当前位置: 仪器信息网 > 行业主题 > >

质构仪测定凝胶原理

仪器信息网质构仪测定凝胶原理专题为您提供2024年最新质构仪测定凝胶原理价格报价、厂家品牌的相关信息, 包括质构仪测定凝胶原理参数、型号等,不管是国产,还是进口品牌的质构仪测定凝胶原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质构仪测定凝胶原理相关的耗材配件、试剂标物,还有质构仪测定凝胶原理相关的最新资讯、资料,以及质构仪测定凝胶原理相关的解决方案。

质构仪测定凝胶原理相关的论坛

  • 【分享】凝胶层析法测定蛋白质分子量

    一、实验目的1. 了解凝胶层析的原理及其应用。2. 通过测定蛋白质分子量的训练,初步掌握凝胶层析技术。二、实验原理凝胶层析又称排阻层析,凝胶过滤,渗透层析或分子筛层析等。它广泛地应用于分离、提纯、浓缩生物大分子及脱盐、去热源等,而测定蛋白质的分子量也是它的重要应用之一。凝胶是一种具有立体网状结构且呈多孔的不溶性珠状颗粒物质。用它来分离物质,主要是根据多孔凝胶对不同半径的蛋白质分子(近于球形)具有不同的排阻效应实现的。亦即它是根据分子大小这一物理性质进行分离纯化的。分离原理参见“理论部分的凝胶层析一节”。对于某种型号的凝胶,一些大分子不能进入凝胶颗粒内部而完全被排阻在外,只能沿着颗粒间的缝隙流出柱外;而一些小分子不被排阻,可自由扩散,渗透进入凝胶内部的筛孔,尔后又被流出的洗脱液带走。分子越小,进入凝胶内部越深,所走的路程越多,故小分子最后流出柱外,而大分子先从柱中流出。一些中等大小的分子介于大分子与小分子之间,只能进入一部分凝胶较大的孔隙,亦即部分排阻,因此这些分子从柱中流出的顺序也介于大、小分子之间。这样样品经过凝胶层析后,分子便按照从大到小的顺序依次流出,达到分离的目的。凝胶层析分离原理示意动画。对于任何一种被分离的化合物在凝胶层析柱中被排阻的范围均在0~100%之间,其被排阻的程度可以用有效分配系数Kav(分离化合物在内水和外水体积中的比例关系)表示,Kav值的大小和凝胶柱床的总体积(Vt)、外水体积(V0)以及分离物本身的洗脱体积(Ve)有关:Kav = (Ve-V0)/(Vt-V0) ----------- (1)在限定的层析条件下,Vt和V0都是恒定值,而Ve是随着分离物分子量的变化而改变。分子量大,Ve值小,Kav值也小。反之,分子量小Ve值大,Kav值大。有关凝胶层析柱中凝胶自身(基质)体积(Vg)、外水体积(V0)、内水体积(Vi)及柱床总体积(Vt)的参见示意图。凝胶层析柱中的几种层析峰。有效分配系数Kav是判断分离效果的一个重要参数,同时也是测定蛋白质分子量的一个依据。在相同层析条件下,被分离物质Kav值差异越大,分离效果越好。反之,分离效果差或根本不能分开。在实际的实验中,我们可以实测出Vt、V0及Ve的值,从而计算出Kav的大小。对于某一特定型号的凝胶,在一定的分子量范围内,Kav与logMw (Mw表示物质的分子量) 成线性关系:Kav =-b logMw + C --------- (2)其中 b,C为常数。同样可以得到:Ve =-b'logMw + C' --------- (3)其中 b', C'为常数。即 Ve 与 logMw 也成线性关系。我们可以通过在一凝胶柱上分离多种已知分子量的蛋白质后,并根据上述的线性关系绘出标准曲线,然后用同一凝胶柱测出其它未知蛋白的分子量。三、器材与试剂(一)器材1. 玻璃层析柱((20mm×60cm)2. 恒流泵(或下口恒压贮液瓶)3. 自动部分收集器4. 紫外分光光度计5. 100ml试剂瓶6. 1000ml量筒7. 250ml烧杯8. 50ml、100ml烧杯9. 10ml(或5ml)刻度试管(二)试剂1. 标准蛋白(1)牛血清白蛋白:Mw=67,000(上海生化所)(2)鸡卵清清蛋白:Mw=45,000(美国SIGMA公司)(3)胰凝乳蛋白酶原A:Mw=24,000(美国SIGMA公司)(4)溶菌酶:Mw =14,3002. 未知蛋白质样品:由实验室准备3. 0.025M KCl-0.1M HAC(乙酸)(洗脱液1000ml)4. 蓝色葡聚糖-2000

  • 一个图让你看懂凝胶色谱的原理!

    一个图让你看懂凝胶色谱的原理!

    凝胶色谱是根据多孔凝胶对不同大小分子的排助效应进行分离。 样品在多孔凝胶柱中随着流动相的移动,待分离的组分沿凝胶颗粒间的孔隙移动,大分子移动路径较短,先流出色谱柱,小分子由于扩散进入凝胶颗粒内部,迁移路径长,后流出色谱柱,实现分离。看下面一个图,就能懂得凝胶色谱的原理:http://ng1.17img.cn/bbsfiles/images/2015/05/201505041629_544714_2984502_3.png 小伙伴儿们,你看懂了吗?

  • 【求助】淀粉凝胶质构曲线分析

    我用TA-XT2凝胶质构仪得到了淀粉凝胶的质构曲线(TPA),但不知如何分析曲线图。想请教各位如何得到凝胶的硬度、脆性、黏性、弹性、内聚性、胶粘性和耐咀性?是怎么从曲线中得到的?我是菜鸟,请详细说明,万分感谢!

  • 请教各位大侠凝胶色谱中流动相加盐的目的和原理

    本人凝胶色谱新手,在做一个项目,需要用凝胶色谱。美国药典论坛上已有方法,重复了人家方法发现有些地方不对,撇开这些不谈,先说说我的疑问吧!1 美国药典上的流动相加了0.1M的硝酸钾,我试了一针加的,一针不加的,发现不加盐峰会前沿,加盐的峰很对称,请问在凝胶色谱里加盐的目的除了改善峰形还有什么作用吗?我更好奇的是盐是通过什么原理来改善峰形的?2 还有一个很奇怪的现象,我的样品和两个杂质出峰时间重叠,即专属性不合格,这三种物质虽然都是钠盐,但大家请注意样品的分子量范围是1000-2000,而两个杂质的分子量一个是100多,一个是300多,就是说在分离原理为分子排阻的凝胶色谱里,分子量1000多的和100,300的一起出峰,改变流动相(换过纯水,也试过加大有机相比例)变化并不明显,这是为什么呢?难道现在的凝胶色谱已经不是单纯的分子排阻原理了,还是说样品的出峰时间除了和分子量有关,还和他们的水溶性有关?这两个问题快把我折磨疯了,请高手解答!

  • 凝胶色谱法GPC工作原理

    凝胶色谱法GPC[b]分析原理:[/b]样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出[b]谱图的表示方法:[/b]柱后流出物浓度随保留值的变化[b]提供的信息:[/b]高聚物的平均分子量及其分布根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。

  • 凝胶色谱技术原理及应用

    关键词:中检所网站 中检所标准品 中检所对照品 药检所标准品 药检所对照品 中检所标准物 质药检所标准物质摘要:凝胶色谱技术是六十年代初发展起来的一种快速而又简单的分离分技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。   一、基本理论  (一)分子筛效益  一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量大小不同的多种成份在通过凝胶床时,按照分子量大小“排队,凝胶表现分子筛效应。  (二)色谱柱的重要参数  ⑴柱体积:柱体积是指凝胶装柱后,从柱的底板到凝胶沉积表面的体积。在色谱柱中充满凝胶的部分称为凝胶床,因引柱体积又称“床”体积,常用Vt 表示。  ⑵外水体积:色谱柱内凝胶颗粒间隙,这部分体积称外水体积,亦称间隙体积,常用Vo表示。  ⑶内水体积:因为凝胶为三维网状结构,颗粒内部仍有空间,液体可进入颗粒内部,这就分间隙的总和为内水体积,又称定相体积,常用Vi表示。 不包括固体支持物的体积(Vg)。  ⑷峰洗脱体积:是指被分离物质通过凝胶柱所需洗脱液有体积,常用Ve 表示。当使用样品的体积很少时,(与洗脱体积比较可以忽略不计),在洗脱图中,从加样到峰顶位置所用洗脱液体积为Ve。 当样品体积与洗脱体积比较不能忽略时,洗脱体积计算可以从样品体积的一半到峰顶位置。当样品很大时,洗脱体积计算可以从应用样品开始到洗脱峰升高的弯曲点(或半高处)。  二、凝胶的种类及性质  (一)交联葡聚糖凝胶(Sephadex)  ⑴Sephadex G交联葡聚糖的商品名为Sephndex,不同规格型号的葡聚糖用英文字母G表示,G后面的阿拉伯数为凝胶得水值的10倍。例如,G-25为每克凝胶膨胀时吸水2.5克,同样G-200克每克千胶吸水20克。交联葡聚糖凝胶的种类有G-10,G-15,G-25,G-50,G-75,G-100,G- 150,和G-200。因此,“G”反映,凝胶的交联程度,膨胀程度及分部范围。  ⑵Sephadex LH-20,是─Sephadex G-25的羧丙基衍生物, 能溶于水及亲脂溶剂,用于分离不溶于水的物质。  (二)琼脂糖凝胶:  商品名很多,常见的有,Sepharose(瑞典,pharmacia ),Bio-Gel-A(美国Bio-Rad)等。琼脂糖凝胶是依靠糖链之间的次级链如氢键来维持网状结构,网状结构的疏密依靠琼脂糖的浓度。一般情况下,它的结构是稳定的,可以在许多条件下使用(如水,pH4-9范围内的盐溶液)。琼脂糖凝胶在40℃以上开始融化,也不能高压消毒,可用化学灭菌活处理。  (三)聚丙烯酰胺凝胶:  是一种人工合成凝胶,是以丙烯酰胺为单位, 由甲叉双丙烯酰胺交联成的,经干燥粉碎或加工成形制成粒状,控制交联剂的用量可制成各种型号的凝胶。交联剂越多,孔隙越小。聚丙烯酰胺凝胶的商品为生物胶-P (Bio-Gel P),由美国Bio-Rod厂生产,型号很多,从P-2至P-300共10种,P 后面的数字再乘1000就相当于该凝胶的排阻限度。  (四)聚苯乙烯凝胶商品为Styrogel , 具有大网孔结构, 可用于分离分子量1600到40,000,000的生物大分子,适用于有机多聚物,分子量测定和脂溶性天然物的分级,凝胶机械强度好,洗脱剂可用甲基亚砜。  三、实验技术  (一)层析柱 层析柱是凝胶层析技术中的主体,一般用玻璃管或有机玻璃管。层析柱的直径大小不影响分离度,样品用量大,可加大柱的直径,一般制备用凝胶柱,直径大于2厘米,但在加样时应将样品均匀分布于凝胶柱床面上。此外, 直径加大,洗脱液体体积增大,样品稀释度大。分离度取决于柱高,为分离不同组分,凝胶柱床必须有适宜的高度,分离度与柱高的平方根相关,但由于软凝胶柱过高挤压变形阻塞,一般不超过1米。分族分离时用短柱,一般凝胶柱长20-30厘米,柱高与直径的比较5:1─10:1,凝胶床体积为样品溶液体积的 4-10倍。 分级分离时柱高与直径之线为20:1─100:1,常用凝胶柱有50×25厘米,10×25厘米。层析柱滤板下的死体积应尽可能的小,如果支掌滤板下的死体积大,被分离组分之间重新混合的可能性就大,其结果是影响洗脱峰形,出现拖尾出象,降低分辩力。在精确分离时,死体积不能超过总床体积的1/1000。  (二)凝胶的选择 根据所需凝胶体积,估计所需干胶的量。 一般葡聚糖凝胶吸水后的凝胶体积约为其吸水量的2倍,例如Sephadex G-20的吸水量为20,1 克Sephadex G─200吸水后形成的凝胶体积约40ml。凝胶的粒度也可影响层析分离效果。粒度细胞分离效果好,但阻力大,流速慢。一般实验室分离蛋白质采用 100-200号筛目的的Sephadex G-200效果好, 脱盐用Sephadex G-25、G-50,用粗粒,短柱,流速快。  (三)凝胶的制备 商品凝胶是干燥的颗粒使用前需直接在欲使用的洗脱液中膨胀。为了加速膨胀,可用加热法,即在沸水浴中将湿凝胶逐渐升温至近沸,这样可大大中速膨胀,通常在 1-2小时内即可完成。特别是在使用软胶时, 自然膨胀需24小时至数天,而用加热法在几小时内就可完成。这种方法不但节约时间,而且还可消毒,除去凝胶中污染的细菌和排除胶内的空气。  (四)样品溶液的处理 样品溶液如有沉淀应过滤或离心除去,如含脂类可高速离心或通过Sephadex G-15短柱除去。样品的粘度不可大,含蛋白为超过4%,粘度高影响分离效果。上柱样品液的体积根据凝胶床体积的分离要求确定。分离蛋白质样品的体积为凝胶床的1-4%(一般约0.5-2ml),进行分族分离时样品液可为凝胶床的10%,在蛋白质溶液除盐时,样品可达凝胶床的20-30%。 分级分离样品体积要小,使样品层尽可能窄,洗脱出的峰形较好。  (五)防止微生物的污染 交联葡

  • 【求助】凝胶色谱法分离蛋白质原理?

    我们学习分离血红蛋白时,书上提到凝胶色谱法分离蛋白质原理是蛋白质分子量大小不同导致有些蛋白质能进入凝胶颗粒,另一些不能,所以迁移速度不同,将分子量不同的蛋白质分离。既然这样,那为什么不是因为蛋白质分子大小不同呢? [b]问题补充:[/b]关键在于为什么是根据蛋白质分子量大小而不是蛋白质分子大小(所占空间)分离呢 小分子蛋白可以在小孔内穿过 从而增加了分离时所走的路程 最后被分离。大分子蛋白主要是通过凝胶颗粒之间的空隙通过 因此路线相对较短最先被分离。 只是做题时这一题选分子量而不选分子大小

  • 【讨论】凝胶成像仪 购买

    实验室准备购买一台凝胶成像仪,本人没有经验,请使用过凝胶成像仪的同志帮忙推荐一台,谢谢!http://simg.instrument.com.cn/bbs/images/brow/em09502.gifhttp://simg.instrument.com.cn/bbs/images/brow/em09510.gif

  • 凝胶电解质技术进展

    电解液是锂离子电池关键材料之一,采用有机溶剂的电解液在极端情况下会出现漏液问题,并易燃。用聚合物电解质替代电解液被认为是解决上述问题的有效方案。聚合物电解质主要包括凝胶聚合物电解质(GPE)和全固态聚合物电解质(SPE)。全固态聚合物电解质由于常温离子电导率较低的问题一直没有解决,并且成本过高,尚未有商品上市。目前取得商业化应用的主要是凝胶聚合物电解质。凝胶聚合物电解质既有全固态聚合物电解质良好的安全性,又与有机溶剂电解液有相近的离子电导率,并且具有与电极材料间的反应活性低、质量轻、易成薄膜、黏弹性好的特点。因此采用凝胶聚合物电解质的电池可制成各种形状,并具有耐压、耐冲击、生产成本低和易于加工使用等优势。应用于高端数码产品的软包锂电池对轻薄和电池形状的灵活性有较高的要求,是凝胶聚合物电解质最适合的应用方向之一。传统制备凝胶聚合物电解质的原理是利用分子链间存在相互作用力而形成物理交联,再吸入电解液后制成凝胶聚合物电解质。需经过聚合物成膜、造孔剂萃出和电解液浸渍等复杂工序,制出凝胶聚合物电解质膜后再与正、负极按一定顺序组装成电池。随着制备工艺的发展,出现了凝胶聚合物电解质的现场聚合工艺。现场聚合工艺的原理是将聚合物单体和引发剂按一定比例加入电解液中混合均匀,在一定的外界条件下引发自由基聚合反应,单体聚合后即产生网状的立体骨架结构,将电解液均匀固化在网状结构的空隙当中,得到凝胶聚合物电解质。现场聚合工艺优点是电解液含量高,凝胶热稳定性好,电池成品质量稳定。但其未反应的残余单体对电池性能的影响不容忽视,并且聚合反应精确控制的难度较大。现场聚合工艺具体可分为热引发现场聚合工艺与非热引发现场聚合工艺,而前者更为常见。其中中国科学院物理研究所、比亚迪股份有限公司、三洋株式会社及三星SDI 株式会社等均有相关专利。相比传统制备工艺的繁琐,现场聚合工艺将电解质的制备与电池组装一步完成,有效降低了生产成本,提高了生产效率。

  • 【分享】分子筛凝胶层析法的工作原理

    【分享】分子筛凝胶层析法的工作原理

    在一定的温度下,同一化学物质在不相混溶的两种介匝间分布达平街时.该物质在这两种介质中的浓度比是一常数.称分配系数。不同化学物质的分配系数不同。层析法即利用混合物中各组分的分配系数不同而崖其分离的方法。其两种介质,一为固定不动,称固定相,另一为可相对流动,称流动相。 层析法已广泛应用在生物化学领域中,无论是少量分析还是大量制备,都能体现出它的高效性,简便性等特点。在实脸室中的常用层析法有:凝胶过滤,纸层析.薄层层析,离子交换层析,亲和层析,高效液相层析等。 以下介绍几种常用的层析法凝胶过滤 凝胶过滤的别名很多,如凝皎扩散层析,分子筛层析,排阻层析等。这种技术具有操作简便,回收率高(近100%),条件缓和等特点,但它的分离操作速度较慢。该法常用于蛋白质,多糖,核酸的分离纯化。 凝胶过滤的分离过程是在装有多孔物质填料的柱中进行的。柱的总体积为VA,它包括填料的骨架体积VGM。,填料的孔体积Vi(内水体积)及填料颗粒间的体积VO(外水体积)。分布在填料的孔中的溶剂是固定相,分布的填料颗粒间的溶剂是流动相。填料颗粒含有许多不同大小的孔.如果待分离的物质分子大小合适,则可以不同程度地向孔中扩散,大分子物质只能占有较少的大孔,小分子则能占有大孔及另外一些小孔。所以当不同分子量物质的混合物流经凝胶柱时,较小的分子在柱中停留的时间比大分于停留的时间长,于是混合物中各组分即按分于大小分开,最先流出的是最大的分子。示意图如下所示,http://ng1.17img.cn/bbsfiles/images/2010/10/201010171831_251966_1638724_3.jpg用于生物材料分离的凝胶主要有交联葡聚糖凝胶(商品名为Sephadex),聚丙烯酰胺凝胶(商品名为Bio—Gel),琼脂糖凝胶(商品名Sepharose)等。如常用的交联葡聚糖是将葡聚糖(Dextran)悬浮于有机溶剂,加入交联剂表氯醇交联聚合而成多糖链的三维结构,这种聚合物为白色珠状微粒,是多孔性网状结构,凝胶的孔径大小与交联剂的量有关,交联剂多则交联度大,网状结构紧密,孔径小,反之交联剂少则孔径大。 将含有三种不同分子量物质的混合样品用某种规格的凝胶柱进行分离。首先将样品小心自柱顶端加入,洗脱,以分步收集器收集洗脱液,测定每管物质浓度,然后以洗脱体积为横坐标,各物质浓度为纵坐标即得如下的洗脱曲线:由图可见最先流出的物质是,A,它的分子量最大,大于该种凝胶的排阻限(A物质分子的直径大于凝胶的孔径),完全不能进入颗粒内部,只能从颗粒间隙流过,称“全排阻”。其流经体积最小,与外水体积VO相等。最后流出的物质是C,它的分子量最小,小于该种凝胶的渗入限,其分子可以自由进出凝胶颗粒,这叫“全渗入”。流经体积是外水体积VO与内水体积Vi的和。而物质B的分子量介于排阻限与渗入限之间,其分子能够部分地进入凝胶颗粒之中,不能全部地不受限制的通过,这叫做“部分排阻”或“部分渗入”。它的流经体积Ve是全部外水体积加上内水体积的一部分,即 Ve=VO+KdVi式中Kd称作“排阻系数”或“分配系数”。它反映了物质分子进入凝胶颗粒的程度。Kd=(Ve-VO)/Vi当Kd=1时,Ve=VO+Vi为全渗入。当Kd=0时,Ve=VO为全排阻。当0t,则说明该物质分子与凝胶有吸附作用。这三种物质的分离过程可见示意图如下:http://ng1.17img.cn/bbsfiles/images/2010/10/201010171832_251967_1638724_3.jpgVi也可通过计算求出:Vi=aWra=凝胶千重Wi=每克干凝胶吸水毫升数Vt=Vo+Vi+VgVg=凝胶骨架体积Vt=可通过测定层析柱内径及高度计算得出:Vt=1/4D2h下表为交联葡聚糖凝胶的种类和规格:http://ng1.17img.cn/bbsfiles/images/2010/10/201010171832_251968_1638724_3.jpg

  • 【原创】凝胶色谱的应用

    [b]凝胶色谱的应用[/b]:1、[b]分子量的测定[/b]根据凝胶色谱的原理,样品物质在凝胶色谱柱中的洗脱性质与该物质的分子大小有关。因此选用不同的凝胶色谱柱后,能方便地测定物质的分子量。用此法测定分子量时,可以在各种PH值、离子强度和温度条件下进行。所测定的物质可以是天然状态,也可以是变性后的。实际应用中,可先选用一系列已知分子量的标准样品在同一色谱条件下进行色谱分离分析,并以保留体积(或保留时间)对分子量的对数作图,在一定分子量范围内得到一直线(标准曲线),而后根据待测定物在同一条件下的保留体积(或保留时间),从标准曲线上查得/计算出其分子量。目前用本法测定分子量的应用范围非常广泛。[u]高分子物质的分子量及其分布的测定[/u]:特别是近年来,随着各种高分子材料的问世,人们对高分子科学的不断探索,高聚物的分子量及其分布的测定显得尤为重要,成为科研和生产中不可缺少的测试项目之一。例如:常见的聚苯乙烯塑料制品,其分子量为十几万,如果聚苯乙烯的分子量低至几千,就不能成型;相反,当分子量大到几百万,甚至几千万,它又难以加工,失去了实用意义。科研和生产上通过控制高聚物的分子量及其分布宽度指数D(D=Mw/Mn)、分子量微分分布曲线、分子量积分分布曲线来生产出性能最佳的高聚物产品。同样,除了快速测定分子量及其分布以外,凝胶渗透色谱还广泛被用于研究高聚物的支化度,共聚物的组成分布及高聚物中微量添加剂的分析等方面。如果配以在线的绝对分子量检测器(如:LALLS、Multi-Angle LS、Dual-Angle LS等),凝胶渗透色谱可以测定高聚物的绝对分子量。[u]蛋白质分子量的测定[/u]:现代蛋白质药物的研究中,凝胶色谱法测定分子量是蛋白质分子量的快速测定方法之一。一般选用标准分子量蛋白质(如:铁蛋白、醛缩酶、牛血清白蛋白、卵清蛋白、胃蛋白酶、核糖核酸酶,这就是一组分子量从300KD到14KD的标准品)。

  • 凝胶色谱法

    凝胶色谱法开关电源1.2 分离纯化蛋白质的原理与方法──凝胶色谱法(分子筛效应)凝胶是一些由多糖类化合物构成的多孔球体,当相对分子质量不同的蛋白质通过凝胶时,相对分子质量较小的蛋白质直径小于凝胶网孔,由于静电吸附和扩散作用容易进入凝胶内部的通道,可以自由地进入凝胶颗粒的网孔,在向下移动的过程中,它们从凝胶颗粒的网孔扩散到凝胶颗粒间的孔隙,再进入另一凝胶颗粒的网孔,如此不断地进出,使流程增长,而最后流出层析柱。而相对分子质量较大的蛋白质无法进入凝胶颗粒的网孔,只能沿着凝胶颗粒间的孔隙,随着洗脱液流动,流程较短,因此首先流出层析柱。分子量介于二者之间的物质,虽然能够进入凝胶网孔,但比小分子难,因此进入凝胶网孔的几率比小分子小,向下移动的速度比小分子快,而比大分子慢。相对分子质量不同的蛋白质分子因此得以分离。需要注意的是,有部分小分子蛋白质未进入凝胶内部,而在外部移动,因此,如果需要得到纯度更高的蛋白质分子,可将色谱柱中的凝胶溶液进行平衡后进行再次冼脱和分离。1.3 鉴定蛋白质纯度的原理与方法──电泳蛋白质分子的基本单位是氨基酸,氨基酸的一些基团在一定的pH下会发生水解或电离从而带有电荷。但总的来说蛋白质分子一般带有负电。在电场的作用下,带电的蛋白质分子会向着电泳槽中的正极方向移动。由于样品中各种蛋白质分子净电荷的量的差异以及蛋白质分子本身的大小等因素,使蛋白质分子产生不同的迁移速率,从而将样品中各种蛋白质分子分离开。由于蛋白质分子带电电荷比较复杂,净电荷总量与蛋白质分子的质量不成正比,而蛋白质分子的质量又是衡定的,电泳时在带电量和分子质量两种因素的作用下会产生迁移速率的复杂化,不能正确地将分子质量不同的蛋白质分子分离开,因此,实际操作中,一般会将蛋白质分子与SDS(十二烷基硫酸钠)发生反应形成蛋白质—SDS复合物,由于SDS所带负电荷的量大大超过蛋白质分子原有的电荷量,因此掩盖了不同种蛋白质间的电荷差异,使蛋白质的迁移率完全取决于蛋白质分子质量的大小。在电场条件下,分子量大的蛋白质迁移率慢,离前沿较远,而分子量小的蛋白质迁移快,离前沿较近。这样,不同分子量大小的蛋白质得到了分离。如果蛋白质的纯度高,迁移率一致,就会形成前沿整齐、清晰的条带。www.peakoil.com.cn

  • 【求购】求购全自动旋光仪、凝胶强度仪

    以前的旋光仪是wzz-2a的,不过已经比较老了,现在想更换一台新的。凝胶强度仪也是,主要用来作卡拉胶等的凝胶强度测定。大家有没有比较好的型号推荐一下。在网上搜索了一下,看见有ap-100、ap-300的全自动旋光仪,不知道价位多少,有知道的能不能告知一下,多谢。

  • 求助关于凝胶色谱(GFC)的相关问题

    思考了半天要把这个帖子发到哪里,确实有凝胶色谱的版块,却是GPC的,我要做的GFC也只是把凝胶柱装到普通液相上,而且这里专家也多,应该更能帮我解决问题,所以发到这里了。 言归正传,我是一个凝胶色谱的新手,之前只用葡聚糖凝胶做过分离,还是自己装的柱子,这次要做一种药的含量测定,美国药典已有方法,用了PolySep-GFC-P3000的柱子,打听了一下要8000多,有点贵,想找找有没有类似的柱子可能会便宜点,虽然有一点现成的资料,但我也要知道原理才行啊!这样问题就出来了,刚刚在网上找了半天,发现对于凝胶色谱的资料很少,而且大部分还是GPC的,图书馆也去了,没有收获。以下是我的问题: 1.用凝胶色谱测定分子量和质量分布的原理是什么呢?我知道凝胶色谱的分子排阻原理,这和测分子量有什么关系呢?色谱图的横坐标是时间吗?还是别的单位? 2.我要做的物质是含量测定,这是一种多取代混合物,其主成分的分子量范围是1000多到2000多(就是我要测含量的部分),当然也有一些小分子量的杂质,大部分不超过1000,那我在选择柱子(主要是排阻限)时有没有什么原则或依据呢?(虽然美国药典有明确的方法和柱子,我还是想知道) 3 对于GFC的凝胶应该也有好多种,他们之间只是在分离中分子量的差别吗?性质上有没有差别?拿我的情况为例吧,我要对一水溶性药物做含量测定,在选择柱子时只需考虑两点:1 用于水溶性的凝胶 2 选择合适的能分离的分子量。这就够了,也就是说如果有两种不同的凝胶,只要能满足上述两点,那我用哪种都能达到实验目的,这样理解对吗?先谢谢给位老师朋友不吝赐教!

  • 泪流满面请教各位大侠凝胶色谱中流动相加盐的目的和原理

    本人凝胶色谱新手,在做一个项目,需要用凝胶色谱。美国药典论坛上已有方法,重复了人家方法发现有些地方不对,撇开这些不谈,先说说我的疑问吧!1 美国药典上的流动相加了0.1M的硝酸钾,我试了一针加的,一针不加的,发现不加盐峰会前沿,加盐的峰很对称,请问在凝胶色谱里加盐的目的除了改善峰形还有什么作用吗?我更好奇的是盐是通过什么原理来改善峰形的?2 还有一个很奇怪的现象,我的样品和两个杂质出峰时间重叠,即专属性不合格,这三种物质虽然都是钠盐,但大家请注意样品的分子量范围是1000-2000,而两个杂质的分子量一个是100多,一个是300多,就是说在分离原理为分子排阻的凝胶色谱里,分子量1000多的和100,300的一起出峰,改变流动相(换过纯水,也试过加大有机相比例)变化并不明显,这是为什么呢?难道现在的凝胶色谱已经不是单纯的分子排阻原理了,还是说样品的出峰时间除了和分子量有关,还和他们的水溶性有关?3 还有一个现象我不能理解,就是走空白,也就是流动相的时候会出现一些溶剂峰,走样品的时候也会出现溶剂峰,但是样品中的溶剂峰的响应要比溶剂峰里的高多了,这是怎么回事呢?这几个问题快把我折磨疯了,请高手解答!!

  • 【资料】凝胶成像 知识普及

    凝胶成像定义  凝胶成像即:对DNA或RNA胶  进行切胶、拍照、观察、分析  ,的实验室类仪器,  凝胶成像系统可以应用于分子  量计算,密度扫描,密度定量,  PCR定量等生物工程常规研究。凝胶成像应用范围  总体上来说凝胶成像可应用于:凝胶成像系统可以用于:蛋白质、核酸、多肽、氨基酸、多聚氨基酸等其他生物分子的分离纯化结果作定性分析  (1)分子量定量  对于一般常用的DNA胶片,利用分子量定量功能,通过对胶上DNA Marker条带的已知分子量注释,自动生成拟合曲线,并以它衡量得到未知条带的分子量。通过这种方法所得到的结果较肉眼观察估计要准确很多。  (2)密度定量  一般常用的测定DNA(脱氧核糖核酸)和RNA(核糖核酸)浓度的方法是紫外吸收法,但它只能测定样品中的总核苷酸浓度,而不能区分各个长度片段的浓度。利用凝胶成像系统和软件,先将DNA胶片上某一已知其DNA含量的标准条带进行密度标定以后,可以方便的单击其他未知条带,根据与已知条带的密度做比较,可以得到未知DNA的含量。此方法也适用于对PA GE蛋白胶条带的浓度测定。  (3)密度扫描  在分子生物学和生物工程研究中,最常用到的是对蛋白表达产物占整个菌体蛋白的百分含量的计算。传统的方法是利用专用的密度扫描,但利用生物分析软件结合现在实验室常规配备的扫描仪或者直接用白光照射的凝胶成像就能完成此项工作。  (4)PCR定量  PCR定量主要是指,如果PCR实验扩增出来的条带不是一条,那么可以利用软件计算出各个条带占总体条带的相对百分数。就此功能而言,与密度扫描类似,但实际在原理上并不相同。PCR定量是对选定的几条带进行相对密度定量并计算其占总和的百分数,密度扫描时并对选择区域生成纵向扫描曲线图并积分。

  • 【讨论】凝胶成像仪 购买一例

    实验室准备购买一台凝胶成像仪,本人没有经验,请使用过凝胶成像仪的同志帮忙推荐一台,谢谢!http://simg.instrument.com.cn/bbs/images/brow/em09502.gif

  • 【资料】凝胶渗透色谱

    凝胶渗透色谱(Gel Permeation Chromatography、GPC))   http://chemlab.gzhu.edu.cn/gzhugfz/fenxishouduan/4.jpg 1964年,由J.C.Moore首先研究成功。不仅可用于小分子物质的分离和鉴定,而且可以用来分析化学性质相同分子体积不同的高分子同系物。(聚合物在分离柱上按分子流体力学体积大小被分离开) 1.基本原理1.1.分离原理:让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行的路径有粒子间的间隙(较大)和粒子内的通孔(较小)。当聚合物溶液流经色谱柱时,较大的分子被排除在粒子的小孔之外,只能从粒子间的间隙通过,速率较快;而较小的分子可以进入粒子中的小孔,通过的速率要慢得多。经过一定长度的色谱柱,分子根据相对分子质量被分开,相对分子质量大的在前面(即淋洗时间短),相对分子质量小的在后面(即淋洗时间长)。自试样进柱到被淋洗出来,所接受到的淋出液总体积称为该试样的淋出体积。 当仪器和实验条件确定后,溶质的淋出体积与其分子量有关,分子量愈大,其淋出体积愈小。(1) 体积排除 (2) 限性扩散 (3) 流动分离 1.2.校正原理:用已知相对分子质量的单分散标准聚合物预先做一条淋洗体积或淋洗时间和相对分子质量对应关系曲线,该线称为“校正曲线”。聚合物中几乎找不到单分散的标准样,一般用窄分布的试样代替。在相同的测试条件下,做一系列的GPC标准谱图,对应不同相对分子质量样品的保留时间,以lgM对t作图,所得曲线即为“校正曲线”。通过校正曲线,就能从GPC谱图上计算各种所需相对分子质量与相对分子质量分布的信息。聚合物中能够制得标准样的聚合物种类并不多,没有标准样的聚合物就不可能有校正曲线,使用GPC方法也不可能得到聚合物的相对分子质量和相对分子质量分布。对于这种可以使用普适校正原理。1.2.1.普适校正原理:由于GPC对聚合物的分离是基于分子流体力学体积,即对于相同的分子流体力学体积,在同一个保留时间流出,即流体力学体积相同。两种柔性链的流体力学体积相同: 1M1=2M2k1M1α1+1=k1M2α2+1 两边取对数:lgk1+(α1+1)lgM1=lgk2+(α2+1)lgM2即如果已知标准样和被测高聚物的k、α值,就可以由已知相对分子质量的标准样品M1标定待测样品的相对分子质量M2。 2.实验部分直接法:在测定淋出液浓度的同时测定其粘度或光散射,从而求出其分子量。间接法:用一组分子量不等的、单分散的试样为标准样品,分别测定它们的淋出体积和分子量,则可确定二者之间的关系。2.1.仪器:GPC仪的组成:泵系统、(自动)进样系统、凝胶色谱柱、检测系统和数据采集与处理系统。1.1.泵系统:包括一个溶剂储存器、一套脱气装置和一个高压泵。它的工作是使流动相(溶剂)以恒定的流速流入色谱柱。泵的工作状况好坏直接影响着最终数据的准确性。越是精密的仪器,要求泵的工作状态越稳定。要求流量的误差应该低于0.01mL/min。 2.1.2.色谱柱:GPC仪分离的核心部件。是在一根不锈钢空心细管中加入孔径不同的微粒作为填料。每根色谱柱都有一定的相对分子质量分离范围和渗透极限,色谱柱有使用的上限和下限。色谱柱的使用上限是当聚合物最小的分子的尺寸比色谱柱中最大的凝胶的尺寸还大,这时高聚物进入不了凝胶颗粒孔径,全部从凝胶颗粒外部流过,这就没有达到分离不同相对分子质量的高聚物的目的。而且还有堵塞凝胶孔的可能,影响色谱柱的分离效果,降低其使用寿命。色谱柱的使用下限就是当聚合物中最大尺寸的分子链比凝胶孔的最小孔径还要小,这时也没有达到分离不同相对分子质量的目的。所以在使用凝胶色谱仪测定相对分子质量时,必须首先选择好与聚合物相对分子质量范围相配的色谱柱。2.1.3.填料(根据所使用的溶剂选择填料,对填料最基本的要求是填料不能被溶剂溶解):交联聚苯乙烯凝胶(适用于有机溶剂,可耐高温)、交联聚乙酸乙烯酯凝胶(最高100℃,适用于乙醇、丙酮一类极性溶剂)多孔硅球(适用于水和有机溶剂)、多孔玻璃、多孔氧化铝(适用于水和有机溶剂) 2.1.4.柱子:玻璃、不锈钢2.1.5.检测系统:通用型检测器:适用于所有高聚物和有机化合物的检测。有示差折光仪检测器、紫外吸收检测器、粘度检测器。2.1.6.示差折光仪检测器:溶剂的折光指数与被测样品的折光指数有尽可能大的区别。2.1.7.紫外吸收检测器:在溶质的特征吸波长附近溶剂没有强烈的吸收。2.1.8.选择型检测器:适用于对该检测器有特殊响应的高聚物和有机化合物。有紫外、红外、荧光、电导检测器等。2.2.操作:2.2.1.溶剂的选择: 能溶解多种聚合物;不能腐蚀仪器部件;与检测器相匹配。2.2.2.把激光光散射与凝胶色谱仪联用,在得到浓度谱图的同时,还可得到散射光强对淋出体积的谱图,从而计算出分子量分布曲线和整个试样的各种平均分子量2.2.3.激光光散射实验中必须对样品严格除尘,溶液中的灰尘会产生强烈的光散射,严重干扰聚合物溶液光散射的测量。溶液除尘是光散射成败的关键。首先是溶剂除尘,配置测试样品的溶剂应进行精馏,并经过0.2μm超滤膜过滤后方可使用。配好的溶液也要用0.2μm的超滤膜过滤。另外,测试中所用的器械,如:注射器等,使用前要用洗液浸泡,清水强力冲洗

  • 凝胶色谱法测定高分子物质

    谁能提供给我一些关于凝胶色谱法测定高分子物质多糖的例子,谢谢了另外凝胶色谱法测定多糖的流动相和凝胶选用什么比较合适,谢谢!

  • 凝胶成像系统采购注意事项

    凝胶成像系统包括成像系统和分析凝胶图片的软件系统。我们在选购时需要分别从这两个部分来考察凝胶成像系统的功能参数。  如果您主要用它来拍普通核酸胶或蛋白胶,那么几乎市场上所有的成像仪都可以很好的满足您的需求。这时除了价格这个决定因素外,能比较的也就是一些操作是否简便等不太重要的指标了。  但是对于准备做化学发光的用户,他们需要对敏感度要求高,同时还要求比较宽的动态范围。因为要想捕获到微弱的化学发光,需要上佳的CCD相机和镜头。  一般来说,CCD相机的冷却温度和背景噪音息息相关,温度越低,噪音就越低。因此,-25℃的绝对制冷温度是对相机的第一个要求(更低的温度,噪音降低效果不明显,而量子效率又会受很大影响);另外,较大的像素能够提供更高的捕光效率;所以对于相同大小的CCD芯片,需要注意像素的尺寸。  镜头的参数就简单了,由于我们只需要观察近距离的样品,而且一般可以调整样品位置(有些厂家甚至提供电动样品升降平台),所以基本无需选择长镜头或者变焦镜头;但是,由于我们需要检测微弱的化学发光,镜头的光圈则至关重要,一般F值越小,其通光量越大,而且成平方反比关系,因此我们一般需要选择光圈F值尽量小的镜头。另外,如果镜头是电动的,我们可以省却打开机箱,反复手工调整光圈和聚焦等的烦恼。  其他我们需要考虑的包括光源、滤光片和暗箱等部件。光源的种类和发光的均一度,滤光片的数量和暗箱的遮光效果等均在我们的考虑范围之内。当然,一般如果成像仪的CCD和镜头配置不错,一般这些部件也不会太差。  在选择凝胶成像系统时,我们关注的问题通常有以下一些方面:1、像素越高是不是成像更清晰,产品就越好?  像素是要针对成像设备来看的,其实CCD本身的质量比单纯的像素高低更重要。对于同级别CCD来说,最重要的指标是CCD的尺寸大小,尺寸越大其本身价值就成几何倍地增长。  2. CCD和CMOS有什么区别,哪种芯片更好?  CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上。  从原理上,CMOS的信号是以点为单位的电荷信号,而CCD是以行为单位的电流信号,前者更为敏感,速度也更快,更为省电。  但CCD制造工艺较复杂,采用CCD的摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD和CMOS的实际效果的差距已经减小了不少。而且CMOS的制造成本和功耗都要低于CCD不少,所以很多摄像头生产厂商采用的CMOS感光元件。  在成像方面,相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。但由于CMOS低廉的价格以及高度的整合性,因此在摄像头领域还是得到了广泛的应用。  现在高级的CMOS并不比一般CCD差,但是CMOS工艺还不是十分成熟,普通的CMOS 一般分辨率低而成像较差。  目前的情况是,许多低档入门型的数码相机使用廉价的低档CMOS芯片,成像质量比较差。普及型、高级型及专业型数码相机使用不同档次的CCD,个别专业型或准专业型数码相机使用高级的CMOS芯片。代表成像技术未来发展的X3芯片实际也是一种CMOS芯片。  CCD与CMOS孰优孰劣不能一概而论,但一般

  • 凝胶分离装置

    想购买一套凝胶分离装置 请哪位了解的人士给指导一下 哪个厂家的 哪个型号的性价比 比较好!谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制