当前位置: 仪器信息网 > 行业主题 > >

频率响应分析仪原理

仪器信息网频率响应分析仪原理专题为您提供2024年最新频率响应分析仪原理价格报价、厂家品牌的相关信息, 包括频率响应分析仪原理参数、型号等,不管是国产,还是进口品牌的频率响应分析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合频率响应分析仪原理相关的耗材配件、试剂标物,还有频率响应分析仪原理相关的最新资讯、资料,以及频率响应分析仪原理相关的解决方案。

频率响应分析仪原理相关的论坛

  • 【求助】小女子跪求干法交流阻抗分析方法

    大家做的交流阻抗好像都是用恒电位仪和锁相放大器组合的把试样浸泡在溶液的三电极法做的,我最近用所谓的干法交流阻抗测试了涂覆在马口铁上的氯化橡胶涂层,交流阻抗仪器室频率响应分析仪和阻抗/频率相位分析仪组合成的,直接引出两个夹子电极,然后夹在试样上测试的,看到的资料丛没有这么测试的,谁有相关资料发给我一些,不胜感激啊

  • 请问可以用来测膜的质子导电率(交流阻抗)的仪器

    请问各位,用什么仪器可以测量膜的质子导电率呢,也就是交流阻抗,我看了看文献,好像可以用交流阻抗分析仪和电化学工作站,用频率响应分析仪可以吗?望知道的同仁不吝赐教,这是新开的课题,老师也不是很了解,全靠我一个人摸索了。还有各个仪器的价位大概是多少呢,毕竟新开的课题,还要尽量给老师省银子,呵呵!

  • 频谱分析仪常见六大问题答疑

    频谱分析仪是一种常用的[url=http://www.d117w.com]电子测试测量仪器[/url],主要用于射频和微波信号的检测,在许多领域有一定的应用。频谱分析仪的功能相对比较强大,初学者在使用光谱仪方面有一些常见的问题需要用户的注意,在使用频谱分析仪测试容易进入一些误区和疑惑。今天的小编向大家介绍[url=http://www.d117w.com/xwzx/cjwt/539.html][b]频谱分析仪使用的常见六大问题[/b][/url]。[align=center][img=频谱分析仪]http://www.d117w.com/uploads/171223/1-1G223145I3913.jpg[/img][/align][b] 频谱分析仪六大常见问题解答[/b]  Q1:如何设置频谱仪最佳的灵敏度观察微弱信号  A:首先根据被测小信号的大小设置相应的中心频率、扫宽(span)以及参考电平 然后在频谱分析仪没有出现过载提示的情况下逐步降低衰减值 如果此时被测小信号的信噪比小于15db,就逐步减小rbw,rbw越小,频谱分析仪的底噪越低,灵敏度就越高。  如果频谱分析仪有预放,打开预放。预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。对于信噪比不高的小信号,可以减少vbw或者采用轨迹平均,平滑噪声,减小波动。  需要注意的是,频谱仪测量结果是外部输入信号和频谱分析仪内部噪声之和,要使测量结果准确,通常要求信噪比大于20db。  Q2:分辨率带宽(rbw)是不是越小越好?  A:rbw越小,频谱分析仪灵敏度就越好,但是,扫描速度会变慢。最好根据实际测试需求设rbw,在灵敏度和速度之间找到平衡点-既保证准确测量信号又可以得到快速的测量速度。  Q3:平均检波方式(averagetype)如何选择:power?logpower?voltage?  logpower对数功率平均:又称videoaveraging,这种平均方式具有最低的底噪,适合于低电平连续波信号测试。但对”类噪声“信号会有一定的误差,比如宽带调制信号w-cdma等。  功率平均:又称rms平均,这种平均方式适合于“类噪声“信号(如:cdma)总功率测量。  电压平均:这种平均方式适合于观测调幅信号或者脉冲调制信号的上升和下降时间测量。  Q4:扫描模式的选择:sweep还是fft?  A:现代频谱仪的扫描模式通常都具有sweep模式和fft模式。通常在比较窄的rbw设置时,fft比sweep更具有速度优势,但在较宽rbw的条件下,sweep模式更快。  当扫宽小于fft的分析带宽时,fft模式可以测量瞬态信号 在扫宽超出频谱分析仪的fft分析带宽时,如果采用fft扫描模式,工作方式是对信号进行分段处理,段与段之间在时间上存在不连续性,则可能在信号采样间隙时,丢失有用信号,频谱分析就会存在失真。这种类型信号包括:脉冲信号,tdma信号,fsk调制信号等。  Q5:检波器的选择对测量结果的影响?  peak检波方式:选取每个bucket中的最大值作为测量值。这种检波方式适合连续波信号及信号搜索测试。  sample检波方式:这种检波方式通常适用于噪声和“类噪声”信号的测试。  negpeak检波方式:适合于小信号测试,例如,emc测试。  normal检波方式:适合于同时观察信号和噪声。  Q6:跟踪源(tg)的作用是什么?  A:跟踪源是频谱分析仪上的常见选件之一。当跟踪源输出经被测件的输入端口,而此器件的输出则接到频谱仪的输入端口时,频谱仪以及跟踪源形成了一个完整的自适应扫频测量系统。跟踪源输出的信号的频率能精确地跟踪频谱分析仪的调谐频率。频谱仪配搭跟踪源选件,可以用作简易的标量网络分析,观测被测件的激励响应特性曲线,例如:器件的频率响应、插入损耗等。  以上给大家解答了一些关于频谱分析仪在使用过程中经常遇到的一些问题,遇到这些问题可以根据频谱分析仪工作原理来分析。通过对于频谱分析仪的常见问题的了解,在对于频谱分析仪的使用可加深了解,能够更快的提高效率。

  • 【资料】频谱分析仪的使用

    频谱分析仪的使用一、 什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即X轴表示频率,Y轴表示信号幅度。二、 原理:用窄带带通滤波器对信号进行选通。三、 主要功能:显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。四、 测量机制:1、 把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。2、 波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如DG、DP、CLDI、调制深度、频偏等。五、 操作:(一) 硬键、软键和旋钮:这是仪器的基本操作手段。1、 三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显示在屏幕上。2、 软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对应于按键处显示什么,它就是什么按键。3、 其它硬键:仪器状态(INSTRUMNT STATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUX CTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USER测量/用户自定义、SGL SWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR 光标移动、RKR FCTN光标功能、PEAK SEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTO COVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个BKSP回退,数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗口键:ON打开、NEXT下一屏、ZOOM缩放。大旋钮下面的两个带箭头的键STEP配合大旋钮使用作上调、下调。(二)输入和输出接口:位于一起面板下边一排。TV IN测视频指标的信号输入口;VOL INTEN是内外一套旋钮控制、调节内置喇叭的音量和屏幕亮度;CAL OUT仪器自检信号输出;300Mhz 29dBmv仪器标准信号输出口;PROBE PWR仪器探针电源;IN 75Ω1M—1.8G测试信号总输入口。(三) 测试准备:1、限制性保护:规定最高输入射频电平和造成永久性损坏的最高电压值:直流25V,交流峰峰值100V。2、 预热:测试须等到OVER COLD消失。3、 自校:使用三个月,或重要测量前,要进行自校。4、 系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。配置步骤:按MODE键——CABLE TV ANALYZER软键——Setup软键,进入设置状态。细节为tune config调谐配置:包括频率、频道、制式、电平单位。Analyzer input输入配置:是否加前置放大器。Beats setup拍频设置、测CTB、CSO的频点(频率偏移CTB FRQ offset、CSO FRQ offset)。GATING YES NO是否选通测试行。C/N setup载噪比设置:频点(频率偏移C/N FRQ offset)、带宽。(四) 读取结果的方法:1、 电平的读取:主要使用参考电平REF。仪器屏幕图形上最上边的一行水平线是参考电平线。该线表示的电平为参考电平,其数值和单位显示在屏幕左上角。参考电平的值可以改变:按AMPLITUDE硬键,旋转大旋钮就可以改变,数字随时显示出来。图形每格的分贝数dB/DIV显示在屏幕左上角。2、频率的读取:图形里的中心频率、起始频率、终止频率三条竖线,各自代表的频率数显示在屏幕的下方。中心频率由Frequency硬键旋大旋钮调整;起始和终止频率由Span硬键旋大旋钮调整(实际是改变扫描宽度)。3、光标的使用:按MKR键,屏幕曲线上将出现闪动的光标。光标所在位置的电平和频率显示在屏幕左上角。光标可任意移动,移动到什么位置,就显示什么地方的频率和电平。4、 打印、存储5、视频测试六、 常用测试——频谱测试和频道测试(Cable TV分析):按MODE硬键,屏幕上显示两个软键:频谱测试和Cable TV分析,按对应的软键就进入各自的测试项目。1、 频谱测试:用三大硬键加上大旋钮即可实现一般分析。2、 频道测试:按Cable TV ANALIZER盘软键、再按屏道测试软键,显示出测试菜单(共四页),按频道选择CHINAL SELECT软键,用数字键盘输入欲测频道的标识频率(模拟电视频道为图象载波频率,数字频道为频道中心频率)后,就可以对该频道进行测试了。菜单内容如下:LISTEN ON/OFF 声音开/关EM DEV 调频调制深度VIEW INGRESS 图象串扰CARRIER LVL & FRQ载波电平/频率CARRIER/NOISE 载噪比HUM 交流声调制CROSS MOD交扰调制CSO/CTBDEPTH MOD 调制深度SYSTEM FRQ RSP 系统频率响应IN CHNL FRQ RSP 频道内频率响应DIE GAIN DIF PHAZ 微分增益、微分相位CLDI 色亮延时差DIGITAL CH POEWER数字频道功率FM RADIO调频广播七、 几个问题:1、 测C/N、CSO:仪器提供两个方法:关断调制和不关断调制。不关断调制,要在被测频道的调制信号里插入静止测试行,启动仪器的选通功能,可以不中断正常播出。测CSO须预先在Setup中设置拍频位置。以便仪器在设置的频率上找拍频。2、 测HUM、CM必须关掉调制(不关载波)。3、 测CTB必须关掉载波。因为CTB产物集中分布在载频近旁。关断载频后,CTB、CSO产物都可以在屏幕上看到。区别哪个是CTB还是CSO,利用他们与输入电平的关系来判断。4、 下列测试项目需要在场逆程插入静止测试行:不关断调制测C/N、CSO;测CTB;

  • 元素分析仪的检测原理

    元素 分析仪属于光电比色分析仪器,光是一种电磁波,具有一定的波长或者频率,如果按照波长或频率,如果按照波长或频率排列波长在200-400nm范围的光称为紫外光;人眼能感觉到光的波长介于400-760nm的电磁波,称为可见光。白色光是由各种不同颜色的光按一定的强度比例混合而成的。如果让一束光通过三棱镜和分解成红、橙、黄、绿、青、蓝、紫等七种颜色的光。每种颜色的光具有一定的波长范围,紫色光波长短,红色光波长长,只具有一种波长的光称为单色光。许多物质都具有一定的颜色。例如:高锰酸钾溶液呈紫红色,硫酸铜溶液呈蓝色等等。也有许多本身不具备颜色,但加入适当试剂后能生成有特征颜色的化合物,如锰元素的测定,假如硝酸-硝酸银溶液溶解后是淡黄色,接近无色,加入过硫酸铵后与溶液中锰元素反应生成红色的化合物,当锰元素在溶液改变时,溶液颜色也随之改变,锰元素越高颜色越深,反之颜色越浅。    元素 分析仪采用比色法对某种元素进行颜色对比,比色法是基于测量溶液中物质对光的选择性吸收程度而建立起来的分析 方法,目前广泛用于机械工业理化试验室中。    元素 分析仪采用定量的标准物质测其吸光度,通过同一种溶液及同一环境温度进行吸光对比,含量越高吸光度越高,它们之间的关系是:标样含量÷标样吸光度×试样吸光度=试样含量。

  • 【资料】testo风速仪的基本原理

    testo风速仪其基本原理是将一根细的金属丝放在流体中,通电流加热金属丝,使testo风速仪温度高于流体的温度,因此将金属丝称为“热线”。当流体沿垂直方向流过金属丝时,将带走金属丝的一部分热量,使金属丝温度下降。根据强迫对流热交换理论,可导出热线散失的热量Q与流体的速度v之间存在关系式。标准的热线探头由两根支架张紧一根短而细的金属丝组成,金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2mm;最小的探头直径仅1μm,长为0.2mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头,热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线testo风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。

  • 【分享】元素分析仪原理

    [size=4]元素分析仪属于光电比色分析仪器,光是一种电磁波,具有一定的波长或者频率,如果按照波长或频率,如果按照波长或频率排列波长在200-400nm范围的光称为紫外光;人眼能感觉到光的波长介于400-760nm的电磁波,称为可见光。白色光是由各种不同颜色的光按一定的强度比例混合而成的。如果让一束光通过三棱镜和分解成红、橙、黄、绿、青、蓝、紫等七种颜色的光。每种颜色的光具有一定的波长范围,紫色光波长短,红色光波长长,只具有一种波长的光称为单色光。许多物质都具有一定的颜色。例如:高锰酸钾溶液呈紫红色,硫酸铜溶液呈蓝色等等。也有许多本身不具备颜色,但加入适当试剂后能生成有特征颜色的化合物,如锰元素的测定,假如硝酸-硝酸银溶液溶解后是淡黄色,接近无色,加入过硫酸铵后与溶液中锰元素反应生成红色的化合物,当锰元素在溶液改变时,溶液颜色也随之改变,锰元素越高颜色越深,反之颜色越浅。元素分析仪采用比色法对某种元素进行颜色对比,比色法是基于测量溶液中物质对光的选择性吸收程度而建立起来的分析方法,目前广泛用于机械工业理化试验室中。元素分析仪采用定量的标准物质测其吸光度,通过同一种溶液及同一环境温度进行吸光对比,含量越高吸光度越高,它们之间的关系是:标样含量÷标样吸光度×试样吸光度=试样含量。[/size]

  • 【分享】频谱分析仪-E4440A

    仪器名称: 频谱分析仪-E4440A 仪器型号: 频谱分析仪 仪器品牌: 安捷伦 仪器指标: 3 Hz - 26.5GHz具有宽广观察角的16.8cm高分辨率彩色显示器非常便于识别所关心的信号。 下一代用户接口改善了使用的方便性。内置帮助能提供立即协助而无需使用手册。需要使用手册时,它将将以打印形式或在CDRON和全球网上提供。 若干单按键测量,如邻近信道功率(ACP),占用带宽,发射带宽信道功率,10个峰值表格和谐波失真测量能更快地给出重复性更佳的测量结果。 带有容限和合格/不合格住处怕多条极限线简化了生产测试。具有1Hz分辨率的内置频率计数器能对各个单独信号进行精确测量. 在可扩展用户存储吕中可以贮存达200条迹线或200个状态或多个测量应用软件。能利用软盘驱动器来贮存测量结果,并将测量结果传送至PC机,或利用Agilent Benchlind经GPIB和RS-232接口进行传送,SCPI遥控语言和即插即用驱动器增强了远程控制程序的开发。 3年全球保用期可以降低物主费用。测量速度:28次更新/秒 ·测量精度:±1dB ·可选用的10Hz分辨事宽滤波器 ·机箱可容纳6插槽选件卡 ·97dB三阶动态范围 ·能在现场使用的坚固,便于携带的机箱 ·3年保用期。 Agilent ESA-E系列频谱分析仪 Agilent ESA-E系列通用,便携式频谱分析仪拥有在同等价位上以往无法提供的许多性能,特点和灵活性。5咱型号可以提供从9kHz到1.5GHz与26.5GHz之间的频率范围。 测量速度快 5ms的全程射频繁扫描时间和每秒达88次的测量速度可以为您提供实际上的实时测量响应,这意味着将花较少时间对电路进行测试和调整,高速远程测量和每秒达19次测量的数据传送速度在自动测试环境中能缩短关键的测试时间,可选用的20μs零频率间隔扫描时间展出时域中的快速变化信号。

  • 频谱分析仪测量电磁干扰

    电磁干扰是电子产品设计中不可忽略的一个重要影响因素,要解决电磁干扰问题,就必须知道干扰源和发生的干扰幅度。测量电磁干扰源,有些工程师可能首先会想到使用数字示波器,但是示波器其实不是最好的测量电磁干扰的仪器,主要是因为:1、示波器测量取得的数据没办法和现有的标准进行比较,还需要将其波形转换成频域频谱才能进行比较;2、使用数字示波器没办法对叠加在一起的高频/低频信号进行测量;3、示波器的灵敏度达不到测量电磁干扰的层级。所以,除了示波器,还有一个更好的测量电磁干扰的仪器,那就是频谱分析仪。 频谱分析仪的工作原理如下图所示,由天线接收到信号,然后经过混频后,使信号频率达到中频,再经过中频放大器进入检波阶段,经过检波后再通过视频放大器将信号进行放大然后显示出来,就能测量出电磁干扰信号的数据。http://www.xmhaotian.com/upload/fck/14262318571452287212.jpg 频谱分析仪使用操作参数 1、扫描时间。扫描时间指的是从频谱仪从信号的频率最低端扫描到最高端所使用的时间,如果扫描时间偏短的话,则测量的信号幅度会比实际中信号幅度小。 2、频率扫描范围。如果扫描的频率范围越宽的话,那么测量的时间就会加长,测量精度就会降低,所以应尽量使用较小的频率范围来进行测量。 3、中频分辨宽带。通过对宽带的调整,可以提高频谱仪的选择性(选择性越高,可以对距离很近的两个信号进行测量)和频谱仪的灵敏度。

  • 【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    【转帖】智能工业电导仪误差来源及分析:电源频率引起的误差

    工业电导仪一般采用分压法测量溶液的电导,假如用直流电源作为外加电压,就会产生极化现象,使溶液的等效电阻发生变化 智能工业电导仪采用交流电源作为外加电压以消除极化造成的影响,但由此产生的后果是电导池系统便不再是纯电阻,而是包括容抗的阻抗,其分布情况见图1。但在考虑溶液浓度与电导的关系时,只能把电导池看作纯电阻元件,且在仪表定标时也以电阻箱代替它进行刻度,所以在测量溶液的电导时会产生误差。其大小与电源频率的关系如下。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912302155_193108_1615922_3.jpg[/img]图中Rl , 为电极电阻 为极化电阻 R3为电解液电阻 C1为电极表面双电层电容 C2为电解液电容。由图1知,与待测成分有关的部分是Rs,为了提高测量灵敏度,应使R3占总阻抗的比例越大越好,所以测量低浓度范围内的溶液,R3占的比例就大,仪表有较高的灵敏度。容抗Ze=1/2πfC。由此知,为降低与R3串联的C1, 的容抗,电源的频率取高些更为有利 同时提高电源频率也有助于减小极化电阻,但频率过高,会降低C2的容抗,这对精确测量R3是不利的。基于上述分析,智能工业电导仪采用了1 kHz方波电压,增强了驱动电压的负载能力,以保证电压的稳定性,使得仪表的测量误差小于1%,较模拟工业电导仪精度提高1%~20%。

  • 【原创大赛】一种聚合酶链反应分析仪(PCR仪) 检测设备的设计方案

    [size=24px][font=仿宋][b]摘要[/b]:[/font][font=仿宋]聚合酶链反应分析仪(PCR仪)广泛用于疾控、出入境检测、药监、生物制药企业、医疗机构、专业基因检测和分子生物实验室等。应用于司法鉴定、临床诊断、基因研究、疾病控制等领域。其控温性能直接影响到检测结果的可靠性。而常用的铂电阻温度计、热电偶温度传感器因尺寸问题不适用于聚合酶链反应分析仪(PCR仪)控温性能的校准,所以在检测、校准过程中必须使用专用的检测设备,而此类设备大多依赖进口,价格昂贵,未能普遍应用,使得聚合酶链反应分析仪(PCR仪)实验的数据、结果的可靠性不能得到有效保证。本文依据聚合酶链反应分析仪(PCR仪)的检测、校准项目,结合国家相关计量校准规范,提出一种用于聚合酶链反应分析仪(PCR仪)温度性能校准的专用检测设备。[/font][font=仿宋][b]关键词:[/b][/font][font=仿宋]聚合酶链反应分析仪、温度、校准、检测设备[/font][/size][font=宋体][size=22.0000pt][b] 一、绪论[/b][/size][/font][font=仿宋][size=24px]1、聚合酶链反应分析仪(PCR仪)[/size][/font][font=仿宋][size=24px]1.1聚合酶链反应分析仪(PCR仪)的基本原理[/size][/font][img=,561,467]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271433435955_7689_1638093_3.jpg!w561x467.jpg[/img][img=,550,269]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271434048558_6420_1638093_3.jpg!w550x269.jpg[/img][font=宋体][size=18px] [b]图1 基因扩增原理图[/b][/size][/font][size=24px][font=宋体][font=仿宋] 聚合酶链反应分析仪(以下简称PCR仪)就是聚合酶链反应过程中的控温设备,能在变性温度、复性温度、延伸温度之间准确进行温度调整、控制。[/font][/font][font=宋体][font=仿宋]1.2 PCR仪的分类1.2.1按功能分类 a)普通定性PCR仪 仅具备温度控制功能,自动调节温度至不同温度点,完成聚合酶链反应的变性、退火及延伸过程,可自动进行聚合酶链反应,完成基因扩增。 b)荧光定量PCR仪 荧光定量PCR仪是在普通PCR仪的基础上增加一个荧光信号采集系统和计算机分析处理系统的PCR仪,称作荧光定量PCR仪。其PCR扩增原理和普通PCR仪扩增原理相同,只是PCR扩增时加入的引物是利用同位素、荧光素等进行标记,使用引物和荧光探针同时与模板特异性结合扩增。扩增的结果通过荧光信号采集系统实时采集信号连接输送到计算机分析处理系统得出量化的实时结果输出。荧光定量PCR仪有单通道、双通道和多通道。当只用一种荧光探针标记的时候,选用单通道,有多荧光标记的时候用多通道。单通道也可以检测多荧光的标记的目的基因表达产物,因为一次只能检测一种目的基因的扩增量,需多次扩增才能检测完不同目的基因片段的量。[/font][/font][/size][font=仿宋][size=24px]1.2.2按孔数分类[/size][/font][font=仿宋][font=仿宋][size=24px] 目前常见的[/size][/font][/font][font=仿宋][size=24px]PCR仪按试验孔数分主要包括:48孔、96孔、384孔。[/size][/font][font=仿宋][font=仿宋][size=24px]1.3、PCR仪的检测校准[/size][size=24px]1.3.1 PCR仪的检测校准依据和主要校准项目[/size][size=24px] 目前,PCR仪的校准可执行JJF1527-2015《聚合酶链反应分析仪校准规范》。主要检测项目包括:[/size][size=24px] a)温度示值误差;[/size][size=24px] b)温度均匀度(孔间温差);[/size][size=24px] c)平均升温速率;[/size][size=24px] d)平均降温速率;[/size][size=24px] e)样本示值误差;[/size][size=24px] f)样本线性。[/size][/font][/font][font=仿宋][font=仿宋][size=24px] 其中温度示值误差、温度均匀度、平均升温速率、平均降温速率需使用专用温度测量设备进行校准。因考虑到聚合酶链反应过程中,反映酶在温度较高的条件下会发生活性下降甚至失活,对试验结果造成影响的问题,在校准过程中还应加入温度过冲项目的校准。所以用于校准聚合酶链反应分析仪温度性能的检测设备需具备校准:温度示值误差、温度均匀度(孔间温差)、平均升温速率、平均降温速率和温度过冲的功能。[/size][/font][/font][font=仿宋][font=仿宋][size=24px]1.3.2 PCR仪检测仪的功能和技术要求 依据JJF1527-2015《聚合酶链反应分析仪校准规范》的要求,用于校准PCR仪的校准设备,其温度测量性能需满足: a)测温范围:(0~120)℃; b)温度测量结果的不确定度:[i]U[/i]≤0.1℃([i]k[/i]=2); c)可同时测量多个孔的温度。[/size][/font][/font][font=仿宋][font=仿宋][size=24px] 同时为方便平均升温速率、平均降温速率和温度过冲项目的校准,还应具备自动计时、最高温度点自动记录、检测数据定时记录等功能。[/size][/font][/font][font=仿宋][font=仿宋][size=24px]1.4、PCR仪检测仪的发展现状 PCR仪由于实验室应用的特点,其样品槽较小,温度测量中常用的铂电阻温度计、热电偶传感器因尺寸问题,一般不适用于PCR仪温度性能的检测、校准,要实现PCR仪温度性能的检测、校准必须使用专用的检测设备。目前用于PCR仪温度计量性能检测的设备主要分为有线式检测和无线式检测,其中:[/size][/font][/font][font=仿宋][font=仿宋][size=24px] a)有线检测。有线检测的准确度较高,基本满足量传溯源的要求,但因连接线影响PCR仪温度环境的密闭性,使用过程中经常出现因控温环境不密闭,造成检测、校准结果不能真实反应仪器实际控温性能的问题,并且不适用于必须在密闭条件下使用的PCR仪的校准,不具备自动检测和记录功能。 b)无线检测。无线检测设备随能实现自动检测、自动记录检测结果,一次实验可完成多个参数的检测、校准,但目前多依赖于进口,而且准确度较低,不能满足量传溯源的要求。同时此类无线检测设备多为PCR仪生产企业针对本公司仪器开发的专用检测设备,主要用于对本公司产品的质量控制,对其他品牌的PCR仪不具备广泛适用性。 我国第一台PCR仪温场检测仪由成都市计量检定测试院于2013年引进。目前,已有50余家计量检测机构配置了此类设备,开展PCR仪的温度校准工作。但大多计量检测机构配的设备均为PCR仪生产厂家开发的仅适用于本公司产品的检测设备,不能适用于多种品牌、不同型号的PCR仪的校准,而且准确度相对较低,不能满足JJF1527-2015《聚合酶链反应分析仪校准规范》对标准器的要求。由于进口设备,价格昂贵(售价数十万元),不仅一般PCR仪使用机构难以配置,而且专业计量检测机构也极少配置,检测、校准能力严重不足。即便具备PCR仪检测、校准能力的计量检测机构也因检测设备购置成本较高,在开展此项检测、校准工作中也会收取较高的检测费用,致使目前PCR仪的定期溯源率相对较低。[/size][/font][/font][font=仿宋][font=仿宋][size=24px]1.5、发展趋势 随着JJF 1527-2015 《聚合酶链反应分析仪校准规范》的发布,各实验室对PCR仪温度计量性能校准的需求日渐增强,同时对校准系统的适用性、准确性和规范性要求越来越高,市场亟需一套适用广泛,满足现行国家计量校准规范,满足计量溯源体系的,售价在大多数检测机构承受范围内的专用校准系统。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]二、技术路线和技术方案[/b] 依据国家校准规范JJF1527-2015《聚合酶链反应分析仪校准规范》规定,PCR仪温场检测设备至少需要15个精密温度传感器,同时完成PCR仪温度计量性能的校准,测温范围:(0~120)℃,温度测量不确定度[i]U[/i]≤0.1℃([i]k[/i]=2)。因此温度采集器选用微小尺寸的高精度耐腐蚀同时具备线性的铂电阻PT1000作为传感器,探头按照PP标准反应管尺寸设计,PT1000涂导热胶后封于探头内。将温度传感器、信号放大采集、数据处理,数据存储集成到一个电路板产品上,非常有效的缩短传感器信号的距离,系统的抗干扰性和准确的提高,同时实现集成化小型化。 参照PCR仪温度控制标准程序,温度采集器将用恒温槽分段标定30℃、50℃、60℃、70℃、90℃、95℃六个温度点,其它温度通过线性换色,可以满足测温范围(0~120)℃,显示分辨率0.01℃,温度测量误差≤0.2℃,通过定期校准,进行修正后,可实现30℃、50℃、60℃、70℃、90℃、95℃六个温度点的测量结果的不确定度[i]U[/i]≤0.1℃([i]k[/i]=2)。 为了实现小型化集成化和无线连接等智能化,PCR仪温场检测设备设计包括温度采集器,无线信号接收器,电脑软件,手机软件;温度采集器功能包括温度传感器,信号放大采集,单片机数据采集和处理,蓝牙无线收发,锂电池充放电管理,USB数据通信等功能,系统复杂功能强大,物理尺寸很小方便工作人员使用;无线信号接收器通过USB插入电脑,用于无线连接温度采集器,实现动态实时数据交互,完成校准工作;电脑软件用于控制和数据接收工作,公司完成数据分析和报告;手机软件用于移动监控和数据下载。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]三、技术创新点[/b] 3.1、设计开发的PCR仪温场检测设备,在满足我国JJF1527-2015《聚合酶链反应分析仪校准规范》的基础上,实现集成化、小型化,并采用无线连接,适用性较强;[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,520,308]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271440249432_2417_1638093_3.jpg!w520x308.jpg[/img][/font][/font][/font][font=仿宋][font=仿宋][size=18px] [b] 图2 采用无线传输方式的PCR仪温度校准系统[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 3.2、设计选用微小尺寸的高精度铂电阻RTD传感器,并将温度传感器、信号放大采集、数据存储集成到一个电路板产品上,系统的抗干扰性和准确度提高,同时实现小型化。温度传感器分布符合JJF1527-2015《聚合酶链反应分析仪校准规范》对温度传感器的分布要求,各温度传感器间距、尺寸与市场主流PCR仪相匹配,可直接替代PCR仪专用孔板嵌入PCR仪进行测量。[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,548,365]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271441522860_8625_1638093_3.jpg!w548x365.jpg[/img][/font][/font][/font][font=仿宋][size=18px] [b] 图3 PCR仪温度校准系统温度传感器的分布[/b][/size][/font][font=仿宋][size=24px][img=,325,228]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271442214388_1285_1638093_3.jpg!w325x228.jpg[/img][/size][/font][size=18px][b][font=仿宋]图4 [/font][font=仿宋]JJF1527-2015[/font][font=仿宋]规定的温度传感器布点要求[/font][/b][/size][font=仿宋][size=24px] 3.3、PCR仪温度校准系统包括温度采集器,无线信号接收器,电脑软件,手机软件;温度采集器集成了温度传感器,信号放大采集,单片机数据计算,蓝牙无线收发,锂电池充放电管理,USB通信等功能; 3.4、本系统可采用恒温槽和标准温度计对实际校准点,30℃、50℃、60℃、70℃、90℃、95℃六个温度点进行温度分段标定,提高测量准确度;[/size][/font][font=仿宋][size=24px][font=仿宋] 3.5[/font][font=仿宋]、[/font][font=仿宋]本[/font][font=仿宋]系统的温度采集[/font][font=仿宋]器[/font][font=仿宋]采用[/font][font=仿宋]锂电池[/font][font=仿宋]供电[/font][font=仿宋],[/font][font=仿宋]方便[/font][font=仿宋]产品的[/font][font=仿宋]无线[/font][font=仿宋]连接[/font][font=仿宋]和[/font][font=仿宋]移动工作[/font][font=仿宋];[/font][font=仿宋]通过[/font][font=仿宋]电池[/font][font=仿宋]采用直流电压[/font][font=仿宋]供电提高了温度信号采集的稳定性,[/font][font=仿宋]隔离[/font][font=仿宋]了工频电源的[/font][font=仿宋]干扰;[/font][font=仿宋]通过USB[/font][font=仿宋]接口[/font][font=仿宋]给温度采集[/font][font=仿宋]器的[/font][font=仿宋]锂电池进行充电[/font][font=仿宋];[/font][font=仿宋] 3.6[/font][font=仿宋]、本[/font][font=仿宋]系统的温度采集[/font][font=仿宋]器设计数据[/font][font=仿宋]存储芯片,[/font][font=仿宋]用[/font][font=仿宋]电池供电工作自动[/font][font=仿宋]进行[/font][font=仿宋]温度采集[/font][font=仿宋]存储,校准工作[/font][font=仿宋]完成后,[/font][font=仿宋]再[/font][font=仿宋]连接电脑读出数据[/font][font=仿宋]做[/font][font=仿宋]分析[/font][font=仿宋]和[/font][font=仿宋]报告[/font][font=仿宋],可[/font][font=仿宋]实现[/font][font=仿宋]多台[/font][font=仿宋]机器同时校准工作;[/font][font=仿宋] 3.7[/font][font=仿宋]、[/font][font=仿宋]本[/font][font=仿宋]系统的温度采集[/font][font=仿宋]器设计USB[/font][font=仿宋]数据接口[/font][font=仿宋]和[/font][font=仿宋]无线[/font][font=仿宋]蓝牙;[/font][font=仿宋]可通过USB[/font][font=仿宋]或者[/font][font=仿宋]无线蓝牙[/font][font=仿宋]对[/font][font=仿宋]温度采集器进行监控[/font][font=仿宋]和[/font][font=仿宋]数据读取[/font][font=仿宋]。[/font][/size][/font][font=仿宋][font=仿宋][size=24px][b]四、产品功能[/b] 4.1、具有无线连接功能,可以使用USB无线接收器进行工作,也可以用手机APP进行操作工作; 4.2、采用高精度铂电阻RTD传感器,测温范围(0~120)℃,分辨率0.01℃,温度测量误差≤0.2℃,通过校准,进行修正后,可实现测量结果的不确定度[i]U[/i]≤0.1℃([i]k[/i]=2); 4.3、温度采集器设计了锂电池,通过USB充电; 4.4、温度采集器设计了数据存储芯片,用电池供电工作自动进行温度采集存储,校准工作完成后,再连接电脑读取数据,自动完成数据处理,生成校准报告。并根据采集得到的数据自动生成热成像图,通过热成像图直观体现PCR仪各加温孔内温度的偏移情况,为试验人员提供参考,避免使用温度明显偏移温度设定点的加温孔进行试验。同时可实现多台仪器同时校准,集中读取校准数据;[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,563,395]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271444186719_9018_1638093_3.jpg!w563x395.jpg[/img][/font][/font][/font][font=仿宋][font=仿宋][size=18px] [b]图5 PCR温场检测系统依据检测数据自动生成热成像图[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 4.5、温度采集器设计了无线蓝牙;电脑可通过USB或者无线蓝牙对温度采集器进行监控和数据读取。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]五、技术指标[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 5.1、集成化小型化。温度传感器,检测探头,信号放大采集,数据计算,数据存储,无线蓝牙连接,USB通信接口,锂电池供电及充放电控制;实现以上功能产品,并且设计可以放入PCR仪([url=https://insevent.instrument.com.cn/t/jp][color=#3333ff][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]基因扩增仪[/color][/url][/color][/url])的物理尺寸。[/size][/font][/font][font=仿宋][font=仿宋][font=仿宋][img=,379,269]https://ng1.17img.cn/bbsfiles/images/2020/06/202006271445178540_2384_1638093_3.jpg!w379x269.jpg[/img][/font][/font][/font][font=仿宋][font=仿宋][size=18px] [b]图6 直接以PCR温场检测仪代替孔板放入PCR仪[/b][/size][/font][/font][font=仿宋][font=仿宋][size=24px] 5.2、实现无线接收器,可以无线连接温度采集器,发送控制命令,或者将温度数据通过USB转发给电脑。 5.3、实现电脑软件,用于人机控制,对PCR仪校准过程中的数据动态监控,数据分析和数据报告的输出。 5.4、实现手机软件,用于移动状态监控和数据监控。 5.5、适用于48孔、96孔PCR仪的检测、校准,温度采集共15个通道,分辨率0.01℃,测量误差≤0.2℃。 5.6、温度采集15个通道,每个通道温度数据10sps,即每秒实现采集10个温度数据。预估整个校准工作25分钟需要产生:10sps * (25 * 60)seconds * 15channel = 225000个温度数据。数据存储选择4Mbit闪存芯片。 5.7、PCR仪温度校准系统的温度采集器工作电流估算30mA,峰值电流估算50mA,电池工作有效时间设计2小时,选择输出3.7V的锂电池容量大于100mAh。 5.8、USB数据读取闪存芯片中的温度数据,不超过30秒。无线蓝牙传输温度数据,不低于每秒150(10sps*15channel)个温度数据。[/size][/font][/font][font=仿宋][font=仿宋][size=24px][b]六、市场分析[/b] 目前,我国在用PCR仪约300万台,并逐年递增。主要分布于疾控、出入境检测、药监、生物制药企业、医疗机构、专业基因检测和分子生物实验室等。应用于司法鉴定、临床诊断、基因研究、疾病控制等领域,特别是在病毒性传染病筛查过程中发挥着至关重要的作用。由于目前专用的PCR仪温场检测设备价格昂贵,全国仅50余家计量检测机构具备检测能力,无法满足每年PCR仪的检测需求。而此套检测设备的开发成功,在技术性能满足JJF1527-2015《聚合酶链反应分析仪校准规范》,达到国外同类产品技术水平的条件下,产品价格预计可降低50%,为中小型计量检测机构购置PCR仪温场检测设备开展校准工作提供了可能,同时也可用于PCR仪使用机构定期核查PCR仪温度性能,合理选用反应试剂,提高检测可靠性。[/size][/font][/font][size=24px]结束语[/size][font=仿宋][font=仿宋][size=24px] PCR仪专用检测仪是以实现PCR仪的计量校准为目的开发的专用检测设备,解决了长期以来此类设备依赖进口的问题,有助于PCR仪量值溯源体系的建立和完善,通过定期校准的方式保证PCR仪检测结果的可靠性。能够为我国基因研究、食品安全检测、医学诊断等领域提供必要的技术保障。[/size][/font][/font][size=32px][color=#cc0000][i]注:此套检测设备已于2020年实现技术成果转化,并开始小规模生产。[/i][/color][/size]

  • 功率分析仪有效带宽小结

    一、什么是功率分析仪有效带宽?  功率分析仪有效带宽是指功率分析仪能够测量和分析的信号的最高频率。  周期信号的频谱由幅度谱和相位谱组成。频谱的包络线每隔一个角频率时,通过零点。在某一个零点之后,谐波的幅值将会逐渐减小。通常将包含主要谐波分量的这段频率范围称为被测信号的有效带宽。  被测信号的有效带宽必须小于功率分析仪的有效带宽,换言之,功率分析仪的有效带宽必须大于被测信号的有效带宽,才不会对被测信号造成明显的衰减或失真。  功率分析仪测量信号的有效带宽与阶跃响应的上升时间成反比。  功率分析仪有效带宽是仪器频率特性中的重要指标,具有实际应用意义。在功率分析仪有效带宽内,必须集中了所测信号的绝大部分谐波分量。换句话说,若信号丢失有效带宽以外的谐波成分,不会对信号产生明显影响,这样的测量才会有意义。同样,任何系统也有其有效带宽。当信号通过系统时,信号与系统的有效带宽必须“匹配”。若信号的有效带宽大于系统的有效带宽,则信号通过此系统时,就会损失许多重要成分而产生较大失真;若信号的有效带宽远小于系统的有效带宽,信号可以顺利通过,但对系统资源是巨大浪费。二、什么情况下功率分析仪有效带宽会出现混叠现象?  当功率分析仪对连续信号进行等间隔采样时,如果不能满足采样定理,即采样频率低于功率分析仪有效带宽的两倍,采样后信号的进行频谱分析时,会出现率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失真称为混叠。这种情况下是功率分析仪有效带宽过宽或采样频率过低导致。只有提高采样频率,使之达到最高信号频率的两倍以上,或降低功率分析仪有效带宽,使其低于采样频率的二分之一,才能用采样样本正确还原信号;  抗混叠滤波器:是一个低通滤波器,用以在输出电平中把混叠频率分量降低到微不足道的程度。这种滤波器是将信号的高频信号滤去,是对原始信号的一种预处理,使信号达到跟功率分析仪有效带宽“匹配”的要求。三、什么情况下功率分析仪有效带宽可以欠采样?  有些功率分析仪采用欠采样技术,欠采样是指采样频率低于两倍的功率分析仪有效带宽,违反采样定理。但是,当信号属于较严格周期信号时,对连续多个周期尽心欠采样,而每个周期的采样序列有一个固定的延时。比如说,采样频率为100kHz,采样周期为10nS,第一个周期从0时刻开始采样,而第二个周期5nS(从二分之一采样周期)处开始采样,然后,将两个周期的采样数据合并,就得到了一个周期的200kHz采样频率的采样样本序列。欠采样技术在信号并非严格周期信号时,会有较大的误差。 信号上升时间与宽带有什么关系呢?请看:http://www.vfe.cc/NewsDetail-1819.aspx

  • 关于频谱分析仪的问题!

    在推销频谱分析仪时,因为实时频谱分析仪能显示周期性杂散波的瞬时反应,所以比别的仪器贵。除此之外它还有哪些优点呢?另外,我想知道根据它的频率怎么得出一个声压级的值?因为不知道这个在哪里问,只好发到这里。。。新手等各位解答[em45]

  • 血细胞分析仪检测原理

    目前血细胞分析仪检测原理包括电学和光学两种,电学包括电阻抗法和射频电导法,光法包括激光散射法和分光光度法。电阻抗法根据Coulter原理及血细胞非传导的性质,以电解质溶液中悬浮的血细胞在通过计数小孔时引起的电阻变化进行检测为基础,进行血细胞计数和体积测定。当有细胞通过小孔时,由于电阻增加,于瞬间引起电压变化及通过脉冲。细胞体积越大,脉冲振幅越高,细胞数量越多,脉冲数量也越多。脉冲信号经过:放大、阈值调节、甄别、整形、计数而得出细胞技术结果。电阻抗法可准确量出细胞(或类似颗粒)的大小,是三分类血液分析仪的主要应用原理,并与光学检测原理组合应用于五分类血液分析仪中。激光散射法应用了流式细胞术检测原理及细胞通过激光束被照射时,产生与细胞特征相应的各种角度的散射光。对经信号检测器接受的散射光信息进行综合分析,即可准确区分正常类型的细胞。激光散射法在区别体积相同而类型不同的细胞特征时,比电阻抗法分群更加准确。故激光散射法已成为现代五分类血液分析仪的主要检测原理之一。射频电导法是用高频电磁探针渗入细胞膜脂质可测定细胞的导电性,提供细胞内部化学成分、细胞核和细胞质、颗粒成分等特征信息。射频电流是每秒变化大于10000次的高频交流电磁波,能够通过细胞壁。分光光度法是所有类型的血细胞分析仪检测血红蛋白的原理,它利用血红蛋白与溶血剂在特定波长下比色,吸光度的变化与液体中血红蛋白含量成比例。

  • 【求助】阻抗频谱分析仪相关资料

    有关阻抗频谱分析仪4294A以及微波网络分析仪PNA8263B测介电常数相关的资料视频等。 分别列出他们的测量频率范围,样品要求及各自优缺点(包括同种仪器各种不同测量方式的优缺点)万分感谢!!

  • 【分享】-----红外光谱基团频率分析及应用

    红外光谱基团频率分析及应用 基团频率和特征吸收峰物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。 实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。一、基团频率区和指纹区(一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域:LT7U 键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子, -C  N基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C  N基越近, -C  N基的吸收越弱,甚至观察不到。1900~1200 cm-1为双键伸缩振动区 该区域重要包括三种伸缩振动: ① C=O伸缩振动出现在1900~1650 cm-1 ,是红外光谱中很特征的且往往是最强的吸收,以此很容易判断酮类、 醛类、酸类、酯类以及酸酐等有机化合物。酸酐的羰基吸收带由于振动耦合而呈现双峰。② C=C伸缩振动。烯烃 的C=C伸缩振动出现在1680~1620 cm-1 ,一般很弱。单核芳烃的C=C伸缩振动出现在1600 cm-1和1500 cm-1附近,有两个峰,这是芳环的骨架结构,用于确认有无芳核的存在。③ 苯的衍生物的泛频谱带,出现在2000~1650 cm-1范围, 是C-H面外和C=C面内变形振动的泛频吸收,虽然强 度很弱,但它们的吸收面貌在表征芳核取代类型上是有用的。(二)指纹区d 1. 1800(1300)~900 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动和C=S、S=O、P=O等双键的伸缩振动吸收。 其中 1375 cm-1的谱带为甲基的 C-H对称弯曲振动,对识别甲基十分有用,C-O的伸缩振动在1300~1000 cm-1 ,是该区域最强的峰,也较易识别。 900~650 cm-1区域的某些吸收峰可用来确认化合物的顺反构型。 例如,烯烃的=C-H面外变形振动出现的位置,很大程度上决定于双键的取代情况。对于RCH=CH2结构,在990 cm-1和910 cm-1出现两个强峰;为RC=CRH结构是,其顺、反构型分别在690 cm-1和970 cm-1出现吸收峰,可以共同配合确定苯环的取代类型。二、常见官能团的特征吸收频率三、影响基团频率的因素 基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因素,对解析红外光谱和推断分子%( 结构都十分有用。 影响基团频率位移的因素大致可分为内部因素和外部因素。 内部因素:1. 电子效应 包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子分布不均匀引起的。(1)诱导效应(I 效应) 由于取代基具有不同的电负性,通过静电诱导作用,引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位移。 例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了C=O键的力常数,使C=O的振动频率升高,吸收峰向高波数移动。随着取代原子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度越显著。(2)中介效应(M效应)当含有孤对电子的原子(O、S、N等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使C=O上的电子云更移向氧原子,C=O双键的电子云密度平均化,造成C=O键的力常数下降,使吸收频率向低波数位移。 对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。 2 . 氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体, C=O键频率出现在1700 cm-1 。 分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 3. 振动耦合 当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动! 相互作用。其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。振动耦合常出现在一些二羰基化合物中,如,羧酸酐。4.Fermi共振 当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或发生裂分,这种现象称为Fermi共振。外部因素 外部因素主要指测定时物质的状态以及溶剂效应等因素。 同一物质的不同状态,由于分子间相互作用力不同,所得到光谱往往不同。 分子在气态时,其相互作用力很弱,此时可以观察到伴随振动光谱的转动精细结构。 液态和固态分子间作用力较强,在有极性基团存在时,可能发生分子间的缔合或形成氢键,导致特征吸收带频率、强度和形状有较大的改变。例如,丙酮在气态时的 C-H为1742 cm-1 ,而在液态时为1718 cm-1 。 在溶液中测定光谱时,由于溶剂的种类、溶剂的浓度和测定时的温度不同,同一种物质所测得的光谱也不同。通常在极性溶剂中,溶质分子的极性基团的伸缩振动频率随溶剂极性的增加而向低波数方向移动,并且强度增大。因此,在红外光谱测定中,应尽量采用非极性的溶剂。

  • 【求助】阻抗频谱分析仪相关资料

    有关阻抗频谱分析仪4294A以及微波网络分析仪PNA8263B测介电常数相关的资料视频等。 分别列出他们的测量频率范围,样品要求及各自优缺点(包括同种仪器各种不同测量方式的优缺点)万分感谢!!

  • 握在手里的USB微型频谱分析仪信号源

    握在手里的[url=https://www.bjutc.com/]USB微型频谱分析仪[/url],重量只有95克体积小,功能强大的USB频谱分析仪,可以应对频谱分析仪各种挑战,频谱监测,微波测量,EMC测试,WIFI和无线网络测试。其价格只有普通频谱分析仪的十分之一不到,既减少桌面使用空间,又方便携带。配备PC端配套软件(可免费下载)。最高频率6.2GHz,频率范围从100Hz到6.2GHz;最小频率步进1Hz,频率稳定度是±0.28ppm.参考电平范围:高频段 -70dBm至+30dBm ;低频段 -50dBm至+30dBm 。调解功能:AM、FM、PM、ASK、FSK、PSK、MSK、GMSK、BPSK、8PSK、I&Q data、EVM、Eye diagram、Constellation 。外形尺寸:100mm(长)×25mm(宽)×25mm(高)。外接IQ输出: 工作温度:-10°C至+50°C存放温度:-50°C至+70°C 幅度测量范围:低频段:平均噪声电平至+10dBm 高频段:平均噪声电平至+24dBm(连续波)高频段:平均噪声电平至+28dBm(脉冲波)[url=https://www.bjutc.com/]USB微型频谱分析仪[/url]设计体积小巧易携带,USB直接供电设计配合PC端的软件可以出色完成传统台式频谱仪的基本项目测试,工作方式与传统频谱仪基本相同,非常适合户外现场测试测量,室内测量又可以缩小作台空间。该硬件通过USB接口与PC电脑互连,再结合高效灵活的软件,在电脑里完成对硬件的控制、分析和显示等测试测量工作。[url=https://www.bjutc.com/about.html]北京普信创业科技有限公司[/url]

  • 出售HP35670A 35670A 动态信号分析仪

    产品名称:动态信号分析仪 品  牌: Agilent 产品型号: 35670A 产品指标: 现场进行测试,测试质量可达实验室等级HP35670A可在各种现场进行测试,测试质量可达实验室等级,比如在小汽车测试轨上,或飞过城市上空时,或在潜艇狭窄的密闭舱内。它的体积很小,可以放在飞机座位现面。HP35670是一种有二通道或四通道(选件AY6)的FFT类型频谱/网络分析仪。这种标准仪器可在直流至100KHz左右的范围内进行频谱、网络、时域及幅度域测量。采用四通道HP35670A可以增加下列场合的测量能力,在汽车内测量不同地方的噪声,进行三轴向振动测量,或者沿着噪声传输路径收集不同位置的数据。Agilent 35670A可以把所有工具放在一个包装箱内。倍频程分析选件1D1可以增加1/1,1/3或1/12倍频程频谱的实时测量功能,频率高达40KHz。计算阶次跟踪选项1D0能显示出频谱与阶次间的函数关系,或者表示出多个阶次的幅度与PRM的函数关系。高达8MB的附加存储器(选件UFC)将大容量的瞬态时间俘获或多余的空间提供给四组以内的时域或频域瀑布型(Waterfall)数据。任意可调整源(选件1D4)使人们可以用实际的测试信号进行测量。使用“HP仪器BASIC”语言,可以自动测量或者规定仪器接口。只要用这样一台仪器,就可以在现场处理振动及噪声问题。(你可以对所有选件进行更换,所以当前只买需要的功能模块,以后根据需要再添加).深瞬态时间捕获存贮器可记录4通道数据及转速表信号,以用于窄带FFT,倍频程,相关,阶或直方图工作方式。预触发和后触于窄带FFT,倍频程,相关,阶或直方图工作方式。预触发和后触发延迟功能使您能捕获单次事件的前沿,或删除信号的传输延迟。可达40KHz的实进倍频程分析(ANSI SI.11-1986)倍频程分析(选件1D1)相当于对Agilent 35670A增添了实时倍频程分析功能。对信号进行1/1,1/3或1/12倍频程带内分析。通过小型话筒适配器和电源(选项UK4)对四个LEMO连接器供电,用于小型话筒35670A中的1/1和1/3倍频程波滤器完全符合ANSISI.11-1986(order 3 Type 1-D),DIN45651以及IEC225-1996。如果需要,可以应用总功率波和A-加权总功率波段。所有这三个倍频程模式和总功率波段通过一个模拟滤波器变为A级加权,该滤波器应与IEC651-1979类型O完全符合总功率波段可以重新规定为一个符合IEC651-1979类型O的宽带脉冲检测器。无风扇(fan-off)模式可以消除测量中的仪器噪声。粉红噪声(pink.nois) 源可用来测定电声器件。在阶域观察谱(选件1D0观察频谱与阶次的函数关系,用计算阶次跟踪(选件1D0)同时在上个通道内对每个通道跟踪5个阶次。跟踪阶次最高可以达到200。阶次图与RPM或时间的关系可利用瀑布功能把它们显示在屏幕上。瀑布樗可用来观察任意阶次的跟踪。   计算阶次跟踪法最适宜于检查旋转机械的故障。加速运转或减速运转的测量结果可以用Bode格式或极坐标格式显示。另一个好处是可显示示波器级的轨迹图。由于随着PRM的变化,再次采样的数据也变化,因此在旋转轴的PRM变化时单环扫迹的显示保持不变。由于有四个通道(选件AY6),可同时测得二条扫迹,例如在轴的二端。PRM测量的读出数据(任何模式下都有此功能)进一步描述旋转机械的测量结果。   计算阶产供销跟踪提供了能抗混叠保护的测量,且无需外加昂贵而又笨重的比率合成器和跟踪滤波器。这一新技术利用了数字跟踪算法,它能跟上轴的PRM的迅速变化而无需延时,还能消除与比率合成器技术有关的相位噪声,而且也提高了精度。宽量程式的下弦扫频(选件1D2)   正弦扫频(选件1D2)仪器方式将HP35670A的网络分析范围扩展到130dB。更高的噪声抑制和精度可通过在扫描过程中自动调程来实现。自动扫描分辨率可以缩短测量时间而且不影响精度。扫描分辨率可由用户自己设置。先进的建模及分析可缩短设计时间   通过曲线拟合及合成的方法(选件1D3)修正建模设计,可以减少对原型的修改。在典型应用中,被子测器件的模型是通过对测得的频率响应进行曲线拟合而产生手。可用多达20个极点和20个零点来描述器件。结果台以按极点/零点、极点/余项或者多项等到格式给出。然后设计者将电路模型转换为合成函数。通过综合,增删极零点即可修改电路模型。修正后模型的频率响应函数再次被合成以检验设计修正。自动化可以提高生产效率在较小的测试系统中,“Agilent 仪器BASIC”(选件1C2)可以取代外部计算机。它同计算机一样可以用于自动测量、产生专用的用户接口、从原始数据中合成新的信息,或者控制其它仪器。可选购的外部键盘,执着至面板中。35670A能直接控制外部磁盘、绘图仪,以及通过GPIB、RS-232或燕行接口控制打印机、绘图仪,还通通过GPIB进行完全编程*作。选件100捆绑软件   把1D0至1D4及UFC选件捆绑销售,价格比分开购买低35%。主要参考资料35670A 旋转动态测量,p/n 5966-0518E35670A 技术数据表, p/n 5966-3064E35670A 产品概述, p/n5966-3063EDSA 附件目录, p/n 5966-2340e标准数据格式, p/n 5091-2945E订货信息:35670A 动态信号分析仪OPT AY6 增加2个输信通道OPT 1D0 计算阶跟踪测量OPT 1D1 实时倍频程测量OPT UK4 传声器适配器和电源OPT 1D2 正弦扫频测量OPT 1D3 曲线拟合/合成OPT 1D4 任意波形信号源OPT 1C2 HP 仪器BASICOPT AN2 增加4MB存储OPT UFC 增加8MB RAMOPT 100 捆绑软件OPT UFF 增加1MB 非易失性RAM标准数据格式备注:本公司专业经营各类二手进口仪器(销售、租赁业务),成色新,价格低,技术先进、质量可靠、性能稳定的优良产品。长期承接销售、租赁、维修、回收二手高档仪器, 包括Agilent、HP、Anritsu、Advantest、R/S、/MARCONI等世界知名品牌的具备丰富的经验和库存!

  • 如何操作usb频谱分析仪

    如何操作usb频谱分析仪

    [font=Arial][color=#00b050][font=Arial]如何操作[/font][font=Arial][url=https://www.bjutc.com/jszc.html]usb频谱分析仪[/url][/font][/color][/font][font=Arial][color=#191919][font=Arial]以我们这款[/font][font=Arial]Triarchy系列中的VSA6G2A为例,首先我们把[url=https://www.bjutc.com/jszc.html]usb频谱分析仪[/url]与电脑相连,无需外置电源,usb频谱分析仪与电脑相连的同时就在供电了,上面我们讲过软件的安装步骤,这里就不多说了,双击打开软件,出现操作界面,usb频谱分析仪的操作界面非常简单,如果是刚好别人在用的设备,那我们首先要找到Preset(复位按键)来参数复位,然后我们找到Frequency按键来设置我们需要的频率,设置中心频率,起始频率和终止频率。然后找到Span键来调制带宽,来调整屏幕左边到右边的一个显示范围,然后找到Amplitude调整好幅度,RBW和VBW来设置分辨率带宽和视频带宽,如果是简单的调整,设置好这些就够用了,Swweep Time来设置扫描时间,然后还可以根据需要设置峰值,调整好我们一个测试就开始了,我们测试的数据都会保存在电脑的文件夹中,我们可以到里面找到测试的数据。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2024/01/202401031513121143_8582_3248856_3.jpg!w690x387.jpg[/img][/font][/color][/font]

  • ORP分析仪

    BT6108-PH/ORP系列PH/[b]ORP分析仪[/b]广泛应用于工业和市政水处理领域性能稳定,采用拥有自己专利的聚合物填充物的传感器,具有无试剂、性能稳定、维护量少、后期成本低的特点.  特点  u 传感器使用寿命长  u 适用于所有的工业和市政水处理领域  u 性能稳定  u 维护成本低  u 无需试剂  工作原理  BT6108-PH/ORP 分析仪采用专利玻璃电极填充凝胶技术,具有寿命长、低磨损和高稳定性的特点  与许多分析仪表不同的是,BT6108-PH/ORP分析仪表可以在0-14PH的范围和低导电的范围中自由的选择量程,传感器不需要持续的校准,如果传感器检测出现错误,会在控制器上显示出错的原因。  自动清洗功能  [b]PH/ORP的传感器[/b]额外增加自动清洗装置,在污水厂、食品制备等行业,可由用户自行设定自动清洗的时间和频率,使用传感器实现自动清洗的功能,延长传感器的使用寿命。  多参数传感器同时测量系统  全系列的BT6108-PH/ORP分析仪及控制器可以根据用户需求配备测量更参数的传感器,如:余氯、臭氧等,实现真正的降低为用户降低成本。  如需了解更多多参数测量系统的相关信息,请联系当地经销商。  技术参数  BT-6108 控制器  电源: 100-240VAC, (12VDC 可选 )  保险: 1A(100-240VAC), 2A(9-36VDC)  显示: LCD  输出: 4路的接触继电器380VAC, 8/125VDC,8A  2路的固态继电器75-264VAC 3A  1路4-20ma输出  输入: 3个传感器信号输入 /4-20ma输入  2路数字输入 如低流量开关  通信: RS485 (可选)  重量: 1kg  IP等级 :IP65  箱体材料:ABS  盖材质:聚碳酸酯  密封: EPDM  语言 根据需求  BT-6108控制器除标准配置外,额外可增加:  l 多达3路的4-20ma输出  l 多达4个继电器输出(固态或机械)  l 支持Modbus TCP协议  l 支持Modbus ASCII/RTU协议  l 支持Profibus协议  l 支持HART协议  l 支持流量开关输入  l PID 控制  PH传感器  电极:参考电极  PH测量范围:0-14PH  斜率:95-102%  漂移:0.01 pH/小时  重复性:0.01 pH  EO:-25mV to +25mV  电极阻抗:100-500 百万欧姆  响应时间:95%时。PH2—12 5秒  温度范围:0-90°C  电极长度:6m (最长可选择10m)  保存期:12 个月  ATC:PT100  预估使用寿命:24-48 个月,取决于现场应用  ORP电极  电极:铂球电极  ORP测量范围:-1999~1999mV  斜率:95-102%  漂移:0.01 mV/小时  重复性:0.01 mV  电极阻抗:2000000欧姆  响应时间:95%时。PH2—12 5秒  温度范围:0-40°C  电极长度:6m (最长可选择10m)  保存期:12 个月  ATC:PT100  预估使用寿命:12-18 个月,取决于现场应用

  • 碳硫分析仪的原理及测定方法

    碳硫分析仪的原理,就是将试样在高温炉中(如电阻炉也称管式炉、电弧炉、高频感应燃烧炉等)通氧燃烧,生成并逸出CO2和SO2气体,用此法实现碳硫元素与金属元素及其化合物的分离,然后测定CO2和SO2的含量,再换算出试样中的碳硫含量。一般的测定方法有以下几种: 1.红外光度法:试样中的碳、硫经过富氧条件下的高温加热,氧化为二氧化碳、二氧化硫气体。该气体经处理后进入相应的吸收池,对相应的红外辐射进行吸收,由探测器转发为信号,经计算机处理输出结果。此方法具有准确、快速、灵敏度高的特点,高低碳硫含量均使用,采用此方法的红外碳硫分析仪,自动化程度较高,价格也比较高,适用于分析精度要求较高的场合。 2.容量法:常用的有测碳为气体容量法和非水滴定法,测硫为碘量法、酸碱滴定法。特别是气体容量法测碳、碘量法定硫,既快速又准确,是我国碳、硫联合测定最常用的方法,采用此方法的碳硫分析仪的精度,碳含量下限为0.050%,硫含量下限为0.005%,可满足大多数场合的需要。 3.重量法:常用碱石棉吸收二氧化碳,由“增量”求出碳含量。硫的测定常用湿法,试样用酸分解氧化,转变为硫酸盐,然后在盐酸介质中加入氯化钡,生成硫酸钡,经沉淀、过滤、洗涤、灼烧,称量最后计算得出硫的含量。重量法的缺点是分析速度慢,所以不可能用于企业现场碳硫分析,优点是具有较高的准确度,至今仍被国内外作为标准方法推荐,适用于标准实验室和研究机构。 4.电导法:用电导法测定碳、硫,其特点是准确,快速、灵敏。多用于低碳、低硫的测定 5.测定金属中的碳、硫含量,还有ICP法、直读光谱法、X光荧光法、质谱法、色谱法、活化分析法等,各有其优点和适用范围。

  • 【转帖】频谱分析仪和噪声系数测量

    无处不在的噪声是射频和微波设计师的敌人,对此不应感到惊奇。噪声限制了通信接收器检测弱信号的能力,从而妨碍设计师实现最佳的接收器性能。传输信号中的噪声恶化了性能,不仅是对传输信号,而且同样是对周围的频谱。由于噪声是普遍存在的,多年以前,射频和微波行业就建立了一个称为噪声系数的测量参数,以定量元件或系统给通过它的信号增加了多少噪声。 虽然噪声系数是一种用于描述射频和微波系统噪声和接收器灵敏度的参数,但它也是最重要和广泛使用的参数。对于各次测量和使用不同仪器的测量,噪声系数测量总是要求高精度和重复性。精度和重复性保证了元件和子系统制造商和他们的客户所进行规定性能测量的一致性。 噪声系数基础作为测量参数的噪声系数早在二十世纪四时年代就开始使用,工程师Harold Friis把它定义为用分贝(dB)表示的射频或微波器件输入处的信噪比(SNR)除以输出处的SNR。从它的名称可知,SNR是在给定传输环境中的信号电平与噪声电平之比。SNR越高,就有越多的信号超过噪声,使信号更容易检测。因此噪声系数是越低越好,因为在理想情况下,微波元件、子系统或系统应没有噪声施加到通过的信号上。但实际上所有电子器件都会增加一些噪声,叠加最低噪声的是最好的器件,这些器件有最低的噪声系数。 噪声系数的重要性有多高?不管如何估计噪声系数对系统整体性能和成本的重要性都不会过高。例如,把直播卫星的噪声系数降一半,即从2dB降到1dB,与把卫星转发器的功率增加25%在性能上有相同的效果。显然,制造商会发现增加空间发射机功率的成本要远远高于改进地面站接收器低噪声放大器(LNA)性能。 在卫星接收器生产线中,只需调整阻抗电平或选择适合的晶体管,就能把噪声系数降低1dB。1dB噪声系数的降低与增加天线25%的面积有同样效果。增加天线尺寸也增加了成本,加大了操纵和支持机构的体积和重量,对于有美学考虑的DBS这类应用,这样的天线是太大了。 在无线通信系统中,具有低噪声系数的基站可减小与之通信的移动台发射功率,这对于电池寿命,大小和重量都有积极的影响。 在发射机设计中噪声也极为重要。例如,无线基站线性功率放大器中过高的噪声会降低邻道接收质量,也就是达不到规章对干扰的要求。 进行噪声系数测量有几种技术和仪器可用于噪声系数的测量,从专用噪声系数分析仪到频谱分析仪,网络分析仪和真有效值功率计。如所预期的,专用的噪声系数分析仪提供最低的测量不确定度,其次是频谱分析仪(如果配备前置放大器)。Agilent ESA-E系列经济型频谱分析仪带有可选的集成前置放大器(选件1DS),可根据分析仪的频率范围提供10MHz至1.5GHz或3GHz的噪声系数测量。Agilent ESA-E系列频谱分析仪是PSA系列高性能频谱分析仪和 Agilent NFA系列噪声系数分析仪的补充。如果您的应用只需要中等性能的频谱分析工具,它就是最物美价廉的解决方案。过去使用频谱分析仪测量噪声系数需要许多步骤和若干数学计算,这是繁杂和容易出错的过程。现在,ESA-E系列新的噪声系数测量专用件实现了包括计算在内的整个过程自动化。这是非常精确和易于使用的解决方案。新的测量专用件是频谱分析仪丰富通用能力环境的集成部分,包括单键功率测量,以及与8?601A VSA软件链接的相位和调制分析。若要求更高的频谱分析能力和优异的仪器不确定度,用户可选择PSA系列频谱分析仪。PSA有您期望于高性能频谱分析仪的所有功能,以及与ESA-E系列同一用户界面的噪声系数测量专用件。因此,客户能无缝地从一种仪器转到下一种仪器,而不必担心还要去熟悉仪器间的细微差别。ESA- E系列和PSA系列频谱分析仪的用户可能会认为不再需要专用的噪声系数分析仪。但所有这三种仪器都有各自适应的环境。频谱分析仪是设计师手中最常用和功能最全的测量工具,几乎在每一张测试台上都能找到它。例如可首先定位寄生信号,然后测量器件在无干扰噪声测量频率处的噪声系数。这样,带噪声系数测量专用件的ESA-E系列就成为要以经济价格得到众多测量能力设计师的理想解决方案。这是业内最灵活的频谱分析仪,它带有插卡箱结构,完全适应对定制能力的要求。PSA系列是灵活性、速度、精度和动态范围的优异组合,可提供最先进的频谱分析功能。而噪声系数分析仪是完全针对应用的仪器,仅用于测量噪声系数、增益和相关量。与频谱分析仪及其它仪器相比,噪声系数分析仪更快,更易用、精度更高、频率范围更宽。因此是得到所可能最好不确定度的最高端的选择,特别是对于3GHz以上频率。在给出达26.5GHz全部性能指标的仪器中,最快和最精确的仪器是Agilent NFA系列噪声系数分析仪。

  • 拉曼光谱分析仪是什么设备

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]拉曼光谱分析仪是什么设备,拉曼光谱分析仪是一款专门针对现场快速检测的便携式设备。它基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析,以得到分子振动、转动方面的信息,并应用于分子结构研究的一种分析方法。拉曼光谱分析仪主要工作原理包括使用高强度、单色的激光作为光源,通过散射装置使激光束聚焦并由待测样品散射,然后通过光谱仪分离频率差的散射光并测量其强度,最后通过探测器测量散射光的强度,并经过数据分析确定样品的分子结构、化学成分和其他物理特性。拉曼光谱分析仪在多个领域都有应用,包括食品安全快速检测、科研院所和高等院校的物理和化学实验室、生物及医学领域等光学方面的物质成分判定与确认,以及刑侦及珠宝行业进行毒品的检测和宝石的鉴定等。此外,它也是一种用于能源科学技术领域的分析仪器。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405161012000198_1664_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 大家如何确定热分析仪器的停机时机与维护频率?

    RT,看tutm回帖想到的。原文由 tutm(tutm) 发表:自动进样器不能用,那不太亏啦?我们的自动进样器有64位,最多时曾一次放上62个样品,让仪器连续运行6天后做完,蛮爽的。现在基本上都是全自动运行的,每周技术性停机1-2天,做些清洁维护,也让仪器和辅助设备休息一下。1、 实验室几台自动进样的DSC、TGA基本上都是是长期运行的,包括周末。只有在放长假(≥7天)的时候才有可能停下来,这样会不会容易发生问题?与上面tutm老师的做法相比,假如测试量一样,长期连续运行的是不是更容易出问题?2、大家实验室仪器维护频率时怎么确定的? 都有哪些维护内容呢?

  • 【资料】气体检测仪与分析仪的原理和区别

    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式的,相对比较简易。常用的传感器原理有催化燃烧、电化学、PID光离子化、半导体技术。 气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制