当前位置: 仪器信息网 > 行业主题 > >

游动电流仪工作原理

仪器信息网游动电流仪工作原理专题为您提供2024年最新游动电流仪工作原理价格报价、厂家品牌的相关信息, 包括游动电流仪工作原理参数、型号等,不管是国产,还是进口品牌的游动电流仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合游动电流仪工作原理相关的耗材配件、试剂标物,还有游动电流仪工作原理相关的最新资讯、资料,以及游动电流仪工作原理相关的解决方案。

游动电流仪工作原理相关的资讯

  • Flumsys 10SC在线游动电流仪在自来水厂絮凝剂投加控制的应用
    在自来水处理中,选择合适的絮凝剂并掌握其投加量是确保出水质量的关键一环。传统的手动投加方法存在着投加量不均、浪费成本等问题,因此越来越多的自来水厂开始采用自动化投加系统进行控制。 Flumsys 10SC在线游动电流仪作为一种高精度、高可靠性的自动化投加控制设备,被广泛应用于自来水厂中。它通过实时监测流经管道中液体的游动电流值来确定投加絮凝剂的量,从而达到更加精准的投加控制效果。 Flumsys 10SC在线游动电流仪具有以下特点: 精准:能够精确地检测液体中的游动电流值,并根据实际情况调整投加量,以保证投加量的准确性。 高效:采用先进的在线监测技术,可以实现实时监测和控制,能够大大提高投加效率。 稳定:设备采用高品质的材料和工艺,能够在恶劣的环境下稳定工作,确保系统长时间稳定运行。 易操作:设备具有直观的界面和友好的操作界面,能够方便地进行各项设置和调整。 Flumsys 10SC在线游动电流仪的应用,能够有效地解决传统手动投加方法存在的问题,提高自来水厂絮凝剂投加的效率和精度。同时,它还可以实现对投加量的自动控制和监测,大大降低了人工成本和投资成本,并为出水质量的稳定保障提供了可靠的技术支持。 总之,Flumsys 10SC在线游动电流仪的广泛应用,将为自来水处理行业带来更加优质、高效、可靠的服务,进一步提高出水质量和用户满意度
  • 以色列科学家打造可在人体内游动的检测仪
    在经典科幻影片《神奇旅程》中,拉寇儿-薇芝率领的一支团队乘坐的潜艇缩小后进入一名受伤的外交官血管,设法挽救他的生命。以色列特拉维夫大学的研究人员研制出可以在人体内“游动”的微型胶囊式照相机  胶囊式照相机的铜“尾巴”由核磁共振扫描仪产生的磁场控制,允许科学家在体外操控照相机的体内移动特拉维夫大学研制的胶囊式照相机仍旧较大,无法进入血管,但可以利用磁场控制的铜“尾巴”在患者消化系统内“游动”  北京时间12月22日消息,在科幻影片《神奇旅程》中,一群医生乘坐缩小的潜艇进入一名垂死的患者体内,拯救他的生命。现在,以色列特拉维夫大学的研究人员距离打造这种迷你潜艇又向前迈进一步。他们研制出可以在人体内“游动”的微型胶囊式照相机。据悉,这是世界上第一个用于在人体内“游动”的无线远程遥控照相机,通过体外的核磁共振成像信号进行磁控制。  在1966年的经典影片《神奇旅程》中,科学家缩小了一艘潜艇及其艇员,让他们得以进入一名患者体内,拯救他的生命。当然,这种潜艇只是一个科学幻想,还无法成为现实。特拉维夫大学研制的微型照相机可以寻找伤口和肿瘤,同时不会像内窥镜那样让患者产生不适。  特拉维夫大学的加博尔-科萨尔在接受《生物医学微型设备》杂志采访时表示,这种微型照相机同样能够将药物送入患者体内。他说:“核磁共振成像仪能够产生一个巨大的恒定磁场。胶囊式照相机依照这个磁场在体内移动,就像一艘乘风破浪的帆船一样。”  胶囊式照相机的移动更像是在“游泳”。它长有一条“尾巴”,由铜线圈和柔软可弯曲的聚合物构成。磁场让尾巴内发生振动,允许照相机在体内“游动”,囊内的电子元件和微型传感器允许操作人员操控磁场,控制照相机的移动。科萨尔指出使用非铁质磁材料铜是一个关键。绝大多数磁铁都会干扰核磁共振成像仪,让最后的图像模糊不清,铜产生的干扰很小,能够获取清晰的图像。  内窥镜是一种目测检查身体通道或者结肠、膀胱、胃等中空器官内部情况的仪器,会对患者造成不适,患者在检查后需要时间恢复,同时需要服用镇静剂。特拉维夫大学研制的微型照相机主要用于检查进出较为容易的消化系统。
  • 万深发布藻类和浮游动物自动分类计数仪新品
    一、名称:藻类和浮游动物自动分类计数仪(AlgaeAC+ZooCC增强型)英文名: Automatic identification and classification counter for Algae & Zooplankton, Model AlgaeAC+ZooCC plus二、用途:水体中的浮游植物(藻类)和浮游动物优势种类和数量,以及颗粒度分布是研究水环境的重要依据,历来采用人工作业判定,相当费时费力。AlgaeAC藻类自动分类计数仪和ZooCC浮游动物自动分类计数仪可有效解决用户的该痛点问题,主要用于生态学调查、渔业、水产养殖、教育中,对水体中的浮游植物(藻类)和浮游动物样品,做自动分类计数、大小测量以及生物量测定。AlgaeAC+ZooCC增强型还带有藻类和浮游动物的智能鉴定模块,帮助减轻以往繁重的鉴定工作量,是生态调查监测的必备工具。三、核心参数:1、★全时自动对焦的2410万像素高分辨率大视野光学成像,针对显微藻类优化的对焦算法,确保扫描图像清晰,支持20X、40X物镜等放大倍率。2、★水样经前处理而置于藻类计数框后,自动完成藻类识别与分类计数全过程(自动移动视野对焦扫描拍照、自动分类识别计数、自动生成统计报表)。检测依据《SL733-2016内陆水域浮游植物监测技术规程》、《水和废水监测分析方法》(第四版)第五篇《水和废水的生物监测方法》,及GB17378-2007《海洋监测规范》、GB/T12763-2007《海洋调查规范》对应到藻类的计算要求。3、★系统内含蓝藻门、硅藻门、绿藻门、裸藻门、隐藻门、金藻门、甲藻门、黄藻门常见的55个属种以上藻类分类识别库,可根据当地情况自行扩展到60个至100个属种。4、★可分析获得每个藻体的面积、周长、体积、长、宽、主轴、副轴、等效直径等形态参数。可分析统计各藻类(按门或属种)的数量、面积、体积及其占比;对各分类进行排序及柱状图显示占比情况。可在Excel软件中进一步统计分析数据。可在采集图像上直接标出藻类名称,提取分割每个藻类的图像并自动分类保存,可回溯查看历史数据。自动给出分类计数统计报告,标示优势种和优势度,并按优势种排序。自动计算香农-威纳指数、均匀性指数、丰富度指数、藻个体密度、藻细胞密度、生物量等。5、可自动分类分析3~1000μm的藻类,100个视野的自动扫描成像+自动分析时间15-20分钟(视野数25-400个可选);检测范围为105-1010个/升;当地分类识别库优势种自动识别率≥90%,综合自动识别率≥80%,经交互修正后的最终识别率可达98%以上;在浓度为107-108个/升时,自动分析的重复性误差小于5%。6、模仿人工显微镜检测藻类的过程,可按全片计数法、对角线计数法、行格计数法、随机视野计数法等5种计数方式进行成像计数。7、★可以9600*6400dpi扫描获得巨大的透扫正片图像(厂家标示的最高分辨率62336*37760像素),能包含上千个完整的浮游动物。优化的照明参数能确保图像对比度和成像质量。8、★自动提取和保存超大图像中的浮游动物,自动学习并实现150μm以上常见优势浮游动物按大类鉴定来高效率自动分类计数(按滤网200μm为1档,1500μm为2档,分别从多到少来自动统计),给出浮游动物大小的粒径谱分布等参数。内置东海、南海、黄海、渤海四大海域初步分类文件,用户可自行扩充或新建标准库(种类可达100类),自动学习生成分类文件。学习15大类3000张已分类图库样本,来新建自动学习分类文件耗时≤6分钟/次。9、★适合分析水样量50-700mL/次。扫描图像≤15分钟/水样,分类计数的自动分析耗时≤6分钟/水样。具有鼠标辅助分割和拖动目标改判分类特性,以获得100%正确的统计结果。10、★自动给出分类计数统计报告,可分析获得每个浮游动物的面积、周长、体积、长、宽、主轴、副轴、等效直径等形态参数。可分析统计每类浮游动物的数量、面积、体积、占比及多样性指数;对各分类进行排序及柱状图显示占比情况。可在Excel软件中进一步统计分析数据。11、可批量化兼容导入其它已知标准学习库图和其它图像。标配2个水样盘:高透光超白玻璃做面,容积2cm高*144cm2(9600*6400dpi或9600*4800dpi扫描,对应1档滤网)、2cm高*350cm2(1200*1200dpi扫描,对应2档滤网)。12、★藻类和浮游动物的智能鉴定模块1)能快速有效地以图搜图,来智能鉴定多达2.4098万个种海水和淡水的藻类、浮游动物(中文、拉丁文双语显示的浮游生物专家图库:藻类共15个门、1636个属、14645个种;浮游动物共24大类、1936个属、9453个种)。已有有效图库量26.4777万张以上,各图库属种和内容可自行扩充。还能按P5胸足搜索鉴定桡足类。2)能自动索引用户已建计数表的藻类和浮游动物来生成所关注流域小图库,使以图搜图搜素鉴定更快捷准确。3)微囊藻分析模块能自动学习与自动分析团状微囊藻群体的细胞数,自动计数颗粒性或单细胞微藻、链状微藻细胞、线虫等类的浮游动物。4)具有藻类、浮游动物计数及形态测量功能,统计并报告优势种序列。内置34种几何模型,通过测量少量参数即可计算浮游生物个体/细胞体积及生物量。13、可根据采集地地理坐标在地图上定位及标注,支持高德地图、高德卫星地图、谷歌地图、谷歌卫星地图等多种地图源。14、厂家提供协助建立1个当地分类初始识别库服务,提供远程协助指导、3年免费远程升级服务。四、配置清单:1)藻类和浮游动物自动分类计数仪AlgaeAC+ZooCC增强型(含浮游生物智能鉴定系统) 1套2)高精度电控X-Y自动扫描平台+控制器 1套3)全时自动对焦的高分辨率光学成像系统 1套4)高分辨率、高性能A4幅面影像扫描仪 1套5)奥林巴斯BX53三目生物显微镜 1套6)品牌电脑(i5 九代以上CPU /16G内存/含支持CUDA的GTX1060 GPU/ 2T硬盘/ 23”彩显,1个USB3.0口+3个USB2.0口,运行环境Windows 10操作系统) 1台7)高透明大容量水样盘 2个本技术标书中打★款项必须响应,否则为重大偏离。建议报“单一来源”直接采购,理由是:目前仅万深分析系统能快速有效地以图搜图,来智能鉴定多达2.4098万个种的藻类、浮游动物,国内外其它任何系统均无法替代或PK。直采因省掉中间环节还省钱。创新点:用于生态学调查、渔业、水产养殖、教育中,对水体中的浮游植物(藻类)和浮游动物样品,做自动分类计数、大小测量以及生物量测定,自动完成藻类识别与分类计数全过程(自动移动视野对焦扫描拍照、自动分类识别计数、自动生成统计报表)。其还带有藻类和浮游动物的智能鉴定模块,快速有效地以图搜图,来智能鉴定多达2.4098万个种海水和淡水的藻类、浮游动物,帮助减轻以往繁重的鉴定工作量,是生态调查监测的必备工具。藻类和浮游动物自动分类计数仪
  • 全球首台浮游动物计数仪“Z100”发布
    (2011年4月26日,杭州)-- 迅数科技,中国领先的微生物检测技术和仪器供应商,今天高兴地宣布:"迅数_Z100浮游动物计数仪"在中国市场隆重上市!据悉这是全球首台可“精确到种”的浮游动物计数仪;也是迅数科技继成功推出Algacount系列藻类辅助鉴定计数仪后,在浮游生物监测领域的又一重大突破。 浮游动物的种类和数量与水质关系密切,是水质监测的重要生物指标。浮游动物是水体(包括淡水水域和海洋)生态系统中非常重要的一大生态类群,同时浮游动物也是经济水产动物,是中上层水域中鱼类和其他经济动物的重要饵料,对渔业发展具有重要意义。 目前浮游动物计数的实际操作是采用显微镜下“人工镜检计数”方法。这种方法不仅工作强度大、效率低,同时要求实验人员必须具备丰富的水生生物学知识。而当前,我国具备相应经验的人才匮乏,而水生生物学知识的积累又需要时间。因此,我国的浮游动物监测领域迫切需要专门的技术手段和仪器,来取代人工计数方法! 针对当前我国专业监测技术手段的匮乏现状和人工镜检的低效率,迅数科技集合国内外研发资源,历时两年,推出了创新的"迅数_Z100浮游动物计数仪"。"迅数_Z100浮游动物计数仪" 采用了真彩高解析度CCD,能自动连续获取生物显微镜的光学信号,并转化为显微数字图像,然后对每张图像的各种浮游动物进行分类计数标记,再通过对多个视野中分类标记的浮游动物自动累计,可实现浮游动物丰度的自动换算和优势种自动排序。 "迅数_Z100浮游动物计数仪" 还配备了强大的浮游动物分类专家图谱。该图谱包含6大类、460属、1500种浮游动物的文字描述、特征图、及精美显微照片。选择任意类、属、种,快速搜索浮游动物文字介绍、特征图及照片,并与实际拍摄的未知浮游动物进行特征对比,从而实现快速鉴别浮游动物种类。这项技术可替代常规的“人工查阅鉴定手册”鉴定方法,实现快速辅助鉴定到种,确定未知浮游动物的中文名称和拉丁文名称。操作者可 我国的“水环境监测规范”要求:浮游动物定量计数必须鉴定到属; “海洋生态环境监测技术规范”规定:浮游动物除鱼卵和仔、稚鱼外,必须给出种名,按种计数。在“渔业生态环境监测规范”中,也着重强调了浮游动物的监测指标。迅数科技率先开发出浮游动物计数仪产品,将帮助广大浮游动物监测工作者提高工作效率与监测水平,为环境监测、水质分析及渔业研究机构提供了最佳的操作平台!
  • 万深发布万深ZooCC增强型浮游动物自动分类计数仪新品
    一、名称:万深ZooCC增强型浮游动物自动分类计数仪英文名: Automatic identification and classification counter for Zooplankton, Model ZooCC plus二、用途:水体中的浮游动物优势种类和数量,以及颗粒度分布是研究水生生物食物链的重要依据,历来采用人工作业判定,相当费时费力。ZooCC浮游动物自动分类计数仪可有效解决用户的该痛点问题,主要用于生态学调查、渔业、水产养殖、教育中,对水体中的浮游动物样品,做自动分类计数、大小测量以及生物量测定。ZooCC增强型还带有藻类和浮游动物的智能鉴定模块,帮助减轻以往繁重的鉴定工作量,是生态调查监测的必备工具。三、核心参数:1、以9600*6400dpi扫描获得巨大的透扫正片图像(厂家标示的最高分辨率62336*37760像素),能包含上千个完整的浮游动物。优化的照明参数能确保图像对比度和成像质量。2、★自动提取和保存超大图像中的浮游动物,自动学习并实现150μm以上常见优势浮游动物按大类鉴定来高效率自动分类计数(按滤网100μm-1500μm为1档,1.5mm-8mm为2档,分别从多到少来自动统计),给出浮游动物大小的粒径谱分布等参数。内置东海、南海、黄海、渤海四大海域初步分类文件,用户可自行扩充或新建标准库(种类可达100类),自动学习生成分类文件。学习15大类3000张已分类图库样本,来新建自动学习分类文件耗时≤6分钟/次。3、★适合分析水样量50-700mL/次。扫描图像≤15分钟/水样,鉴定分类计数的自动分析耗时≤6分钟/水样。具有鼠标辅助分割和拖动目标改判分类特性,以获得100%正确的统计结果。4、★自动给出分类计数统计报告,可分析获得每个浮游动物的面积、周长、体积、长、宽、主轴、副轴、等效直径等形态参数。可分析统计每类浮游动物的数量、面积、体积、占比及多样性指数;对各分类进行排序及柱状图显示占比情况。可在Excel软件中进一步统计分析数据。5、★藻类和浮游动物的智能鉴定模块1)能快速有效地以图搜图,来智能鉴定多达2.3934万个种海水和淡水的藻类、浮游动物(中文、拉丁文双语显示的浮游生物专家图库:藻类共15个门、1603个属、14499个种;浮游动物共24大类、1932个属、9435个种)。已有有效图库量26.1628万张以上,各图库属种和内容可自行扩充。还能按P5胸足搜索鉴定桡足类。2)能自动索引用户已建计数表的藻类和浮游动物来生成所关注流域小图库,使以图搜图搜素鉴定更快捷准确。3)微囊藻分析模块能自动学习与自动分析团状微囊藻群体的细胞数,自动计数颗粒性或单细胞微藻、链状微藻细胞、线虫等类的浮游动物。4)具有藻类、浮游动物计数及形态测量功能,统计并报告优势种序列。内置34种几何模型,通过测量少量参数即可计算浮游生物个体/细胞体积及生物量。6、★可根据采集地地理坐标在地图上定位及标注,支持高德地图、高德卫星地图、谷歌地图、谷歌卫星地图等多种地图源。7、可批量化兼容导入其它已知标准学习库图和其它图像。标配2个水样盘:高透光超白玻璃做面,容积2cm高*144cm2(9600*6400dpi或9600*4800dpi扫描,对应1档滤网)、2cm高*350cm2(1200*1200dpi扫描,对应2档滤网)。四、配置清单:1)万深ZooCC增强型浮游动物自动分类计数软件(含浮游生物智能鉴定系统) 1套2)专业级2000万像素彩色CMOS相机(Sony大靶面1”芯片)+显微镜标准C接口3)高分辨率、高性能A4幅面影像扫描仪 1套4)品牌电脑(i5 九代以上CPU /16G内存/含支持CUDA的GTX1060 GPU/ 2T硬盘/ 23”彩显,1个USB3.0口+3个USB2.0口,运行环境Windows 10操作系统)1台5)高透明大容量水样盘 2个注:本技术标书中打★款项必须响应,否则为重大偏离。选配:奥林巴斯BX53T-32P01研究级三目生物显微镜(含BX53F机架、三目观察筒、D型6孔物镜转盘、BX3镜臂、平场消色差物镜(100XO、40X、20X、10X、4X)、10倍宽视场可调目镜创新点:2亿像素以上扫描成像分析大水样量(50-700mL/次),自动提取和保存超大图像中的浮游动物,自动学习并实现150μ m以上常见优势浮游动物按大类鉴定来高效率自动分类计数(按滤网100μ m-1500μ m为1档,1.5mm-8mm为2档,分别从多到少来自动统计),给出浮游动物大小的粒径谱分布、多样性指数等参数。能快速有效地以图搜图,来智能鉴定多达2.3934万个种海水和淡水的藻类、浮游动物。万深ZooCC增强型浮游动物自动分类计数仪
  • 利用UVP原位成像技术和机器学习估算全球浮游动物生物量分布
    法国LOV(Laboratoire d'Océanographie de Villefranche-sur-Mer;索邦大学和法国国家科学研究中心的联合研究单位)实验室的科学家Laetitia等人利用UVP的水下原位观测结果,结合机器学习模型,预测了19个浮游动物类群(ESD范围为1-50mm)的全球生物量分布,并探讨了其与环境因素的关系。研究背景浮游动物存在于全球所有海洋中,它们在海洋食物网和生物地球化学循环中发挥着重要的作用,是生物碳泵的主要驱动力,并为维持鱼类群落的稳定作出了巨大贡献。但浮游动物对环境条件很敏感,因此被认为是海洋变化的哨兵。它们的分布受到海洋中物理、化学、以及生物因素的相互作用及调控。为了更好地理解浮游动物的重要性,需要对浮游动物的生物量和功能群进行全球定量评估。目前只有少数浮游动物群体的全球分布得到了很好的研究,这些群体通常使用浮游生物网采样。但还有很多浮游动物类群非常脆弱,非常容易受到浮游生物网的破坏,或者易在固定液中保存不良,导致它们的生物量和在海洋生态系统中的生态作用被低估。在这种情况下,使用非侵入式的原位成像方法对浮游动物进行研究,显得尤为必要。在众多水下原位成像系统中,只有水下颗粒物和浮游动物原位成像系统(UVP)在全球范围内被广泛应用。研究过程Laetitia等人通过对全球范围内2008年-2019年之间获得的超过3549个UVP剖面(0-500米,图1)上的466872个个体进行了分类,估计了它们的个体生物量,并使用分类特定的转换因子将其转换为生物量。然后将这些生物量与环境变量(温度、盐度、氧气等)的气候学联系起来,使用增强回归树等机器学习算法,建立了生物量与环境因素之间的关系模型,以此预测全球浮游动物的生物量。图1 本研究使用的UVP数据集地图。透明度用来说明地图上点的密度。水下颗粒物和浮游动物图像原位采集系统UVP(图2)主要用于同时研究水下的大型颗粒物(80μm)和浮游动物(700μm),并在已知水体体积下对水中颗粒物和浮游动物进行量化。UVP使用传统的照明设备和经电脑处理的光学技术,来获得浮游动物原位数字图像,图像后续可以通过EcoTaxa浮游动物数据库共享平台(图3)来进行浮游动物种类鉴定及分类。图2 水下颗粒物和浮游动物图像原位采集系统UVP。左图为本实验中使用的UVP5(目前已停产);右图为升级版本UVP6-HF,与UVP5功能相同,且重量更轻图3 EcoTaxa浮游动物数据库共享平台对浮游动物进行种类鉴定及分类研究结果结果表明,浮游动物对环境很敏感,并会对环境的变化作出反应。全球浮游动物的生物量呈现出一定的空间分布模式,生物量最高的区域位于大约60°N和55°S附近(图4),而在海洋环流附近最低。此外,预计赤道的浮游动物生物量也会增加。保守预估,全球综合浮游动物生物量最小值(0-500 m)为0.403 PgC。在不同的浮游动物群体中,桡足类为最主要的群体(35.7%,主要分布在极地地区),其次为真软甲类(26.6%)和有孔虫类(16.4%,主要分布在热带辐合带)。图4 利用分类群预测的0 ~ 500m全球生物量分布图图5 在世界范围、高纬度和低纬度模式下,0-200 m(A)和200-500 m(B)深度下预测平均生物量(PgC)的条形图,从高到低排列。研究结论尽管研究取得了一些重要发现,但也存在一些限制和挑战。机器学习模型对浮游动物数据库的大小比较敏感,并且对于稀有类群的预测能力较弱。因此,在未来的研究中,需要进一步改进模型以提高对这些类群的预测能力。总而言之,本研究提供了有关全球浮游动物生物量分布的重要预测结果,并揭示了其与环境因素之间的关系。这对于深入了解浮游动物在海洋食物网和生物地球化学循环中的作用具有重要意义。随着UVP等数字成像方法的不断发展和应用,科学家们将能够更准确地估计全球浮游动物的生物量分布,并为保护海洋生态系统提供更有效的决策依据。参考文献1. Drago L, Panaï otis T, Irisson J O, et al. Global distribution of zooplankton biomass estimated by in situ imaging and machine learning[J]. Frontiers in Marine Science, 2022, 9.
  • JENSPRIMA杰普在线流动电流分析仪应用于自来水厂 | 自动控制絮凝剂的投加
    流动电流分析仪在自来水厂的应用:自来水厂中流动电流分析仪的应用有重要意义,精准在线监测更有力确保供水系统正常运行和安全性。提高供水系统的效率和可靠性。避免供水过程中出现中断或隐患或原水及供水水质问题的发生。在线监测仪器旨在为水处理用户提供更有效的工具,杰普仪器Flumsys系列在线流动电流分析仪在优化和控制絮凝剂和聚合物的用量表现非凡!通过实时监测流经管道中液体的游动电流值来确定投加絮凝剂的量,从而达到更加精准的投加控制效果!杰普仪器Flumsys 10SC及Flumsys 10TC-SP两款在线流动电流分析仪,作为高精度、高可靠性的自动化投加控制设备,受到国内外用户选择,并广泛应用于自来水厂,污水处理厂,污泥脱水,反渗透制程,及其他需要投加絮凝剂工艺等需水质监测场景! 浅谈絮凝剂投加控制“难”絮凝剂投加量难以控制,絮凝剂的性质和特点会对投加量的控制造成一定的困难,同样水质的特性也是决定投加量的重要因素之一。不同类型絮凝剂在不同水质条件下可能表现出不同的效果,因此为达到理想的效果需要根据具体情况进行调整。水处理过程中的水质变化也会影响絮凝剂的投加量。操作人员经验和技术水平也会产生直接影响。如缺乏经验或技术不敦练可能会导致投加误差,水处理设备的性能和运行状态与翼凝剂投加量也紧密相关。如设备存在故障或不稳定运行状态可能导致絮凝剂投加量的波动。因此,絮凝剂投加量难以控制是由多种因袁共同作用所致。为了解决这个问题,需要综合考虑水质、操作人员技术水平和设备状态等因素,才能进行合理的调整控制投加。 水中悬浮物浓度、溶解物质的种类和浓度,以及pH值等都会影响絮凝剂的投加量。水处理工艺不同、处理过程中的温度、搅拌速度和沉淀时间等操作条件也会对投加量产生影响。及不同场景下水处理目标的要求也是影响投加量的重要因素。根据水质的不同,对于不同的水处理目标,投加量也会有所不同。单纯人工操作在需要综合考虑各种因素来确定最合适的投加量是远远不够的,重持着科技之心不断创新,杰普仪器致力于为用户提供更县实用性的解决方案,助力企业精准测量和高效生产! Flumsys 10TC-SP 在线流动电流分析仪 :● 同时显示实际SC值和相对SC值 ● 同时监控pH值(可选),实时了解絮凝效果 ● 自动清洗功能 ● PID控制功能 ● SC 4-20mA和PID 4-20mA输出 ● 2路高/低报警输出 ● RS485 Modbus RTU通讯 ● 4.3寸彩色触摸屏,操作简单方便 ● 密码保护,防止未经授权的操作 ● 数据记录功能,支持U盘到导出(Excel) ● 具有自动控制/手动控制两种模式 ● 传感器分体式设计,便于现场安装 ● 选配预处理系统,极大降低维护量 Flumsys 10SC 在线流动电流分析仪 ● 自动控制絮凝剂的投加 ● 节省絮凝剂费用 ● 使出水水质达标 ● 运营和维护成本低 ● 实时监控pH值 ● 耐用、可靠且易于控制的加药系统 水温pH值的“影响力”水温是影响絮凝剂投加效果的因素之一。不同水温会对絮凝剂的溶解速度、分散性以及化学反应产生影响。较高的水温可以加快絮凝剂的溶解速度,提高其活性而加快絮凝过程。过高的水温也可能导致絮凝剂降解或失活。较低的水温则会降低絮凝剂的活性延缓絮凝过程。因此使用絮凝剂时需要根据具体的水温情况进行调整投加达到最佳的絮凝效果。在水处理过程中pH值也是决定絮凝剂效果的关键因素之一。pH值是指溶液的酸碱性程度,会直接影响到絮凝剂的溶解性、稳定性和活性,关注水体的pH值进行相应的调整确才保絮凝剂能够发挥最佳效果。 innoCon 6800P 控制器&innoSens pH/ORP传感器 innoCon 6800P控制器 ● 宽电源输入,防干扰设计 ● 大屏幕背光液晶显示测量值、温度和继电器状态 ● 中/英文菜单,操作简便 ● 密码保护,防止未经授权的操作 ● 全新的校准步骤提示,可以帮助减少操作错误 ● 2 x 可编程Hi/Lo继电器输出 ● 可编程的自动清洗继电器输出 ● 2 x 隔离式4-20mA输出 ● RS485 Modbus RTU通讯 innoSens 125T传感器 ● Ag/AgCl参比系统可选Gel和Polymer电解液电极寿命长 ● 可选开放式隔膜和PTFE隔膜,抗污能力强 ● 工作温度-5-100℃,高温电极可达135℃,可选PT1000温度探头 测量范围:0-14pH 工作温度:-5-100℃ 最大工作压力:6bar 电极材质:Glass 电解液:Polymer 浊度悬浮物的“影响力”水质浊度及悬浮物对絮凝剂投加有着重要的影响。在水质浊度较高的情况下,絮凝剂投加的效果可能会受到一定程度的限制。因为水质浊度高意味着水中悬浮物和颗粒物的含量较多,这些颗粒物会与絮凝剂发生相互作用,降低絮凝剂的有效性。因此,在处理高浊度水源时,可能需要增加絮凝剂的投加量或者采用更强效的絮凝剂,以确保水质的净化效果。如水质浊度较低的情况,絮凝剂的投加效果通常会更好。因为水中悬浮物和颗粒物的含量较少,絮凝剂可以更充分地与这些颗粒物结合,形成较大的沉淀物,从而更容易被过滤或沉淀。此时,投加适量的絮凝剂可以有效地提高水质的澄清度。水质浊度对絮凝剂投加的影响是非常重要的。根据水质浊度的不同,合理调整絮凝剂的投加量和选择适合的絮凝剂类型,可以提高水处理过程中的效率和水质的净化效果。水中悬浮物颗粒对絮凝剂投加有一定影响。在水处理过程中,悬浮物颗粒的存在会影响絮凝剂的投加效果。颗粒会与絮凝剂发生相互作用,可能会降低絮凝剂的效能,影响水质的净化效果。 innoCon 6800T-1高量程在线浊度分析仪 innoCon 6800T-1控制器 innoCon6800系列单通道控制器设计用于水处理行业相关的单一水质参数测量。4.3寸彩色LCD显示屏,触摸操作,设置非常简单。该系列控制器具有数据存储功能,支持U盘数据导出。提供三个可编程的继电器和两路4-20mA输出,用于控制辅助设备,标配Modbus RTU (RS485)通讯。 innoSens810T传感器innoSens810T高量程浊度传感器采用90°光散射原理,符合ENISO 7027标准。当光通过溶液时,一部分被吸收和散射,另一部分透过溶液,这样可以通过测量水中颗粒的散射光的强度来测量水样的浊度/悬浮物,最大可测4000NTU。innoCon 6800T-5 低量程在线浊度分析仪innoCon 6800T-5控制器 innoCon6800系列单通道控制器设计用于水处理行业相关的单一水质参数测量。4.3寸彩色LCD显示屏,触摸操作,设置非常简单。该系列控制器具有数据存储功能,支持U盘数据导出。提供三个可编程的继电器和两路4-20mA输出,用于控制辅助设备,标配Modbus RTU (RS485)通讯。 innoSens 850T传感器 innoSens 850T低量程浊度传感器可测量超低量程浊度,内有消泡结构和防结露功能,保证稳定、高精度测量。使用LED光源,十年内无需更换,广泛用于自来水出水口、工程排水出水口等各类干净水质的浊度在线监测。 外部水利条件的“影响力”外部水利条件对自来水厂絮凝剂投加产生影响。这些条件包括水源的水质、水位的变化以及水流速度的波动,季节降雨等。在水质方面,如果水源中含有较高的悬浮物或有机物质,自来水厂可能需要增加絮凝剂的投加量以确保水质的净化效果。此外,水位的变化也会影响絮凝剂的投加,因为水位的上升或下降会改变水流的速度和压力,从而影响絮凝剂的混合和分散效果。另外,水流速度的波动也会对絮凝剂的投加产生影响,因为较高的水流速度可能会导致絮凝剂无法充分混合,而较低的水流速度则可能导致絮凝剂无法均匀分散在水中。因此,自来水厂需要根据外部水利条件的变化,灵活调整絮凝剂的投加量和投加,Streaming Current Detector(流动电流仪)简称SCD,通过流动电流原理检测水中离子和胶体的电荷(类似Zeta电位),常用于水处理过程中絮凝剂的精确投加,能更好的确保水质的稳定和净化效果的达到。
  • 中国仪器仪表行业协会发布《水体浮游动物在线监测仪》等5项团体标准
    按照《中国仪器仪表行业协会团体标准管理办法(2020年修订版)》和《中国仪器仪表行业协会团体标准制定工作细则(2020年修订版》,中国仪器仪表行业协会已组织有关单位完成《水体浮游动物在线监测仪》等5项团体标准的制定工作,现批准发布,详见附表。特此公告。
  • 【案例分享】湖南省某县自来水厂水质在线分析仪应用| Flumsys 10SC 流动电流分析仪
    案例分享湖南省某自来水厂应用展示本次安装调试位于湖南省,地处洞庭湖腹地,区域周边覆盖约20万人饮水需求,城乡供水一体化不断完善,项目产品选择为Flumsys 10SC在线流动电流分析仪,在自来水处理中选择合适的絮凝剂,掌握其投加量是确保出水质量的关键一环。传统手动投加方法依赖人工经验判断,存在投加量不均、浪费成本等问题,越来越多供水单位及企业选择采用自动化投加系统进行控制。 Flumsys 10SC作为一种水处理厂操作人员的有效工具,以准确性及可靠性自动化投加控制设备,优化和控制絮凝剂和聚合物用量,受到用户长期信赖选择,不仅用于自来水厂、也用于污水处理等场景。通过实时监测流经管道中液体的游动电流值来确定投加絮凝剂的量,从而达到更加精准的投加控制效果!助力企业为居民提供优质安全的放心水!安装现场流动电流分析仪安装调试现场清流汇民生,水是生命之源,人们的生产、生活用水,都离不开合格的水质。当下智慧水厂在保证水水质综合格稳定的情况,更重视与时俱进完善供水管网建设、迭代升级水质监测设备、持续改进工艺流程,供水企业的生命线更是民生用水的生命源!自来水行业监参数包括浊度、pH,余氯为自来水的基本监测指标,及其他参数包括溶解氧、大肠杆菌、重金属含量等反映水质基本情况和卫生状况。自来水厂中在线水质监测中监测参数、频率、点位、设备、数据、分析都是保障饮用水安全的重要环节。杰普仪器水质在线分析仪器设身处地为从企业用户出发,产品以行业深入不断创新,我们可为用户提供饮用水在线测量解决方案,及供管网监测或二次供水监测解决方案(pH/余氯/浊度)等,在保证水质前提下为用户节省资金和提高效率,JENSPRIMA公司可根据客户需求扩展其他水质测量参数,用于自来水处理流程!案例选型产品共享项目信息:湖南省某县自来水厂应用展示安装地点:益阳市仪器设备:Flumsys 10SC在线流动电流分析仪测量参数:流动电流(Streaming Current)测量范围:-1000~1000SC精准性:±0.1%重复性:±0.1%响应时间:1s操作温度:0-50℃供电电源:220VAC, 50/60Hz显示:7寸触摸屏显示输出:2路4-20mA(测量值及PID),最大负载500Ω通讯:RS485 Modbus RTU报警:2路高/低继电器,可设定报警值自动清洗:清洗间隔:0-9999min, 清洗时间:0-999s数据存储:实时数据记录,支持U盘导出(Excel)取样要求:絮凝剂投加点至传感器时间约3 ~ 5min流速要求:1~4L/min防护等级:控制器:IP65,传感器:IP54尺寸:控制器:300×350×200mm 传感器:250×350×150mm重量:控制器:10Kg、传感器:10Kg
  • 【展会】杰普公司携新品Flumsys 10SC流动电流仪亮相第2届中国环博会成都展
    万众期待下,第2届中国环博会成都展于2020年10月13-15日在中国西部国际博览城成功举行,展期3天,吸引了来自日本、德国、美国等12个国家超过300家环境企业参展,集中展示了市政、工业及农村领域水、固废、大气、土壤污染治理前沿技术和解决方案。杰普仪器(上海)有限公司,一家专注水测量领域的创新型公司;专业为客户量身打造了多款全新的、性价比高的、最有效的水测量仪器解决方案。在本次成都展,位于5号馆E55展台的英国Jensprima/杰普也同样亮相于本届展会,并获得了许多用户和同行的咨询关注! 作为水质硬度在线测量的领跑者,杰普向我们展示了热销的明星产品:在线硬度分析仪&在线碱度分析仪。目前超过1800台PACON 5000&PACON 4800在线硬度/碱度分析仪器在中国安装使用,搭配TH5001/TH5003/TH5010/TH5030/TH5050硬度试剂可测水质硬度。 PACON 2500在线比色法余氯/总氯分析仪采用DPD比色法检测余氯的浓度,自动加入试剂比色测量,适用于加氯消毒过程中的余氯测量和饮用水管网余氯浓度的监测。 本次展会,许多用户和同行对杰普公司技术表示认可,也期待下一步的合作。同时,针对絮凝剂的自动投加的难题,,杰普新推出Flumsys 10SC和Flumsys 20SC在线游动电流分析仪,带自动PID控制输出,带自动清洗功能。Flumsys 10SC展示图产品的品牌就是品质的象征。杰普公司以诚信服务对待每一位客户的售前售中售后,充分理解客人的需求、抱怨、投诉,在保证质量的前提下以超一流的速度为您提供服务解决问题。未来,我们将继续坚持口碑销售,推出更多高性价比产品和水质行业解决定制方案,为全球环境健康贡献一份力量。
  • 小小游戏揭秘GE TOC仪工作原理
    6月25日,GE TOC小游戏正式上线,小小游戏为您展示GE TOC仪内部的大秘密,点击此处,开始游戏!GE Sievers系列总有机碳(TOC)分析仪具备两大基本功能,第一, 首先通过UV灯氧化技术将水中的总有机碳充分氧化,生成CO2;第二,测试新产生的CO2,以测量水中总有机碳含量,用于表征水中有机物的含量,这是水质的重要指标之一。Sievers系列TOC分析仪区别于其他品牌TOC仪的关键在于:检测新生成的CO2时,Sievers TOC分析仪采用了薄膜电导率检测技术。Sievers薄膜电导率检测技术使用了选择性气体渗透薄膜,只有氧化产生的CO2能通过这层薄膜进入检测舱。从而防止酸、碱和含卤素等杂原子化合物的干扰,因此相比直接电导率法,Sievers薄膜电导率检测法减少了检测中的“假正”现象,提供了无比优异的选择性、灵敏度、稳定性、精确度和准确度。看完文字介绍,再玩一下GE TOC的小游戏吧,更形象地了解一下GE TOC仪的原理!若无法正常显示,点击此处开始游戏!
  • 【网络研讨会】5月10日,动电流相关介绍,立即报名!
    时间:2023年5月10日(周三)14:00腾讯会议号:970-205-287主讲人:赵健伟 教授 北京大学学士(1996),中科院长春应化所硕士(1999),北海道大学博士(2003),牛津大学博士后研究员(2003~2004),期间聘为哈尔滨工业大学海外合约专家。南京大学教授(2003~2016),博士生导师。2016 起任嘉兴学院教授,“南湖学者"(2019,2022续聘),嘉兴学院“尖峰计划"团队带头人。研究工作集中在金属纳米材料的分子动力学模拟、分子电子传递、电化学、电化学工程等。发表学术论文230 余篇,授权发明专利 10 余件。会议内容动电流的基本原理动电流的应用范围及特点动电流的具体应用
  • 技术原理:浊度仪测浊度采用的原理
    浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉尘、微细有机物、浮游动物和其他微生物等悬浮物和胶体物都可使水中呈现浊度。浊度仪采用90°散射光原理。由光源发出的平行光束通过溶液时,一部分被吸收和散射,另一部分透过溶液。与入射光成90°方向的散射光强度复合雷莱公式:IS = ×I0其中:I0---------------入射光强度;IS----------散射光强度;N-------单位溶液微粒数;V-----------微粒体积;-------入射光波长 ;K-----------系数;在入射光很定条件下,在一定浊度范围内,散射光强度与溶液的浑浊度成正比。上式可 表示为 =K’N (K’为常数) 根据这一公式,可以通过测量水样中微粒的散射光强度来测量水样的浊度。浊度仪分为便携式,台式和在线浊度仪。台式一般用于实验室检测浊度;便携式和在线浊度仪一般用于现场检测。便携式用于不连续的检测,在线浊度仪用于连续,现场浊度监测。它可以实时,连续监测浊度,一般用于自来水厂,污水厂,渠道,水利设施,防洪监测,水池等处。
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 一看就懂|动图解析16种仪器原理
    pspan style="color: rgb(31, 73, 125) "strong紫外分光光谱UV/strong/span/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title="紫外分光光谱UV.jpeg" width="400" height="290" border="0" hspace="0" vspace="0" style="width: 400px height: 290px "//strong/span/ppstrongi分析原理/i/strong:吸收紫外光能量,引起分子中电子能级的跃迁/ppistrong谱图的表示方法/strong/i:相对吸收光能量随吸收光波长的变化/ppistrong提供的信息/strong/i:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息/pp style="text-indent: 2em "物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title="光线传输.gif"/br//pp style="text-align: center "strong光线传输/strong/pp style="text-align:center"strongimg src="https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title="光衍射.gif"//strong/pp style="text-align:center"strong光衍射/strongbr//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title="探测.gif"/br//pp style="text-align: center "strong探测/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title="数据输出.gif"/br//pp style="text-align: center "strong数据输出/strong/ppspan style="color: rgb(31, 73, 125) "strong红外吸收光谱法IR/strong/span/pp style="text-align: center "span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title="红外吸收光谱法IR.jpeg" width="400" height="351" border="0" hspace="0" vspace="0" style="width: 400px height: 351px "//strong/span/ppistrong分析原理/strong/i:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁/ppistrong谱图的表示方法/strong/i:相对透射光能量随透射光频率变化/ppstrongi提供的信息/i/strong:峰的位置、强度和形状,提供功能团或化学键的特征振动频率/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title="红外光谱测试.gif"/br//pp style="text-align: center "strong红外光谱测试/strong/pp style="text-indent: 2em "红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。/pp style="text-indent: 2em "以下是甲醇红外光谱分析过程:/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title="甲醇红外光谱结构分析过程1.gif"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title="甲醇红外光谱结构分析过程2.gif"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title="甲醇红外光谱结构分析过程3.gif"//pp style="text-align:center"strong甲醇红外光谱结构分析过程/strongbr//ppspan style="color: rgb(31, 73, 125) "strong核磁共振波谱法NMR/strong/spanbr//pp style="text-align: center "span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title="核磁共振波谱法NMR.jpeg" width="400" height="240" border="0" hspace="0" vspace="0" style="width: 400px height: 240px "//strong/span/ppistrong分析原理/strong/i:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁/ppistrong谱图的表示方法/strong/i:吸收光能量随化学位移的变化/ppistrong提供的信息/strong/i:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title="NMR结构.gif"/br//pp style="text-align: center "strongNMR结构/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title="进样.gif"/br//pp style="text-align: center "strong进样/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title="样品在磁场中.gif"/br//pp style="text-align: center "strong样品在磁场中/strong/pp style="text-indent: 2em "当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style="float:none " title="核磁共振及数据输出1.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style="float:none " title="核磁共振及数据输出2.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style="float: none width: 400px height: 225px " title="核磁共振及数据输出3.gif" width="400" height="225" border="0" hspace="0" vspace="0"//pp style="text-align:center"strong核磁共振及数据输出/strong/ppspan style="color: rgb(31, 73, 125) "strong质谱分析法MS/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title="质谱分析法MS.jpeg" width="400" height="282" border="0" hspace="0" vspace="0" style="width: 400px height: 282px "//strong/span/ppstrongi分析原理/i/strong:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化/ppistrong提供的信息/strong/i:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息/ppistrongFT-ICR质谱仪工作过程:/strong/i/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title="离子产生.gif"/br//pp style="text-align: center "strong离子产生/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title="离子收集.gif"/br//pp style="text-align: center "strong离子收集/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title="离子传输.gif"/br//pp style="text-align: center "strong离子传输/strong/pp style="text-indent: 2em "FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style="float:none " title="离子回旋运动1.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style="float:none " title="离子回旋运动2.gif"//pp style="text-align:center"strong离子回旋运动/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title="傅立叶变换.gif"/br//pp style="text-align: center "strong傅立叶变换/strong/ppspan style="color: rgb(31, 73, 125) "strong气相色谱法GC/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title="气相色谱法GC.jpeg" width="400" height="364" border="0" hspace="0" vspace="0" style="width: 400px height: 364px "//strong/span/ppistrong分析原理/strong/i:样品中各组分在流动相和固定相之间,由于分配系数不同而分离/ppistrong谱图的表示方法/strong/i:柱后流出物浓度随保留值的变化/ppistrong提供的信息/strong/i:峰的保留值与组分热力学参数有关,是定性依据/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title="气相色谱仪检测流程.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong气相色谱仪检测流程/strong/pp style="text-indent: 2em "气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title="注射器.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong注射器/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title="色谱柱.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong色谱柱/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title="检测器.gif" width="400" height="212" border="0" hspace="0" vspace="0" style="width: 400px height: 212px "/br//pp style="text-align: center "strong检测器/strong/ppspan style="color: rgb(31, 73, 125) "strong凝胶色谱法GPC/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title="凝胶色谱法GPC.jpeg" width="400" height="298" border="0" hspace="0" vspace="0" style="width: 400px height: 298px "//strong/span/ppistrong分析原理/strong/i:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出/ppistrong谱图的表示方法/strong/i:柱后流出物浓度随保留值的变化/ppistrong提供的信息/strong/i:高聚物的平均分子量及其分布/pp style="text-indent: 2em "根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title="只依据尺寸大小分离,大组分最先被洗提出.gif" width="400" height="294" border="0" hspace="0" vspace="0" style="width: 400px height: 294px "/br//pp style="text-align: center "strong只依据尺寸大小分离,大组分最先被洗提出/strong/pp style="text-indent: 2em "色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title="直径小于孔径的组分进入凝胶孔道.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong直径小于孔径的组分进入凝胶孔道/strong/pp style="text-indent: 2em "小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title="依据尺寸差异,样品组分分离.gif" width="400" height="225" border="0" hspace="0" vspace="0" style="width: 400px height: 225px "/br//pp style="text-align: center "strong依据尺寸差异,样品组分分离/strong/pp style="text-indent: 2em "体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。/ppspan style="color: rgb(31, 73, 125) "strong热重法TG/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title="热重法TG.jpeg" width="400" height="268" border="0" hspace="0" vspace="0" style="width: 400px height: 268px "//strong/span/ppistrong分析原理/strong/i:在控温环境中,样品重量随温度或时间变化/ppistrong谱图的表示方法/strong/i:样品的重量分数随温度或时间的变化曲线/ppstrongi提供的信息/i/strong:曲线陡降处为样品失重区,平台区为样品的热稳定区/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title="自动进样过程.gif" width="400" height="222" border="0" hspace="0" vspace="0" style="width: 400px height: 222px "/br//pp style="text-align: center "strong自动进样过程/strong/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style="float: none width: 400px height: 222px " title="热重分析过程.gif" width="400" height="222" border="0" hspace="0" vspace="0"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style="float: none width: 400px height: 222px " title="热重分析过程2.gif" width="400" height="222" border="0" hspace="0" vspace="0"//pp style="text-align:center"strong热重分析过程/strong/ppspan style="color: rgb(31, 73, 125) "strong静态热-力分析TMA/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title="静态热-力分析TMA.png" width="400" height="400" border="0" hspace="0" vspace="0" style="width: 400px height: 400px "//ppistrong分析原理/strong/i:样品在恒力作用下产生的形变随温度或时间变化/ppistrong谱图的表示方法/strong/i:样品形变值随温度或时间变化曲线/ppistrong提供的信息/strong/i:热转变温度和力学状态/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title="TMA进样及分析1.gif" style="float: none width: 400px height: 223px " width="400" height="223" border="0" hspace="0" vspace="0"/br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title="TMA进样及分析2.gif" width="400" height="223" border="0" hspace="0" vspace="0" style="width: 400px height: 223px "//pp style="text-align: center "strongTMA进样及分析/strong/ppstrongspan style="color: rgb(31, 73, 125) "透射电子显微技术TEM/span/strong/pp style="text-align:center"strongspan style="color: rgb(31, 73, 125) "img src="https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title="透射电子显微技术TEM.jpeg" width="400" height="494" border="0" hspace="0" vspace="0" style="width: 400px height: 494px "//span/strong/ppistrong分析原理/strong/i:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象/ppistrong谱图的表示方法/strong/i:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象/ppistrong提供的信息/strong/i:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title="TEM工作图.gif"/br//pp style="text-align: center "strongTEM工作图/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title="TEM成像过程.gif"/br//pp style="text-align: center "strongTEM成像过程/strong/pp style="text-indent: 2em "STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title="STEM分析图.gif"/br//pp style="text-align: center "strongSTEM分析图/strong/pp style="text-indent: 2em "入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title="EELS原理图.gif"/br//pp style="text-align: center "strongEELS原理图/strong/ppspan style="color: rgb(31, 73, 125) "strong扫描电子显微技术SEM/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title="扫描电子显微技术SEM.jpeg" width="400" height="351" border="0" hspace="0" vspace="0" style="width: 400px height: 351px "//ppistrong分析原理/strong/i:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象/ppistrong谱图的表示方法/strong/i:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等/ppistrong提供的信息/strong/i:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title="SEM工作图.gif"/br//pp style="text-align: center "strongSEM工作图/strong/pp style="text-indent: 2em "入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title="电子发射图.gif"/br//pp style="text-align: center "strong电子发射图/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title="二次电子探测图.gif"/br//pp style="text-align: center "strong二次电子探测图/strong/pp style="text-indent: 2em "二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title="二次电子扫描成像.jpeg"/br//pp style="text-align: center "strong二次电子扫描成像/strong/pp style="text-indent: 2em "入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title="背散射电子探测图.gif"/br//pp style="text-align: center "strong背散射电子探测图/strong/pp style="text-indent: 2em "用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title="EBSD成像过程.gif"/br//pp style="text-align: center "strongEBSD成像过程/strong/ppspan style="color: rgb(31, 73, 125) "原子力显微镜AFM/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title="原子力显微镜AFM.jpeg" width="400" height="176" border="0" hspace="0" vspace="0" style="width: 400px height: 176px "//ppistrong分析原理/strong/i:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息/ppistrong谱图的表示方法/strong/i:微悬臂对应于扫描各点的位置变化/ppistrong提供的信息/strong/i:样品表面形貌的信息/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title="AFM原理:针尖与表面原子相互作用.gif"/br//pp style="text-align: center "strongAFM原理:针尖与表面原子相互作用/strong/pp style="text-indent: 2em "AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title="接触模式.gif"/br//pp style="text-align: center "strong接触模式/strong/ppspan style="color: rgb(31, 73, 125) "strong扫描隧道显微镜STM/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title="扫描隧道显微镜STM.jpeg" width="400" height="288" border="0" hspace="0" vspace="0" style="width: 400px height: 288px "//ppistrong分析原理/strong/i:隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。/ppistrong谱图的表示方法/strong/i:探针随样品表面形貌变化而引起隧道电流的波动/ppistrong提供的信息/strong/i:软件处理后可输出三维的样品表面形貌图/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title="探针.gif"/br//pp style="text-align: center "strong探针/strong/pp style="text-indent: 2em "隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title="隧道电流.gif"/br//pp style="text-align: center "strong隧道电流/strong/pp style="text-indent: 2em "针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title="三维图像1.gif" style="float: none "/br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style="float:none " title="三维图像2.gif"//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style="float:none " title="三维图像3.gif"//ppspan style="color: rgb(31, 73, 125) "strong原子吸收光谱AAS/strong/spanbr//pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title="原子吸收光谱AAS.jpeg" width="400" height="288" border="0" hspace="0" vspace="0" style="width: 400px height: 288px "//strong/span/ppistrong分析原理/strong/i:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title="待测试样原子化.gif" width="400" height="220" border="0" hspace="0" vspace="0" style="width: 400px height: 220px "/br//pp style="text-align: center "strong待测试样原子化/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title="原子吸收及鉴定1.gif" style="float: none width: 400px height: 222px " width="400" height="222" border="0" hspace="0" vspace="0"/br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title="原子吸收及鉴定2.gif" width="400" height="220" border="0" hspace="0" vspace="0" style="width: 400px height: 220px "//pp style="text-align: center "strong原子吸收及鉴定/strong/ppspan style="color: rgb(31, 73, 125) "strong电感耦合高频等离子体ICP/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title="电感耦合高频等离子体ICP.jpeg" width="400" height="255" border="0" hspace="0" vspace="0" style="width: 400px height: 255px "//strong/span/ppistrong分析原理/strong/i:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title="Icp设备构造.gif" width="400" height="219" border="0" hspace="0" vspace="0" style="width: 400px height: 219px "/br//pp style="text-align: center "strongIcp设备构造/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title="形成激发态的原子和离子.gif" width="400" height="219" border="0" hspace="0" vspace="0" style="width: 400px height: 219px "/br//pp style="text-align: center "strong形成激发态的原子和离子/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title="检测器检测.gif" width="400" height="219" border="0" hspace="0" vspace="0" style="width: 400px height: 219px "/br//pp style="text-align: center "strong检测器检测/strong/ppspan style="color: rgb(31, 73, 125) "strongX射线衍射XRD/strong/span/pp style="text-align:center"span style="color: rgb(31, 73, 125) "strongimg src="https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title="X射线衍射XRD.jpeg" width="400" height="351" border="0" hspace="0" vspace="0" style="width: 400px height: 351px "//strong/span/ppistrong分析原理/strong/i:X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。/pp style="text-indent: 2em "满足衍射条件,可应用布拉格公式:2dsinθ=λ/pp style="text-indent: 2em "应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title="XRD结构.jpeg" width="400" height="421" border="0" hspace="0" vspace="0" style="width: 400px height: 421px "//pp style="text-indent: 2em "以下是使用XRD确定未知晶体结构分析过程:/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title="XRD确定未知晶体结构分析过程1.gif" style="float: none "/br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title="XRD确定未知晶体结构分析过程2.gif"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title="XRD确定未知晶体结构分析过程3.gif"//pp style="text-align: center "strongXRD确定未知晶体结构分析过程/strong/ppspan style="color: rgb(31, 73, 125) "strong纳米颗粒追踪表征/strong/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title="纳米颗粒追踪表征.jpeg" width="400" height="261" border="0" hspace="0" vspace="0" style="text-align: center width: 400px height: 261px "//ppistrong分析原理/strong/i:纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title="不同粒径颗粒的散射光成像在CCD.gif" width="400" height="168" border="0" hspace="0" vspace="0" style="width: 400px height: 168px "/br//pp style="text-align: center "strong不同粒径颗粒的散射光成像在CCD/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title="实际样品测试效果.gif" width="400" height="301" border="0" hspace="0" vspace="0" style="width: 400px height: 301px "/br//pp style="text-align: center "strong实际样品测试效果/strong/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title="不同技术的数据对比.jpeg" width="400" height="377" border="0" hspace="0" vspace="0" style="width: 400px height: 377px "/br//pp style="text-align: center "strong不同技术的数据对比/strong/p
  • 【新闻-展会风采】杰普携在线硬度分析仪亮相2020上海环博会
    2020年8月13-15日第21届中国环博会于在上海国际展览中心举行,由于疫情影响,上海环博会也成了2020年万众期盼的大型环保盛会。英国Jensprima杰普携团队亮相本届展会(E5馆F73),位于E5馆F73的杰普展位吸引了许多用户和同行的咨询关注!杰普作为水硬度在线测量的领跑者,本次展会杰普除了展示在线硬度分析仪&在线碱度分析仪的同时,也展出了全新产品-游动电流分析仪。 1、拳头产品:硬度&碱度分析仪目前超过1500台PACON 5000&PACON 4800在线硬度/碱度分析仪器在中国安装使用,这次展会还推出Flumsy 20HA多通道在线硬度/碱度分析仪。2、全新产品:游动电流仪针对絮凝剂的自动投加难题,杰普推出Flumsys 10SC和Flumsys 20SC在线游动电流分析仪,自动PID控制输出,带自动清洗功能。3、常规产品:控制器&传感器杰普也展出了全线水质控制器和数字传感器。 对于未来的发展,Jensprima杰普团队充满了信心,我们将继续坚持口碑销售,推出更多高性价比产品和水质行业解决定制方案,为全球环境健康贡献一份力量。2020年8月31日-9月2日,上海世环会再见!
  • 浅析电化学型气体传感器的工作原理和检测方法
    p  要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。/ppstrong1.电化学型气体传感器的结构/strong/pp  电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。/pp  电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。/ppstrong2.电传感器工作原理/strong/pp  电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。/ppstrong表1 各种电化学式气体传感器的比较/strong/ptable cellspacing="0" cellpadding="0" border="1"tbodytr class="firstRow"td style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"种类/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"现象/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"传感器材料/span/strong/p/tdtd style="border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"特点/span/strong/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"恒电位电解式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"气体扩散电极,电解质水溶液/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"通过改变气体电极,电解质水溶液,电极电位等可测量CO、Hsub2/subS、HOsub2/sub、SOsub2/sub、HCl等/span/p/td/trtrtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子电极式/span/strong/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电极电位变化/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"离子选择电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量NHsub3/sub、HCN、Hsub2/subS、SOsub2/sub、COsub2/sub等气体/span/p/td/trtrtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电量式/span/strong/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"电解电流/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜/span/p/tdtd style="border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"选择性好,可测量Clsub2/sub、NHsub3/sub、Hsub2/subS等/span/p/td/trtrtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"strongspan style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质式/span/strong/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"测定电解质浓度差产生的电势/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"固体电解质/span/p/tdtd style="border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width="142" valign="top"p style="text-align:left"span style=" font-family:' 微软雅黑' ,' sans-serif' color:#365F91"适合低浓度测量,需要基准气体,耗电,可测量COsub2/subsub、/subNOsub2/sub、Hsub2/subS等/span/p/td/tr/tbody/tablep表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。/pp2.1 恒电位电解式气体传感器/pp  恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示:/pp    I=(nfADC)/ σ/pp  式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。/pp  在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。/pp  自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、Nsubx/subOsubY/sub(氮氧化物)、Hsub2/subS检测仪器等产品。这些气体传感器灵敏度是不同的,一般是Hsub2/subS NO NOsubb/sub Sq CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。/pp  以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如Hsub2/subS、NO、NOsubb/sub、Sq、HCl、Clsub2/sub、PHsub3/sub等,还能检测血液中的氧浓度。/pp2.2离子电极式气体传感器/pp  离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。/pp  现以检测NHsub3/sub传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NHsub4/subsup+/sup,同时水也微弱离解,生成氢离子Hsup+/sup,而NH4sup+/sup与Hsup+/sup保持平衡。将传感器侵入NHsub3/sub中,NHsub3/sub将通过隔膜向内部渗透,NHsub3/sub增加,而Hsup+/sup减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NHsub3/sub浓度。除NHsub3/sub外,这种传感器海能检测HCN(氰化氢)、Hsub2/subS、Sq、C0sub2/sub等气体。/pp  离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。/pp2.3电量式气体传感器/pp  电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。/pp  现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成Hsup+/sup,在两铂电极间加上适当电压,电流开始流动,后因Hsup+/sup反应产生了Hsub2/sub ,电极间发生极化,发生反应,其结果,电极部分的Hsub2/sub被极化解除,从而产生电流。该电流与Hsub2/sub浓度成正比,所以检测该电流就能检测Clsub2/sub浓度。除Clsub2/sub外,这种方式的传感器还可以检测NHsub2/sub、Hsub2/subS等气体。/ppstrong3.传感器的检测/strong/pp  电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NOsub2/sub、Osub2/sub、SOsub2/sub等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。/pp  综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。/p
  • 解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程
    解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程 引言概述:电子脱扣器是一种广泛应用于电子设备中的关键元件,其工作原理是通过控制电流流过特定的电路,实现对电子器件的脱扣操作。本文将详细介绍电子脱扣器的工作原理,包括其基本原理、工作流程、应用场景、优势以及未来发展方向。一、基本原理1.1 电磁感应原理:电子脱扣器利用电磁感应原理,通过电流流过线图产生的磁场,引起磁铁的吸引或排斥,从而实现脱扣操作。1.2 磁铁工作原理:电子脱扣器中的础能够产生足够的磁场强度,以实现可靠日永磁材料,具有较强的磁性1.3电路控制原理:电子脱扣器中的电|电流的大小和方向,调节磁场的强弱和方向,从而实现对磁铁的控制脱扣操作。 二、工作流程:2.1 输入信号检测:电子脱扣器首先要检测输入信号,通常是通过传感器或开关来实现,一旦检测到输入信号,即可触发脱扣操作。2.2 电路控制:一旦输入信号被检测到,电子脱扣器会根据事先设定的参数,通过控制电路来调节电流的大小和方向,以实现对磁铁的控制。2.3 脱扣操作:当电子脱扣器控制电路调世刚合适的状态后,磁铁会受到电磁力的作用,实现脱扣操作,将电子器件从离出来。 3.1 电子产品制造:电子脱扣器广泛应用于电子产品的制造过程中,用于将电子器件从 PCB板上脱离,以便进行后续的加工和组装。3.2 电子设备维修:在电子设备维修过程中,电子脱扣器可以帮助技术人员快速、安全地分离电子器件,减少损坏的风险。3.3 生产自动化:随着生产自动化水平的提商,电子脱扣器被广泛应用于自动化生产线上,提高生产效率和质量。 优4.1 高效快速:电子脱扣器能够在短时间内完成脱扣操作,提高生产效率。4.2 精准可靠:电子脱扣器能够精确控制电流和磁场,确保脱扣深作的准确性和可靠性。4.3 安全环保:电子脱扣器在脱扣过程中不会产生大量的热量和噪音,对环境和操作人员都比敦安全。五、未来发展方向:5.1 智能化:未来的电子脱扣器将更加智能化,能够根据不同的工作环境和需求进行自动调节和优化。5.2 多功能化:电子脱扣器将会融合更多的功能,例如温度检测、电流监测等提供更全面的服务。g5.3 节能环保:未来的电子脱扣器将更加一源的节约和环境的保护,采用更高效的电路和材料。
  • 实验型冻干机的工作原理和应用
    实验型冻干机的工作原理和应用 随着科学技术的不断进步,各种新型实验仪器也层出不穷,其中实验型冻干机就是一种近年来应用越来越广泛的一种实验室设备。该产品可以将溶液、材料等在低温下冷冻成固体,然后在真空环境下将其中的水分蒸发掉,从而得到干燥的样品。下面我们来详细了解一下该产品的工作原理和应用。  一、工作原理  实验型冻干机的工作原理是利用制冷技术和真空技术相结合,将待处理物质在低温下冷冻成固体,然后在真空环境下对其进行加热升温,使其从固体状态变为液体状态,最后通过蒸发除去其中的水分,从而得到干燥的样品。具体步骤如下:  1. 预冻:将待处理物质放入该产品的容器中,然后在低温环境下进行预冻,使其变成固体状态。  2. 冻干:将预冻后的物质放入该产品的干燥室中,然后在真空环境下进行加热升温,使其从固体状态变为液体状态。此时,被冻结的水分会逐渐蒸发掉。  3. 重复以上步骤直至完成干燥过程。  二、应用  该产品广泛应用于生物医药、化学化工、食品等领域。以下是几个具体的应用案例:  1. 生物药品生产:该产品可以用于生物药品的生产过程中,如生产血浆、疫苗等。通过冻干处理,可以保证生物药品的质量和稳定性。  2. 化学试剂制备:该产品可以用于化学试剂的制备过程中,如制备氨基酸、维生素等。通过冻干处理,可以使化学试剂长期保存并且方便使用。  3. 食品加工:该产品可以用于食品加工过程中,如制作汤圆、饼干等。通过冻干处理,可以使食品保持原有的口感和营养成分。 冻干机冷冻干燥机LGJ-18N普通型亚星仪科主要特点:1、本机采用进口压缩机制冷,制冷迅速,冷阱温度低。2、冷阱开口大,无内盘管,带样品预冻功能,无需低温冰箱;3、采用7寸真彩触摸液晶屏控制系统,操作简单方便,且功能强大,作为人机界面,中文(英文)可转换界面,以曲线和数字形式显示工作时间、冷凝器温度、样品温度、真空度,并记录干燥曲线;。4、工业嵌入式操作系统,ARM9核心控制电路设计,32M内存128M FLASH,操作响应速度快,存储数据量大。本机可存储多次冻干数据,FAT32文件系统,EXCEL文件存储,可存储一个月以上测量数据128M FLASH,并配置USB通讯接口,实验数据U盘一键提取。 5、控制系统自动保存冻干数据,并能以实时曲线和历史曲线的形式查看,整个冻干过程清晰明了。6、干燥室采用无色透明一次注塑成型聚碳干燥室,耐腐蚀、不易碎、无粘接、透明度高、密闭性强、样品清楚直观,可观察冻干的全过程。7、真空泵与主机连接采用国际标准KF快速接头,简洁可靠。 总之,实验型冻干机作为一种新型的实验室设备,其应用领域越来越广泛,为企业提高产品质量和降低成本提供了有力的支持。
  • 【综述】红外热像仪工作原理及电子器件分析
    疫情期间使得红外热像仪的市场大大增加,在商场、机场、火车站等人流密集的地方随处可见,无需接触即可准确测量人体温度。那么红外热像仪是怎样工作的呢?本文对有关知识做简要介绍,以飨读者。红外热像仪,是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的红外光转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。使用红外热像仪,安全——可测量移动中或位于高处的高温表面;高效——快速扫描较大的表面或发现温差,高效发现潜在问题或故障;高回报——执行一个预测性维护程序可以显著降低维护和生产成本。但在疫情爆发之前,红外热像仪在工业测温场景使用得更广泛,需求也更稳定。在汽车研究发展领域——射出成型、引擎活塞、模温控制、刹车盘、电子电路设计、烤漆;在电机、电子业——电子零组件温度测试、印制电路板热分布设计、产品可靠性测试、笔记本电脑散热测试;在安防领域的隐蔽探测,目标物特征分析;在电气自动化领域,各种电气装置的接头松动或接触不良、不平衡负荷、过载、过热等隐患,变压器中有接头松动套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅等,都可以被红外热像仪及时发现,避免进一步损失。对于电动机、发电机:可以发现轴承温度过高,不平衡负载,绕组短路或开路,碳刷、滑环和集流环发热,过载过热,冷却管路堵塞。红外热像仪通过探测目标物体的红外辐射,然后经过光电转换、电信号处理及数字图像处理等手段,将目标物体的温度分布图像转换成视频图像。分为以下步骤:第一步:利用对红外辐射敏感的红外探测器把红外辐射转变为微弱电信号,该信号的大小可以反映出红外辐射的强弱。第二步:利用后续电路将微弱的电信号进行放大和处理,从而清晰地采集到目标物体温度分布情况。第三步:通过图像处理软件处理放大后的电信号,得到电子视频信号,电视显像系统将反映目标红外辐射分布的电子视频信号在屏幕上显示出来,得到可见图像。在不同的应用领域,对于红外热像仪的选择有不同的要求,主要考虑因素有热灵敏度——热像仪可分辨出的最小温差(噪音等效温差)、测量精度。反应到电路上,最应注意的既是第二步电信号的放大和采样。实际上,从信号处理,到数据通信,到温度控制反馈,都有较大的精度影响因素。红外热像仪的电路框图如图所示,基本工作步骤为:FPA探测器——信号放大——信号优化——信号ADC采样——SOC/FPGA整形与预处理——信号图形及数据显示,其间伴随TEC(热电制冷器)对探测器焦平面温度的反馈控制。热像仪中需要采集的信号为面阵红外光电信号,来源于红外探测器,通过将红外光学系统采集的红外信号FPA转换为微弱电信号输出,选择OP AMP时需要注意与FPA供电类型匹配及小信号放大。根据红外热像仪的使用场合,去选择适合的运放,达到最优的放大效果和损耗最小的放大信号。运放的多项直流指标都会直接影响到总的误差值。比如,VOS、MRR、PSRR、增益误差、检测电阻容差,输入静态电流,噪声等等。需要根据实际应用的特点,择取主要误差项目评估和优化。比如 CMRR 误差可以通过减小 Bus 电压纹波优化。PSRR 误差,可以通过选用 LDO 给 OPA 供电优化。提供一个好的电源,LDO 的低噪声和纹波更利于设计,选用供电LDO。在图三中的光电信号放大处,使用了TPH250X系列的OP AMP,特点是高带宽、高转换速率、低功耗和低宽带噪声,这使得该系列运放在具有相似电源电流的轨对轨 输入/输出运放中独树一帜,是低电源电压高速信号放大的理想选择。高带宽保证了原始信号完整性,高转换速率保证了整机运算的第一步速度,低宽带噪声保证了FPGA/SOC处理的原始信号的真实性。对于制冷型红外探测器,热电制冷器必不可少,它保障了FPA探测器的焦平面工作温度温度的稳定和灵敏,对于制冷补偿的范围精度要求较高。用电压值表示外界设定的FPA工作温度,输入高精度误差运放,得出差值电压,经过放大器运算后,对FPA进行补偿,从而使FPA温度稳定。在该系统中,AD转换芯片的性能决定了FPA的相位补偿量,决定了后端红外成像的质量。根据放大后输出信号的电压范围和噪声等效温差及响应率,可以计算AD转换芯片的分辨率,此处使用了16 bit高分辨率的单通道低功耗DAC,电源电压范围为2.7V至5.5V。5v时功耗为0.45 mW,断电时功耗为1 μW。使用通用3线串行接口,操作在时钟率高达30mhz,兼容标准SPI®、QSPI™和DSP接口标准。同时满足了动态范围宽、速度快、功耗低的要求。对于一般的工业红外热像仪的补偿来说,TPC116S1已经足够。此外,对于整体的供电而言,FPGA/SOC的分级供电,电源管理芯片的选择要适当。对于运放和ADC的供电,为减小误差,需要低噪声的LDO,以保证电源电压恒定和实现有源噪声滤波。LDO输出电压小于输入电压,稳定性好,负载响应快,输出纹波小。具有最低的成本,最低的噪声和最低的静态电流,外围器件也很少,通常只有一两个旁路电容。而在总体的供电转换中,使用了DCDC——TPP2020,它的宽范围,保证了电源设计的简洁。内置省电模式,轻载时高效,具有内部软启动,热关断功能。DC-DC一般包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、宽范围、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容,但是输出纹波大,开关噪声较大、成本相对较高,故在电源设计中,用量少且尽量避开灵敏原件,以避免对灵敏原件的干扰。红外热像仪既可以走入民用,成为各个家庭的健康小帮手,也可以是精密工业电子的好伙伴。面对不同的市场,组成它的电子元器件也有不同的选择。而不变的是,精密的设计对于真实的反映,特别是模拟器件。
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵高压泵是离子色谱仪的动力源,其作用是将流动相输入到分离系统,使样品在分离柱中完成分离过程。离子色谱用的高压泵应具备下述性能:流量稳定、耐腐蚀、压力波动小、更换溶剂方便、死体积小、易于清洗和更换溶剂。高压泵工作正常的情况下,系统压力和流量稳定,噪音很小,色谱峰形正常。4、抑制器抑制器由3个抑制元件组成,这些元件应用于循环回路中的抑制作用,可利用硫酸进行再生及用纯净水进行冲洗,分析流路外再生, 可彻底去除有害物质。采用微填充床抑制器,其优为点:平稳提供H+,基线噪音低,适合各种浓度分析,耐高压、耐有机溶剂、耐重金属,耐腐蚀,噪音低,只有0.2-0.5nS。抑制器要避免在未通液体时空转。淋洗液或再生液流路堵塞、抑制器饱和均会造成系统压力突然上升、背景电导率过高等问题。若经过较长时间后,抑制元件受到污染,平常使用的再生溶液无法再将其彻底清除干净,将导致基线大幅上升。5、检测器所有的离子化合物(有机离子、无机离子、强酸和强碱)以及可被解离的化合物(弱酸和弱碱)的水溶液都能够导电。电导检测器是以离子色谱流动相中电导的变化作为定量依据的。电导检测器测量双铂电极两端间的电导,离子在该双铂电极两端间迁移:阴离子向阳极迁移,阳离子向阴极迁移,从而测量溶液的电阻。电导与电阻成反比。电导检测器具有极好的温度稳定性,这样便可保证测量条件的重现性。由于离子色谱仪是精密仪器,其日常维护与保养对于仪器的使用寿命及监测精度都有着重要的影响,因此离子色谱仪要经常用淋洗液冲洗色谱柱,防止分离柱堵塞、流动相有气泡的产生,在进行分析前要确保样品已经进行前处理,以保障仪器安全。离子色谱法具有选择性好、灵敏、快速、简便,可同时测定多组分,基于上述优点,离子色谱法已在环境监测领域得到广泛应用。因此了解一些关于仪器日常维护的知识,遇有故障时能够正确地判断并及时排除是十分重要的。06离子色谱常见故障及解决方案1、电导检测器常见故障有哪些?电导检测器常见故障是检测池被污染。故障原因:污染物主要来源于没有经过适当前处理的样品,如浓度过高、复杂的样品基体等。故障现象:基线噪声变大,灵敏度降低。处理方法:(1)用3 mol/LHNO3溶液清洗电导池,再用去离子水清洗电导池至pH值达中性 (2)用0. 001 mol/L KCI溶液校正电导池,使电导值显示为147μS。2、系统压力增高该咋办?压力增高一般都是因仪器部件发生堵塞引起的,当发现系统压力增高时应从流路的检测器端开始,逐一排查,以找到引起压力增高的具体单元。(1)在线过滤器发生堵塞时,直接更换滤芯;(2)色谱柱入口处滤膜堵塞时,应反接色谱柱用去离子水反复冲洗;(3)单向阀和滤头堵塞后需将其卸下先用无水乙醇超声清洗15 min ~30min,以清除部件上粘附的有机物,再用去离子水清洗干净后放入1:1的硝酸溶液中超声清洗15min,最后用去离子水反复清洗干净后按原方位安装好后使用。高压系统中常出现堵塞问题的部件有单向阀、滤头、在线过滤器、分离柱、保护柱等;(4)检查管路中peek头是否拧得过紧,否则也会导致压力增高。3、分析泵常见故障咋处理?分析泵常见故障是泵内产生气泡和漏液故障现象:基线的噪声加大,色谱峰形变差(出现乱峰)。处理方法:为分析泵提供充足的淋洗液,并且给淋洗液施加一定的压力(通常小于35 kPa)。对于容易产生气体的溶液可以先用真空脱气,然后用惰性气体在线脱气的处理方法 若泵漏液,可更换泵密封圈。4、抑制器使用中的常见故障怎么排除?抑制器在离子色谱仪中具有举足轻重的作用。抑制器工作性能的好坏对分析结果有很大的影响。抑制器最常见的故障是漏液,使峰面积减小(灵敏度下降)和背景电导升高。(1)峰面积减小造成峰面积减小的主要原因有:微膜脱水、抑制器漏液、溶液流路不畅和微膜被玷污。抑制器长期不用,会发生微膜脱水现象,为激活抑制器,可用注射器向阴离子抑制器内以淋洗液流路相反的方向注入少许0.2mol/L的硫酸溶液。同时向再生液进口注入少许纯净水,并将抑制器放置半小时以上。抑制器内玷污的金属离子可以用草酸钠清洗。(2)背景电导值高在化学抑制型电导检测分析过程中,若背景电导高,说明抑制器部分存在一定的问题。大多数是操作不当引起的。例如淋洗液或再生液流路堵塞,系统中无溶液流动造成背景电导偏高或使用的电抑制器电流设置的太小等。膜被污染后交换容量下降亦会使背景电导升高。而失效的抑制器在使用时会出现背景电导持续升高的现象,此时应更换一支新的抑制器。(3)漏液抑制器漏液的主要原因是抑制器内的微膜没有充分水化。因此,长时间未使用的抑制器在使用前应让微膜水溶胀后再使用。另外要保证再生液出口顺畅,因此反压较大时也会造成抑制器漏液。另外抑制器保管不当造成抑制器内的微膜收缩、破裂也会发生漏液现象。5、离子色谱柱该如何维护、保存?色谱柱的保存色谱柱填充料的不同,其保存方法也各异。一般而言,大多数阴离子分离柱在碱性条件下保存,阳离子分离柱在酸性条件下保存。需长时间保存时(30天以上),先按要求向柱内泵入保存液,然后将柱子从仪器上取下,用无孔接头将柱子两端堵死后放在低温处保存。短时间不用,每周应至少开机一次,让仪器运行1-2h。 色谱柱的清洗清洗色谱柱注意事项:清洗前,应将分离柱与系统分离,让废液直接排出。另外,每次清洗后应用去离子水冲洗10min以上,再用淋洗液平衡系统。清洗时的流速不宜过快,在1ml/min以下。无机离子的玷污离子半径较大的无机离子与交换基团结合,影响正常的交换分离。首先应考虑用组分相同且浓10倍的淋洗液清洗色谱柱。清洗阴离子分离柱上的金属离子(如Fe3+)使用0.1mol/L草酸。清洗阳离子分离柱上的某些金属(如Al3+)可使用1-3mol/L HCl。有机物玷污清洗色谱柱内的有机物常用甲醇或乙腈,但对带有羧基的阳离子分离柱需要避免使用甲醇。低交联度的离子交换树脂填充的色谱柱(交联度小于5%)清洗液中有机溶剂的浓度不宜超过5%。色谱柱的清洗清洗色谱柱注意事项:清洗前,应将分离柱与系统分离,让废液直接排出。另外,每次清洗后应用去离子水冲洗10min以上,再用淋洗液平衡系统。清洗时的流速不宜过快,在1ml/min以下。无机离子的玷污离子半径较大的无机离子与交换基团结合,影响正常的交换分离。首先应考虑用组分相同且浓10倍的淋洗液清洗色谱柱。清洗阴离子分离柱上的金属离子(如Fe3+)使用0.1mol/L草酸。清洗阳离子分离柱上的某些金属(如Al3+)可使用1-3mol/L HCl。有机物玷污清洗色谱柱内的有机物常用甲醇或乙腈,但对带有羧基的阳离子分离柱需要避免使用甲醇。低交联度的离子交换树脂填充的色谱柱(交联度小于5%)清洗液中有机溶剂的浓度不宜超过5%。07离子色谱的常见品牌到了这里,相信各位已经对离子色谱仪有很深的了解。那么在这个知识纵横,科技飞跃发展的今天,关于离子色谱仪的常见品牌都有哪些呢?最受关注的又是哪些呢?(以下品牌不分先后哦~)A. 埃仑通用青岛埃仑通用科技有限公司是国内较早生产离子色谱仪的厂家之一,是以研发、制造、销售和售后服务为一体的高新技术企业,是国产离子色谱仪知名品牌。 青岛埃仑通用科技有限公司设计开发了基于积木式结构的高效离子色谱仪系列产品。YC系列离子色谱仪是我公司在传统离子色谱仪基础上,吸收国际先进技术成果,研发出的高精度、高灵敏度和高稳定的新型系列离子色谱仪,同时实现了自动化进样。YC9000型更是国内开始采用功能模块化设计,全面集成智能MT技术,是国内现阶段集成度和智能化极高的一款智能型离子色谱仪,其广泛应用于包括军事军工、核工业、科研院所,石油化工、水文地质、环境保护、质量检验、卫生防疫、电力电子等行业。产品: 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津岛津企业管理(中国)有限公司成立于1999年8月11日,是岛津制作所的海外子公司。岛津制作所是著名的测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来始终坚持“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。并以实现“为了人类和地球的健康”这一愿望作为公司的经营思想,以光技术、X射线技术、图像处理技术这三大核心为基础,不断革新,不断挑战,一如既往地对科学技术发展做出贡献。特别是在2002年岛津制作所的田中耕一荣获诺贝尔化学奖,开创了公司研究人员获奖的先河。产品: 岛津离子色谱仪HIC-ESP岛津离子色谱仪Essentia IC-16 等▲ 岛津离子色谱仪HIC-ESPC. 东曹 东曹(上海)生物科技有限公司,是日本东曹株式会社生命科学事业部(Tosoh Bioscience)在中国设立的全资子公司,负责东曹生命科学事业部产品在中国的销售业务。 东曹(上海)生物科技有限公司的产品包括:提供所有常见分离模式的TSKgel® 高效液相色谱柱、TOYOPEARL® 中低压层析分离纯化填料、SkillPak 层析工艺方法筛选用预装柱;还包括EcoSEC® 高效一体化GPC仪器、IC离子色谱仪、多角度光散射检测器。产品: 东曹高通量离子色谱仪IC-8100东曹IC-2010离子色谱仪 等▲ 东曹高通量离子色谱仪IC-8100D. 历元 北京历元公司成立于1993年,公司创建初始就以强劲的技术开发能力,研制生产硅酸根检测仪,磷酸根检测仪,分析型高效液相色谱仪,制备型液相色谱仪,系列离子色谱仪。为配合离子色谱仪的应用,并于1997年研发国内首台实验室用超纯水器,此项产品填补了该产品的国内空白。 产品: 北京历元EP-600 便携式离子色谱仪北京历元EP-2000离子色谱仪 等▲ 北京历元EP-600 便携式离子色谱仪E. 普仁青岛普仁仪器有限公司是通过ISO-9001认证的专业从事离子色谱仪及相关配件研发、生产、销售和技术服务的高科技股份制企业,为中国仪器仪表分析仪器分会会员单位。 公司产品全部拥有自主知识产权,荣获国家科技创新基金及青岛科技培育计划专项,被国家工信部认定为“国家食品企业质量安全检测技术示范中心共建单位”,荣获“2012最具竞争力百强中小企业”称号,为央视网离子色谱仪战略合作伙伴。产品: 双系统全自动PIC-10型离子色谱仪PIC-10A型离子色谱仪 等▲ 双系统全自动PIC-10型离子色谱仪F. 瑞士万通 瑞士万通中国有限公司 作为当今一家全面涉足各类不同离子分析技术的品牌,产品包括自动电位滴定仪、离子色谱仪、卡尔费休水分仪、伏安极谱仪、电化学工作站、手持式/便携式拉曼光谱仪和近红外光谱仪等。瑞士万通旗下拥有以下品牌:“Metrohm”、“Metrohm Autolab”、“Metrohm Process Analytics”、“Metrohm NIRSystems”、“Metrohm Raman”、“Metrohm DropSens”,以其自动电位滴定仪、卡尔费休微量水分滴定仪、离子色谱仪、伏安极谱仪、便携式拉曼和手持式拉曼光谱仪以及近红外光谱仪、在线化学成分分析仪著称,技术先世界。您可以从瑞士万通获得大量有关离子分析和近红外分析的方法和技术。产品: 瑞士万通ECO IC离子色谱仪瑞士万通940 系列谱峰思维TM离子色谱系统 等▲ 瑞士万通ECO IC离子色谱仪G. 赛默飞赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。产品: Thermo Scientific Integrion高压离子色谱赛默飞Aquion RFIC离子色谱等▲ Thermo Scientific Integrion高压离子色谱H. 盛瀚青岛盛瀚色谱技术有限公司成立于2002年,专业从事离子色谱仪及其核心部件的研发、生产、销售和技术服务,是一家通过ISO 9001质量管理体系认证、ISO 24001环境管理体系认证、ISO 45001职业健康管理体系认证、知识产权管理体系认证的高新技术企业。全部产品拥有自主知识产权,专利、软件著作权等超过百项。 公司现有实验室台式、便携式、在线式、定制化离子色谱仪和离子色谱联用五大产品系列,广泛应用于环保、食品药品、水文地质、石油化工、卫生防疫、电子电气及科学研究等众多行业,基本满足了对阴阳离子、氰根、碘离子、糖、小分子有机酸等常规和痕量检测。目前已为7000+不同行业的用户提供了完善的解决方案,出口到韩国、印度等70多个国家和地区。此外,盛瀚还是全球极少数可实现批量化生产离子色谱柱的企业,打破了国外垄断,填补了国内空白。产品: 盛瀚离子色谱仪CIC-D180离子色谱仪(内置淋洗液发生器)CIC-D160型 等▲ 盛瀚离子色谱仪CIC-D180I. 皖仪安徽皖仪科技股份有限公司是一家以国际化视野、按国际化标准运营的全球分析仪器专业供应商,主导产品涵盖色谱、光谱、质谱类及医用分析仪器。产品: 皖仪IC6600系列多功能离子色谱仪皖仪IC6200系列一体式离子色谱仪 等▲ 皖仪IC6600系列多功能离子色谱仪08小彩蛋找靠谱的离子色谱仪器可长按识别下方二维码进入“离子色谱仪”导购专场- END
  • 373万!福建省福州环境监测中心站超高效液相色谱仪等仪器采购项目
    项目编号:[3500]FJSXZB[GK]2022003 项目名称:福建省福州环境监测中心站填平补齐项目(实验室能力建设) 采购方式:公开招标 预算金额:3730000元 包1: 合同包预算金额:90000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100415-环境监测仪器及综合分析装置环境空气氟化物采样器6(项)否一、参数要求(一)基本要求产品一机多用,可实现对环境空气中氟化物进行采样,配置TSP、PM10和PM2.5采样头后,可对环境空气的颗粒物、TSP、PM10和PM2.5等污染物进行采集。产品满足以下方法的采样要求:① HJ955-2018 《环境空气 氟化物的测定 滤膜采样/氟离子选择电极法》② HJ93-2013 《环境空气颗粒物(PM10和PM2.5)采样器技术要求以及检测方法》③ HJ194-2017 《环境空气质量手工监测技术规范》④ HJ/T374-2007《总悬浮颗粒物采样器技术要求及检测方法》⑤ HJ618-2011 《环境空气PM10和PM2.5的测定 重量法》⑥ JJG943-2011 《总悬浮颗粒物采样器》(二)工作环境电源:AC(220±22)V,50Hz(三)配置基本要求1.主机6套2.氟化物采样头6套3.TSP/PM10/PM2.5切割器采样头6套4.打印机6套5.三脚支架6套6.防雨罩6套7.箱子及附件6套。(四)技术性能指标1.采样流量范围(10-100L/min),工作点流量涵盖16.7L/min、50.0L/min、100.0L/min。流量为50L/min时,采样泵可以克服20kPa的压力负荷。2.可精准控制流量,保证流量稳定,流量分辨率0.1L/min,流量≤5%;流量重复性≤2%;流量示值误差≤±2%。3.搭配我站已有崂应8040型流量校准仪,可实现对该流量校准仪流量校准点的校准、标定。4.可设置即时采样、定时采样、等间隔采样等多次采样方式。5.采样时间:99h59min内可任意设置,分辨率:1min;准确度:不超过±0.2%。6.自动计算累计体积,自动计算标况/参比体积,累计标况体积示值误差±5%。7.计前温度:(-30~80)℃,分辨率0.1℃,准确度不超过±1℃。8.环境温度:(-20~50℃),准确度不超过±2℃。9.大气压:(60-110)kPa,分辨率0.01kPa,准确度不超过±500Pa。10.流量计前压力(-30~0)kPa,分辨率0.01kPa,准确度不超过±2.5%11.氟化物采样头:滤膜直径:Φ90mm(有效滤膜直径Φ80mm)。12.TSP/PM10/PM2.5切割器采样头性能满足《环境空气颗粒物(PM10和PM2.5)采样器技术要求以及检测方法》(HJ93-2013)规定。13.故障自动保护功能,安全性高。14.采样过程中停电,来电自动恢复采样,采样数据自动记忆。15.配备打印机,支持数据输出和打印。16.主机重量≤7.0kg90000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包2: 合同包预算金额:195000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)2-1A02100415-环境监测仪器及综合分析装置电动潜水采样泵3(项)否(一) 技术性能要求电动潜水采样泵在运行期间可提供平稳、不间断的水流,水泵扬程60米,在地表水和地下水采样时,可采集距水泵出水口60米深度处的水样。距水面40m高度采样时流量不低于2.5L/min。设备采样流量可调,满足HJ164-2020《地下水环境监测技术规范》。轻便,方便野外距水面一定高度的水质采样。(二 )技术参数1.最大采样水位高度:60m 。2.电机总成模块化,可更换电机 。3.流量可调:100ml-13L/min。4.输入电力范围: 200-250 VAC;50HZ 310 W 。5.输出电压:0-46V DC @ <300 W。6.输出电流(最大电压情况下):≦10A 。7.操作温度:-29°C到38°C 外界环境温度。8.操作湿度:≦90%。9.重量:不大于7.5 kg。10.尺寸:不大于45cm x 35cm x 20cm。11.输入保护:5A CB。12.最大动力:2/3马力。13.最大电流量:10A DC。14.最低运行温度:1°C。15.最高运行温度:80°C。16.泵头部分:316不锈钢,高密度聚乙烯 。17.尺寸和重量(泵和电机):泵头尺寸≤35 cm (长度)x4.5cm (直径);泵头重量≤2 kg。18.具备ISO9001认证。19.泵头具有适配延长采样落管组件的功能,可升级拓展采样深度(当采样深度大于60米时)并提供证明图片。 (三)仪器配置要求 配置 数量泵体 1套保护箱(内含控制器) 1个 电机线卷轴 1个采样水管 1根1200w交流移动电源(锂电池) 1台195000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包3: 合同包预算金额:500000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)3-1A02100415-环境监测仪器及综合分析装置超高效液相色谱仪1(套)是(一)基本要求用于大气和水质中醛酮类化合物的分析研究。(二)工作环境电源:220V±10%,50Hz;温度:0?C~45?C;湿度:5%~95%(三)配置基本要求1 四元梯度泵 1套 2 在线脱气机 1套 3 自动进样器 1套4 柱温箱 1套5 二极管阵列检测器 1套 6 C18色谱柱 3根7 液相瓶 1000个8 工作站软件 1套9 电脑/打印机 各1套10 仪器维护配件包及工具包 各1套(四)技术性能指标1 四元泵1.1 工作原理:串联双柱塞1.2 通道数量:≥4个▲1.3 流量范围:0.001-8 mL/min,增量为 1 μL/min★1.4 最大耐压:≥15,000 psi1.5 压力波动:≤2 bar ▲1.6 流量准确度:±0.1%1.7 流量精密度:0.05% RSD1.8 梯度准确度:±0.5%(全流域范围内)1.9 梯度精密度: 0.15%SD▲1.10 泵清洗系统:主动式单独流路清洗柱塞1.11 液滴计数器:自动监控泵漏液情况和泵清洗液情况1.12 溶剂脱气:内置≥4通道脱气机1.13 压缩性补偿 全自动,与流动相组成无关 ▲1.14 生物相容性:泵流路由钛金属、陶瓷和高性能的聚合物所构成,耐高盐、强酸、强碱,消除由铁及其它过渡金属离子对分离柱、样品和溶剂所造成的污染。2 自动进样器:▲2.1 样品瓶位:≥130位(1.5 mL)。2.2 进样方式:流经针环模式,无样品损失,无残留2.3 进样体积:0.01-25 μL2.4 进样准确度:± 0.5%2.5 进样量精度:≤0.25% RSD2.6 交叉污染:≤0.0004% 2.7 最大耐压:≥15,000 psi2.8 进样周期:≤ 8s 2.9 用户自定义进样,可实现去溶剂效应,在线稀释和在线衍生功能2.10 进样线性 r>0.99999(咖啡因水溶液)3 柱温箱3.1 安全性能:防止误开门功能,内置温度、湿度、气体传感器,在线监测漏液情况。▲3.2 控温原理:帕尔贴结合空气循环模式、直热模式,即双模式温控,提供软件界面截图证明。3.3 温控范围:5-120℃,增量为 0.1℃3.4 温度准确度:±0.5℃3.5 温度:±0.05℃3.6 容量:≥2支色谱柱(30cm)3.7 升温速率:典型值5 min 内从 25°C 升温至40°C3.8 降温速率:典型值15 min内从 50°C 降温至20°C3.9 预留额外的两个六通阀或七通阀位置,可用于在线样品前处理等应用3.10 管线接头:耐压1000bar以上,零死体积接口,无需工具手旋拧紧方式,接头与任意主流厂商色谱柱完全匹配不漏液。4 二极管阵列检测器4.1 二极管数:≥10244.2 波长范围:190-680 nm▲4.3 波长准确度:± 1 nm4.4 波长精密度:± 0.1 nm4.5 像素分辨率:0.5 nm4.6 狭缝宽度 可设置:1 nm、2 nm、4 nm、8 nm4.7 通道数:10 通道+ 3D UV 光谱扫描4.8 灯:氘灯 ▲4.9 数据采集频率:≥200HZ;4.10 自动校正:D-alpha线法自校正,氧化钬滤光器验证4.11 噪声:≤ ±3 μAU 在230 nm 4.12 漂移:≤ 0.5 mAU/h 在230 nm4.13 线性:2.0 AU 时 <5%4.14 光谱全扫描: 具备5 电脑及打印机5.1 电脑:CPU大于等于 i9-10850K,核心数≥8,线程数≥16,内存≥32G ddr4 频率≥2666MHz,硬盘≥1T固态硬盘+2T机械硬盘,显卡≥RX560,显存≥8G。预装正版操作系统及软件:Windows 10旗舰版。显示器≥24寸液晶显示器,显示器分辨率不小于2160*1440。 5.2 激光打印机:A4幅面,具有双面打印功能、扫描功能。6 软件: 6.1 数据库:须包含SQL Server关系型数据库,全面保障数据的完整性和安全性,现场验收。6.2 仪器控制:可以控制多个仪器厂商的多种HPLC,实现完全的双向控制;可双向连接(仪器控制和数据采集)离子色谱、气相色谱和气质联用仪等。6.3 缩略图:在查看已运行完成的样品队列时,无需打开色谱文件,即可通过缩略图查看样品色谱图,实现快速浏览6.4 动态数据处理:可查看序列中任意的色谱图、光谱图、校正曲线、方法设置和结果。当处理方法参数发生变化时,无需重新手工执行积分处理,所有相关的图会即时自动更新。用于快速有效优化积分、校准和报告并进行查看。6.5 智能积分功能:当积分向导无法给出满意的积分结果,需要做积分调整时,智能积分功能给出最多5个优化的积分方案,用户只需选择恰当的积分方案即可,无需用户自行调整积分参数,积分操作被极大简化,用户上手更快。6.6工作流程文件:用户只需从软件官网下载待测样品的工作流程文件并导入到用户软件工作站,即可得到自动生成的样品分析序列,点击提交序列即得分析结果。从而极大减少了用户学习软件操作时间摸索分析方法时间,提高效率。6.7 具备用户管理、审计追踪以及访问控制等功能。 可使用三种级别的电子签名。可分别设置独立的电子签名密码与登录密码。支持强密码策略。500000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包4: 合同包预算金额:700000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)4-1A02100416-分析仪器辅助装置微波消解辅助设备1(套)否真空赶酸仪主要参数要求(★ 为不可偏离部分,▲部分3分,无标识部分2分。)▲1. 与CEM微波消解仪55mL消解罐配套使用,每次处理最大量≥ 40个样品,最小处理量为 1 个样品;可根据客户的需求定制。2. 四级酸回收系统,第一级为冷凝回收、第二,三级为碱溶液吸收,第四级为干燥;吸收更完全;最大限度避免酸蒸汽进入泵体;吸收塔塔身为高硼酸玻璃材质,盖子为进口 PTFE 材质;3. 采用集成系统将真空系统、回收系统和分配阀集成到一起,外观简洁,使用更方便;4. 所有与酸接触部分,均为特氟龙或PFA材料,机箱和石墨加热器喷涂特氟龙,有效提高对酸液和酸气的耐腐蚀性。5. 整个系统为密闭系统,由真空隔膜泵提供真空,负压状态运行,所有酸蒸汽被碱液吸收,杜绝污染;6. 将常压赶酸所需的 3-4 小时缩短到 ≤1H(150 度),大大提高赶酸效率;7. 灵活处理样品数量,不受样品数量限制,可同时处理 1-40个样品,对某一个样品检查赶酸情况时,不必停止赶酸工作,不对其他样品管的赶酸造成干扰;▲8. 赶酸终点识别:采用内置液位计,赶酸至设定体积后自动停止加热,无需人工值守。9. 对易挥发样品,可降低赶酸温度,提供元素回收率;10. 全套真空装置为进口 PTFE 材质,大大延长使用寿命。11. 石墨赶酸器▲11.1此赶酸器与消解罐配套(可以配合客户的消解管尺寸做个性化定制),温控范围为室温~240 度;11.2具备定时关机与过热保护功能;11.3 石墨炉采用全特氟龙面板,耐腐蚀性好,隔热性能优良避免使用者被烫伤。控制器与石墨炉的连线采用PFA保护套,确保电缆不被强酸腐蚀。12 控制器:12.1 控制采用≥5寸触屏或平板电脑;★12.2 阶梯式控温,自动控制升温;12.3 个性化方法输入和保存,减少重复性工作; 附件六:全自动酸洗机主要参数要求 1.清洗机采用 TFM 特氟龙原料一体化成型;采用封闭,能够避免酸雾泄露;底部采用圆锥底,能自动排干废酸。2.采用中空结构的支撑蒸汽喷管,进口 PTFE 材料;并可根据实际清洗器皿更换不同规格的导气管支架。3.加热:石墨炉与外界有隔热,外部温度不超过 60 ℃(炉温 180 时)。★4. 触屏控制器,可阶梯控温,可控制升温速度酸蒸汽发生器,能在酸液处于亚沸状态下快速汽化酸液并导入清洗腔内。5. 全自动化微电脑控制加酸、排酸、加水、排水、热风干。6. 清洗一次用酸量 100ml 用户可以自定义用酸量及酸洗次数用水量200-500ml 用户可以自定义加水量以及水洗次数以达到最佳洁净度,能大大节省酸用量、水用量,节能减排。7.自动热空气干燥:以备下一轮操作。风干温度可调最高 180°,风干效率高。8. 自定义温度曲线,可保存自定义方法。▲9. 温度传感器检测的是酸液实际温度,而不是加热器温度,确保整个清洗过程是在“亚沸”状态下进行,保证酸蒸汽的足够纯度,以改善清洗效果。仪器具备超温保护、定时自动停止加热功能;10. 支架位数: ≥40 位,可以定制。11. 泄压阀:过压保护,自动泄压保护,温控范围: 室温~240℃。13.石墨加热器功率:≤2.2kw。13.支持WIFI无线控制(选配),控制元器件远离酸环境; 适用于所有的痕量和超痕量分析用的反应器清洗。 14.清洗容器的表面接触酸蒸汽清洗容器的表面接触酸蒸汽浓度浓度:100%,所有内部接触部件均采用高纯特氟龙材料,清有内部接触部件均采用高纯特氟龙材料,清洁度能达到洁度能达到PPt。酸蒸馏超净清洗环境:密闭。15.处理量处理量::≥40个55ml消解反应罐(一次)。16. 适用试剂:氢氟酸,盐酸,硝酸,王水; 17. 常规清洗周期:≤2小时 (含干燥时间)。18.配置水气囊泵采样系统一台:18.1 泵身、泵底:需采用PTFE涂层或其他非金属材质;▲18.2 气囊材料及工作模式:PTFE;横向非纵向压缩;18.3流量/循环:大于等于105mL/循环;18.4 气管和排水管要求单股双管单卷轴;18.5进水方式:底部进水▲18.6机械旋钮控制时间微处理器,时间:排气 2-60s、 充气 2-60s;(提供设备图片佐证资料)18.7可实现水位泄降与采样单元联动控制,达到泄降控制水位,采样工作停止,水位恢复后,采样自动开始工作。18.8要求:不仅可以测量静水位与泄降水位,还可通过更换传感器测量井深。井深传感探头可在连杆连接处轻松拆卸,并可替换为水位探头。要求该井深测量设备可协助地下水专业人员在建井、井的维护或废弃井退役方面发挥优势作用。18.9井深测量方式:压敏柱塞式井深探头18.10 整套装置可测定静水位、泄降水位、井深功能。 附件七:酸纯化仪主要参数要求1. 酸汽化室和冷凝室采用高纯进口PTFE。给排酸管路进口PFA材料。2. 具有两个独立的酸纯化管,(需提供内部结构照片证明)。3. ★在105℃的条件下,65%国产优级纯浓硝酸的纯化速度≥50mL/hour(验收指标)。4. 可用于实验室各种试剂的提纯,包括硝酸、盐酸、水及各种有机溶剂等等。纯化后试剂(应为 ppt 级)应能满足 ICP MS 分析超痕量元素要求。5. 软件自动控制蒸馏纯化过程,具备蒸馏自我保护设置。6. 采用蠕动泵加酸和排废酸,避免人为操作污染。7. 冷却方式:循环水冷却器冷却,确保最高的冷却效率和纯化速度。8. 电源: AC220V 10% 50HZ。控温精度:±1°,温控范围: 0~240℃。9. 无需放入通风柜,也无需连接任何抽风管道到通风柜:自带高效废气回收装置,可实时中和、吸附排出系统的酸气。10. 石墨赶酸器功率:≥1.0kW。11. 加热炉:高纯石墨,表面采用特氟龙喷涂。▲12. 加热模块:具有金扩散的加热管(每根纯化管配置两根),从上向下的非接触辐射加热方式,避免局部过热爆沸,纯度更高。13. 触屏: ≥5寸电容屏或平板电脑。14. 阶梯控温,可控制升温速度;超温保护、 定时自动停止加热功能15.温度、液位实时曲线显示,并可自动保存,用户可在事后随时查看曲线并据此判断该次纯化是否正常,避免浪费后续的微波消解和ICP-MS开机检测时间;700000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包5: 合同包预算金额:750000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)5-1A02100415-环境监测仪器及综合分析装置机载高光谱成像系统1(项)否(一)机载高光谱成像仪1、机载高光谱成像仪主机及镜头★1.1扫描方式为外置推扫式,要求采集画幅无限制,扫描路线一次成图,避免画幅短小;光谱范围为400~1000nm;镜头视场角为17°~32°,并可根据需要灵活选择;1.2平均采样间隔:≤ 2.2nm;▲1.3光谱分辨率:≤ 2.1nm;光谱通道数:≥ 270;空间通道数:≥ 640;▲1.4每秒最大帧数:≥ 240fps,存储容量≥480G;▲1.5主机重量:≤ 0.6kg;主机功耗:≤13w;1.6在100m高空下,空间分辨率 ≤10cm,幅宽:30~60m;1.7镜头需具有辐射度定标,可以与余弦接收器配套使用,实时监测太阳的下行辐射照度,而不需要额外做复杂的大气辐射校正,并且避免仅用地面校准靶标,在测量过程中太阳光变化的影响; 1.8系统集成要求:满足空间CCD像素满足画幅无限制,要求各波段一次成像,无位移与姿态差异,无需波段配准。2、配套控制采集软件技术要求2.1配套软件能有效同步控制和同步记录飞行过程中高光谱传感器、GPS及IMU惯导数据;2.2数据采集软件:可灵活设置曝光、增益、速度,动态显示实时高光谱图像和高光谱曲线;2.3数据格式:.BIL、.XV、.BSQ等多种原始数据格式,可无缝兼容ENVI软件;3、几何校正及数据分析软件技术要求3.1能自动使用GPS及惯导系统获取的GPS信息和飞行姿态数据,对高光谱影像进行自动几何纠正,并能显著消除由无人机等机载平台运动照成的图像扭曲;能对各纠正后的条带数据进行有效的自动拼接;处理后的影像不应存在明显的条带错位现象;3.2提供对所有波段进行辐射度校准的功能;3.3数据分析软件:无需第三方软件可一键获取聚类分析、单波段、真假彩色、图像三维裁剪、目标光谱识别等图像;▲3.4 具有基于地物光谱仪的光谱数据做机载高光谱成像反射率自动求算功能,可自动匹配计算每秒反射率,匹配精度优于1毫秒,确保在光强多变天气下的数据准确度。▲4、高精度GPS及IMU惯导系统要求:可与机载高光谱成像仪直接连接,同步提供GPS及传感器俯仰、翻滚及航向姿态信息,动态精度0.1°。5、地面校准靶标布要求:尺寸大小(长*宽)不小于100cm*100cm。6、机载便携式运输箱要求:满足机载高光谱仪及配套工具长途运输及野外防护使用,具有抗震、防摔、防潮功能;7、机载安装套件要求:可提供适配于现有主流无人机的安装套件,具有减震缓冲、高光谱自动平衡等功能。8、其他工具:提供用于无人机搭载传感器飞行所需各种工具。(二)便携式地物光谱仪★1、光谱范围为400~1000 nm或更大范围;镜头视场角为25度,并可根据需要灵活选择;▲2、光谱分辨率:≤ 3.0nm;波长准确性:≤ 0.5nm;波长重复性:≤ 0.1nm;3、积分时间:8-2000ms;4、重量:≤1.8 Kg;▲5、设备进行绝对能量定标,可以进行精确的光谱遥感测量,NIST可追溯;自动调整积分时间,自动快门采集暗电流;6、内置光源,带有卤钨灯光源的接触式探头;7、内置高精度导航,可同时获取GPS信息、高程信息、影像信息;8、具有数据获取软件,能进行辐射亮度,辐射照度,反射率,吸收率,透射率测试;所有数据可自动存储,并被第三方分析软件即时处理;9、仪器自带控制面板和液晶显示屏,主机可存储2000个及以上数据;内置可充电锂电池,可持续供电4小时及以上。(三)图形工作站▲提供2套台式图形工作站(含显示器):图形工作站:酷睿I9-10900K(3.7G、十核)或以上CPU,DDR4 2666MHz 32G(16G*2)或以上内存,512GB或以上固态硬盘,4T或以上机械硬盘,RTX3070(显存8GB)或以上独立显卡;制图显示器:27寸或以上尺寸,16:9,IPS面板,3840*2160或以上分辨率,HDR400,10bit色深;预装正版win10操作系统。三、产品配置清单设备与服务 配置项 数量 备注机载高光谱成像仪 高光谱成像仪(含辐射定标镜头) 1台 GPS/IMU惯导系统 1套 地面校准靶标 1套 主流无人机安装套件 1套 机载电脑和配套控制采集软件 1套 几何校正及数据分析软件软件 1套 设备包装箱 1套 机载高光谱仪产品说明书 1套 含纸质和电子版便携式地物光谱仪 地物光谱仪主机 1台 校准白板 1套 光纤 1套 手柄及其他安装套件 1套 便携电池及充电器 2套 数据采集、读取、存储软件 1套 运输箱 1个 便携式地物光谱仪产品说明书 1套 含纸质和电子版工作站 台式图形工作站(含显示器) 2套750000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包6: 合同包预算金额:200000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)6-1A02100415-环境监测仪器及综合分析装置浮游生物鉴定计数及菌落计数分析系统1(项)否1. 显微成像:可人工控制显微图片的观察、拍摄、存储并连续自动等间隔拍摄不少于200张图片。具有实时预览饱和警告、自动背景矫正特性。三维景深融合,超视野拼接。★2.包含藻类智能鉴定计数模块、浮游动物计数模块,可采用不同颜色、不同大小的色圈标记各种浮游生物,按类点击、自动累积计数;包含自动菌落计数模块,可一键式自动计数,自动菌落粘连分割。3. 高清成像:3D高清晰成像,多视野图像的自动拼接、剪裁、编辑、修正、景深扩展、多聚焦融合特性。有藻类、浮游动物的颜色、形状自动学习分类特性,可监视修正转换藻类、浮游动物类别,并二次学习和保存分类特征。可快速提取其主边缘特征图像。具有对模糊、重叠的浮游生物图像的清晰化处理特性。▲4. 中文、拉丁文双语显示的浮游生物专家图库,包含浮游藻类专家数据库和浮游动物数据库 。能够智能鉴定、识别图片;鉴定不少于2万个种海水和淡水的藻类、浮游动物。已有有效图库量不少于20万张,图库属种和内容可自行扩充。5. 藻类、浮游动物计数及形态测量功能:a、浮游生物分类标记:采用不同颜色、不同大小的色圈标记各种浮游生物,并对不少于200张所拍摄图片内的各种浮游生物,按类点击、自动累积计数;b、优势种自动排序、按门(类)排序、优势群落组成百分比分析;c、可自动计算香农-威纳指数、均匀性指数、藻密度自动换算、浮游动物丰度自动换算。d、按大量形状模型来辅助计算浮游生物的生物量。内置常见淡水藻、常见海洋藻等计数表,并可自行编辑、导出、导入计数表。可按视野面积、藻群体面积、浮游动物个体面积测量,按细胞直径、藻丝、鞭毛长度、浮游动物体长及触角测量,以及按枝角分枝角度测量等。▲6. 有微囊藻分析模块,能自动学习与自动分析团状微囊藻群体的细胞数,并可自动计数颗粒性或单细胞微藻、链状微藻细胞、线虫等类的浮游动物。7. 藻类、浮游动物智能鉴定:具有有效地按图像形状、颜色、纹理等相似度来自动比对浮游生物图像的替换智能鉴定、识别图片特性。系统能自动索引用户建有的藻类和浮游动物计数表来形成其本地流域的小图库,有效加快智能鉴定、识别图片的鉴定过程。如该小图库没有的陌生种,可从系统完整的藻类、浮游动物大图库中智能鉴定、识别图片鉴定添加到本地流域小图库去。以及通过形态学搜索、模糊关键词搜索、常见藻及浮游动物搜索、分类学搜索,经图像、文字对比,快速鉴定浮游生物。▲8. 自动菌落计数模块:自动对焦的大景深800万像素2平皿同时拍照成像仪(能微距拍摄),真彩,分辨率0.02mm,背光及悬浮式暗视野成像系统。9. 自动菌落识别统计:SmartdownTM菌落智能识别技术,自动识别大规模团状、链状粘连的圆形、长形杆菌(显微形态大片粘连的大肠杆菌、病菌孢子)及平皿上的各类菌落(含金色葡萄球菌计数(国标GB4789.10-2016)、大肠菌群测定(国标GB4789.3-2016))。10. 菌落粘连分割:自动分割相互成片粘连的长形、圆形等菌落目标,用户可选择分割或不分割。还可手动分割、合并菌落目标图像。11. 菌落颜色形状识别:具有快速水平集提取技术,可按20类分类识别计数特定颜色、形状的菌落数量,并可类别转换修正。可同时选择多个目标区自动分别分析,并自由增减或编辑分析目标区。鼠标点击修正,无痕剔除网格及文字。12. 专业级2000万像素彩色CMOS相机、三目显微镜标准C接口各1个。▲13. 电脑硬件:笔记本,处理器≥i7-9750H,≥六核,内存≥16GB DDR4 2666,独立显卡,显存≥4G,硬盘≥1T固态硬盘,支持指纹识别,红外摄像头。14. 配置清单:(1)浮游生物鉴定计数及菌落计数主机1台 (2)菌落分析软件、藻类分析软件、浮游动物分析软件及使用手册共1套(3)电脑1台(4)显微摄像科研级2000万像素彩色CMOS、三目显微镜标准接口各1个1500006-2A02100415-环境监测仪器及综合分析装置智能化封口机1(项)否1. 可用于水样中微生物(菌落总数、总大肠菌群和大肠埃希菌、粪大肠菌群、绿脓假单胞菌、肠球菌等)的定量及定性分析。符合标准HJ1001-2018《水质 总大肠菌群、粪大肠菌群和大肠埃希氏菌的测定 酶底物法》,无漏液、无破孔。★2. 智能化液晶显示屏,可显示加热程度.休眠状态.错误代码。全自动计数程控功能,全自动休眠模式。▲3. 预热时间≤3分钟,处理速度≤8秒/样品。▲4. 有检修和维修窗口,无需拆卸机器,方便日常维护和清洗。5. 升级版智能程控定量封口机带MPN电脑软件,配检测系统的中文操作视频及文档资料。6. 可连续检测样品≥40000个,使用寿命大于10年。7. 加热温度(内辊)≥200°C (+/- 10°C)。8. 主机有ISO9001认证、ISO14001认证。与主机配合使用的同DST固定底物技术酶底物培养基必须在试剂包上有标注、有产品合格证、SNAP包装、包装上有批号及到期日期。9. 所有试剂耗材,须提供厂家可查询的无菌消毒证明、质量合格证书及质控报告原件,质量检测依据符合ISO标准,并附阳性参照物。10. 配置清单(1)智能程控定量封口机(含MPN电脑软件、中文操作视频或文档资料)1台(2)NSI粪大肠菌群定量质控标样(3)粪大肠菌群酶底物法试剂200样(4)阳性标准比色盘1个(5)定量瓶200个(6)定量孔板/定量检测盘 1箱100个50000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包7: 合同包预算金额:750000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)7-1A02100415-环境监测仪器及综合分析装置甲醛分析仪1(套)否1.1监测原理:湿化学吸收+光学检测法1.2检测范围:0.1ppb-50ppm1.3最低检测限:≤100ppt 1.4时间分辨率:≤90 秒(10% - 90%)1.5噪声:1%满量程1.6检测方式:实时在线监测1.7校准功能:可实现手动或自动校准1.8需配备主机、试剂冷藏柜等附属设施,以满足设备正常运行需求。750000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包8: 合同包预算金额:330000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)8-1A02100415-环境监测仪器及综合分析装置气相色谱仪1(项)否可通过阀进样分析非甲烷总烃、氯乙烯、甲醇等多种气体物质。仪器设备应符合HJ 38-2017、HJ 604-2017、HJ/T33-1999、HJ/T 34-1999 等方法的要求。★(一) 配置要求:气相色谱主机1台。2.填充柱进样口2个。3.FID检测器2套。4.阀温箱1个。5.六通阀2个。6.硅烷化钝化管路7.非甲烷总烃专用填充柱(双填充柱)2根,常规填充柱2根。8.原装工作站,1套。气相安装工具包1套。9.除水除氧阱套装1套,氢气过滤器1套,氮气过滤器1套。10.电脑,1套。CPU大于等于i7 9700核心数≥8,线程数≥8;内存≥16G ddr4 频率≥2666MHz,硬盘≥1T固态硬盘+2T机械硬盘,显卡≥RX560,显存≥4G。预装正版操作系统及软件:Windows 10旗舰版。显示器≥24寸液晶显示器。11.激光打印机,1台:A4幅面,具有自动双面打印功能。2.技术参数:2.1柱温箱:2.1.1温度分辨:1℃温度设定;2.1.2升温速度:0.1~75℃/分钟;2.1.3程序升温:20阶;2.1.4降温速率:从400℃降至50℃最快可达210秒(22℃室温下);2.1.5柱温箱容量:不小于14升(需提供证明文件); 2.1.6 温度范围:室温8~425℃;2.1.7 温度控制:<0.01℃ 当环境变化1℃。2.1.8 最长运行时间:999.99 分钟2.2 火焰离子化检测器 (FID)2.2.1 FID最高使用温度:425℃;▲2.2.2 最大数据采集速率 500 Hz;2.2.3 全程数字数据路径能够在一次运行中对整个浓度范围内的峰进行定量分析;2.3 进样口2.3.1 最高使用温度:400?C2.3.2 压力设定范围: 0~689.47kPa; 2.3.3 压力设定精度: 0.01Psi;2.3.4 压力/流量控制段数:不小于3阶;2.3.4 载气控制方式: 恒压、恒流、程序升压/升流;可计算色谱柱平均线速度。流量设定范围: 0~500 mL/min N2;2.3.5 最大载气流量:100ml/min2.3.6适配接头可用于1/8英寸填充柱2.3.7适配接头可用于0.53mm毛细柱2.3.8 电子压力控制,无需数字表头2.3.9具备隔垫吹扫功能2.4色谱柱2.4.1总烃柱2.4.2甲烷柱2.4.3甲醇柱2.4.4氯乙烯柱2.5 电子压力控制器通道:最多可以搭载6个电子压力控制器通道,可以用于进样口、检测器、辅助压力控制器等设备2.6智能化:2.6.1智能初始化气路诊断;▲2.6.2智能故障排查向导,运行过程中出现故障时可通过仪器上的触摸屏向导依次排查故障原因;★2.6.3智能空白样品监控,可以在样品序列中插入空白样品,当检测浓度超过空白设定值时仪器自动停止序列或者弹出对话框提示空白超出阈值;▲2.6.4智能自引导式维护,当更换耗材比如衬管时,可通过仪器上的触摸屏向导程序逐步完成耗材更换;2.6.5智能远程浏览器用户界面▲2.6.6 具备早起维护反馈系统,能够实时监控系统中特定组件的使用情况,并在超出用户所选限值时进行反馈,可同时监控的组件数量不低于40项,作为验收指标。▲2.7触摸电容屏控制:无需物理按键,通过不小于4英寸的触摸电容屏控制,无需数据系统可直接进行方法和序列编辑。2.8 EPC微通道构架基础,有效防止颗粒、水汽和油等气体污染物的侵蚀。★2.9 进样系统管路需配备硅烷化钝化管路;2.10阀温箱与主机紧密连接,温度恒定;2.11六通阀可高温加热。2.12 数据通讯接口2.12.1 两个模拟输出通道(提供 1 V 和 10 V 输出)2.12.2 联网条件下可实现远程启动/停止2.12.3 通过LAN网卡连接电脑及仪器2.12.4 用于流路选择阀的二进制编码是十进制输入2.12.5 两个 USB 接口2.13 仪器使用条件2.13.1 电源要求:220V±10%2.13.2 频率: 47.5–63 Hz2.13.3 功率:不大于2500 W330000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包9: 合同包预算金额:170000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)9-1A02100415-环境监测仪器及综合分析装置热脱附全自动标样制备器1(项)否一、技术参数:1、完全满足应用于HJ734-2014、GB50325-2020、GB18883-2002等VOC监测标准,专用于热脱附标样制备。2、可以实现一次对6根热脱附管标样自动配置(液体标样打入热脱附管),无需人为参与,只需把瓶子和管子放进相应位置,标样制备过程实现自动洗针、排气泡、取样、进样、吹氮气;可以实现液体内标全自动打到热脱附管,并自动实现进样、洗针和吹氮气等步骤;3、可满足不同尺寸吸附管规格:长度50mm-190mm,外径6mm-6.5mm。4、触摸屏控制操作面板,最多一次可放置6瓶标样和6根吸附管,实现一打一或者一打多两种进样方式。制备6根吸附管的气路系统不受吸附管阻力影响而且整体稳定控制,相互不受影响,实现同时吹相同流量的气体。内置测试参数界面,可自行修改取样速度以及洗针次数等参数,优化参数达到满足不同标准曲线的配置方法。5、可以实现进样针(5微升/10微升)10个不同量程的独立校准,每个点都可以独立校准并保存校准数值。6、浓度500ppm苯系物重现性RSD<3%(6次平行样),提供数据报告。7、验收时要求提供苯系物标准曲线达到0.999以上的数据以及HJ734-2014标准中24种VOC组分相关系数R≥0.995(5ng~100ng五个梯度样品)指标。二、仪器配置配置 数量主机 1台多位样品进样盘 1个10ml样品进样针 2支断气保护模块 1套(出厂内置)方法集应用软件 1套(出厂内置)安装附件包 1套电源适配器以及操作说明书 1份苯系物标样 1份24种VOC标样 1份170000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标 包10: 合同包预算金额:45000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)10-1A02100415-环境监测仪器及综合分析装置总磷总氮分析仪1(套)否1.可直接测量总磷、总氮等指标,浓度直读。2.检测方法符合国家或相关行业标准,结果真实可信。3.所有检测项目无需手动制作曲线,内置标准曲线,可直接使用和一键校正。4.仪器所有检测项目具备拟合曲线功能,可根据实际需要自行制作曲线。5.总氮与其他指标独立检测,光源独立,结果稳定。6.采用LED冷光源,采用高稳定氘灯,测量结果稳定、准确。7.所有检测指标自动切换、测量,减少手动操作时的人为误差,简单方便。8.主机具备支持USB传输功能。9.具备数据存储和打印功能。10.具备不少于25孔智能多参数消解器。11.消解器可预设加热时长,到达预设时间自动停止加热,保护安全,节省能耗。二、技术指标分析项目 总磷 总氮测定范围 0.02-5mg/L (分段) 0-100mg/L测定精度 ≤±5% ≤±10%最低检出限 ≤0.02mg/L ≤0.1mg/L测定时间 ≤50min ≤60min批处理量 25支水样 25支水样重复性 ≤±3% ≤±3%比色方式 比色管或比色皿 比色管或比色皿存储数据 ≥1.2万 ≥1500个曲线数量 ≥219条 ≥25条显示方式 彩色液晶触摸屏 彩色液晶触摸屏通讯接口 USB/红外(选配) USB消解温度 120-125℃ 122-125℃消解时间 30min 30-40min三、仪器配置要求配置 数量智能多参数消解仪主机 1台总氮模块 1套总磷模块 1套冷却架 1个反应管 2套电源线 1根配套打印机 1套其他配件 1套45000 合同履行期限: 合同签订后30日内交货 本合同包:不接受联合体投标
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 热分析仪核心部件原理简介
    p  常规的热分析仪器主要有热重分析仪(TGA),差热分析仪(DTA),差示扫描量热仪(DSC),热机械分析仪(TMA)和动态热机械分析仪(DMA)。/pp  热分析仪器测量各种各样的物理量需要靠其核心部件来实现。这些部件有电子天平、热电偶传感器、位移传感器等。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong电子天平/strong/span/pp  电子天平是热重分析仪(TGA)和同步热分析仪(STA)的核心部件,是测量试样质量的关键。/pp  电子天平采用了现代电子控制技术,利用电磁力平衡原理实现称重。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b44413c9-13e5-46ab-a916-78c021d42f3e.jpg" title="电压式微量热天平.png"//pp style="text-align: center "strong电压式微量热天平/strong/pp  天平的秤盘通过支架连杆与线圈连接,线圈置于磁场内,当向秤盘中加入试样或被测试样发生质量变化时,天平梁发生倾斜,用光学方法测定天平梁的倾斜度,光传感器产生信号以调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。在称量范围内时,磁场中若有电流通过,线圈将产生一个电磁力F,可用下式表示:/pp style="text-align: center "F=KBLI/pp  其中K为常数(与使用单位有关),B为磁感应强度,L为线圈导线的长度,I为通过线圈导线的电流强度。电磁力F和秤盘上被测物体重力的力矩大小相等、方向相反而达到平衡。即处在磁场中的通电线圈,流经其内部的电流I与被测物体的质量成正比,只要测出电流I即可知道物体的质量m。/pp  无论采用何种控制方式和电路结构,其称量依据都是电磁力平衡原理。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong热电偶传感器/strong/span/pp  热电偶传感器是所有热分析仪器均会用到的部件,用于测定不同部位(试样、炉体)的温度。/pp  热电偶传感器是工业中使用最为普遍的接触式测温装置。这是因为热电偶具有性能稳定、测温范围大、信号可以远距离传输等特点,并且结构简单、使用方便。热电偶能够将热能直接转换为电信号,并且输出直流电压信号,使得显示、记录和传输都很容易。/pp  热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect),即热电效应。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度。/pp  热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关 若热电偶冷端的温度保持一定,热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B连接起来,构成一个闭合回路,当导体A和B的两个连接点之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong位移传感器/strong/span/pp  位移传感器是热膨胀仪(DIL)、热机械分析仪(TMA)和动态热机械分析仪(DMA)中会用到的核心部件。通过测定直接放置于试样上或覆盖于试样的石英片上的探头的移动,来测定试样的尺寸变化。/pp  LVDT位移传感器,LVDT(Linear Variable Differential Transformer)是线性可变差动变压器缩写,属于直线位移传感器。LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成。初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0 当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。线圈系统内的铁磁芯与测量探头连接,产生与位移成正比的电信号。电磁线性马达可消除部件的重力,保证探头传输希望的力至试样。使用的力通常为0~1N。/p
  • 光波诱导下光电流极性反转现象
    近日,中国科学技术大学龙世兵、孙海定研究团队联合武汉大学刘胜教授团队,以及合肥微尺度国家实验室胡伟研究员、香港城市大学He Jr-Hau教授和澳大利亚国立大学傅岚教授,将分子束外延生长的III族氮化物纳米线与无定型硫化钼材料结合,构筑了新型GaN/MoSx核壳纳米线结构,应用于光电化学光探测领域。通过将氮化镓半导体内光电转化过程与该结构在电解质溶液中的电化学反应过程相交叉,成功在纳米线中观察到光波长控制下的光电流极性翻转现象,实现了不同波长可分辨探测功能。该成果以“Observation of Polarity-Switchable Photoconductivity in III-nitride/MoSx Core-Shell Nanowires”为题发表在Light: Science & Applications,并被选为第 11 期封面文章。III族氮化物纳米线具有良好的导热性,载流子有效质量小、载流子迁移率高、吸收系数高、化学稳定性和热稳定性良好等各种优异特性,被广泛应用于晶体管、激光器、发光二极管、光电探测器和太阳能电池等领域,是现代半导体器件领域的重要组成部分。特别地,由于其独特的一维几何形状和大的比表面积,III族氮化物纳米线表现出许多对应体相材料不存在的独特特性。相比于薄膜结构,纳米线生长不受制于晶格匹配生长规则的约束,完美解决了异质外延生长及集成所面临的困境。同时,在III族氮化物纳米线外延过程中,材料内的应力易得到释放,位错则终止在III族氮化物纳米线的侧壁,有效减少了外延材料中的堆垛层错和穿透位错密度。此外,相较于薄膜结构,纳米线中的低缺陷密度可大幅提高纳米线中施主、受主杂质的掺杂效率,具有高效载流子导电特性。并且,得益于其高晶体质量和大的比表面积,纳米线阵列拥有较高的光提取/吸收效率和较强的光子局域化效应。此外,纳米线结构可以通过有效的应变弛豫来缓和有源区内的极化场,显著降低材料内位错密度和压电极化场,增强了电子和空穴之间的波函数重叠。同时,基于分子束外延自发生长的III族氮化物纳米线表面为氮极性,赋予了其较高的化学稳定性。尽管III族氮化物纳米线有诸多优势,然而,仅依靠其固有的物理和材料特性构筑器件,限制了该类材料功能的进一步拓展。通过将纳米线中的经典半导体物理过程与化学反应过程相结合,有望突破传统III族氮化物纳米线的功能限制,拓展新的应用场景。针对上述问题,中科大孙海定课题组利用分子束外延(MBE)技术所制备的高晶体质量氮化镓(GaN)纳米线,开展了系列研究工作。在构建高性能光电化学光探测器的基础上[Nano Lett., 2021, 21 (1): 120-129 Adv. Funct. Mater., 2021, 31 (29): 2103007 Adv. Funct. Mater., 2022, 2201604 Adv. Opt. Mater., 2021, 9 (4): 2000893 Adv. Opt. Mater., 2022, 2102839 ACS Appl. Nano Mater., 2021, 4 (12): 13938–13946], 通过将光电化学光探测器中载流子的产生、分离及传输过程与电子和空穴在半导体表面/电解液界面处的氧化/还原反应过程相结合,实现了载流子输运过程的有效调制,在该器件中观察到独特的双向光电流现象[Nature Electronics, 2021, 4 (9): 645-652 Adv. Funct. Mater., 2022, 2202524 Adv. Funct. Mater., 2022, 32 (5): 2104515]。上述工作中,实现双向光电流的必要条件之一是利用纳米线表面贵金属修饰策略,改善纳米线表面的载流子分离效率及化学吸附能。如何利用纳米线独特的一维几何形状和大的比表面积特性,将其与其他低成本、易合成的功能材料相结合,是实现对贵金属材料的替代,降低器件制备成本并进一步提升器件多功能特性的关键。与此同时,为了更好分析双向光电流现象的内部机制,需要探索新的表面修饰手段,以保证复合纳米线结构的均一性,稳定性。作为过渡金属硫属化物材料的一员,近年来,无定形硫化钼(a-MoSx)在实现高效能量收集和转换方面受到了广泛关注。由于其独特的由二硫配体桥接的一维(1D)a-MoSx链结构,丰富的表面活性位点可以与周围环境紧密接触,表现出出色的反应活性,可实现高效的电荷转移和传输。更重要的是,在温和的室温条件下,简单的电沉积方法(循环伏安法)即可以轻松合成a-MoSx材料。通过电沉积法,a-MoSx可以直接包裹于纳米线表面上,实现a-MoSx和纳米线之间的高效耦合,有效改善纳米线表面的载流子分离效率及化学吸附能。在此,我们以实现对不同波长的光分辨探测为目标,提出了一种基于在Si衬底上外延生长的p-AlGaN/n-GaN纳米线构建的光电化学光探测器(图1)。图1 基于纳米线的PEC PD的器件结构和工作原理示意图在光电化学光探测器的工作过程中,光电流响应信号的大小由有效参与氧化还原反应的光生载流子的数量决定,光电流的极性(正或负)则由在半导体/电解质界面发生的化学反应的种类决定。换句话说,通过入射光的波长控制在光电化学光电探测器中占主导地位的化学反应种类(氧化反应或还原反应),可以实现光电流极性的翻转。图1展示了光电化学光电探测器中的基本光电极结构和简化的工作原理。由于设计的顶部p-AlGaN层的带隙较大,它对低能光子(例如365 nm光照)是透明的,对光电探测过程没有贡献,只有n-GaN部分吸收光子并且参与氧化反应,光电探测器呈现正光电流。而在254 nm照射下,顶部p-AlGaN和底部n-GaN部分均能吸收高能光子并于半导体/电解质界面发生氧化反应和还原反应。然而,由于纯p-AlGaN/n-GaN纳米线表面的氢吸附能(ΔGH)不适合实现高效的还原反应(换句话说,还原过程很慢),氧化反应过程仍然在净光电流极性中占主导地位。纯p-AlGaN/n-GaN纳米线,在254 nm照明下产生小的光电流。这表明改变纳米线表面的ΔGH是实现双向光电流的关键。为了在不同波长的光照下实现双向光电流响应,我们选择用a-MoSx修饰III族氮化物纳米线以提高还原反应速率。图2在p-AlGaN/n-GaN纳米线的表面可以观察到一层明显壳层,表明III族氮化物核壳结构纳米线的成功制备。图2无定型MoSx修饰的p-AlGaN/n-GaN纳米线的结构表征。(a)SEM.(b)低倍率TEM.(c)高分辨率TEM图像(d)低倍率STEM图像(标尺 = 100 nm),(e)高角环形暗场(HAADF)STEM图像和(f)环形明场(ABF)STEM图像。(g)STEM-EDS 图像和(h)对应位置的线扫描结果为深入理解表面修饰对光探测性能带来的影响,我们通过X射线光电子能谱(XPS)进一步研究了a-MoSx@p-AlGaN/n-GaN纳米线的化学成分和元素间键合情况(图3a,b)。这些结果与之前对[Mo3S13]2-簇的XPS研究一致,证实了a-MoSx被成功修饰在p-AlGaN/n-GaN纳米线上。图3 (a)(b) p-AlGaN/n-GaN纳米线上电沉积a-MoSx壳层的XPS谱。(c)a-MoSx修饰前后的光响应对比。(d)a-MoSx@p-AlGaN/n-GaN纳米线的光谱响应为了进一步评估纳米线的光响应行为,我们构建了光电化学光探测器。由图3c可知,纯p-AlGaN/n-GaN及无定型MoSx修饰后的纳米线均显示出稳定且可重复的开/关光电流循环。纯p-AlGaN/n-GaN纳米线在254 nm或365 nm光照下则均表现为正的光电流响应,这与图1所示的纯p-AlGaN/n-GaN纳米线的工作原理一致。因其对不同光子能量的入射光子有不同的光响应特性,a-MoSx@p-AlGaN/n-GaN纳米线能够通过表现出不同极性的光电流来区分不同的光波段。如图3d所示,光电流信号在255 nm光照下为负,然后当波长超过265 nm时切换为正,证实了其波段可分辨性能。此外,对可见光照射的光响应可以忽略不计,表明器件具有出色的可见光盲特性。同时,我们还深入探讨了该器件的性能可调性,并利用第一性原理计算揭示了a-MoSx修饰实现双向光电流性能的内在机制。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 首次拍摄到单原子“游泳”的图像
    英国科学家在最新一期《自然》杂志刊发论文称,他们借助石墨烯堆叠技术,制造出一种新型“纳米皮氏培养皿”,以进一步了解液体如何改变固体的行为,在此基础上首次拍摄到单原子在液体中“游泳”的图像,最新发现有望促进制氢等绿色技术的发展。当固体表面与液体接触时,两种物质都会随着彼此的靠近而改变其构型。固液交界面上的这种原子级相互作用控制着用于燃料电池等的行为,也是许多生物过程的基础。鉴于上述行为在工业和科学领域十分重要,科学家希望进一步了解与液体接触的表面原子的行为,但目前缺乏能够产生固液界面实验数据的技术。最新研究第一作者、曼彻斯特大学国家石墨烯研究所的尼克克拉克博士指出,透射电子显微镜是为数不多能够观察和分析单个原子的技术之一,但透射电子显微镜需要在高真空环境下工作,而材料的结构会在真空环境发生变化,“如果在真空中而非液体电池内研究原子的行为,我们会得到错误信息”。罗曼戈尔巴乔夫教授开创了二维材料堆叠技术,在最新研究中,他们使用相同技术开发出“双石墨烯液体电池”:二维的二硫化钼层完全悬浮在液体中,并由石墨烯封装,这使研究人员能够精确控制液体层,从而捕捉到前所未有的视频,显示单个原子在液体中如何游动。通过分析视频中原子的运动方式,并结合剑桥大学科学家提供的理论见解,研究人员能够理解液体对原子行为的影响——液体可以加快原子的运动,并改变其相对于底层固体的首选静止位置。该团队研究了一种有望用于绿色制氢的材料,研究人员表示:“这是一个里程碑式的成就,我们希望借助这项技术支持可持续化学处理材料的开发,助力全球实现零排放。”
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 万深浮游生物分类计数与鉴定智能化演示直播会通知
    地球表面面积70.8%是被水覆盖的,几乎所有水体中都有种类繁多的生物生存。19世纪初有人开始对水中的微小生物进行观察,到19世纪80年代,德国学者汉逊提出了浮游生物这一名词,被公认为浮游生物研究的奠基人。近几十年来,为了合理利用管理水资源,保护人类环境,对水体浮游生物学的研究有了进一步的发展和深入。2012年,万深公司整理国内外公开的海量资源,运用先进的视觉检测技术,推出AlgaeC浮游生物智能鉴定计数系统,该系统配有功能强大的浮游生物智能搜索图库,帮助科研人员快速简便地分类统计及鉴定浮游生物,并计算浮游生物量。该系统面市以来用户单位遍布全国,如中国科学院下属海洋、生态、水产等研究所、中国生态环境部,国家海洋局及下属所和监测站,各省市环境监测中心、各农业、海洋院校,以及其他综合性大学的有关专业等。2019年应用户需求,万深公司再次推出:AlgaeAC藻类自动分类计数仪和ZooCC浮游动物自动分类计数仪,实现当地水域藻类、浮游动物的全自动分类计数并报告。为了能让科技人员更好地了解这几款产品,我们将在钉钉上举办2020年度第二场产品推介会。一、会议时间2020年6月5日(周五)晚上19:30分-21:00,签到时间:19:20-19:30。二、会议形式钉钉群在线直播。三、推介产品1、AlgaeC浮游生物智能鉴定计数系统2、AlgaeAC藻类自动分类计数仪3、ZooCC浮游动物自动分类计数仪4、HiCC全自动菌落计数分析仪 四、参加人员从事水生生物学、渔业、水污染防治、环境保护等方面研究的科技人员,及服务于该领域研究人员的经销商公司的朋友。五、钉钉直播培训二维码参会人员须在6月5日晚上19:30点前通过钉钉扫描码加入观看
  • 海顿科克推出用于永磁式电机的低电流IDEA驱动器
    海顿科克直线传动全新推出了通过美国RoHs认证的PCM4806型IDEA可编程直线步进电机驱动器,该型号驱动器是海顿IDEA驱动器家族的最新成员,它主要趋向提供更小电流从而去驱动更小海顿永磁式的直线步进电机,随着PCM4806型驱动器的加入,IDEA系列驱动器已经可以驱动海顿所有的直线步进电机型号。 IDEA驱动器是一个结构紧凑,使用方便的驱动器,它可以通过用户电脑屏幕上的操作界面对驱动器进行所有的编程,整个编程过程用户只需点击用户界面上通俗易懂的按纽就可以完成。 用户在开始编程之前需要先输入海顿电机的品号(每个海顿电机都有一个品号),这样软件就会根据品号,自行设定电机的初始参数(默认值),有了这个功能用户就算不了解复杂的电机参数和深奥的步进电机原理也一样可以完成编程。而对于一个熟练的用户来说,软件同样也允许用户在电机的安全范围内改变电机的默认值!另外这个软件可以让用户在编程时一行一行的去调试程序,同时在正式连接到外部设备上前,输入和输出信号也可以在软件上面得到完全的模拟! IDEA驱动器需要一个独立的能提供12-48V电压的电源提供工作电压,驱动器的输出电流为2.6A/相(峰值为3.68A/相),驱动器自身配有8个I/O端口(4个输出端口,4个输入端口),每个输入端口可以输入5-24V电压,以及最大4mA 的电流,输出信号是集电极开路信号,每个输出端口可以输出5-24V电压,以及最大200mA的电流,通过一根一端是普通USB接口,另一端是小型USB接口的数据线就可以把驱动器和电脑联接起来! 更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制