当前位置: 仪器信息网 > 行业主题 > >

激光投线仪成像原理

仪器信息网激光投线仪成像原理专题为您提供2024年最新激光投线仪成像原理价格报价、厂家品牌的相关信息, 包括激光投线仪成像原理参数、型号等,不管是国产,还是进口品牌的激光投线仪成像原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光投线仪成像原理相关的耗材配件、试剂标物,还有激光投线仪成像原理相关的最新资讯、资料,以及激光投线仪成像原理相关的解决方案。

激光投线仪成像原理相关的资讯

  • 【激光成像】AM:从蓝色至近红外的碳点激光用于彩色无散斑激光成像与动态全息显示
    背景介绍随着可溶液加工激光增益材料的不断发展与改进,该类型的激光器在生物医学治疗、柔性可穿戴设备、通信及军事设备等领域的应用也在不断突破。然而,增益材料的毒性、成本和稳定性问题日益显著,这些问题是增益材料在微/纳激光领域可持续发展的主要障碍。因此,寻找低毒、低成本、高稳定性的激光材料成为该领域内的重要的任务。研究出发点碳点(CDs)作为一种环境友好、稳定性优良、制备成本低及荧光性能优异的碳基纳米材料,近年来引起了人们广泛的研究兴趣。基于CDs激光增益介质的研究不断被报道,并且逐渐走向实际应用。虽然这些早期的研究促进了CDs激光的发展,并证明了CDs是一种优异的激光增益介质。然而,跨度广的全彩色激光,尤其是近红外激光器,一直难以实现。考虑到近红外激光器在空间光通信、激光雷达、夜视,特别是临床成像和治疗等方面的广阔应用前景,开发高性能的近红外CDs激光具有重要意义。此外,CDs激光缺乏系统性的研究,这些研究可以指导CD激光材料的开发,并有助于推动其实际应用的发展。全文速览在此背景下,郑州大学卢思宇课题组合成了具有明亮蓝色、绿色、黄色、红色、深红色和近红外荧光(分别标记为B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs)的全色CDs(FC-CDs)的制备,其PL峰值波长范围为431至714 nm。CDs的低含量sp3杂化碳、高PLQY和短荧光寿命是影响其激光性能的重要因素。结果表明,这些FC-CDs的半高宽明显较窄,在44 ~ 76 nm之间;同时,辐射跃迁速率KR为0.54 ~ 1.74 × 108 s−1,与普通有机激光材料相当,表明FC-CDs具有良好的增益潜力。激光泵浦实验证实了这一点,成功实现了从467.3到705.1 nm宽范围(238 nm)可调的CDs激光出射,覆盖了国家电视标准委员会(NTSC)色域面积的140%。结果表明,CDs具有较高的Q因子、可观的增益系数和较好的稳定性。最后,利用这些FC-CDs激光作为光源,实现了高质量的彩色无散斑激光成像和动态全息显示。此项工作不仅扩大了CDs激光的发射范围,而且为实现多色激光显示和成像提供了有益的参考,是推动CDs激光发展和实际应用的重要一步。文章以“Carbon Dots with Blue-to-Near-Infrared Lasing for Colorful Speckle-Free Laser Imaging and Dynamical Holographic Display”为题发表在Advanced Materials上,第一作者为张永强博士。图文解析图1a-f为其透射电子显微镜照片,显示出B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs为球形或准球形颗粒,平均粒径分别为3.09、3.24、3.76、3.25、4.25和5.98 nm。高分辨率透射电镜(HRTEM)显示,所有CDs的面内晶格间距为0.21 nm,这可归因于石墨烯的(100)面。值得注意的是,NIR-CDs是由单分散CD聚集而成的。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的X射线衍射(XRD)峰分别位于20°、22°、22.8°、27°、23°和23.5°。这些值近似于石墨(002)平面25°和层间距(0.34 nm)处的衍射峰。通常,对于脂肪族前驱体,制备的CDs的XRD峰在21°左右,晶格间距比0.34 nm更宽这是因为脂肪族前体在炭化过程中更容易将含氧和含氮杂原子基团引入共轭面,从而扩大了面内间距。R-CDs在27°处有一个清晰的尖锐衍射峰,表明两步溶剂热处理产生了良好的结晶度。此外,NIR-CDs在31.7°和45.5°处有两个尖峰,这两个峰属于NIR-CDs中残留的离子液体(IL),IL具有聚集单分散CDs的功能,有助于形成聚集的颗粒。傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)进一步收集了的结构成分信息(图1h和i)。光谱在3425和3230 cm−1附近显示出广泛的吸收特征,证实了-OH和-NH2的存在。1710和1630 cm−1附近的强信号与C=O拉伸振动有关,1570、1386、1215和1145 cm−1处的峰是由C=C、C-N和C-O- C拉伸振动引起的。这些结果表明,所有的FC-CDs都是由sp2/sp3杂化芳香结构形成的,这些杂化芳香结构在表面被含有杂原子(O和N)的极性基团修饰,这些基团使CDs在极性溶剂中具有良好的溶解性。图1中完整的XPS扫描显示,FC-CDs主要含有碳、氮和氧。高分辨率C 1s在C=C、C-N/C-O/(C-S)和C=O分别为284.6、286.6和288.3 eV处呈现出三个峰。N 1s分别在399.0、399.9和401.4 eV处显示吡啶、吡啶和石墨的N掺杂。O 1s光谱中C=O和C-O基团的峰分别位于531.4 eV和533 eV左右。这些XPS结果与FTIR分析一致。图1 形貌与化学成分表征。(a)B-CDs,(b)G-CDs,(c)Y-CDs, (d)R-CDs,(e)DR-CDs和(f)NIR-CDs;右上方的插图是相应的粒径分布,右下方的插图是单个颗粒的高分辨率TEM(HRTEM)图像。(g)XRD图谱,(h)FTIR谱,(i)XPS全扫描谱图。图2a-f显示了紫外照射下FC-CDs的亮蓝色、绿色、黄色、红色、深红色和近红外荧光,其发射峰分别位于431、526、572、605、665和714 nm。这些PL谱都表现出独立于激发波长的行为。它们的PLQY分别为64.9%、91.2%、41.2%、51.6%、28.3%和37.9%。此外,对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,其PL光谱的半高全宽(FWHM)分别为0.46、0.19、0.18、0.24、0.20和0.14 eV。XPS分析sp3杂化碳含量分别为17.09%、9.01%、11.78%、16.78%、6.26%和11.41%。Yan等人的第一性原理计算表明,C-N、C-O和C-S基团可以导致局域化电子态,并在n -π*间隙中产生许多新的能级。这些sp3杂化碳相关激发能级的密度与C-N、C-O和C-S基团的含量呈正相关,决定了PL光谱的FWHMs。因此,CDs的PL光谱FWHMs可以通过sp3杂化碳的含量来控制。这些CDs的紫外-可见吸收峰存在于高、低两个不同的能带区,分别归因于芳香sp2结构域C=C的π -π*跃迁和CDs表面与C=O相关的不同表面态的n -π*跃迁。图2g显示了FC-CDs溶液的PL光谱的CIE坐标覆盖了NTSC标准色域面积的97.2%,意味着FC-CDs在显示中的具有良好的应用潜力。FC-CDs的时间分辨PL(TRPL)谱显示其荧光寿命分别为12.09、5.24、3.60、3.87、2.43和2.44 ns(图2h)。这些高PLQY、窄发射带和快速的PL衰减寿命的特性都有利于受激辐射(SE)。为了评估CDs的激光增益能力,结合公式(1)和(2)计算了ASE的相关参数。ASE阈值与爱因斯坦系数B和SE截面(σem)成反比:KR = φ / τ, (1) σem(λ)= λ4g(λ)/ 8πn2cτ, (2)B ∝ (c3/8πhν03)KR, (3)其中φ为PLQY,τ为平均荧光寿命,λ为发射波长,n为折射率,c为光速,g(λ)是自发辐射的线性函数,表示为g(λ)dλ = φ,h 为普朗克常数,ν0 为光频率,c 为光速。因此,KR值分别为0.54、1.74、1.14、1.33、1.16和1.55 × 108 s−1(图2i)。计算得到的最大的σem分别为1.46、16.59、13.38、15.45、19.51和38.66 × 10−17 cm2(图2i)。这些值与普通有机激光材料的值相似,表明这些CDs具有优良的增益潜力。基于上述分析,我们认为实现CDs激光有两个重要的因素。首先,需要集中的激发态能级来收集大量的具有相同能量的激发态电子,这有利于粒子数反转。其次,处于激发态能级的电子需要在高KR下跃迁回基态,这样统一的快速过程有利于光放大。这两个因素都可以通过精准的合成来控制:通过减少CDs中sp3杂化碳的含量来获得集中的激发能级,通过增加CDs的PLQY同时降低荧光寿命来获得高KR。 图2 光学表征。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs的吸收光谱和PL发射光谱,插图为对应CDs溶液在紫外灯照射下的光学图片,,线标签表示激发波长,单位为nm。(g)CDs发光光谱的CIE色坐标。(h)FC-CDs的TRPL光谱和(i)KR和最大σem。采用激光泵浦对FC-CDs的激光性能进行了表征。图3a、c、e、g、i和k分别为不同泵浦强度下的B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的发射光谱,显示出在467.3、533.5、577.4、616.3、653.5和705.1 nm处的出现尖峰;输出在可见光区域的跨度为238 nm(图3m)。在垂直于泵浦激光器和比色皿端面的方向上观察到这些FC-CDs产生的远场激光光斑(图4a、c、e、g、i和k的插图),表明激光发射的产生。随着泵浦影响的增加,FWHMs从大约60 nm急剧下降到~5 nm。这些发射光谱表明,泵浦强度的增加使发射强度急剧增加,峰的FWHM迅速窄化。为了明确发射峰强度、FWHMs和泵浦强度之间的量化关系,图3b、d、f、h、j和l绘制了相关曲线。它们都表现出明显的拐点:对于拐点以下的泵浦强度,FWHMs和输出发射强度的强度变化不明显,但在拐点以上增加泵浦能量,FWHMs急剧窄化,发射峰值强度急剧增加,其斜率与拐点以下大不相同。拐点表示激光的阈值,B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光阈值分别为319.84、35.89、53.31、11.10、43.90和17.88 mJ cm−2。考虑到这种激光泵浦中无反光镜体系,这些阈值也是合理的。为了评估FC-CDs的激光阈值水平,我们还使用相同的激光泵浦设置测量了罗丹明6G (Rh6G),其激光阈值为32 mJ cm−2,表明FC-CDs具有与常用激光染料相近的激光阈值。为了评估全色激光器的性能和商业化潜力,研究了其CIE颜色坐标、Q因子、增益系数(g)和稳定性。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的激光光谱对应的CIE色坐标分别为(0.131,0.047)、(0.178,0.822)、(0.494,0.505)、(0.684,0.315)、(0.728,0.272)和(0.735,0.265)(图3n)。所形成的封闭区域可以达到NTSC色域面积的140%,表明FC-CDs在全彩色激光显示中的巨大潜力。对于B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs,各自的激光线宽分别为0.17、0.13、0.11、0.21、0.21和0.34 nm,相应的Q因子(Q = λp/∆λp,其中λp为激光峰波长,∆λp为激光线宽)分别为2748.8、4103.8、5249.1、2920.5、3111.9和2073.8,这些值目前位于可溶液加工激光器中的前列。这些发现表明,我们的FC-CDs的激光器在激光质量上具有相当大的优势,这有利于其实际应用。光学增益系数量化了荧光材料实现激光发射的能力,可以用变条纹长度法来计算光学增益系数。激光输出强度可表示为:I(l) = (IsA/g) [exp(gl)-1], (4)其中I(l)为从样品边缘监测到的发射强度,IsA描述了与泵浦能量成正比的自发发射,在固定的泵浦能量下为常数,l为泵浦条纹的长度,g为净增益系数。图3p显示了在2倍激光阈值下,输出发射强度与激发条纹长度的关系。B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs的增益系数分别为8.9、24.7、17.1、16.0、13.5和21.5 cm−1。这些结果与大多数有机激光材料相当甚至更优,表明这些FC-CDs具有良好的增益特性。稳定性也是评估激光器时的一个重要考虑因素。在2倍激光阈值下连续泵浦FC-CDs激光,G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs连续工作7、7、5.5、5.5和4 h后,激光强度分别为初始激光强度的0.97、0.97、1、0.98、1.03倍(图4)。在CDs的2倍激光阈值下,将相近激光波长的常用商用激光染料与相应的CDs进行了稳定性比较。香豆素153 (541 nm)、Rh6G (568 nm)、RhB (610 nm)、Rh640 (652 nm)和尼罗蓝690 (695 nm)的激光强度分别下降到初始强度的0.60、0.84、0.89、0.76和0.73倍。对于B-CDs,激光阈值大约比其他CDs高一个数量级;在泵浦的0.6 h时,激光输出逐渐降至零。相比之下,香豆素461 (465 nm)的激光在0.2 h的操作时间内消失。与以往的文献相比,本工作对CDs激光进行了更全面的研究,该激光器具有从蓝色覆盖到近红外区域的宽可调激光范围、高增益系数、高Q因子、良好的辐射跃迁率、可观的增益系数和优异的稳定性。这些参数都处于CDs激光的前沿。图3 激光稳定性。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs与具有相近激光波长的商用有机激光染料在相应CDs的两倍激光阈值下的稳定性对比。FC-CDs的上述独特激光特性使其能够实现比传统热光源更亮的照明和色域更宽的全色激光成像。图4a-f分别为以B-CDs、G-CDs、Y-CDs、R-CDs、DR-CDs和NIR-CDs激光为光源对分辨率板(1951USAF)照射后的光学成像。利用互补金属氧化物半导体(CMOS)相机观测到的图像强度分布均匀、清晰、无散斑。作为对比,我们也使用商用激光器作为成像光源,使用波长为532 nm的连续波激光器和脉冲(7 ns, 10 Hz)激光器分别产生如图4g和h所示的光学图像,具有明显的激光散斑。从根本上说,这是由于图像质量受到激光高相干性带来的斑点的限制。我们进一步展示了这些CDs激光在全息显示中的潜在适用性,全息显示被认为是在3D空间中重建光学图像的最现实的方法之一,并且作为下一代显示平台为用户提供更深入的沉浸式体验而受到广泛关注。图4i为其实验设置。将CDs激光作为照明源照射到空间光调制器(SLM)上,在SLM上加载不同相位掩模(全息图)以重建全息显示所需的图案,在本例中为郑州大学的徽标。徽标分为三个部分,每个部分都可以使用B-CDs、G-CDs、和R-CDs出射的激光进行全息成像(图4j)。第一行是设计好相位掩模并输入SLM的原始图像。第二到第四行分别是CMOS相机在B-CDs、G-CDs、和R-CDs激光照射下拍摄的光学图像。第一列显示了会徽作为一个整体,并被分成几个部分。不同的组件可以简单地组合起来,以获得完整的彩色徽标(图4k)。这些静态图像具有高分辨率和高对比度,为了更接近实际应用,我们制作了一系列不同运动姿势的人物彩色全息图像,以获得彩色动态人物视频。图4l中的第一行给出了这些运动姿势的原始图片。第二至第四行分别显示了在B-CDs、G-CDs、和R-CDs激光照射下每个运动姿势不同部位的独立全息图像。然后将每个运动姿势的不同颜色部分合并到图41的第五行中。然后以每秒3帧的速度将从左到右依次输出,从而实现动态全息显示。虽然成像质量和显示方案还需改进,但我们的实验证明了未来基于CDs的激光成像的可行性。图4 基于FC-CDs激光的无散斑全彩色激光成像和彩色全息显示。(a)B-CDs、(b)G-CDs、(c)Y-CDs、(d)R-CDs、(e)DR-CDs和(f)NIR-CDs激光,以及(g)连续波激光器(532 nm)和(h)脉冲激光器(7 ns, 10 Hz,532 nm)的商用激光源下的1951USAF的光学图像,标尺均为100 μm。(i)以CDs激光为光源的全息显示器实验装置(S1、S2、A、P分别为狭缝1、狭缝2、衰减器和偏振器;L1-L4分别为焦距40、100、100、50 mm的镜头 圆柱透镜的焦距为100 mm)。(j)郑州大学校徽全息静态展示。(k)为(j)中部分成像合并后的彩色徽标。(l)运动角色的全息动态显示。全息显示器中的比例尺都是1 mm。总结与展望综上所述,在无反光镜体系的光泵浦中,FC-CDs实现了467.3、533.5、577.4、616.3、653.5和705.1 nm的波长可调谐随机激光发射,从蓝色到近红外区跨越238 nm,覆盖了NTSC色域的140%。sp3杂化碳的低含量在n -π*隙中引入了集中的激发态能级,从而实现了较窄的FWHMs和粒子数反转,高KR(高PLQY和小寿命)有利于光放大。这两个因素决定了FC-CDs的激光增益特性,在CDs激光阈值的2倍能量泵浦下,FC-CDs也表现出高Q因子、可观的增益系数和比普通商业有机染料更好的稳定性。最后,我们成功地演示了使用这些FC-CDs激光作为光源的彩色无散斑激光成像和高质量的动态全息显示。我们的研究结果扩展了CDs激光的波长范围,提供了对其激光性能的全面评估,并为全彩色激光成像和显示应用打开了大门,从而显著促进了可溶液加工的CDs基激光器的实际应用和发展。文献链接:https://doi.org/10.1002/adma.202302536
  • 激光粒度原理及应用
    p  粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。/pp  激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。/pp  strong激光粒度仪的光学结构/strong/pp  激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。/pp  strong激光粒度仪的原理/strong/pp  激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。/pp  米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。/pp  为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。/pp  strong激光粒度仪测试对象/strong/pp  1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。/pp  2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。/pp  3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。/pp  strong激光粒度仪的应用领域/strong/pp  1、高校材料/pp  2、化工等学院实验室/pp  3、大型企业实验室/pp  4、重点实验室/pp  5、研究机构/pp  文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115)/ppbr//p
  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style="text-indent: 2em "strong编者按:/strong如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。/pp style="text-indent: 2em text-align: center "strong激光粒度仪应用导论之原理篇/strong/pp style="text-indent: 2em "当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。/pp style="text-indent: 2em "首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。/pp style="text-indent: 2em "span style="color: rgb(0, 176, 240) "【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。/span/pp style="text-indent: 2em "麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。/pp style="text-indent: 2em "现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。/pp style="text-indent: 2em "世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title="图1:颗粒光散射示意图.jpg"//ppbr//pp style="text-indent: 0em text-align: center "颗粒光散射示意图/pp style="text-indent: 2em "激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。/pp style="text-indent: 2em "strong 编者结:/strong明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。/pp style="text-indent: 0em text-align: right "(作者:张福根)/p
  • 空军高精度激光成像雷达入选国家重大仪器专项(图)
    资料图:激光雷达成像图  资料图:激光雷达样机  近日,空军装备研究院某所领衔的高精度激光扫描设备研发获得科技部“国家重大科学仪器设备开发项目”立项批复,成为该国家级重大项目设立两年来空军唯一入选项目。  据了解,该项技术通过高速激光扫描测量的方法,可大面积、高分辨率地快速获取被测对象表面的高精度三维数据,是测量技术的一次里程碑式革命,对于实现军事工程和工业测量的精细化管理具有重大意义。  “军民融合协作科研、联合攻关是成功立项的重要原因。”该所所长、中国工程院院士陈志杰表示。  据了解,这次项目申报工作由陈志杰领衔,副所长李光伟作为技术负责人牵头整体工作,一方面充分发挥院士领衔专家团队的人才优势和核心技术优势,另一方面与技术支撑单位中国科学院某研究所、联合产业化单位某地方光电技术公司通力合作,把合作从技术层面的项目协作提升为战略层面的联合攻关,从阶段性配合提升为全程式融合,充分发挥各家优势互补的特点,在技术开发、工程化和产业化上实现无缝对接,科研成果一旦出炉,马上投入产业化生产,迅速转化为军事价值和社会效益。
  • 共同助力激光剥蚀技术发展——“激光剥蚀元素成像实验室”揭牌仪式暨空间多组学质谱技术研讨会
    2023年4月26日,中国科学院高能物理研究所测试中心与Teledyne Photon Machines公司的“激光剥蚀元素成像实验室”揭牌仪式在北京中国科学院高能物理研究所成功召开。合作实验室揭牌仪式“激光剥蚀元素成像实验室”立足于各自未来发展战略需求,双方希望通过合作,优势互补,共同推动激光剥蚀技术在中国的本土化应用。“激光剥蚀元素成像实验室”将开展新型超快速准分子激光剥蚀成像系统IRIDIA仪器联用电感耦合等离子体飞行时间质谱成像系统(LA-ICP-TOFMS)在生物、临床医学及其他新兴拓展应用领域方面的工作。IRIDIA超快速准分子激光剥蚀系统可以实现微米甚至亚微米尺度超高空间分辨率,配合低分散快速洗脱时间,可以实现组织-细胞-整体动物水平上原位快速进样,从而为研究各种元素在不同基质中的代谢、吸收、转运等生物临床研究提供更加直观可靠的分析手段。IRIDIA新型超快速准分子激光剥蚀成像系统中国科学院高能物理研究所董宇辉副所长和仪真分析技术总监朱丽敏为激光剥蚀元素成像实验室揭牌同时,中国科学院高能物理研究所测试中心与TOFWERK公司的合作实验室“TOFWERK icpTOF卓越分析测试中心”也成功揭牌。中国科学院高能物理研究所测试中心和TOFWERK合作实验室揭牌合作实验室合照(从左至右依次为:仪真分析朱丽敏博士、高能所董宇辉副所长、丰伟悦研究员、TOFWERK朱亮博士以及高能所王萌研究员)空间多组学质谱技术研讨会合作实验室揭牌仪式后,同期的 “空间多组学质谱技术研讨会”正式召开,仪真分析作为协办单位积极参与。此次研讨会采用线上线下并行的模式,邀请了国内外相关领域的专家学者和企业代表共同探讨空间多组学质谱技术在生物、临床医学、环境等领域中的应用前景和发展趋势,涵盖了空间多组学质谱技术的最新进展、多种成像技术原理与方法等方面的内容。线下会议合照 与会人员在会议间隙参观了激光剥蚀元素成像实验室Teledyne Photon Machines公司全球应用专家Ciprian Stremtan 博士在线分享了题为“Successful Elemental Bioimaging – Workflow Evolution”(元素生物成像成功的关键——工作流程演化),详细阐述了LA-ICP-MS技术的发展及趋势,尤其是分享了IRIDIA激光剥蚀系统可以和市场上不同品牌的ICP-MS及ICP-TOFMS联用,介绍其在生物、临床医药、地质分析尤其是超快成像技术的应用前景。Ciprian Stremtan 博士分享激光剥蚀成像技术的最新进展会议期间,仪真分析展台人流络绎不绝,深入交流了激光剥蚀技术在空间多组学研究中的推动作用,分享各类仪器的应用进展,探讨相应解决方案,现场反响热烈。 仪真分析展台一隅相关介绍中国科学院高能物理研究所是我国从事高能物理研究、先进加速器物理与技术研究及开发利用、先进射线技术与应用的综合性研究基地。其检测分析与测试平台以中国科学院高能物理研究所测试中心为依托。Teledyne Photon Machines公司多年来致力于为电感耦合等离子体质谱 (ICP-MS)、ICP-TOFMS等提供前处理解决方案,推进基于原位微区分析的激光剥蚀技术,并在全球范围内提供全系列激光剥蚀产品,包括纳秒激光剥蚀系统和飞秒激光剥蚀系统。上海仪真分析仪器有限公司(仪真分析)与Teledyne Photon Machines公司拥有多年的紧密合作关系。仪真分析成立于2005年,是一家具备研发、集成、生产、代理、销售和技术服务的仪器供应商,为临床生物、地质分析和环境监测等分析实验室提供样品前处理到分析测试全方位解决方案。技术团队由多位留学博士及硕士和专业培训的工程师组成,在上海设有研发试验和培训实验室。
  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 新型半导体激光器成功解决激光成像“光斑”问题
    美国耶鲁大学的科学家开发出一种新的半导体激光器,成功解决了长期困扰激光成像技术的&ldquo 光斑&rdquo 问题,有望显著提高下一代显微镜、激光投影仪、光刻录、全息摄影以及生物医学成像设备的成像质量。相关论文发表在1月19日出版的美国《国家科学院学报》上。  物理学家组织网1月20日报道称,全视场成像应用近几年来已经成为众多研究所关注的焦点,但光源问题却一直未能得到解决。这项由耶鲁大学多个实验室合作完成的项目成功破解了这一难题,为激光成像技术大范围的应用铺平了道路。  耶鲁大学物理学教授道格拉斯· 斯通说,这种混沌腔激光器是基础研究最终解决实际应用问题的一个典型范例。所有的基础性工作,都是由一个问题驱使的&mdash &mdash 如何让激光成像技术更好地在现实中获得应用。最终,在来自应用物理、电子学、生物医学工程以及放射诊断等多个学科的科学家努力下,这一问题得到了解决。  此前,科学家们发现激光在成像领域极具潜力。但&ldquo 光斑&rdquo 问题却一直困扰着人们:当传统激光器被用于成像时,由于高空间相干性,会产生大量随机的斑点或颗粒状的图案,严重影响成像效果。一种能够避免这种失真的方法是使用LED光源。但问题是,对高速成像而言,LED光源的亮度并不够。新开发出的电泵浦半导体激光器提供了一种不同的解决方案。它能发出十分强烈的光,但空间相干性却非常低。  论文作者、耶鲁大学应用物理学教授曹辉(音译)说,对于全视场成像,散斑对比度只有低于4%时才能达到可视要求。通过实验他们发现,普通激光器的散斑对比度高达50%,而新型激光器则只有3%。所以,新技术完全解决了全视场成像所面临的障碍。  论文合著者、放射诊断和生物医学助理教授迈克尔· 乔马说:&ldquo 激光斑点是目前将激光技术用于临床诊断最主要的障碍。开发这种无斑点激光器是一项极其有意义的工作,借助这一技术,未来我们将能开发出多种新的影像诊断方法。&rdquo
  • 激光差动共焦成像与检测仪器重大专项启动
    3月28日上午,国家重大科学仪器设备开发专项&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 项目2013年度工作会在北京理工大学召开。  科技部条财司孙增奇处长、工信部科技司王锐副调研员,杨柯巍主管、金国藩院士、李天初院士、周立伟院士、项目监理组和&ldquo 两组一委&rdquo (项目总体组、项目技术组和项目用户委员会)22位专家以及项目牵头承担单位北京理工大学机关及学院领导等共计40余人参加了会议。  项目总体组成员代表北京理工大学科研院高新部张瑜部长代表学校致欢迎辞,工业与信息化部王锐副调研员、科技部条财司孙增奇处长、项目技术专家组组长金国藩院士、项目用户委员会组长北京交通大学理学院院长冯其波教授、监理组组长北京工业大学科技处处长石照耀教授分别作了讲话。  项目技术专家组组长金国藩院士主持了进展汇报会议,项目负责人赵维谦教授向与会领导专家汇报了项目的总体工作情况及我校承担的研制任务的年度进展情况,清华大学张书练教授、中国科学院物理研究所刘玉龙研究员分别汇报了其承担的研制任务的进展情况。  汇报结束后,与会专家现场考察了我校光电学院赵维谦教授项目组的实验室。现场询问了项目组研发的激光差动共焦干涉元件参数测量仪器、激光差动共焦曲率半径及焦距测量仪器、激光径向偏振光差动共焦显微仪器和激光差动共焦拉曼光谱成像仪器的研究状况,观看了项目组研发的关键部件&mdash &mdash 回馈激光干涉仪、余气回收式高精度气体润滑直线运动系统、高精度气体润滑回转运动系统、高精度气体润滑调倾/调心工作台和高分辨力大承载气体润滑四维调整工作台等,与会专家对研究成果的创新性及研究进展给予了高度评价。  现场考察结束后,专家组对项目组进行了质询。会专家一致认为:国家重大科学仪器设备开发项目&ldquo 激光差动共焦扫描成像与检测仪器研发及其应用研究&rdquo 2013年度工作进展良好、实施效果显著,按计划全面完成了项目任务书所提出的研究工作,并希望项目组在后续的研究工作中,继续加强推进仪器的可靠性、产品化、软件、外观设计和知识产权保护等工作,提升仪器产品的竞争力。  最后,项目负责人赵维谦教授代表项目组对与会领导、专家的莅临指导表示感谢,并表示会高度重视专家的建议,在今后项目的研发过程中进一步增强仪器产品化设计意识。
  • 手持式LIBS激光诱导击穿光谱仪原理和不同领域中的应用
    激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,简称LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持LIBS光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱进行分析得到对应元素成分及含量。是一种快速、定性的分析手段。随着激光器以及光谱仪小型化技术的发展,轻便的手持式光谱仪成为现实。其优势在于能将精密的分析仪器带到生产的一线,主要用于铁基、铝基、铜基、镍基等金属合金材料的现场牌号鉴别及合金元素成分的快速鉴定。手持LIBS光谱仪能对生产过程进行高速,高效的监控,完善企业质量管理体系,提高生产效率,是工业生产过程中的一个不可或缺的环节。 手持式LIBS激光诱导击穿光谱仪,其工作原理是利用脉冲激光产生的等离子体烧蚀并激发样品中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行材料的识别、分类、定性以及定量分析。LIBS作为一种新的材料识别及定量分析技术,既可以用于实验室,也可以应用于工业现场的在线检测。在检测领域中,传统的原子吸收和发射光谱仍然占据主导地位,但其存在试剂消耗量大、检测元素受限,不能便携,难用于现场检测等缺点。由于LIBS技术具有快速直接分析,几乎不需要样品制备,可以检测几乎所有元素、同时分析多种元素,对样品表面风化、尘土层形成清洁,可实现逐层分析且可以检测几乎所有固态样品,远距离探测,适用于现场分析等,因而LIBS弥补了传统元素分析方法的不足,尤其在微小区域材料分析、镀层/薄膜分析、缺陷检测、珠宝鉴定、法医证据鉴定、粉末材料分析、合金分析等应用领域优势明显,同时,LIBS还可以广泛适用于石油勘探、水文和地质勘探、冶金和燃烧、制药、环境监测、科研、军事及国防、航空航天等不同领域的应用。
  • 上海光机所合成孔径激光成像雷达技术研究取得突破性进展
    中科院上海光机所空间激光通信及检验技术重点实验室在重大项目的支持下,自2008年开始合成孔径激光成像雷达技术的研究,目前已经取得阶段性突破进展。已实现实验室尺度缩小合成孔径激光成像雷达装置的二维目标的同时距离向和方位向的成像,实现了合成孔径激光雷达的光学、光电子学和计算机处理的全过程贯通。这是世界上第三个成功的实验报道。合成孔径激光成像雷达(也称光学SAR)是在远距离达到厘米量级成像分辨率的唯一光学手段,在空间领域有着重大应用前景。其特点包括:1. 激光主动成像,适合全天时使用,具有接近光学可见成像的高视觉性,成像速度快;2. 雷达应用范围广泛,适合于空间对地超分辨率观察,空间远程活动目标超分辨率成像等应用。美国已于2002年取得了合成孔径激光成像雷达的核心关键技术突破,实现了实验室尺度缩小装置的合成孔径激光二维成像,并在此基础上,2006年,由雷声公司和诺格公司分别研制成功机载合成孔径激光成像雷达样机,进行了多种野外试验,目前已向应用拓展。与美国实验采用的光纤光学结构不同,上海光机所实验系统采用了空间光学结构,虽然增加了实验难度,但将更具有实用化前景。同时,由于光学合成孔径成像雷达与微波合成孔径雷达在实施方法上的根本不同,无法直接移植微波雷达的概念和原理,这也使得光学合成孔径成像雷达的研究具有很高的挑战性。上海光机所空间激光通信及检验技术重点实验室在研究过程中,创造性地提出并解决了一系列的空间域光学科学问题,时间域光学科学问题和统计光学科学问题,也相应系统性地发展了总体设计、光学天线、接收/发射光电子系统和图像处理等关键技术,为实现实验室尺度缩小合成孔径激光成像雷达,以及未来的样机装置奠定了坚实基础。本项目成果目前在国内起着引领作用,项目的基础研究成果特别是空间域光学问题上的研究具有高度创新性,填补了国际研究的空白,并迅速得到了国际同行的肯定。
  • 大气探测激光雷达、宽幅成像光谱仪成功升空
    作者:张双虎 黄辛 来源:中国科学报北京时间4月16日2点16分,大气环境监测卫星在我国山西太原卫星发射中心成功发射。中国科学院上海光机所研制的大气探测激光雷达、中国科学院上海技物所研制的宽幅成像光谱仪随大气环境监测卫星成功升空。大气环境监测卫星由中国航天科技集团八院抓总研制,是国际首颗具备二氧化碳激光探测能力的卫星,将进一步提升我国大气环境综合监测、全球气候变化和农作物估产及农业灾害等应用能力,推进卫星遥感数据在生态环境、气象、农业农村等方面应用,有效解决各行业部门对外国遥感数据的依赖。上海光机所研制的大气探测激光雷达在国际上首次采用激光路径差分吸收方法,可全天时、高精度测量全球范围的二氧化碳浓度分布;首次采用碘分子吸收池激光高光谱分辨探测技术实现全球气溶胶垂直剖面分布的精确测量。激光雷达载荷在轨后获取的全球数据,将服务于国家“碳达峰”和“碳中和”双碳国家战略的温室气体二氧化碳浓度高精度监测,同时为全球气候气象研究提供高精度的二氧化碳浓度以及气溶胶、云垂直廓线分布数据。上海技物所研制的宽幅成像光谱仪具备2300公里宽幅可见至热红外波段21通道成像能力,可获取全球、全时段多光谱遥感数据,将有效提升大气气溶胶、细颗粒物、雾霾分布、近海岸带等大气环境的连续检测、预警与评估能力。面对新冠疫情带来的重重困难,中科院上海团队全力以赴、顽强拼搏、协同攻关,充分体现新时代国家战略科技力量的使命担当。
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!参考文献1、Hastings JW. Cell Physiology Source book 2012.2、Nguyen V H et al. Cancer Research, 2010, 70(1):18-23.3、 Nguyen V H et al. Nuclear Medicine & Molecular Imaging, 2016.4、 Dunlap P . ADVANCES IN BIOCHEMICAL ENGINEERING BIOTECHNOLOGY, 2014.5、Keyaerts Marleen et al. Trends in molecular medicine,2012,18(3).6、 Nathan K. Archer et al. Springer International Publishing, 2017.7、Doyle T C et al. Cellular Microbiology, 2004, 6(4):303-317.8、Avci P et al. Virulence.
  • 重大突破 | 国防科技大学实现反射层析激光雷达三维超分辨成像
    面对远距离小目标,常规探测手段往往只能对其定位,看到的目标只是一个点。而有些特殊需求下,需要掌握其面特征甚至体特征,实现运动目标认知,此时迫切需要发展超分辨成像手段。国防科技大学脉冲功率激光技术国家重点实验室主任胡以华教授团队,继2022年实现10千米距离上优于2厘米分辨率的国内外报道最高水平的反射层析激光雷达超分辨二维成像的基础上,近期实现了三维超分辨成像的重大突破。实现10千米距离2.0×2.0×3.5厘米分辨率的三维超分辨成像反射层析激光雷达实现二维成像的原理日趋成熟,国内外也开展了相关的实验研究,但是实现三维成像的原理和方法在国内外未见报道。团队创新性地提出了反射层析激光雷达三维成像技术架构,建立了激光探测的多角度多视场交叠取样、窄脉冲激光回波的高速高保真采集及图像重构融合处理方法,研制出反射层析激光雷达三维成像实验系统,在合肥紫蓬山地区开展了距离为10.38 km的外场实验,实现目标图像的三维超分辨重构。实验中,在山上(31°43′28″N, 116°59′55″E)的百米高实验塔上分别设置两类目标:1)高度75 cm、宽度30 cm的立体组合件,如图1 (a)所示;2)多块厚度1.7 cm、断面面积不同的块状体构成的从下到上间距9 cm到2 cm递减、面积渐小的60°倾斜角梯形立体分辨率测试靶,如图1 (b)所示。成像实验系统布置在该市华南城(31°46′20″N, 117°5′35″E)楼上,如图1 (c)所示。在多种实验环境和实验参数设置下,成功获得了如图2 (b)、图2 (d)所示的立体目标三维超分辨成像结果。图1 反射层析激光雷达三维成像实验实施图(a) 立体组合件;(b) 立体分辨率测试靶;(c) 反射层析激光雷达三维成像实验系统经第三方专家现场实测,在10.38 km距离上,环绕平面成像分辨率优于2 cm,环绕轴向分辨率优于3.5 cm。根据反射层析激光雷达成像的原理,只要激光脉冲回波信噪比足够,其三维成像分辨率与光学孔径、作用距离、激光发散角相对无关,因此,本实验为实现千千米超远距离微小目标的三维成像奠定了基础。该实验系统光学孔径为260 mm,相同孔径的光学成像系统衍射极限角约为5 μrad,对应10 km处常规光学成像的极限分辨率约为5 cm。本成果取得了超过同口径光学成像衍射极限的远距离小目标超分辨成像能力,其成像分辨率居激光成像领域国内外最优水平,特别是通过独创的技术手段和处理算法首次得到立体目标结构的十千米距离厘米级超分辨三维成像结果。图2 目标实物与成像结果(a) 立体组合件;(b) 立体组合件重构图像;(c) 立体分辨率测试靶;(d) 立体分辨率测试靶重构图像科研团队简介国防科技大学电子对抗学院胡以华教授科研团队长期致力于运动目标精确激光探测和光电对抗等领域方向理论与应用研究,围绕目标的激光三维成像、反射层析激光雷达成像、大气扰动激光探测、相干探测、光子探测以及量子纠缠探测方法,取得了一系列研究成果,为空天弱暗目标远距离探测、高精度定位和多维信息获取提供新型技术手段。团队先后出版专著《激光成像目标侦察》、《目标衍生属性光电侦察技术》、《Theory and Technology of Laser Imaging Based Target Detection》和《激光相干探测应用理论方法》,公开发表学术论文300余篇,授权发明专利70余项,获国家技术发明二等奖2项、国家教学成果二等奖2项、安徽省重大科技成就奖、省部级科技一等奖8项。团队带头人,国防科技大学电子对抗学院胡以华教授,脉冲功率激光技术国家重点实验室主任,光学工程学科首席专家,中国光学学会会士,安徽省科学技术协会兼职副主席。长期从事光电探测与对抗领域研究,取得多项系统性创新成果。
  • 西安光机所等在激光等离子体光谱研究中获进展
    近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室汤洁研究员课题组联合美国劳伦斯伯克利国家实验室教授Vassilia Zorba团队,在激光等离子体光谱研究领域取得重要进展。相关研究成果发表在Cell Reports Physical Science上。激光诱导击穿光谱(LIBS)是基于原子发射光谱学的元素分析技术,在多元素分析、实时快速原位测量等方面具备优势,且在定性识别物质与定量物质成分分析等领域具有重要的应用前景。目前,该技术在深空深海探测、地质勘探、生物医药以及环境监测等领域广泛应用。D-LIBS即放电辅助LIBS技术,通常是将火花放电或电弧放电与LIBS技术相结合来实现。以上两种放电模式具有放电功率密度大和电子数密度高的特点,在辅助元素定性和定量分析方面具有独特的技术优势。因此,利用放电辅助可以显著增强LIBS信号强度,从而达到提高分析灵敏度的目的。然而,D-LIBS在放电时电能消耗过大,同时从交变电压和电流中产生电磁脉冲,导致能源浪费和环境污染相关问题。这一负面因素加大了安全隐患和运行风险,更不利于社会倡导的节能减排和环境保护要求,进而限制了D-LIBS技术的进一步应用。因此,开发一种“两低一高”(低环境危害、低能耗、高分析灵敏度)的D-LIBS技术仍是物质分析领域中难度较大的挑战。针对上述问题,该团队提出离子动力学调制方法,对克服传统D-LIBS放电能耗大、安全风险高、环境危害大等不利因素,同时提高分析灵敏度具有显著改善效果。该工作借助这一方法,合理优化电极配置,有序调控放电模式,在有效增强光谱信号强度的同时,大幅降低放电能耗。关键创新点在于:(1)首次提出并利用激光诱导等离子体冲击波与外加电场空间零弧度耦合方式,实现有效放电区域全方位覆盖激光等离子体中粒子的扩散方向,离子的动力学特征从原始的向外扩散变更为放电空间内阳极和阴极之间的漂移运动。这种调制使得大部分离子被抓捕、约束在有效放电空间内,促进电能与激光等离子体耦合,大幅降低放电能耗。(2)突破传统D-LIBS方法,即仅在电容器放电过程中辅助LIBS,将放电增强LIBS拓展到电容器放电和充电的两个过程。采用直流电源与充电电容共同作用等离子体间隙的策略,使约束的带电粒子在电容放电结束后继续在电极之间漂移,并在毫秒尺度维持带电粒子电迁移运动特性,大幅延长等离子体寿命,进而实现火花和电弧放电的有序调控以及原子和离子光谱信号的选择性增强。上述研究有效解决了在D-LIBS中同时具备“两低一高”特性的关键技术难题。实验测试结果表明:与传统D-LIBS对比,该成果对于非平坦样品实现了在维持光谱信号2个数量级提升情况下,放电能耗降低了约1个数量级。结合经改进的小波变换降噪方法,D-LIBS中谱线信噪比、信背比以及稳定性相比原光谱均获得了显著提升。微量元素(Mg)的检出限从近百ppm降低至亚ppm量级。此外,与传统D-LIBS及其他LIBS增强技术相比,微量元素(Mg、Si)探测灵敏度提高近2个数量级。该研究有助于推动节能环保建设以及D-LIBS的广泛应用,同时,在低烧蚀激光功率密度的极端条件下,为D-LIBS微量或痕量元素定性与定量分析提供了有力的理论依据和技术支撑。研究工作得到国家自然科学基金、陕西省自然科学基金、瞬态光学与光子技术国家重点实验室自主课题、中科院光谱成像技术重点实验室开放基金等的支持。离子动力学调制LIBS增强原理和思路
  • 瑞沃德发布RFLSIⅢ激光散斑血流成像系统 激光多普勒 血流仪新品
    瑞沃德新一代激光散斑血流成像系统采用全新的LSCI (Laser Speckle Contrast Imaging)技术,集成照明光源和血流成像激光光源的一体化设计,无需任何调节,开机即可成像使用,极大的提高了用户的使用便利性性能特色RFLSI Ⅲ 激光散斑以非接触、高时间和空间分辨率、全场快速成像的技术优势,为广大科研工作者提供了一种实时动态血流监测和视频成像记录手段,是了解组织、器官病理或生理指标至关重要的依据。激光散斑成像仪器无需任何造影剂,时间分辨率可达毫秒量级,空间分辨率可达微米量级,实现了科研人员及医疗实时观察微血管的血流分布状态及血流数值相对变化的功能需求。散斑倒置支架:主要用于MCAO造模过程中从底部观察动物颅脑血流变化。动物固定器:特制简易动物固定器,在散斑观察过程中,可以简易将小鼠头颅固定。技术参数应用领域生命科学基础研究与药物开发脑血流 、MCAO模型 肠胃血流 、下肢缺血/血管生成烧伤评估 、 皮肤斑贴实验 脑皮层扩散抑制 、其它应用案例分享关键搜索查找:激光多普勒, 激光散斑, 血流仪创新点:(1)全场成像,非显微镜局部成像,可应用于大面积大视野观测需求的应用。(2)采用高分辨率工业级CMOS相机,分辨率上升至4K水平,拍摄速率大幅提升,同时降低功耗更为环保。(3)激光二极管电流及功率更稳定,数据波动小。(4)采用明场和激光双相机,可记录不同类型是实验数据,明场图像和激光图像位置通过软件校正,无位移。RFLSIⅢ激光散斑血流成像系统 激光多普勒 血流仪
  • 435万!北京生命科学研究所计划采购多光谱激光成像仪及蛋白纯化分析系统
    项目概况北京生命科学研究所多光谱激光成像仪及蛋白纯化分析系统采购项目 招标项目的潜在投标人应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取招标文件,并于2022年06月14日 13点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:HCZB2022-094项目名称:北京生命科学研究所多光谱激光成像仪及蛋白纯化分析系统采购项目预算金额:435.0000000 万元(人民币)采购需求:名称、数量、简要技术需求如下:序号货物名称数量简要技术需求1▲多光谱激光成像仪1套… … 3.1检测模式:同位素磷屏成像、荧光成像和密度测定。… … (详见招标文件第六章)2▲蛋白纯化分析系统1套… … 2.1.1 精确的全自动微量柱塞泵,双泵四泵头。… … (详见招标文件第六章)注:1.标注“▲”的,允许提供进口产品;未标注允许采购进口产品的,如投标人所投货物为进口产品,其投标无效。2.本项目共1个包,投标人只可投完整包,不允许将一包中的内容拆开进行投标。合同履行期限:多光谱激光成像仪:合同签订后4个月内完成供货(免税的进口产品为签订外贸合同后);蛋白纯化分析系统:合同签订后6个月内完成供货(免税的进口产品为签订外贸合同后)。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(1)投标人不为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的投标人,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的投标人(以开标现场查询为准);(2)投标人单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动;3.本项目的特定资格要求:/。三、获取招标文件时间:2022年05月24日 至 2022年05月31日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A方式:现场领购 获取招标文件需携带以下资料: 1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖投标人公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买招标文件等手续,加盖投标人公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖投标人公章)。 2.如自然人投标的,上述资料仅需签字或盖章即可。 3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、佩戴N95口罩、进行体温检测及人员信息登记等事宜,自觉做好个人防护。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月14日 13点30分(北京时间)开标时间:2022年06月14日 13点30分(北京时间)地点:北京市昌平区中关村生命科学园路七号二楼北会议室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.评标方法和标准:采用综合评分法;满分为100分:投标报价部分30分,商务部分36分,技术部分34分。 2. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。3.本公告在中国政府采购网发布。4.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京生命科学研究所     地址:北京市昌平区中关村生命科学园路七号        联系方式:李硕 80726688-8311      2.采购代理机构信息名 称:华诚博远工程咨询有限公司            地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A            联系方式:刘天泽 18500706692            3.项目联系方式项目联系人:刘天泽电 话:  18500706692
  • “光剑”出鞘:软X射线自由电子激光装置调试工作取得系列进展
    近日,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置调试工作取得系列进展。继实现532米X射线自由电子激光装置的全线调试贯通、带光运行后,装置于6月21日凌晨首次实现了2.4纳米单发激光脉冲的相干衍射成像,获得了首批实验数据,并完成了对衍射图样的快速图像重建。该成果体现了活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置整体性能的先进性,标志着我国在软X射线自由电子激光研制和使用方面步入国际先进行列。基于该成果,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置成为了国际上仅有的两个已实现“水窗”波段相干衍射成像实验的自由电子激光装置之一。“水窗”是指波长在2.3纳米到4.4纳米范围的软X射线波段。在此波段内,水不吸收X射线,对X射线相对透明。但是碳元素等构成生物细胞的重要元素,仍会与X射线相互作用,因而水窗波段的X射线可用于活体生物细胞的显微成像等,具有重要的科学意义和应用价值。在水窗波段,自由电子激光脉冲的峰值亮度比同步辐射高十亿倍以上,具备横向和纵向相干性,能够为物理、生物、化学等学科提供研究工具,还可为在建的上海硬X射线自由电子激光装置技术研发提供支撑。作为我国首台X射线自由电子激光装置,上海软X射线自由电子激光装置由活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置共同构成,两个项目同步建设,有机衔接。该装置将与已建成的上海同步辐射光源、超强超短激光装置和在建的硬X射线自由电子激光装置等一起,在浦东张江构建具有全球影响力的光子科学设施集群和光子科学研究中心。活细胞结构与功能成像等线站工程由上海科技大学、中国科学院上海应用物理研究所、中科院上海高等研究院团队共同建设,项目于2016年11月开工建设,含用户波荡器束线、活细胞成像束线、生物成像实验站、活细胞荧光超分辨显微镜站、超快物理实验站、超快化学实验站、分子动态成像实验站及实验辅助设施,预计在2021年内完成验收。活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置由国家发展和改革委员会与上海市政府共同出资建设。自2021年6月2日首次实现生物成像实验站通光后,上海科技大学和上海高研院的项目团队密切协作、昼夜调试,不断创造项目贯通调试和运行的加速度,取得了首批相干衍射实验数据,实现了数据的快速图样重组,为今后开展生物活体细胞成像、新材料动态结构分析以及多物理场原位成像等前沿科学研究打下了基础。装置拟于明年面向全世界开放运行。图1.标准样品圆孔、方孔及鹦鹉螺图案的相干衍射图样图2.上海软X射线自由电子激光装置图3.用户波荡器束线图4.用户大厅图5.生物成像实验站
  • 2014年度方法:激光层照荧光显微技术
    我们在进行荧光显微成像的时候,总要在信号强度和光漂白之间做出艰难的取舍,而高强度光照对活细胞和组织的影响也不容忽视。  激光层照荧光显微技术(Light-sheet fluorescence microscopy)能以很高的3D分辨率,长时间对生物学样本进行温和成像。这一技术结合高速相机,足以捕捉细胞或亚细胞水平发生的动态。日前,《Nature Methods》杂志将这个低光毒性的快速三维成像技术评为了2014年的年度技术。  激光层照荧光显微技术的基本原理很简单,它不像宽场或共聚焦显微镜那样照射或扫描整个样本,而是用薄层光从侧边照射样本,然后从样本的上部或下部检测荧光,激发光路与检测光路垂直。激光层照荧光显微镜激发一个层面上的荧光基团,一次成像一个面,这种技术不仅大大降低了光毒性,还提高了长时间成像活样本的能力。  Light-sheet技术始于一百年前,原本是用来成像胶体的。后来,Ernst Stelzer等人用这一技术成像了荧光标记的活斑马鱼胚胎,Light-sheet技术由此重新焕发了活力。Stelzer在本期Nature Methods杂志上撰文,介绍了这一技术的起源、原理和应用潜力。  激光层照荧光显微技术的崛起,离不开荧光蛋白和转基因标记的发展。实际上,只有物理学、生物学等多个领域进行跨学科合作,人们才能充分挖掘出这一技术的潜力。随着商业化仪器的不断推出和升级,相信激光层照技术将为我们揭示以往难以想象的生物学细节。  目前的激光层照荧光显微镜可以实现多角度成像(multiview),并与超高分辨率成像、双光子激发和结构照明结合起来。这一技术能够快速对活细胞进行3D成像,在透明的固定样本中获得惊人的静态图像。举例来说,人们已经用激光层照荧光显微镜成像了活体心脏和运作中的大脑,跟踪了胚胎发育时的细胞迁移。  激光层照荧光显微技术在神经生物学中的应用特别令人期待。因为这一技术能够同时成像大脑中的大量细胞,有望为我们揭示这一神秘器官的整体属性。Misha Ahrens等人在本期的Nature Methods杂志上发表文章探讨了这个问题。  激光层照成像是一项充满挑战性的工作,激光层照实验会生成海量的数据,我们需要找到更好的方法处理和分析这些数据。此外,激光层照成像的样本制备也和成熟的样本制备方案完全不同。  值得注意的是,最佳效果的激光层照成像仍然需要较小的透明样本。对于不那么透明的大样本而言,我们还需要想办法解决散射和相差问题。另外,我们在进行激光层照成像时,依然需要监控潜在的光毒性,虽然激光层照技术的光毒性比较小,但并不等于完全没有光毒性。  原文检索:  Method of the Year 2014
  • 高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊图谱成像新方法
    研究背景癌变细胞和正常细胞在形态、化学性质和力学性质等方面有明显差异,肿瘤组织细胞化学和力学性能的检测可为细胞及人体组织病变过程提供多维信息。现有组织细胞形态、力学性能、化学性能的检测方法中,共焦拉曼光谱显微技术可对样品微区化学性能进行非接触、无标记探测,共焦布里渊光谱显微技术可对样品微区力学性能进行非接触、无损探测,将共焦拉曼光谱与布里渊光谱检测技术结合,来同时、同位检测组织甚至亚细胞结构的微区三维形貌、化学性能和机械力学性能,有望为组织细胞多维病变信息的检测提供新手段。创新研究现有共焦拉曼/布里渊光谱显微成像技术由于缺少高精度实时定焦能力,致使扫描过程中聚焦在样品上的光斑大小随着样品的高低起伏而变化,从而制约了共焦光谱显微系统理论空间分辨力的实现;其次,由于拉曼和布里渊散射光谱强度较弱,成像积分时间较长,共焦光谱显微系统极易受系统漂移的影响而导致离焦,进而影响空间分辨力和成像质量等;此外,在对生物组织切片样品进行成像时,垂直入射产生的荧光信号会降低样品拉曼光谱的信噪比,从而影响拉曼光谱和布里渊光谱探测的准确性,降低检测精度。鉴于此,在国家自然基金重点项目“机械形态性能激光分光瞳差动共焦布里渊—拉曼光谱测量原理与传感系统(51535002)”等项目支持下,北京理工大学赵维谦教授团队发明了图1所示的高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊(Divided-aperture Laser Differential Confocal Raman-Brillouin,DLDCRB)图谱成像新方法(授权中国发明专利ZL 201410086366.5和欧洲发明专利EP 3118608 B1),该方法将分光瞳激光差动共焦显微技术与拉曼光谱和布里渊光谱探测技术相结合,通过差动共焦测量技术进行纳米精度的样品定焦,来提高系统空间分辨力和稳定性;通过分光瞳斜向激发与探测技术进行反射光和层间散射光等干扰光的抑制,来提高系统的光谱探测信噪比;通过拉曼光谱与布里渊光谱的同源激光激发与高分辨分离探测,来实现微区几何形貌、拉曼光谱和布里渊光谱的高稳定、高分辨原位图谱成像。图1. DLDCRB光谱显微成像原理基于该方法研制了图2所示的具有高空间分辨力和三维成像聚焦跟踪能力的DLDCRB光谱显微镜,其轴向定焦分辨力达1nm、光谱成像横向分辨力达400nm、拉曼光谱分辨力达0.7cm-1、布里渊光谱探测分辨力达0.5GHz等。图2. DLDCRB光谱显微镜利用研制的DLDCRB光谱显微镜,对条形样品进行了清晰成像,结果如图3所示,验证了所提方法的抗漂移能力;对PMMA/SiO2双层样品进行了检测,结果如图4所示,验证了所提方法抑制离焦层散射光干扰的能力。图3. 传统共焦光谱系统与DLDCRB光谱显微镜结果对比(a)经典共焦光谱系统成像(模糊) (b) DLDCRB光谱系统成像(清晰)图4. 系统抗离焦噪声干扰机制 (a) 斜向激发与收集光路 (b) 压缩了散射体轴向尺寸利用研制的DLDCRB光谱显微镜,对胃癌组织和癌旁正常组织进行了拉曼-布里渊光谱成图实验分析,证实了之前有关癌组织中蛋白质物质发生变化以及组织之粘弹性变化导致浸润性增加的假设。图5给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的化学成像结果,浓度由拉曼光谱特征峰的强度来表征。胃癌组织与癌旁正常组织化学成像结果相比:胶原蛋白浓度低且分布离散;胃癌细胞的DNA物质浓度高且分布范围大;胃癌组织细胞基质内的蛋白质浓度低;胃癌组织的脂质在基质内浓度高,而正常组织的脂质分布相对均匀。图5.胃癌组织与癌旁正常组织化学成像结果图6给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的力学性能成像结果,布里渊光谱的频移表征物质的储能模量(弹性性能),布里渊光谱的半高宽表征物质的损耗模量(粘性性能)。胃癌组织与癌旁正常组织力学成像结果相比,胃癌细胞和细胞间质的弹性低于正常细胞和细胞间质,癌细胞细胞核的弹性高于正常细胞;胃癌细胞和细胞间质的粘性低于正常细胞和细胞间质,癌细胞细胞核的粘性高于正常细胞。图6. 胃癌组织与癌旁正常组织的力学性能对比图本研究提出了具有高稳定、高分辨、抗散射的分光瞳激光差动共焦拉曼-布里渊图谱成像方法,研制成功了相应的仪器,实现了样品三维形貌、力学性能和化学组分的多维信息检测,并在肿瘤组织表征分析中进行了应用验证,本检测方法可为癌变过程和癌症治疗等领域的研究提供一种新的手段。
  • 激光共聚焦成像质量更好的原因
    激光共聚焦成像质量更好的原因激光共聚焦显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种高性能的显微镜,具有出色的成像质量。那么,为什么激光共聚焦显微镜的成像质量更好呢?激光共聚焦显微镜采用了共聚焦技术,即在样品上使用聚焦的激光束扫描。通过这种方式,LSCM可以在一个特定的焦点上获取清晰的图像。这种成像方式相比传统显微镜有诸多优势。激光显微镜激光器的特点1、激光共聚焦显微镜具有优异的分辨率传统的显微镜在成像时,由于光的衍射效应,无法观察到比波长更小的细微结构。而激光共聚焦显微镜通过聚焦激光束,可以有效地减少光的散射和干扰,突破波长的限制,观察到更小的细胞结构和微观组织。2、激光共聚焦显微镜具有较大的深度聚焦范围传统的显微镜由于焦平面的限制,只能观察到样品的一个薄层。激光共聚焦显微镜激光束的特性,可以在样品的不同深度上获取图像。这使得我们能够观察到三维样品的内部结构,实现三维成像,而不仅仅局限于表面。这对于研究生物学过程中的细胞内部活动以及组织结构的变化非常重要。这种深度成像的能力,使得研究者可以观察到样品内部结构的细节,进一步深入研究生物学和医学领域的问题。3、激光共聚焦显微镜具有较低的背景噪声传统显微镜在成像过程中会受到来自样品和环境的背景干扰,导致图像质量下降。而激光共聚焦显微镜通过使用激光束的聚焦性,缩小激发范围并使用光学切片来消除背景噪声,提高图像的对比度和质量。4、激光共聚焦显微镜灵敏度更高激光束聚焦后,可以通过光电倍增管等探测器,将样品反射或荧光信号转化为电信号。这种高灵敏度的探测方式,使得激光共聚焦显微镜可以观察到非常微弱的信号,进一步提高了成像质量。激光共聚焦显微镜的成像质量更好,得益于其共聚焦技术、优异的分辨率、较大的深度聚焦范围、较低的背景噪声和更高灵敏度。这使得激光共聚焦显微镜在生物学、医学等领域的研究中得到广泛应用,并为我们提供了更多细胞和微观结构的细节信息。
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 862万!广州中医药大学多光谱激光成像系统(双通道)等一批仪器采购项目
    一、项目基本情况项目编号:ZJJLCG-2023-0907项目名称:多光谱激光成像系统(双通道)等一批仪器采购采购方式:公开招标预算金额:8,620,560.00元采购需求:合同包1(荧光定量PCR仪等仪器):合同包预算金额:1,543,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置荧光定量PCR仪1(台)详见采购文件--1-2其他试验仪器及装置荧光定量PCR仪1(台)详见采购文件--1-3其他试验仪器及装置电转仪1(台)详见采购文件--1-4其他试验仪器及装置荧光细胞成像仪1(台)详见采购文件--1-5其他试验仪器及装置垂直电泳三件套8(台)详见采购文件--1-6其他试验仪器及装置全能型快速蛋白转印仪1(台)详见采购文件--1-7其他试验仪器及装置水平电泳仪2(台)详见采购文件--1-8其他试验仪器及装置梯度PCR仪1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包2(低温冷却液循环泵等仪器):合同包预算金额:1,780,020.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他试验仪器及装置低温冷却液循环泵1(台)详见采购文件--2-2其他试验仪器及装置防火防爆安全柜(带排风)1(台)详见采购文件--2-3其他试验仪器及装置防腐蚀柜1(台)详见采购文件--2-4其他试验仪器及装置安全防爆柜1(台)详见采购文件--2-5其他试验仪器及装置脑定位注射系统2(台)详见采购文件--2-6其他试验仪器及装置活细胞成像工作站1(台)详见采购文件--2-7其他试验仪器及装置细胞培养用高温灭菌罐8(台)详见采购文件--2-8其他试验仪器及装置细胞培养用负压仪4(台)详见采购文件--2-9其他试验仪器及装置智能精密细胞培养振荡器2(台)详见采购文件--2-10其他试验仪器及装置恒温摇床1(台)详见采购文件--2-11其他试验仪器及装置水浴摇床2(台)详见采购文件--2-12其他试验仪器及装置超低温冰箱4(台)详见采购文件--2-13其他试验仪器及装置低温冰箱4(台)详见采购文件--2-14其他试验仪器及装置手持小型匀浆机1(台)详见采购文件--2-15其他试验仪器及装置高速匀浆机2(台)详见采购文件--2-16其他试验仪器及装置超净工作台2(台)详见采购文件--2-17其他试验仪器及装置恒温水槽4(台)详见采购文件--2-18其他试验仪器及装置恒温水浴锅4(台)详见采购文件--2-19其他试验仪器及装置水浴锅2(台)详见采购文件--2-20其他试验仪器及装置涡旋仪12(台)详见采购文件--2-21其他试验仪器及装置中药打粉机2(台)详见采购文件--2-22其他试验仪器及装置自动氮吹仪1(台)详见采购文件--2-23其他试验仪器及装置电位滴定仪1(台)详见采购文件--2-24其他试验仪器及装置万分之一天平1(台)详见采购文件--2-25其他试验仪器及装置千分之一天平4(台)详见采购文件--2-26其他试验仪器及装置旋转蒸发仪2(台)详见采购文件--2-27其他试验仪器及装置制冰机1(台 )详见采购文件--2-28其他试验仪器及装置高压灭菌锅2(台)详见采购文件--2-29其他试验仪器及装置烘箱1(台)详见采购文件--2-30其他试验仪器及装置电热恒温培养箱1(台)详见采购文件--2-31其他试验仪器及装置普通生物显微镜6(台)详见采购文件--2-32其他试验仪器及装置加热磁力搅拌器2(台)详见采购文件--2-33其他试验仪器及装置磁力搅拌器2(台)详见采购文件--2-34其他试验仪器及装置金属浴4(台)详见采购文件--2-35其他试验仪器及装置PH计4(台)详见采购文件--2-36其他试验仪器及装置真空抽滤泵4(台)详见采购文件--2-37其他试验仪器及装置数显全自动馏分收集器1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包3(超纯水机等仪器):合同包预算金额:2,152,800.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1其他试验仪器及装置超纯水机1(台)详见采购文件--3-2其他试验仪器及装置8通道4孔板移液工作站1(台)详见采购文件--3-3其他试验仪器及装置全自动蛋白印迹孵育系统2(台)详见采购文件--3-4其他试验仪器及装置石蜡包埋机(连接冰台)1(台)详见采购文件--3-5其他试验仪器及装置组织脱水机1(台)详见采购文件--3-6其他试验仪器及装置石蜡切片机1(台)详见采购文件--3-7其他试验仪器及装置多功能紫外分析仪1(台)详见采购文件--3-8其他试验仪器及装置冷冻离心机4(台)详见采购文件--3-9其他试验仪器及装置迷你离心机12(台)详见采购文件--3-10其他试验仪器及装置组织研磨仪1(台)详见采购文件--3-11其他试验仪器及装置滤光片酶标仪1(台)详见采购文件--3-12其他试验仪器及装置冰箱4(台)详见采购文件--3-13其他试验仪器及装置洗板机1(台)详见采购文件--3-14其他试验仪器及装置UPS电源2(台)详见采购文件--3-15其他试验仪器及装置双人生物安全柜8(台)详见采购文件--本合同包不接受联合体投标合同履行期限:供货时间为签定合同后 30 天内完成合同包4(多光谱激光成像系统(双通道)等仪器):合同包预算金额:2,093,400.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1其他试验仪器及装置多光谱激光成像系统(双通道)1(台)详见采购文件--4-2其他试验仪器及装置紫外可见分光光度计1(台)详见采购文件--4-3其他试验仪器及装置纳米粒度电位仪1(台)详见采购文件--4-4其他试验仪器及装置二氧化碳培养箱12(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包5(细胞自动计数仪等仪器):合同包预算金额:1,050,840.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)5-1其他试验仪器及装置细胞自动计数仪1(台)详见采购文件--5-2其他试验仪器及装置台式大容量离心机4(台)详见采购文件--5-3其他试验仪器及装置核酸定量仪1(台)详见采购文件--5-4其他试验仪器及装置八道电动移液器4(台)详见采购文件--5-5其他试验仪器及装置八道移液枪12(台)详见采购文件--5-6其他试验仪器及装置单道移液枪60(台)详见采购文件--5-7其他试验仪器及装置十万分之一天平1(台)详见采购文件--5-8其他试验仪器及装置24孔固相萃取装置2(台)详见采购文件--5-9其他试验仪器及装置全波长酶标仪1(台)详见采购文件--5-10其他试验仪器及装置超微量分光光度计1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成二、获取招标文件时间: 2023年11月02日 至 2023年11月08日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广州中医药大学地 址:广州市番禺区广州大学城外环东路232号广州中医药大学办公楼911室联系方式:393569702.采购代理机构信息名 称:广州珠江监理咨询集团有限公司地 址:广东省广州市越秀区永泰路50号101房联系方式:020-834921753.项目联系方式项目联系人:林工电 话:020-83492175
  • 三维激光扫描技术,给古建筑做个“透视”
    在山西五台山南台西麓的树林中,千年古刹佛光寺静静矗立。作为国务院公布的第一批全国重点文物保护单位,佛光寺已列入世界遗产目录。其中,建于公元857年的佛光寺东大殿是我国现存最为完整、体量最大的唐代木结构建筑,也是研究唐代木结构建筑最为重要的“标准器”。  据清华大学建筑设计研究院文化遗产保护研究所等编写出版的《佛光寺东大殿勘察研究报告》描述,佛光寺东大殿背靠陡崖,50年代曾由于崖体倒塌使大殿后墙局部遭到破坏,同时存在局部基础不均匀下沉和木构建糟朽、断裂等问题。  “清华大学文化遗产保护研究所承担了佛光寺东大殿精确测绘等工作。我们希望对东大殿用三维激光扫描的精确测量方法,来确定建筑结构变形,通过对变形的量化分析,得到东大殿结构是否安全的结论。”清华大学建筑学院副院长吕舟教授说。  20世纪30年代,梁思成、林徽因根据敦煌第61窟中的“大五台山图”发现了佛光寺东大殿,作为至今国内已知的唯一唐朝木建筑,这座珍贵的建筑对我国建筑史研究具有极重要的意义。  自梁思成开展佛光寺调研的1937年至今70多年里,建筑历史界多次踏勘、测量东大殿。但测量手段基本以皮尺、钢尺的手工测量为主,数据取舍到0.5厘米。  吕舟说,前人所做的测绘已取得巨大成果,但由于以往测量工具和测绘手段的限制,难以达到更高精度,误差量也难以控制,测量结果不一。在本次勘察中,使用了三维激光扫描配合全站型电子速测仪定位,全站仪可给出控制点的空间相对坐标,为扫描结果的三维空间形象提供坐标 再加上局部的手工测量,从而得到一套精确、客观的东大殿数据。如今,在古代建筑测绘领域,三维激光扫描已是一项常用的技术。  据介绍,与传统测绘技术相比,三维激光扫描的优势在于数据全面性和准确性,可以在电脑中像做透视一样进行切片测量,从而测量无法直接测量的位置,完成实测不可能完成的工作,并尽可能测量到所有数据,再通过数理统计推断出最符合的原始设计尺寸 全站仪所获得数据精确,角度误差为秒级,测距误差为毫米级 观测速度快,采集单个点仅需几秒钟 工作距离最远可达数百米等。  吕舟说,“通过三维激光扫描获得东大殿精确测绘数据后,东大殿一些法式制度上的规律开始清楚地呈现在我们面前,使重建或复原东大殿,消除结构变形影响的标准形态成为可能。”通过对三维激光扫描点云切片与复原的东大殿标准结构剖面相比较,就可得到东大殿准确的结构变形情况,对东大殿结构安全做出判断。这也是我国第一次把三维激光扫描应用于木结构文物建筑的结构安全评估。  以文物保护为目的的测绘要求准确地反映文物建筑的现状,包括残损、构件错置、改动、变形的情况,手工测绘中难以准确、清晰地表现出文物建筑现状,或有可能在测绘过程中被忽略。“三维激光扫描为解决这一问题提供了可能性。”吕舟说。  东大殿被称为我国古代建筑遗存中最为珍稀的一座,其所蕴含的设计思想、结构尺度和加工做法在非物质遗存方面具有非凡价值。因此,吕舟表示,以精密测绘入手,通过运用精密测量工具与传统测绘相结合的方法,取长补短,力求在使用目前最先进的技术条件下,得到尽可能精确而全面的测绘结果等。在该结果基础上,绘制东大殿复原理想设计图。  “在上述工作的基础上,我们才能提出了东大殿保护工作计划以及初步的修缮建议等。”吕舟说。  据国家“指南针计划—中国古代发明创造的价值挖掘与展示”专项,在“古代著名的遗址、墓葬、古建筑和土木工程设计、建造材料技术等方面”,“进行系统的专项调查、整理挖掘、研究展示、抢救传承”。  文物建筑测绘国家文物局重点科研基地(天津大学)主任吴葱教授说,除三维激光扫描技术和全站仪外,他们还将多基线数字近景摄影测量系统、固定翼无人机、无人直升机等新技术应用于古建筑测量中,精确测绘了柬埔寨吴哥古迹、天坛、故宫、颐和园、山西应县木塔、辽宁义县奉国寺等20多处古建筑。
  • 在半导体、激光加工、安检行业,滨松的核心光技术如此发力
    自1953年成立以来,滨松公司一直积极投入与人们日常生活息息相关的领域。从扫地机器人到LIDAR小车,从可穿戴健康监测设备到健康随时报警器,再到用于检测晶圆等产品的半导体失效分析设备,滨松公司在半导体制造、健康监测,激光加工,智能设备以及未来的太赫兹等应用领域持续创新,致力于为人们的生活带来便捷与创新。接下来小编会与大家共同分享,在此次光子展中滨松的半导体应用,激光加工应用,X射线应用等相关产品如何将光技术融入我们的日常生活,为我们的生活带来便捷与希望。半导体制造行业在信息时代的大潮中,半导体成为了不可或缺的基石,如同粮食对于工业的重要性,它是电子设备的心脏,深深影响着我们的生活。从尖端的科技领域到日常生活的方方面面,半导体无处不在。比如,半导体芯片在智能汽车、5G通信、航空航天、国防军工、医疗卫生等领域中发挥着关键作用。滨松,一直致力于半导体产业的发展,通过自主研发,推出了多款创新产品,满足各种应用技术的需求。例如,一款独特的电离静电消除器,它能在低到高真空级别下工作,无需吹气。此外,还有用于检测micro LED晶圆的系统、高精度高速膜厚测量仪、丰富的光谱仪产品线以及小型化高输出的UV-LED单元等。那么,这些产品在实际使用中有哪些独特的优势和表现呢?让我们一探究竟!VUV电离器静电消除器VUV静电消除装置,真空静电消除器是使用“光离子化”来应用真空紫外光去除静电的静电电荷去除器。这种创新的离子化方法利用真空紫外光的独特功能来消除真空(减压状态)中不需要的静电电荷,这是此前一直无法实现的。主要用于消除工业生产过程中真空的静电,例如半导行业,LCD行业以及其他自动化工序的关键工艺中。产品特点:■可真空中和 、高水平的静电消除性能(0 V静电消除);■不需要吹气 、支持低到高真空级别;■防止反向充电,无粉尘产生。MiNYPL:微型LED PL测试仪MiNYPL 是一种使用光致发光 (PL) 测量方法的微型 LED 晶圆检查系统。MiNYPL是一种独特的二维成像技术,不必使用光谱仪,就可以一次性计算出平面内的发光波长。主要应用于Micro/Mini LED产品的发光和波长异常的检测中,可以在产品出现缺陷问题时帮助客户进行精准、快速定位。产品特点:■能够检测到仅通过外观检查无法发现的发光异常和波长异常;■实现电致发光(EL)测试无法实现的详尽测试;■通过在生产前进行检验来提高良率。高精度膜厚测量仪Optical NanoGauge 膜厚测量系统 C15151-01 是一种利用光谱干涉法的非接触式膜厚测量系统。这种大功率、高稳定的白光光源支持精确测量薄膜厚度,包括超薄薄膜(1 nm)。此外,光源的使用寿命为 10,000 小时,适用于在线操作。产品特点:■支持超薄薄膜测量(1 nm甚至更换激光器后更低); ■高度精确(测量重复性:0.1 nm以下);■采用大功率白光光源;■使用寿命长(维护周期1年以上)。光谱仪光谱分析是物质分析中的一种重要方法,在工业,农业,环境,食品,医药和制药等领域中的应用都十分普遍,而光谱仪则是长期征战于第一线的核心器件之一。针对于光谱仪来说,滨松可谓是拥有各种型号不同性能的全线产品。并且就连光谱仪需要的软件滨松也在近期有了升级,”尖雀“光谱仪软件全新亮相。1、滨松超小型光谱仪家族全亮相,满足不同波段需求(可量产)2、从图像传感器到微型光谱仪的进阶之路,滨松有话说3、滨松光谱仪软件升级了,诚邀测试反馈4、三招提升光谱仪信号质量 LIGHTNINGCURELC-L5G线性照明型UV-LED单元滨松 LIGHTNINGCURE LC-L5G 系列是线性照射型 UV-LED 光源系列,有多种波长范围如365 nm / 385 nm /395 nm / 405 nm可供选择,具有许多出色的特点,如小型化、重量轻、高输出和大片照射区域,使其成为包括 UV 印刷、UV 涂布和 UV 粘合剂固化等各种用途的理想选择。为了实现最高的 UV-LED 光源性能,滨松采用了名为 ThoMaS 的专利型空气制冷法,名为 HANCE (*1) 的专利型氮气吹扫法,以及可延长产品保修期的保修延期选项 ALiCE。*1:ThoMaS 和 HANCE 仅适用于 GH-103A 型号。激光加工行业在当今高速发展的科技时代,激光技术已经渗透到各个领域,尤其在中国制造2025的大背景下,它已成为不可或缺的重要支撑。从晶圆切割、手机屏幕粘贴,到玻璃切割、塑料焊接以及表面处理,激光技术的身影无处不在。众所周知,半导体激光器因其大输出功率、低价格的优势,使得激光器处理的用途越来越广泛。但随之而来的是可靠性和质量控制的担忧,成为了阻碍其普及的难题。对此,滨松认为激光器处理过程的稳定性与视觉控制是消除这些担忧的关键。如今,滨松光已经将半导体激光器应用于各类产品中,从研发到生产现场,无一不是它的用武之地。SPOLDld辐照光源L13920系列印刷电子是通过印刷制造电子电路的技术,只需将设计好的电路用金属纳米油墨印刷在衬底上,加热(烧结)即可制成电子电路。金属纳米油墨加热(烧结)过程的热源可以采用滨松的SPOLD辐照激光产品,使用激光束照射金属纳米油墨加热,使金属纳米颗粒粘合在一起进行烧制。产品特点:■由于只有激光应用的纳米墨水被加热和烧结,它几乎不影响周边;■即使是不耐热的材料也可以用作基板;■可以节省电力,因为电路可以只使用能量来加热工件;■由于从电到激光的高转换效率,卓越的能源效率(电光转换效率:60%或更高)。硅基液晶-空间光调制器滨松LCOS-SLM 是反射空间光相位调制器,可自由调制光相位,而激光的光相位由液晶调制。光的波前控制可应用于光束光刻、像差校正。并且滨松最近也发布了最新款SLM,通过应用我们专有的热设计技术和改善散热性能,我们能够将耐光性能提高到世界级的700 W(大约是以前型号的3.5倍)。配合大功率激光,可实现灵活、高精度、高效率的加工,点击此处了解新品详情。针对于SLM需要的代码,滨松现在也免费提供给大家,详情可以点击此处了解。iPMSEL 可积相位调制表面发射激光器iPMSEL全称是Integrable Phase Modulating Surface Emitting Lasers,是滨松开发的一种芯片大小的光源,可以从半导体芯片直接控制光束输出,可集成相位调制表面发射激光器,通过超小模式光源实现自然立体显示。由于它们的精细性,集成是可能的,并且在未来,正在进行的技术目标是将大量光束转向灵活的方向。安全检测产业随着世界各地海关港口、民用航空和交通运输的飞速进步,人们对安全的重视程度与日俱增,安检市场也因此蓬勃发展。在这样的背景下,快速、准确地识别和应对危险因素变得至关重要。滨松凭借其独特的X射线技术,精心打造出微焦点射线源和相关的X射线探测器,广泛应用于无损检测等关键领域。这些产品不仅代表了滨松的技术实力,更为安检行业树立了新的标杆。低真空操作离子探测器机场安检拥堵、漫长的排队等待,让人疲惫不堪?这一切都因为传统的检测方式太粗糙,许多细小的物件常常被遗漏,导致误报频发,而重复检测又耗费大量时间。那么,有没有一种方法能解决这个问题呢?答案是肯定的!低真空操作离子探测器就是救星!只需将检测板与待测物品轻轻一碰,然后立即放入检测设备中,即可迅速完成安全检测。这种高科技设备不仅对目标材料极其敏感,而且还能大大简化检测流程,再也不用为机场安检排队而烦恼了!X射线检测X射线可以穿透普通可见光无法穿透的物质,穿透能力与X射线的波长及穿透材料的密度、厚度有关。X射线波长越短,穿透率越高;待测物密度越低且厚度越薄,X射线穿透就越容易。X射线成像的基本原理便是根据X射线的特性以及零件的密度和厚度的差异来进行。可以清楚地观察内部而不损坏物体,因此在广泛应用于安全检测。滨松在X射线方面所具有的成像能力,大家可以点击此篇文章如何获得一张满意的X射线图像(收藏就等于会了来了解技术原理解析,接下来从产品层面为大家进一步说明。X射线源对于要求高精度检测技术的X射线无损检测市场,例如越来越精细的电子设备和越来越多样化的食品,滨松通过提供广泛的X射线源和探测器来满足各种需求,在X射线无损检测中发挥关键作用。以下只是滨松部分线源的型号,如有需求可以在评论区留言,会有工程师与您联系。详解:无损检测中的微焦点X射线源(MFX)X射线探测器(一维成像)适用于需要高速工作和高灵敏度在线成像用途的相机。传统的线阵传感器相机在高分辨率成像下具有低辉度,而 X 射线 TDI 相机则提高了图像辉度,从而增强了图像。最适用于线性移动物体成像或宽高比显著不对称的成像。另提供可在狭小空间内安装的垂直 X 射线 TDI 相机。X射线平板传感器(二维成像)将大面阵 CMOS 图像传感器和微光纤板与闪烁体 (FOS) 结合在一起的 X 射线平板传感器。可以采集百万像素级的高清数字视频和静态图像,而不会失真。平板传感器外形薄、重量轻,可轻松安装到其他设备中。产品特点:■ 高速成像;■ 高X射线电阻;■ 低噪音,低缺陷。以上关于部分热门应用的相关介绍就到此结束,如果还有其他问题,欢迎评论区留言或者直接联系相关工程师获取技术支持。编辑:又又&▼
  • 浅谈 | 激光共聚焦显微镜特点及应用
    激光扫描共聚焦显微镜(LSCM)是基于共轭焦点技术设计的显微镜类型,即为使激光光源、被测样品和探测器都处于彼此的共轭位置上。基本原理在一般的显微镜中通过将物镜的焦平面与探测器重合使得观测的像平面与相邻的轴平面隔离开来,而在共聚焦显微镜中通过使用衍射受限的光点照亮样品,并在该光点共轭焦点处的收集光路径中使用针孔来过滤杂散光达到产生这种隔离效果从而提高分辨率。激光共聚焦显微镜原理图成像特点—不同的焦平面上生成“z叠层”图像—上图所示结构中,只有在共轭的样品层反射回的光可以通过收集光路径中的小孔,其余无关的样品层反射被小孔阻隔。这可以得到显著的分辨率的提升。如下图所示的是同一厚样品的多维荧光显微镜和共聚焦显微镜的并排比较。当在不同的焦平面上拍摄一系列图像时,可以生成通常被称为“z叠层”的图像,这一图像显示了共聚焦显微镜提供的分辨率和对比度增益以及这些增益的根本原因。可以看到在成像平面位于组织上方的堆栈顶部检查图像可以发现荧光图像中带有大量的散射光,而共聚焦显微镜的图像则显示为黑色。这种轴向上的PSF的减少直接导致了z叠层中间光学界面上观察到的分辨率差异。同一厚样品多维荧光显微镜和共聚焦显微镜成像比较成像特点—光学切片扫描成像—激光扫描共聚焦显微镜的另一个特点是它是一种扫描成像技术,传统的宽场照明技术是将整个样品都照亮,因此可以图像可以直接被肉眼或探测器捕捉,但是LSCM采用一束或多束聚焦光束穿过样品扫描成像,这样得到的图像被称为光学切片,下所示即为传统的宽场照明方式与激光扫描共聚焦照明方式的区别。传统宽场显微镜和激光扫描共聚焦显微镜照明方式区别因此现代共聚焦显微镜的一种实际的工作方式如下图所示,激光发出的激发光通过二向色镜,通过一对振镜在样品x方向和y方向进行扫描,样品激发(或反射)的光通过针孔进入PMT检测器被记录,记录下的扫描图像通过计算机重构出实际的样品图像。一种实际的激光扫描共聚焦显微镜示意图成像特点—分辨率对比宽场照明大幅提升—在荧光显微镜中,单点发射的光强度由点扩散函数(PSF)描述,其图案就是一个艾里斑,荧光系统的分辨率可以由艾里斑的半径来描述,艾里斑的半径可以由物镜的数值孔径和激发光的波长决定:另一种荧光系统分辨率测量方式是半高宽最大值,即强度下降到峰值50%的值,此时宽场荧光照明的横向分辨率为:激光扫描共聚焦显微镜的分辨率为:这表明,共聚焦显微镜的理论最大分辨率比宽场照明提高了倍。下图表示了宽场显微镜与共聚焦显微镜的对比,左图为宽场显微镜得到的图像,右图为共聚焦显微镜得到的图像。宽场显微镜与共聚焦显微镜成像对比主要应用领域—医疗领域—Li 等人通过LSCM技术对31位虹膜粘连但角膜透明的病人进行了检查,观察到类树干状结构、树枝/灌木状结构、果实特征结构、上皮状结构等一些可能的结构变异,同时发现颜料粒子的减少可能会导致廷德尔积极现象[1]。主要应用领域—生物学领域—L. Cortes等人通过将抗钙结合蛋白(Alexa-568)和抗胶质纤维酸性蛋白(Alexa-488)对小鼠的小脑进行标记得到的图像。并且通过快速获取小鼠大脑的室管膜组织块上荧光标记的运动纤毛的概览,记录下了运动纤毛的确切位置,揭示了运动纤毛的作用机制。小鼠大脑图像小鼠大脑运动纤毛图像德国马克斯普朗克生物物理化学研究所的A. Politi、J. Jakobi以及P. Lenart等人通过Hoechst 44432对海拉细胞的DNA染色,使用微管蛋白抗体Alexa 488对微管染色以及鬼笔环肽Abberior STAR Red对F-肌动蛋白染色,使用LSCM得到了高效、超高分辨率的大视察视野的海拉细胞图像,帮助更好的了解了海拉细胞的结构以及发展变化。Dr. Gerry Apodaca等人通过用iDISCO对透明化的小鼠膀胱进行成像,获得了清晰且完整的小鼠膀胱图,有助于揭示小鼠膀胱内部运动的机理。小鼠膀胱主要应用领域—高分子化学领域—Deng等通过两种 N-硫代羧基内酸酐(MeSPG-NTA和Sar-NTA)的顺序分段投料聚合合成两亲性嵌段共聚物。通过纳米沉淀法、双乳液法等自组装方法,PMeSPG-b-PSar能分别形成纳米和微米尺度的聚类肽囊泡。在LSCM的表征下,由双乳液法获得的微米囊泡在 H2O2刺激下随时间逐渐崩解的过程被完整记录下来。将一种疏水的光敏剂四苯基卟啉(TPP)引入到 PMeSPG-b-PSar囊泡体系中,TPP可通过疏水相互作用附着在囊泡膜上,在光刺激下会引起囊泡崩解[2]。主要应用领域—表面粗糙度领域—Ibáñez等人通过LSCM对收割不同谷物在镰刀上产生的光泽进行测量,并测试了八种不同的加工材料(骨头、鹿角、木材、新鲜皮、干皮、野生谷物、驯化谷物和芦苇)产生的光泽,并通过分析软件建立预测模型数据库,首次证明了基于LSCM对使用磨损光泽的定量分析可以有效地识别用于加工不同接触材料的工具[3]。NCF950激光共聚焦显微镜配置更加灵活,售后通道更加方便,不输于进口成像的国产激光共聚焦显微系统。无级变速小孔控制单层图像景深,获取更佳图像质量。四荧光通道同时或分时成像,提高效率&消除串色。Z序列层扫,定量分析更轻松准确。20nm步进精度,还原厚样本空间结构。4096×4096图像一键生成,支持大图拼接,软件操作便捷。光强度只有汞灯1/1000,长时间实验观察不损伤样本。Nexcope 激光共聚焦成像图展示更多 Nexcope NCF950 成像图请访问:47.114.153.52:8080/novel.html
  • 量子级联激光器促进生命科学研究
    中红外QCL成像有助于光谱学家分析组织切片和进行药物分析,它还能进行呼气分析实现早期疾病诊断,并支持实时无创血糖监测。”昕虹光电为山西大学研究组呼气氨气检测项目,提供了来自瑞士Alpes Lasers的QCL光源以及配套的专用激光发射头、温控+电流驱动器。我们的应用科学家在QCL应用于医疗呼气检测方面,有丰富的学术研究经验。若您有相关需求,欢迎与我们联系!原文标题:Quantum Cascade Lasers Boost Life Science Research作者:PANAGIOTIS GEORGIADIS, OLIVIER LANDRY, ALEX KENIC, and MILTIADIS VASILEIADIS (Alpes Lasers)来源:Photonics.com编译:昕甬智测实验室1971 年 10 月,Rudolf F. Kazarinov和Robert A. Suris 提出了“在具有超晶格的半导体中放大电磁波的可能性”[1]。科学界花了20多年的时间来构建利用这一原理的器件。1994年,贝尔实验室的Jérôme Faist及其同事发表了基于子带间跃迁(量子阱之间导带中的激发态)的激光源工作原型和相关研究结果[2]。Faist后来与同事在瑞士共同创立了Alpes Lasers。图一 量子级联激光器 (QCL) 的典型光束轮廓(来源:Alpes Lasers)自量子级联激光(QCL)光源商业化以来,已经过去了20 多年。使用热电冷却在室温下运行的QCL现在已无处不在。这些激光器开创了中远红外光谱的新时代。近年来,QCL在稳定性、功率、光谱范围、可调性和整体性能方面取得了许多进步,其成本也逐渐被工业界所接受。此外,带间级联激光器(ICL)是另一种中红外激光器,与QCL一样,ICL中的每个注入载流子都会产生多个光子。ICL 的工作原理是基于II型异质结和级联带间跃迁(电子带之间的转移),不同于QCL的子带间跃迁。ICL在较短波长上是QCL的有效补充,通常在3.5 µm波长范围内,ICL的性能优于QCL。中远红外光谱的发展为光谱学领域创造了各种各样的应用场景,一些利用相干中红外光源的新应用得以在医学和工业中开展,并获得许多研究成果。就像1970年代初期傅里叶变换红外(FTIR)光谱设备取代色散光谱仪一样,QCL可以预见地正在逐渐取代笨重的FTIR设备。在QCL的相关研究中受益匪浅的几个关键领域,包括生命科学中的生物学、病理学和毒理学,以及医疗保健和制药行业。随着其激光功率的增加(允许穿透更厚的样品)、稳定性和紧凑性(允许它们部署在临床环境中),基于QCL的光谱分析,正迅速成为医学研究的先进技术。中远红外激光用于生命科学和医学领域的几个例子,像是薄组织切片的中红外成像、基于激光光谱学的液体或气体样品分析、生物标志物监测、病原体检测、药物开发分析等应用。QCL 使各种各样的医疗应用得到了改进,从样本的实验室分析到改变游戏规则的常规医疗程序,例如无创血糖监测。尽管取得了很大进展,目前生物医学界尚未充分发挥QCL技术的潜力。医学影像红外成像已经为医学领域带来重大进步。多光谱和高光谱成像技术已被证明对生物分子研究和组织病理学非常有效,并且在测试时间和准确性方面,使用成像来促进医疗干预变得越来越重要。 目前,我们已经有了成熟的无创红外成像技术,利用红外光谱分析组织和细胞。这些技术当中的一部分使用背反射光(主动)构建图像,其他的方法依赖检测组织由于其温度而发射的红外辐射(被动),由红外探测器感测热发射并产生组织中发射分布的热图。此外,在红外中使用标记成像(labeled imaging)[3]已经被视为一种成熟的常规技术存在[4]。电磁频谱中红外波段的使用在临床诊断中的应用范围广泛,从高分辨率和深度分辨的组织可视化,到温度变化(热成像)评估。此外,中红外光谱体外映射在组织和细胞分类的应用取得了显着进展——例如,用于识别癌细胞[5]。然而,在使用中红外光子学进行此类分析,尤其是无标记细胞和组织分类方面,还存在巨大的潜力[6]。大多数商用中红外成像设备通常受限于有限的波长能力(使用单模激光源),或是低功率导致较低的信噪比(如FTIR显微镜)。每种设备通常都是为特定的医学成像应用量身定制的,因此只针对某特定光谱范围做开发。相较之下,来自维也纳工业大学的Andreas Schwaighofer及团队在2017的一篇论文《Quantum cascade lasers (QCLs) in biomedical spectroscopy》证明QCL具有明显的优势:QCL可以针对特定目的进行定制,或者同时满足多种需求。最近的研究计划旨在通过进一步扩展QCL的能力,以开发功能更全面的中红外成像设备。研发人员希望同时达到FTIR设备的光谱可调性和基于多激光器外腔(External-Cavity)配置的更强信号激光源,在外腔配置中,组合使用了多达六个宽增益激光器。这些器件在可调谐性、精度和功率方面为中红外激光源提供了前所未有的能力。呼气分析分析呼出空气的科学,也称为呼吸组学(breathomics)或呼气组学(exhalomics),正在迅速成为医生和研究人员的主流应用。中红外激光特别适合这一新兴领域,因为人呼吸中存在的大多数挥发性有机分子在中红外光谱中具有明显的吸收指纹。针对呼气中的挥发性有机化合物(VOCs)以及特定气体(例如甲烷、丙酮、CO2 和其他受关注的化合物),可以使用激光光谱分析技术对其进行浓度检测。这些物质是生物标志物,可以向医生传达有关个人健康的大量信息。例如:VOC成分可以揭示炎症,丙酮水平可以提供关于一个人的代谢活动的信息(常用于肥胖研究和监测代谢紊乱),高水平的一氧化氮可能表明哮喘,而一氧化碳水平可以作为一种氧化应激或呼吸系统疾病的生物标志物。在过去的10年中,几个研究小组一直在探索呼吸组学,某些医疗初创公司正在利用QCL和 ICL分布式反馈(DFB)激光源,对人或动物呼吸进行气体传感。新的激光源例如QCL阵列和光束合并的DFB QCL等技术,将使多组分的呼吸分析成为可能,为医生提供更强大的诊疗工具。图二 基于QCL的呼气检测仪器液体生物标志物分析尽管QCL光谱通常与气体传感有关,但QCL也是分析液体的重要工具。由于拥有更高的激光功率,QCL允许分析更厚的样品和更复杂的基质,使其适用于生命科学中的许多应用。此类应用之一是基于激光的血液分析,它最近受到了很多媒体的关注,特别是在实时无创监测血糖水平方面。这种开创性的方法使用中红外激光源,可以实时经过皮肤透过光谱来监测葡萄糖。这种方法可以减轻糖尿病患者因使用针头定期检查血糖水平而带来的压力。此外,中红外集成光子学进一步改进了现有的小型化、可穿戴设备,能够执行连续测量,为医生提供可用于个性化治疗的数据。中红外激光在血液分析中的一项新用途是检测神经退行性疾病,例如阿尔茨海默氏症和帕金森氏症。通过专注于可在中红外光谱中检测到的一些特定生物标志物[8],医生可以使用 QCL光谱分析技术,远在可识别的症状出现之前,提前8年预测疾病的未来发作。起始于疾病早期的药物治疗会更有效,因此这些信息很有价值,甚至可能促进疾病的预防。尿液是另一种可以分析生物标志物的液体生物样本(图三)。因为样本易于获取且相关检测的实验室技术丰富,尿液分析被广泛使用,最重要的是,尿液中存在的细胞成分、蛋白质和各种分泌物反映了一个人的代谢和病理生理状态(图四)。医生要求进行尿液分析的原因有很多,包括进行常规医学评估、评估特定症状、诊断医疗状况(例如尿路感染和未控制的糖尿病)以及监测疾病进展和对治疗的反应(例如肾脏疾病和糖尿病)。图三 QuantaRed Technologies基于QCL的尿液分析仪,具有两个由Alpes Lasers开发的组合DFB QCL。该分析仪是在NUTRISHIELD项目中开发的,获得了欧盟地平线2020研究和创新计划的资助(来源:QuantaRed Technologies GmbH)图四 Alpes Lasers开发的DFB QCL合路器。该组件已成功集成到尿液分析仪和基于光子学的检测模块中,用于分析水质,特别是用于检测细菌。该模块是在WaterSpy项目中开发,获得了欧盟地平线2020研究和创新计划的资助(来源:Alpes Lasers)使用QCL的分析设备能够根据中红外光谱分析结果直接量化尿液中的主要成分,如尿素和肌酐。QCL技术还可以检测酮类、葡萄糖和蛋白质。这些生物标志物的浓度升高可以作为各种疾病和病症的早期指标(图五)。图五 多激光系统中光束组合器的各种元件,包括高热负荷外壳中的 QCL(L和R)、反射镜 (M)、窗口 (W)、二向色分束器 (P) 和调节螺钉(x) 和 (y)(来源:Alpes Lasers)结语随着QCL领域的高速发展,包括多激光器外腔、超宽谱可调设备,或者在不久的将来,新开发的QCL频率梳的应用,可以期待的是,QCL将为生命科学领域带来更大规模的进展。参考文献1. R.F. Kazarinov and R.A. Suris (1971). Possible amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys — Semicond, Vol. 5. pp. 707-709.2. J. Faist et al. (1994). Quantum cascade laser. Science, Vol. 264, Issue 5158, pp. 553-556.3. D.M. Gilmore et al. (2013). Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol, Vol. 20, Issue 7, pp. 2357-2363.4. Quest Medical Imaging (2021). Applications of the Quest Spectrum fluorescence imaging system, www.quest-mi.com/promising-applications.5. S. Pahlow et al. (2020). Application of vibrational spectroscopy and imaging to point-of-care medicine: a review. Appl Spectrosc, Vol. 72, pp. 52-84.6. S. Mittal and R. Bhargava (2019). A comparison of mid-infrared spectral regions on accuracy of tissue classification. Analyst, Vol. 144, Issue 8, pp. 2635-2642, www.doi.org/10.1039/c8an01782d.7. A. Schwaighofer et al. (2017). Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev, Vol. 46, Issue 7, pp. 5903-5924.8. A. Nabers et al. (2018). Amyloid blood biomarker detects Alzheimer’s disease. EMBO Mol Med, Vol. 10, Issue 5, p. e8763, www.doi.org/10.15252/emmm.201708763.昕甬智测实验室隶属于宁波海尔欣光电科技有限公司,专注于中远红外激光光谱检测技术(QCL/ICL+TDLAS),致力推动激光光谱技术的产业化应用,以激光之精,见世界之美。
  • 布鲁克推出HYPERION II研究级傅立叶变换红外和红外激光成像(QCL)显微镜
    HYPERION II是我们用于科研和开发的多功能傅立叶变换叶红外显微镜,具有灵活的附件,可以将红外激光成像(QCL)和傅立叶红外结合在一个仪器中。HYPERION II是红外显微镜领域的创新力量。它提供低至衍射极限的红外成像,并在ATR显微镜中设定基准。它首次将FT-IR和红外激光成像(ILIM)显微镜结合在一个设备中,提供了三种测量模式:透射、反射和ATR。HYPERION II 功能:μ-FT-IR 探测器的选择:宽,中,窄频段LN2-MCT,热电冷却 (TE) MCT。用于红外成像的焦平面阵列探测器(64 x 64 或 128 x 128 像素);通过激光红外成像模块(ILIM,激光等级1)实现可选QCL;物镜选择:3.5x/15x/36x/74x IR、20x ATR、15x GIR、4x/40x VIS;光谱范围扩展 - 从近红外线 (NIR) 到远红外线(FIR);光阑选择:手动刀口,孔径轮自动刀口。近红外的金属孔;附件和样品台的选择:宏程序红外成像配件、冷却/加热样品台、样品仓等;视觉/光学工具的选择:暗场照明、荧光照明、可见光偏振器、红外偏振器等。HYPERION II 提供:光谱和可见光图片的完美匹配。适用于任何测量模式(包括 ATR 成像);突破衍射极限的高灵敏度 FT-IR 显微镜和焦平面阵列(FPA)检测器成像。首次通过(可选)红外激光成像模块(ILIM,激光等级1)将FT-IR和QCL技术结合起来。所有测量模式下的红外激光成像(ATR、透射、反射)。专利相干降低技术为非人为处理的激光成像测试,无灵敏度或速度损失。高成像速度:0.1 毫米2每秒 (FPA,全频谱)6.4 毫米2每秒(ILIM,单波数)可选的TE-MCT探测器,用于在无液氮的情况下进行高空间分辨率和灵敏度的红外显微镜检测。发射光谱功能和可选光谱范围扩展。HYPERION II 应用领域:生命科学|细胞成像药物发射率研究(例如 LED)失效和原因分析刑侦微塑料工业研发聚合物和塑料表面表征半导体
  • 新品发布 | RFLSI ZW激光散斑血流成像系统,无与/伦比的成像体验
    想拥有一台微循环研究利器吗?不仅实时监测活体组织器官的血流灌注情况还可成像更快、更大,拓展性更广……新一代RFLSI ZW激光散斑血流成像系统实力全开,给你的科研工作更大的加速度!升级点1:全局快门COMS传感器-更快全新的RFLSI ZW采用全新的全局快门CMOS传感器。新款传感器具有更高的量子效率,即使是非常短的曝光也能获得清晰的图像;同时具备更加优秀的抗噪性能,在高分辨率模式下,采样速度相较于上一代产品提升了3倍,更快更精准获取成像图。升级点2:成像面积-更大RFLSI ZW的监测面积为225mm*300mm,相较于上一代产品提升了近8倍,应用对象从小动物扩展至大动物及人体的拍摄,进一步扩大了应用的范围。升级点3:成像算法升级-更强RFLSI ZW激光散斑血流成像系统,在成像算法上进一步提升,相较于上一代产品,在空间算法模式下将图像合成数量提升了5倍,在时间算法模式下提升了24倍,图片成像质量更加清晰、细节化增强。升级点4:扩展性-更广设备增加了BNC扩展接口,可实现与外部设备的通信,如电生理、刺激器、注射泵、光遗传等。通过软件控制协议,可自定义设备的工作顺序、间隔、频率等参数,满足多样化的实验需求。升级点5:内置校准程序—更智能使用标准校准物配合校准程序,可以定期进行自校准,保持设备处于最佳工作状态,使不同时期的血流灌注量具有可比较性。升级点6:激光安全性-更高新一代激光散斑血流成像系统在安全性上进行了升级,产品符合Class1-IEC 60825-1:2014安全激光等级标准,使用安全性更高,进一步保障实验人员的安全。RFLSI ZW激光散斑血流成像系统效果图参考Brain-c57bl/6Foot-HumanMesentery-SD ratFemoralartery-c57bl/6除了上述六大升级更多升级细节可查看下表想率先试用这款新品识别二维码,即可免费申请试用
  • 浅谈激光干涉技术及应用现状
    激光干涉技术主要应用光波的空间相干特性。具体而言,对于两束光波或电磁波等横波,当波长相等、且相位差为2π整数倍时,合成波的振幅叠加增强至最大;当相位差为π奇数倍时,合成波的振幅抵消减小至最小。早在十九世纪下半叶,科学家们就已发明了多种原理干涉结构装置用于科学研究,其中最著名的是迈克尔逊-莫雷干涉试验,该实验采用钠光源平均谱线近似单色光进行干涉测量,从而否定了“以太”的假说。图1 迈克尔逊-莫雷干涉试验激光干涉仪的构成真正促进干涉技术巨大进步的契机是1960年激光器的发明。激光由于具有极窄的谱线,因而具有非常优秀的空间相干性。目前激光干涉仪主要的用途包括精准的尺寸和移动距离测量,测量准确度最高可以达到纳米甚至亚纳米量级。在构成上激光干涉仪最常使用的波长为632.8 nm,对于经典的迈克尔逊干涉测量原理,由激光器中出射的单色激光经过50:50半透半反的分束镜后分为2束光束,其中一束经过固定的光程后被反射镜反射,称为参考光束;另外一束光束由于存在被测对象,被反射镜反射后光程发生改变(距离或折射率变化引起),称为测量光束。当两束光被反射后在分束镜第二次合成并随后照射探测器上被接收后,将产生干涉条纹的移动。由之前的光波的叠加性可知,假设测量光路距离变化为316.4 nm,当只存在一去程一回程的情况下,此时干涉条纹相位变化2π。目前商用激光干涉仪普遍采用两去程两回程,同时采用1024倍电子细分卡,因此分辨率可达0.16 nm。图2 激光干涉仪原理构造激光干涉仪的应用现状1. 在工业领域应用随着理论研究的深入和技术的不断进步,激光干涉测量技术目前精彩纷呈,在多个领域中都得到了非常广泛的应用。 包括单频激光干涉仪、双频激光干涉仪、激光平面干涉仪、法布里-珀罗干涉仪、皮米激光干涉仪、多波长干涉测距等。 单频和双频激光干涉仪。测量具有非接触和无损检测的特点,能够在线测量长度、角度和转速等参数,因此已成为各国精密数控机床在线定位精度测量的最主要标准之一。在精密加工过程中,位置精度是机床的重要指标,激光干涉仪通过在线位置测量、实时数据处理实现机床误差修正。另外在集成电路制造中,激光干涉仪也是光刻机在线位移测量的核心部件。图3 激光干涉仪在精密机床中的应用激光平面干涉仪。激光干涉仪不仅可以用于测量长度、角度以及位移,也可以测量物体的表面形貌。测量基本原理为激光菲索(Fizeau)干涉,激光经过扩束后先后经过参考平面和待测平面,两个平面的反射光发生干涉后产生干涉条纹,通过成像系统接收。分析条纹形状即可判断是否存在缺陷。图4 激光平面干涉仪皮米激光干涉仪。现在随着微纳测量分辨率要求的进一步提高,出现了商品化的皮米激光干涉仪。皮米激光干涉仪采用包覆光纤作为激光传输介质,有效减小了空气折射率扰动对测量的影响;同时在干涉方式上干涉仪采用法布里-珀罗(F-P)干涉仪原理,是一种多倍程干涉,进一步提高了分辨率。 图5 皮米激光干涉仪多波长干涉绝对测距。采用单波长干涉测距虽然分辨率可达到纳米级,但是单波长干涉测距是相对测量,且测量时光路不能中断,而多波长干涉能很好解决这个问题。因为在干涉测距中波长就像一把量尺,但如果测量距离大于这把量尺,则需要多次拼接测量。多波长干涉能形成很长的等效波长,使量尺范围大于被测距离,实现绝对距离测量。图6 多波长干涉绝对测距光相控阵雷达。随着自动驾驶技术的高速发展,现在激光干涉技术也应用在光相控阵(OPA)激光雷达(LiDAR)中。激光雷达会产生一系列密集超短激光脉冲扫描周围物体,通过脉冲返回时长差判断距离和轮廓。光相控阵雷达利用光栅干涉原理,可以通过改变不同狭缝中入射光线的相位差来改变光栅后中央条纹(主瓣)位置,从而控制激光雷达光束的指向和转向。 图7 激光干涉技术在光相控阵雷达中的应用2. 在科学研究方面应用激光干涉引力波天文台(LIGO)。LIGO用于验证广义相对论预言的引力场扰动产生的时空扭曲。它本质上是一个超大型迈克尔逊干涉仪,由2条4千米长的互相垂直的臂构成,同时光线还会在臂内折返300次。当引力波会产生空间弯曲,干涉结果也会轻微变化。2017年美国科学家借助LIGO观测到双中子星合并引力波事件并获得了诺贝尔物理学奖。图8 激光干涉引力波天文台(LIGO)激光全息干涉测量技术。利用非共面多光束干涉可以在空间形成二维或三维周期性强度分布,从而被用来制作二维或三维光子晶体;利用全息干涉技术可用于位移及形变测量、应变与应力分析、缺陷或损伤探测、振动模式可视化及测量、晶体和蛋白质生长过程监测、流体中密度场和热对流场的观察与测量。图9 激光全息干涉测量技术作者:中国计量科学研究院副研究员 李琪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制