注入200mL水中,摇匀 /pp  柠檬酸溶液:0.3mol/L,称取64g柠檬酸,溶解于水,转移至1000mL容量瓶中定容,摇匀 /pp  磷酸:10%水溶液 /pp  过氧化氢:30% /pp  实验所用试剂均为分析纯 /pp  实验用水为高纯水 /pp  校准物质:选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,各标准物质信息见表1。/pp  /pp style="TEXT-ALIGN: center"img title="01.png" src="http://img1.17img.cn/17img/images/201807/insimg/01ea0712-b51b-4afa-a85d-f49f59c1a166.jpg"/ /pp  3.校准条件/pp  3.1环境条件/pp  环境温度:15~35℃ 环境相对湿度:≤85%。/pp  室内不得存放与实验无关的易燃、易爆和强腐蚀性的物质,无强烈的机械振动和电磁干扰。/pp  3.2仪器安装及工作条件/pp  仪器:气相分子吸收光谱仪应平稳而牢固地安置在工作台上,电缆线接插件紧密配合,接地良好。/pp  工作条件:针对3种不同的标准物质及不同系列的仪器,按照国家相关标准[8–10]和仪器操作手册进行优化设定,参考工作条件如表2所示。/pp  /pp style="TEXT-ALIGN: center"img title="02.png" src="http://img1.17img.cn/17img/images/201807/noimg/13cf2d6f-2ccc-4f44-ae6b-1ebda5617034.jpg"//pp  4.校准项目和校准方法/pp  每次测定之前,将反应瓶盖插入装有约5mL水的清洗瓶中,通入载气,净化测量系统,调整仪器零点。测定后,水洗反应瓶盖和砂芯。/pp  参考国家标准及测量仪器特性评定方法[8–11],根据仪器的基本性能及以往的校准经验,选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,初定被校仪器的主要计量性能应满足表3的推荐值。/pp /pp /pp style="TEXT-ALIGN: center"img title="03.png" src="http://img1.17img.cn/17img/images/201807/noimg/34d662bd-2657-4cff-bd09-b38fed491846.jpg"//pp  4.1检出限/pp  将仪器各参数调至最佳工作状态,并把标准溶液配制成0,0.5,1,2,5mg/L系列标准使用液。对每一浓度点分别进行3次重复测定,取3次测定的平均值,按线性回归法求出工作曲线的斜率。连续做11次空白样,并计算所得值的实验标准偏差。/pp  检出限按式(1)计算:/pp  cL=3s/b(1)/pp  式中:b——工作曲线的斜率 /pp  s——空白样测定值的标准偏差,mg/L /pp  cL——测量检出限,mg/L。/pp  4.2校准曲线绘制/pp  4.2.1亚硝酸盐氮的测定/pp  用微量移液器逐个移取0,12.5,25,50,125μL亚硝酸盐氮标准溶液于样品反应瓶中,加水至2.5mL,再加2.5mL柠檬酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的亚硝酸盐氮的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.2硫化物的测定/pp  用微量移液器逐个移取0,25,50,100,250μL硫化物标准溶液于样品反应瓶中,加水至5mL,加2滴过氧化氢。将反应瓶盖与样品反应瓶密闭,再加入5mL磷酸,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的硫化物的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.3氨氮的测定/pp  用微量移液器逐个移取0,10,20,40,100μL氨氮标准溶液置于样品反应瓶中,加水至2mL,再加3mL盐酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的氨氮的质量浓度/pp  x(mg/L)绘制校准曲线y=a+bx,并计算相关系数。/pp  4.3定量重复性/pp  将仪器参数调至最佳工作状态,选取分析物的工作曲线中2mg/L的浓度点,重复测量6次。按式(2)计算测得值的相对标准偏差(RSD),即为该物质的仪器定量重复性。/pp  /pp style="TEXT-ALIGN: center"img title="04.png" src="http://img1.17img.cn/17img/images/201807/noimg/189ec940-56dc-40fa-8903-39f43c437e82.jpg"/ /pp  5.不确定度评定/pp  气相分子吸收光谱仪性能的重要指标为检出限,但是其针对其检出限的测量结果不确定度评定84化学分析计量2014年,第23卷,第3期却鲜有报道。笔者依据《实用测量不确定度评定》要求,利用国家相关标准物质,对仪器检出限并进行了不确定度评定,为从事仪器检出限性能比对的技术人员提供参考。/pp  5.1实验数据/pp  3种标准物质的实验数据列于表4、表5。/pp style="TEXT-ALIGN: center"img title="05.png" src="http://img1.17img.cn/17img/images/201807/noimg/f613da10-63cb-41ce-9ece-30dcc8392398.jpg"//pp  5.2不确定度评定/pp  仪器检出限的测量不确定度uc主要由重复性测量、标准曲线引入的不确定度分量构成。下面以测量亚硝酸盐氮检出限为例来进行不确定度评定。/pp  5.2.1重复性测量引入的标准不确定度u(s)/pp  输入量s为亚硝酸盐氮11次空白溶液的标准偏差,故测量平均值的不确定度:/pp  /pp style="TEXT-ALIGN: center"img title="06.png" src="http://img1.17img.cn/17img/images/201807/noimg/e0a734fb-d213-47ef-b70d-aed76db1a14c.jpg"//pp /pp /pp  5.2.2校准曲线引入的标准不确定度u(b)/pp  校准曲线引入的标准不确定度主要来自标准溶液质量浓度定值引入的标准不确定度u1、校准曲线斜率引入的标准不确定度u2。/pp  /pp style="TEXT-ALIGN: center"img title="07.png" src="http://img1.17img.cn/17img/images/201807/noimg/e38c30d1-0393-4f5a-8928-94cec66d0e19.jpg"//pp /pp /pp  式中2%为标准物质的定值不确定度。/pp  /pp style="TEXT-ALIGN: center"img title="08.png" src="http://img1.17img.cn/17img/images/201807/noimg/65345203-b8e4-4538-a1ef-8560756db3d9.jpg"/ /pp  5.2.3合成标准不确定度的评定/pp  由式(2)求得s的灵敏度系数:/pp  c1=3/b=3/0.0625=48(mg/L)/pp  同样斜率b的灵敏度系数:/pp  c2=–3s/b2=–0.0819(mg/L)/pp  根据式(2)求得检出限测量的不确定度:/pp style="TEXT-ALIGN: center"img title="09.png" src="http://img1.17img.cn/17img/images/201807/noimg/4afd3e68-846d-4d49-beae-fbc37134e19c.jpg"//pp  5.2.4扩展不确定度的评定/pp  取k=2,从而求得测量亚硝酸盐氮检出限的扩展不确定度:/pp  U=kuc=2× 0.0032=0.0064(mg/L)/pp  参照测量亚硝酸盐氮检出限的不确定度评定,求得测量硫化物、氨氮二种标物检出限的测量结果不确定度,结果见表6。/pp style="TEXT-ALIGN: center"img title="10.png" src="http://img1.17img.cn/17img/images/201807/noimg/2a35f1b7-cc9a-4ce5-a653-ff41734cb469.jpg"//pp  6结语/pp  结合仪器的工作原理,提出了仪器的校准方法,并通过建立数学模型对仪器检出限进行了合理的不确定度评定,为今后气相分子吸收光谱仪的校准提供了技术参考。建议气相分子吸收光谱仪的校准周期为1年,首次使用前和维修后均应进行校准,以确保水质监测数据的准确、可靠。/pp  参考文献/pp  [1]方肇伦.流动注射分析法[M].北京:科学出版社,1999./pp  [2]臧平安.气相分子吸收光谱法简介[J].光谱仪器与分析,2000(1):1–4./pp  [3]孙成业.气相分子吸收光谱分析法及仪器的应用[J].现代仪器,2002(3):17–20./pp  [4]严静芬.水样中氨氮测定方法比较[J].广州化工,2008,36(2):55–57./pp  [5]臧平安.气相分子吸收光谱分析法测定亚硝酸根离子的研究[J].分析化学,1991,19(2):1364–1367./pp  [6]臧平安.气相分子吸收光谱分析法测定水中硫化物[J].宝钢检测,1997(4):33./pp  [7]国家环境保护总局.《水和废水监测分析方法》[M].4版.北京:中国环境科学出版社,2002./pp  [8]HJ/T195–2005水质氨氮的测定气相分子吸收光谱法[S]./pp  [9]HJ/T197–2005水质亚硝酸盐氮的测定气相分子吸收光谱法[S]./pp  [10]HJ/T200–2005水质硫化物的测定气相分子吸收光谱法[S]./pp  [11]JJF1094–2002测量仪器特性评定[S]./pp style="TEXT-ALIGN: right"  施江焕,李蓓蓓/pp style="TEXT-ALIGN: right"  (宁波市计量测试研究院,浙江宁波315103)/p
  • “你真的了解电子天平吗?”之三——大有讲究的“校准”术
    前情回顾在本系列上一期关于电子天平水平调节的分享中,小编主要针对水平调节的必要性、原理、以及调节方法等方面进行了详细的梳理和通俗易懂的阐述,特别是就容易搞错的调节规则与手法为大家总结了详细的法则,相信小编手把手式的经验传授应该能为大家的实际操作起到实质性的帮助吧。水平调节的话题告一段落,本期小编将搬上天平的前期准备工作中最重要也是最有讲究的一环——校准,那么在天平的校准中,又有哪些值得关注的点呢? 老司机也难免会混淆的微妙概念 早在中学物理课本里,我们就学过物体的重量G=mg(m为物体的质量,g为重力加速度),对于同一个物体,无论把它放置在地球上的任一位置,它的质量都是不会发生变化的。然而,重力加速度g的值在地球上的不同地方是会有微小差异的,因此同一物体在不同地方的重量是不相同的。而电子天平则是采用电磁力与被测物体的重力相平衡的原理来测量物体的重量,并经过内部程序计算和显示出物体的质量,这与托盘天平的称量原理是不同的,所以就会出现同一台电子天平在不同地方称量同一个物体会显示不同的质量结果。此外,诸如温度、湿度等环境因素也会影响电子天平的传感器,导致称量结果的误差。 为了避免不确定因素带来的不良影响,就需要在使用电子天平之前进行校准,并在使用周期中进行定期的校准,特别是在对称量结果准确度和精确度敏感的应用中。校准(Calibration),是通过一组称量活动,来检测天平的各项计量性能,包括误差和不确定度的分析等。作为一种良好的称量习惯,校准能够有效地保证称量的可靠性。通过校准,能够检测出天平的工作性能,避免物料浪费、返工、过渡使用后的产品召回,定期校准并执行日常测试是降低相关风险的最佳方法。 然而,对于一字之差的“校正”,含义却有微妙的差别。校正(Adjustment),又称标定,是在测量系统中进行的一组操作,提供与将要测量的数量的给定值一致的规定指示。天平在投入使用前、工作一段时间以后、或者变更位置后,都需要进行校正,以消除重力加速度、环境干扰因素等导致的称量误差。通常,需要使用高精度的标准砝码来对天平进行量程校正。综上所述,通过定期的校准和校正,可以减少天平的称量误差,并且对天平的计量性能有一个全面的把握,确保称量结果满足实验和生产的要求。 在日常工作中,大家往往比较容易混淆“校准”和“校正”的概念,对于这种严格意义上微妙差别,习惯上大家会有一定程度的通用性,校正也可以被认为是狭义上的校准,本文接下来的内容主要是在此基础上进行讨论。 走近极致考究的校准术A. 关于砝码的学问谈到校准,起到至关重要作用的就是砝码。砝码是具有一定物理特性和计量特性且能够复现质量值的一种实物量具,关于其形状、尺寸、材料、表面状况、密度、磁性、质量标称值、最大允许误差等指标都有非常严格的规定。作为标定、校验衡器的最普遍也是最重要的工具,国际法制计量组织(OIML)对砝码进行了明确的等级划分,共分为9个等级:E1、E2、F1、F2、M1、M1–2、M2、M2–3、M3,等是按照不确定度来分,等砝码有修正值;级是按照示值误差来分,级砝码没有修正值,只要其示值误差在此范围内都是认为合格的。在砝码的众多指标当中,和校准关联度最高的就是最大允许误差(MPE)了,国际相关法规条款对各个等级的砝码的MPE有明确的规定,以下表格是对电子天平所常用质量标称值砝码MPE的说明(误差值以毫克为单位): 从上图可看出,在相同质量标称值的情况下,MPE的大小跟砝码等级的高低成反比;在相同砝码等级的情况下,MPE的大小跟质量标称值的大小成正比。 同时,在国家标准的相关规定里,根据检定分度值e和检定分度数n将电子天平分为四个准确度级别,由高到低依次为特种Ⅰ、高Ⅱ、中Ⅲ、普通Ⅳ准确度级。结合砝码MPE的变化趋势可得出,准确度越高的天平需要用越高等级的砝码进行校准,这样校准天平的数据就越精准。比如十万分之一和万分之一天平应选用E级系列砝码校准,千分之一天平应选用E2或F1级砝码进行校准,以此类推。B. 校准的分类从校准的用途上来讲分为“量程校准”和“线性校准”,在制造和维修过程中需要结合两种校准方式共同实施,而日常使用过程一般只需做量程校准。 量程校准主要是在当前称量环境下对天平进行赋值,通过称量一个已知质量的砝码,来获得实际值和显示值之间的比例关系,作为以后称量显示值计算的系数,目的是消除不同纬度及海拔高度对称量结果的影响、环境温度变化对称量结果的影响,以及天平使用一段时间后积累的误差。通常,量程校准采用比较简单的两点校准法,第一个点为零点,第二个点为天平的最大量程,日常操作起来比较容易,能够使天平快速适应当前的称量环境,保证整个量程范围内的称量准确,是实验室工作人员一种普遍的校准方法。 线性校准主要是通过对全量程范围内的多个点的称量结果的线性化来消除误差,使得显示称量结果与参考质量的比例接近相同。一般来说是在3个点设置电子天平,即零点、半量程和最大量程。天平经过线性校准后,其全量程线性误差通常表现为S型,即在零点、半量程、满量程3个校准点误差很小,在1/4,3/4满量程点误差相对较大。为获得更好的线性,可以采取多点修正的方式,比如制造过程中往往采用更科学的5点线性法。当然数学修正只是辅助的,天平的示值误差还是取决于其本身的真实性能。 以上两图描述了电子天平在实际载荷m和称量示值W之间的线性关系,左图的直线为理想线性特征曲线,右图为实测曲线(非线性曲线)与理想直线的对比,其中非线性就是指不按比例、不成直线的关系,且函数的一阶导数不为常数。m0处的NL为称量示值与实际负载间的非线性误差。在天平的称量规格说明书中,线性通常表述为在不断增加负载的测试中得到的最大误差值(以克为质量单位),误差值越小,说明线性度越高,称量越准确。 由于线性校准采用的是分段误差比较,节点越多,非线性误差就越小,实测曲线就越接近于理想的拟合直线,因此线性校准是保证每一个称量范围都做到最大程度的准确,从而对校准的条件会有更加严格的要求。通常,线性校准过程在恒温恒湿的环境下,由机械手自动完成。校准时需准备相应的多个砝码,非专业人员严禁私自进行操作,否则不能恢复原有程序,影响天平的正常使用。 综上所述,量程校准和线性校准各有各自的特点和用途,将二者结合能够有效提升校准的质量。 从校准的方法上来讲分为内校和外校。内校是指利用电子天平内部安装的校准砝码并遵循内部标准程序进行校准。校准时只需按一下校准键,电机会驱动带内置砝码的升降装置,对天平进行加载,从而实施并完成校准。 外校是指利用外部砝码对天平本身误差进行修正的方式进行校准。事先需检查外部砝码是否通过检定,并在检定有效期内,主要是为了确保砝码满足相关标准对实物量具的控制要求。开始校准时先按下校准键,再通过手动把指定量程的砝码放到电子天平秤盘上,来完成校准过程。 通常,外部砝码可能会受到灰尘沾染、日常磨损和酸碱腐蚀等自然因素的不良影响,所以为了保证计量工作的准确性,外部砝码也需要定期进行校准,常常需付费请省(市)级计量院做测试;再加上人为拿错砝码的可能性,因此外校型天平对人为操作的要求会更加苛刻。而内置砝码的天平一般不会出现这些情况,并可以通过修改天平的校正程序参数来修正偏差。综上所述,内校可以有效避免不确定因素所造成的误差,相比外校是一种更加节约成本的方法。 无论是内校还是外校,电子天平在使用之前都必须进行预热(万分之一位天平需要至少1个小时的预热),其次进行水平调节,之后就可以开始进行校准了(以下步骤为传统校准方法,具体不同品牌和型号的天平会有一定的差异): 第一,确保秤盘上没有称量物品时应稳定地显示为零位。 第二,按“CAL”键,启动电子天平的校准功能。 第三,内校型天平的显示器由“C”变成零位时,表示校准结束;外校型天平的显示器上首先显示需要准备的砝码的质量值,其次将与天平准确度级别相对应等级的标准砝码放在天平的秤盘上。当屏幕显示值不变时,取出砝码,屏幕显示“Done”之后说明已经完成校准。 第四,如果在校准中出现错误,电子天平显示器将显示“Err”,或“Time out”,应重新进行校准。 校准术的变革——奥豪斯AutoCal™ 全自动校准技术怎么样,看过了上面的详细介绍,你有没有发现校准是一门相当有技术含量的学问呢?其实,随着称量技术日新月异的发展,校准手段也越来越趋于人性化。如果你还在为传统校准方法中麻烦的人为操作而发愁,那不妨来看看为天平校准带来全新变革的奥豪斯AutoCal™ 全自动校准技术吧! 奥豪斯AutoCal™ 是针对环境温度漂移和时间触发的专业全自动校准技术,在传统的内校基础上进行了全新的改良,在温度漂移值超过±1.5℃或间隔3~11小时之间(用户可自定义内部校准时间)时,天平校准自动触发,避免了未进行定时校准或手动校准砝码不当等造成天平称量不准确的潜在因素。 目前,AutoCal™ 全自动校准系统在庞大的奥豪斯天平家族里有广泛的应用,特别是Explorer准微量天平采用了两组内置砝码,同时拥有量程校准和线性校准功能。在校准过程中,通过同时加载砝码m1和m2,以及分别加载砝码m1和m2校准半载点的方法,可测试天平的线性并自动进行线性校准。 此外,Explorer系列十万分之一以下的分析和精密天平以及Adventurer™ AX系列天平的AutoCal™ 通过配备的一个内置砝码,可进行量程校准功能,用户可根据具体的使用需求做灵活的选择! 听了小编全面细致的讲解,你是不是摸到了校准的门道呢?是不是也想马上动手操作感受一下AutoCal™ 技术的强大之处?如果你有更多关于天平校准的疑难咨询,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议。最后,小编再次祝大家在旺旺狗年生活幸福吉祥,工作顺心顺意!
  • 生物检测仪器校准用标准样品专业工作组成立
    近日,全国标准样品技术委员会发布通知,批准4个专业工作组成立,包括动物防疫标准样品专业工作组、茶叶标准样品专业工作组、生物检测仪器校准用标准样品专业工作组和植物检疫标准样品专业工作组。其中生物检测仪器校准用标准样品专业工作组编号为SAC/TC 118/WG17,由中国计量大学牵头筹建,主要负责生物大分子和有机体检测仪器校准用标准样品研复制的申报、审批、立项、监查、评审等工作。第一届工作组共30人,由中国计量大学副校长俞晓平研究员任组长,中国计量大学院长叶子弘任秘书长,此外还有来自全国有关生物检测、检验检疫、计量校准、仪器开发等领域的专家。生物检测仪器校准用标准样品专业工作组的成立标志着我国生物检测仪器相关标准样品工作步入新的发展阶段。生物检测技术是生命科学和医学的基础,涉及临床检验、疾病防控、食品安全等众多领域。随着社会医疗健康的需求不断增长以及生物技术进步,生物检测技术近年来高速发展,生物检测仪器的市场规模也越来越大。与市场的快速扩张相比,生物检测仪器校准用国家标准样品的发展速度远远落后,无法满足现在的生物检测仪器生产与使用需求。生物检测仪器校准用标准样品专业工作组将聚集国内相关科研、产业优势资源,建设和完善生物检测仪器校准用标准样品体系,增加国家标准样品的有效供给,为填补国内生物检测仪器标准样品空白、有效推进生物检测仪器国产化进程和促进生物产业的快速发展提供有力的标准支撑。
  • 新品上市!Cole-Parmer移液器校准仪
    ATMOS 移液器校准仪ATMOS 移液器校准仪是一种精确测量气体位移的仪器,不需要借助液体和其他设备。基于和移液器内部气体腔室做比较得出移液器当前容量结果。同时它还可以得出移液器的泄漏率。移液器受环境和操作所造成的系统误差极其明显,最终可能导致检测结果的偏离;定期的期间核查,可使检测仪器始终处于受控状态,从而确保仪器的稳定,保证测量结果的可靠性。操作界面简洁易懂结果统计界面清晰明了产品参数产品名称ATMOS 1000 移液器校准仪尺寸12.5 x 8.5 x 3 cm电源5V DC, 2A重量420g建议运行温度环境10 ℃~ 40℃电池2000 mAh 锂电池订购信息货号产品描述ATMOS1000适配移液器容量范围:20-1000ul其他容量范围和 8 道移液器问题敬请咨询移液器定期核查的必要性移液器现已广泛应用于科研及食品、药品检测分析方法中。但是,微小的误差对取样总量的影响非常大,合格可调移液器使用一段时间后,由于磨损、弹簧弹力变化等原因导致准确度和精密度下降,必须进行校准。在设备的两次校准之间或仪器维修后投入使用前进行期间核查,验证设备是否保持校准时的状态,确保检验结果的准确性和有效性。正确理解期间核查一般的理化实验室常规理解的期间核查:是指对测量仪器在两次校准或检定的间隔期内进行的核查;但正确的理解应为保持设备校准状态的可信度,而对设备示值(或其修正值或修正因子)在规定的时间间隔内是否保持其规定的最大允许误差或扩展不确定度或准确度等级的一种核查。也就是说,期间核查实质上是核查设备示值的系统误差,或者说核查系统效应对设备示值的影响。期间核查的内容移液器主要用于在实验或生产中作液体的取样或加液用。它利用空气排放原理进行操作,以活塞在活塞套内移动的距离确定移液器的容量。传统的核查需要专业人员并使用天平温度计和计时器等设备,流程复杂繁琐。常见问题&bull 我可以使用 ATMOS 来校正我的移液器吗?ATMOS可用于每天监测移液器的准确性。ATMOS会通过屏幕告知客户移液器准确性是否有问题。这可以让您将有问题的移液器暂时停用避免造成实验结果不准确。您可以通过ATMOS来重新调整移液器,以防准度偏移(可调移液器都有专门的自带工具来调整标准容量)。&bull 什么是泄漏率?ATMOS是测量移液器在其使用过程中的空气泄漏率。高泄漏率可能与移液管活塞损坏或密封部件连接缺陷有关。泄漏率以每秒体积损失的百分比表示。泄露率不高于1%对于实验室是可以接受的。&bull ATMOS 精度与重力测量方法相比如何?ATMOS读数的随机误差与在实验室环境的重力测量中读到的误差非常接近。ATMOS的绝对精度保持在测量体积的±1%(20-1000ul量程) 。&bull ATMOS 是否需要重新校准服务? ATMOS是通过与内部固定体积腔进行比较来测量移液管分配的体积。该参考体积由金属制成,在工厂校准精度在0.1%以内。ATMOS不需要重新校准。&bull 是否可以导出数据?ATMOS被设计为与自动化平台兼容,并可以连接到任何计算机系统 (windows, Mac, Linux或其他)。连接到micro USB端口允许直接接口,可用于移液器校准。Read ATMOS程序(Mac OSX和Windows)允许提取数据。
  • ​深圳三思纵横试验机|持久蠕变试验机:分析工作原理及应用领域
    在材料科学研究领域,持久蠕变试验机作为一种重要的测试设备,对于评估材料在长时间受力作用下的变形行为具有不可替代的作用。今天,跟着深圳三思纵横试验机小编一起来看下持久蠕变试验机的工作原理、应用领域以及未来发展趋势。一、持久蠕变试验机的工作原理持久蠕变试验机主要用于模拟材料在长时间恒定或变化应力作用下的蠕变行为。蠕变是指固体材料在应力作用下,随时间发生的缓慢而连续的变形现象。持久蠕变试验机通过施加恒定的或变化的载荷,以及控制温度、湿度等环境因素,来模拟实际工作环境中的材料受力情况。试验机通过高精度传感器和数据采集系统,实时记录材料的变形数据,为材料性能评估提供可靠的依据。二、持久蠕变试验机的应用领域1、金属材料研究:持久蠕变试验机在金属材料研究领域具有广泛应用,如钢铁、铝合金、钛合金等。通过对金属材料进行持久蠕变测试,可以评估其在高温、高压等恶劣环境下的性能表现,为航空航天、能源、交通等领域提供关键材料性能数据;2、高分子材料测试:高分子材料如塑料、橡胶、纤维等,在长时间受力作用下容易发生蠕变现象。持久蠕变试验机能够模拟这些材料在实际应用中的受力情况,评估其蠕变性能,为产品设计、生产和使用提供重要参考;3、复合材料性能评估:复合材料由于具有优异的力学性能和多功能性,在航空航天、汽车、建筑等领域得到广泛应用。持久蠕变试验机可用于评估复合材料在不同应力状态下的蠕变性能,为复合材料的优化设计和应用提供有力支持。三、持久蠕变试验机的未来发展趋势1、智能化与自动化:随着人工智能和自动化技术的不断发展,持久蠕变试验机将实现更高级别的智能化和自动化。通过引入智能控制系统和机器人技术,试验机能够实现更精确的试验操作、更高效的数据处理以及更便捷的远程监控,提高试验的准确性和效率;2、多功能化与集成化:未来的持久蠕变试验机将更加注重多功能化和集成化设计。通过集成多种测试功能,如拉伸、压缩、弯曲等,以及实现多种环境因素的模拟和控制,试验机将能够满足更多种类的材料测试需求,提高设备的利用率和灵活性;3、高精度与高可靠性:随着材料科学研究对测试精度的要求不断提高,持久蠕变试验机将致力于实现更高的测试精度和可靠性。通过优化机械结构、提高传感器精度、加强设备校准和维护等措施,试验机将能够提供更加准确、可靠的测试数据,为材料科学研究提供有力支持。四、结论综上所述,持久蠕变试验机在材料科学研究领域具有广泛的应用前景和重要的价值。随着技术的不断进步和市场的不断发展,相信未来持久蠕变试验机将在材料性能测试领域发挥更加重要的作用。
  • 河南研发“无线传输分体式PCR检测仪校准装置” 为战“疫”增添利器
    在感染性疾病的诊断方面PCR技术在感染性疾病中尤其适用于检测一些培养周期长或缺乏稳定可靠检测手段的病原体。PCR的模板可以是DNA,也可以是RNA。模板的取材主要依据PCR的扩增对象,可以是病原体标本如病毒、细菌、真菌等。标本处理的基本要求是除去杂质,并部分纯化标本中的核酸。多数样品需要经过SDS和蛋白酶K处理。难以破碎的细菌,可用溶菌酶加EDTA处理。所得到的粗制DNA,经酚、氯仿抽提纯化,再用乙醇沉淀后用作PCR反应模板。PCR检测仪是用于新冠病毒核酸检测的关键设备,核酸检测是根据病毒的基因序列配制出相对应的引物和探针,利用PCR检测仪对待测样本进行扩增。近日,河南计量院研制出无线传输分体式PCR检测仪校准装置,基于自行设计的多通道温度检测模块,应用无线传输技术实现数据采集分析,设计指标满足《JJF 1527-2015 聚合酶链反应分析仪校准规范》的要求。只需将该装置的检测模块置入待校准的PCR检测仪中,工作人员无需进入实验室内部,即可对仪器进行校准,不但能够节约PCR检测实验室的管理运行成本和宝贵的防护资源,还能极大降低计量人员本身的感染风险,具有较好的推广应用价值。 无线传输是利用无线技术进行数据传输的一种方式。无线传输和有线传输是对应的。随着无线技术的日益发展,无线传输技术应用越来越被各行各业所接受。无线图像传输作为一个特殊使用方式也逐渐被广大用户看好。其安装方便、灵活性强、性价比高等特性使得更多行业的监控系统采用无线传输方式,建立被监控点和监控中心之间的连接。无线传输分为:1、模拟微波传输就是把视频信号直接调制在微波的信道上(微波发射机,HD-630),通过天线(HD-1300LXB)发射出去,监控中心通过天线接收微波信号,然后再通过微波接收机解调出原来的视频信号。2、数字微波传输就是先把视频编码压缩(HD-6001D),然后通过数字微波(HD-9500)信道调制,再通过天线发射出去,接收端则相反,天线接收信号,微波解扩,视频解压缩,临了还原模拟的视频信号,也可微波解扩后通过电脑安装相应的解码软件,用电脑软解压视频,而且电脑还支持录像,回放,管理,云镜控制,报警控制等功能;存储服务器,配合磁盘阵列存储;这种监控方式图像有720*576、352*288或更高的的分辨率选择,通过解码的存储方式,视频有0.2-0.8秒左右的延时。数据采集分析过软硬件结合,可以记录、显示和分析众多生命科学相关信号,可以完全代替传统的纸带记录仪、绘图仪、XY绘图仪、示波器和电压计。把信号变成便于数字处理的形式,以减少数字处理的困难。无论计算机的容量和计算速度有多大,其处理的数据长度总是有限的,所以要把长时间的序列截断。在截断时,会引入一些误差,所以有时要对截取的数字序列加权,如有必要,还可用专门的程序进行数字滤波。然后把所得到的有限长的时间序列按照给定的程序进行运算。例如作时域中的概率统计、相关分析,频域中的频谱分析、功率谱分析、传递函数分析等。数据采集分析应用领域包括:血流动力学、离体组织灌流、离体器官、灌流、微血管张力测定系统、微循环血流测定(激光多普勒)、新陈代谢研究(运动生理学、心肺功能测定)、电生理系统(细胞内、细胞外、电压钳)、超声血流量测定、植入式生理信号(血压、生物电、神经干放电、体温等)无线遥测、心理学、清醒动物血氧饱和度测定、人体无创血压、心输出量测定。PCR检测仪是利用聚合酶链反应技术对特定DNA扩增的一种仪器设备,PCR技术的原理类似于DNA的天然复制过程,其特异性依赖于靶序列两端互补的寡核苷酸引物,由变性-退火-延伸三个基本反应步骤构成。PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为百分百,实际反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,使平均效率达不到理论值。PCR扩增仪通常由热盖部件、热循环部件、传动部件、控制部件和电源部件等部分组成。被广泛运用于医学、生物学实验室中,例如用于判断检体中是否会表现某遗传疾病的图谱、传染病的诊断、基因复制以及亲子鉴定等。PCR检测仪分类PCR仪分为普通PCR仪,梯度PCR仪,原位PCR仪,实时荧光定量PCR仪四类。荧光定量PCR仪光学校准方法实时荧光定量PCR仪特异性更强,自动化程度更高,且有效地解决了PCR污染的问题,应用领域及应用量都不断增加。但其设计更为复杂,温度模块和光学系统设计同时影响其性能和实验准确性,为定量PCR仪校准带来了巨大挑战。采用生物试剂等方式对定量PCR仪荧光部分校准缺乏溯源性,无法分析误差来源,存在较大缺陷。采用Cyclertest 3D optical定量PCR仪光学校准系统对ABI 7500 Fast Real-Time定量PCR仪的温场部分和荧光系统进行了检测并对检测结果进行了分析,结果表明对温度模块和光学系统共同进行检测并分析相关性能够更科学全面地评估定量PCR仪性能,满足定量PCR仪校准需求。
  • 吉林省市场监督管理厅发布《荧光定量PCR仪校准规范》等11项地方校准规范
    根据《吉林省市场监督管理厅地方计量检定规程和计量校准规范制修订工作办理程序》规定,现将《荧光定量PCR仪校准规范》等11项地方计量技术规范报批稿进行公示,公示时间为2023年10月30日至2023年11月8日。如有意见,请向我厅计量处反馈。逾期视为无意见。联系人:刘冬毅电 话:0431-85237188邮 箱:253389626@qq.com附件:1.荧光定量PCR仪校准规范(报批稿).pdf2.微波消解仪温度参数校准规范(报批稿).pdf3.表面温度源校准规范(报批稿).pdf4.砂尘试验设备校准规范(报批稿).pdf5.漆膜划格器校准规范(报批稿).pdf6.实验室氨氮分析仪校准规范(报批稿).pdf7.尿比重计校准规范(报批稿).pdf8.瓶口分液器校准规范(报批稿).pdf9.量水器校准规范(报批稿).pdf10.容量筒校准规范(报批稿).pdf11.甲醇气体检测报警仪校准规范(报批稿).pdf吉林省市场监督管理厅2023年10月30日
  • 科学组合与智能校准 先河网格化监控显神威
    仪器信息网讯 2015年8月,国务院办公厅《生态环境监测网络建设方案》明确提出,坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局,为加快推进生态文明建设提供有力保障。而网格化监管被很多人认为是实现这一目的的不错选择。其实“网格化监管”在我国管理体系中的应用是方方面面的,如公安、水利、计划生育等领域早有应用,此次将网格化管理引入到环保领域,有利于环境监管工作更加精细化。  在我国,较早启动环保领域网格化管理的城市是兰州,兰州将管理辖区划分成1000多个网格,每一个管理网格都有自己的网格员,网格员负责监察辖区内的不规范行为,如工业企业的偷排偷放,居民餐饮油烟排放、垃圾焚烧等。经过几年的实施,“兰州蓝”成为了全国的典范,但也面临了新的问题:一是人力消耗太大:二是随着一次颗粒物排放量的减少,臭氧、挥发性有机物、二次颗粒物等问题单纯靠人防无法监管。  针对这些新问题和新需求,河北先河环保科技股份有限公司(以下简称“先河环保”)提出了以传感器微型站来大面积布点、国标方法监测的小型化设备为支撑的“网格化精准监控”解决方案,打通了环境监测到环境监管的通道。那么,“网格化监控”到底能满足什么需求?对于传感器测量结果不准确的问题,先河环保又是如何解决的呢?带着这些疑问,仪器信息网编辑近日采访了先河环保总裁陈荣强先生。河北先河环保科技股份有限公司总裁陈荣强先生  网格化监控打通环境监测和环境监管的通道  先河环保网格化精准监控系统由高时间分辨率的传感器微型站、基于国标方法原理的小型空气监测站/小型扬尘监测站/标准空气质量监测站等有机组合而成。对于此系统,陈总如此评价说,“此系统更多的是一种应用创新,这种应用创新是将物联网、大数据、环境监测等综合技术应用到环境监管当中”。产品展示  首先,借助物联网、大数据和传感器技术实现“全面布点”。由于传感器成本低、时间分辨率高、可测参数多、布点方便,所以可以实现空间、时间、多参数的三位一体高密度布点。通过与国标法小型化监测设备组合应用,可以厘清特定行政区域及局部空间的环境污染状况,快速、精准锁定污染源头,有效解决污染源监测及管理覆盖不全的问题。  第二,与国内近6000个常规空气质量监测站等组合使用,便于实现“全国联网”。因为现有的空气质量监测站和网格化监控中的国标法小型化设备采用的是国家标准方法,所以其监测数据可以用作行政处罚的依据,而传感器微型站的数据可以与国标法设备的数据实时对比,进行数据监控和趋势研判,因此网格化监控系统可进行有理有据的环境监管。  第三,利用产生的海量数据进行大气污染防治的预警预报和源解析,实现“自动预警、依法追责”。这方面的工作先河环保已经有条不紊地进行,目前已与北大、北师大、清华等高校的专家教授进行多方面合作,先河环保与清华大学还申报了科技部国家重点研发计划“精细网格大气动态污染源清单技术研发及应用示范”项目。此外,先河环保自己也有专业的科学家团队进行源解析数据分析、减排评估分析等工作。  陈总还为我们详细解释了“打通环境监测到环境监管的通道”的意义。以PM10为例,如果一个城市确定了PM10的主要来源为道路扬尘和工地扬尘,就可根据城市的发展和工地布局,安装网格化监控系统,实现24小时监管,可指导污染较重的道路重新规划或者督促工地实行整改。对于此套网格化监控系统,清华大学环境学院院长、中国工程院院士贺克斌评价说:“在功能上,网格化可以科学精准地辅助监管部门对污染点源进行有效定位和预警,发挥抓手作用。”  如何保证数据质量?三级修正、四级校准的全生命周期质控体系  网格化监控系统的诸多应用都是基于数据,而传感器在一定程度上存在零漂、时漂、温漂等问题,其数据可靠性备受业内专家和用户质疑。对于此问题,先河环保是如何解决的呢?陈总说:“随着传感器产业的发展,传感器本身的精度和稳定性都有了极大提高,但是仍不能完全满足环境监管的需要。为此,先河环保创新提出了‘三级修正、四级校准’的全生命周期质控体系,来保证数据的可靠性。”  网格化监控系统的仪器要经过严格的三级数据修正。通过三级数据修正之后的传感器设备,可以极大提升数据的准确性,达到对传感器本身的筛选、研判、数据基因变量修正的作用,提升传感器设备数据与准确数据的相关性。  网格化监控系统的设备还需经过四级校准,保证传感器在出厂前后的数据稳定性和准确性。第一级校准是标物校准。将传感器设备放进专业的实验室,采用固定浓度的标准气体进行校准,并实时查看传感器的浓度值,筛选出合格的传感器,达到微型站基本的品质保证。第二级是组网驯化校准,在不同的温度、湿度等不同的气象条件,以及不同的污染浓度等外界环境下,使传感器设备与国标法设备进行严格的深度学习、比对,形成每个传感器数据独有的基因变量。其数据能与空气质量监测站数据匹配即为合格。第三级是自适应校准,通过结合现场安装情况,利用先进的云平台在数据发生漂移时对仪器进行自动校准。第四级是传递校准。采用移动监测车或者便携式国标法校准设备,可对一定范围内的传感器数据进行实时在线比对、验证、校准,消除各地传感器设备因本底污染浓度值差异以及传感器漂移造成的监测数据漂移的问题。  以臭氧为例,经校准后,传感器微型站与空气质量自动监测站(符合国家标准)的数据相关性从0.7797提高到了0.93以上。O3校准前、后比较  当然,这四种校准方式是互相配合使用的。先河环保的运营人员还专门配备了“传感器综合管理平台手机端APP”,为售后人员的设备安装、维护、维修、数据查询工作提供了便利条件。加上运营人员定期的现场维护以及数据管理中心24小时数据远程管理、质控,保证了传感器设备全生命周期的数据准确可靠。先河环保还投资近200万建设了环境监测传感器质控实验舱,极大提高了“数据质控校准”的效率。二级校准现场用于网格化质控校准的环境实验舱  一台仪器要想得到市场的认可,最重要是满足客户的需求  先河环保网格化监控系统目前已迅速在全国多地进行了应用,受到了客户的广泛欢迎。网格化监控系统已在河北的衡水、石家庄、保定、沧州等市实施。同时,在县级及乡镇如石家庄所辖井陉矿区、高邑县、无极县、正定县(含村镇)、赵县及廊坊市永清县等也快速铺开。省外,已在山东、河南、广西、湖北、新疆等市陆续落地,为当地环保部门提供了一套科学有效的监测、监管、预警、指挥、执法的工具和抓手。  在环境监测监察事权上收的大背景下,对于市、县(区)以及乡镇一级的地方政府,将网格化监控系统作为一种自我检查、自我监管并提升空气质量的手段也是不错的选择。先河公司创新的质控手段,引领了行业的发展,也希望能将系统推广到更多的地区和用户,同时希望更多的代理商能加盟此项事业,共助我国环境空气质量改善。
  • 安徽省生态环境监测中心认真做好仪器设备检定校准工作
    为深入贯彻落实《关于深化环境监测改革提高环境监测数据质量的意见》,保证监测仪器设备的准确性、稳定性和可溯源性,进一步加强生态环境监测质量管理,切实保障生态环境监测数据质量,根据《检验检测机构资质认定能力评价检验检测机构通用要求》和《检验检测机构资质认定生态环境监测机构评审补充要求》相关规定,省生态环境监测中心认真做好监测仪器设备的检定和校准工作。  按照年初制定的仪器设备检定计划,采取邀请检定校准机构来现场和将仪器设备送往专业机构的送检方式,定期开展仪器设备检定校准工作。2022年第1季度,共对等离子体发射光谱仪(ICP-MS)、气相色谱-质谱联用(GC-MS)、原子荧光光度计、电子天平等35台(套)仪器设备进行了检定校准。经专业机构严格测试,省生态环境监测中心在用仪器设备处于稳定、有效状态,性能满足方法标准要求。  下一步,省生态环境监测中心将持续严格按照“质量手册”和“程序文件”的要求,认真开展仪器设备期间核查工作,不断强化仪器设备的管理,规范仪器设备的使用和维护,保障仪器设备的正常运行,提高生态环境监测工作科学化、标准化、规范化水平,为确保生态环境监测数据“真、准、全”,深入打好污染防治攻坚战提供坚强保障。
  • 济南市疾控中心公共卫生所开展仪器设备校准维护工作
    为保障济南市疾控中心检测工作的正常开展,促进济南市疾控中心公共卫生检测工作规范化建设,提高检验结果的准确性和有效性,保证仪器设备的稳定性和可溯源性,按照济南市疾控中心《质量管理手册》和《程序文件》等规定要求,9月27日,济南市疾控中心公共卫生所对相关仪器设备开展了校准维护工作。  专业技术人员按照每件设备的相关参数要求,分别对粉尘采样器、双气路大气采样器、大气采样仪、个体噪声剂量计等30余台仪器设备进行校准和维护保养。经过严格测试,所有仪器设备运行状态稳定,仪器设备准确度和精密度等指标均符合要求,完全满足现场采样工作及实验室检测工作要求。  通过仪器设备校准维护,进一步提高了中心仪器设备的检验质量和管理水平,保障了仪器设备正常运行,促进了检验检测工作科学化、标准化、规范化发展,为中心公共卫生检测工作提供了有力的技术支撑和质量保证。
  • 同步热分析仪:基本原理、工作流程及实际应用
    同步热分析仪是一种重要的材料科学研究工具,它可以同时提供热重(TG)和差热(DSC)信息,对于材料科学研究与开发具有重要意义。本文将介绍同步热分析仪的基本原理、工作流程及其在实际应用中的意义和作用。上海和晟 HS-STA-002 同步热分析仪同步热分析仪的基本原理是基于热重和差热分析技术的结合。热重分析是一种测量样品质量变化与温度关系的分析技术,可以研究样品的热稳定性、分解行为等。差热分析是一种测量样品与参比物之间的温度差与时间关系的分析技术,可以研究样品的相变、反应热等。同步热分析仪将这两种分析技术结合在一起,可以在同一次测量中获得样品的热重和差热信息,从而更全面地了解样品的热性质。同步热分析仪的工作流程包括实验前的准备、实验过程中的操作和数据处理等步骤。实验前需要选择合适的坩埚、样品和实验条件,将样品放入坩埚中,然后将坩埚放置在仪器中进行测量。在实验过程中,仪器会记录样品的重量变化和温度变化,并将这些数据传输到计算机中进行处理和分析。数据处理包括绘制热重曲线和差热曲线、计算样品的热性质等。同步热分析仪在实际应用中具有广泛的意义和作用。它可以帮助科学家们更好地了解材料的热性质和化学性质,从而为材料的开发和应用提供重要的参考。例如,在研究高分子材料的合成和加工过程中,同步热分析仪可以用来研究材料的熔融、结晶、氧化等行为,从而指导材料的制备和加工过程。此外,同步热分析仪还可以在药物研发、陶瓷材料等领域得到广泛应用。
  • 全自动表面张力仪的校准技巧
    全自动表面张力仪的校准是确保测量精度和可靠性的关键步骤。以下是一些常见的校准技巧和步骤:准备工作:确保表面张力仪处于稳定的工作环境中,避免有风或振动的地方。确保校准液体和校准工具的准备充分,包括正确的标准溶液和清洁的仪器表面。选择标准溶液:根据表面张力仪的型号和制造商的建议,选择正确的标准液体。通常使用双蒸馏水或特定浓度的表面活性剂溶液。确保标准溶液的温度稳定,并且符合实验室的环境条件。校准步骤:将标准溶液放入表面张力仪的测量池中,按照设备说明书上的指导将仪器准备好。启动仪器进行校准程序。校准过程可能包括自动识别标准液体并进行校准,或者手动输入校准值的情况。校准结果分析:完成校准后,仪器通常会显示校准结果。这些结果应该与预期的标准值接近,通常有一个接受范围或容差值。如果校准结果不在预期范围内,可能需要重复校准步骤或者进行仪器的调整和维护。记录和验证:记录每次校准的日期、结果和操作人员的信息。定期验证表面张力仪的测量结果,确保仪器保持准确性。这通常包括使用不同的标准溶液进行重复校准或比较。维护和定期检查:定期清洁和维护表面张力仪,确保仪器的各个部件处于良好状态。根据制造商的建议,定期进行预防性维护和检查,以确保仪器的长期稳定性和性能。通过正确的校准和维护程序,全自动表面张力仪可以保持高精度和可靠性,从而提高实验室测量的准确性和重复性。
  • 《环境空气挥发性有机物采样器校准规范》(征求意见稿)印发 青岛众瑞参与编写
    近日,全国环境化学计量技术委员会发布了市场监管总局《2020年国家计量技术规范制定、修订及宣贯计划》中的《环境空气挥发性有机物采样器校准规范》(征求意见稿),众瑞作为规范起草小组成员之一重点参与了该规范的编写。  环境空气挥发性有机物采样器(以下简称采样器)主要用于采集环境中以气态、颗粒物状态存在的挥发性有机物。其工作原理是,采样泵将挥发性有机物采集到滤膜和吸附材料中,通过测量单元来控制和测量采样体积,最终达到定量采集的目的。按照采样 流量不同分为中流量采样器、大流量采样器和超大流量采样器,其工作点流量分别为100L/min、225 L/min 和 800 L/min。  采样器一般由采集单元(包括采样头、滤料采样夹、滤膜、吸附材料、采样泵)、 测量控制单元(流量传感器、温度传感器等)、数据处理单元、显示单元组成。  作为有多年研发、生产和校准经验的设备生产厂商,众瑞在标准编制过程中给出了有针对性的意见和建议,同时,众瑞设备参与了规范编制过程中的一系列试验和论证,为规范计量特性的确定做出了重要贡献。  该规范主要适用于采样流量范围在(60~1200)L/min内环境空气挥发性有机物采样器的校准,其发布将填补国内对于大流量和超大流量采样器无相应计量技术规范的空白,进而满足众多生产、使用者量值溯源的需求,具有较强的社会效益和经济效益,规范的具体内容如下:
  • 福禄克计量校准正式推出新款便携式校准恒温槽—6109A/7109A
    p  2017年5月18日福禄克计量校准正式推出新款便携式校准恒温槽—6109A/7109A,具有优异的系统准确度和校准效率,适用于批量校准探头。温度范围广,显示准确度达± 0.1℃ 。同时,不锈钢外壳的设计符合生物制药科技行业的洁净过程需求。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/836e43b2-62b1-4432-833c-b87cbac00418.jpg" title="11_副本.jpg"//pp  strong该产品具有以下特点:/strong/pp  · 温度量程宽,覆盖绝大多数过程应用:/pp   6109A:35 ° C至250 ° C/pp   7109A:-25 ° C至140 ° C/pp  · 优异的显示准确度:± 0.1 ° C,为关键应用提供4:1测试不确定度比(TUR)/pp  · 校准效率高,同时校准多达 4 个 卡箍式卫生型传感器/pp  · 体积小巧,便于搬运/pp  · 不锈钢外壳能够承受刺激性灭菌药品,以及防锈/pp  · 易于使用和维护/pp  · 遍布全球的福禄克技术支持和服务/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/4af25485-e561-4060-ad0d-fc57f40efad1.jpg" title="1_副本.jpg"//pp  strong关于福禄克计量校准/strong/pp  福禄克计量校准部(Fluke Calibration)涉及电学、无线电、温度、压力、流量等精密测量计量校准领域。/pp  福禄克计量校准部是隶属于创建于1948年福禄克公司下的一个部门。福禄克公司生产的计量校准产品遍布于全球各地的校准实验室中,其中包括国家级计量机构,这些机构需要提供强大的技术支持,其仪器设备要求具有高精度等级以及性能良好和可靠性。/pp  strong关于福禄克(FLUKE)/strong/pp  福禄克公司成立于1948年,是全球领先的紧凑型、专业电子测试工具和软件制造商,产品广泛用于测量和状态监测。福禄克的客户包括技术人员、工程师、电工、维护经理和计量专家,他们负责进行安装、故障诊断以及维护工业、电气和电子设备以及校准工作。/p
  • 中国计量大学牵头成立生物检测仪器校准用标准样品专业工作组获批
    日前,由中国计量大学牵头筹建的生物检测仪器校准用标准样品专业工作组获全国标准样品技术委员批复正式成立,工作组编号为SAC/TC 118/WG17,主要负责生物大分子和有机体检测仪器校准用标准样品研复制的申报、审批、立项、监查、评审等工作。第一届工作组由30人组成,分别来自全国有关生物检测、检验检疫、计量校准、仪器开发等领域的专家,秘书处设在该校。工作组组长、该校副校长俞晓平研究员表示,这标志着我国生物检测仪器相关标准样品工作步入新的发展阶段。  针对生物检测及相关仪器的快速发展及检测校准领域相应国家标准样品缺乏的现状,新成立的生物检测仪器校准用标准样品专业工作组将聚集国内相关科研、产业优势资源,建设和完善生物检测仪器校准用标准样品体系,增加国家标准样品的有效供给,为填补国内生物检测仪器标准样品空白、有效推进生物检测仪器国产化进程和促进生物产业的快速发展提供有力的标准支撑。  近年来,中国计量大学在生物领域深入开展快速、精准、高通量检测技术的研究,研制了几十种快速检测试剂及相关检测设备,牵头形成了体系化的生物检测技术国家标准和国家标准样品,为生物检测更好地服务于人民健康、生物安全,引领生物产业健康发展作出了积极的贡献。
  • 有了校准平台,氡观测仪预测地震更准
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c4daea1a-4bfe-48df-b7dd-8713187b4c4f.jpg" title="2.jpg"/ /pp 近日,科技日报实习记者随全国人大常委会防震减灾法执法检查小组赴江西考察,参观了2016年建成的地震行业首个氡平台。该平台由氡观测仪校准实验室和氡观测仪检测(比测)实验室两部分组成,分别设在江西省地震应急指挥中心和九江地震台。校准实验室以东华理工大学自主研制的氡室为检定装置,配备国际认可的PQ2000PRO作为传递溯源仪器,向上溯源至中国计量院的国家一级氡计量基准,向下传递到各观测点。检测实验室有氡平台团队自主设计的水气综合处理系统、豁免级测氡仪校准器、高低温湿热箱和步入式恒温恒湿箱等一整套检测系统。/pp 记者了解到,校准实验室和比测基地在2017年专家验收过程中得到肯定。但这个系统的设计方案最初遭遇的几乎都是质疑:“建立一个这样的检测平台,在地震局系统尤其是地下流体学科还是首次,技术难度及工程难度非常大。”/ppbr//pp数百台测氡仪监测数据参差不齐/pp 氡气是一种惰性气体。研究发现,地震前岩石中氡值会有明显变化,就此可对地壳活动作出研判。“假设地震前地下裂隙发生错动挤压,地下水随之冒上来,我们取出地下水,再使水中的氡气脱离并对氡值进行测量,最终可预测地震。”九江地震台负责人肖健接受记者采访时介绍了氡观测仪的原理。/pp 氡观测是国际上普遍认可的地震监测手段之一,也是我国地震观测台网中最重要的测项之一。目前,我国地震前兆氡观测网有300多个氡测点,测氡仪数百台。地震行业氡观测仪主要采用固体氡源进行校准,其观测数据在监测区域地球物理场变化中发挥着重要作用。但固体氡源属国家严格监管的放射类源,存在运输不便、操作严格等问题,造成氡观测仪无法实现全国统一校准,严重影响观测资料质量。“地震行业监测仪器一直面临设备老化、稳定性和可靠性较差的问题,观测的数据都不准确,谈何地震预测呢?”肖健称,“由于监测仪器标准不统一,A地区测出的氡气含量100Bq/L可能跟B地区测出的50Bq/L是一回事。测出的数据应该形成一张氡观测网,能在标准一致的前提下相互比对,不然观测就没有意义。”/pp 仪器稳定可靠是获取准确数据的第一步,进而为地壳活动的研判提供依据。我国环保部门、国土资源部门、核工业等建有满足本行业需求的氡观测技术检测平台及相关标准氡室,主要服务于大气、环境、地表水或铀矿探测等非连续氡观测设备的检测与校准。而地震行业氡仪器主要是对深层地下水(或温泉)、断裂带气体等氡浓度连续观测,具有浓度高、量值变化范围宽、样品湿度大等特点,行业外氡室难以满足地震氡观测台网高精度氡仪器的校准需要。因此地震行业需要开展各类测氡仪器的中试、入网性能检测、脱气装置效能检验等工作,统一观测仪器的标准。/ppbr//pp职能好比汽车质检中心/pp 肖健告诉记者,检测平台负责给仪器质量把关。“我们的职能好比汽车质量检测中心,目的在于检测氡观测仪有没有毛病。”如果被测试的仪器与标准仪器数据统一,就能发往全国。同时,检测平台也对与标准仪器存在相对差的观测仪进行校准。经过校准和比测,仪器所测出的数据就变得稳定、可靠。此外,仪器有生老病死,老化仪器维修后也要进行检测和校准。/pp 据悉,九江地震监测氡观测仪器检测平台的地下自流水系统能满足监测、检测、生活三种用水需求,且互不干扰。其中,监测用水直接通过井管底部接出,供地下流体监测设备使用,数据实时传到中国地震台网中心;检测用水从井管上部导水口流入恒流装置,在稳流区经过三次缓流后液面基本稳定,最后进入供水区,通过三路水管接到检测单元,用于检测和实验。恒流装置稳流后多余的水流入储水箱,供台站生活使用。/pp 九江地震台工程师黄仁桂称:“作为完整的观测系统,地震氡观测由观测仪器、恒流、脱气、集气装置等构成,每个环节都会对观测数据产生影响。”/pp “检测平台目前检测的内容包括检测准确度、设备可靠性、环境适应性。”黄仁桂介绍道,人通过验血检查身体的异常,氡观测仪器则通过观察水氡来监测地壳异常。工程师李雨泽称,他们设定了三个氡的浓度值,待水流稳定后进行氡测量。通过在三种浓度间切换来测量氡检测仪器的响应时间,响应速度太慢就要维修或被淘汰。/ppbr//p
  • “你真的了解电子天平吗?”之四——掌控称量的温度“魔力”
    前情回顾在本系列上一期中,小编主要针对电子天平的称量原理,校准的定义及分类,砝码的基础知识以及与天平准确度之间的关系等方面为大家做了科普式的讲解,特别是在校准的分类方面着重花了笔墨进行了详细的梳理,想必大家一定对严谨而又考究的天平校准技术留下了深刻的印象吧,不知道小编尽量将复杂的数学原理讲得通俗透彻的方法有没有让大家解开了心中的疑虑呢?其实在天平的称量中,还有一只无形的大手牢牢地掌控着称量的结果,这就是温度。本期小编将为你展现这只大手到底有哪些奇妙的魔力! 称量原理的遗留问题 在上次关于校准的分享中,小编对电子天平的称量原理做了简要的介绍,同时也提到温度、湿度等环境因素也会影响电子天平的传感器,但至于是怎么影响的只是卖了个关子。那么今天我们就来走进电子天平的传感器内部,来一起探究温度是怎么影响称量的。 电子天平一般采用电磁力平衡传感器,其称量原理如下图所示: 电子天平在加载前,电磁力平衡传感器处于初始平衡状态。当被测物置于称量盘后,立柱和遮光板在被测物重力的作用下向下移动,光敏二级管D2检测到发光二极管D1发出的光,并产生电流信号,经过I/V变换电路、PID调节器,转变成与被测物重量相对应的电流并驱动动圈,在永磁体的磁场作用下,动圈产生向上的电磁力,使遮光片向上移动,D2输出的电流信号减小,直至遮光片重新回到初始平衡位置,D2的输出电流降为0。此时,动圈产生的电磁力F与被测物重力相当,即F=G=mg,其中m为被测物体的质量,g为重力加速度。【1】 同时,根据电磁力公式F=BLI sinθ,其中B为气隙磁场的磁感应强度,L为动圈(受力导线)的有效长度,I为动圈电流,θ为通电导体与磁场的夹角。由于传感器中动圈的规格尺寸已固定,所以其B和L均不再改变,而θ为90°,故sinθ=1,因此F 的大小与I成对应关系。综合之前的描述,即得出m=BLI / g。【2】 当温度恒定时,B和L是定值,g也是恒定值,则m与I成正比,通过检测动圈电流,就可以间接得到被测物体的质量。当环境温度变化或过流元件发热时,B和L均会发生改变,造成m与I不再成比例关系,使电子天平产生较大的非线性测量误差。 值得一提的是,当电子天平处于预热阶段时,随着内部温度升高,磁感应强度B会逐渐下降, 同时I也会减小,这样就导致电磁力F变小,天平失去平衡,因此示值会呈现正的单方向漂移。而天平只有经过充分预热,使磁钢达到热平衡,这一变化过程结束,天平才达到平衡,再利用去皮功能,使显示置零,此时天平才处于真正的可使用状态。【2】 操纵天平的无形之手 电子天平会根据所在的环境而发生变化的,正常情况下,不同准确度级别的天平对温度范围和温度波动度的要求各不相同,准确度级别越高,对环境温度的要求就越苛刻。根据国家标准的相关规定,电子天平的正常工作条件需要满足以下表格的具体要求: 温度最主要的影响就是其变化会带来热胀冷缩,对电子天平就反映在传感器中细小而又精密的部件之间间隙的改变,这些变化会被灵敏的天平记录下来,从而影响读数的准确性。如果没有特定的工作温度范围,电子天平的正常温度条件为10℃~30℃,计量性能应符合国家标准对单次称量结果的示值误差,以及多次称量或在不同位置称量的示值误差(重复性和偏载)的相关规定。 温度变化是影响电子天平称量结果准确性的重要因素之一,而实验室由于早晨和中午会有一定的温差、以及电子天平设备发热、人员流动等原因,一天中最高温度与最低温度之间往往能够达到10℃。这对天平的影响是显而易见的,那么我们如何做才能消除温度对称量结果的影响呢?首先,天平在使用过程中,要尽可能地处于一个温度相对稳定的环境,当天平所处的环境温度有较大的变化时,天平的称量结果会发生漂移,比如从低温的仓库移到温暖的实验室,需要让天平在使用环境中通电预热一定的时间;其次,当温度变化超过一定范围时,我们可以通过校准将这种漂移消除。 通电时间的长短能够有效地避免温度变化对天平的影响。一般来说,天平的精度越高,需要预热的时间越长。小编在这里建议,十万分之一天平预热时间在4小时以上,万分之一天平预热时间在1小时以上。 玩转温度补偿,尽在奥豪斯电子天平 对于电子天平来说,一个良好的结构设计应该充分考虑到温度对称量系统的影响,并采取相关措施减少或消除温度变化所带来的影响。奥豪斯电子天平在设计中认真评估了温度对称重系统的影响,通过优化机械设计、零部件选型、以及智能算法,来消除温度带来的影响,保证天平在额定温度的变化范围内,计量性能符合如OIML等国际法规的要求。 从入门级的先行者CP系列及Adventurer AR系列,到进阶级的Adventurer AX系列,再到最高级的Explorer EX系列,最后到Explorer准微量天平(EX5)系列,均具有动态温度补偿功能,实时修正环境温度对称量结果的影响。特别是Explorer全系列和部分AX系列天平所拥有的AutoCal™ 全自动校准系统能够自动对温漂和时漂做出最实时的反应,当温漂值超过±1.5℃或间隔3~11小时之间(用户可自定义内部校准时间)时,天平校准自动触发,全面消除外界环境对天平所造成的不良因素。 怎么样,小编专业而又全面的讲解有没有让你对复杂而又深奥的温度“魔力”的理解变得清晰透彻了呢?如果你有更多关于温度对天平影响的疑难咨询,或正在寻求更专业细致的选型指导,请及时联系我们,我们专业的工程师们届时将会在第一时间联系您! 参考文献: 【1】孙鹏龙,何开宇,卜晓雪,李鹏飞,石磊. 环境温度对高精度电子天平称量准确度的影响[J]. 计量与测试技术,2016,43(10):34-35. 【2】唐辉,商洪涛,刘向兵. 如何提高电子天平称量的准确性[J]. 医疗装备
  • 条纹相机校准用-黑体校准积分球光源
    在开发用于测量光源色温 (CCT) 的相机系统时,对其进行正确的校准以提供准确的读数是非常重要的。通常使用已知温度的标准黑体光源来完成校准。 一家研究机构需要一个可以模拟 5000K 和 2856K 曲线的黑体光源来校准他们正在开发的条纹相机。 客户要求该系统尺寸足够小,可通过 340 mm的开口孔安装到用于其测试配置的腔室中。 图1 条纹相机(源于网络图片)Labsphere(蓝菲光学)为客户提供了一个准确、安全、易于使用且可以轻松集成到他们的测试环境中的黑体光源。系统中的 8 英寸的积分球有一个 2 英寸的开口,并配备了几个高级组件,使其能够满足客户的规格要求:图2 Labsphere(蓝菲光学)提供的黑体校准积分球光源图3 标准化测量辐亮度和5015K黑体曲线两个卤素灯,可在开口处提供高达 40,000 cd/m2 的光通量;开口端的色彩平衡 Omega 滤光片可调整 CCT 并将光谱输出完美匹配黑体曲线;硅探测器组件:用于测量可见光光谱通量的;以及光谱仪:用于测量两次测试之间的波长分布;-两个探测器的滤光片组件,包括一个快门滑片、附加色彩平衡 Omega 滤光片和一个用于第三个滤光片的滑片特定应用的安装底板,设计用于安装在腔室中,以及 3 米长的电缆,使电源机架和计算机能放在外面使用;制冷风扇,以防止意外灼伤和设备损坏。特点图4 面均匀性-97.5%具有 97.5% 的面均匀性,每次测试都能保证准确的结果;设计灵活,客户可使用一个系统在多种温度下校准相机;光谱输出与客户要求的黑体曲线完美匹配,提供与标准黑体光源相同的精度;使用 Labsphere (蓝菲光学)的 HELIOSense 软件可以轻松对每个组件进行微调控制以及实时数据收集和可视化;Labsphere(蓝菲光学) 保持与客户密切沟通,使客户能够获得专为他们的测试环境设计和构建的系统;提供的探测器可确保灯准确校准,并且提供可靠地测试数据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制