当前位置: 仪器信息网 > 行业主题 > >

碰撞台

仪器信息网碰撞台专题为您提供2024年最新碰撞台价格报价、厂家品牌的相关信息, 包括碰撞台参数、型号等,不管是国产,还是进口品牌的碰撞台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碰撞台相关的耗材配件、试剂标物,还有碰撞台相关的最新资讯、资料,以及碰撞台相关的解决方案。

碰撞台相关的方案

  • 冲击激波碰撞影响下的横向喷射-腔体相互作用
    采用LaVision公司的粒子成像测速系统,对冲击激波碰撞影响下的横向喷射-腔体相互作用进行了研究。测试系统包括一台200毫焦的双脉冲激光器和IagerProX型CCD相机。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水锌检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水铜检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水锰检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水钴检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水镍检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • 使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • 根据美国EPA方法200.8采用配有碰撞池的ICPMS-2040进行饮用水分析
    方法200.81是一种由美国环境保护局(EPA)开发用于分析地下水、地表水和饮用水中痕量元素的ICP-MS分析方法。EPA 200.8是一种基于无气体模式分析的方法。另一方面,ICP-MS通常配备碰撞/反应池技术,以消除多原子离子等干扰。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水钒检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水铝检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • PerkinElmer:使用NexION300DICP-MS在标准、碰撞和反应模式下按照美国EPA方法200.8对饮用水铬检测的研究
    由美国环境保护署(EPA)颁布的方法200.8是使用电感耦合等离子体质谱法(ICP-MS)测定地下水、地表水、饮用水和污水的非常有效的方法。按照美国EPA方法200.8规定饮用水中21种主要污染物和二级污染物,介绍了使用一台创新的、新一代的ICPMS:NexION 300进行测定的情况。本研究分别用3个不同的应用报告进行介绍。这一系列的报告主要对这项技术进行了概述,特别是对仪器拥有专利的通用池技术(UCT)在根据样品基质干扰的严重性和用户需求的基础上,如何在标准模式、使用动能歧视(KED)的碰撞模式,或者是反应模式(动态反应池-DRC)下运行的情况进行了描述。第一篇应用报告(“使用NexION 300Q ICP-MS标准模式按照美国 EPA 方法200.8对饮用水检测的研究”)重点关注的是使用NexION 300Q在标准模式下仅通过方法200.8中提到的校正方程来尽量减小基体造成的多原子干扰的情况。考虑到方法200.8最终会允许在饮用水检测中使用碰撞/反应池技术,第二份应用报告(使用NexION 300X ICP-MS在标准和碰撞模式下按照美国EPA方法200.8对饮用水检测的研究)介绍了使用一台NexION 300X同时在标准模式和碰撞(KED)模式(使用氦气)下检测饮用水的方法。本文是系列应用报告中的第三份报告,主要关注NexION 300D在标准、碰撞(KED)和反应(DRC)(使用氨气)三种模式下通过一个分析方法对21种元素同时进行准确分析的应用情况。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术 分析饮用水中微量元素
    通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • ICPMS-2030碰撞池技术快速测定血清中Ca的含量
    使用岛津公司新品ICPMS-2030电感耦合等离子体质谱仪并结合碰撞池技术,测定了人体血清中微量元素的含量。实验结果表明,质控样品测定值与标准值吻合,精密度均小于4%,样品平行性标准偏差小于1.4%。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,准确度高等特点,可满足血清样品中微量元素分析的要求。
  • ICPMS-2030碰撞池技术快速测定血清中微量元素的含量
    使用岛津公司新品ICPMS-2030电感耦合等离子体质谱仪并结合碰撞池技术,测定了人体血清中微量元素的含量。实验结果表明,质控样品测定值与标准值吻合,精密度均小于4%,样品平行性标准偏差小于1.4%。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,准确度高等特点,可满足血清样品中微量元素分析的要求。
  • 专利的iCRC碰撞反应池技术高效去除源于紫菜基体中的质谱干扰
    本文研究工作的重点为在Q-ICPMS中,借助新一代专利的碰撞反应池技术(iCRC技术),解决紫菜样品中双电荷离子干扰、同量异位素干扰、多原子离子干扰,最终获得满足国家标准GB5009.93-2017的要求并优于QQQ-ICPMS分析性能。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ag元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中B 元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ba元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Al元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Na元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Cr元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Hg元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ag元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ca元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中B元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ni 元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Pb元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Al元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ba元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中U元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制