当前位置: 仪器信息网 > 行业主题 > >

水中苯系物检测标准

仪器信息网水中苯系物检测标准专题为您提供2024年最新水中苯系物检测标准价格报价、厂家品牌的相关信息, 包括水中苯系物检测标准参数、型号等,不管是国产,还是进口品牌的水中苯系物检测标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水中苯系物检测标准相关的耗材配件、试剂标物,还有水中苯系物检测标准相关的最新资讯、资料,以及水中苯系物检测标准相关的解决方案。

水中苯系物检测标准相关的资讯

  • 饮用水中苯酚类化合物的检测方法
    下载: 饮用水中苯酚类化合物的检测方法.pdf关键词: 饮用水 苯酚类化合物 标准品 石炭酸 羟基苯 镇江上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • 水中油检测新标准或带来仪器市场巨变
    仪器信息网讯 仪器信息网(www.instrument.com.cn)获知,水中油检测标准将发生较大变化,将由目前的红外分光光度法向分子荧光方法转变。  目前,我国水中油的测定方法以四氯化碳萃取+红外分光光度法为主。四氯化碳的使用对臭氧层形成极大破坏,且对人体有一定毒害,世界各国已先后禁止使用四氯化碳。我国于1991年签署加入《关于消耗臭氧层物质的蒙特利尔议定书》,议定书要求除了原料和必要用途之外,我国应在2010年1月1日之前淘汰四氯化碳和三氯乙烷的生产和使用。我国已于2003年禁止以四氯化碳作为清洗剂和干洗剂,但在水中油分析检测中,由于现行标准方法仍为《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),因此四氯化碳仍被使用。  为完成四氯化碳的淘汰,我国一直在研究替代的萃取剂和水中油测定方法。2012-2013年,湖南环境监测中心站、天津环境监测中心站等多家单位和机构举办了水中油检测方法改进及替代技术研讨会、交流会。而环保部于2013年1月,就水中油测定的方法替代及标准修订项目进行了招标,计划修订现行水中油测定国家标准《水质 石油类和动植物油类的测定 红外分光光度法》(HJ637-2012),据悉,新标准可能在今年发布,2015年开始实施。  就水中油的新检测方法,仪器信息网编辑咨询了多位环境监测、水务等行业的水质分析专家。相关专家认为,目前对水中油的测定存在气相色谱法、荧光分光光度法、紫外荧光法、紫外吸收光度法、浊度法等多种方法,各有其优缺点。如气相色谱法,有一定可行性,并能与国外一些标准方法接轨,但水中油类往往是混合物,并不都适合以气相色谱法进行检测,而且气相色谱法不易在基层普及,因此成为新标准方法的可能性较小。分子荧光检测方法(荧光分光光度法/紫外荧光分光光度法)被相关专家认为是新标准最可能采用的方法。  而在溶剂方面,专家认为四氯化碳的被取代已成定局,而由于S316和H997等溶剂价格非常高,普及的可能性极小,专家认为正己烷和环己烷将取代四氯化碳。  另据相关专家表示,水利部已在推广正己烷/环己烷萃取及分子荧光分析方法,环保部也将发布新标准方法并进行推广。目前,我国实验室型水中油测定仪年需求千余台/套,产值超亿元,而使用四氯化碳和红外分光光度法的仪器设备在其中有着相当大的比例,将要到来的新标准或将给这一市场带来剧变。撰稿:魏昕  声明:此为仪器信息网研究中心的研究信息,未经仪器信息网书面形式的转载许可,谢绝转载。仪器信息网保留对非法转载者的侵权责任追讨权。如需进一步信息,请联系刘先生,电话:010-51654077-8032。
  • 色谱检测方法新标准来啦(七)——GB/T 39298-2020 再生水水质 苯系物的测定
    检测方法 气相色谱法仪器配置:吹扫捕集仪+GC主机+SPL+FID色 谱 柱:SH-Wax Cap. Column 30m x 0.32mm x 0.50um苯系物标准溶液中各组分气相色谱图 岛津推荐仪器 气相色谱仪:Nexis GC-2030Nexis GC-2030气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。配备了先进的灵敏度检测器群,可以进行高可靠性和高精度的痕量分析。柱温箱功能全面优化,使用效率有显著提升的同时还使能耗有效降低。 扫码了解更多信息 气相色谱仪:GC-2010 ProGC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。 扫码了解更多信息吹扫捕集仪
  • 油田水中间氟苯甲酸的检测——SPE-HPLC法
    一.实验目的在油田开发中,注水是确保地层能量,降低油田递减、实验油田稳产高产、提高最终采收率的最直接、最简单和最有效的方法。在井间示踪的过程中,选择适当的示踪剂是非常重要的。氟苯甲酸是目前国内外应用较为广泛的理想的非分配型示踪剂。本实验建立了一种油田水中间氟苯甲酸的检测方法,采用博纳艾杰尔科技的Cleanert&trade PS固相萃取小柱富集,Venusil&trade MP C18液相色谱柱和LC-10F液相色谱仪检测,该方法快速准确,稳定性高。二.实验方法样品信息设备和试剂u 乙腈,色谱纯;u 磷酸二氢钠:分析纯;u 0.01mol/l盐酸;u pH=4.0水(稀盐酸调节pH);u 5%氨化乙腈:取5ml氨水至100ml容量瓶中,加乙腈定容并稀释至刻度;u PS小柱:200mg/6ml;u 间氟苯甲酸标准贮备液(1mg/ml):称取间氟苯甲酸10mg于10ml容量品中,加水稀释并定容至刻度;u 氮气吹干仪;u 雷磁pH计;u 溶剂过滤器;u 高效液相色谱仪:LC-10F(配紫外检测器);u 高效液相色谱柱:Venusil&trade MP C18 5&mu m 150Å 4.6*150mm。 实验步骤样品制备取客户样品(4号)过滤,用稀盐酸调PH至4.0,分成2份,各400ml。其中一份添加间氟苯甲酸标准溶液100&mu g/L 1ml混匀后作为样品;另一份为空白溶液。 净化处理取PS小柱(200mg/6ml),依次用5ml 5%氨化乙腈,10ml水(稀盐酸调pH至4.0)活化小柱,将上样液以小于10ml/min流速全部通过小柱,将小柱抽干后用10ml乙腈洗脱至10ml定量浓缩管中,35℃氮气吹至近干,用缓冲盐定容至1ml,过0.45um尼龙滤膜,待测。液相条件缓冲盐:10mmol/L磷酸二氢钾溶液(用磷酸调节pH=3.0);流动相:缓冲盐:乙腈=75:25;色谱柱:Venusil&trade MP C18 5&mu m 150Å 4.6× 150mm;波 长:223nm;柱 温:30℃;流 速:1ml/min;进样量:100&mu l。三.实验结果液相条件的选择间氟苯甲酸分子结构上有一个羧基,酸性解离常数PKa=3.74,所以流动相的pH通常调节在3左右,以便抑制间氟苯甲酸在流动相中解离。本方法选用10mmol/L磷酸二氢钾(磷酸调节pH至3.0)为流动相,间氟苯甲酸可得到很好的峰型。通过对流动相比例的调节和色谱柱的选择,最终确定当缓冲盐和乙腈的比例在75:25时,选用Venusil&trade MP C18(5&mu m 100Å 4.6*150mm)色谱柱,间氟苯甲酸的保留时间在12.5min,且可以与杂质很好的分离。线性范围及定量限取适量的间氟苯甲酸标准贮备液,依次用水稀释成100ng/ml、200ng/ml、500ng/ml、1000ng/ml、2000ng/ml和10000ng/ml,按照液相条件依次进样检测,以浓度为横坐标,间氟苯甲酸峰面积为纵坐标,拟合标准曲线方程。逐级稀释标准溶液至间氟苯甲酸的信噪比S/N=10时,此时标准溶液的浓度为间氟苯甲酸的最低定量浓度,结果详见表2准确度和精密度分别取不同体积的pH=4的水,加入1ml 100&mu g/L间氟苯甲酸标准溶液,按照净化方法处理,计算添加回收率,实验结果见表3: 四.实验结论使用博纳艾杰尔科技的Cleanert&trade PS(200mg/6ml)SPE小柱和Venusil&trade MP C18(5&mu m 100Å 4.6*150mm)液相色谱柱和LC-10F高效液相色谱仪,可以对油田水中的间氟苯甲酸进行检测,该方法快速、准确,可靠性高,上样体积可以达到1L以上,配合全自动固相萃取仪操作,可极大提高实验效率。附录A图1 &mu g/L间氟苯甲酸标准溶液谱图 图2 油田水空白谱图 图3 250ng/L油田水标样添加谱图 附录B表4 实验耗材和试剂订货信息名称规格订货号分析型高效液相色谱仪10ml/min,等度系统,200-400nm双波长检测器FL-LC010分析型色谱柱温箱室温+5-50℃,箱内一对夹套CC-100Venusil MP C185um,150A,4.6*150mmVA951505-0Cleanert PS200mg/6mlPS20061.5mL样品瓶短螺纹透明带书写处,100/PK1109-05191.5mL样品瓶盖100/PK0915-1819针式过滤器(Nylon)13mm,0.45&mu m,100个/包AS021345-T一次性注射器2ml无针头,10支/包LZSQ-2ML乙腈4L/瓶,色谱纯AH015-4
  • 环境LCMSMS新标准|水中氯酚类化合物分析
    广东省分析测试协会发布了T/GAIA 005-2020《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》团体标准,标准规定了水体中3种氯酚类化合物的前处理及仪器分析方法,为水体中氯酚类化合物的检测提供了重要的技术支持和法规依据。 氯酚类化合物危害氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类物质曾长期在世界范围内被作为杀虫剂、除草剂、防腐剂、消毒剂广泛使用,性质比较稳定,能够在环境中相对持久地存在,会对人类和野生动物的健康造成不利影响,包括慢性毒性、致癌性、致突变性等。美国国家环保局(U.S. EPA) 和中国国家环保部均已将多种氯酚类化合物列入优先控制的毒性污染物名单。 目前,研究中普遍关注的CPs化合物主要包括2,4-二氯酚(2,4-dichlorophenol, 2,4-DCP)、2,4,6-三氯酚(2,4,6-trichlorophenol, 2,4,6-TCP)和五氯酚(pentachlorophenol, PCP)。新标准来袭,岛津助您从容应对与现有标准的气相色谱法相比,液相色谱质谱法灵敏度更好,且无需衍生化等复杂的前处理步骤,可直接用于水样的分析,操作简便快捷。 1 分析条件分析仪器:岛津超高效液相色谱-质谱联用仪MRM参数*定量离子对 2分析结果MRM色谱图3种目标物可得到良好的色谱峰形和质谱响应。标准溶液的MRM色谱图见图1。图1. 标准溶液MRM色谱图 方法检出限与测定下限按照《环境监测分析方法标准值修订技术导则》(HJ168-2010)中空白实验中未检出目标物质的检出限测定方法。以高纯水为空白基质,配制低浓度(2, 4-二氯酚和2, 4, 6-三氯酚4 μg/L,五氯酚0.25 μg/L)加标样品,进行7次重复检测,计算其实测浓度的标准偏差(SD),其方法检出限(MDL)=3.143*SD,测定下限为4倍的MDL。 表1. 方法检出限、测定下限计算结果(μg/L) 标准曲线根据测定下限以及实际测定需要,配制三种化合物的混标,标准浓度如表2所示。标准曲线分别如图2所示。 表2. 氯酚标准曲线浓度 (μg/L)图2. 三种氯酚的标准曲线 方法精密度分别以表2中STD 3、STD 5和STD 7为低、中、高浓度进行加标,重复6次测定,计算相对标准偏差(RSD)。结果显示,三种化合物、三个浓度水平RSD均小于11%。 表3. 不同浓度空白加标精密度结果(n=6) 方法准确度选取生活饮用水、地表水、地下水样品,0.22 μm滤膜过滤后上机分析,三种氯酚浓度均低于方法检出限。分别以表2中STD 3、STD 5和STD 7浓度为低、中、高浓度进行加标,平行配制6份分别进行测定,分别计算加标回收率,如表4所示。 表4. 不同水体加标回收结果(μg/L)结语使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统可轻松测定水体样品中3种氯酚类化合物,轻松应对《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》(T/GAIA 005—2020)新标准的要求。环境水体安全监测刻不容缓,岛津方案助您从容应对。
  • 色谱检测新标准来啦——HJ 1267-2022水质 6种苯氧羧酸类除草剂和麦草畏的测定
    苯氧羧酸类除草剂和麦草畏是一种广泛应用于农业生产的选择性除草剂,具有价格低廉、除草速度快、除草谱广等优点。然而,它们的使用会导致水质污染,残留于土壤中,并通过雨水和地下水流入河流和湖泊,对水质造成影响。随着环保要求的提高,水质监测变得越来越重要,对环境保护至关重要。因此,对苯氧羧酸类除草剂和麦草畏进行检测对于保障水质安全具有重要意义。本标准规定了测定地表水、地下水、生活污水、工业废水和海水中6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法。※本标准中结果的定性分析是根据样品中目标化合物与标准系列中目标化合物的保留时间定性,标准还提到:“必要时,可采用液相色谱-质谱法确认目标化合物”并在附录中提供了液相色谱-三重四极杆质谱法仪器条件。岛津提供LCMS-8045、LCMS-8050、LCMS-8060等多款液相色谱-三重四极杆质谱可选,满足标准要求。如需进一步了解,您可前往https://www.shimadzu.com.cn/an/lcms/index.html本文内容非商业广告,仅供专业人士参考。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 重大仪器项目“水中有机物监测仪” 30分钟检24种有机物
    p  11月10日电,如果河流突发环境事故,使用一种新型便携式检测仪器,可以在30分钟内,检测出水体中“隐藏”的各种有机物,为快速安全处置提供依据。据武汉市环保科技部门获悉,这种填补国内空白、国际领先的仪器正在武汉研制,目前研发工作已全面启动,预计于2020年实现量产。/pp  近年来,河流等水体的环境事故频发,如松花江的硝基苯、长治的苯胺、新安江的苯酚等污染事故,已严重威胁水体安全。据专家介绍,这类有机物在环境中较挥发性有机物(如苯、甲醛)更难降解,存在时间更长,吸附在颗粒物上容易被人体吸入,被称为半挥发性有机物(SVOCs)。它们种类众多,超过50种,主要来源于水源周边的一些有机排放物,如塑料、杀虫剂、燃烧产物、材料助剂(增塑剂、阻燃剂)等。SVOCs在水中含量极低,国家的检出标准多在0.01毫克/升左右,相当于在一个游泳池中滴入一滴墨水。 而这种“隐形污染物”的生理毒理却十分显著,如果长期接触,将严重危害人体健康。/pp  要捕捉到水中的“隐形污染物”非常困难。目前,我国只能采用实验室检测方法,从提取水样到实验室化验,往往需要3、4天才能检测出结果。国际上目前也没有快速、全面的检测仪器。/pp  为此,国家环保部门将“水中半挥发性有机物自动监测仪器”列为重大科学仪器开发项目。经过专家组的论证、评选,武汉境辉环保科技有限公司联合中国环境监测总站、中国科学院大连化学物理研究所等单位“夺标”,共同自主研发。据悉,该企业曾先后自主研发50余项水质自动监测仪器。/pp  目前,整个研发工作已全面启动。按照计划,研制组将采用多项国际前沿技术构建一套全新的检测设备。预计于2020年实现量产。该产品将首次实现水中SVOCs现场在线、快速检测,可在30分钟内一次检测出24种“隐形污染物”, 犹如一枚“照妖镜”让水中隐形污染物显形、被抓。业内人士称,此产品可弥补传统处理方法费时、费力、溶剂用量大等不足,能更好地分离、检测水中有机物,大大提升应对水体突发环境事故和日常监测水质的能力。/p
  • 标样所研制完成多溴二苯醚标准样品,助力新污染物调查监测
    为充分发挥新污染物标准样品的量值溯源和质量控制作用,标样所依托国家生态环境标准项目和新污染物调查监测试点项目,成功研制土壤中多溴二苯醚和异辛烷中十溴二苯醚溶液等2项标准样品,并于近期提供监测机构试用,目前反馈良好。 标样所将继续积极落实生态环境部关于新污染调查监测试点的有关工作部署,紧盯《重点管控新污染物清单(2023年版)》,有序开展壬基酚、全氟化合物等新污染物标准样品制备技术研究,提升新污染物标准样品科技创新能力,持续完善新污染物标准样品体系,加快推进新污染物标准样品应用转化,为新污染物治理提供质量管理技术支撑。
  • 国家环境监测网水中苯并[a]芘检测能力曝光 多倾向于液相色谱法
    p  近日,中国环境监测总站公布了国家环境监测网实验室a style="color: rgb(255, 0, 0) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/application/SampleFilter-S02001-T023-3-1-1.html"span style="color: rgb(255, 0, 0) "strong水中苯并[a]芘/strong/span/a能力考核结果。结果显示,各单位使用的苯并[a]芘测定方法主要可以分为两类:液相色谱法占比91.9%,气相色谱-质谱法占比8.1%,依照的主要标准为《水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法(HJ 478-2009)》。具体结果如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201602/insimg/33e0c2bd-e3fe-4eb1-a94f-86c1c53ea9bc.jpg" title="未标题-1.jpg"//pp  各单位采用标样来源情况如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201602/insimg/aa755970-87d8-4e37-b596-6ea525f093bd.jpg" title="33.jpg"//p
  • CFAS 2015:行业资深专家谈饮用水中污染物的检测方法
    仪器信息网讯 2015年6月17日,&ldquo 第四届中国食品与农产品质量安全检测技术国际论坛暨展览会&rdquo 在北京国家会议中心开幕。大会第二天,&ldquo 饮用水安全检测&rdquo 专题论坛成功召开。北京排水集团水质检测中心翟家骥高级工程师、中国疾病预防控制中心应波研究员和天津大学赵友全副教授等分别在会议上做了报告。专题现场  北京排水集团水质检测中心翟家骥高级工程师在会议上做的报告题目为&ldquo 前处理技术在生活饮用水检测中的应用&rdquo 。北京排水集团水质检测中心 翟家骥高级工程师  在报告中,翟家骥重点介绍了水中抗生素的前处理技术和检测方法。在抗生素前处理技术中,翟家骥主要介绍了固相萃取法。据他介绍,固相萃取法是利用固体吸附剂吸附液体样品中的目标物,使目标物与样品的机体和干扰化合物分离,然后用洗脱液洗脱,达到分离和富集目标物的目的。该方法适合清洁水体和污水中半挥发性、难挥发性有机物的萃取。  另外,翟家骥也介绍了水中抗生素常用的检测方法,例如气相色谱-质谱联用、超高压液相色谱-串联质谱检测技术、免疫测定技术和毛细管电泳检测技术等方法。他特别提到高效液相色谱-串联质谱法(LC-MS-MS)在检测水中抗生素的应用。  最后,翟家骥谈道,前处理技术还有在线全自动固相萃取+LC-MS-MS技术和二维液相+LC-MS-MS技术,并且二者将成为前处理技术的未来发展趋势。  中国疾病预防控制中心应波研究员在会议上做的报告题目为&ldquo 饮用水中潜在污染物检测技术&rdquo 。中国疾病预防控制中心 应波研究员  在报告中,应波分别从污染物的来源、污染物的分布、污染物的危害和污染物的检测方法等方面介绍了抗生素、双酚A、邻苯二甲酸酯类、有机锡和溴酸盐等污染物。在他的报告中,重点介绍了上述五种污染物的检测方法。  据他介绍,抗生素的检测方法主要有生物学方法、薄层色谱法(TLC)、气相色谱法、气质联用法、高效液相色谱法、高效液相色谱-质谱联用技术等,目前HPLC-MS/MS是使用最多的定量检测技术。  双酚A的检测方法主要有光谱分析法,如分光光度法、荧光测定法等 色谱分析法,如气相色谱法、气质联用法、液相色谱法等 此外还有电化学分析法。  在介绍邻苯二甲酸酯的检测方法时,应波说,早期的检测方法主要有比色法、滴定法和分光光度法等。近年来随着科学仪器的发展,主要的检测方法有气相色谱法、液相色谱法和气质联用法等,我国生活饮用水标准检验方法中采用GC-FID法。  应波同时也介绍了有机锡的检测方法,主要有原子吸收光谱法、原子荧光光谱法、气相色谱法、液相色谱法等。  最后,应波简要介绍了溴酸盐的检测方法,主要有抑制电导检测器离子色谱法、柱后衍生光度检测器离子色谱法、IC-ICP-MS等。  天津大学赵友全副教授在会议上做了题为&ldquo 多功能水质分析仪器研究进展&rdquo 的报告。天津大学 赵友全副教授  赵友全在报告中介绍道,水质分析仪器主要有实验室检测仪器、便携式检测仪器和在线式检测仪器等。在他的报告中主要针对便携式水质分析仪器及其检测方法进行了简单的介绍。同时,赵友全提到,水十条的发布,将会促进水质分析仪器的采购需求,并对水质分析仪器的技术提出更高的要求。
  • 台湾科学家巧用LC/MS检测水中新兴污染物(ECs)
    什么是药物新兴污染物(ECs)  持久性有机污染物(POPs)臭名远扬,是一种在环境中很稳定的禁用氯化物,对包括人类在内的很多生物都有毒害作用。  近年来,新种类的POPs引起了环保主义者的关注,它们以惊人的数量存在于小溪、河流甚至饮用水中。这些POPs被称为新兴污染物(emerging contaminants,ECs),它们能够通过废水处理设备,因为废水处理设备还没有被设计用来处理这类污染物。Ecs包括滥用的毒品、医学用药、个人护理和咖啡因。虽然还没有被管制,但是一些Ecs已经被证明对人体健康和环境有害。  各地Ecs的本底水平会受到当地活动的影响。台湾科学家围绕一项年度流行音乐节展开了研究。这项音乐盛事吸引了约600,000粉丝涌入当地,大部分的粉丝是年轻人。Chon-Lin Lee团队测定了在这项盛事的影响下,包括处方药、抗生素和毒品在内的ECs在水中的含量。Chon-Lin Lee团队成员分别来自国立中山大学、高雄医科大学和新竹工业技术研究所。  如何检测音乐节附近的水  研究用的水样本分别取自当地游客最多的8月、游客最少的10月、干旱季3月以及举办音乐节的4月。在音乐节举行的那一周,研究人员每天在相同的时间从废水处理厂污水入口处和出口处采水样。  研究者使用两种液质联用(LC/MS)的方法检测水中的30种Ecs。这30种ECs包括最常用的处方药和非处方药、兽药、咖啡因和毒品,还有生活中常用的防晒霜和化妆品。根据目标物质的性质,研究者选取了C18柱和五氟苯基(pentafluorophenyl)柱作为检测的色谱柱。  配备ESI源的质谱仪采用正、负离子模式对目标化合物进行多反应监测(MRM)。根据相关标准,Ecs在河水的检出限范围为0.04-10ng/L,在废水处理厂的污水入口处和出口处检出限为1-10ng/L和2-10ng/L。  音乐节不仅带来了欢呼也带来了ECs  分析结果显示,这30种ECs几乎都在废水中有检出,其中,20种Ecs同时存在于90%的废水样本。10种含量最高的检出目标物包括消遣性毒品氯胺酮和MDMA(也称为摇头丸),还有咖啡因、伪麻黄碱、扑热息痛、可待因和布洛芬。虽然海洛因和吗啡没有检出,但研究人员表示,这两种药物为高代谢药物,应将他们的代谢物添加到检测列表中。  废水处理厂的污水处理装置还是有一定作用的,只有少数Ecs在河水样本中检出,而且含量很低。通过比较废水处理厂入口处和出口处样品的检测结果也可以得到相同的结论。在河水中检出的药物按含量排序依次为:氨苄青霉素、可待因、咖啡因、立痛定。  研究还表明,与其它月份相比,在有音乐节的4月份这些ECs含量都达到了最高值。这是因为在这段时期更多的污染药物进入了水系统,除此之外,夏季和秋季的充足雨水会对Ecs有一定的稀释作用。  在音乐节开始后,处方药、苯丙胺和冰毒的水平并没有上升。但如果由此判断狂热的粉丝没有嗑药那就大错特错了。克他命、摇头丸、咖啡因、扑热息痛和伪麻黄碱的水平在活动开始后逐渐上升,直至音乐节结束时达到了峰值。  活动期间,在废水样本中增加最多的是摇头丸,浓度从89.1 ng/L增到了940 ng/L,这说明在此次音乐节上这是一款很流行的毒品。在美国橄榄球超级杯大赛期间和澳大利亚公众假期期间活动当地的废水中也出现了毒品浓度上升情况。  台湾科学家的这项研究不仅仅揭示了如音乐节这类活动上的嗑药现象,而且告诉我们这些药物的激增会给污水处理带来障碍,并影响当地的水生环境。  编译:郭浩楠
  • 生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》等5项国家生态环境标准
    为支撑相关水污染物排放标准、土壤风险管控标准实施与重点流域水生态监测,服务固体废物处理处置,近日,生态环境部发布《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)、《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)、《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)、《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)等5项国家生态环境标准。  《土壤和沉积物 13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》(HJ 1210-2021)为首次发布,适用于土壤和沉积物中13种苯胺类和2种联苯胺类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准实施。本标准的发布实施填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,可为建设用地土壤风险管控、土壤污染修复提供监测技术支撑。  《固体废物 无机元素的测定 波长色散X射线荧光光谱法》(HJ 1211-2021)为首次发布,适用于污泥、污染土壤、粉煤灰、烟尘、尾矿废石和冶炼炉渣等固体废物中16种无机元素和7种氧化物的测定,支撑《农用污泥污染物控制标准》(GB 4284-2018)、《水泥窑协同处置固体废物环境保护技术规范》(HJ 662-2013)等标准实施。与已有固体废物无机元素的监测分析方法标准相比,本标准适用范围增加了污泥、污染土壤等介质,前处理方法简单、分析速度快,有助于提高分析效率。  《水质 可吸附有机卤素(AOX)的测定 微库仑法》(HJ 1214-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中可吸附有机卤素(AOX)的测定,支撑《污水综合排放标准》(GB 8978-1996)等实施。与《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB/T 15959-1995)相比,本标准调整了适用范围,细化了校准、样品测定和结果表示等内容,增加了干扰和消除、质量保证与质量控制等内容,更好地满足生态环境监测实际工作需要。  《水质 浮游植物的测定 滤膜-显微镜计数法》(HJ 1215-2021)、《水质 浮游植物的测定 0.1 ml计数框-显微镜计数法》(HJ 1216-2021)均为首次发布,适用于地表水中浮游植物的测定。浮游植物是水生生物的组成部分,作为一个重要的营养级代表,是水生态监测中不可缺少的内容。浮游植物密度也是地表水水质表征、水华预警等的重要指标之一。上述两项标准作为地表水中浮游植物的监测方法,可为开展水生态监测,服务流域生态环境保护工作提供支撑。  上述五项标准的发布实施,进一步完善了生态环境监测标准体系,将为规范开展生态环境监测工作,为深入打好污染防治攻坚战提供相关监测方法支撑。
  • 填补土壤苯胺检测空白---LCMSMS苯胺新标准6月正式实施
    HJ 1210-2021《土壤和沉积13种苯胺类和2种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》,主要适用于土壤和沉积物中苯胺和联苯胺化合物的测定,在今年6月1日正式实施。 标准为首次发布标准,标准的发布实施为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等土壤风险管控标准作支撑,并填补了我国土壤和沉积物中苯胺类和联苯胺类化合物监测分析方法标准的空白,在建设用地土壤风险管控、土壤污染修复在监测上提供强大支持。 作为参与标准制定的验标单位之一,岛津有从前处理到检测方法一系列完善的解决方案。 应用解决方案 在土壤检测上,岛津除了满足新标准检测外,还提供在分析监测上土壤检测解决方案,包括LC、GC、IC、 AA、ICP、ICPMS、XRF、 GCMS、LCMS等丰富完善的色谱、光谱、质谱仪器,还与国家环境分析测试中心的Smart SIM有机物分析数据库,为土壤检测提供更为便利的分析。 岛津秉承着为了人类和地球的健康的公司经营思想,一直致力于土壤检测分析,提供土壤检测整体解决方案,为土壤监测与环境保护提供助力。 本文内容非商业广告,仅供专业人士参考。
  • 环保部发布六项新标准 五项为水质检测标准
    日前,环保部公告批准了六项标准为国家环境保护标准,其中五项为水质标准,一项为固定污染源废气标准。新标准将从2016年10月1日起实施,同时废止两项标准。  五项水质标准分别为:  《水质 亚硝胺类化合物的测定 气相色谱法》(HJ 809-2016):规定了测定地表水、地下水、工业废水和生活污水中亚硝胺类化合物的气相色谱法。标准为首次发布。  《水质 挥发性有机物的测定 顶空/气相色谱-质谱法》(HJ 810-2016):规定了测定地表水、地下水、生活污水、工业废水和海水中挥发性有机物的顶空/气相色谱-质谱法。标准为首次发布。  《水质 总硒的测定 3,3' -二氨基联苯胺分光光度法》(HJ 811-2016):规定了测定地表水、地下水、生活污水和工业废水中总硒的3,3' -二氨基联苯胺分光光度法。标准为首次发布。  《水质 可溶性阳离子(Li+ 、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法》(HJ 812-2016):规定了测定水中6种可溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的离子色谱法。标准为首次发布。  以及《水质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法》(HJ 84-2016):规定了测定水中无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的离子色谱法。本标准是对《水质 无机阴离子的测定 离子色谱法》(HJ/T 84-2001)的修订。 固定污染源废气标准为: 《固定污染源废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法》(HJ 540-2016):本标准规定了测定固定污染源废气中以颗粒物形态存在的砷及其化合物的二乙基二硫代氨基甲酸银分光光度法。本标准是对《环境空气和废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法(暂行)》(HJ 540—2009)的修订。   附件1:水质亚硝胺类化合物的测定 气相色谱法.pdf 附件2:水质 挥发性有机物的测定 顶空气相色谱质谱法.pdf 附件3:水质 总硒的测定 3,3'-二氨基联苯胺分光光度法.pdf 附件4:水质 可溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法.pdf 附件5:水质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法.pdf 附件6:固定污染源废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法.pdf
  • 《污水中新型冠状病毒富集浓缩和核酸检测方法标准》发布(可下载)
    4 月 6 日,国家卫健委法规司发布“关于发布推荐性卫生行业标准《污水中新型冠状病毒富集浓缩和核酸检测方法标准》的通告”,其中规定了污水中新型冠状病毒富集浓缩和核酸检测方法,适用于生活污水、医疗机构污水中新型冠状病毒富集浓缩和核酸检测。点击此处下载高清PDF电子版:WST799—2022 《污水中新型冠状病毒富集浓缩和核酸检测方法标准》新冠病毒严重威胁人类健康,迫切需要更多的监测途径作为疫情监测预警新冠病毒疫情已发展成“全球性大流行病”,严重威胁人类健康和社会经济发展,且近日国内部分城市疫情出现反弹现象,众多地区无症状感染者数量增加,可见防控形势具有长期性和复杂性。至今为止,临床病毒筛查是疫情预警防控的主要手段,但是基于临床检测的预警是在已出现病例之后再对其居住社区及密切接触人员开展流行病学回溯,考虑到新冠病毒3-14天潜伏期和出现明显症状之后再去医院诊断的时间,这种预警方式具有一定的滞后性,所以当下迫切需要更多的监测途径作为疫情监测预警的补充,从而有效阻断病毒传播、降低疫情发生的损失。污水站的新冠病毒密度已成为新冠病毒传播的一个早期预警信号据《科学通报》报道,2021年6月份香港大学张彤教授团队在一栋未出现确诊者大楼的多份污水样本中检测出新冠病毒,此举为社区公共卫生防控监测提供早期预警信息,亦成为采取后续防疫措施的重要依据;武汉疫情期间,湖北省环科院等在武汉疫区医院化粪池上层泥水和污水处理设施污泥样品中检出了病毒核酸;广州疾控中心的流行病学调查证明了粪便排泄物是新冠病毒传播的重要载体;清华大学也在北京新发地疫情暴发之前的小红门污水处理厂进水中检出了病毒核酸;国外同样已有多家研究机构在疫情爆发伊始或爆发前就在市政污水中检出新冠病毒,今年1月21日,美国疾病控制与预防中心 (CDC)就曾经发布报告称,新冠病毒的变种奥密克戎(Omicron)很有可能在美国首例确诊病例官宣的一周多前,就已经存在于纽约市的废水中了。由此可见,通过监测城镇污水站进水中新冠病毒的密度变化可以及时反映出污水处理厂服务区域人群的病毒感染情况污水站的新冠病毒密度已成为新冠病毒传播的一个早期预警信号。而且,城镇污水厂能够覆盖大部分人群,与基于临床检测的病毒预警相比,基于污水中新冠病毒监测的疫情预警覆盖面更广,时效性更强,经济社会成本更低,这对于公共部门开展防疫工作有重要意义。随着新一轮新冠疫情的猛烈来袭,生活污水中新冠病毒密度正在大幅增加,污水处理厂站一线工作人员感染风险大幅上升,大家应该提高警惕,并做好相关的防护工作。在美国,据央视财经3月17日报道,美国疾控中心在过去两周内对各地污水处理站进行检测后公布的数据显示,超过三分之一的污水处理点检测出新冠病毒密度增加,其中有 37% 的涨幅在 100% 以上,有 30% 的涨幅超过 1000% 。而在3月1日至3月10日期间,美国疾病控制与预防中心 (CDC)监测的超过三分之一的废水样本点都显示出新冠病毒呈上升趋势。如何防止新冠病毒通过污水传播?首先,尽可能接种加强针疫苗。相关研究显示,2针mRNA疫苗或腺病毒载体疫苗对奥密克戎产生的中和抗体下降明显(三针灭活对奥密克戎的中和能力待研究确认),原有疫苗接种方式效果大减。因此, 接种加强针就成为了污水处理工作人员的必要任务之一,尤其是感染风险较高的运维人员、化验人员,更是应该优先安排接种疫苗。其次,规范操作流程,降低感染风险。相对来说,污水处理厂的污水提升泵站、粗细格栅、旋流沉沙池等预处理段,以及污泥脱水间属于高风险场所,最有可能造成病毒等病原体暴露并引发操作人员感染风险,所以应该更加规范操作流程。结合实际情况,可以采取以下防护措施:1、现场操作人员加强自我防护意识,在上岗前佩戴好口罩和手套等基本防护用品,尽量做到不与污水、污泥、砂砾、栅渣等直接接触;2、针对进水泵房、预处理段、污泥脱水工段操作以及化验取水采样,提高防护等级,除口罩和手套外,配备护目镜和防护服;3、由于污水厂需要经常记录数据,建议保持给笔消毒,并且人手一只笔,防止交叉感染;4、加强集中排气口的消毒,要求人员尽可能避开排放口的气流;5、作业完毕后,及时对防护用具进行全面清洗消毒,加强个人卫生,勤洗手、勤消毒;6、定期对预处理段产生的栅渣进行消毒处理,及时安排运输车辆对栅渣进行清理转运。第三,污水处理厂加强消毒杀菌。根据国家卫健委发布的《新型冠状病毒肺炎诊疗方案》,新型冠状病毒对紫外线和热敏感, 56 ℃ 30min 、乙醚、 75% 乙醇及含氯消毒液等脂溶剂均能有效灭火病毒。应该说,污水处理行业虽然不像医务人员那样身处抗疫第一线,但 作为应战新冠病毒的 “第二战场”,污水处理人员同样面临着巨大的感染风险。在之前的疫情中,尽管困难重重,但污水处理行业仍然克服艰难险阻,保持了全国5000多座污水厂的正常运行。如今,新的一轮疫情卷土重来,污水处理行业再次面临巨大的考验。建议各地环保部门在加强监管的同时,还要给予一定的帮助扶持,并在医疗废水处理环节加强预处理,尽可能保证达标排放,从而避免对下游污水处理厂造成冲击,减少污水处理环节的压力。
  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 国家标准化管理委员会对《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准复审结论进行公示
    各有关单位:根据国家标准复审工作计划,国家标准化管理委员会已组织完成了《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准的复审工作,现将复审结论进行公示。如对复审结论有不同意见,请于2024年5月19日前,通过下方意见反馈功能,将意见反馈至国标委。国家标准化管理委员会2024-03-20部分相关标准如下:序号标准号标准名称归口单位复审结论备注1GB/T 11934-1989水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止2GB/T 11935-1989水源水中氯丁二烯卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止3GB/T 11936-1989水源水中丙烯酰胺卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止4GB/T 11937-1989水源水中苯系物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止5GB/T 11938-1989水源水中氯苯系化合物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止6GB/T 11939-1989水源水中二硝基苯类和硝基氯苯类卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止7GB/T 11940-1989水源水中巴豆醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止8GB/T 11941-1989水源水中硫化物卫生检验标准方法国家卫生健康委员会废止废止过渡期: 公告后12个月废止
  • 5项水质检测标准发布 明年正式实施
    为进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康,生态环境部于近日发布了5项国家生态环境标准,5项标准都与水质检测相关,且均为首次发布。《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)本标准规定了测定水中有机磷农药的气相色谱-质谱法,适用于地表水、地下水、海水、生活污水和工业废水中敌敌畏、速灭磷、内吸磷、灭线磷、治螟磷、甲拌磷、特丁硫磷、二嗪磷、地虫硫磷、异稻瘟净、乐果、氯唑磷、甲基毒死蜱、磷胺、甲基对硫磷、毒死蜱、杀螟硫磷、马拉硫磷、对硫磷、溴硫磷、甲基异柳磷、水胺硫磷、稻丰散、丙溴磷、苯线磷、三唑磷、蝇毒磷、敌百虫等28 种有机磷农药的测定。本标准适用分析对象多,分离效果好,可支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)等水环境质量标准实施,为农药行业水污染物排放标准的制修订、企业污染物排放的精细化管理提供监测技术支撑。该标准将于2022年4月1日实施。《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)  本标准规定了鉴定水中灭菌生物指示物(枯草芽孢杆菌黑色变种)的生物学方法。适用于微生物实验室废水灭菌效果的评价。本标准的发布实施可支撑微生物实验室废水灭菌效果的生物学检测,有利于贯彻落实《生物安全法》,加强生物安全风险防范,保护生态环境。该标准将于2022年4月1日实施。《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)  本标准规定了测定水中叠氮化物的分光光度法,适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。叠氮化物毒性强,危险性大。本标准的发布实施有利于相关工业排放叠氮化物的水污染物精细化管控,对保护生态环境和保障人体健康具有重要作用。该标准将于2022年4月1日实施。《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)  本标准规定了测定水中烷基酚类化合物和双酚A 的高效液相色谱法,适用于地表水、地下水、生活污水和工业废水中 4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-庚基苯酚、4-辛基苯酚、4-支链壬基酚、4-叔辛基苯酚和 4-壬基酚等 9 种烷基酚类化合物和双酚A 的测定。可支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施。烷基酚类化合物和双酚A是典型的内分泌干扰物,具有毒性、持久性及生物累积性,我国已在相关产品的生产中禁用并在相关行业污染物排放标准中设置了限制指标。本标准的发布实施,有助于加强水污染物排放管控,为烷基酚类化合物和双酚A污染治理提供监测方法支撑。该标准将于2022年4月1日实施。《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)  本标准规定了测定水中铟的石墨炉原子吸收分光光度法,适用于地表水、地下水和工业废水中铟的测定。随着高新技术产业发展,铟的使用日益广泛,需关注含铟污染物对生态环境的影响。本标准选择性强、灵敏度高,所用仪器设备价格和分析成本相对较低。本标准的发布实施可为水环境及相关行业水污染物中铟的测定提供技术支撑。该标准将于2022年1月1日实施。
  • 医疗污水处理过程中的微生物检测标准及方法解析
    为什么需要如此重视医疗污水和城镇污水监管工作呢?美国PM Gundy的研究团队曾在《Survival of Coronaviruses in Water and Wastewater》一文中指出,水体中的有机物和悬浮固体可以吸附冠状病毒,为病毒的存活提供了保护。同时,从污水流向的我们不难看出,粪便最终排到了污水处理厂,这些可能携带新型冠状病毒的废水,在污水处理中形成携带病毒的气溶胶,从而形成了气溶胶传播的环境,使污水处理人员成为感染风险较大的群体,对阻止疫情传播有很大的影响。因此,医疗机构、污水处理机构及环境监测部门,都是控制病毒通过污水传播的关键。 目前,为有效防止新型冠状病毒通过粪便和污水扩散传播,生态环境部门要求对要接收新型冠状病毒感染的肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)、相关临时隔离场所及研究机构,严格执行《医疗机构水污染物排放标准》,并参照《医院污水处理技术指南》、《医院污水处理工程技术规范》和《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》等有关要求,对污水和废弃物进行分类收集和处理,确保稳定达标排放;同时,地方生态环境部门要督促城镇污水处理厂切实加强消毒工作,结合实际,采取投加消毒剂或臭氧、紫外线消毒等措施,确保出水粪大肠菌群数指标达到《城镇污水处理厂污染物排放标准》要求。 通过对比以上标准发现,在这些污水处理过程中,粪大肠菌群数是评判污水处理是否合格的关键微生物指标。研究表明,污水中粪大肠菌群数量与肠道致病菌数量存在相关关系,当污水中粪大肠菌群数超过1174个/L时,即可在污水中检出病原菌,因此将粪大肠菌群数作为特征指示性指标对这些微生物进行控制。 根据检测方法、应用领域和污染情况的不同,各标准中对粪大肠菌群数的限量也不同(表1)。目前,可用于检测水体中粪大肠菌群数的方法有4种,分别是多管发酵法、膜过滤法和快速荧光检测法、酶底物法,其中前三种认可度较高,且使用较广泛。 1 膜过滤法 膜过滤法是目前最常用于水体中粪大肠菌群数检测的一种标准方法,也是《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》中的指导方法,可于地表水、地下水、生活污水、工业废水及医疗污水等样本的检测。 该方法使样品通过孔径为0.45μm的滤膜过滤,细菌被截留在滤膜上,然后将滤膜置于MFC选择性培养基上,在特定的温度(44.5℃)下培养24h,胆盐三号可抑制革兰氏阳性菌的生长,粪大肠菌群能生长并发酵乳糖产酸使指示剂变色,通过颜色判断是否产酸,并通过对呈蓝色或蓝绿色的菌落进行计数,从而测定样品中粪大肠菌群浓度。 膜过滤法的关键在于样品前处理,需借助抽滤装置才可完成,使微生物被截留在无菌滤膜上,并通过物理的方式进行富集,以保证粪大肠菌以菌落形态被检出。目前,市面上已有较为成熟、有效的的水中膜过滤装置,可用于水体中微生物前处理操作。专为水质样品前处理、富集等操作设计;结构精巧,配合精密抽滤泵,保证良好的抽滤效果;不锈钢材质,可高温高压灭菌,避免交叉污染;直抽直排,防止废液倒吸。 2 多管发酵法 多管发酵法又称最大可能数(most probable number,MPN)法或稀释培养计数法,该方法是用于检测地表水、地下水、生活污水和工业废水中粪大肠菌群的测定中粪大肠菌群数的一种标准方法。 该方法是一种基于泊松分布的间接计数法,利用统计学原理,根据一定体积不同稀释度样品经培养后产生的目标微生物阳性数,查表估算一定体积样品中目标微生物存在的数量(即单位体积存在目标微生物的最大可能数)。 采用多管发酵法时,先将样品加入含乳糖蛋白胨培养基的试管中,37℃初发酵富集培养,大肠菌群在培养基中生长繁殖分解乳糖产酸产气,产生的酸使溴甲酚紫指示剂由紫色变为黄色,产生的气体进入倒管(杜氏小管)中,指示产气。然后再44.5℃复发酵培养,培养基中的胆盐三号可抑制革兰氏阳性菌的生长,最后产气的细菌确定为是粪大肠菌群。最后通过查MPN表,即可得出粪大肠菌群浓度值。 实验小贴士 该方法在操作过程中,根据样品检出限的不同,可选择12管法(检出限为3MPN/L)或15管法(检出限为3MPN/L)进行实验,因此需要大量使用试管和液体培养基(每个样品需准备12或15支试管)。若检测样品量较大时,建议可采用培养基分液器来降低工作量。可用于生理盐水、液体及半固体培养基自动分装;1L溶液分装到100个MPN法试管中,最快仅需2分钟;微电脑系统与精密泵体联合控制,分装精度高;分装量、分装速度、分装时间、停顿时间、分装次数等参数可自由设定。 采用自动微生物试剂分液器进行实验用品准备,不仅能实现准确的连续分装,还可在保证进度的同时,大大降低工作量。 3 快速荧光检测法 快速荧光检测法是一种利用ATP荧光原理与微生物特性相结合的快速检测方法,虽然该方法暂未被纳入国家标准中,但由于其操作方便,检测与培养时间短(仅为膜过滤法、多管发酵法的1/3),目前被很多大型企业作为内部微生物自检的一种重要手段。通过与对应的采样、增菌拭子配合使用,可快速检测水体中粪大肠菌群数量。 快速荧光检测法是在荧光素酶(lueiferase)和Mg2+的作用下,荧光素(lueiferin)与ATP发生腺苷酰化反应后被活化,活化的荧光素与荧光素酶相结合,形成了荧光素-AMP复合体焦磷酸(PPi)。该复合物在氧化作用下,产生荧光信号。通过ATP检测液检测微生物ATP的发光量,达到检测细菌的目的。该方法现已获得AOAC研究机构的检测方法性能担保认证。 目前,杭州大微已开发了DW-ES800型微生物实时检测系统,该系统基于ATP荧光快速检测法,采用双模块设计,实现对水体中粪大肠菌群、大肠菌群、大肠杆菌、细菌总数等多种微生物的检测和计数。耗时短:培养时间短(定性8小时,定量1~8小时),检测时间仅需15秒范围广:细菌总数、大肠杆菌、总大肠菌群、粪大肠菌群等多种微生物效率高:双培养通道,可同时培养不同温度微生物易操作:五步即可完成(增菌拭子采样→培养→转移→检测拭子激活→检测)可将RLU值转换为CFU值 4 酶底物法 酶底物法是检测水体中大肠菌群、粪大肠菌群和大肠埃希氏菌的一种标准方法。该方法是利用在特定温度下培养特定的时间,总大肠菌群、粪大肠菌群、大肠埃希氏菌能产生特定的β-半乳糖苷酶将选择性培养基中的无色底物邻硝基苯-β-D-吡喃半乳糖苷(ONPG)分解为邻硝基酚(ONP),呈黄色反应;且大肠埃希氏菌同时又能产生β-葡萄糖醛酸酶将选择性培养基中的4-甲基伞形酮-β-D-葡萄糖醛酸苷(MUG)分解为4-甲基伞形酮,在紫外灯照射下呈荧光反应。统计阳性反应出现数量,查MPN表,再除以接种样品的稀释度。计算相应水样中总大肠菌群、粪大肠菌群、大肠埃希氏菌的浓度值。由于操作起来较为繁琐,工作量巨大,故在日常检测中很少被使用。
  • 岛津发布河水标准物质及自来水中镉的无火焰原子吸收分析法
    根据日本「关于部分修改水质标准相关省令等的省令」(厚生劳动省令第十八号)(2010年2月17日),自来水中镉的标准从0.01 mg/L以下修改为0.003 mg/L以下。新标准已从2010年4月1日开始实施。在新标准中,从过去的4种分析方法中删除了火焰原子吸收法,采用的3种分析方法,1. 无火焰原子吸收法,2. ICP发射光谱分析法,3. ICP质谱分析法。本文介绍对于由日本分析化学会提供的作为认证标准物质的JAC0302河水标准物质(添加),以及在自来水中添加浓度相当于标准值1/10的镉所制成的样品,以无火焰原子吸收法进行分析的实例,并介绍简便的自动稀释再次测定功能。 ■装置和测定条件 装置主机 AA-7000原子化部 GFA-7000自动进样器 ASC-7000 ASK-7000分析波长228.8 nm狭缝宽0.7 nm电流值8 mA亮灯方式BGC-D2石墨管类型热解石墨管进样量2~20 μL(合计进样量为25μL)温度程序干燥 120 ℃灰化 500 ℃原子化 1800 ℃净化 2400 ℃标准液浓度上限浓度0.0012 mg/L(1.2μg/L)干扰抑制剂硝酸钯水溶液5 μL (含钯100 ppm) ■测定结果 制作工作曲线时使用了自动进样器的自动稀释、添加功能,因此,只需在自动进样器中放入稀释液、标准液原液(2 ppb)、干扰抑制剂(硝酸钯水溶液)就可制作工作曲线。根据测定结果。河水标准物质获得了与认证值一致的结果。自来水中添加浓度相对于标准值的1/10的样品,无论真度还是精度都获得了良好的结果。 AA-7000的自动进样器(ASC-7000+ASK-7000)配备了自动稀释再次测定功能。如果使用此功能,则在未知样品浓度超过设置上限时,可以自动地减小采样量重新进行测定。输入未知样品上限浓度,选择自动稀释再次测定,则在测定超过设置上限浓度的样品时,自动减小采样量进行再次测定。自动稀释再次测定的稀释倍率自动地输入自动稀释栏中,显示在实际浓度栏中。通过使用此自动稀释再次测定功能可减轻分析者进行再次测定时的负担。 欲知详情请点击基于无火焰原子吸收法的河水标准物质及自来水中镉的分析。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 废水中余氯的检测方法
    余氯是指水中加氯后会与水中的细菌、微生物、有机物等作用,这个过程会消耗一些氯,一段时间后水中还剩下一些氯。这些氯通常被称为余氯,通常是游离氯。一般饮用水、自来水、泳池池水、医疗废水等都需要检测余氯,余氯含量过高,对人体健康有较大的危害,因为其可以刺激眼鼻喉等呼吸道系统,浓度过高还会麻痹中枢神经,长期饮用或接触含余氯的水也会慢性中毒,致癌。基于以上危害,对于水中余氯我们要如何实现快速检测呢?解决方案检测方法:DPD法依据标准:HJ586-2010 水质游离氯和总氯的测定 N.N-二乙基对苯二胺(简称:DPD法) 分光光度法方法原理:在PH6.2-6.5条件下,游离氯直接与(DPD)发生反应,生成红色化合物,在相对应的波长下,采用分光光度法测定其吸光度。检测仪器:SH-3900A型多参数水质分析仪SH-3900A型多参数水质分析仪用于水样检测的智能仪器,可以快速、准确的检测水中主要污染物,如氨氮、总磷、总氮、化学需氧量(COD),各类阴离子如氯化物、硫酸盐、硝酸盐、亚硝酸盐、氰化物、挥发酚、余氯、总氯等,重金属元素等,广泛应用于环境、医疗、卫生、食品、造纸、印染、石化、冶金等行业的水质检测。仪器特点:◆显示界面:8寸彩色触屏液晶显示,中文菜单人机交互,数据直读;◇仪器光源:进口光源,稳定可靠,自动开启与关闭,延长使用寿命;◆测试方式:支持比色管360°旋转比色及4联池比色皿自动比色两种测定方式;◇项目参数:支持所有水质常规项目及可定制化扩展项目;◆曲线调用:分类别标准曲线,简单直观,支持客户自定义及编辑曲线;◇曲线校准:具有标样一键校准功能;◆数据编辑:可对测量数据实时编辑及保存,方便客户整理检测结果;◇仪器校准:开机自动校准及预热;◆数据平台:支持物联网功能,数据实时上传至盛奥华云数据服务中心,方便客户日常管理及分析,为污水处理的平稳运行提供数据支持;◇光学结构:采用凹面闪耀全息光栅,性能卓越,3秒内切换至任意波长;◆领域扩展:支持光度计功能,可实现光度测量及全波长扫描功能;◇软件升级:可实现软件版本远程升级;◆散热方式:优化结构,配以大风量静音风扇高效降温,延长仪器使用寿命;◇流程优化:配套专用检测试剂及配件,减少客户操作步骤,简便安全;技术参数:性能参数物理参数波长范围190-1100nm屏幕参数8寸高清触摸彩屏光路稳定性≤±0.002Abs/h比色方式比色杯(皿),比色管光度重复性0.2%T用户曲线>240条杂散光≤0.005%T数据传输远程物联网光谱带宽2nm打印方式内置热敏型光度准确性±0.5%T操作界面中文AOS操作波长分辨率1nm仪器电源AC(220±10%)50Hz波长准确度±1nm使用环境温度0-50℃湿度10-90%波长重现性0.2nm仪器尺寸460*320*350mm吸光度重现性±0.003Abs仪器重量约20kg吸光度准确性230-900nm±0.005abs额定功率60W序号测定项目测量范围序号测定项目测量范围1COD5-6000mg/L(分段)21氰化物0-0.5mg/L2氨氮0.01-100mg/L(分段)22磷酸盐0-0.5mg/L3总磷0.001-8mg/L(分段)23铜0-2.5mg/L4总氮0.01-100mg/L(分段)24铁0-5mg/L5色度0-400度25锌0-1mg/L6浊度0-200NTU26镍0-5mg/L7悬浮物0-200mg/L27银0-1mg/L8硫化物0-1mg/L28锰0-5mg/L9总油0-16mg/L29总铬0-2mg/L10余氯0-3mg/L30六价铬0-2mg/L11苯胺0-2mg/L31氨氮(水杨酸)0-1mg/L12挥发酚0-2.5mg/L31硝酸盐氮(可见光)0-10mg/L13高锰酸盐指数0-10mg/L(分段)33总氮(可见光)0-10mg/L14硝酸盐氮(紫外)0-10mg/L34总硬度10-600mg/L15亚硝酸盐0-0.2mg/L35二氧化氯0-3mg/L16硫酸盐1-150mg/L36铝0-0.25mg/L17氟化物0-1.5mg/L37硅酸盐0.2-40mg/L18臭氧0-2mg/L38二氧化硅0.2-30mg/L19总氯0-3mg/L39氯离子10-400mg/L20甲醛0-4mg/L40阴离子表面活性剂0.1-2.5mg/L检测试剂:余氯试剂量程:0-3mg/L应用范围:适用于地表水、工业废水、医疗废水、生活污水、中水和污水再生的景观用水中的游离氯的测定。实验步骤:1、向试管1/2中加入水样2、分别加热专用试剂1和试剂2 0.5ml3、试管1/2中分别加入纯净水5ml4、摇匀调出曲线57号5、试管外壁擦干净后放入仪器中读数
  • 一批水质检测标准发布征求意见稿 涉及多种分析方法
    p  今日,生态环境部印发了《水质 邻苯二甲酸酯类化合物的测定 液相色谱-三重四级杆质谱法》《水质 可吸附有机卤素(AOX)的测定 微库仑法》《水质 硫化物的测定 亚甲基蓝分光光度法》和《地表水监测技术规范》四项国家环境保护标准征求意见稿。/pp  按照《国家环境保护标准制修订工作管理规定》(国环规科技〔2017〕1号)要求,生态环境部现就标准(征求意见稿)征求相关单位意见。相关意见可于2020年6月30日前通过信函或电子邮件的方式将意见反馈至生态环境部,逾期未反馈的按无意见处理。/pp  联系人:生态环境监测司孙娟 滕曼/pp  电话:(010)66556826/66556829/pp  传真:(010)66556826/pp  邮箱:zhiguanchu@mee.gov.cn/pp  地址:北京市西城区西直门南小街115号/pp  邮编:100035/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202006/attachment/57bf5794-58de-4fa3-9f96-e644739b8a74.pdf" title="征求意见单位名单.pdf" style="text-decoration: underline color: rgb(0, 112, 192) font-size: 16px "span style="color: rgb(0, 112, 192) font-size: 16px "征求意见单位名单.pdf/span/a/pp  a href="https://www.instrument.com.cn/download/shtml/951130.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 邻苯二甲酸酯类化合物的测定 液相色谱-三重四级杆质谱法(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951132.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 邻苯二甲酸酯类化合物的测定 液相色谱-三重四级杆质谱法(征求意见稿)》编制说明/span/a/pp  本标准规定了测定地表水、地下水、工业废水、生活污水和海水中6种邻苯二甲酸酯类化合物的液相色谱-三重四极杆质谱法。本标准为首次发布。/pp  a href="https://www.instrument.com.cn/download/shtml/951133.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 可吸附有机卤素(AOX)的测定 微库仑法(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951134.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 可吸附有机卤素(AOX)的测定 微库仑法(征求意见稿)》编制说明/span/a/pp  本标准规定了地下水、地表水、生活污水和工业废水中可吸附有机卤素的微库仑测定方法。本标准是对《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB 15959-1995)的修订,本次为第 1 次修订。主要修订内容如下:/pp  ——扩充了标准的适用范围 /pp  ——取消了样品吹脱步骤 /pp  ——增加了干扰物质去除方法 /pp  ——增加了质量保证与质量控制章节。/pp  自本标准实施之日起,《水质 可吸附有机卤素(AOX)的测定 微库仑法》(GB 15959-1995)废止。/pp span style="color: rgb(0, 112, 192) " /spana href="https://www.instrument.com.cn/download/shtml/951135.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "水质 硫化物的测定 亚甲基蓝分光光度法 (征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951137.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《水质 硫化物的测定 亚甲基蓝分光光度法 (征求意见稿)》编制说明/span/a/pp  本标准规定了测定水中硫化物的亚甲基蓝分光光度法。本标准是对《水质 硫化物的测定 亚甲基蓝分光光度法》(GB/T 16489-1996)的修订。/pp  本标准首次发布于 1996 年,原标准起草单位为中国石油化工总公司和中国环境监测总站。本次为第一次修订,修订的主要内容如下:/pp  ——修订了适用范围 /pp  ——修订了方法检出限 /pp  ——删除沉淀分离法 /pp  ——增加了“酸化-蒸馏-吸收”前处理方法 /pp  ——增加了测定可溶性硫化物的内容 /pp  ——增加了质量保证和质量控制 /pp  ——增加了废物处理。/pp  自本标准实施之日起,原国家环境保护局 1996年4月26日发布的《水质 硫化物的测定 亚甲基蓝分光光度法》(GB/T 16489-1996)废止。/pp  a href="https://www.instrument.com.cn/download/shtml/951138.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "地表水监测技术规范(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/951140.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《地表水监测技术规范(征求意见稿)》编制说明/span/a/pp  本标准规定了地表水监测的布点与采样,监测项目与分析方法,监测数据处理,质量保证与质量控制,资料整编等内容。本标准的附录A、附录C和附录D为资料性附录,附录B为规范性附录。/pp  本标准是对《地表水和污水监测技术规范》(HJ/T 91-2002)中地表水监测技术规范部分的修订。修订的主要内容如下:/pp  ——增加了附录A,将水样保存和容器的洗涤统一为附录A /pp  ——增加了附录B,明确了地表水总磷现场监测前处理规定 /pp  ——增加了附录C,将资料整编章节中表格统一为附录C /pp  ——增加了附录D,将原附表1统一为附录D,更新了地表水监测项目分析方法 /pp  ——删除了流域监测 /pp  ——修改了适用范围、术语和定义中地表水内容的相关表述 /pp  ——完善了布点与采样、监测项目与分析方法、监测数据处理、质量控制与质量保证、资料整编等相关内容。/pp  自本标准自实施之日起,原标准《地表水和污水监测技术规范》(HJ/T 91-2002)中涉及到地表水监测的部分废止。/p
  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical Atomic Spectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • zNose4200在松花江流域检测饮用水中硝基苯
    当松花江流域受到污染时,为了保证沿江人民的饮用水安全,黑龙江省质量技术监督检验局紧急调用zNose4200,对饮用水中的苯和硝基苯进行检测,他们将随着污染物的流动沿江监测松花江流域一带的井水,桶装水和瓶装水水质。为了确保当地人民的饮用水和食品安全,质监人员将长期对饮用水水质和农副产品中的硝基苯进行监测。
  • 青海省标准化协会发布《工业废水中氯化物的测定 电位滴定法》团体标准
    由海西中科生态环境监测有限公司、大柴旦吉利化工有限公司、大柴旦中环联生物科技有限公司、青海中航硅材料有限公司、海西州盐化工产品质量检验检测中心、青海盐湖工业股份有限公司、青海省专利服务中心有限公司、青海民族大学、青海创和科技咨询有限公司等单位起草的《工业废水中氯化物的测定 电位滴定法》团体标准,经征求意见、多次修改,已通过专家评审。根据《青海省标准化协会团体标准管理办法》相关规定,予以批准发布。标准发布日期为2023年12月14日,实施日期为2023年12月14日。团体标准号为:T/QAS 099-2023《工业废水中氯化物的测定 电位滴定法》 青海省标准化协会2023年12月14日工业废水中氯化物的测定 电位滴定法.pdf团体标准的公告.jpg
  • “雷磁”水质分析解决方案助力生活饮用水标准检测方法
    最新版《生活饮用水卫生标准》(GB 5749-2022)于2022年3月15日获批发布,2023年4月1日实施,这次修订历时16年之久。日前,国家市场监督管理总局批准发布GB/T 5750-2023《生活饮用水标准检验方法》系列标准,并定于2023年10月1日起实施,以代替实施16年之久的GB/T 5750-2006 《生活饮用水标准检验方法》系列标准。据悉,此次修订除了满足GB 5749《生活饮用水卫生标准》中水质指标的检验需求,提高饮用水水质检验工作的效率,更主要的是为了解决GB/T 5750-2006存在的问题和不足。事关饮水健康!16年之后,生活饮用水卫生标准及检验方法迎来了哪些改变?同时对生活饮用水检测的相关仪器市场会产生怎样的影响?仪器信息网邀请上海仪电科学仪器股份有限公司(简称仪电科仪)为大家进行了详细解答。仪器信息网:本次《生活饮用水卫生标准》和《生活饮用水标准检验方法》的修订,具有什么重要的意义?是基于怎样的需求做出这样的改变?重点解决哪些方面的问题? 上海仪电科仪:我国经济飞速发展,水环境及饮用水卫生状况发生了较大变化,净水工艺也在不断提高,原标准已逐渐无法满足人民群众日益增长的美好生活需要。为适应现阶段我国饮用水国情,保证居民饮水用水安全,国家进行了本次《生活饮用水卫生标准》和《生活饮用水标准检验方法》的修订。这次修订不仅完善了城乡一体化的饮用水水质评价要求,还进一步强化了“从水源到水龙头”全过程全链条的管理,内容涉及生活饮用水水质要求,水源水质要求,集中式供水单位卫生要求,二次供水卫生要求,涉及饮用水卫生安全的产品卫生要求等。仪器信息网:《生活饮用水卫生标准》相较于之前有哪些重要的变化?新增或者删减了哪些指标? 上海仪电科仪:本次标准修订指标遴选的主要原则是反映我国当前的水质问题和水质风险,因此更加关注感官指标、消毒副产物指标、风险变化等,既可反映我国当前的饮用水水质状况,同时也体现了污染物健康效应的最新研究成果。调整内容如下: 1) 调整指标分类方法: 根据水质指标的特点,将指标分类方法由原标准的“常规指标和非常规指标”调整为“常规指标和扩展指标”,修改后指标分类表述更确切,避免了歧义的产生。其中,常规指标指反映生活饮用水水质基本状况的水质指标;扩展指标指反映地区生活饮用水水质特征及在一定时间内或特殊情况下水质状况的指标。 2) 调整指标限值、数量和项目: 新标准根据最新的人群流行病学和毒理学等相关学科的研究成果,结合我国实际情况,修订调整了9项指标限值,其中8项指标限值都比原标准有所提升。同时,水质指标由原标准中的106项调整为97项,包括常规指标43项和扩展指标54项。仪器信息网:相对应的,GB/T 5750-2023《生活饮用水标准检验方法》在哪些方面完善了原标准的不足之处?有哪些新增加的、调整的仪器方法或者技术? 上海仪电科仪:GB/T 5750-2023大幅增加了高通量的分析方法,扩展了质谱技术的应用范畴,也重点加强了自动化程度高检测方法,进一步强化了以人为本的制标理念,充分体现了方法标准的配套性和前瞻性,增加了现场检测的方法便利性(余氯、总氯)。 新增内容:例如,相比GB/T 5750.7,新版修订内容增加了高锰酸盐指数2种方法:分光光度法、电位滴定法;相比GB/T 5750.11,新版修订内容对原有指标中游离余氯、总氯进行了修订,增加了2个检验方法:生活饮用水中游离氯的现场 N,N-二乙基对苯二胺(DPD)、生活饮用水中总氯的现场 N,N-二乙基对苯二胺(DPD)。 调整内容:例如增加了部分术语和定义:最低检测质量 (minimum detectable mass),能够准确测定的被测物的最低质量;最低检测质量浓度(minimum detectable mass concentration),最低检测质量所对应的被测物的质量浓度。仪器信息网:新版《生活饮用水卫生标准》和《生活饮用水标准检验方法》的相继实施会对生活饮用水检测及相关仪器市场产生怎样的影响?是否会引起相关仪器市场的增加? 上海仪电科仪:标准和检验方法的变化,首先影响到的是仪器应用上的要求,会对相关第三方检测机构及仪器生产厂商的仪器设备提出新的要求,比如氨(以N计),从非常规指标变为常规指标;对一些现场检测方法进行了拓展,比如余氯、总氯等的现场检测等;一些新的方法得到了大量应用,比如流动注射法、连续流动法、液相-原子荧光联用、液相-质谱联用等,新方法的应用,将会引发这一类仪器的市场增量。仪器信息网:应对新标准的变化,贵单位可以提供哪些相关的仪器和解决方案?有哪些突出的技术优势? 上海仪电科仪:一是对于高锰酸盐指数——电位滴定法,推荐仪器是ZDJ-5B型自动滴定仪。这款产品的技术优势包括:①采用阀门滴定管一体化设计,直接更换,有效避免干扰;②支持动态滴定、等量滴定、预设终点滴定、恒滴定和手动滴定等多种滴定模式;③可定义计算公式,直接显示计算结果;④支持滴定方法的建立、编辑、拷贝和查阅,以及滴定结果重新计算功能,满足复杂滴定;⑤支持数据管理,可存储100套滴定方法和200套符合GLP要求的滴定结果;⑥支持数据统计分析和用户管理功能;⑦支持USB、RS232连接PC,双向通讯,支持U盘即插即用,随机赠送REX滴定专用软件;⑧可直接连接自动进样器实现批量样品的自动测量。ZDJ-5B型自动滴定仪二是对于高锰酸盐指数——分光光度法,公司可推荐仪器及解决方案是:DGB-425便携式水质分析仪+COD-401-1便携式消解器。仪器内置了基于酸性高锰酸钾氧化法-比色法测高锰酸盐指数的测试方法。检测方法直接调用,无需进行波长选择,也可直接读取测量结果,无需换算,自动锁定测量值。同时还提供高锰酸盐指数校准溶液和工作试剂包,一套可以实现100次样品的测量,满足批量多次实验要求。三是对于游离余氯——生活饮用水中游离氯的现场 N,N-二乙基对苯二胺(DPD)、总氯——生活饮用水中总氯的现场 N,N-二乙基对苯二胺(DPD)的检测,可推荐仪器是DGB-402F型便携式余氯/总氯测定仪。DGB-402F型便携式余氯/总氯测定仪• DPD法测量原理,直测量程0.02-3.00 mg/L,通过稀释法可拓展至10 mg/L,精度±3%或±0.02mg/L,重复性≤1.0%• 内置校准曲线,一键校零,一键完成测量• 标配余氯、总氯校准试剂包以及工作试剂包和便携式防护箱仪器信息网:您如何评价水质检测市场未来发展的需求情况?有哪些新技术或者应用方向值得关注? 上海仪电科仪:未来,水质检测实验室分析将对高通量的分析方法以及自动化程度高检测方法需求会提高,现场检测对便携式或移动式检测仪器的标准符合性以及现场快速的配套需求也会增加,预制试剂包特定场景化应用值得关注。仪器信息网:未来贵单位在水质检测领域有什么样的发展布局?有哪些新的产品或者技术即将推出? 上海仪电科仪:在水质检测领域,未来上海仪电科仪将进一步完善产品线,比如比色法水质分析仪,以及高通量自动化系列产品和饮用水在线监测类仪表。涉及到的应用场景会有饮用水城镇供水,饮用水农村供水,管道分质供水,饮用水污染开展饮用水应急监测,二次供水,直饮水,重大活动,饮用水水质监测等。今年,即将推出的新品将有:1、 实验室分析以及现场检测仪器:1)升级版 DGB-403F型便携式消毒剂测定仪集成2个特定吸收峰波长的 LED 光源,可实现余氯/总氯/一氯胺/二氧化氯/亚氯酸盐/氯酸盐/过氧化氢等7项消毒剂类检测项目,无需稀释,直接取样测量,余氯和总氯的直测范围可到12.0mg/L。DGB-403F2) 钨灯光源浊度计系列台式和便携式全覆盖3) 升级版LED光源浊度计系列4)升级版DGB-480型多参数水质分析仪集成8个特定吸收峰波长的 LED 光源,可实现60多个水质项目的检测。2、 二次供水/饮用水水质在线监测类仪表:1)SJG-702饮用水水质多参数水质分析仪• 模块化设计,支持pH值,TDS,浊度,余氯/总氯/二氧化氯,温度的测定,各测量参数可自由组合,灵活配置• 适用于测量饮用水管网水,二次供水水质监测2)SJG-791B在线消毒剂监测仪• 电极法测量余氯,总氯,二氧化氯或臭氧• 适用于测量自来水水源,饮用水管网水,二次供水水箱,污水消毒工艺,医疗污水及游泳池的消毒剂含量3)WZT-701B型在线浊度监测仪• 适用于低浊度样品如自来水、饮用水、二次供水、工业过程用水的浊度值测量• 测量量程为0.005-20.000NTU
  • 涵盖新污染物、温室气体、水生态等 环境监测总站征集2023国家生态环境监测标准预研项目
    11月29日,中国环境监测总站发布关于征集2023年度国家生态环境监测标准预研究项目(第二批)的通知。通知内容显示,本次征集范围包括:支持质量标准、风险管控标准、污染物排放标准等控制标准制订和实施的分析方法或技术规范;支撑新领域监测需求的分析方法或技术规范;应用监测新技术、新方法的分析方法或技术规范;服务重点工作的分析方法或技术规范;配套分析方法标准的标准样品等。特别值得一提的是,本次征集范围聚焦新领域监测需求,涵盖了新污染物监测技术及方法、新污染物监测技术及方法、 海洋监测技术与方法,水生态等领域相关监测评价技术与方法等。关于征集2023年度国家生态环境监测标准预研究项目(第二批)的通知为加强国家生态环境监测标准的前期研究和技术储备,提高生态环境监测标准制修订质量和效率,受生态环境部生态环境监测司委托,现开展2023年第二批国家生态环境监测标准预研究项目征集工作。有关事项通知如下。一、总体要求监测标准预研究为标准制修订项目立项前开展的标准化研究,监测标准预研究工作按照《国家生态环境监测标准预研究工作细则(试行)》(以下简称工作细则)(见附件1)实施。申报单位应按照工作细则第十条、第十一条等的要求提出项目。二、征集范围2023年第二批国家生态环境监测标准预研究项目征集重点领域主要包括:(一)支持质量标准、风险管控标准、污染物排放标准等控制标准制订和实施的分析方法或技术规范1. 控制标准已规定项目但缺少分析方法标准,从而需要制订的,如《涂料、油墨及胶粘剂工业大气污染物排放标准》(GB 37824—2019)、《石油化学工业污染物排放标准》(GB 31571—2015)、《合成树脂工业污染物排放标准》(GB 31572—2015)中监测标准空缺项目的分析方法;2. 被控制标准引用的分析方法标准因技术落后、适用范围不全、目标物不全、测定下限高或文字表述不清晰等问题需要修订的,如水中多氯联苯、乙醛,环境空气和废气中氨、苯系物等项目的分析方法;3. 配套控制标准实施的技术规范因内容不全、操作性不强等问题需要修订的,如《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T 16157—1996)、《固定源废气监测技术规范》(HJ/T 397—2007)等。(二)支撑新领域监测需求的分析方法或技术规范1. 新污染物监测技术及方法,如《重点管控新污染物清单(2023年版)》《第一批化学物质环境风险优先评估计划》《优先控制化学品名录》中尚无监测标准的抗生素、全氟化合物、得克隆、氯化石蜡、微塑料等项目的分析方法,满足新污染物监测需要的灵敏度更高的分析方法,以及相关技术规范;2. 温室气体相关监测方法,如甲烷、氧化亚氮等项目的分析方法;3. 海洋监测技术与方法,如海水水质、海洋沉积物、海洋垃圾等监测相关分析方法与技术规范;4. 水生态等领域相关监测评价技术与方法,如水生生物监测相关分析方法与技术规范。(三)应用监测新技术、新方法的分析方法或技术规范1. 污染源现场快速、在线监测技术;2. 实验室自动化监测技术,如连续流动分析方法等;3. 地下水在线监测技术等;4. 生态环境遥感监测技术等。(四)服务重点工作的分析方法或技术规范履行国际公约监测、海洋污染基线调查、衔接生活饮用水标准相关项目监测等工作需要的分析方法与技术规范。(五)配套分析方法标准的标准样品三、有关事项及要求(一)申报单位填写“国家生态环境监测标准预研究项目申报表”(见附件2),并加盖单位公章。(二)申报单位应于2023年12月8日前,将申报表纸质文件和电子文件报送至中国环境监测总站。电子文件(含word版及盖章扫描pdf版)发送至联系人邮箱(命名为“2023年预研究项目申报表-申报单位名称”),纸质文件邮寄至联系人地址(注明“申报2023年第二批国家生态环境监测标准预研究项目”)。(三)每个预研究项目申报表限填一个项目。(四)以收到预研究项目申报表电子文件盖章版时间为准,逾期不予受理。(五)鼓励有关单位单独或联合申报系列标准预研究项目。四、联系方式中国环境监测总站 吴萌萌电话:(010)84943253生态环境监测司 陈春榕电话:(010)65646262通信地址:北京市朝阳区安外大羊坊8号(乙)邮政编码:100012传真:(010)84943066电子邮箱:bz@cnemc.cn 附件:1. 国家生态环境监测标准 预研究 工作细则(试行) 2. 国家生态环境监测标准 预研究 项目申报表
  • 赛默飞发布在线固相萃取—双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案
    2014年7月8日,上海 ——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布在线固相萃取——双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案。苯胺类化合物是一种重要的有机化工原料和化工产品。环境中所含的苯胺类化合物主要来自于各种化工、染料、制药等工业废水中,一般毒性较高,少量就能引起人体中毒,其对环境的污染一直被人们所关注,美国、日本等国把苯胺类列入主要监测项目或优先监测污染物的黑名单。在我国苯胺类化合物也被列为环境中的重点污染物,并制定了最高容许排放浓度。DGLC双三元液相色谱系统 由于水体中苯胺的含量一般比较低,因此目前常用的苯胺分析方法,如HPLC、GC 和分光光度法等,均需要对大体积的水样进行前处理,后进行检测,操作比较繁琐。《GB/T 5750.8-2006 生活饮用水标准检验方法有机物指标》中采用GC 和重氮偶合分光光度法测定生活饮用水及水源水中的苯胺,其中,GC 方法需前处理10L 水样,对水样中苯胺的最低检测限为20μg/L;分光光度法需处理25 mL 水样,最低检测限为80μg/L。《水和废水监测分析方法(第四版)》中采用分光光度法和HPLC 法分别测定了5 种苯胺类化合物,检测限为0.5 ~ 1.5μg/L。赛默飞新解决方案采用双三元在线固相萃取—液相色谱法,水样只需简单过滤,即可进样。本方法直接进样2.5 mL,检出限即可达0.05 ~ 0.2μg/L。下载应用文章请点击:http://www.instrument.com.cn/netshow/SH100650/down_331133.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制