当前位置: 仪器信息网 > 行业主题 > >

电子经纬仪发光原理

仪器信息网电子经纬仪发光原理专题为您提供2024年最新电子经纬仪发光原理价格报价、厂家品牌的相关信息, 包括电子经纬仪发光原理参数、型号等,不管是国产,还是进口品牌的电子经纬仪发光原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电子经纬仪发光原理相关的耗材配件、试剂标物,还有电子经纬仪发光原理相关的最新资讯、资料,以及电子经纬仪发光原理相关的解决方案。

电子经纬仪发光原理相关的资讯

  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 新品推荐:化学发光原理与计算机技术相结合仪器---A2070N化学发光定氮仪
    石油产品检测仪器有着30多年的发展历史。伴随着石油和石化工业的发展,石油产品检测仪器走过了从无行业标准到统一标准 从手动到自动的发展历程。石油产品检测仪形成了很多门类:闪点检测仪、倾点检测仪、凝点检测仪、石油分析仪、水分测定仪、光谱分析仪等等。氮测定仪更是石油产品检测中比较小众的存在。A2070N氮测定仪 (化学发光定氮仪)A2070N 氮测定仪是根据化学发光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。应用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准:SH/T 0657、ASTM D46291、系统采用化学发光法测定总氮含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。样品种类液体、固体和气体测定方法化学发光法样品进样量固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围0.1-5000mg/L测量精度化学发光定氮仪进样量(μL)RSD(%)0.1202551010501051001035000103控温范围室温~1300℃控温精度±1℃气源要求高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源AC220V±10% 50Hz功 率1500 W外形尺寸主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量主机:20kg 温控:40kg
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!参考文献1、Hastings JW. Cell Physiology Source book 2012.2、Nguyen V H et al. Cancer Research, 2010, 70(1):18-23.3、 Nguyen V H et al. Nuclear Medicine & Molecular Imaging, 2016.4、 Dunlap P . ADVANCES IN BIOCHEMICAL ENGINEERING BIOTECHNOLOGY, 2014.5、Keyaerts Marleen et al. Trends in molecular medicine,2012,18(3).6、 Nathan K. Archer et al. Springer International Publishing, 2017.7、Doyle T C et al. Cellular Microbiology, 2004, 6(4):303-317.8、Avci P et al. Virulence.
  • 李强总理考察长春光机所,要求加快光电技术研发和成果转化
    据新华社报道,中共中央政治局常委、国务院总理李强11月14日至16日在黑龙江、吉林调研,考察了中国科学院长春光机所,参观实验室及新成果展示,要求加快光电技术研发和成果转化,更好助力国家高水平科技自立自强。△图 李强总理考察中国科学院长春光机所关于中国科学院长春光机所中国科学院长春光学精密机械与物理研究所(简称“长春光机所”)始建于1952年,由长春光机所与长春物理所于1999年整合而成,是新中国在光学领域建立的第一个研究所,主要从事发光学、应用光学、光学工程、精密机械与仪器的研发生产。建所70年来,长春光机所在以王大珩院士、徐叙瑢院士等为代表的一批科学家的带领下,研制出中国第一台红宝石激光器、第一台大型电影经纬仪等多种先进仪器设备,创造了十几项“中国第一”。现有18个研究部室,其中国家重点实验室/工程中心6个、中科院重点实验室2个;在职职工2500余人,其中国家级各类领军人才15人,国务院政府特殊津贴获得者37人;设有硕士点9个、博士点7个、博士后流动站3个,在学研究生千余人。
  • 滨松中国光致/电致发光材料测量技术研讨会在太原理工大学圆满落幕
    2021年6月16-17日,由滨松中国与睿光科技联合举办的“滨松中国光致/电致发光材料测量技术研讨会”在太原理工大学圆满落幕。在为期两天的技术交流会中,滨松中国销售工程师就《滨松针对发光材料&发光器件的产品解决方案》、《滨松条纹相机产品介绍》等内容进行了报告。报告现场,来自物理与光电工程学院的老师以及同学们就产品的重点参数与实际应用范围展开了积极的讨论,对于产品解决方案中一些方案的落地与实施提出了不同的意见与建议,现场的讨论氛围数度达到高潮。滨松中国的绝对量子产率测量仪Quantaurus-QY C11347是一种紧凑,操作便捷的测量仪,用于测量荧光材料的量子产率。它采用绝对测量法,不需要已知的参考标准,相比较传统方法,该产品的性能更加优异。该产品可分析不同形式的样品-薄膜、固体、粉末和溶液,并且可以用液氮将液体样品冷却至-196℃(77k)。在报告内容结束之后,滨松中国为老师以及同学们提供了免费的样品测试,并就样机的保养与维修进行了深入交流。在测试的过程中,同学们表示滨松中国的产品具有很优异的技术参数,测量结果高效且准确,十分适用于各种科研实验。
  • 中科院长春光机所创新发展 科研成果1700多项
    应用光学与光学工程国际会议17日在长春开幕。会议由中国科学院长春光学精密机械与物理研究所(简称“长春光机所”)、美国光学学会、俄罗斯激光协会、中俄科技园联合主办。300余位中外学者济济一堂,共话光学研究发展。  时值中科院长春光机所建所60周年,“举办这样的国际学术会议彰显了长春光机所学术影响力不断提升,国际影响力逐年提高。”与会专家普遍认为。  长春光机所所长宣明在致辞中指出,随着光学研究不断深入和创新成果不断涌现,长春光机所得到了国际同行的认可,与多个国家的研究单位合作不断深入,参加了以30m望远镜为代表的一系列国际先进水平的研究工作。  始建于1952年的长春光机所,主要从事发光学、应用光学、光学工程、精密机械与仪器的研发生产。60年来,长春光机所在以王大珩院士、徐叙瑢院士等为代表的一批科学家带领下,研制出中国第一台红宝石激光器、第一台大型电影经纬仪等多种先进仪器设备,创造了十几项“中国第一”。  进入知识创新工程以来,长春光机所在科研领域攻克了多项关键技术,取得了以“神舟五号”、“神舟六号”、“天宫一号”有效载荷为代表的一批重大科研成果,年科研合同额突破18亿元。  至今,长春光机所已取得1700多项科研成果,获专利授权900余项 组建、援建了10余家科研机构、大专院校和企业单位 有22位在该所工作过的优秀科学家当选为两院院士,并涌现出“知识分子的优秀代表”蒋筑英等众多英模人物。  近年来,长春光机所更是秉承“研产学并举”的发展理念,积极探索院地合作的新思路和科技成果转化的新模式,成为吉林省实施“创新驱动”战略的一块重要技术高地,为吉林省光电产业跨越发展提供了重要技术支撑与引领。  长春光机所投资兴建的“中国科学院长春光电子产业园区”已经成为吉林省光电子领域重要的成果转化基地,科研条件基本达到发达国家水平。据介绍,园区内现有该所投资的高科技企业9家,总资产4.5亿元,2011年实现销售收入5.1亿元。(完)
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》
  • 全集成数字微流控及片上并行化学发光免疫检测新方法
    数字微流控(Digital microfluidics)是一种通过电极阵列,在芯片上利用电信号对微量液体运动进行精准操纵的技术,现今已广泛应用于化学合成、生物分析、疾病诊断等领域。该技术利用了半导体技术及消费电子的设计理念,在手掌大小的微流控芯片上,无需外设的辅助,即可自动实现快速在场体外诊断(POCT)。芯片具有高度兼容性,可用于定量分析多种蛋白质和生物分子。  该技术的原理是通过改变芯片电极的电压来对应地改变其表面的亲疏水性,进而使液滴在相邻电极表面的接触角产生差异,从而使液滴在不同方向存在表面张力的差异,以此操纵液滴产生定向移动、分裂、合并等现象。其中,如何高效、稳定地生成微液滴是数字微流控技术的核心,也是其难点所在。在实际操作中,当芯片间隙与电极的尺寸比值超过某一阈值时,液滴撕裂成为更小的液滴将十分困难。该因素的存在导致当芯片结构和尺寸固定时,可生成液滴的最小体积也被限制。如果能突破这一限制,生成体积更小的液滴,则可以在有限的芯片区域内实现更多检测,提高系统的检测通量。此外,由于产生的液滴进一步缩小,片上样品稀释、磁珠清洗等具体实验的灵活性将显著提高,极大拓宽数字微流控技术在POCT方向的应用潜力。  近日,中国科学院苏州生物医学工程技术研究所研究员马汉彬课题组与长春理工大学等合作,创新性地提出名为“One-to-three”的数字微流控液滴生成新方法。该方法基于液滴对称撕裂可在几何中心位置保持表面张力平衡的原理,将一个大液滴分成三个液滴,包括一个在不改变数字微流控芯片几何尺寸的情况下高效分离出“高纵横比”的小液滴。该液滴撕裂方法超出了介电润湿数字微流控的几何极限。  结合“One-to-three”液滴生成的优势,科研人员整合了磁吸模块、光学检测模块、三轴操控模块、液滴驱动系统等开发出一套具备全自动路径编译、检测数据读取、三轴定外控制的软件。通过对系统不断测试优化,构建了整套全自动数字微流控化学发光免疫分析平台。该高度集成的平台可快速完成高效的磁珠洗涤,实现了在一个芯片上可以同时并行检测5个B型利钠肽样本,整个免疫测定过程仅约需10分钟,完成了从理论突破、功能设计及工程化开发的全流程。该研究成果可应用于人类血清中B型利钠肽的定量快速检测,对心衰的诊断、预后评估、病情监测、指导治疗等方面具有一定价值。  相关研究成果以“One-to-three” droplet generation in digital microfluidics for parallel chemiluminescence immunoassays为题,发表在Lab on a chip上,并被选为内封面论文,收录于2021热点论文集。
  • 岛津应用:有机电致发光材料的荧光测定
    近年来在电机和电子领域,不断开发出使用有机电致发光(EL)的显示器和照明设备等产品。在有机EL的开发过程中,需要通过光致发光(PL)对新合成物质的光学特性进行确认。这样可以帮助我们找到高效的发光材料,以及研究材料在溶液中发光原理。通过这个过程,以开发符合要求的光色调、满足节能和高效发光等要求的有机EL材料。在检测有机EL材料时,必须在较宽的波长范围内迅速且准确地测定荧光波长。 本次分析在韩国浦项科技大学基础科学研究院(POSTECH:Pohang University of Science and Technology)的协助下,我们使用岛津荧光分光光度计RF-6000对有机EL材料之一的卟啉溶液(溶剂:三氯甲烷)进行了测定。在各种有机EL材料的开发过程中,要求能够在更高灵敏度和更大范围内进行光谱观测。RF-6000不仅能够迅速准确地进行三维测定,还能够进行高达900nm的高灵敏度光谱测定。并且,还可使用选购件积分球测定量子效率(绝对量子产率)。综上所述,使用荧光分光光度计RF-6000可有效对有机EL材料的三维光谱及荧光光谱进行确认。本文向您介绍详细的分析示例 荧光分光光度计RF-6000 了解详情,敬请点击《有机电致发光材料的荧光测定》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 流式荧光技术检测与化学发光技术检测那些事儿
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工前段时间,有很多新关注崔工公众号的朋友问崔工一个问题,什么是流式荧光检测技术?它的原理是什么?传统的化学发光检测技术又有什么?问崔工这个问题的朋友应该是刚进入到这个行业,还不是很了解这个行业。今天就跟大家聊聊,供大家参考。— 1 —什么是流式荧光检测技术?从百度百科了解到,流式荧光,又称悬浮阵列、液相芯片等,是近20多年逐渐发展起来的多指标联合诊断技术。该技术以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,多指标并行分析,最多可一管同时准确定量检测2-500种不同的生物分子。具有高通量、高灵敏度、并行检测等特点。可用于免疫分析、核酸研究、酶学分析、受体、配体识别分析等多方面、多领域的研究。流式荧光检测技术的原理是什么?将荧光标记后的单细胞(或颗粒)悬液进入吸样管,进而随鞘液进入流动室。进入流动室之前的管道变细,迫使鞘液从四周、样本在中心进入流动室,在外加压力的作用下由下向上(或由上向下)直线流动。鞘液充满流动室将样品裹挟,当二者通过流动室喷嘴流出时,压力迫使鞘液包裹的液滴包含单一细胞或颗粒垂直通过检测区。在检测区与液滴垂直的位置设置激光,在与激光垂直的位置设置探测器(透镜等),液流、激光、探测器互相垂直并聚焦于一点实现流体动力聚焦。荧光标记的细胞或颗粒在激光激发下发出散射光和荧光的发射波,散射光和发射光被检测器获取,再经一系列滤光片、光栅处理去除干扰并将光信号经光电转换和放大后输入计算机,并由软件分析处理。而细胞分选则是对荧光标记的目的分子分别加载正或负电荷,当其在随液滴滴落的过程中受到外加高压电场的作用发生偏转而落入接收容器,从而获得目的细胞群。流式荧光检测技术有什么技术特点?1、高通量:将许多种不同荧光编码的微球放在同一反应体系内,一次可同时检测2-500种生理病理指标,这与传统方法的逐个检测相比是质的飞跃。2、高敏感性:流式荧光技术最高的检测下限可达0.01 pg/ml,常规的酶联免疫吸附试验(ELISA)仅为μg级,比后者检测的灵敏度提高10—100倍。3、线性范围宽:检测的线性范围比常规的ELISA方法高10倍以上,可达3-5个数量级。检测浓度范围为pg-μg级。4、反应快速:因流式荧光技术的杂交或免疫反应在悬浮的液相中进行,反应所需的时间短(从2 h缩短到20—40 min),杂交后常不用清洗,即可直接读数,所以检测效率高于固相杂交。5、重复性好:杂交发生在准均相液体环境中,其结果稳定,重复性非常好。检测时,抽取其中的100颗微球读数,最终的数据取其均值或中位值,这样可将误差减到最小。6、利于探针和被检测物的充分反应:由于液相环境更有利于保持蛋白质的天然构象,所以也更有利于探针和被检测物的反应。7、操作简便:流式荧光技术平台的整个反应过程只涉及加样和孵育,最后上机读数,操作步骤少,简单易用。— 2 —什么是化学发光检测技术?这里既然是跟流式荧光检测相比较的,那这里的化学发光检测技术指的是化学发光免疫分析技术。化学发光免疫分析:是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。化学发光检测技术的类型及原理化学发光检测技术的类型分为直接化学发光免疫分析,化学发光酶免疫分析和电化学发光免疫分析。直接化学发光免疫分析用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗 原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和 NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、 发光 。由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可从标准曲线上计算出待测抗原的含量。化学发光酶免疫分析酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成 固相包被抗体-待测抗原-酶标记抗体复合物;经洗涤后,加入底物(发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光电倍增管将光信号转变为电信号并加以放大,再把它们传送至计算机数据处理系统,计算出测定物的浓度。电化学发光免疫分析电化学发光免疫分析 (electrochemiluminescence immunoassay, ECLIA)是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。化学发光免疫分析技术的优势是什么?1、灵敏度高:灵敏度高是化学发光免疫分析关键的优越性。化学发光免疫分析能够检出放射性免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。2、宽的线性动力学范围:发光强度在4-6个量级之间,与测定物质浓度间呈线性关系。这与显色酶联免疫分析吸光度(OD 值)2.0 的范围相比,优势明显。虽然同位素放射免疫也有较宽的线性动力学范围,但是放射性限制其应用。3、光信号持续时间长:化学发光免疫分析的光信号持续时间可达数小时甚至一天,简化了实验操作及测量。4、分析方法简便快速:绝大多数分析测定仅需加入一种试剂(或符合制剂)的一步模式。5、结果稳定、误差小:样本本身发光,不需要额外光源,避免了外来因素的干扰(光源稳定性、光散射、光波选择器),分析结果稳定可靠。6、安全性好及使用期长:到目前为止还未发现化学发光免疫分析试剂的危害性;另外这些试剂稳定,保存期可达一年之久。以上是对什么是流式荧光技术检测与化学发光技术检测基本原理做了一个说明,供大家参考。【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)(本文编辑:刘立东 点击查看KOL主页)
  • FTIR等10类仪器计量法规发布
    国家质量监督检验检疫总局《关于发布JJG146-2011《量块》等10个国家计量技术法规的公告》(2011年第165号公告)  根据《中华人民共和国计量法》有关规定,现批准JJG146-2011《量块》等10个国家计量技术法规发布实施。编 号名 称批准日期实施日期备注JJG146-2011量块检定规程2011-11-142012-05-14代替JJG146-2003JJG414-2011光学经纬仪检定规程2011-11-142012-05-14代替JJG414-2003JJG877-2011蒸气压渗透仪检定规程2011-11-142012-05-14代替JJG877-1994JJG949-2011经纬仪检定装置检定规程2011-11-142012-05-14代替JJG949-2000JJF1318-2011影像测量仪校准规范2011-11-142012-02-14 JJF1319-2011傅立叶变换红外光谱仪校准规范2011-11-142012-02-14 JJF1320-2011仪器化夏比摆锤冲击试验机校准规范2011-11-142012-02-14 JJF1321-2011元素分析仪校准规范2011-11-142012-02-14 JJF1322-2011水准仪型式评价大纲2011-11-142012-02-14 JJF1323-2011电子经纬仪型式评价大纲2011-11-142012-02-14   特此公告。二〇一一年十一月十八日  相关新闻:我国24个仪器计量技术法规批准实施
  • 中科院长春光机所落户青岛 歌尔长光研究院正式启动
    p  6月2日,青岛歌尔长光研究院正式启动,标志着中国科学院长春光学精密机械与物理研究所正式落户我市,中科院在青研发机构增至12家。/pp  青岛歌尔长光研究院是由歌尔集团与中科院长春光机所共同出资建立,研究院下设“长光歌尔联合实验室”、“长光歌尔联合研发中心”以及“长光歌尔技术培训学院”。其中,“联合实验室”以前沿技术研究为主,在长春、青岛两地挂牌 “联合研发中心”陆续规划建立智能仪器与装备研究中心、Camera研究中心、机器视觉研究中心及微光机电研发中心等,主要在青岛建设 “技术培训学院”以长春光机所的师资资源及运营模式为基础,在青岛组织开展以面向本地化及市场化需求为目的培训活动。/pp  长春光机所是我国光学领域第一个研究所,在发光学、应用光学、光学工程、精密机械与仪器等领域攻克了多项关键技术,取得了以神舟系列有效载荷为代表的一批重大科研成果,研制出中国第一台红宝石激光器、第一台大型电影经纬仪等多种先进仪器设备,创造了十几项“中国第一”,为我国国防建设、经济发展和社会进步做出了突出贡献。/pp  下一步,青岛歌尔长光研究院将结合长春光机所在高端光学传感器、光学精密仪器与装备等领域的技术、人才优势,歌尔集团在智能声学、智能娱乐、智能穿戴、智能家居等领域的产业、市场和技术优势,面向光学技术、海洋探测及智能制造三大重点方向布局,在我市打造国内一流的光学领域科技创新基地、人才培养基地和产学研孵化平台,为推进我市新旧动能转换,加快经济结构转型升级提供强大的动力源。/p
  • Light: 黄维&王建浦|顶发光微腔结构实现高效率钙钛矿发光二极管
    金属卤化物钙钛矿材料具有可溶液法制备、高荧光量子效率、高色纯度等特点。近年来,钙钛矿发光二极管(PeLED)的器件效率提升迅速,成为下一代照明与显示技术的有力竞争者。然而,由于钙钛矿材料较大的折射率,导致大量的光子被限制在器件内部,阻碍了PeLED效率的进一步提升。近日,南京工业大学黄维院士和王建浦教授团队在国际顶尖期刊Nature子刊 Light: Science & Applications 发表论文,他们提出通过构筑光学微腔,制备顶发射PeLED,从而大幅度提升器件效率的新思路。光学微腔一方面能够通过Purcell效应提高辐射复合速率,提升材料的荧光量子效率;另一方面,优化的微腔结构可以使更多光子沿着微腔的光轴出射,从而提高器件的出光耦合效率。现代信息社会的快速发展,对发光显示技术提出了高效率、高亮度、柔性可穿戴等要求。传统的无机发光二极管通常在单晶衬底上通过外延法生长制备,难以获得大面积柔性器件。近年来快速商业化的有机发光二极管能够通过溶液法、蒸镀法制备大面积柔性器件,但有机材料本身的激子特性使其难以在大电流下实现高亮度和高效率。钙钛矿材料兼具无机半导体高导电性和有机材料可溶液法制备的优点,在下一代显示领域极具竞争力。然而,近年来底发光PeLED的效率逐渐达到瓶颈,效率提升速度放缓。发光二极管的效率是由荧光量子效率、载流子注入效率、光耦合效率共同决定的。平板型底发光器件的光耦合效率通常为20%左右,其发光层发出的光子大部分被限制在了器件内部,无法从正面出射。另一方面,将发光器件应用于显示时,还需加上不透光的控制电路,因此显示面板上一部分区域无法发光,也就是产业化过程中面临的开口率的问题。设计具有微腔结构的顶发光器件,能够有效地同时解决以上两个问题。这是由于微腔结构能够提高器件的出光耦合效率,而顶发光能够解决显示面板的开口率问题。图1 顶发光器件和底发光器件构筑基于光学微腔的高效率PeLED需要解决三个难题:1)制备具有高荧光量子效率的钙钛矿薄膜;2)制备高质量光学微腔;3)实现器件内部平衡的载流子注入。在钙钛矿薄膜的选择上,作者选择了具有多量子阱(MQW)结构的准二维钙钛矿。其优点在于,通过调控大尺寸阳离子和小尺寸阳离子的组分,能够精确地调控钙钛矿的结晶性、形貌以及薄膜内部量子阱的分布。基于此思路,作者获得了致密的MQW钙钛矿薄膜,并将其荧光量子效率提升到了78%。图2 MQW-PeLED的能级结构及钙钛矿层形貌构筑高质量的光学微腔需要在器件的两端分别制备全反射和半反射的电极。为此,作者在器件底端蒸镀了100 nm的金电极作为全反射层,并且优化了顶端半反射金电极的厚度,将器件的光耦合效率从20%提升到了30%。要实现增强型的微腔效应,还需将微腔的光学长度设计到发光半波长的奇数倍。作者发现,通过调控电子传输层ZnO和空穴传输层TFB的厚度,可以有效地调控微腔的光学长度。值得注意的是,优化ZnO、TFB厚度的同时,还要考虑发光层在微腔内部所处的位置是否位于微腔效应增强的位置。此外,高性能PeLED的实现还依赖于器件内部载流子的平衡注入。作者前期的研究表明,MQW钙钛矿层内部存在快速的(皮秒量级)能量转移,从而使得发光区域主要位于与TFB的交界处。考虑到ZnO和TFB都具有较高的载流子迁移率,因此ZnO的厚度通常低于TFB的厚度。图3 微腔器件内部不同位置的增强效果及发光区域基于以上对钙钛矿发光层、器件光学结构及载流子注入/输运方面的优化,作者将微腔结构顶发射PeLED的外量子效率提升至20.2%。该器件表现出显著的微腔效应,不同于底发光器件的朗博体发光,顶发射微腔PeLED在正面的出光显著增强,从而大幅度提升了光耦合效率。图4 微腔器件外量子效率及发光轮廓较低的光耦合效率是限制平板发光的重要原因之一,该工作将顶发射微腔结构应用于PeLED,实现了超过20%的外量子效率,是目前顶发射PeLED的效率最高值。该工作的发表,使钙钛矿这种明星材料在LED实际应用方面更进了一步。此外,高质量微腔的制备及其器件内整合,也对电泵浦钙钛矿激光器的实现具有重要的借鉴意义。文章信息:该成果以“ Microcavity top-emission perovskite light-emitting diodes ”为题发表在 Light: Science & Applications 。本文共同第一作者为南京工业大学先进材料研究院博士生缪炎峰、程露、邹伟,通讯作者为王建浦教授、黄维院士、彭其明副研究员。论文地址:https://www.nature.com/articles/s41377-020-0328-6文章来源:中科院长春光机所 Light学术出版中心
  • 云南研制天文地动仪 望破解地震预测难题
    中国科学院云南天文台正在秘密研究“天文地动仪”,这种仪器有望破解千年地震难题——提前预测地震的到来……  多功能经纬仪原理  (1)本项目研制的多功能天文经纬仪,是一种用于观测恒星位置的望远镜,恒星离地球非常遥远,它们在天空中的位置固定不变。   处于地面某一位置的望远镜,在正常情况下,地球引力g是垂直向下的,望远镜中有个水银盘,水银面的垂直方向与引力平行指向天顶,望远镜在固定时刻观测到某一恒星在天顶位置A出现。   当地下地震孕育区M受到周围应力作用,导致物质密度反常,引力方向偏移到f方向,使望远镜中的水银面指向天顶的方向发生偏移,望远镜在固定时刻观测到某一恒星在天顶的位置偏移到B,我们就可以获得偏转角θ。     在一定区域内设置多个望远镜,在地下某一区域M的物质密度发生改变时,它会导致多个望远镜的水银面方向产生偏移,通过观测某一恒星在固定时刻的位置,可以测量引力的偏转角α和β,从而可算出密度异常区的位置。地震孕育区通常存在物质密度异常,引起地面的重力异常,该仪器能够探测产生一定程度重力异常的区域,为地震专家和政府决策提供重要信息。  (2)该仪器还能测定瞬时天文大气折射,建立多方位大气折射实测模型。由于以记录电磁波传播时间为基本数据的空间大地测量技术,包括卫星激光测距、全球定位系统GPS和甚长基线射电干涉测量VLBI,都受到大气折射延迟的影响,目前仅能用理论模型或经验模型作修正,导致测量距离的误差比较大。利用多功能天文经纬仪,建立天文大气折射实测模型,转换建立起大气折射延迟实测模型,它将能使距离的测量精度接近于理论精度水平。另外,研制的仪器在航天发射和国防上也有应用价值,用该仪器和相应的测量方法可以为卫星发射和导弹基地建立本地大气折射实测模型,提高卫星发射和导弹制导系统的时间、方向和定位精度。  去年以来,王建成就一直带着一个科研小组加班加点、夜以继日地投入到一项秘密研究课题中。  王建成是中国科学院云南天文台副台长。与此前的一些研究目的不同,这次虽然同样是“看天”,但最终却是为了“探地”。  当发现甘肃舟曲1000多人死于泥石流灾害的主要原因之一是汶川“512”地震震松了舟曲山体时,王建成心中又增添了些许沉重:“我们现在希望少受外界干扰,静心和高效地研制仪器,使仪器尽快应用和推广。”王建成所说的仪器,正是他们一年多来潜心研究、能通过寻找和监测地下物质密度的异常变化,为预测地震提供有效信息的“多功能经纬仪”。张衡发明的“地动仪”在1700年前神秘失踪,今天,云南天文专家正尝试利用一种叫做“多功能经纬仪”的仪器,用天文观测的方法对地震进行精确预报。  可以想见,这种“天文地动仪”一旦研制成功,将会是人类对抗自然灾害的历史上最大的一次“地震”!  现实  上天容易入地难  众所周知,地震预测是全世界公认的难题,预测地震的仪器都具有“不可入性”,由于地震专家不能直接观测地球内部,以致对地震的孕育过程和影响这一过程的种种因素缺乏观测数据。  市防震减灾局副局长靳树才介绍,一般而言,地震的震源都在地下十多公里以下,有的深达几百公里,依托现有的技术水平,要打钻下去,直接观测,基本不可能。现阶段,地震预测主要依靠电磁波、磁辐射、地下水化学分析、放射性元素、大地倾斜、重力变化等,通过综合分析各种数据来作预报。但这些数据与地震的关系都是间接的,同时受干扰因素较多。如对地下水的观察,不仅要了解地下水变化的原因,还要了解地下水所处的构造部位、水的补给源、正常动态、可能引起水位变化的降雨及工业用水、农田灌水、气候变化、季节变化、补给源变化等干扰因素,以至引起地震发生的变化量非常小,不具有独特性,很容易淹没在其它干扰因素中,要将它们有效甄别提取出来,难度很大。  有人说汶川地震前青蛙曾有异常行为。靳树才说,动物的异常行为和地震有关联,但没有直接的、必然的联系。青蛙行为异常完全有可能是由其他原因引起的。更何况,青蛙不会告诉你将会在哪里、什么时间、发生几级地震。  “我们需的是准确、科学的预报。”靳树才说。  启发  东汉“地动仪”带来灵感  1800多年前,在张衡所处的东汉时代,地震比较频繁。经过长年研究,张衡发明了一个测报地震的仪器,叫做“地动仪”。  据史书记载,地动仪是用青铜制造的,形状有点像一个酒坛,四围刻铸着八条龙,龙头向八个方向伸着。每条龙的嘴里含了一颗小铜球:龙头下面,蹲了一个铜制的蛤蟆,对准龙嘴张着嘴。哪个方向发生了地震,朝着那个方向的龙嘴就会自动张开来,把铜球吐出。铜球掉在蛤蟆的嘴里,发出响亮的声音,就给人发出地震的警报。  汉顺帝阳嘉三年十一月壬寅(公元134年12月13日),地动仪的一个龙机突然发动,吐出了铜球,掉进了那个蟾蜍的嘴里。当时在京师(洛阳)的人们却丝毫没有感觉到地震的迹象,于是有人开始议论纷纷,责怪地动仪不灵验。没过几天,陇西(今甘肃省天水地区)有人飞马来报,证实那里前几天确实发生了地震,于是人们开始对张衡的高超技术极为信服。陇西距洛阳有一千多里,地动仪标示无误,说明它的测震灵敏度是比较高的。  遗憾的是,凝聚中华民族智慧的地动仪没有保存下来,1700多年前,地动仪神秘消失。  “应该可以用天文观测的技术和仪器来提高地震预测的准确度。”祖先的智慧、先进的科技启发和驱动着云南天文学家投入到了看似不可能的“天文地动仪”研制中。  原理  精准把脉重力变化  据了解,虽然地震孕律具有很大的复杂性,但通过研究,世界各国专家普遍认为地震孕育区受多种应力的作用,积累大量能量,引起周围重力变化。监测到重力变化,就能发现地下能量的异常聚集,地震部门现在已经能用重力仪测出重力变化大小,但却测不出重力方向。  王建成介绍,“多功能经纬仪”这一项目是通过云南天文台独创的低纬子午环的观测原理和仪器误差测量方法,研制出一架达到高精度要求的小型、轻便、全自动的“多功能天文经纬仪”样机。这种“多功能经纬仪”本来是天文上用于精确观测恒星位置变化的望远镜,而恒星位置变化是重力变化的一面“镜子”,如果同时启动多台“多功能经纬仪”监测,就能测量出重力方向,由此寻找和监测到引起重力变化的源头,为地震专家预测地震提供可靠信息。  2009年1月24日和2010年2月4日,省委常委、市委书记仇和等领导在连续两次专程登门拜访中国科学院、中国工程院在昆的院士时,都对我国恒星物理研究专家、云南天文台黄润乾院士以及云南天文台副台长、项目组长王建成介绍的多功能经纬仪项目研究情况给予了高度评价和极大地支持。  王建成表示,项目已开始总体方案设计和研讨,今年10月底完成总体设计和论证,项目研究组正排除一切干扰,不舍昼夜、严谨高效地加紧研制,计划2011年底验收,力争早日投入应用和推广。他透露,明年底样机研制成功后,即可建立多台测量仪组成的监测网,布置到我省地震断裂带周围,寻找和监测地下物质密度的异常变化区域,通过监测地下物质密度的异常变化,为预测地震提供新的有效信息。  希望  能像预测台风一样预测地震  靳树才表示,感谢其他行业专家对地震预测的关注,为地震预报献计献策,身体力行地做研制工作。  他认为“多功能经纬仪”项目是符合科学规律的,但同时,他对引起地下重力变化的力量是否就足够使地表发生形变表示不确定。因为使地表发生形变的因素也很多,比如说重型货车经过时,在路边就能感到颠簸,这就是一种形变,重型货车对路面产生的压力都远远大于重力变化的力量。所以,这对地震观测条件提出了高要求,要尽量避开环境和人为干扰,而选择环境比较安静、工农业生产干扰小、无环境污染的地区。仪器具体安装位置要选择地质条件较好的岩石,而不是松软的土层,尽量减少干扰因素。  对未来能够准确预报地震,靳树才充满了信心,他说, 地震预测具有时代性。虽然很难,但随着人类科技进步,终有一天能解决。“退回200年前,台风的预测也只能凭经验,而现在什么时候登陆,在哪里登陆,都已在人类的严密监控下,因为我们有了卫星。”他说。  至于“多功能经纬仪”,靳树才也充满期待:“仪器究竟能发挥多大作用?现在尚不能确定。待仪器研制成功后,我们将成立专门研究小组,总结规律性东西,认真观测,积累经验,在实践中提出改进建议。”
  • 大连化物所实现量子点—分子杂化的近红外热延迟发光
    近日,大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明,通过提升量子点与分子间的波函数交叠,在较低能量转移驱动力的条件下,仍可获得较高的TET效率。根据化学热力学平衡,在这种情况下,从分子三线态回到量子点激子态的吸热反向传能(rTET)速率也较快。当rTET速率远大于三线态本身衰减速率时,大多数三线态都会重新回到量子点激子态辐射出延迟发光(TADPL),原理上类似于有机分子中的热活化延迟荧光现象(TADF)。团队前期也观测到可见波段的TADPL(ACS Energy Lett.,2021),并揭示了其熵调控机制(JPCL,2021)。近红外光在生物成像、光纤通讯、国防安全等诸多领域具有重要意义。基于量子点—有机分子杂化体系的近红外TADPL迄今未见报道,其根本难点在于有机分子的能隙定则:能量越低的激发态,其非辐射衰减速率一般越快。这就要求rTET的速率足够快,才能与之有效竞争。针对该难题,团队通过同时优化量子点和三线态受体分子的手段,采用低毒CuInSe2-并四苯的体系,观测到近红外波段(约900nm)的TADPL。研究发现,在室温下TADPL寿命达到60微秒,相比于CuInSe2量子点激子态的寿命提升了3个数量级。得益于量子点本身高达40%的发光效率,TADPL的量子效率可达9%。这些参数可媲美可见光波段的TADPL体系。得益于CuInSe2量子点无重金属的优势,该体系相比传统的铅基近红外量子点可能具有更好的应用前景。吴凯丰团队近年来致力于量子点与有机分子间的电荷/能量转移动力学研究:揭示了量子点与有机分子电荷转移中的累积电荷效应(JACS,2018;JACS,2018),并在单电荷转移体系中观测到Marcus反转区间(Nat. Commun.,2021);揭示了量子点尺寸和分子构型对三线态传能的影响及其物理机制(JACS,2019;Angew,2020);建立了电荷转移介导三线态传能的各类新机制(Nat. Commun.,2020;JACS,2020;Nat. Commun.,2021),并阐明了电子自旋在其中起到的关键角色(JACS,2020;Chem,2022);面向实际应用开发了低毒性的CuInS2、InP和ZnSe等量子点作为各波段的三线态敏化剂(JACS,2019;JACS,2020;ACS Energy Lett.,2022);探索了这些电荷/能量转移机制在光催化合成中的新型应用(Chem,2021;Angew,2022;Angew,2022)。上述最新工作以“Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为VIP(Very Important Paper)文章。该工作的第一作者是大连化物所1121组博士后何山。该工作得到国家自然科学基金、国家重点研发计划、中科院稳定支持基础研究领域青年团队计划等项目的资助。
  • 稳态瞬态荧光光谱仪在力学存储/可视化行为的自充能、可持续力致发光的应用研究
    自充能、可持续力致发光力致发光是指材料在力学刺激下产生的一种发光行为。由于其独特的力学-光学响应特性,力致发光为实现力学传感及其可视化提供了新思路和新途径。目前发现的力致发光材料多数仅表现出动态力学刺激下的瞬态发射行为,极大地限制了其在力学的可视化显示和成像方面的应用。可持续力致发光材料能够在力学刺激停止后继续保持发光行为,对可持续力致发光材料的开发是应对上述问题的有效方式。此前,研究人员通过陷阱工程设计,在特定材料体系中获得了力学刺激后可持续的力致发光现象。然而,该类可持续力致发光材料在使用前必须经历预辐照,在其结构内部预先储存能量,这不仅增加了实际应用时操作的难度,也难以实现该类材料的循环稳定使用。因此,实现无需预辐照的自充能、可持续力致发光成为当前研究的热点之一。中国科学院兰州化学物理研究所王赵锋团队在国际知名期刊Advanced Science上发表的题为“Self‐charging persistent mechanoluminescence with mechanics storage and visualization activities”的研究论文。本文研制出一种自充能、可持续力致发光材料——Sr3Al2O5Cl2:Dy3+/PDMS(SAOCD/PDMS),该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光,有效避免了此前材料在使用时的预辐照需求,极大提升了长寿命力致发光材料的应用便利性。本工作通过将SAOCD (SAOCD) 粉末复合到PDMS基质中,创建了一种新型的力致发光材料,即自充能、可持续力致发光材料。无需任何预辐照,所制备的SAOCD/PDMS弹性体可以直接在力学刺激下表现出强烈且持久的力致发光,这极大地促进了其在力学照明、显示、成像和可视化中的应用。通过研究基体效应以及热释光、阴极发光和摩擦电特性,界面摩擦起电诱导的电子轰击过程被证明是机械刺激下SAOCD中自充能能量的原因。基于独特的自充电过程,SAOCD/PDMS进一步展现出力学存储和可视化读取行为,为机械工程、生物工程和人工智能领域 处理力学相关问题带来了新颖的思路和方法。 自激活、长寿命力致发光材料的设计制备与性能研究 图1 SAOCD/PDMS复合弹性体的制备流程、性状及力致发光性能 当施加拉伸、摩擦、压缩等力学刺激时,复合弹性体呈现出直接的自激活力致发光,不需要额外的预辐照(图1c)。复合弹性体的力致发光性能随SAOCD颗粒中Dy的含量增加呈现出先增后减的趋势(图1d)。随着施加应变的增加,SAOCD/PDMS弹性体的ML强度随之增加,其在应力/应变传感方面表现出良好的应用价值。此外,该复合弹性体的力致发光还表现出良好的热稳定性(图1f)。图2 (a)SAOCD的力致发光和余辉示意图;(b)SAOCD/PDMS复合弹性体在拉伸、摩擦、压缩条件下的力致发光和余辉照片;(c)不同浓度Dy离子掺杂SAOCD/PDMS复合弹性体的摩擦余辉光谱图。 该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光(图2),有效避免了此前材料在使用时的预辐照需求,极大提升了可持续力致发光材料的应用便利性。图3 SAOCD的自激活力致发光及余辉机理明确了SAOCD/PDMS的自激活力致发光和余辉的物理过程,即在外力刺激下SAOCD与PDMS产生界面摩擦电作用,SAOCD的电子转移到PDMS表面,SAOCD与PDMS间形成高能电场,PDMS表面电子被加速,轰击SAOCD,使得SAOCD中的电子受激从价带跃迁至导带,一部分直接和发光中心结合产生力致发光,另一部分被陷阱捕获,外力撤除后自发释放转移至发光中心产生余辉。机械力学信息的存储与可视化读取器件研究图4 (a)力致发光复合材料的应力存储和可视化读取示意图;(b)SAOCD/PDMS复合弹性体对机械力学信息的存储、读取原理及功能展示。 通过利用SAOCD/PDMS材料中特有的自充能物理过程,进一步发展出了一种力学信息的存储与可视化读取技术(图4)。在机械刺激下,力学信息将会以陷阱捕获载流子的方式在材料内部进行存储,随后,在热刺激下,所存储的力学信息将以可视化的形式得到读取,所存储和读取的力学信息主要包括力学强度、发生时间及其空间分布等。作者简介王赵锋简介:中国科学院兰州化学物理研究所研究员,博士生导师,2006年毕业于兰州大学材料化学专业,获理学学士学位,2011年毕业于兰州大学材料物理与化学专业,获工学博士学位。2011年至今,先后于中国科学院兰州化学物理研究所固体润滑国家重点实验室、美国德克萨斯州立大学化学与生物化学系、美国康涅狄格大学材料科学研究所进行科学研究。主要研究方向为摩擦/力致发光材料及应用,在Nat. Commun., Angew. Chem. Int. Ed., Adv. Funct.Mater., Nano Energy, Mater. Horiz., Adv. Sci.等期刊发表论文100余篇(被引用5000余次,h因子40),编写书籍章节两部,申请/授权国家发明**10余项,研究成果被国内外知名媒体如中国科学报、中国科普博览、人民日报、中科院之声、New Scientist、Nanowerk、Science Trends等专题报道。现为国内知名期刊《稀土学报(英文版)》、《材料导报》、《发光学报》青年编委,以及中国机械工程学会表面工程分会青年学组特邀专家。2015年获美国环境保护署P3提名奖,2017年获甘肃省自然科学二等奖,2018年获中科院高层次人才计划择优支持,2020年获甘肃省杰出青年基金支持,所带领的研究团队获2021年度甘肃省“青年安全生产示范岗”荣誉称号,2022年获中科院区域发展青年学者称号。相关产品推荐 本研究的力致发光光谱数据采用卓立汉光搭建的组合荧光系统采集,配置Omni-λ300i系列“影像谱王”光栅光谱仪对光谱进行分光。目前,该组合荧光系统已经升级为OmniFluo900 系列稳态瞬态荧光光谱仪,如需了解该产品,欢迎咨询。 免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会*一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • X射线光电子能谱(XPS)的原理及应用
    01 原理XPS是利用 X 射线辐射样品,使得样品的原子或分子的内层电子或者价电子受到激发而成为光电子,通过测量光电子的信号来表征样品表面的化学组成、元素的结合能以及价态。X 射线光电子能谱技术作为一种高灵敏超微量的表面分析技术,对所有元素的灵敏度具有相同的数量级,能够观测化学位移,能够对固体样品的元素成分进行定性、定量或半定量及价态分析,广泛地应用于元素分析、多相研究、化合物结构分析、元素价态分析。此外在对氧化、腐蚀、催化等微观机理研究,污染化学、尘埃粒子研究,界面及过渡层研究等方面均有所应用。02 应用1 XPS在木质材料中的应用XPS 技术成为木质材料分析、应用领域的重要手段。XPS 对木材领域的分析不仅可以获得材料本身的元素组成和物质结构,而且对木材的修饰、应用等方面的研究有重要意义。运用 XPS的表层与深层分析,在木材加工、合成、防护等领域都有着重要作用,在测得材料成分的含量与性质后,也可以得知涂饰性能、风化特性、硬度、抗弯度等基本性质,再对木材分类以进行定向加工,这将极大提高木材的利用效率,扩大应用领域。2 XPS在能源电池中的应用麦考瑞大学黄淑娟和苏州大学马万里等人报道了在钙钛矿表面沉积同源溴化物盐以实现表面和本体钝化以制造具有高开路电压的太阳能电池的策略。与先前工作给出的结论不同,即FABr等同源溴化物仅与 PbI2反应在原始钙钛矿之上形成大带隙钙钛矿层,该工作发现溴化物也穿透大部分钙钛矿薄膜并使钙钛矿中的钙钛矿钝化。通过吸光度和光致发光 (PL) 观察到的小带隙扩大;在飞行时间二次离子质谱 (TOF-SIMS) 和深度分辨 X 射线光电子能谱 (XPS) 中发现溴化物元素比例的增加。各种表征证实了钙钛矿器件中非辐射复合的明显抑制。使用同种溴化物钝化的非封装器件在环境储存2500 小时后仍保持其初始效率的97%,在85°C下进行520小时热稳定性测试后仍保持其初始效率的59%。该工作提供了一种简单而通用的方法来降低单结钙钛矿太阳能电池的电压损失,还将为开发其他高性能光电器件提供启示,包括基于钙钛矿的串联电池和发光二极管 (LED)。3 XPS的表面改性物质表面的化学组成改变和晶体结构变形都会影响材料性能,如黏附强度、防护性能、生物适应性、耐腐蚀性能、润滑能力、光学性质和润湿性等。一种材料可能包含几种优良性能。XPS 分析技术广泛应用于材料的表面改性,主要有以下几点原因:(1) XPS对表面测量灵敏度高,用其进行表面改性是一种有效方法;(2) 由于 XPS分析技术可以获得相应的化学价态信息,因此通常用来检测改性时的表面化学变化;(3) 由于 XPS 只能检测样品表面 1~10 nm 的薄层,故 XPS 可以测量改性表层的化学组成分布情况。4 XPS在生物医学中的应用XPS 逐渐被应用在生物医学研究以及生物大分子的组成、状态和结构等方面。由于生物试样在制备过程中有一定难度,因此 XPS在医学上的应用仍处于探索阶段。03 来源文献[1]杨文超,刘殿方,高欣,吴景武,冯均利,宋浅浅,湛永钟.X射线光电子能谱应用综述[J].中国口岸科学技术,2022,4(02):30-37.[2]Homologous Bromides Treatment for Improving the Open-circuit Voltage of Perovskite Solar Cells[J]. Advanced Materials, 2021.
  • 化学发光探针检测技术速查病原菌
    吉林检验检疫局建立的金标法检测单核细胞增生性李斯特氏菌技术作为当今检测病原体和诊断疾病方面最为敏感的免疫学技术之一,不仅操作简便、快速、特异,更为重要的是适用于广大基层食品监管部门的现场检测和诊断,这些特点都是其他免疫学方法所无法比拟的。  该技术不仅具有巨大的发展潜力,而且还具有广阔的市场和应用前景,如可适用于医疗卫生行业,出入境食品口岸抽查和鉴定、流通领域卫生监督和工商行政部门和质监部门的食品企业监管等,甚至可以走进餐馆、家庭进行简易的食品自控和检测等。  由吉林出入境检验检疫局承担的国家质检总局科研课题《应用化学发光探针及免疫金标法检测食品中多种致病菌的研究》在2011年获得了国家质检总局“科技兴检”三等奖。该课题建立的化学发光探针检测技术能够快速检测食品中常见的四种病原菌:空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌。其中对单核细胞增生性李斯特氏菌还建立了应用免疫胶体金试纸条的快速检测方法。  急需速测技术  我国的食品生产加工企业数量多,规模小,较分散,而且为数较多企业过分追求利润法律意识淡薄,社会责任心不强导致其产品质量良莠不齐。  据报道,我国45万个食品生产企业中,员工人数10人以下的食品生产加工小作坊就有35万家,约占80%,因而导致食品安全事故时有发生,给社会和消费者的健康造成了巨大危害。  而目前的食品卫生监管的检测手段主要依据国家标准或行业标准规定方法进行,虽然这些方法准确可靠,但这些方法一般都需要建设专门的微生物检测实验室,配备专业的检测技术人员,需要较长的检测周期,由此造成的检测成本过高,缺乏时效性等问题,使一些突发的食品安全事件不能迅速得以解决。因此发展和建立一种快速、简便、灵敏准确的检测技术,作为标准检测方法的初筛技术,是解决上述问题的有效手段之一。  食品检验新兵  化学发光探针技术的原理是互补的核酸单链会特异性识别并结合成稳定的双链复合物。这一检测系统利用一个标记有化学发光物的单链DNA探针,可以特异性的识别和结合目标微生物的核糖体RNA。微生物中的核糖体RNA释放出来后,化学发光标记的DNA探针就与之结合形成稳定的DNA-RNA杂合体。标记的DNA-RNA杂合体会与非杂交探针分离,并在化学发光检测仪中进行测量。样本的检测结果通过计算与阴性对照进行比较得出结果。利用化学发光剂标记和检测核酸使得许多非放射性标记检测的灵敏度达到甚至超过了同位素标记测定。  在众多的化学发光体系中,应用最多的化学发光体主要有三类:增强鲁米诺发光体系、吖啶类化合物发光体系和碱性磷酸酶催化的1,2-二氧环己烷发光体系。吉林检验检疫局建立的化学发光技术使用吖啶酯标记核酸探针。  利用化学发光杂交保护分析的原理检测空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌4种致病菌特异性RNA序列,这种方法无需物理分离,利用吖啶酯标记DNA探针,通过核酸杂交保护分析法,即应用人工合成的靶DNA保守区的寡核苷酸,在合成时引入一个烷氨基的手臂,经活化后接上吖啶酯,制成化学发光探针。  杂交后无需分离步骤,而是利用差分水解来鉴别,即加入碱性溶液,游离的发光探针遇碱水解失去发光特性,而与特异性目的片段结合的探针形成DNA-RNA杂交体,由于吖啶酯是平面结构很容易进入双螺旋的内部而获得杂交保护,水解速度缓慢(半衰期达10分钟以上),仍有发光性能,可以在发光仪上显示化学发光信号,从而实现对病原菌的检测。  应用前景广阔  该项目利用胶体金技术研制了胶体金检测试纸条,用于单核细胞增生性李斯特氏菌的快速检测,该检测试纸条的灵敏度高,具有很强的特异性,不同批次生产的免疫胶体金具有良好的检测重现性,稳定性好,操作简单,检测时间只需10至20min即可报告结果,胶体金法无污染,不会危害操作者以及环境。胶体金抗体复合物在冻干状态下室温储存相当稳定,有效期长 此外胶体金技术还具有检测迅速、灵敏、不需要复杂仪器设备、产品永不褪色等优点,适合于食品中单核细胞增生性李斯特氏菌的初筛检验。  吉林检验检疫局建立的基因探针化学发光检测方法可在30分钟内快速确定病原体,并可直接于固体或液体培养基上鉴定目标微生物。该方法可直接应用于国外生产的LEADER 50i检测仪上,仪器自动注入检测试剂,立刻测量标记物所产生化学反应的化学发光强度,并自动计算结果及打印报告,该检测方法敏感性高,特异性强,检测成本低,操作简便、快速,对我国食品安全快速检测和监控工作具有重要意义,具有广泛的推广前景。胶体金快速检测试纸
  • 大连化物所实现量子点—分子杂化体系的近红外热延迟发光
    近日,大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明,通过提升量子点与分子间的波函数交叠,在较低能量转移驱动力的条件下,仍可获得较高的TET效率。根据化学热力学平衡,在这种情况下,从分子三线态回到量子点激子态的吸热反向传能(rTET)速率也较快。当rTET速率远大于三线态本身衰减速率时,大多数三线态都会重新回到量子点激子态辐射出延迟发光(TADPL),原理上类似于有机分子中的热活化延迟荧光现象(TADF)。团队前期也观测到可见波段的TADPL(ACS Energy Lett.,2021),并揭示了其熵调控机制(JPCL,2021)。近红外光在生物成像、光纤通讯、国防安全等诸多领域具有重要意义。基于量子点—有机分子杂化体系的近红外TADPL迄今未见报道,其根本难点在于有机分子的能隙定则:能量越低的激发态,其非辐射衰减速率一般越快。这就要求rTET的速率足够快,才能与之有效竞争。针对该难题,团队通过同时优化量子点和三线态受体分子的手段,采用低毒CuInSe2-并四苯的体系,观测到近红外波段(约900nm)的TADPL。研究发现,在室温下TADPL寿命达到60微秒,相比于CuInSe2量子点激子态的寿命提升了3个数量级。得益于量子点本身高达40%的发光效率,TADPL的量子效率可达9%。这些参数可媲美可见光波段的TADPL体系。得益于CuInSe2量子点无重金属的优势,该体系相比传统的铅基近红外量子点可能具有更好的应用前景。吴凯丰团队近年来致力于量子点与有机分子间的电荷/能量转移动力学研究:揭示了量子点与有机分子电荷转移中的累积电荷效应(JACS,2018;JACS,2018),并在单电荷转移体系中观测到Marcus反转区间(Nat. Commun.,2021);揭示了量子点尺寸和分子构型对三线态传能的影响及其物理机制(JACS,2019;Angew,2020);建立了电荷转移介导三线态传能的各类新机制(Nat. Commun.,2020;JACS,2020;Nat. Commun.,2021),并阐明了电子自旋在其中起到的关键角色(JACS,2020;Chem,2022);面向实际应用开发了低毒性的CuInS2、InP和ZnSe等量子点作为各波段的三线态敏化剂(JACS,2019;JACS,2020;ACS Energy Lett.,2022);探索了这些电荷/能量转移机制在光催化合成中的新型应用(Chem,2021;Angew,2022;Angew,2022)。上述最新工作以“Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为VIP(Very Important Paper)文章。该工作的第一作者是大连化物所1121组博士后何山。该工作得到国家自然科学基金、国家重点研发计划、中科院稳定支持基础研究领域青年团队计划等项目的资助。
  • 河北北方学院199.50万元采购酶标仪,荧光显微镜,PCR,化学发光
    详细信息 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 河北省-张家口市 状态:公告 更新时间: 2022-12-16 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 发布时间: 2022-12-16 一、项目基本情况 项目编号: HBZJ-2022N1753 项目名称: 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院 采购方式: 竞争性磋商 预算金额: 1995000.00 最高限价: 1955000 采购需求: 全自动蛋白印迹处理系统2套、全自动化学发光分析仪1台、全自动一体式微滴式数字PCR仪1台、倒置荧光显微镜1台、多功能酶标仪1台。 #detail# 合同履行期限: 详见采购文件 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2022年12月19日至 2022年12月23日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 登录“招标通电子招投标交易平台”(http://www.hebztb.com/)自行下载磋商文件,并及时查看有无澄清和修改。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月30日09点00分(北京时间) 地点: 招标通电子招投标交易平台 四、响应文件提交 截止时间: 2022年12月30日09点00分 五、开启 时间: 2022年12月30日09点00分 地点: 招标通电子招投标交易平台 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1.本项目不接受进口产品投标。 2.本项目采用全流程电子招投标形式,供应商无须到达开标现场。电子招标、投标、开标的流程详见“招标通电子招投标交易平台”操作手册,“招标通电子招投标交易平台”联系方式:400-0311-616。请供应商及时办理河北CA数字证书,以免影响本次磋商,联系方式:400-707-3355。 3. 因供应商自身的原因未能在有效期内完成注册,将会导致报名不成功,其后果由供应商负责。潜在供应商如未在“招标通电子招投标交易平台”下载磋商文件及相关资料,或未获取到完整资料,导致投标被否决,自行承担责任。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 河北北方学院 地址: 张家口市经开区钻石南路11号 联系方式: 张磊 0313-4029197 2.采购代理机构信息 名 称: 河北中机咨询有限公司 地 址: 石家庄市跃进路3号天元商务大厦12楼 联系方式: 郝建伟、霍海东 0311-86063928 3.项目联系方式 项目联系人: 郝建伟、霍海东 电 话: 0311-86063928 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:酶标仪,荧光显微镜,PCR,化学发光 开标时间:2022-12-30 09:00 预算金额:199.50万元 采购单位:河北北方学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河北中机咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 河北省-张家口市 状态:公告 更新时间: 2022-12-16 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院竞争性磋商公告 发布时间: 2022-12-16 一、项目基本情况 项目编号: HBZJ-2022N1753 项目名称: 河北北方学院教学设备采购项目(贴息贷款)-医学检验学院 采购方式: 竞争性磋商 预算金额: 1995000.00 最高限价: 1955000 采购需求: 全自动蛋白印迹处理系统2套、全自动化学发光分析仪1台、全自动一体式微滴式数字PCR仪1台、倒置荧光显微镜1台、多功能酶标仪1台。 #detail# 合同履行期限: 详见采购文件 本项目(是/否)接受联合体投标: 0 二、申请人的资格要求 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 无 3.本项目的特定资格要求: 无 三、获取招标文件 时间: 2022年12月19日至 2022年12月23日, 9:00-12:00-12:00-17:00(北京时间,法定节假日除外) 地点: 登录“招标通电子招投标交易平台”(http://www.hebztb.com/)自行下载磋商文件,并及时查看有无澄清和修改。 方式: 其它 售价: 0 四、提交投标文件截止时间、开标时间和地点 2022年12月30日09点00分(北京时间) 地点: 招标通电子招投标交易平台 四、响应文件提交 截止时间: 2022年12月30日09点00分 五、开启 时间: 2022年12月30日09点00分 地点: 招标通电子招投标交易平台 五、公告期限 自本公告发布之日起5个工作日。 六、公告期限 自本公告发布之日起3个工作日。 六、其他补充事宜 七、其他补充事宜 1.本项目不接受进口产品投标。 2.本项目采用全流程电子招投标形式,供应商无须到达开标现场。电子招标、投标、开标的流程详见“招标通电子招投标交易平台”操作手册,“招标通电子招投标交易平台”联系方式:400-0311-616。请供应商及时办理河北CA数字证书,以免影响本次磋商,联系方式:400-707-3355。 3. 因供应商自身的原因未能在有效期内完成注册,将会导致报名不成功,其后果由供应商负责。潜在供应商如未在“招标通电子招投标交易平台”下载磋商文件及相关资料,或未获取到完整资料,导致投标被否决,自行承担责任。 七、对本次招标提出询问,请按以下方式联系。 八、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称: 河北北方学院 地址: 张家口市经开区钻石南路11号 联系方式: 张磊 0313-4029197 2.采购代理机构信息 名 称: 河北中机咨询有限公司 地 址: 石家庄市跃进路3号天元商务大厦12楼 联系方式: 郝建伟、霍海东 0311-86063928 3.项目联系方式 项目联系人: 郝建伟、霍海东 电 话: 0311-86063928
  • 我国首次拍摄到不同粒径石墨发光
    中国科学家在保证石墨完整性基础上获取其发光现象,并拍摄到不同粒径的发光“光谱图”,这在世界纳米碳材料领域尚属首次。不同大小石墨碎片在一定光照下发出不同颜色的光  在苏州近日举行的第四届新型金刚石与纳米碳材料国际学术研讨会上,苏州大学功能纳米与软物质研究院教授康振辉介绍了其领衔团队的最新研究成果——《水溶性的荧光碳量子点和催化剂设计》,该成果即将在国际顶尖杂志《德国应用化学》上发表。  据介绍,量子点是近年发展起来的一种新型荧光探针,与传统有机荧光染料相比,具有优良的光谱性能。康振辉表示,传统有机荧光染料分子,通常采用不同波长的光来分别激发产生不同颜色 而碳量子点发射光谱与粒径大小有关,通过调整其粒径大小,可以发出不同颜色的荧光,从而使不同生物分子标记、区分、识别变得更加容易,在生物化学、细胞生物学、分子生物学等研究领域显示出广阔的应用前景。  2009年,英国剑桥大学的费拉里等人通过氧电浆轰击首次观察到单层石墨片发光现象,但其原理是打断了部分碳原子之间的键结,利用石墨氧化后表面的缺陷而获得发光效果。康振辉团队的研究成果在此基础上更进一步。  “我们在保证石墨完整性前提下获取发光现象,并拍摄到不同粒径的发光‘光谱图’,这在世界纳米碳材料领域还是第一次。”康振辉说,他的研究团队将石墨切割成4纳米以下的碎片,给予一定光线照射即可发光,粒径不同发光也不同。如,1.2纳米发蓝光,3纳米则发红光。  此外,康振辉团队的研究成果还揭示出另一发现:“纳米级”石墨碎片具有“上转换”特性,能吸收长波长将之转换成短波长,实现低能向高能的聚变,将之与其他材料配合制成催化剂可以吸收“全光谱”太阳光。  康振辉介绍,一般催化剂只吸收4%的太阳光,其余96%则被浪费掉 而石墨碳粒子能与100%的阳光作用,催化效果大幅提升,在污水处理、环境净化等方面具有极强的应用性。
  • 2009化学发光与多色荧光讲座成功举办
    2009化学发光与多色荧光讲座(北京站)成功举办!2009年4月21-23日,美国ALPHA公司、美国自然基因有限公司、照生有限公司 、北京大学生命科学院、中国农业大学、军事医学科学院合作,联合举办了题为“多色荧光和化学发光western blotting成像技术”的专题讲座。 美国ALPHA公司的副总裁,全球市场总监Sia先生针对活体化学发光和荧光成像技术原理以及最新进展与应用进行了深入的介绍,并进行了现场样机演示。著名的化学发光专家刘雪松先生在会上也就化学发光的常见问题和与会专家进行深层次的交流。 来自中国农业大学、农科院、畜牧所、药植所、植保所、植物所、北京大学、清华大学、中科院、生物物理所、遗传所、微生物所、动物所、国家纳米科学中心、军事医学科学院、301医院等单位众多专家、学者、教授以及科研人员参与了本次活动,并与我司技术人员做了热烈探讨。对于我司介绍的多项研究的前沿技术,与会专家表示出浓厚兴趣。各位老师纷纷就讲座中涉及的问题展开讨论,并提出了一些技术问题,我司专业技术人员也一一给予了耐心解答。通过本次讲座,大家了解到该领域最新进展,并对美国ALPHA公司生产的荧光、化学发光、凝胶成像仪所表现出来的优良的品质,代表世界最先进水平的成像分析技术表现出了极大的兴趣。同时我们也感谢多年来大家对美国自然基因有限公司、照生有限公司的关心与支持,我们将一如既往的坚持我们以提供最优秀的仪器设备,最高品质的贴心服务的理念,为广大中国用户积极服务。 北京大学站 军事医学科学院站 中国农业大学站
  • 长春光机所全自动小型生化分析仪亮相“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国科学院长春光学精密机械与物理研究所的全自动小型生化分析仪亮相国家“十一五”重大科技成就展。全自动小型生化分析仪  针对社区和农村医院对肝病、肾病、心血管等疾病检测的需求,长春光机所采用MEMS技术制造了具有自主知识产权的微型紫外/可见光纤光谱仪、囊式聚合物试剂杯、高精度加样/混合器等,重点解决了小体积与高性能、多功能、自动化、快速性等方面的难题。其中,研制出的小型、高性能全自动生化分析仪已获得医疗器械注册证。  关于中国科学院长春光学精密机械与物理研究所:  中国科学院长春光学精密机械与物理研究所是由原中科院长春光学精密机械研究所和原中科院长春物理研究所于1999年7月整合组建而成,以知识创新和高技术创新为主线,从事基础研究、应用基础研究、工程技术研究和高新技术产业化的多学科综合性基地型研究所。该所在以王大珩院士、徐叙瑢院士为代表的一批科学家的带领下,在发光学、应用光学、光学工程和精密机械与仪器等领域先后取得了1700多项科研成果,研制出了中国第一台红宝石激光器、第一台大型经纬仪等十多项“中国第一”,向外输出2200多名各类人才,为中国的科技进步、经济发展和国防建设作出了一系列突出贡献,被誉为“中国光学的摇篮”。
  • 法如Faro激光跟踪仪让游乐装置生产商倍感安心
    作为全球领先的主题公园设施开发和生产公司之一,Heinrich Mack GmbH & Co在其生产过程中运用了FARO激光跟踪仪。 Mack生产和服务经理Thomas Kern先生的远见是:公司联机生产水平应该调整到零。这个决定是很有必要的,因为他们的部分设备始终需要外包组装。以前,这种生产方法花费颇高,包括脚手架成本。另外,66英尺(20米)的高空生产作业条件不够人性化,尤其是在冬季就更加突出。联机生产水平调整为零以后,轨道就可以按照目标规格进行测量,并在工厂大厅内进行生产。为了确保过程中的质量,使用FARO激光跟踪仪测量轨道,并将数据与目标规格进行对比。 Mack 集中采购/库存和物流经理Jens Hilbert解释说:&ldquo 购买FARO激光跟踪仪是为了对我们的生产过程进行重组,重组的主题是&ldquo 迎合未来需求&rdquo 。我们是利用相应的决策矩阵进行选择后才决定购买激光跟踪仪的。除了三家不同供应商的跟踪仪之外,我们还测试了其它测量设备,例如经纬仪和视距仪。一天结束后,主要出于服务和成本的考虑,我们最终选择了FARO。&rdquo Mack将激光跟踪仪不仅用于轨道生产,还用于车辆测量。由于这款移动式测量仪器也可以带到建筑工地上使用,Mack对于激光跟踪仪将来的其它应用充满期望。目前,激光跟踪仪及其CAM2软件主要用于方差比较、测试和动态测量。Jens Hilbert得出一个积极的结论:&ldquo 对于我们来说重要的是, 在零水平联机生产的基础上发展核心竞争力。FARO激光跟踪仪在这个过程中起到了重要作用。零水平联机生产可以缩短交付时间、提高质量标准,增强交付可靠性和交付能力。最终,我们可以为客户提供符合市场需要的产品。&rdquo 法如科技 FARO Technologies,Inc.地址:上海市桂林路396号3号楼1楼 邮编:200233Tel: 86-21-61917600 Fax:86-21-64948670网址:www.faroasia.com/chinae-mail: chinainfo@faro.com
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 上海微系统所丁古巧团队在石墨烯量子点荧光发光机制研究获进展
    近日,中国科学院上海微系统与信息技术研究所纳米材料与器件实验室丁古巧团队在石墨烯量子点制备及荧光机制研究方面取得进展。该工作深化了关于石墨烯量子点发光机理的认知,阐释了多变量体系下机器学习辅助材料制备成果所包含物理内涵。相关研究成果以Precursor Symmetry Triggered Modulation of Fluorescence Quantum Yield in Graphene Quantum Dots为题,发表在《先进功能材料》(Advanced Functional Materials)上。近年来,以石墨烯量子点为代表的碳基量子点材料因独特的sp2–sp3杂化碳纳米结构,表现出优异的光学、电学、磁学的性质。在石墨烯量子点“自下而上”法制备中,多变量反应体系使其在合成与机制领域面临挑战。此外,机器学习以高效的分析算法和模型在复杂体系分析、新型材料设计等领域展现出优势。然而,由于缺失具备实际物理内涵的结构特征描述符,机器学习仅能得到难以阐释物理内涵的数学模型。这限制了机器学习在相关研究中的可迁移性和实用性。石墨烯粉体课题组博士研究生陈良锋、副研究员杨思维结合群论在分子结构描述上的优势,通过控制变量实验与结构化学理论的结合,将具有实际物理含义的描述符应用于机器学习,揭示了石墨烯量子点的前驱体结构与荧光量子产率间关联的物理内涵。该研究利用高结构刚性sp3前驱体与柔性sp2结构前驱体之间的“自下而上”反应,实现了石墨烯量子点中sp2-sp3杂化碳纳米结构的调制。研究结合热动力学理论,阐明了sp3刚性结构能够通过抑制非辐射跃迁过程提高石墨烯量子点量子产率。进一步,研究借助群论在描述分子结构方面的优势,结合主成份分析,明确了石墨烯量子点制备过程中影响石墨烯量子点荧光量子产率的三个决定性因素——结构因子、温度因子和浓度因子。与以往基于机器学习的研究工作相比,该团队基于群论的进一步研究,揭示了机器学习结果中分子的简正振动是前驱体对称性作用于石墨烯量子点量子产率增量的核心物理机制。基于上述原理的指导,该研究首次证明了分子振动的正常模式是前驱体的结构特性作用于 GQDs 荧光量子产率的核心机制。这一石墨烯量子点的光致发光性能在荧光信息防伪加密中具有应用前景。研究工作得到中国科学院青年创新促进会、上海市科学技术委员会以及集成电路材料全国重点实验室开放课题等的支持。
  • 标记免疫专委会化学发光组化学发光交流会在清华大学化学系举办
    p  2017年4月21日下午,中国分析测试协会标记免疫专业委员会化学发光学组在清华大学化学系何添楼举办了发光交流会。化学发光组组长清华大学林金明教授和化学发光组秘书长陈吉波主持了会议,共有30位专委会成员包含14家企业代表、4家院校教授代表和3家医院主任代表出席了此次会议。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/dae3db11-7a08-476c-8e43-dbd477f18b21.jpg"//pp style="text-align: center "会议现场/pp  标记免疫专委会化学发光组组长林金明教授致辞,简要介绍了国内外化学发光的发展历程以及课题组目前所开展的研究工作。北京热景生物技术有限公司董事长林长青,复旦大学教授卢建忠,山东新华医疗集团体外诊断事业部技术总监郑淑芳,北京达成生物技术有限公司副总经理苑希宁,北京大学第一医院检验科副主任闫存玲,四川迈克生物科技股份有限公司技术总监龙腾镶,北京利德曼生化股份有限公司研发副总陈立杰,北京华科泰生物技术有限公司副总经理林斯,深圳市新产业生物医学工程股份有限公司仪器研发总监尹力,中科院肿瘤医院免疫室研究员张郁,上海透景生物技术有限公司研发中心免疫部经理朱丽,苏州长光华医生物医学工程有限公司副总经理沙利烽,深圳普门科技有限公司市场总监卢国强,国家纳米科学中心研究员孙佳姝,北京科美生物技术有限公司董事会秘书刘宇卉,苏州翊曼生物技术有限公司总工程师陈任远,武警总医院检验科主任杨晓莉,苏州海狸生物医学工程有限公司技术总监张燕军,深圳市易瑞生物技术有限公司技术总监袁克湖,郑州安图生物股份有限公司主任工程师李林分别做了自我介绍,部分参会代表还详细介绍了本单位产品及化学发光技术现状。/pp style="text-align: center "img width="600" height="493" title="2.jpg" style="width: 600px height: 493px " src="http://img1.17img.cn/17img/images/201704/insimg/02fc1eed-7c5b-42d6-8075-a355b04165ca.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "化学发光组组长 林金明/pp 会上展开热烈讨论,院校教授代表提出了应该及时抓住目前我国纳米技术和微流控技术在国际上领先的大好机会,鼓励企业和医院临床检验部门积极参与新技术的开发,在化学发光领域赶超国际先进水平。医院主任代表提出了目前国产仪器存在的问题,指出国产化学发光系统的核心应该是产品的质量,并就化学发光系统的统一性、标准化、连续性及产品的质量、技术服务和仪器稳定性提出了客观评价,也对仪器使用后的维护、保养及技术培训提出建议。企业代表提出了资源整合,避免闭门造车,就免疫产品标准化及团体标准展开讨论,也提出了企业的人才需求。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/3d5b20d3-cee4-49e8-ab3f-dd66b036025f.jpg"//pp style="text-align: center "现场讨论/pp  与会者一致认识到国产化学发光和国外先进技术的差距,整合资源、统一标准、突破、创新方能实现弯道超车。会议约定今年10月份左右再次举办小规模的化学发光产学研技术研讨会,逐渐形成科研院所、企业、医院三者合作的化学发光新技术研发体系。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/653fdca3-85a1-4da8-abd9-dac6f5cb365a.jpg"//pp style="text-align: center "会后合影/p
  • 安庆市第六人民医院300.00万元采购电化学发光仪,化学发光
    基本信息 关键内容: 电化学发光仪,化学发光 开标时间: null 采购金额: 300.00万元 采购单位: 安庆市第六人民医院 采购联系人: 安徽 采购联系方式: 立即查看 招标代理机构: 安庆市皖宜项目咨询管理有限公司 代理联系人: 马婷 代理联系方式: 立即查看 详细信息 安庆市第六人民医院检验试剂采购项目招标公告 安徽省-安庆市-迎江区 状态:公告 更新时间: 2021-11-15 安庆市第六人民医院检验试剂采购项目招标公告 1.招标条件 本招标项目安庆市第六人民医院检验试剂采购已获批准,建设资金来自 自筹 ,项目出资比例为100%,招标人为安庆市第六人民医院。项目已具备招标条件,现对该项目进行公开招标。 2.项目概况及招标范围 2.1项目编号:CG-AQ-2021-768 2.2项目名称:安庆市第六人民医院检验试剂采购 2.3项目地点:安庆市第六人民医院 2.4项目概况:招标人现有罗氏Cobas e601电化学发光分析仪配套试剂及现有罗氏Cobas c501生化分析仪配套试剂采购,详见附件。 2.5招标范围:医疗器械 2.6供货周期:自合同签字生效后24个月 2.7最高投标限价:300万元 2.8包别划分:一个包 2.9评标办法:采用符合性评审的有效最低价评标方法 3.投标人资格要求 3.1具有合法有效的营业执照; 3.2投标人如为生产厂家,应具备《医疗器械经营许可证》(或医疗器械经营备案凭证),《医疗器械生产许可证》(须在有效期内);如为代理商或经销商投标,应具有《医疗器械经营许可证》(或医疗器械经营备案凭证)(须在有效期内); 3.3本项目不接受联合体投标。 4.招标文件的获取 4.1 投标人须登录安庆市公共资源交易中心平台查询、获取招标文件。首次登录须在安徽省公共资源交易市场主体库( http://61.190.70.20/ahggfwpt-zhutiku/dengludenglu)办理入库手续,办理入库不收取任何费用。安徽省公共资源交易市场主体库使用相关问题(如系统登录、信息登记、录入及提交、数字证书关联等)请拨打服务电话:010-86483801 转 5-2(工作日)。 CA 数字证书有关问题请拨打服务电话:安徽 CA 客服400-880-4959(工作日)。 市场主体招标环节和投标环节系统使用服务电话:400-998-0000(8:00-21:00)。 4.2 投标人可于2021年 11 月 15 日至2021年 11 月 22 日下午17:30登录安庆市公共资源交易中心平台(aqggzy.anqing.gov.cn)点击“新增投标”,并在平台下载招标文件及其他资料(含澄清、修改、补遗、补充说明等相关资料)。如在招标文件获取过程中遇到系统问题,请拨打技术支持服务热线400-9980000,QQ:4008503300。 4.3 招标文件及相关资料工本费:人民币0元/套。 5.投标文件的提交 5.1投标文件提交截止时间:2021年12月6日9时00分 5.2逾期上传的投标文件不予受理。 6.发布公告的媒介 本次招标公告同时在安庆市公共资源交易服务网(http://aqggzy.anqing.gov.cn/)、 安庆市政府采购网(http://220.179.5.183:82)、安庆市政府信息公开网(http://aqxxgk.anqing.gov.cn/)、安徽省政府采购网(http://www.ccgp-anhui.gov.cn/)、 安徽省招标投标信息网(http://www.ahtba.org.cn/)上发布。 7.联系方式 7.1安庆市第六人民医院 地址:安庆市迎江区华圣路22号 联系人:齐先生 联系方式:0556-5201592 7.2招标代理机构:安庆市皖宜项目咨询管理有限公司 地址:安庆市龙山路215号 联系人:马婷 联系方式:0556-5991153 8.其他说明 8.1投标申请人的联系人电话(手机)、电子邮箱等通讯方式在招投标过程中必须保持畅通,否则因上述原因造成的后果,责任自负。 8.2投标文件中安徽省公共资源交易市场主体库网址链接不视为投标文件组成部分,投标人须严格按照招标文件要求的格式编制投标文件。 8.3 本项目开评标实行全流程电子化,开标活动在线完成。开标时投标人不得到达开标现场,不接受现场解密,实行远程解密和在线询标。 各投标人认真学习《安庆新系统投标单位操作手册v1.0》,务必掌握远程解密方法和在线回复询标方法。 9. 投标保证金账户(选择一家银行进行缴费) 9.1开户行名称:安庆农村商业银行营业部 账户名称:安庆市公共资源交易中心 账号:20000251859266600061119 9.2开户行名称:中国建设银行股份有限公司安庆集贤路支行 账户名称:安庆市公共资源交易中心 账号:34001686308053008985-2607 9.3开户行名称:中国银行安庆分行龙山路支行 账户名称:安庆市公共资源交易中心 账号:188763292377 2021年11月15日 附件:项目采购需求文件 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:电化学发光仪,化学发光 开标时间:null 预算金额:300.00万元 采购单位:安庆市第六人民医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:安庆市皖宜项目咨询管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 安庆市第六人民医院检验试剂采购项目招标公告 安徽省-安庆市-迎江区 状态:公告 更新时间: 2021-11-15 安庆市第六人民医院检验试剂采购项目招标公告 1.招标条件 本招标项目安庆市第六人民医院检验试剂采购已获批准,建设资金来自 自筹 ,项目出资比例为100%,招标人为安庆市第六人民医院。项目已具备招标条件,现对该项目进行公开招标。 2.项目概况及招标范围 2.1项目编号:CG-AQ-2021-768 2.2项目名称:安庆市第六人民医院检验试剂采购 2.3项目地点:安庆市第六人民医院 2.4项目概况:招标人现有罗氏Cobas e601电化学发光分析仪配套试剂及现有罗氏Cobas c501生化分析仪配套试剂采购,详见附件。 2.5招标范围:医疗器械 2.6供货周期:自合同签字生效后24个月 2.7最高投标限价:300万元 2.8包别划分:一个包 2.9评标办法:采用符合性评审的有效最低价评标方法 3.投标人资格要求 3.1具有合法有效的营业执照; 3.2投标人如为生产厂家,应具备《医疗器械经营许可证》(或医疗器械经营备案凭证),《医疗器械生产许可证》(须在有效期内);如为代理商或经销商投标,应具有《医疗器械经营许可证》(或医疗器械经营备案凭证)(须在有效期内); 3.3本项目不接受联合体投标。 4.招标文件的获取 4.1 投标人须登录安庆市公共资源交易中心平台查询、获取招标文件。首次登录须在安徽省公共资源交易市场主体库( http://61.190.70.20/ahggfwpt-zhutiku/dengludenglu)办理入库手续,办理入库不收取任何费用。安徽省公共资源交易市场主体库使用相关问题(如系统登录、信息登记、录入及提交、数字证书关联等)请拨打服务电话:010-86483801 转 5-2(工作日)。 CA 数字证书有关问题请拨打服务电话:安徽 CA 客服400-880-4959(工作日)。 市场主体招标环节和投标环节系统使用服务电话:400-998-0000(8:00-21:00)。 4.2 投标人可于2021年 11 月 15 日至2021年 11 月 22 日下午17:30登录安庆市公共资源交易中心平台(aqggzy.anqing.gov.cn)点击“新增投标”,并在平台下载招标文件及其他资料(含澄清、修改、补遗、补充说明等相关资料)。如在招标文件获取过程中遇到系统问题,请拨打技术支持服务热线400-9980000,QQ:4008503300。 4.3 招标文件及相关资料工本费:人民币0元/套。 5.投标文件的提交 5.1投标文件提交截止时间:2021年12月6日9时00分 5.2逾期上传的投标文件不予受理。 6.发布公告的媒介 本次招标公告同时在安庆市公共资源交易服务网(http://aqggzy.anqing.gov.cn/)、 安庆市政府采购网(http://220.179.5.183:82)、安庆市政府信息公开网(http://aqxxgk.anqing.gov.cn/)、安徽省政府采购网(http://www.ccgp-anhui.gov.cn/)、 安徽省招标投标信息网(http://www.ahtba.org.cn/)上发布。 7.联系方式 7.1安庆市第六人民医院 地址:安庆市迎江区华圣路22号 联系人:齐先生 联系方式:0556-5201592 7.2招标代理机构:安庆市皖宜项目咨询管理有限公司 地址:安庆市龙山路215号 联系人:马婷 联系方式:0556-5991153 8.其他说明 8.1投标申请人的联系人电话(手机)、电子邮箱等通讯方式在招投标过程中必须保持畅通,否则因上述原因造成的后果,责任自负。 8.2投标文件中安徽省公共资源交易市场主体库网址链接不视为投标文件组成部分,投标人须严格按照招标文件要求的格式编制投标文件。 8.3 本项目开评标实行全流程电子化,开标活动在线完成。开标时投标人不得到达开标现场,不接受现场解密,实行远程解密和在线询标。 各投标人认真学习《安庆新系统投标单位操作手册v1.0》,务必掌握远程解密方法和在线回复询标方法。 9. 投标保证金账户(选择一家银行进行缴费) 9.1开户行名称:安庆农村商业银行营业部 账户名称:安庆市公共资源交易中心 账号:20000251859266600061119 9.2开户行名称:中国建设银行股份有限公司安庆集贤路支行 账户名称:安庆市公共资源交易中心 账号:34001686308053008985-2607 9.3开户行名称:中国银行安庆分行龙山路支行 账户名称:安庆市公共资源交易中心 账号:188763292377 2021年11月15日 附件:项目采购需求文件
  • 这篇Nature会发光,可柔了!
    1895年,威廉伦琴(WilhelmRöntgen)发现了X射线,从而在医学和工业射线照相领域取得了许多重大进展。早期的射线照相技术将X射线穿过物体并在摄影胶片上捕获剩余光束的图像。在1980年代初期,人们开发了计算机射线照相术,成像板设备取代了摄影胶片。但计算机射线照相具有若干缺点,例如低图像分辨率和高成本。在1990年代中期,替代性的数字X射线成像技术得到了发展,由一层闪烁体(将X射线转换为光发射的材料)和一层高度像素化的光电晶体管组成平板X射线探测器,将X射线能量直接或间接地直接转换为电信号。但这些扁平的非柔性X射线探测器无法生成弯曲或不规则形状的3D对象的高分辨率图像。截至目前,对3D对象进行高分辨率X射线成像仍然是一项艰巨的挑战。为此,福州大学杨黄浩、陈秋水联合新加坡国立刘小钢等使用一系列可溶液处理、掺杂镧系元素的纳米闪烁体实现了无平板,高分辨率,三维成像的超长寿命X射线捕获。该柔性X射线探测器能够产生比平板探测器更好的3D图像。含镧系元素的纳米晶体可以将X射线辐照产生的激发电荷载流子存储在晶格缺陷中数周。这是由于晶格中的氟离子可以通过与X射线光子的碰撞而被置换。这会产生空位,而这些空位处的离子以及间隙中的氟化物离子通常不会被占用。空位与填隙配对,在Frenkel缺陷的晶格中产生不规则性。图1 掺杂镧系元素的持久发光纳米闪烁体的表征通过缺陷形成和电子结构的量子力学模拟表明,Frenkel缺陷充当纳米晶体中载流子的陷阱,并且陷阱具有不同的深度,即,被俘获的载流子需要逃逸的能量大小有所不同。但是,在环境条件下,浅陷阱中载流子的能量可以缓慢逸出并迁移到晶格中的镧系离子。该过程与缺陷的自我修复同时发生。因此,由辐射触发的阴离子迁移到宿主晶格中而导致被俘获电子的缓慢跳跃可以诱导超过30天的持续辐射发光。这种持久性在实际应用上大有所为,因为与以前使用的荧光粉相比,它延长了潜像在被转换成电信号进行分析之前可以在检测器中存储的时间段。图2 掺杂镧系元素的纳米闪烁体中X射线能量俘获的机理研究研究人员使用这些持久发光纳米晶体制作了用于高分辨率3D射线照相的柔性X射线探测器,并开发了一种称为X射线发光扩展成像(Xr-LEI)的新技术。图3 高分辨率Xr-LEI探测器由一块硅酮聚合物组成,其中嵌入了纳米晶体(图4)。纸张被包裹在要成像的3D对象上,然后用X射线照射。电荷载流子被捕获在X射线穿过的检测器区域内的纳米晶体的Frenkel缺陷中,从而产生残留X射线束的潜像。然后将检测器移出并加热到80°C,随着被捕获的电荷载流子的能量被激发迁移为镧系元素离子,从而将潜像迅速转换为发光体。图4 弯曲物体的高分辨率X射线成像通过将纳米晶体嵌入高度可拉伸的硅树脂中,作者获得了约25微米的分辨率。这远高于使用常规平板检测器可获得的分辨率(通常约为100微米)。而且该X射线发光扩展成像技术的光学存储时间超过15天。Ou, X., Qin, X., Huang, B. et al. High-resolution X-ray luminescence extension imaging. Nature 590, 410–415 (2021). https://doi.org/10.1038/s41586-021-03251-6
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制