当前位置: 仪器信息网 > 行业主题 > >

劈裂机

仪器信息网劈裂机专题为您提供2024年最新劈裂机价格报价、厂家品牌的相关信息, 包括劈裂机参数、型号等,不管是国产,还是进口品牌的劈裂机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合劈裂机相关的耗材配件、试剂标物,还有劈裂机相关的最新资讯、资料,以及劈裂机相关的解决方案。

劈裂机相关的资讯

  • Bi2Se3/MoTe2异质结构中大自旋分裂的宽幅理想二维Rashba电子气
    能实际应用的理想二维Rashba电子气(几乎所有的传导电子占据Rashba带)是应用半导体自旋电子的关键。研究证实,这样带有大Rashba劈裂的理想二维Rashba电子气可以在拓扑绝缘体Bi2Se3薄膜上实现,该薄膜可在过渡金属硫化物MoTe2基板上按第一性原理计算结果指导生长得到。研究结果显示,Rashba带专处于MoTe2半导体带隙中一个较大的、约0.6? eV费米能级间隔中。如此宽幅的理想二维Rashba电子气具有大的自旋分裂,为实际利用Rashba效应提供了可能,之前从未做到。由于强自旋-轨道耦合,其Rashba分裂强度与重金属(如Au和Bi)表面的差不多,所引起的自旋进动距离小到10 nm左右。近Γ点的内(外)Rashba带平面内自旋极化最大约为70%(60%)。室温下相干距离至少数倍于自旋进动长度,为采用自旋加工设备提供了良好的一致性。这种二维拓扑绝缘体/过渡金属硫化物异质结构中的理想Rashba带,具有能量范围宽、自旋进动长度短、相干距离长的特点,为室温下制造超薄纳米自旋电子器件(如Datta–Das自旋晶体管)铺平了道路。该研究通过计算揭示了纳米自旋电子晶体管在室温下工作的可能性。来自中国台湾清华大学的T. H. Wang和H. T. Jeng通过第一性原理计算,证实了一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底、在室温下生长即可制备。超薄器件中形成的二维电子气表现出大的“自旋分裂”(两种状态的电子自旋间的分离),这正是晶体管之类的设备所需要的特性。采用电子自旋的电子器件来处理信息,用的是电子固有的自旋特性,而不象目前常规电子器件那样用的是电子的电荷特性。这会使设备在更小的空间内存储更多的数据,消耗更少的电能,使用更便宜的材料。据巨纳集团低维材料在线91cailiao.cn的技术工程师Ronnie介绍,异质结构是现在的研究热点,Bi2Se3/MoTe2异质结构,使得一种理想的二维电子气(半导体自旋电子实现应用的关键)可在硒化铋超薄膜绝缘体中实现,该超薄膜用半导体MoTe2作衬底,在室温下生长即可制备。
  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 上海微系统所等在新型碳基二维半导体材料基本物性研究中获进展
    以石墨烯为代表的碳基二维材料自发现以来受到了广泛关注。然而,石墨烯的零带隙半导体性质严重限制了其在微电子器件领域的应用。针对该情况,中国科学院上海微系统与信息技术研究所研究人员等自2013年开展新型碳基二维半导体材料的制备研究,2014年1月成功制备了由碳和氮原子构成的类石墨烯蜂窝状无孔有序结构半导体C3N单层材料(图1),并发现该材料在电子注入后产生的铁磁长程序。C3N的成功合成弥补了石墨烯无带隙的缺憾,为碳基纳米材料在微电子器件的应用提供了新的选择,并引起广泛关注。然而,相比于目前研究已经比较成熟的石墨烯,C3N的研究起步较晚,该材料的基本物性研究仍有大量空白有待填补。   研究人员于2016年初步实现AA' 及AB' 堆垛双层C3N的制备(图2)。在此基础上,他们与华东师范大学研究员袁清红团队通过近5年努力,借助实验技术与理论研究,在双层C3N的带隙性质、输运性质等研究领域取得突破,进一步证明双层C3N在纳米电子学等领域的重要应用潜力。   该工作证明了通过控制堆垛方式实现双层C3N从半导体到金属性转变的可行性。与本征带隙为1.23 eV的单层C3N相比,双层C3N的带隙大致可以分为三种:接近金属性的AA和AA' 堆垛、带隙比单层减少将近30%的AB和AB' 堆垛、与单层带隙相近的双层摩尔堆垛。上述带隙变化可归因于顶层与底层C3N间pz轨道耦合下费米能级附近能带的劈裂。在双层之间相互作用势接近的前提下,价带顶和导带底波函数重叠的数目决定了能带劈裂程度,进而影响带隙。其中AA、AA' 、AB 、AB' 等双层C3N中,两层波函数重叠的数目存在两倍关系,带隙劈裂值为近似两倍关系。而对于双层摩尔旋转条纹结构,上下层原子基本错开,pz轨道的重叠有限,因此其带隙与单层C3N接近。   更重要的是,研究还发现通过施加外部电场可实现AB' 堆垛双层C3N带隙的调制。实验结果表明,在1.4 V nm-1的外加电场下,AB' 堆垛的双层C3N的带隙下降约0.6 eV,可实现从半导体到金属性的转变(图3)。   上述工作是C3N材料实验与理论研究的重要突破,为进一步构建新型全碳微电子器件提供了支撑。相关研究成果以Stacking-Induced Bandgap Engineering of 2D-Bilayer C3N为题在线发表在Nature Electronics上。相关工作得到国家自然科学基金、上海微系统所新微之星项目等的支持。    论文链接
  • 牢记历史使命,传承王老精神——王大珩光学奖高校学生奖获得者尹春阳
    今年7月21日是王大珩先生逝世十周年的日子,首先我想要表达对王老由衷的敬意和深切的缅怀之情。王老的一生,是让人敬佩的一生。面对博士学位和昌司玻璃公司工作的抉择,青年时期的王老毅然决然地选择了后者,因为光学玻璃这种战略材料当时在国内还是一片空白;面对新生的共和国的百废待兴,王老带领团队攻坚克难,完成了一系列光学仪器和工程技术上的突破;面对里根的战略防御计划和欧洲的尤里卡计划,王老等人敏锐的意识到未来科技的战略性地位,并促成了863计划的形成与实施,为我国科技领域的迅速发展奠定了基础。王老清醒的头脑、战略的眼光以及对共和国事业的贡献让我心生敬佩。王老的一生,也是让人景仰的一生。面对科研环境的外在影响,王老可以放下知识分子的身份豁达地主动参与劳动。90多岁的高龄的王老眼睛不好用了,却仍然努力跟进科学前沿。王老面对困境时豁达的心胸和对待科学的那份热情纯真同样令我心生景仰。抛开众多标签,王老在我心中是一位非常具有战略眼光的爱国科研工作者,我对王老的事迹也有很多共鸣。我们做的科研必须是有价值的科研,必须是有全局考量的科研。如果做不到全局考量,那就需要深挖自己的领域,来判断自己的劳动是否有理论或者现实价值,无谓的灌水和不经深刻思考的科研是对自己生命和国家资源的浪费。作为一个科研者,应该眼光放长远一些,我们的科研生涯并不是35岁青年的截止,不是38岁优青的截止,不是45岁杰青的截止,而是人生的终点才是截止。王老90多岁时仍有那份对待科研的热情和纯真让我很是感动,我想这才是科研工作者的正常状态。2017年,我非常荣幸地获得了中国光学学会的“王大珩光学奖高校学生奖”,这对我来说不仅是一份荣誉,更是一份勉励。博士期间我主要针对卤族钙钛矿纳米结构的光学性质进行研究,揭示了其精细结构劈裂和多种类型激子的行为,为钙钛矿领域的发展提供了理论和实验指导。钙钛矿优异光电性质的来源非常值得科研工作者进一步探究,其独特于传统砷化镓等材料的性质也具有重要的载流子动力学方面的理论价值和光学方面的应用价值。然而由于材料种类和合成方面的限制,我的研究的广泛性和深度还有待提高。于是2019年博士毕业后,我到瑞典林雪平大学进行博士后工作,一方面提高自己的合成能力,另一方面广读文献,深化自己对于这种具有优异光学性能材料的认识。这几年间,关于单个钙钛矿纳米晶中性激子双重劈裂到三重劈裂的转变的研究工作发表在《物理化学快报》,采用共振激发方式研究中性激子与声学声子耦合的工作发表在《自然通讯》。在瑞典的一个研究工作现在正在《自然材料》审稿中,后续工作正在整理。青年时期的王老一定是对自己的研究有着深刻的判断,知道国家所需,才放弃了博士学位,选择了光学玻璃这一工程技术方面的道路。作为后辈,作为祖国伟大历史征程中的奋斗者,我想我已经能够对自己所能做的、自己善于做的有了比较清晰的了解。处于日新月异的二十一世纪,处于国家产业升级的关键节点,虽然个人的贡献或许不多,但是如果每一个科研者能够做好自己的本职工作,把个人前途和国家命运紧密相连,我们国家的未来必定是一份崭新的蓝图。对于现在的工作者,我想说我们需要有自身的历史使命感,向老一辈科研工作者学习,向王大珩先生学习,前辈们就是我们的榜样。斯人已去,精神长流。延乔路的尽头是繁华大道,我们科研工作的尽头是全中国和全人类的美好生活,愿我们科研工作者们一道牢记中华民族伟大复兴的历史使命,传承王大珩先生的爱国科研精神。2021年7月11日 尹春阳
  • 精密测量院等在锂离子精密光谱研究中获进展
    近日,中国科学院精密测量科学与技术创新研究院研究员高克林、管桦实验团队与研究员史庭云理论团队,联合加拿大新不伦瑞克大学教授严宗朝、加拿大温莎大学教授G. W. F. Drake、海南大学教授钟振祥、浙江理工大学讲师戚晓秋等实验团队,在少电子原子体系——锂离子精密谱研究中取得重要进展。该研究将6Li+离子23S和23P态超精细结构劈裂的测量精度提高至10kHz水平,并精确确定了6Li原子核的电磁分布半径(Zemach半径)。这一基于原子精密光谱的工作独立于原子核模型,为揭示锂原子核结构、特别是6Li核的奇特性质以及检验相关的核结构模型提供了重要依据。该工作将进一步促进Li+离子精密光谱的实验和理论研究,推动少核子体系核结构理论与实验的开展。   少电子原子体系(如氢、氦原子以及类氢、类氦离子等)精密谱的实验与理论研究在检验束缚态QED理论、确定精细结构常数、获取原子核结构信息以及探索超越标准模型的新物理中颇具应用价值,是当前精密测量物理的重点方向。   高克林、管桦实验团队与史庭云理论团队等合作,开展类氦锂离子精密谱研究已逾十年。该团队基于电子碰撞电离方案研制了一台亚稳态Li+离子束源装置,各项性能指标(束流强度、发散角、稳定度等)均达到同类装置较高水平。该研究利用该装置产生的离子束,采用饱和荧光光谱测量方法精确确定了7Li+离子23S1和23PJ能级的精细结构和超精细结构劈裂,不确定度小于100kHz。该团队将实验与理论相结合,精确确定了7Li原子核的Zemach半径。   在饱和荧光光谱方法中,该研究受制于谱线的渡越时间展宽,得到的兰姆凹陷线宽达50MHz,大于谱线的自然线宽(3.7MHz),由此得到的测量结果具有较大的统计不确定度。为了进一步提高测量精度,该工作利用三驻波场光学Ramsey技术消除谱线的渡越时间展宽,获得线宽约5MHz的Ramsey干涉条纹,统计不确定度减小至kHz量级;通过抑制量子干涉效应、一阶多普勒效应、二阶多普勒效应、Zeeman效应以及激光功率等各项系统误差,实现了10kHz精度的6Li+离子23S1和23PJ能级的超精细结构劈裂。该超精细结构劈裂的测量精度较先前结果提高5~50倍。在理论方面,该团队计算了包括高阶量子电动力学(QED)效应在内的6,7Li+离子23S和23P态超精细劈裂。该研究包含完整的mα6阶相对论和辐射修正,理论精度较先前结果有所提升,且理论与实验符合程度较好。科研人员通过比较6,7Li+离子的理论计算和实验测量值,得到6Li和7Li原子核的Zemach半径分别为2.44(2)fm和3.38(3)fm,确认了7Li的核Zemach半径比6Li的大40%这一反常现象,并发现了由6Li+的23S态超精细劈裂确定的Zemach半径与核物理方法得到的值3.71(16)fm存在显著差异,表明6Li核可能具有反常的核结构。该成果将进一步推动更多相关理论和实验的发展。   相关研究成果发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家自然科学基金、中国科学院战略性先导科技专项、中国科学院青年创新促进会和中国科学院稳定支持基础研究领域青年团队计划等的支持。锂离子Ramsey光谱测量
  • 郭光灿院士领衔 石墨烯纳米谐振器研究取得新突破
    p  记者从中国科技大学获悉,该校郭光灿院士领导的中科院量子信息重点实验室在纳米机电系统(NEMS)方面取得最新进展。该实验室与美国加州大学团队合作,在研究两个石墨烯纳米谐振器的模式耦合过程中,创新性地引入第三个谐振器作为声子腔模,成功地实现了非近邻的模式耦合。相关研究成果发表在近日出版的《自然通讯》上。/pp  纳米谐振器具有尺寸小、稳定性好、品质因子高等优点,是信息存储和操控的优良载体。为了实现不同谐振模式之间的信息传递,需要先实现模式间的可控耦合。近年来,国际上不同研究组针对同一谐振器中的不同谐振模式以及近邻谐振器之间的模式耦合机制进行了深入研究。然而,对于如何实现非近邻的、可调的谐振模式耦合,国际上一直未见相关报道。/pp  针对这一难题,研究组设计和制备了三个串联的石墨烯纳米谐振器,每个谐振器的谐振频率可以通过各自底部的金属电极进行大范围的调节,因此只要设定合适的电极电压就可以实现三个谐振器的共振耦合。研究组首先测量到了两个近邻谐振器之间的模式劈裂,证明了在该串联结构中近邻谐振器可以达到强耦合区间,这为进一步探索第一个和第三个谐振器之间的耦合创造了条件。经过实验探索,研究组发现当把中间谐振器的共振频率调到远高于(或远低于)两端谐振器的共振频率时,两端谐振器之间不能发生模式劈裂,即二者耦合强度非常小 但是当中间谐振器的共振频率逐渐靠近两端谐振器的共振频率时,两端谐振器逐渐产生模式劈裂,且劈裂值逐渐增大。/pp  该实验是首次在纳米谐振器体系中实现谐振模式的非近邻耦合,对于纳米机电谐振器领域的发展具有重要的推动意义,并且为将来在量子区间利用声子模式进行信息的长程传递创造了条件。/ppbr//p
  • 新型“光学分子”片上光谱仪
    光谱仪用于分解和测量电磁波的谱信息,广泛应用于材料分析、天文观测以及生物医学成像等领域。传统台式光谱仪基于棱镜或光栅等空间色散元件,导致其结构尺寸较大,并对机械振动敏感,通常只能用于实验室环境。新型片上光谱仪有望克服这些缺陷。这类光谱仪基于集成光子回路,其中各类光学器件均由固态平面波导构成,因此可以实现芯片尺度的密集集成,并可以消除环境扰动的影响。片上光谱仪在智慧医疗、地质勘探以及片上实验室(Lab-on-a-chip)等领域具有应用价值,特别对于实现小型化、便携式,甚至可穿戴的智能传感设备具有重要使能意义。然而,目前已报道的片上光谱仪大多存在分辨率-带宽限制这一共性缺陷。具体来说,对于片上光谱仪,实现较高的分辨率需要较长的波导光程,而这往往会降低输出响应的自由光谱范围,进而影响工作带宽。虽然可以通过采用光子晶体微腔等特殊结构,在一定程度上扩展自由光谱范围,但是这类结构加工较为困难,并且调谐效率较低。目前尚无突破这一限制的通用解决方案。近日,香港中文大学电子工程学系曾汉奇研究小组,通过采用一种新颖的“光学分子”结构,结合计算重建方法,实现了一种同时具有高分辨率与大带宽的新型片上光谱仪。该成果以“Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule”为题发表于Light:Science & Applications.这一结构的基本组成是一对相同的可调谐微环谐振腔(图1a)。在热光调谐过程中,输入光谱被滤波采样,进而在输出端口生成包含谱信息的信号,最终通过计算重建方法将输入光谱还原(图1b)。此过程中,需要解决的核心问题是,如何分辨相隔自由光谱范围整数倍的波长通道。对于单谐振腔而言,各个自由光谱范围之内仅包含一个谐振模式,因此无法实现宽带谱重建。当一对谐振腔发生强耦合,各个谐振模式将劈裂为一个对称模式与一个反对称模式(图1c)。这一现象类似于双原子分子中存在的能级劈裂。值得注意的是,谐振模式的劈裂强度正比于谐振腔之间的耦合强度。因此,可以通过增强耦合强度的色散,使得“光学分子”谱线的劈裂强度随波长变化,并基于这一特征,识别位于不同自由光谱范围的波长通道。具体来说,当热光调谐经过一个自由光谱范围,各个波长通道对应的输出信号均包含一对尖峰;此时,即便对于相隔自由光谱范围整数倍的波长通道,其尖峰之间的间距仍然不同,因此不同波长通道得以去相关(图1d)。图1.“光学分子”片上光谱仪的工作原理。在该工作中,作者实验证实了40pm的谱线分辨率与100nm的工作带宽。同时利用单片集成滤波器生成测试光谱,实验验证了各类特征光谱的高精度重建。该工作的创新与亮点可以总结为:1.作者提出了一种完全区别于传统方案的片上光谱仪。不同于可调谐滤波器方案,这一设计不受自由光谱范围限制,因此得以保持高分辨率的同时,极大地扩展工作带宽。不同于计算“光斑”光谱仪,这一设计不依赖于复杂拓扑结构,具有结构简单、尺寸紧凑等优势。2.设计思路具有可扩展性。在满足特定条件情况下,可以进一步增加待分辨的自由光谱范围数目,进一步扩展工作带宽与通道容量,同时保证较低的功耗。3.该工作涉及的概念源于高品质微腔中一种极为常见的现象——模式劈裂。同时,结构完全基于集成光子回路中极为常见的单元器件——微环谐振腔。这使得这一方案具有加工简便、通用性强等优势。这一工作为新型片上光谱仪的研发提供了一种全新思路,同时对计算光谱学等研究方向具有启发意义,并可能用于单片集成的光谱传感系统。
  • 327万!同济大学物理科学与工程学院闭循环低温强磁场光学物性测量系统采购项目
    项目编号:0705-234005012093项目名称:同济大学物理科学与工程学院闭循环低温强磁场光学物性测量系统采购项目预算金额:327.3000000 万元(人民币)最高限价(如有):327.3000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1闭循环低温强磁场光学物性测量系统1闭循环低温强磁场光学物性测量系统可实现低温强磁场下对材料及样品等的光学及电学等多种物理性能的研究和表征,如低温强磁场下的光学显微、光谱特性分析、光电性质探测、光磁效应表征等等,为物质科学领域的基础性研究平台,可广泛应用于物理、材料、化学、微电子、半导体等多个学科领域的前沿研究工作。 1.*采用闭循环制冷,无需灌装液氦及液氮等制冷液 2.1.*冷台基台温度范围:无负载情况下,1.7K-350K 2.2.*冷台基台温度稳定性:无负载情况下,±0.2%(T20k)±0.02%(t20K) 3.1.*最大磁场强度:±7T 3.2.*磁体类型:劈裂式超导磁体 5.1.*光学窗口数量:8个(其中顶部1个,侧向7个) 7.2.*电学引脚数量:15个 9.2.*外窗上表面至内窗下表面的间距:≤4mm 11.*设备拓展性:设备后续可以升级光纤接入接口、RF射频接入接口、底部窗口、内置显微物镜等功能组件本项目最高限价人民币叁佰贰拾柒万叁仟元整合同履行期限:合同签订后13个月发货本项目( 不接受 )联合体投标。
  • 石家庄市实验仪器行业协会批准《裁刀校准方法》《低温柔度试验仪校准方法》等8项团体标准立项
    各有关单位:经河北棕都科技有限公司申请,本协会组织专家对《裁刀校准方法》、《低温柔度试验仪校准方法》、《钻孔取芯机校准方法》、《初期干燥抗裂性试验机校准方法》、《轻骨料承压筒校准方法》、《抗折夹具、抗劈裂夹具校准方法》、《冷弯弯芯校准方法》、《建筑围护结构热工性能现场检测设备校准方法》8项进行了立项评审。经评审,项目符合立项条件。项目予以立项,并公示7天。请牵头单位根据《石家庄市实验仪器行业协会标准制修订工作管理办法》的要求,尽快组织实施,确保项目按时完成。联系人:杜娟联系电话:17769019597邮箱:love53155966@qq.com 石家庄市实验仪器行业协会2023年05月23日附件: 关于《裁刀校准方法》《低温柔度试验仪校准方法》《钻孔取芯机校准方法》《初期干燥抗裂性试验机校准方法》《轻骨料承压筒校准方法》《抗折夹具 抗劈裂夹具校准方法》《冷弯弯芯校准方法》《建筑围护结构热工性能现场检测设备校准方法》 团体标准立项的公告 .pdf
  • 比朗公司JJ-2高速组织捣碎机2月销售总额占第一
    目前,上海比朗仪器高速组织捣碎机研发取得了可喜成绩。上海比朗仪器设备有限公司的市场和竞争格局发生巨大变化,为在激烈的竞争中立得一席之地,上海比朗仪器设备有限公司研发的高速组织捣碎机不仅持久耐用,而且品质效果良好,受到业界一致好评!  上海比朗仪器有限公司做为国内最大从事恒温实验设备和超声波实验设备,高速组织捣碎机研发、生产、销售于一体的高新技术企业。近年来在巩固和扩大仪器市场的基础上,积极开发个性化&ldquo 亮点&rdquo 产品,实现了高速组织捣碎机市场等多领域发展的新突破,赢得了越来越广阔的发展空间。  2月上海比朗仪器有限公司研发的高速组织捣碎机销售额,占其他仪器销售总额第一。  高速组织捣碎机主要特征:  ●科学研究:生化、植物、营养等研究都可采用本机捣碎之用。  ●医学治疗:实验室与药品都可采用,特别适合于组织治疗法药品捣碎。  ●化工制药:胶质乳浊液,及固体液体物质之混合,如制造油质有霉素剂的调和,制造浓缩牛肝捣碎等。  ●生物制造品:生物药品制造过程中,其用具均需严密消毒,以免杂菌感染,构造均合无菌操作的要求。  ●食品工业:可供制造肉酱,奶酪等作搅拌捣碎用。  高速组织捣碎机技术参数:  ★定时范围:0~60min  ★输出功率:200W  ★处理量:50~1000ml  ★转速调节:0~12000转/分  ★电源要求:220V,50Hz  ★外形尺寸:48× 24× 24cm  ★重量:7.5kg  捣碎机旋转速度极高,每分钟达到12000转,物料在玻璃杯中通过电机旋转驱动旋刀同时进行劈裂、碾碎、掺合等过程,使物料搅拌捣碎,本机体积小,消耗功率少,工作效率高,但本机对黏度高的液体同质料硬的物性(如骨头等)均不适宜。  上海比朗品牌JJ-2高速组织捣碎机型适用于生物制药、基因研究、病理分析、聚合反应等领域,是液体介质与软质固体混合捣碎的实验设备。为各医疗单位、生物研究、卫生防疫、化妆用品、食品加工、各大专院校等的科学研究、产品开发、品质控制和生产过程应用的理想设备。容量大、功率大、转速高、是生物、遗传、病毒、医学、环保、水产、实验室、分析室的必备工具。
  • 上科大团队在磁子电子学研究中取得突破性进展
    近日,上海科技大学物质科学与技术学院陆卫教授课题组在光子-磁子相互作用及强耦合调控方向取得重要进展。研究团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态,此项发现为磁子电子学和量子磁学的研究打开了全新的维度。研究中揭示的新型磁子强耦合物态,能极大改变铁磁单晶的电磁特性,为光子与磁子的纠缠提供新的思路,这对推动磁子在微波工程和量子信息处理中的应用具有重要作用。该成果发表于物理学领域旗舰期刊《物理评论快报》(Physical Review Letters)。   芯片的研发主要遵循着摩尔定律,即每18个月到两年间,芯片的性能会翻一倍。然而,随着人类社会逐渐步入后摩尔时代,一味降低芯片制程受到了“极限挑战”。处理器性能翻倍的时间延长,“狂飙”的发展势头遇到了技术瓶颈。在市场需求驱动下,人们迫切需要“新鲜血液”的注入,来激活低功耗、高集成化、高信息密度信息处理载体的出路。基于磁性材料发展建立的自旋电子学以及磁子电子学发展迅猛,为突破上述限制提供了出路。   宏观磁性的起源主要是材料中未配对的电子。电子有两个基本属性:电荷与自旋。前者是所有电子器件操控的对象。利用电子电荷属性发展的微电子器件,已经引发了信息产业的革命。   然而,面对难以抑制的欧姆损耗,以及信息产业对更高密度存储和先进量子计算的渴求,人们迫切希望进一步利用电子自旋作为信息载体,发展自旋电子学器件,进而继续推动信息技术的发展。   尤其是磁性绝缘体中的自旋,它们能够完全避免传导电子的欧姆损失,充分发挥自旋长寿命、低耗散的优势,因此对于开发自旋电子学器件意义重大。   磁子态是电子自旋应用中的核心概念,它是磁性材料中的自旋集体激发。它不仅可以高效传递自旋流,还可以与不同的物理体系,例如声子、光子、电子等,发生相互作用,进而重塑材料的声光电磁等物性。   此外,磁子还可以与超导量子比特相互作用,在量子信息技术中发挥重要作用。正是由于这些性质与应用潜力,近年来关于磁子的研究引起国际学界的高度关注,磁子电子学、量子磁电子学等新兴领域相继诞生。   铁磁绝缘体单晶球中的磁子态,最早于1956年由美国物理学家Robert L. White和Irvin H. Slot Jr.在实验中发现。根据他们的实验结果,同一年L. R. Walker给出了磁性块体空间受限磁子态的数学描述,称为Walker modes。   在随后长达70年中,块体磁性材料中研究的磁子态几乎都属于Walker modes范畴。陆卫教授团队的发现突破了这一范畴,发掘了新的磁子态。在低磁场下,铁磁绝缘体单晶球在受到强微波激励时,内部的非饱和自旋会获得一定的协同性,产生一个与微波激励信号同频率振荡的自旋波(图(a)),该自旋波可被称为“光诱导磁子态(pump-induced magnon mode, PIM)”。   光诱导磁子态如同一种“暗”态,无法按传统探测方法直接观测,但可通过其与Walker modes强耦合产生的能级劈裂被间接观察到(图(b))。   光诱导磁子态的有效自旋数受激励微波调控,因此当改变激励微波的功率时,耦合劈裂的大小会按照功率四分之一次方的关系变化(图(c)),展现出和常规Autler-Townes劈裂不一样的功率依赖关系。   此外,研究团队还发现光诱导磁子态具有丰富的非线性,这种非线性会产生一种磁子频率梳(图(d))。相较于微波谐振电路中产生的频率梳,这一绝缘体中产生的新型频率梳不存在电子噪声,因此有望在信息技术中实现超低噪声的信号转换。图(a)光诱导磁子态原理示意图,(b)光诱导磁子态的强耦合色散图,(c)强耦合劈裂随微波激励功率的幂次关系, (d)光诱导磁子非线性效应引发的纯磁子频率梳   “常规磁子强耦合态依赖于谐振腔才能构建,当谐振腔换成开放器件,众所周知强耦合特征会悉数消失。我们则摆脱了这一依赖,通过外加微波诱导,即可产生磁子强耦合态。这样的开放边界下的耦合态有望像乐高一样有序组合,获得丰富的功能性。”团队负责人陆卫教授表示,“频率梳就像是一把游标卡尺,能够精准的测量频谱上的风吹草动。利用这个原理,光频梳在原子钟、超灵敏探测中展现了令人惊叹的精度。我们发现的频率梳在微波频段,这是雷达、通讯、信息无线传输使用的频段,可以预测我们的频率梳必然能在这些领域中发挥作用。”   本项研究工作由上海科技大学、中国科学院上海技术物理研究所和华中科技大学三家单位共同完成,上海科技大学为第一完成单位。论文第一作者是上科大物质学院助理研究员饶金威,通讯作者是上科大物质学院陆卫教授、中科院上海技物所姚碧霂副研究员和华中科技大学于涛教授。
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 浙江嘉兴某单位批量采购14种仪器设备
    浙江嘉兴某单位批量采购14种仪器设备,进口国产不限,清单如下:序号设备名称序号设备名称1自动金相试样抛光研磨机8电感耦合等离子体发射光谱仪2镶跃机9微光分析显微镜(光束诱导电阻变化(OBIRCH)功能与微光显微镜EMMI)33D OM10微光分析显微镜(InGaAs)4精密芯片劈裂机11原子吸收光谱仪5离子贱射仪12自动电位滴定仪6等离子刻蚀仪13库仑法卡氏水分仪7电感耦合等离子体质谱仪14容量法卡氏水分仪联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • XPS小课堂丨XPS仪器通能的选择和谱线的灵敏度(一)
    XPS小课堂 光电子能谱图由一系列谱线(通常称为宽谱图)或一个至几个为数不多的谱线(通常称为窄谱图或高分辨谱图)所构成。谱线信息包含三要素:峰位(结合能)、峰强(以峰高计数强度或计数率表示,但在定量分析中以峰面积表达更加准确)、峰宽(以峰位强度一半处的宽度,即Full width at Half Maximum,简写为FWHM)。而在考察XPS的性能时,峰强(灵敏度)和半高宽(能量分辨率)是不可以、也是无法分割开来的。 01 XPS的能量分辨率 XPS的能量分辨率是仪器将两个相邻的谱峰分开的能力,通常能量分辨率越高,所采集到的光电子的越少,而能量分辨率越低,则采集到的光电子越多——不能离开能量分辨率来片面强调灵敏度的高低,同样也不能片面强调灵敏度的高低而忽略能量分辨率,因此要正确评估XPS的性能,需要在给定的能量分辨率下的去比较灵敏度的高低,或者可以在给定的灵敏度下来比较能量分辨率的高低。图1. Ag 3d5/2能量分辨率为0.422eV时,灵敏度300kcps 02 XPS谱线半高宽XPS的能量分辨率通常由Ag 3d5/2的半高宽来进行比较。谱线的半高宽从根本上讲,是所测谱线的发射谱线与两个展宽函数(X射线源和检测系统响应)的卷积结果。发射谱线的线型是洛仑兹型的,用来激发光电子的X射线也是洛仑兹型的,而检测系统的响应则是高斯型的,换言之我们看到的XPS的谱线的宽度是由三部分构成的,即发射谱线的宽度、X射线源的展宽和检测系统的展宽。 粗略来说测量到的XPS的谱线宽度大致是这样的: wA是样品原子能级的自然线宽——发射谱线的宽度是本征的,由其电子能级本身决定——电子能级寿命越长则谱线宽度越窄,电子能级寿命越长则谱线越窄,无法通过仪器的参数来改变; wx是X射线源的线宽——X射线源的展宽对特定的X射线源也是固定的,但是可以通过仪器的硬件设置改变,例如是否使用单色化的X射线源——500mm罗兰圆的单色化的Al Ka线宽0.25eV,非单色化则为0.85eV,所以使用单色化光源的分辨率就好于非单色化的X射线源; wD是检测系统的展宽;仪器的半球能量分析器半径和通能共同决定了检测系统的展宽——能量分析器半径越大,本征的能量分辨就越好;而通能越小能量分辨也就越好,但是信号强度也会下降——能量分辨(通能)和信号强度近似呈对数曲线关系。 03 通能(Pass energy)我们通常可以选择不同的通能来实现不同的能量分辨率。 XPS的能量分析器通常采用固定分析器传输(Fixed Analyzer Transmission,FAT)或称恒分析器能量(Constant Analyzer Energy,CAE)模式,待分析的光电子被减速到选定的通能而通过能量分析器,这是光电子在分析器的两个半球之间移动时的平均动能。FAT(CAE)模式的优点是能量分辨率在整个测量的动能范围内保持恒定。图2. XPS通能原理示意图 选择较低的通能时,可以获得了较好的能量分辨率,但同时灵敏度会降低,反之选择较高的通能时,可以获得更好的灵敏度,但同时分辨率会降低。图3. 在相同的X射线源功率下,以不同的通能(20eV和10eV)测试Al 2p 图3清晰地显示了较小的通能(10eV)时,能看到单质态Al 2p出现明显的双峰劈裂,但是灵敏度相对较低(大致在7×103cps),而在较大的通能(20eV)时,单质态Al 2p的双峰劈裂几乎消失了,但是灵敏度显著提高(大致在2×104cps)。 本期介绍了XPS的重要参数能量分辨率与灵敏度之间的联系,以及在实际操作中需要调节的参数——通能的基本概念,下期XPS小课堂将分享在具体的应用中我们应该如何选择通能大小,以及如何在分析灵敏度和能量分辨率之间寻求更好的平衡。 本文内容非商业广告,仅供专业人士参考。
  • 一天2篇Nature!南京大学在二维材料领域取得重要突破!
    近日,南京大学电子科学与工程学院王欣然教授、王肖沐教授和施毅教授团队在二维材料领域取得重要进展,相关成果分别以“Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire”和“Observation of Chiral and Slow Plasmons in Twisted Bilayer Graphene”为题,5月4日同期在线发表于《自然》。一、发现扭角石墨烯中等离激元新物态表面等离激元,对光场具有亚波长尺度的局域能力,在微纳光子学和集成光电器件、超分辨成像等领域有广阔的应用前景。传统等离激元金属和环境介质的光学性质密切相关,容易受到金属欧姆损耗和环境因素影响。拓扑特性中的边缘态可以对等离激元实现保护,抑制损耗,探索这类等离激元新模式有望帮助解决等离激元纳米光子器件损耗高的关键问题。王肖沐教授和施毅教授研究团队,在扭角石墨烯材料中提出并实现了一类全新的等离激元模式:手性贝利等离激元。研究团队根据扭角石墨烯的结构手性,揭示了强关联能态的拓扑特性,预言了非零贝利曲率在中红外频段可以引入反常霍尔电导。在此基础上,团队制备了具有长程高度有序摩尔超晶格的扭角石墨烯材料,并系统地研究了红外表面等离激元响应。观测到了具有手性特征的贝利等离激元边缘态,并验证了通过电场调控实现的开关操作。研究成果通过拓扑边缘态保护等离激元,有效降低了损耗,在中远红外光电器件、量子计算和纳米光学等方面具有巨大应用潜力。图1 扭角石墨烯示意图(a)及光学显微镜图像(b)(c)扭角石墨烯纳米条带中的红外等离激元响应。在15微米(650cm-1)长波红外范围内,手性纳米条带中出现新的具有拓扑特性的贝利等离激元新模式。扭角石墨烯是一类具有丰富多体相互作用的强关联电子材料。通过改变层间扭转角度,掺杂等条件,可以对电子的能态进行灵活地调控,实现超导、拓扑等奇异物态。研究团队指出,由于扭角石墨烯自身的非中心对称结构,在打破时间反演对称性的条件下,会产生非零的贝利曲率,进而在材料中引入非零的横向光电导(即反常霍尔电导)。将这种拓扑能态与等离激元结合,可以有效降低其散射损耗。研究团队依据这样的思路,制备了大面积的“魔角”(1.08°扭角的双层石墨烯),并在其上构筑了具有手性结构的纳米条带。图2 光照强度(a)和静电掺杂(b)对手性贝利等离激元边缘模式共振能级劈裂的调控作用。在这种同时打破空间和时间反演对称性的条件下,非零贝利曲率在纳米条带中通过拓扑边缘态形成了手性贝利等离激元新模式。实验上,手性等离激元以共振峰位的劈裂为标志。而通过光强和掺杂,可以调控贝利曲率的大小,进而调制能级劈裂的开关。手性等离激元存在的另一个证据是零磁场法拉第效应,即光通过材料时其偏振方向会发生偏转。实验中实现了高达15°的极化旋转。这些非磁场下的奇异光学效应,在制作偏振片等重要光学应用上有着广泛的前景。南京大学王肖沐/施毅教授团队,专注于于高性能红外光电器件的研究工作。近年来,获得了以弹道雪崩光电探测器(Nature Nanotechnology,14,217(2019))和能谷光电子器件(Nature Nanotechnology,15,743(2020))为标志的系列创新成果。本次的研究工作,是该团队在广泛国际合作支持下,通过体系强相互作用和谷电子特性对光子进行有效调控实现的一个突破性进展。南京大学电子科学与工程学院硕士生黄天烨为第一作者,电子科技大学李雪松教授课题组完成了单晶石墨烯的生长工作,明尼苏达大学 Tony Low教授课题组完成了主要计算工作,中科院沈阳金属所杨腾研究员、北京计算所邵磊副研究员的课题组协助完成了部分计算工作。南京大学微制造与集成工艺中心在微加工方面给予了重要的支持。该工作得到国家科技部重点研发计划、自然科学基金重点项目、江苏省双创团队和中科院先导计划等项目资助。二、突破双层二维半导体外延生长核心技术集成电路摩尔定律是推动人类信息社会发展的源动力。当前,集成电路已经发展到5nm技术节点,继续维持晶体管尺寸微缩需要寻求材料的创新。近年来,以MoS2为代表的二维半导体在电子器件和集成电路等领域获得了迅速的发展,王欣然教授课题组在该领域长期积累,2021年在《Nature Nanotechnology》连续报道了大面积MoS2单晶制备以及MoS2驱动的超高分辨Micro-LED显示技术两个成果。尽管学术界和工业界在单层二维半导体生长方面已经取得了很大的进展,但是单层材料在面向高性能计算应用时依然受限。相比于单层MoS2,双层MoS2具有更窄的带隙和更高的电子态密度,理论上可以提升驱动电流,更适合应用于高性能计算。然而,由于材料生长热力学的限制,“1+1=2”的逐层生长方法难以给出均匀的双层,因此层数可控的二维半导体外延制备一直是尚未解决的难题。图3 双层MoS2生长机制针对该问题,王欣然教授与东南大学合作,另辟蹊径,提出了衬底诱导的双层成核以及“齐头并进”的全新生长机制,在国际上首次报道了大面积均匀的双层MoS2薄膜外延生长。研究团队首先进行了理论计算,发现虽然单层生长在热力学上是最稳定的,但是通过在蓝宝石表面构建更高的“原子梯田”,可以实现边缘对齐的双层成核,从而打破了“1+1=2”的逐层生长传统模式局限(图3)。研究团队利用高温退火工艺,在蓝宝石表面上获得了均匀分布的高原子台阶,成功获得了超过99%的双层形核,并实现了厘米级的双层连续薄膜。原子力显微镜、透射电子显微镜、拉曼光谱和荧光光谱等多种表征手段均证明了双层薄膜的均匀性。进一步,团队证明了双层MoS2与蓝宝石衬底具有特定的外延关系,以及双层MoS2的层间具有2H和3R两种堆垛模式,并在理论上给出了解释。图4 双层MoS2的晶体管器件性能研究团队进一步制造了双层MoS2沟道的场效应晶体管(FET)器件阵列,并系统评估了其电学性能(图4)。相比单层材料,双层MoS2晶体管的迁移率提升了37.9%,达到~122.6cm2V-1S-1,同时器件均一性得到了大幅度提升。进一步,团队报道了开态电流高达1.27 mA/μm的FET,刷新了二维半导体器件的最高纪录,并超过了国际器件与系统路线图所规划的2028年目标。该工作突破了层数可控的二维半导体外延生长技术,并且实现了最高性能的晶体管器件。南京大学电子科学与工程学院博士生刘蕾为第一作者,王欣然教授、李涛涛副研究员和东南大学王金兰教授、马亮教授为论文共同通讯作者,南京大学施毅教授、聂越峰教授、王鹏教授以及微制造与集成工艺中心对该工作进行了指导和支持。该研究得到了江苏省前沿引领技术基础研究、国家重点研发计划和国家自然科学基金等项目的资助。
  • 「积跬步,以致千里」国内首台超精准全开放强磁场低温光学研究平台-OptiCool于清华大学交付使用
    近期,我们于清华大学交付使用了超全开放强磁场低温光学研究平台-OptiCool,该设备是全球发布以来国内的套设备,也是美国本土以外安装的二套设备。设备配备7个侧面窗口和1个部窗口可实现光路的灵活搭建。集成的低温位移台和旋转台可以实现样品在低温环境下的三维位移和二维旋转。本套OptiCool的用户是清华大学物理系的杨鲁懿教授,设备将被用于量子材料超快光谱探测的相关研究。我们感谢杨老师能认可并选择Quantum Design作为科研的合作伙伴,祝杨老师科研顺利,硕果累累!超全开放强磁场低温光学研究平台-OptiCool自发布以来就受到了全球的广泛关注。OptiCool全新的设计方案打破了传统强磁场设备对光学实验的诸多限制,设备具有低温、强磁场的同时还有超低震动、多窗口、近工作距离等特点。OptiCool的发布使得低温强磁场的光学实验也可以用室温物镜和自由光路来实现。这一特点意味着很多成熟的室温试验方案可以平移到低温强磁场环境下来进行,这对于低温光学实验是一个巨大的进步。Quantum Design工程师在安装调试位移台和旋转台 Quantum Design工程师与用户合影(中间为杨鲁懿教授) 背后的故事本套设备在春节前就已运抵清华大学,由于疫情原因美国工程师无法亲临现场安装。为了让用户能够早日进行科学研究,由QD中国的王笃明博士、田勇博士、谷大春博士三位资深工程师组成的OptiCool技术团队在疫情期间就设备的安装与美国工厂进行了详细的线上技术沟通。在国内疫情有所缓解的5月,在与清华大学进行报备后三位工程师齐聚清华大学对设备进行安装。设备的安装调试进行的非常顺利,设备所有指标均达到要求。本次国际远程协作、国内高手联合的工作模式是我们技术团队在为国内用户提供技术支持方面的重要一步。新发布OptiCool在2020年3月正式发布了集成式室温物镜选件,该选件在下凹式部窗口的基础上将窗口换成了100×的物镜,实现了2 mm的近工作距离和0.75的NA值,这在强磁场设备上取得了又一里程碑式的进步。该选件甚至使得OptiCool比多数无磁场的恒温器具有更近的工作距离,彻底突破了低温磁场设备在低温光学实验方面对工作距离上的所有限制。正是Quantum Design全体工程师的不懈努力,使我们在低温光学领域不断取得进步,而我们的每一步终将汇成低温光学的一大步。我们期待OptiCool能为科研工作者带来更多超乎想象的惊喜。 集成式室温物镜设计示意图拓展阅读OptiCool是Quantum Design于2018年2月推出的超全开放强磁场低温光学研究平台,2019年正式向美国以外市场销售。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达7T的磁场。多达7个侧面窗口、1个部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。OptiCool是全干式系统,启动和运行只需少量氦气。全自动软件控制可实现一键变温、一键变场;避震、控温技术让控温更智能;新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验实现无限可能!超全开放强磁场低温光学研究平台:https://www.instrument.com.cn/netshow/C283786.htm
  • 公路工程综合检测中心乙级资质检测仪器配置清单
    1.试件破型室,主要有水泥胶砂抗折抗压试验机、全自动压力试验机等主要试验设备,均采用微机测控系统,自动采集处理打印试验数据,提高工作效率和试验准确性,可以完成水泥混凝土强度、水泥胶砂抗折强度的试验。2.水泥室,主要有水泥净浆搅拌机、胶砂搅拌机、自动标准养护水箱、水泥胶砂流动度测定仪、胶砂试件成型振动台、标准养护箱、电动抗折试验机、负压筛析仪等十余台主要试验设备,可以完成水泥凝结时间、安定性、强度、细度等各项性能指标的测定。3.集料室,主要有砂当量测定仪、棱角性测定仪、电子静水天平、加速磨光机、洛杉矶磨耗机、顶击式两用振筛机、电热鼓风干燥箱等主要设备,可以完成集料的筛分、表观相对密度、含泥量、棱角性、砂当量的试验。在各种配合比试验中,比如水泥混凝土配合比,沥青混合料配合比等都需要用到集料,所以利用率较高。4.土工室,土工试验的基础配备我们已经比较完善齐全,像主要有高温炉、电动液压脱模器、电动击实仪、顶击式两用振筛机、数显路强仪、液塑限联合测定仪、电热鼓风干燥箱等主要设备。土的各项物性、塑性指标比如:z佳含水量、z大干密度、密度、含水率、颗粒分析、界限含水量、承载比CBR、烧失量都可以进行检测。在公路工程施工过程中必须要进行土的各项试验检测,实验室的仪器设备、人员配备以及检测能力都可以满足日常公路工程试验检测的要求。5.化学分析室,主要有酸度计、滴定设备、干燥器、电子分析天平等主要设备,可以完成混凝土用水的PH值、氯化物含量、石灰钙镁含量、灰剂量的试验。按照标准实验室要求,药品管理严格规范,双人双锁。天平室配有两个万分之一和一个千分之一的精密天平,为保证其精que性,单独隔间,恒温管理。6.沥青室,主要低温恒温水浴、沥青脆点仪、沥青旋转薄膜烘箱、沥青闪点试验仪、全自动沥青软化点试验仪、针入度试验仪、延度仪、真空干燥器等主要设备,可以完成道路石油沥青的各项性能指标,如针入度、延度、软化点、密度、闪点、溶解度、耐老化性、粘附性等的试验。沥青试验危险性高,散发有毒气体,所以在试验时均需佩戴防毒面具。因为考虑到沥青检验室可能产生的废气、烟雾等收集、排放、处理,可以将各个主要设备加盖工作间,进行隔离操作,防止气味蔓延。7.沥青混合料室,主要有沥青混合料理论z大相对密度试验仪、液压车辙试样成型机、自动车辙试验仪、电热鼓风干燥箱、自动混合料拌和机、马歇尔稳定度试验仪、数显马歇尔击实仪、燃烧炉、恒温水浴、电动液压脱模器等十余套主要仪器设备,可以完成沥青混合料配合比设计、密度、马歇尔稳定度、沥青含量、矿料级配、z大理论密度、高温稳定性等试验。 8.力学室,主要有300 T、200 T 、150 T 、100 T 、80 T 、50 T、20 T 、10T、5T、2 T、1 T、0.5 T各种量程和精度的全自动微机控制w能材料试验机、拉力试验机、钢筋弯曲机等主要仪器设备,可以完成屈服强度、抗拉强度、断后伸长率、弯曲性能、表面质量、重量偏差、屈强比等试验。 9.交通工程室,配有先进仪器桩身完整性测试仪,可以应用低应变反射波法检测桩身完整性;钢筋探测仪可检测钢筋保护层厚度和钢筋直径,这两套设备属于进口精密仪器。另有国内先进的桩基静载荷测试分析仪、多通道声波透射法自动测桩仪、非金属超声波检测仪等设备可完成桩基检测。在路基路面现场检测中,配有路面平整度仪、路面弯沉仪、摆式摩擦系数测定仪等主要设备,可完成公路几何尺寸、路面厚度、压实度、构造深度、渗水系数、摩擦系数的试验。此实验室主要是完成现场检测,每台仪器设备外出工作都要有出库记录,严格按照试验规范进行操作。10.水泥混凝土室,此实验室主要是进行水泥混凝土配合比设计、砂浆配合比设计,以及进行水泥混凝土和砂浆的各项性能检测,比如稠度、凝结时间、表观密度、含气量、抗渗性能、立方体抗压强度、抗折强度、劈裂抗拉强度等,仪器设备比较齐全,主要有数显砂浆稠度仪、混凝土自动调压渗透仪、振动台、水泥混凝土搅拌机、砂浆搅拌机、耐磨试验机、数显混凝土贯入阻力仪等。
  • Quantum Design发布最新一代超精准全开放强磁场低温光学研究平台
    2018年2月,美国Quantum Design公司发布了新一代超全开放强磁场低温光学研究平台——OptiCool。OptiCool采用创新型设计,样品腔拥有8个窗口,允许光从各个方向照射到样品上。高度集成式的低温、磁体设计使OptiCool可以方便的放置在实验光路的核心部位。低温光学的未来已经到来! 图1 超全开放强磁场低温光学研究平台——OptiCool“我们的科研团队将低温光学设备的性能提高到了不可思议的程度”,Quantum Design席技术官Dr. Stefano Spagna 先生骄傲地介绍了创新性磁体设计和振动隔离上的两项新。创新性锥形劈裂磁体能够实现超大均匀磁场和超大孔径,特的振动隔离技术将样品的震动降到了低。这两项技术使OptiCool光学平台性能更加稳定、操作更为方便,这将为低温光学实验提供更多可能性。超全开放强磁场低温光学研究平台——OptiCool技术特点 全干式系统:脉冲管制冷机制冷 完全无需液氦 磁场强度:±7T 控温:1.7K~350K全温区控温 样品降温时间: 室温到4k 约2小时 超低震动:10nm 水平 峰-峰值 4nm 竖直 峰-峰值 超大空间:Φ89mm×84mm 8个光学窗口: 7个侧面光学窗口 (NA 0.11) 1个部光学窗口 (NA 0.7) 新型磁体:锥型劈裂磁体特设计,同时满足超大磁场均匀区、大数值孔径的要求,有效缩短了样品与光学窗口的距离,满足近工作距离要求。 磁场均匀度:±0.03%(1厘米球) ±0.5%(3厘米球) 图2 OptiCool样品腔实物图 图3 OptiCool样品腔结构图早在2016年初,针对市场上缺乏令人满意的强磁场低温光学设备这一现状,Quantum Design 就精心挑选具有多年低温光学研究经验的技术工程师成立了Q-Works精英团队。Q-Works走访了国际知名的大学和实验室,对科研需求进行深入调研并认真总结,通过对设计方案的不断完善,Q-Works终于不负厚望,成功研制出了全新一代的强磁场低温光学研究平台——OptiCool。OptiCool的设计理念是让样品在获得低温和强磁场的同时能够像室温样品一样满足各种测量的光路要求。在人们惊艳于OptiCool巧夺天工的设计时,Q-Works始终没有忘记设计该产品的初衷,设备做到大繁若简才是至高的追求。OptiCool颠覆了以往人们心目中强磁场低温光学设备的概念,以全新的高度来审视低温光学实验,同时让人们认识到性能更好、方便易用才是低温光学设备的未来。 OptiCool平台的推出,将为强磁场低温光学领域提供无限可能。超全开放强磁场低温光学研究平台——OptiCool重要应用领域 量子光学 低温拉曼 光致发光 紫外/红外反射&吸收 傅里叶红外光谱 NV色心、空位荧光 纳米磁学 低温高压 MOKE/低温MOKE 自旋电子学 Quantum Deign中国子公司将于2018年4月17日-20日在河南师范大学召开的十六届低温物理学术会议上正式在中国市场推出超全开放强磁场低温光学研究平台——OptiCool,届时欢迎大家莅临Quantum Design中国子公司展台了解产品详情。展台处还有OptiCool样机展示及精美礼品赠送,期待与您相会!同时您也可以通过访问官方网站(www.qd-china.com)、关注微信公众平台(QuantumDesign),或致电(010-85120280)了解更多OptiCool产品详情。致敬低温光学,未来已来,你来不来?相关产品及链接:1、超全开放强磁场低温光学研究平台--OptiCool:http://www.instrument.com.cn/netshow/SH100980/C283786.htm 2、完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/SH100980/C18553.htm3、MPMS3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/SH100980/C17089.htm
  • 信号增强高达100万,科学家最新研究开启GeV固态原子天线新纪元!
    【科学背景】原子光学天线是未来光学技术发展的重要趋势。其作用是实现极端的光场增强,推动光与物质之间的相互作用,离不开先进的光学材料和精确的实验技术。传统的纳米天线在光场增强和纳米尺度光学应用中发挥了关键作用,但其性能常受到环境诱导的非辐射过程的限制,这限制了其在更精细应用中的潜力。近年来,美国芝加哥大学Alexander A. High教授团队发现,金刚石中的IV族色心,如锗空位(GeV),作为固体中的原子光学偶极子,展示出了卓越的光学相干性和高场增强能力。这些原子光学天线利用其量子力学性质,可以在纳米尺度上实现巨大的光场增强。与传统纳米天线相比,原子光学天线不仅在场强度上具有显著优势,而且由于其较低的非辐射衰减率,能够在非常小的尺度上展现出优异的光学性能。这种原子光学天线的独特优势使得其在光谱学、传感和量子科学等领域得到了广泛应用。例如,利用GeV天线进行的实验表明,其在近场的光强度增强高达一百万倍,能够有效检测和操控附近的碳单空位,并通过福斯特共振能量转移(FRET)实现单个中性空位的荧光检测。这种极高的灵敏度和精确度为新兴的光学应用提供了前所未有的机会,并推动了相关技术的发展。【科学亮点】1. 实验首次实现了掺锗金刚石空位中心(GeV)作为原子天线的应用 本研究首次将掺锗金刚石空位中心(GeV)作为原子天线进行实验验证。通过利用GeV的光学特性,我们成功地演示了其在光场增强和局部光强度放大的应用潜力。2. 实验通过共振激发和数值模拟,测量了GeV的近场光强度增强&bull 共振激发: 在实验中,我们对GeV进行共振激发,观察到其产生的驻波近场电磁场具有显著的增强效应。测量结果表明,在距离小于1纳米的范围内,GeV近场的光强度增强高达百万倍。&bull 数值模拟: 通过数值模拟,我们计算了GeV的散射光场强度,展示了其在特定条件下的巨大场增强。模拟结果显示,与共振激发场相比,散射场的强度可以达到高达10^8倍的增强程度。&bull 对比分析: 与传统的纳米天线相比,GeV作为点状量子发射体具有较低的非辐射衰减率和非常窄的线宽,这使得其对共振频率的扰动具有极高的灵敏度,并能够实现超常的场增强效果。 3. 实验应用及前景展望&bull 检测与操控: 我们利用GeV天线探测并操控了附近的碳单空位(VC),并通过福斯特共振能量转移(FRET)首次实现了来自单个中性空位的可检测荧光。&bull 未来应用: GeV原子天线的独特特性为光谱学、传感和量子科学等领域的应用提供了新机遇,并可能推动相关技术的发展和新应用的探索。【科学图文】图1: 锗germanium,GeV天线。图2: 锗GeV天线感测、调控和光学激发近端空位。图3: 零声子线zero-phonon line,ZPL劈裂与泵浦阈值功率负相关。图4: 比较非共振激发,揭示了场增强。图5:相比于银纳米球,锗GeV天线效应。【科学启迪】本文的研究揭示了掺锗的金刚石空位中心(GeV)作为原子天线在光学增强领域的巨大潜力。首先,GeV展现出在纳米尺度上的极高光学场增强能力,能够实现近场强度增强高达一百万倍,这为科学研究和技术应用提供了前所未有的机会。其原子级别的尺寸和低非辐射衰减率使其在生成和操控局部电磁场方面具有独特的优势,与传统的纳米天线相比,这种增强效应与物理尺寸基本解耦,从而避免了小型金属散射体因欧姆损耗导致的响应下降问题。 此外,GeV的高光学相干性和窄线宽使其在光谱学和传感应用中具有极高的灵敏度,能够检测和操控邻近的碳空位(VC)并实现荧光显微探测。这种特性不仅拓宽了原子天线在光谱学和量子科学中的应用范围,还在单分子拉曼光谱、光诱导催化等领域提供了新的研究工具。特别是通过福斯特共振能量转移(FRET)技术,GeV天线可以驱动来自单个中性空位的可测量荧光,为单个量子系统的研究提供了新的途径。原文详情:Li, Z., Guo, X., Jin, Y. et al. Atomic optical antennas in solids. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01456-5
  • 中国科大等实现基于碳化硅中硅空位色心的高压原位磁探测
    中国科学技术大学郭光灿院士团队在碳化硅色心高压量子精密测量研究中取得重要进展。该团队李传锋、许金时、王俊峰等与中科院合肥物质科学研究院固体物理研究所高压团队研究员刘晓迪等合作,在国际上首次实现了基于碳化硅中硅空位色心的高压原位磁探测。该技术在高压量子精密测量领域具有重要意义。3月23日,相关研究成果以Magnetic detection under high pressures using designed silicon vacancy centres in silicon carbide为题,在线发表在《自然材料》上。高压技术广泛应用于物理学、材料科学、地球物理和化学等领域。特别是压力下高临界温度超导体的实现,引起了学术界的关注。然而,原位高分辨率的磁测量是高压科学研究的难题,制约高压超导抗磁行为和磁性相变行为的研究。传统的高压磁测量手段如超导量子干涉仪难以实现金刚石对顶砧中微米级样品的弱磁信号的高分辨率原位探测。为了解决这一关键难题,金刚石NV色心的光探测磁共振技术已被用于原位压力诱导磁性相变检测。而由于NV色心具有四个轴向,且其电子自旋的零场分裂是温度依赖的,不利于分析和解释测量得到的光探测磁共振谱。针对高压磁探测的难题,研究组加工了碳化硅对顶砧(又称莫桑石对顶砧),然后在碳化硅台面上利用离子注入产生浅层硅空位色心,并利用浅层色心实现高压下的原位磁性探测。碳化硅中的硅空位色心只有单个轴向,且因电子结构的特殊对称性,该色心电子自旋的零场分裂是温度不敏感的,可较好地避免金刚石NV色心在高压传感应用中遇到的问题。研究组刻画了硅空位色心在高压下的光学和自旋性质,发现其光谱会蓝移,且其自旋零场分裂值随压力变化较小(0.31 MHz/GPa),远小于金刚石NV色心的变化斜率14.6 MHz/GPa。这将利于测量和分析高压下的光探测磁共振谱。以此为基础,研究组基于硅空位色心光探测磁共振技术观测到钕铁硼磁体在7GPa左右的压致磁相变,并测量得到钇钡铜氧超导体的临界温度-压力相图。实验装置和实验结果如图所示。该实验发展了基于固态色心自旋的高压原位磁探测技术。碳化硅材料加工工艺成熟,可大尺寸制备,且相对金刚石具有较大的价格优势。该工作为磁性材料特别是室温超导体高压性质的刻画提供了优异的量子研究平台。该成果得到审稿人的高度评价:“总的来说,我发现这项工作非常有趣,通过展示碳化硅中室温自旋缺陷作为原位高压传感器的使用。我认为这项工作可以为使用碳化硅对顶砧的量子材料的新研究打开大门。”研究工作得到科技部、国家自然科学基金、中科院、安徽省、中国科大和四川大学的支持。实验结果和示意图。a、碳化硅对顶砧和浅层硅空位色心探测磁性样品示意图;b、硅空位色心零场劈裂随压力的变化关系;c、钕铁硼材料的磁性相变探测;d、钇钡铜氧超导材料的Tc-P相图;e、基于碳化硅中硅色心实现高压原位磁探测的示意图。
  • 北京大学PPMS用户王健课题组等在三维狄拉克半金属领域取得重要进展
    QUANTUM DESIGN公司在北京大学量子材料科学中心的用户王健研究组,与中心谢心澄教授、贾爽研究员,以及武汉强磁场中心王俊峰教授,浙江大学王勇教授,美国阿贡实验室Zhili Xiao教授等人合作,通过低温强磁场下角度依赖的电输运实验勾画出三维狄拉克半金属Cd3As2单晶的全费米面信息。转角度的磁阻振荡数据揭示出Cd3As2单晶的费米面是由两个嵌套在一起的椭球组成。此外,Cd3As2的量子限特性和Zeeman劈裂行为在高到60特斯拉的强磁场实验中被观测到。同时,电输运实验发现,对于高质量的Cd3As2单晶,在低温下载流子迁移率高可达千万的量(单位:cm2/Vs),而平均自由程可达亚毫米的量。 值得提到的是,该重要工作低温强磁场下的转角度的电输运性质测量是在我们公司产品综合物性测量系统(PPMS)上完成的,在向我们的用户们表示祝贺和致敬的同时,我们也由衷的为能给中国相关科研工作者带来帮助而感到高兴和自豪。 相关文章于2015年9月16日正式发表在Physical Review X 5, 031037(2015)上。该工作为未来基于狄拉克半金属的新的拓扑相(如拓扑超导)的探索以及潜在的电子器件(如高速器件)方面的应用奠定了基础。王健教授和PPMS合影 相关产品PPMS 综合物性测量系统:http://www.qd-china.com/products2.aspx?id=44完全无液氦综合物性测量系统PPMS DynaCool:http://www.qd-china.com/products2.aspx?id=45
  • 低温、磁场集一身,光、电测量总相宜——两月两篇顶刊,超精准全开放强磁场低温光学研究平台再露锋芒
    一、单层激子缘体的证据(Nature Physics)众所周知拓扑性和关联性之间的相互作用可以产生各种各样的量子相,其中许多原理仍有待探索。近的进展表明,单分子层WTe2在不同量子相之间具有高度的可调性,这一特点表明WTe2是一种很有前途的材料。这种二维晶体的基态可以通过静电调谐从量子自旋霍尔缘态转化为超导态。然而,关于量子自旋霍尔缘态的带隙打开机制仍不明确。近日,美国普林斯顿大学Ali Yazdani和 Sanfeng Wu(共同通讯作者)等报道了量子自旋霍尔缘体也是激子缘体的证据,它是由电子空穴束缚态(即激子)的自发形成引起的。文章于2021年12月发表于Nature Physics。原文图2,单层WTe2中电荷中性的缘状态相关测量 文章中作者通过巧妙的实验设计,结合电输运测量和隧穿谱测量,揭示了在样品电荷中性点存在一种本征缘状态,并证实了这种电荷中性缘态的相关性质。作者提供的证据证明样品不是能带缘体或局域缘体,并支持了在激子缘体相的存在。这些观测结果为理解具有非平凡拓扑的相关缘体奠定了基础,并确定了单层WTe2是基态激子量子相材料,为以后的应用提供了广阔的前景。原文图4,隧穿光谱揭示的关联特征和金属-缘体跃迁在本工作中作者使用Quantum Design生产的完全无液氦综合物性测量系统PPMS DynaCool 和超全开放强磁场低温光学研究平台-OptiCool进行了电运输和vdW隧穿的相关测量。OptiCool在2018年面世以来作为新型的强磁场低温光学研究平台受到了很多好评,并获得了当年的R&D100大奖。OptiCool的多种电学通道非常方便用户进行电学测量和栅压调控实验。OptiCool样品台直流通道(左)与腔体直流接口(右)OptiCool样品台交流通道(左)与腔体交流接口(右) 二、扭曲二维材料磁性体系中的磁畴和莫尔磁性的直接可视化(Science)扭曲非磁性二维材料形成的莫尔超晶格是研究奇异相关态和拓扑态的高度可调控系统。近些年来在旋转石墨烯等多种二维材料中都观察到了很多奇异的性质。在该工作中,来自华盛顿大学的徐晓栋教授课题组报道了在小角度扭曲的二维CrI3中出现的磁性纹理。原文图1,层堆叠依赖的磁性和扭曲双层CrI3的磁光测量作者利用基于NV色心的量子磁强计直接可视化测量了纳米尺度的磁畴和周期图案,这是莫尔磁性的典型特征。该篇文章中利用MOKE和RMCD对样品的磁性进行了精细的测量。研究表明,在扭曲的双分子层CrI3中反铁磁(AFM)和铁磁(FM)域共存,具有类似无序的空间模式。在扭曲三层CrI3中具有周期性图案的AFM和FM畴,这与计算得到的CrI3 莫尔超晶格中层间交换相互作用产生的空间磁结构相一致。该工作的研究结果表明莫尔磁性超晶格可以作为探索纳米磁性的研究平台。原文图3,双三层扭曲CrI3的磁光和NV磁强计扫描测量图该研究工作中对扭曲CrI3的MOKE和RMCD测量中使用了基于OptiCool系统的低温磁光测量系统。OptiCool具有多个窗口,超低震动,1.7K-350K超大控温区间等诸多优点可以满足各种高精度的低温强磁场光学测量。为了进一步满足用户的大数值孔径测量需求,OptiCool先后开发出了近工作距离窗口和集成物镜方案,可以满足各种用户的需求。OptiCool近工作距离窗口(左)与外部物镜(右)安装示意图内部集成室温物镜(左)与集成低温物镜(右)定制化方案示意图 三、OptiCool设备简介OptiCool是Quantum Design于2018年2月新推出的超全开放强磁场低温光学研究平台,创新特的设计方案确保样品可以处于光路的关键位置。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达±7T的磁场。多达7个侧面窗口、1个部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。OptiCool是全干式系统,启动和运行只需少量氦气。全自动软件控制实现一键变温、一键变场、部窗口90°光路张角让测量更便捷;控温技术让控温更智能;新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验无限可能。OptiCool技术特点:☛ 全干式系统:完全无液氦系统,脉管制冷机。☛ 8个光学窗口:7个侧面窗口,1个部窗口;可升底部窗口☛ 超大磁场:±7T☛ 超低震动:10 nm 峰-峰值☛ 超大空间:Φ89 mm×84 mm☛ 控温:1.7K~350K全温区控温☛ 新型磁体:同时满足超大磁场均匀区、大数值孔径的要求。☛ 近工作距离:可选3 mm工作距离窗口或集成镜头方案 【参考文献】1、Jia et al., Nat. Phys (2021) https://doi.org/10.1038/s41567-021-01422-w2、Song et al., Science 374, 1140–1144 (2021) 26 November 2021
  • 大连化物所等研发新进展!利用红外装置揭示氢键费米共振机制
    中国科学院大连化学物理研究所分子反应动力学国家重点实验室研究员江凌团队、副研究员张兆军和院士张东辉团队,与台湾原子与分子科学研究所研究员郭哲来团队、香港中文大学教授刘志锋团队合作,利用自主研制的基于大连相干光源的中性团簇红外光谱实验装置,发现水-胺团簇中氢键的异常大幅度波动现象,揭示出多种分子振动耦合产生剧烈费米共振的氢键作用的本质。氢键是雾霾颗粒物、分子自组装、生物体系等主要分子间作用力。氢原子质量轻,本质上是波动的,这对确定结构、性能和反应机理等方面起着关键作用。由于三甲胺分子的氮原子孤对电子可以与水和甲醇等溶剂分子形成较强的氢键,三甲胺团簇的研究备受关注。1962年,D. J. Millen等人使用傅里叶红外光谱仪测得了三甲胺-甲醇的红外光谱,发现了一个较宽的OH伸缩振动峰,但由于该红外吸收光谱的分辨率低,溶剂分子在氢键波动中起着什么样的作用、什么样的分子运动引发了如此之大的氢键波动等关键科学问题仍没有答案。研究人员利用自主研制的基于大连相干光源的中性团簇红外光谱实验装置,测得了中性三甲胺-甲醇团簇和三甲胺-水团簇的高分辨红外光谱,在三甲胺-甲醇红外光谱中,原红外吸收光谱中较宽的OH伸缩振动峰劈裂为2个峰。在三甲胺-水团簇红外光谱中发现至少6组氢键结合的OH伸缩振动峰。这些对比表明,三甲胺-水团簇的氢键波动比三甲胺-甲醇更剧烈。研究团队利用自行发展的全维势能面动力学理论方法计算了三甲胺-水团簇的红外光谱,利用非谐性量子化学理论方法计算了三甲胺-甲醇团簇的红外光谱,利用从头算分子动力学理论方法分析了这两种团簇的动力学特征。研究表明,在三甲胺-水团簇中,氢键结合的OH伸缩振动与水分子的多种运动模式(平动、摇摆和弯曲)发生了强烈的费米共振,从而产生了异常复杂的多组OH伸缩振动谱峰。当水分子的氢原子被甲基取代后,由于甲基的空间位阻比氢原子大,导致甲醇绕着氢键的旋转速度比水分子慢,大幅度降低了OH伸缩振动与甲醇分子的费米共振程度,从而简化了OH伸缩振动谱峰。该工作对理解氢键化合物的红外光谱和化学反应机理具有重要意义。相关研究成果发表在The Journal of Physical Chemistry Letters上。研究工作得到国家自然科学基金委员会“动态化学前沿研究”科学中心项目、“团簇构造、功能及多级演化”重大研究计划重点支持项目,中科院战略性先导科技专项“能源化学转化的本质与调控”(B类),大连化物所大连相干光源专项基金等的资助。
  • 2015全国生物医学农林电镜技术研讨会报告集锦
    仪器信息网讯 &ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 日前在浙江大学举行。本次会议由中国电子显微镜学会生物医学电镜专业委员会和农林电镜专业委员会主办,浙江大学农生环测试中心与德国徕卡公司联合承办。  本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。报告人:北京大学生命科学学院 贺新强教授  冷冻蚀刻(Freezeetching)技术是从50年代开始发展起来的一种将冷冻断裂和复型相结合的透射电镜样品制备技术。样品经冷冻断裂蚀刻后,能够观察到不同劈裂面的微细结构,进而可研究细胞内的膜性结构及内含物结构。北京大学贺新强教授在报告中介绍了课题组利用冷冻蚀刻技术在植物细胞壁研究中的一些应用。利用该技术可以清晰地观察到细胞壁的空间立体结构。报告人:北京大学第一医院 王素霞教授  电镜诊断学或超微病理学是通过电子显微镜技术,观察组织细胞的超微结构及其病理变化,对疾病做出病理诊断。王素霞教授从超微病理学的特点、超微病理诊断的局限性及其诊断的临床应用,结合诊断电镜样本的处理、电镜超微病理图像研判等方面介绍了医学电镜病理诊断的技术要点与诊断原则。报告人:云南农科院植物病毒与种质资源研究所张仲凯教授  张仲凯教授在报告中从负染色观察的优势、负染色制样方法、与其他实验结果的比较验证、Tospovirus不同电镜制样方法的超微结构比较等几个方面介绍了植物病毒样品负染色制样及电镜观察分析。报告人:华东师范大学 倪兵教授  倪兵教授从样品的收集、制样工具的准备、样品制备技术等方面介绍了原生动物纤毛虫的形态学研究技术。据介绍,由于传统的制样过程时间长,而且样品经化学固定-脱水-干燥等步骤,会产生许多假象,如坍塌、细胞收缩等,而冷冻制样技术则能避免这些问题。在报告中,倪兵详细介绍了冷冻扫描电镜技术在原生动物形态观察中的应用。报告人:浙江大学生物技术研究所 胡东维教授  胡东维教授通过包埋剂的选择、探针的选择、低温包埋的程序、标记方法、免疫金标记的对照方法、标记结果的判断等几个方面,详细介绍了超薄切片包埋后免疫金标记技术的具体制样步骤和注意要点。报告人:第二军医大学 杨勇骥教授  杨勇骥教授从成功进行胶体金标记的重要关键点、如何设计包埋前免疫标记程序、包埋前免疫标记技术的优缺点等几个方面,介绍了生物样品包埋前免疫金标记技术。报告人:福建中医药大学 陈文列教授  透射电镜常规制样周期长,是影响电镜技术在临床病理诊断中应用的制约因素之一。微波可用含水试剂和有极性试剂的作用,缩短样品制备的周期。陈文列教授从微波固定仪器的原理、微波炉的选择,在制样过程中影响微波作用的因素、实验注意事项,以及电镜样品微波聚合方法、微波电子染色、微波快速脱钙等应用实例详细介绍了微波技术在透射电镜样品制备方面的应用。  另外,在本次研讨会上关于电镜技术具体应用实例的报告有:中科院遗传所的梁晶晶介绍的《秀丽线虫的透射电镜制样与观察》 北京大学生命科学学院的单春燕博士介绍的《泛素化修饰调节APP在体内-溶酶体系统的膜泡分选》 清华大学李英博士介绍的《生物样品光镜-电镜联用技术应用》等报告。  关于电镜制样技术的相关报告有:北京大学生命科学学院仪器中心王国鹏博士的《高压冷冻制样技术探索》 北京大学生命科学学院仪器中心胡迎春博士的《基于超薄连续切片的TEM三维重构技术》等报告。
  • attocube低温强磁场CFM助力世界十大科技进展
    1月19日,由两院院士评选的2015年度中国/十大科技进展在北京揭晓。中国科学技术大学合肥微尺度物质科学实验室潘建伟、陆朝阳等完成的“多自由度量子隐形传态”研究成果名列2015年度中国十大科技进展之。该成果同时也被英国物理学会(Institute of Physics)新闻网站《物理》(Physics World)评为2015年度国际物理学领域的十项重大突破之榜(“Breakthrough of the Year”)。陆朝阳(左)和潘建伟(右)获得2015年度国际物理学领域重大突破(图片转自Physics World) 2015年2月,《自然》杂志以封面标题的形式发表了中国科大团队在国际上次实现多自由度量子体系的隐形传态这一研究成果。这项工作打破了国际学术界从1997年以来只能传输基本粒子单一自由度的局限,为发展可扩展的量子计算和量子网络技术奠定了坚实的基础。国际量子光学专家Wolfgang Tittel教授在同期《自然》撰文评论:“该实验实现为理解和展示量子物理的一个深远和令人费解的预言迈出了重要的一步,并可以作为未来量子网络的一个强大的基本单元”。陆朝阳在attoCFM安装现场 利用德国attocube公司的低温强磁场无液氦CFM系统,科学家次揭示了由二维单层材料形成的单量子发射器行为和特点,偏振实验和磁光研究表明该类单量子发射器零场劈裂能0.71meV,激子g因子为8.7,这些结果为开发二维半导体光量子器件指明新的研究思路和方向。(图片转自Nature NanoTechnology 10,497-502(2015))相关产品无液氦低温强磁场共聚焦显微镜 - attoCFM系统:http://www.qd-china.com/products2.aspx?id=270低温强磁场原子力/磁力/扫描霍尔显微镜 :http://www.qd-china.com/products2.aspx?id=271低温强磁场纳米精度位移台:http://www.qd-china.com/products2.aspx?id=272 关于Quantum Design Quantum Design是的科研设备制造商和仪器分销商,于1982年创建于美国加州圣迭戈。公司生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为公认的测量平台,广泛的分布于上几乎所有材料、物理、化学、纳米等研究领域的实验室。2007年,Quantum Design并购了欧洲大的仪器分销商LOT公司,现已成为著名的科学仪器领域的跨国公司。目前公司拥有分布于英国、美国、法国、德国、巴西、印度,日本和中国等地区的数十个分公司和办事处,业务遍及全球一百多个和地区。中国地区是Quantum Design公司活跃的市场,公司在北京、上海和广州设有分公司或办事处。几十年来,公司与中国的科研和教育领域的合作有成效,为中国科研的进步提供了先进的设备以及高质量的服务。
  • 薄膜拉力机可以使用裤型撕裂测试包装材料的撕裂强度吗
    薄膜拉力机是一种多功能的材料测试设备,它不仅能够进行拉伸、压缩、弯曲等测试,还可以评估材料的撕裂强度。对于包装材料而言,撕裂强度是一个重要的性能指标,因为它直接关系到包装的完整性和保护能力。使用薄膜拉力机进行裤型撕裂测试是一种常见的方法。裤型撕裂测试的原理裤型撕裂测试是一种模拟实际使用中材料可能遇到的撕裂情况的测试方法。在这种测试中,样品被裁成特定的“裤型”形状,即一个中心切口,两侧有直线或曲线的边缘。测试时,设备会对样品施加一个逐渐增加的力,直到样品沿切口完全撕裂。薄膜拉力机进行裤型撕裂测试的优势精确性:薄膜拉力机配备高精度传感器,能够准确测量撕裂过程中的力值变化。重复性:自动化的测试过程减少了人为因素的影响,确保测试结果的一致性和可重复性。多功能性:除了撕裂测试,薄膜拉力机还能进行其他多种力学性能测试,如拉伸强度、延伸率等。操作简便:用户界面友好,操作简单,易于学习和操作。数据管理:测试结果可以自动记录和分析,便于数据管理和报告生成。测试步骤样品准备:根据标准要求,将包装材料裁切成裤型样品。设备设置:在薄膜拉力机上设置测试参数,包括测试速度、力值范围等。样品装夹:将裤型样品的两端分别固定在拉力机的上下夹具中。开始测试:启动测试程序,设备会自动施加力量,模拟撕裂过程。数据记录:记录撕裂过程中的最大力值,即撕裂强度。结果分析:分析测试结果,评估包装材料的撕裂性能是否符合标准。应用领域薄膜拉力机进行裤型撕裂测试广泛应用于各种包装材料的测试,包括但不限于:塑料薄膜复合膜纸张和纸板纺织品非织造布结论薄膜拉力机是一种高效、准确的测试工具,能够全面评估包装材料的撕裂强度。通过裤型撕裂测试,制造商可以确保包装材料具备足够的抗撕裂能力,从而提高产品的保护性能和市场竞争力。此外,薄膜拉力机的多功能性也使其成为材料科学研究和质量控制领域的重要设备。
  • 岩土介质温度-渗流-应力-化学耦合多功能试验仪研制
    p style="line-height: 1.75em "  岩土介质温度-渗流-应力-化学耦合多功能试验仪是中国科学院武汉岩土力学研究所自主研制和开发的多功能试验仪。该所科研人员自2013年起经过反复试验和调试,2014年获得研制成功,并取得多项发明专利,已配合完成多项国家级科研课题及设计院委托科研项目,各试验结果已发表在国际学术期刊上。该实验系统具有优异的技术性能,达到了国际同类岩石力学试验仪器的主流水平,并且具有较高的性价比,得到了国内同行的认可,已推广应用到中国石油大学(华东)、湖北工业大学、山东科技大学、河海大学、南昌大学、中国矿业大学(徐州)等多家高等院校。/pp style="line-height: 1.75em "  岩土介质温度-渗流-应力-化学耦合多功能试验仪可进行温度-应力-渗流-化学腐蚀(THMC)全耦合的岩石三轴流变试验,也可进行THMC全耦合或局部耦合条件下的岩石常规三轴力学试验。该试验仪具有以下特点:1、多物理场耦合:温度、应力、渗流和化学腐蚀全耦合或局部耦合 2、多功能:大尺寸单轴压缩试验、变角剪切试验、巴西劈裂试验 3、高精度闭环伺服电机控制:耗能低,静音,适合长时间试验 4、结构简单:适合试验操作 5、大吨位高刚度反力框架。/pp style="line-height: 1.75em "  该试验仪由围压室、大吨位偏压加载框架、高精度围压伺服控制模块、高精度偏压伺服模块、高精度孔压伺服控制模块、变形测量模块、温控模块和油路旁路过滤模块等10部分组成。/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/b0292a17-412b-4e9e-94da-8903de45742e.jpg" title="W020160421397808361989.jpg"//pp style="line-height: 1.75em text-align: center "  中国石油大学(华东)试验仪照片/pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201604/insimg/a49162de-e660-4dc7-b8c7-ff029f7b61d2.jpg" title="W020160421397808373820.jpg"//pp style="line-height: 1.75em text-align: center "  采集控制系统/ppbr//p
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 中科大在二维材料固态自旋色心研究中取得新进展
    中国科学院院士、中国科学技术大学教授郭光灿团队在二维范德瓦尔斯材料固态自旋色心领域取得重要进展。该团队李传锋、唐建顺研究组与匈牙利魏格纳物理研究中心教授AdamGali等合作,实验研究并理论解释了六方氮化硼(hexagonalboronnitride,hBN)中带负电硼空位(VB-)色心受磁场调制的自旋相干动力学行为,揭示了hBN中VB-色心电子自旋与核自旋之间的相干耦合和弛豫机制,这对发展基于二维范德瓦尔斯材料的相干自旋系统及低维量子器件具有重要意义。9月29日,相关研究成果发表在《自然-通讯》(Nature Communications)上。 近年来,研究发现,宽禁带范德瓦尔斯材料hBN是室温自旋色心的优秀宿主。范德瓦尔斯材料通过简单的机械剥离便可制备为原子厚度的二维结构,且可与多种微纳结构相耦合,在低维量子器件制备和近场传感探测等方面比三维体材料具有天然优势,因而hBN中的自旋色心成为固态自旋色心领域的研究热点。目前,研究最广泛的hBN自旋色心为VB-色心,且集中于VB-的电子自旋,而对VB-电子自旋周围的核自旋缺乏深入研究及观测。由于色心周围的核自旋是固态自旋维度扩展的主要途径之一,且是造成固态自旋弛豫的主要因素。因此,VB-色心的电子自旋与周围核自旋耦合形成的多自旋体系的相干动力学研究,对推动基于范德瓦尔斯材料的固态量子自旋技术至关重要。本工作中,研究组使用中子辐照技术在hBN中制备出高浓度的VB-色心样品,并利用ODMR(optical probing magnetic resonance)技术探测VB-自旋能级结构,观测到VB-色心中电子自旋与3个最近邻14N核自旋相互作用产生的超精细劈裂以及14N核自旋偏振随磁场增强的极化现象。同时,研究组对VB-进行多项室温相干操控和探测,包括Rabi振荡、自旋回波、Ramsey干涉探测等。探测结果表明,VB-自旋受到明显的核自旋相干调制,且核自旋调制效应会随磁场增加而变强。为进一步揭示相关现象的内在动力学机制,研究组理论构建了VB-电子与最近邻14N核自旋组成的4自旋系统,并对该4自旋系统的多种动力学性质进行无参数(parameterfree)的理论模拟。结合实验与模拟结果,研究组发现VB-色心中存在较强的电子与核自旋相互作用,同时最近邻14N核自旋极化也受到显著的驱动微波动态调制。此外,研究组还在理论模拟中引入了包含127个14N和11B的多体核自旋环境,并模拟了与之相互作用的开放4自旋VB-系统的动力学行为。通过对照实验和理论结果,研究组发现11B核自旋环境主导了VB-色心的自旋弛豫,而磁场能够减弱核自旋环境的弛豫效应并增强VB-电子与最近邻14N的相干耦合。(a)VB-色心的原子结构示意图;(b)VB-色心的电子自旋能级结构;(c)不同磁场下VB-色心的ODMR信号;(d)不同磁场下VB-色心的Rabi振荡信号。该研究从实验和理论上揭示了VB-色心中存在显著的电子和最近邻14N核自旋相干耦合,以及多体11B核自旋环境导致的VB-色心自旋弛豫。该工作为将VB-相干操控自旋拓展至核自旋以及发展相关低维固态量子系统奠定了基础。研究工作得到科技部、国家自然科学基金、中科院和合肥国家实验室等的支持。
  • 镶嵌的样品开裂,难道是金相镶嵌机惹的祸?
    使用热压金相镶嵌机制备样品,有没有遇到过开裂缺陷?而且还不止一种,比如中心开裂、圆周开裂和胀裂的情形......,遇到这种情形,是不是会生起一个疑问,镶嵌的样品开裂,难道是金相镶嵌机惹的祸?在没有搞清原因之前,先别让金相镶嵌机背锅,一起探讨一下到底怎么回事!可脉检测的应用工程师,对常见的几种镶嵌开裂缺陷产生的原因及解决方法给出了建议,小编归纳整理如下:● 中心开裂产生原因:是由于试样尺寸相对于定型腔太大,并有尖角所致,将其放于定型腔中时,空间过于局促和狭小,导致定型时出现开裂。解决方法:适当缩小试样的尺寸,使之相对定型腔留有更充分的镶嵌料添加空间,有效避免镶嵌胀裂缺陷。如果,试样尺寸的技术要求不能缩小的情况下,条件具备的话,可以考虑增加定型腔的尺寸,比如更换大尺寸镶嵌筒等。● 圆周开裂产生原因:可能是由于镶嵌料中混入了潮气,亦可能是在镶嵌定型过程中混入了空气所致。解决方法:采取预热镶嵌粉或将镶嵌粉预成型处理,然后再进行镶嵌。在镶嵌料呈液态时,瞬间释放压力。这样可有效避免圆周开裂缺陷产生。● 胀裂产生原因:是由于镶嵌时固化时间过短,或压力不足而产生的。解决方法:适当延长固化时间,从镶嵌料的液态到固化成型期间,适当增加压力,这些措施可有效避免胀裂缺陷产生。再遇到镶嵌样品开裂问题,根据小编整理的这几种情形,对照分析原因,采取适当方法来解决试试。镶嵌的样品开裂,真不一定是金相镶嵌机惹的祸!如果以上几种方法还不能解决您的类似问题,可脉检测应用工程师可以帮助您,您随时可以联系咨询,真不收钱,免费的哈!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制