当前位置: 仪器信息网 > 行业主题 > >

质子转移电离源原理

仪器信息网质子转移电离源原理专题为您提供2024年最新质子转移电离源原理价格报价、厂家品牌的相关信息, 包括质子转移电离源原理参数、型号等,不管是国产,还是进口品牌的质子转移电离源原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质子转移电离源原理相关的耗材配件、试剂标物,还有质子转移电离源原理相关的最新资讯、资料,以及质子转移电离源原理相关的解决方案。

质子转移电离源原理相关的资讯

  • 科学岛团队建成快速气相色谱-质子转移反应质谱仪
    近日,健康所医用光谱质谱研究团队在快速气相色谱-质子转移反应质谱的技术研究上取得进展,相关结果发表在国际分析领域期刊JOURNAL OF CHROMATOGRAPHY A上。   质子转移反应质谱仪(PTR-MS)是一种常用的挥发性有机物(VOCs)快速高灵敏检测仪器,已经广泛应用于环境、医学、安全等领域,但该仪器只能通过离子的质荷比进行定性,无法区分分子量相同的物质,比如同分异构体。气相色谱-质谱联用仪(GC-MS)是实验室VOCs检测的金标准,但存在分离检测过程耗时的缺点。   为解决上述问题,团队将PTR-MS与GC联用,结合PTR-MS快速检测和GC分离定性的优点,建成了一套可以区分同分异构体的快速气相色谱-质子转移反应质谱仪(FastGC-PTR-MS)。   首先,利用几种常见VOCs的标准样品对其性能进行了考察和优化,在保证二甲苯、丁醇的同分异构体能够被基本分离的前提下(分离度R1.0),乙腈、丙酮、醇类化合物的保留时间小于50 s,苯系化合物的保留时间小于110 s。与商用GC-MS相比,检测时间分别缩短了5-6倍和2-4倍。   然后,利用该仪器开展了实际应用,对乳胶漆挥发物中丁醇同分异构体进行了检测,结果表明:D品牌乳胶漆的顶空气体中主要含有正丁醇、叔丁醇、乙醛、甲醇与丙酮五种物质,同分异构体正丁醇和叔丁醇能够被完全分离(分离度R1.5),其中有毒物质叔丁醇的浓度为4.41 ppm,无害物质正丁醇的浓度为6.64 ppm。该工作建立了一套FastGC-PTR-MS仪器,实现了同分异构体的快速定性定量检测。   本文的第一作者为健康所2018级博士生孙琴,通讯作者为中科院青促会会员沈成银研究员和健康所邹雪副研究员。本研究得到了国家自然科学基金、中国科学院青年创新促进会、安徽省重点研发计划、合肥研究院院长基金等项目的支持。
  • 东西分析质子转移反应质谱仪荣获BCEIA金奖
    p  strong仪器信息网讯 /strong2019年10月23日-26日,第十八届北京分析测试学术报告会暨展览会(BCEIA2019)在北京国家会议中心召开。会议期间,中国分析测试协会颁发“BCEIA 2019金奖”,共14台仪器斩获殊荣。/pp  由北京东西分析仪器有限公司(简称:东西分析)自主研发的PTR-QMS 3500型质子转移反应质谱仪不负众望,喜获2019BCEIA金奖,这也是东西分析发展历史上第六次获得BCEIA金奖。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/ad462e7d-404a-4dc0-91f6-61ebd76094f3.jpg" title="6f3460fb-a6cc-424a-b896-3737dcd66b7a_副本.jpg" alt="6f3460fb-a6cc-424a-b896-3737dcd66b7a_副本.jpg"//pp style="text-align: center "strongBCEIA金奖颁奖仪式/strong/pp  质子转移反应质谱(PTR-MS)是通过待测组份与试剂离子在特定的条件下发生质子转移反应而成为质子化的带电粒子,进入后一级的质量分析器被分离检测。该仪器主要用于挥发性有机化合物(VOCs)的超灵敏检测,可以实时在线连续监测、连续定量测量比如苯系物、大部分烷烃、烯烃、醚类、脂类等挥发性有机化合物。/pp  PTR-QMS 3500型质子转移反应质谱仪采用了PTR源的软离子化技术,产生的(M+H)+离子几乎不伴随碎片离子,可以获得更高的检测灵敏度,在连续检测VOCs方面具有很大的优势。PTR-MS最低检测限可以达到几个pptv,而且被测气体可以直接导入反应室而不需任何前处理设备,极大简化了分析步逐,提高了检测效率。仪器还可实时在线监测空气中危害有机物含量随时间的变化,便于科学家和检测部门及时掌握污染物情况并采取相应措施。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/975c96bf-f855-46fb-b0ad-c8e9dea03cab.jpg" title="0efee25f-f4b4-425f-8ae3-5967b61eab84_副本.jpg" alt="0efee25f-f4b4-425f-8ae3-5967b61eab84_副本.jpg"//pp style="text-align: center "strongPTR-QMS 3500型质子转移反应质谱仪/strong/pp  据了解,PTR-QMS 3500型质子转移反应质谱仪为东西分析承担的国家“十三”五期间支持的重大科技项目成果。目前国内外可以提供成熟产品的公司仅有四、五家,能够提供PTR-QMS产品的厂家更少。 产品有望为快速检测VOCs提供一个崭新的解决思路,具有广泛的应用前景。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201911/uepic/78a0b54c-a8a3-4207-b18f-d7664e6f2d4e.jpg" title="e99a8443-6d19-4d2b-afdf-4ccaaee70f50_副本.jpg" alt="e99a8443-6d19-4d2b-afdf-4ccaaee70f50_副本.jpg"//pp style="text-align: center "strong东西分析BCEIA金奖总览/strong/p
  • 安光所研制成功国内首台质子转移反应质谱监测仪
    3月27日,由中科院安徽光机所承担的中科院科研装备研制项目“大气挥发性有机污染质子转移反应质谱在线监测系统”通过了由中国科学院计划财务局组织的专家组验收。验收组成员由来自中国科技大学、安徽师范大学、南京信息工程大学、中科院合肥智能所等单位的专家组成。 专家组认真听取了项目研究组的工作报告和经费决算报告,以及技术测试组所做的测试报告,并实地核查了仪器设备到位、运转情况,审核了项目组提供的关键部件购置合同、财务单据和技术资料,对有关问题进行了质询并提出建议。 专家组一致认为,项目组研制的国内首台质子转移反应质谱(PTR- MS)监测仪器,主要技术指标均达到或优于合同任务书规定的要求——其浓度检测精度达到了ppt量级、远低于《国家大气污染物综合排放标准》中列出的大气挥发性有机污染物排放限值,仪器在离子源设计和同分异构体分辨等方面具有创新性。该仪器的研制成功将在大气光化学反应研究以及大气痕量有机污染实时在线检测、肺癌等疾病辅助诊断等领域发挥重要作用,验收专家组一致同意该科研装备研制项目通过验收。
  • 预算430万!北京化工大学采购质子转移反应飞行时间质谱仪
    p style="text-indent: 2em text-align: justify margin-top: 10px "近日,北京化工大学委托北京国际工程咨询有限公司欲采购一套质子转移反应飞行时间质谱仪,预算达430万元(资金已到位)。/pp style="text-indent: 2em text-align: justify margin-top: 10px "项目名称:北京化工大学质子转移反应飞行时间质谱仪采购项目/pp style="text-indent: 2em text-align: justify margin-top: 10px "项目编号:1010-194BIECC6592/pp style="text-indent: 2em text-align: justify margin-top: 10px "项目联系方式:/pp style="text-indent: 2em text-align: justify margin-top: 10px "项目联系人:张老师/pp style="text-indent: 2em text-align: justify margin-top: 10px "项目联系电话:010-64433870/pp style="text-indent: 2em text-align: justify margin-top: 10px "预算金额:430万元(人民币)/pp style="text-indent: 2em text-align: justify margin-top: 10px "开标时间:2019-05-09 09:00/pp style="text-indent: 2em text-align: justify margin-top: 10px "开标地点:北京市朝阳区北三环东路15号北京化工大学科学会堂二层会议室/ppbr//p
  • 祝贺东西分析(三雄科技)承担的国家科技部“十三五”重大专项“质子转移反应质谱仪器研制及应用示范”通过验收
    近日,北京东西分析仪器有限公司(三雄科技)承担的由国家市场监督总局组织实施的“质子转移反应质谱仪器研制及应用示范”国家科技部“十三五”重大科学仪器设备开发专项项目顺利通过验收。验收会现场“质子转移反应质谱仪器研制及应用示范”项目,是国家科技部“十三五”重大专项,主要是为满足大气雾霾污染源快速追踪、载人航天密闭仓内有毒有害气体监测、公共场所化学毒剂恐怖袭击等领域对在线、实时、超痕量挥发性有机物检测设备的迫切需求。东西分析(三雄科技)作为项目中任务5《PTR-QMS 工程样机的研制与工程化》主要承担单位成功研制了PTR-QMS 3500型质子转移反应质谱仪,该仪器重点攻克了高精度质子转移离子源、四极杆质谱宽动态范围信号采集提取和快速在线数字滤波等关键技术。仪器特点低气压微辉光放电离子源,电子密度大,效率高,抗污染易维护;高质量四极杆质谱系统,确保数据稳定可靠;zui低检测限可达到几十个pptv;快速在线实时分析VOCS;高效软电离技术,试剂离子纯度可达到99.8%以上;快速简单分析样品,无需样品浓缩处理;选择定质量监测和全范围扫描监测两种方式;全参数自动调谐程序,快速优化仪器参数;快速真空阀切换,无需停机即可更换反应试剂;多功能嵌入式控制系统安全可靠;满足4~20ma、MODBUS协议远程数据传输;结构紧凑,安装可靠可用于车载化安装,便于野外监测。应用领域环境科学、食品科学、医学诊断领域及公共安全领域。该研究成果在2019年BCEIA展会上,不负众望,一举夺魁,荣获“BCEIA金奖”。
  • 拓服工坊发布Vocus PTR-TOF 小精灵 质子转移反应飞行时间质谱新品
    Vocus PTR-TOF质子转移反应-飞行时间质谱仪系列仪器专注于高灵敏度的挥发性有机物VOC在线检测解决方案,适用于:- 环境污染监测- 食品饮料- 材料挥发- 国防安全- 生物医疗- 实验室科研等众多领。Vocus 小精灵 PTR-TOF 是世界上最小巧紧凑的PTR-TOF,超快的响应时间,用于痕量VOCs的实时监测。- 专利的反应室创新设计,带来了卓越的灵敏度和速度- 超低检测限- 设计紧凑、结实耐用,为外场走航监测带来实验室级的仪器性能- 小体积、低能耗应用范围• 空气中有毒有害气体监测• 移动监测污染源排放• 工业园区空气监测• 厂界监测• 材料挥发的快速筛查• 生产线上的快速质控Vocus 小精灵 PTR-TOF质量分辨率 M/ΔM500 @ 107 Th at specified sensitivity响应时间 50 ms检测限 20 ppt/min @ 二甲苯灵敏度500 cps/ppbv for 二甲苯 (107 Th) 创新点:全新设计的超小巧在线PTR-TOF 仪器,既保留了该系列仪器的高性能(可实时全面监测VOC),又改进了整体设计,外形小巧,特别适用于环境走航监测• 设计紧凑、结实耐用,为外场走航监测带来实验室级的仪器性能• 小体积、低能耗 Vocus PTR-TOF 小精灵 质子转移反应飞行时间质谱
  • 拓服工坊发布Vocus PTR-TOF 巡航者 质子转移反应飞行时间质谱新品
    Vocus PTR-TOF质子转移反应-飞行时间质谱仪系列仪器专注于高灵敏度的挥发性有机物VOC在线检测解决方案,适用于:- 环境污染监测- 食品饮料- 材料挥发- 国防安全- 生物医疗- 实验室科研等众多领。Vocus 巡航者 PTR-TOF 是在2020年6月推出的高性能环境空气监测解决方案,适用于在复杂环境大气中准确快速地监测痕量VOC的浓度变化。• 卓越灵敏度,超快响应以及超低的检测限• 较高的质量分辨率,可对复杂的 VOC 进行准确识别• 可监测广范围的目标化合物,包括含氧、含氮、卤代物以及含硫等各类化合物• 结实的构造,非常适合走航移动观测,移动车速度可高达100 km/h应用范围• 空气中有毒有害气体监测• 移动监测污染源排放• 工业园区空气监测• 厂界监测• 材料挥发的快速筛查• 生产线上的快速质控Vocus 巡航者 PTR-TOF质量分辨率 M/ΔM3500 @ 107 Th at specified sensitivity响应时间 50 ms检测限 5 ppt/min @ 二甲苯灵敏度4000 cps/ppbv for 二甲苯 (107 Th) 创新点:巡航者是Vocus PTR-TOF 系列仪器中的最新型号,它包括了AcquilityTrack 软件可方便用户实现自动、长期的自动监测操作,并生成实时数据报数。该仪器结构紧凑,既可在实验室进行分析,也很方便在野外观测作业,还非常适用于走航移动观测车。该产品有较高的灵敏度 (4000 cps/ppb xylene) 以及较高的质量分辨率 (3500, M/dM),是实时监测复杂大气环境中多种痕量VOC的高级解决方案。Vocus PTR-TOF 巡航者 质子转移反应飞行时间质谱
  • 关注科研成果转化 质子转移反应质谱助力环境监测——视频访中科院合肥物质科学研究院沈成银研究员
    p style="text-align: justify line-height: 1.5em " 中科院合肥物质科学研究院沈成银研究员及其团队,长期以来从事质子转移反应质谱(PTR-MS)的研究工作,研制出了国内首台PTR-MS仪器。PTR-MS具有检测速度快、检测限低、可检测物质种类多等特点,可以实现实时在线监测以及多组分的同时监测。可用于监测环境中VOCs等。/pp style="line-height: 1.5em "  在2018中国质谱学术大会举行期间,仪器信息网特别采访了沈成银研究员,就PTR-MS技术的相关原理及实际应用以及仪器产业化等相关内容进行了深入交流。/pp style="line-height: 1.5em " 沈成银表示,科研成果产业化是非常必要的。大气环境问题是近年来国家社会关注的热点问题,PTR-MS非常适用于低浓度的VOCs的监测预警,可以为环境监测提供一个新的技术方法。/pp style="line-height: 1.5em "  详细内容请点击以下视频观看:/pp style="line-height: 1.5em "br//pp style="text-align: justify "script src="https://p.bokecc.com/player?vid=DC77DAD7440337119C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/script/p
  • 液体快检技术突破 中科院合肥所发展超声雾化萃取-质子转移反应质谱
    p  近日,中国科学院合肥物质科学研究院医学物理与技术中心光谱质谱研究室在体液检测研究中取得进展,发展了超声雾化萃取-质子转移反应质谱(UNE-PTR-MS)技术,可实现对一滴尿液中挥发性有机物(VOCs)的高灵敏快速检测,相关研究结果发表在Analytical Chemistry上。/pp  尿液VOCs反映人体代谢状况或疾病特征,以往的尿液VOCs测量方法存在一些缺陷:要么速度慢,要么尿液用量大。为此,科研人员设计制作了一种简便的超声雾化装置,用于微量尿液中的VOCs快速高效萃取,通过与自主研制的质谱仪PTR-MS联用,实现尿滴VOCs的快速和高灵敏监测。该方法具有微升进样量、秒量级响应时间和纳克级检测限等特点,将在体液疾病标志物检测中发挥作用,也可用于环境水体挥发物的快速检测。/pp  研究工作得到了国家自然科学基金等的资助,使用的装置和方法已获国家发明专利授权。/pp  论文题目:Rapid detection of volatile organic compounds in a drop urine by ultrasonic nebulization extraction proton transfer reaction mass spectrometry/pp style="text-align: center "img title="001.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/596b1801-ddb2-47df-aaa9-6b31c327b7e3.jpg"//pp style="text-align: center "UNE-PTR-MS检测尿液示意图和检测质谱图/pp /p
  • 拓服工坊发布PTR-TOF-MS 高分辨率质子转移反应飞行时间质谱新品
    Vocus PTR-TOF 市场领先的灵敏度和质量分辨率给挥发性有机物(VOCs)在线监测等领域带来了前所未有的可能性独家的亚ppt级的检测限和高达15000的质量分辨数秒内的亚ppt 级检测限• 超高灵敏度定量痕量有机化合物• 通过快速分析提高检测效率• 通过超高精度展现气体的动态过程现有最高的PTR-MS质量分辨率• 分辨复杂混合物样品中的同量异素体• 基于准确质量和同位素分布对分析物进行识别1. 高质量分辨率可实现复杂样品中各个化合物的可靠分析该谱图展示了Vocus 2R PTR-TOF仪器所检测的松针切口释放的复杂多样的生物源VOCs。放大的插图展示了2R型号仪器可以实现同量化合物的分离和识别。2. 超快的检测响应以3 Hz 频率实时监测人体呼气,包括植物咳嗽药片服用前和服用后的情况。成百上千种化合物出现在了服用后的数据中,包括单萜类、倍半萜等其他植物源化合物。这里选择了几种进行了展示,以显示Vocus PTR-TOF的超快时间响应和极广的动态浓度范围。Vocus PTR-TOF 仪器可对超低浓度化合物的动态变化进行实时定量。创新点:仪器灵敏度有较大突破,是上一代的3-4倍。而且该灵敏度在该行业中独一无二,遥遥领先。PTR-TOF-MS 高分辨率质子转移反应飞行时间质谱
  • 质子传递反应质谱电离技术重大突破—新型1,4-二氟苯前驱体研发与应用
    质谱法是利用带电粒子在磁场或电场中的运动规律,然后按照质量或荷质比实现分离分析的技术。早在1898年,W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素。阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用以测定同位素的相对丰度,成功鉴定了多种同位素。质谱计的发展也从只用于气体分析和测定化学元素的稳定同位素到后来用于对石油馏分中的复杂烃类混合物进行分析,并证实了复杂分子能产生确定的能够重复的质谱之后,才将质谱法用于测定有机化合物的结构,开拓了有机质谱的新领域。 图1. 图左为英国物理学家J.J.汤姆孙,图右为诺贝尔化学奖获得者F.W.阿斯顿 质子传递反应质谱(Proton Transfer Reaction- Mass Spectrometry)是分析挥发性有机物(VOCs)的一种新的先进分析手段。该技术具有检测速度快、灵敏度高、无需内标定量测量等优点,特别适合挥发性有机物的实时在线监测与预警。基于多年挥发性有机物在线分析质谱研究经验,法国AlyXan公司研发的质子传递反应-傅里叶变换离子回旋共振质谱(BTrap)通过运用先进的傅里叶变换离子回旋共振质谱技术,使仪器的质量分辨率高达10000,成为质量分辨率高的质子传递反应质谱。BTrap具有高质量分辨率,高度与稳定性、低离子碎片、高灵敏度高、低检测限等诸多优势,可用于材料,环境,汽车工业,化工等多领域的气体组分在线监测分析,适应各种复杂实验气候与环境。 质子传递反应质谱一般采用质子(H3O+ )作为电离源,该技术的原理是大多数VOCs的质子亲和能高于水而低于高聚水,可以跟质子反应而被电离。但对醇,醛与长链烷烃类化合物,该方法的应用会受到很大限制。如正丁醇在正常测试条件下,不能测到分子离子峰,只能测到脱去羟基的丁烯的峰,为正丁醇的测试带来的很大困难。针对此类问题,法国AlyXan公司研发了一种全新的前驱体——1,4-二氟苯(C6H4F2)[1]。1,4-二氟苯的质子亲合能为718.7 kJ/mol,介于691到750 kJ/mol。因此C6H5F2+可以与大多数VOCs反应,同时产生更少的碎片,可以作为更加温和的质子转移试剂。同时1,4-二氟苯分子非常稳定,生成离子只会发生质子转移反应,不会参与其他反应。分子量比质子大,具有更小的质量歧视效应。 如图2所示,以正丙醇分子为例。在1.26×10-5 mbar的压力下,(a)采用C6H5F2+作为电离源,分子离子(C3H7OH2+)强度非常高,而脱羟基产物(C3H7+)的峰浓度一直维持再非常低的浓度;(b)采用H3O+作为电离源,脱羟基产物将为主要离子,分子离子峰为次要离子。说明有大量分子离子峰发生脱羟基反应,生成C3H7+离子。(c) 在更高的压力7.34×10-5 mbar下, 采用C6H5F2+作为电离源,分子离子峰(C3H7OH2+)依然为主要离子,脱羟基产物,水合离子及高聚水离子的含量非常少;(d) 采用H3O+作为电离源, 脱羟基产物为主要离子,分子离子峰为次要离子,同时有大量水合离子及高聚水离子生成。 图2. 以正丙醇为样品,离子相对强度图 1.26×10-5 mbar压力下, (a)C6H5F2+作为电离源,(b)H3O+作为电离源 7.34×10-5mbar压力下 (c)C6H5F2+作为电离源,(d)H3O+作为电离源。 从下表数据中可以发现,在其他有机物中可以有效重复试验结果,新型前躯体产生的C6H5F2+可以与大多数VOCs反应,并产生少的碎片信号。 除此之外,很多测试实例也证实了质子传递反应-傅里叶变换离子回旋共振质谱技术的先进性和可靠性,1,4-二氟苯作为一种新型的前驱体,有效解决了醇、醛及长链脂肪烃的测定难题,为质子传递反应质谱分析提供了突破性的解决方案。参考文献:[1] Latappy, H. Lemaire, J. Heninger, M. Louarn, E. Bauchard, E. Mestdagh, H. International Journal of Mass Spectrometry 2016, 405, 13.质子传递反应质谱;1,4-二氟苯;VOCs;高分辨率;少碎片相关产品:法国Alyxan公司高分辨质子传递反应质谱(BTrap):http://www.instrument.com.cn/netshow/C247308.htm
  • 合肥研究院提出质子提取反应质谱新技术
    可实现对痕量有机和无机化合物的同时监测  近期,中国科学院合肥物质科学研究院医学物理中心光谱质谱研究室在线质谱检测新原理、新方法研究取得进展,发展的质子提取反应质谱(Proton Extraction Reaction Mass Spectrometry, PER-MS)新技术,实现了对痕量有机和无机化合物的同时监测。此项研究工作发表在《质谱国际杂志》(International Journal of Mass Spectrometry)上。  长期以来,以质子转移反应质谱(PTR-MS)为代表的先进在线质谱技术,在环境、生物、医疗健康、公共安全等领域发挥着重要作用,为痕量挥发性有机物(VOC)的快速定量检测提供了高灵敏技术手段。PTR-MS的工作原理是通过反应离子H3O+与被测物质VOC之间的质子转移反应,将VOC转化为(VOC)H+,从而实现VOC的离子化和后续的质谱探测。早在2008年,光谱质谱研究室科研人员研制了我国首台PTR-MS仪器,并在国际上率先将该技术用于炸药、医疗器械溶剂/杀菌剂残留以及易制毒品的快速检测,研究室储焰南研究员受邀编写了Mass Spectrometry Handbook(John Wiley & Sons, 2012)中的PTR-MS章节。但是,由于H3O+与无机化合物几乎不发生反应,因此,以H3O+为反应离子的PTR-MS技术检测不了无机化合物。  为了解决这个问题,光谱质谱研究室科研人员另辟新径,成功制备了负离子OH-,利用反应离子OH-与VOC之间的质子反方向转移反应,即质子提取反应(PER),将被测物质VOC转化为(VOC-H)-,从而实现VOC的离子化和后续的质谱探测 重要的是,OH-可以与无机化合物例如CO2发生反应,将无机物转化为离子例如CO2OH-。因此,新发展的以OH-作为反应离子的质子提取反应质谱PER-MS,不但能检测有机物,而且也可以检测无机物。  该项研究提出的PER-MS技术,不但丰富了在线质谱内容,而且也为痕量有机/无机物的同时检测,提供了一种新手段。相关技术已经申报了国家发明专利。 质子提取反应质谱(PER-MS)原理示意图
  • 国家市场监督总局“质子质谱”等4项国家重大仪器专项通过验收
    p  strong仪器信息网讯/strong 国家市场监督管理总局消息,近日,由国家市场监督总局组织实施的“铯原子喷泉基准钟的开发和应用”“跨尺度微纳米测量仪的开发和应用”“微膜泵驱动核酸微全分析仪”“质子转移反应质谱仪器研制及应用示范”4项国家重大科学仪器设备开发专项项目通过验收。/pp  strong“铯原子喷泉基准钟的开发和应用”项目/strong/pp  据悉,该项目重要成果上一代技术“新一代国家秒长基准——NIM5喷泉钟”等曾于2017年荣获国家科技进步一等奖。/pp  “铯原子喷泉基准钟的开发和应用”项目由中国计量科学研究院李天初院士牵头承担。项目攻克了冷原子制备、冷却和探测、超稳微波产生、光纤高保真传递时间频率等关键技术,成功研制出铯原子喷泉基准钟(NIM6)、光纤频率传输仪、铷喷泉标准钟、铷喷泉钟工程化样机等仪器。其中,NIM6频率不确定度优于5.8E-16,相当于5400万年不差1秒 光纤频率传输仪,能在1-100km的光纤链路上以极高稳定度、高可靠地传输频率信号 铷喷泉标准钟经基准钟校准后频率准确度能够达到1.9E-15。项目成果为北京卫星导航中心时间频率系统标准时标的产生、保持、改进和比对提供计量支撑,为建设我国独立自主、准确可靠的时间频率体系具有重要意义。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/96153e51-555d-4992-90df-b86bf55d3b93.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "铯原子喷泉基准钟/span/pp style="text-indent: 2em "strong“跨尺度微纳米测量仪的开发和应用”项目/strong/pp  “跨尺度微纳米测量仪的开发和应用”项目于2014年10月正式获得国家科技部批准立项。总经费7681万元,其中中央财政专项经费投入3731万元,最终,该项目将形成年产50台生产能力,累计销售收入5000万元。/pp  “跨尺度微纳米测量仪的开发和应用”项目由上海市计量测试技术研究院牵头承担,项目攻克了宏微联动多轴驱动和多测头集成、原子沉积光栅纳米量值溯源、双角度倾斜式场扫描等关键技术,研制出6种不同型号的跨尺度微纳米测量仪,测量范围达到150mm× 150mm× 80mm,纳米计量光栅标准节距212.8± 0.1nm,光栅高度大于60nm,光干涉测量垂直扫描范围150μm,扫描速度30μm/s,扫描探针显微测量可以实现纳米级分辨力。项目成果为微纳米标准、精密光学仪器、半导体、环境监测等领域提供检测支持,并陆续在航空航天、微电子、环境监测等领域进行推广应用,为提升我国微纳米领域的测量能力奠定了基础。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/b193dc90-5fc5-43d5-bebd-36edaacf15f1.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center " span style="color: rgb(0, 176, 240) " 高精度型跨尺度微纳米测量仪/span/pp  strong“微膜泵驱动核酸微全分析仪”项目/strong/pp  “微膜泵驱动核酸微全分析仪”项目由中国检验检疫科学研究院、北京博晖创新生物技术股份有限公司等共同承担,项目攻克核酸微全分析仪器核心技术、微流体驱动控制平台与高通量检测及荧光检测单元集成的核心关键技术,研发出了多功能核酸微全分析仪、便携式核酸微全分析仪。针对环境监测、生物计量、检验检疫、疾病诊断与研究等领域不同应用需求,解决多靶标同步高通量、高灵敏、现场快速、准确定量检测等多项分析技术瓶颈性难题,检测灵敏度可比常规PCR敏感高出一个数量级,检测时间为常规PCR方法的1/5。通过该项目实施,建成了国内第一条微流控芯片自动化生产线,多功能核酸微全分析仪及配套HPV芯片试剂的CFDA注册取证并上市销售,销售量550台,在450多家医院开展HPV检测,试剂销售已经超过180万人份。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/63a554be-62b4-41ec-ba3b-92c891f7409f.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "多功能核酸微全分析仪/span/pp  strong“质子转移反应质谱仪器研制及应用示范”项目/strong/pp  “质子转移反应质谱仪器研制及应用示范”项目由北京市计量检测科学研究院、北京凯尔科技发展有限公司等共同承担,项目针对大气雾霾污染源快速追踪、载人航天密闭舱内有毒有害气体监测、公共场所化学毒剂恐怖袭击等领域对在线、实时、超痕量挥发性有机物检测设备的迫切需求,重点攻克了高精度质子转移离子源、飞行时间质谱双场加速和无网反射、四极杆质谱宽动态范围信号采集提取和快速在线数字滤波、高精度质谱评测标准气体研制等关键技术,成功研制了质子转移反应飞行时间质谱仪(PTR-TOFMS)和四极杆质子转移反应质谱仪(PTR-QMS),实现了对多组分挥发性有机物的实时、快速、高灵敏度检测,质量分辨率、检出限等关键技术指标达到国际同类仪器水平。项目研究成果已在大气雾霾监测、密闭舱内环境监测、进出口橙汁产地溯源追踪、肺癌病人快速筛查等领域进行了应用示范,具有广泛的应用前景。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/1969f65c-8ef8-4f7f-a41b-ccf65ba0d6bf.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "质子转移反应飞行时间质谱仪/span/p
  • 闻风辨味,动静皆宜 | 谱育科技TRACE 8000化学电离飞行时间质谱仪
    挥发性有机物(VOCs)是臭氧(O3)和颗粒物的重要前体物,对VOCs的管控已成为“十四五”空气质量考核的重要指标之一。因此要求各地方政府部门对VOCs实施细致管控、精准溯源、科学治污。但VOCs监测存在污染来源广泛、成分复杂、扩散速度快、波及范围广等难点,这也对监测仪器提出了更高要求。VOCs监测的新手段—TRACE 8000谱育科技一直不断探索多种分析技术的组合方案,以解决单台仪器难以满足所有监测需求的难题。气相色谱质谱联用仪(GC-MS)结合了GC强大的分离能力以及电子电离(EI)源的定性能力,使其成为了VOCs检测方面的国际通用标准。而以化学电离(CI)源为主要电离方式的直接进样质谱,实现了VOCs的快速监测,并且具有较高的灵敏度。两种技术的优势互补,必将发挥出更强大的分析能力。产品方面,谱育科技相继自主研发了便携式、走航式、实验室台式等系列GC-MS产品,充分发挥GC-MS定性定量准确的优势,以满足不同的应用需求。“本届北京分析测试学术报告会暨展览会(BCEIA)上,谱育科技将推出化学电离飞行时间质谱仪(CI-TOFMS)——TRACE 8000。TRACE 8000 化学电离飞行时间质谱仪TRACE 8000的分离艺术快速的进样系统多快好省引入VOCs样品通过合理的气路设计,TRACE 8000实现了更多的进气量、更快的进样速度、更好的进气路径、更省的气路结构,真正做到了VOCs监测的秒级响应,并可从容应对不同气压条件下的进样环境。精准电离可选试剂离子的化学电离源通过巧妙的试剂离子切换技术,TRACE 8000可以采用质子转移反应、电荷转移反应等多种电离方式。更为关键的是,基于对化学电离规律、产物离子裂解规律的研究,TRACE 8000建立了业内全面的单组分化学电离谱图数据库,能够为每种VOC匹配更佳的试剂离子。精巧的离子传输系统离子与中性粒子分离的关键通过采用多级差分真空结构,融合提取透镜与聚焦透镜,TRACE 8000可以获得更好的离子与中性粒子(主要为气体分子)的分离效果,其灵敏度得到显著提升。适宜的TOF“离子分离”不是质谱仪器的唯一追求通过深入思考离子分离与VOCs定性之间的关系,TRACE 8000不追高、不盲从,为CI源匹配了最适宜的TOF质量分析器,可以实现大质量范围内的微秒级扫描,秒级检测限小于1ppb。优化的谱图解析算法“软硬兼施”分离VOCs通过建立多达上百种的VOCs谱图数据库,配合独有的谱图解析算法,TRACE 8000可以从新的维度,对硬件系统得到的谱图进行深入的软件解析,更好的确定离子与VOCs之间的对应关系,提供更为精准的定性定量分析。应用案例走航监测模式TRACE 8000设计精巧、灵活机动,支持安装于带减震设计的车载机柜中,或配备减震平台固定于车内,无惧恶劣条件,随时随地移动监测厂界空气中的VOCs。园区站点分布式多通道连续监测TRACE 8000支持标准机柜安装,也可灵活放置于实验台面或地面,配合多流路采样装置,可打造全覆盖的分布式监测预警系统,实时监测空气、水、固定污染源中VOCs的变化情况,实现园区重点管控因子的源头防控及敏感区域的污染预警。“闻风辨味” 动静皆宜TRACE 8000具备快速检测能力,可“静”可“动”,适用于多种应用场合,有望进一步丰富谱育科技的VOCs监测技术手段,其与GC-MS的组合将为客户提供更为可靠的分析结果。
  • 2023年度朱良漪分析仪器创新奖获奖者介绍
    为纪念朱良漪同志矢志不渝推动我国分析仪器事业发展的精神,以及激发企业及广大科技工作者积极投身于分析仪器创新工作,由中国仪器仪表学会设置,中国仪器仪表学会分析仪器分会组织开展“朱良漪分析仪器创新奖”。2023年11月29日,即ACAIC 2023会议期间,我会正式颁发2023年度朱良漪分析仪器创新奖,共有3项成果获得“创新成果奖”,6位青年科学家荣获“青年创新奖”,3位应用专家摘得“应用创新奖”。创新成果奖超高灵敏磁共振原位活体分析系统申报单位:中国科学院精密测量科学与技术创新研究院本成果研发了光泵效率提升技术,实现超高灵敏磁共振增强(8万倍);开发的1H/19F/129Xe磁共振分子影像方法,实现了原位超灵敏磁共振探测。即时化学检测质谱分析系统申报单位:清华大学、清谱科技(苏州)有限公司、北京清谱科技有限公司、中国检验检疫科学研究本成果研发了国际领先、性能卓越的小型即时检测质谱仪系统,可即时得出准确分析结果;配套开发了采样试剂盒、离子化方法及数据网络支撑平台,解决了现场检测前处理耗时长、难操作等问题,实现了现场数据分析。桌面式荧光相关光谱单分子分析仪申报单位:广东中科奥辉科技有限公司本成果整合荧光自相关和荧光交叉相关双通道检测技术,实现单分子分辨率定量分析微量(≥5μl)溶液样品中分子或纳米颗粒的摩尔浓度、扩散系数/流体力学半径、相互作用亲和力(Kd值)以及分子构象与构象转换速率等特性。青年创新奖国仪量子(合肥)技术有限公司 许克标博士许克标博士基于金刚石量子精密测量技术,领导研发了量子钻石原子力显微镜、量子钻石单自旋谱仪等一系列原理创新型科学仪器,核心指标上优于国外竞品,核心部件为自主研发,现已完成国内外数百家用户的交付,为量子精密测量技术行业应用提供了示范作用。中国科学院苏州生物医学工程技术研究所 何益 研究员何益研究员以眼球为光学窗口,探索高分辨、高通量的视网膜在体成像技术,将在体细胞级视网膜成像视场从1°提高到4°,成功研制出国际首台单细胞分辨的视网膜在体成像科学仪器与临床医疗仪器,并实现了在三甲医院的批量应用。中国科学院合肥物质科学研究院 沈成银研究员沈成银研究员突破质子转移反应质谱仪(PTR-MS)灵敏度和选择性提升关键技术,发明静电场离子漏斗、四极离子漏斗反应管、双极性质子转移反应质谱仪(PTR-MS)等创新部件和方法,研制质子转移反应质谱仪(PTR-MS)系列整机并转化应用,为我国科研和挥发性有机物(VOCs)污染溯源提供了关键国产仪器,并取得了很好的社会效益和经济效益。深圳真迈生物科技有限公司 颜钦博士颜钦博士领导的真迈生物推出了GenoCare1600、高密度测序芯片和试剂,实现了高灵敏度、高准确性的无扩增测序,并面向临床应用实现快速、灵活、简便的一键式测序;同时,GenoCare1600也是世界首款获批国家药品监管总局(NMPA)注册证的单分子测序仪,首次实现了全内反射单分子高分辨成像技术(TIRF)的小型化、平台化。中国农业科学院农业质量标准与检测技术研究所 毛雪飞研究员毛雪飞研究员聚焦农产品质量安全最关注的镉、汞、砷、铅等重金属快速检测需求,直面“测得慢、测不准”两大瓶颈问题,在固体直接进样、基体干扰消除等关键技术上取得创新性突破,研制新型电热蒸发器和气相富集组件,为多种直接进样重金属速测仪研发提供了关键部件和核心技术。华南理工大学 龚湘君教授龚湘君教授研发了基于数字全息的非标记三维动态光学显微镜,该技术的创新点在于将微粒的动态表征转化为识别其三维光场中的特征分布,并开发了分维度定位算法,从而实现了复杂场景中多类微粒的高精度、高通量、连续、非标记的三维动态表征。应用创新奖南开大学 张新星研究员张新星研究员在质谱离子源的结构设计方面进行了创新性研究,开发了三代场致液滴电离-质谱技术及装置,实现了高气液界面选择性的质谱分析,推动了气液界面化学反应动态过程研究进展。中国科学院南京土壤研究所 龚华高级工程师龚华高级工程师基于国产仪器,建立了《土壤质量 土壤全量硅、铝、铁、钾、钠、钙、镁、锰、磷、钛、硫的测定 单波长激发-能量色散X射线荧光光谱法》。根据此标准方法,可以对土壤样品进行快速、无损检测,目前广泛用于实验室及场地土壤元素分析,对第三次全国土壤普查工作提供高效稳定的技术支撑。复旦大学附属华山医院 艾静文副研究员艾静文副研究员利用国产数字PCR仪开展了病原靶标分子绝对定量实验研究,证实了国产数字PCR仪可显著提升脓毒症病原检出率,同时可以大幅度缩短检测时间,为脓毒症精准诊疗提供了实验支撑。
  • 国家对于国产质谱研发的支持进入了“深水区”
    质谱仪是非常重要的一类分析仪器,在业内属于典型的明星仪器,但是普通大众只有在一些重大科学事件(如两弹一星研制、青蒿素发现等)和重要的司法案件偶尔会听到质谱仪的名字。质谱仪检测原理的清晰明了和检测结果的可靠性得到了世界公认,在产品进出口和司法鉴定中,质谱仪给出的检测报告被广为采纳,这也是近几年质谱仪之所以表现为“价格昂贵量又大”的主要原因。质谱仪相关的学术会议出席人数在逐年增加,美国ASMS每年参会人数达到了6000人,国内近期也出现了千人参会的壮观场面。  据初步评估,2016年全球质谱仪市场需求规模会超过50亿美元 其在制药、化工、食品、环境等方面已经是主力军,在临床检测方面的市场需求也在逐步打开。质谱类仪器又是属于典型的“大型仪器”,单四极杆气质联用仪平均报价在70-100万元,近期增长比较快的三重四极杆液质联用仪和四极杆-飞行时间质谱联用仪平均报价在200-300万元之间,高分辨质谱Orbitrap和FT的价格在500万元以上甚至超过了1000万元。如此重要的仪器设备,几乎超过98%的市场需求依赖进口,中高端更是全部依靠进口。2014年全球产值排名前十的仪器厂商中,有七家厂商生产质谱仪,而且前五家全部都是质谱仪的主流生产厂商。在巨大的市场需求面前,国产仪器厂商纷纷涉足质谱仪相关产品,例如东西分析、普析通用、禾信、天瑞、聚光科技、舜宇恒平、毅新兴业、皖仪、中科科仪、厦门质谱、浙江好创、华仪宁创等 雪迪龙、博晖创新等通过收购国外厂商直接跨入质谱行列。  在强大的市场需求和多位老一辈科学仪器工作者的强烈呼吁下(2009年分析仪器分会与仪器信息网也曾经共同向有关部门递交国产质谱发展建议书),自2011年成立的重大科学仪器专项中,质谱仪相关的项目首当其冲成为了重点支持项目,得到前所未有的支持力度。仪器信息网市场研究中心连续5年跟踪专项支持情况发现,对质谱相关项目的支持金额初略估计近10亿元(一些项目投入金额和企业自主投入金额并未公布),具体立项见文后附表。  质谱仪的关键核心部件涉及离子源、质量分析器、真空系统、检测器等。在质量分析器方面,TOF、SQ、TQ、Orbitrap、Q-TOF等都有重量级的牵头单位进行研发 在真空系统、高精度四极质量分析器都有立项。在科学仪器重大专项实施近5年来,相对于其他类型仪器的支持情况,对质谱仪器相关项目的支持最全面,力度最大 基本符合科技部于2016年02月05日布的《“重大科学仪器设备开发”重点专项2016年度项目申报指南(国科发资〔2016〕38号)》中阐述的国家科学仪器开发思路:通过本专项的实施,构建“仪器原理验证—关键技术研发(软硬件)—系统集成—应用示范—产业化”的国家科学仪器开发链条。  最新发布的《“重大科学仪器设备开发”重点专项2016年度项目申报指南”(国科发资〔2016〕38号)》中,在质谱仪项目方面增加了“新型质谱离子源”项目(1.1.3),具体要求如下:  研究内容:研究敞开式离子化新技术,研制新型电喷雾、介质阻挡放电、激光/气体辅助喷雾和高度集成化敞开式的离子源,开展新离子化应用方法开发和数据库构建,实施新离子源的工程化和产业化开发,满足原位实时快速分析、单细胞分析、质谱成像分析、超痕量样品分析需求,推动我国质谱离子化技术与装置的跨越式发展。  考核指标:形成6种以上具有自主知识产权的新型敞开式质谱离子源产品,有力支撑食品安全、环境应急、新药研发、现场快检、生物研究、质谱成像、公共安全等质谱检测应用。形成敞开式质谱离子源工艺化、产业化基地,实现批量生产。发明专利3项,技术标准3项。项目验收后三年内年销售达到40套以上。项目实施年限不超过3年,每个项目形成5种以上不同的离子源产品。  在支持方式方面,项目立项后前半段主要由承担单位自筹经费实施,资助20%的专项经费 经中期评估确认,项目进展顺利、能够达到预期目标、科研管理和项目经费管理规范的项目,后半段再主要由专项经费给予支持。  据了解,国内主要的离子源研发科研单位及与离子源相关的工作如下(如有未列入者请与我们联系):  清华大学张新荣教授课题组,在常压敞开式质谱离子源方面做了深入的研究,2007年提出了一种简单实用、特别适合小型便携式质谱的离子源—介质阻挡放电离子源(DBDI)。  东华理工大学陈焕文教授课题组,致力于认识能量与电荷在各种典型复杂基体样品中传递的规律及特殊性,并据此发展相应的分析方法和关键部件,拓展质谱分析应用领域。  中国医学科学院/北京协和医学院(简称院校)药物研究所再帕尔阿不力孜教授课题组,研究气流在离子运输和电离过程中的作用,设计开发了具有自主知识产权的空气动力辅助离子源。  北京大学刘虎威教授课题组,先后发展了两种新型敞开式离子化质谱技术:等离子体辅助多波长激光解吸附离子化质谱(PAMLDI-MS)和敞开式表面辅助激光解吸附/离子化质谱。  四川大学段忆翔教授课题组,在新型质谱离子源方面,该课题组先后设计了微波诱导等离子体解吸附/电离离子源(MIPDI)及微型辉光放电等离子体离子源(MFGDP)。  中国科学院大连化学物理研究所李海洋研究员课题组,研究各种形态有机物的直接电离新方法,大气纳米气溶胶的高效电离新方法,研究用于样品在线元素分析的原子化电离新方法。  中国科学院合肥研究院储焰南研究员课题组,自主研制的用于挥发性有机物(VOCs)实时在线监测与预警的移动式高灵敏质子转移反应质谱仪(PTR-MS: 包括质子转移反应四极质谱仪(PTR-QMS)、质子转移反应飞行时间质谱装置(PTR-TOFMS))  总之,虽然近年来在质谱项目的投入力度前所未有,但是通过横向比较会发现投入总金额甚至不及或者相当于国外一家主流厂商在质谱研发上的投入,因此支持力度还需要持续增加。由于投入的资金来源于国家,有专家也表示,“项目失败的几率也是很大的,拿到钱的重点研究单位,至少给行业内的同行有个报告,成功的经验和失败的教训都可以。如果大家都可以把阶段性的研究成果发布出来,相信国产质谱的水平提升会很快。”另外对于企业主承担的专项,建议尽快出台相关政策,企业一旦被国外厂商收购,应该有相应的应对机制。 据不完全统计,自2011年重大科学仪器专项质谱相关项目罗列如下:
  • 什么是VOCs走航监测技术(VOCs走航车)?
    1 为什么要进行VOCs走航监测?在当前大气环境污染现状逐步改善的大前提下,大气污染治理从颗粒物(PM2.5)防治到PM2.5和臭氧(O3)协同控制,防控污染源也从大型工业点源转移到中小型工业源、无组织排放和各种排放面源。作为PM2.5和O3的重要前体物之一,挥发性有机物(VOCs)也理所当然的成为十四五期间重点监测和减排的污染物种之一。除了完善VOCs的排放清单和总量,规范并建立多种类VOCs的检测技术手段也是重点工作之一。后者可以通过拓展新的或加强现有固定站点和检测网络,也可以通过将仪器装备到可移动装置中来观测VOCs,以获得更加密集和系统的排放和污染分布信息,也就是大家常谈的VOCs走航监测手段。近几年来,国家和各地方政府都将‘VOCs走航监测’作为VOCs污染问题排查的重要技术和监察手段。因走航监测机动性强,能够快速掌握VOCs的动态空间分布及其污染特征,是对污染排放源的环境空气影响进行跟踪溯源的重要技术手段,也是对环境空气固定站自动监测技术和污染源在线监测技术,在管理需求数据支持上不足的有效技术手段补充。2 VOCs走航监测应用发展历史走航监测技术,也称移动或者车载监测,是在平常定点监测输出的时间、物种和浓度三要素之上,加入了实时的监测地理位置信息,为数据使用和解读提供了多一层可能性。作为VOCs监测领域一种新兴的技术手段,已经在环境大气科研领域其实已有较长时间和较多的应用案例。相对于常规无机污染指标物和颗粒物监测仍主要沿用光学设备监测,特征污染物VOCs监测主要基于质谱方法,尤其是传统的气相FID、PID或质谱方法。移动监测的最初实现方式可以称为‘移动实验室’,也就是讲上述常规检测仪器和色谱仪器等通过集装箱或者货车的形式运输到某些特定地点,随后开机进行计划中的监测,完成监测任务后关机再开往下一个目标监测点。在一定程度上,这种部署方式也与色谱半小时到一小时的样品分析时间有直接关系。2000年前后,随着常压质谱和质子转移反应质谱仪(PTR-MS)为代表的直接进样快速质谱技术的出现和快速发展,尤其是2008年PTR-TOF飞行时间质谱仪器发布后,以VOCs为检测目标的秒级响应快速质谱仪在轮船、高空气球和飞机航测应用等积累了大量的案例和数据。在1998年,科学家们就已经将PTR-MS带到苏里南雨林地区,对异戊二烯及其光化学产物进行了探索性的工作(Journal of AtmosphericChemistry, volume 38, pages 167–185 (2001))。在国外,PTR质谱技术的航测研究和应用单位主要为美国国家海洋与大气管理局(NOAA)和加拿大环境部等。值得说明的是,因为航测中起飞和降落阶段,以及螺旋形上升/下降阶段对机内仪器抗重力加速度要求较高,一般需要对PTR仪器进行特殊设计和改装,资金成本和时间成本都相对较高。而将PTR等仪器部署在地面车辆进行‘移动监测’相对容易,只需将固定好商用仪器的内部、做好车内的减震装置设计和安装即可。文献中报道的最早将商用PTR质谱仪安装在车内并进行地面车载监测的是美国Aerodyne Research公司,其走航车于2003年在墨西哥城进行了道路机动车的VOCs排放跟踪测量(Environ. Sci. Technol.2004, 38, 5694-5703)。在国内,则是北京大学的朱彤老师课题组,联合德州A&M大学的张人一老师,他们首次将PTR质谱搭载在走航车上,对08年奥运举办前、中、后市区四环干道上的苯系物排放和相关系数进行了研究和探索(Atmos.Chem. Phys., 9, 8247–8263, 2009)。通过苯/甲苯的浓度比例,科学家们可以清楚地看到,奥运前期北京四环周边的污染物主要以装修和汽车尾气的苯系物为主,奥运期间因较严格的管控措施,汽车尾气贡献成为主流(Atmos. Chem. Phys., 9,8247–8263, 2009)。图1,美国Aerodyne research的走航车内仪器配置示意图。图片版权归于EST杂志社。3 国内VOCs走航监测技术的发展状况在国内,对快速质谱硬件和应用研发、以及商品化开发,起步较早的是安徽光机所研制的PTR四级杆质谱仪,在与EI电离集合,双极四级杆检测和液态进样等方向取得了众多独创性成果。真正将快速质谱推向国内VOCs走航市场并接受市场和业主考验的是广州禾信研发的单光子电离-飞行时间质谱(SPI-TOFMS)。禾信质谱的PDMS膜进样系统,在仪器性能和仪器成本之间做了一定的平衡,在大幅降低仪器整体真空要求的同时,获得了6秒左右的仪器整体响应时间。现今市面上也有厂家将便携式气相色谱-质谱联用技术(GC-MS)部署在车内,通过所谓‘双通道’进样获得走航过程的‘大致’信息,并结合停车定点测量作为补充。上述仪器均已有走航监测案例报道。据不完全统计,现市面上号称适合走航应用的大大小小厂商的仪器种类已接近两位数。同时,国内有超过100台搭配不同厂商和型号仪器的走航车在国内多个市区或园区等重点地区进行为期一到三年不等的‘常态化’走航任务。针对‘VOCs走航’这一虽较为“新颖”且发展迅速、新技术和厂商层出不穷的市场,众多的业务部门和其他潜在客户可能都或多或少的有少许‘选择困难症’。比如,2021年7月湖南省生态环境检测中心组织的VOCs检测走航车现场测试中,共吸引了多达12家公司共5大类50多台国内外设备参加在简短回顾完VOCs走航这一应用的国内外发展简史,以及市面上适用仪器的现状介绍,笔者将基于2021年6月正式实施的《长三角生态绿色一体化发展示范区挥发性有机物走航监测技术规范》(简称长三角VOCs走航规范),对走航技术的定义和实施形式、各种适用仪器性能的优缺点、走航策略规划、走航前中后质控要点、常见问题和需关注的各个方面、及各种走航案例进行初步小结。《长三角VOCs走航规范》的发布,实现长三角区域VOCs走航监测的标准统一。该技术标准着眼于‘规范走航监测工作,提升不同型号设备间数据的可比性、一致性,使环境空气VOCs走航监测技术更好的服务于示范区。同时为长三角乃至全国范围的大气VOCs科研与环境执法工作提供可借鉴、可推广的经验,引领挥发性有机物走航监测技术发展。4.1 什么是“VOCs走航监测“?《长三角VOCs走航规范》对 “走航监测”进行了明确定义, 走航监测区别于一般移动监测车或移动实验室,最重要的特点在于行进中连续自动监测,并基于地理位置信息显示污染物的空间连续分布。规范希望走航监测在行进中可得到尽可能多的污染物定性、定量信息。从整个工作流程来看,在污染点位停车进行复测,或利用其它设备辅助污染物定性、定量,或开展溯源,也是走航监测工作的重要组成部分。4.2 什么样的快速检测设备可以来实现VOCs走航检测?《长三角VOCs走航规范》中对走航适用的快速监测设备“质谱仪“要求如下:以车载质谱为主要监测设备,从走航监测工作目的和方式来看,分析周期必须尽可能的短,因此在行进时将空气中VOCs组分离子化后,利用质谱得到定性定量结果是主要的走航监测方式。目前市场上用于走航监测的快速质谱仪,离子源工作原理方式主要有三种:电子轰击(EI)、单光子电离(SPI)和质子转移反应(PTR)。质量分析器主要有两种:四极杆(Quadrupole)、飞行时间质谱(TOF)。以下对这几种技术进行简单的介绍: (1)电子轰击电离能量为70eV,通过这种‘硬电离’,待测分子产生特征碎片,结合NIST数据库进行检索定性。通常,电离前会采用色谱柱对待测物进行分离,待测物由于物理化学性质不同,依次流出色谱柱并被EI电离。对于移除色谱柱,采用直接进样电子碰撞(EI)电离原理的质谱配置进行监测时,空气中多物质检测时产生的信号会进行叠加,相互之间形成干扰。(2)单光子电离(SPI)是相对‘软’的一种电离技术,主流的光电离技术一般通过单光子能量为10.6eV的紫外灯实现,待测物的电离能必须小于10.6eV才能被紫外灯电离。VOCs中,单环苯系物电离能一般在8~9 eV,其SPI电离效率较高;通常含氧或者含氯物质在单光子电离质谱内的响应都相对于苯系物低,检出限的差别有时候达到几十倍甚至更多(Anal. Methods, 2020,12, 4343)。因此为了提高分析的准确度,SPI质谱仪需对每一种待测因子进行外部校准才能有效降低检出值的误差。(3)质子转移反应(PTR)电离也是‘软’电离的典型方式之一。PTR电离法一般以水合氢离子(H3O+)为母离子,待测物只需满足其质子亲和势大于水(691 kJ/mol)即可以被PTR电离。大气环境中存在的绝大部分VOCs都可被电离,电离效率较为类似,响应值相对统一。(4)由于工作原理的不同,飞行时间质谱比四极杆质谱仪具有先天的性能优势。TOF可以瞬时采集全谱信息,大幅提升仪器的分析速度和灵敏度。详见《主流VOC走航质谱仪电离技术漫谈》、《为什么飞行时间质谱(TOFMS)是相对于四级杆质谱(QMS)更理想的检测器?》、《为VOCs走航而生---高质量分辨率PTR-TOF(PTR-MS质谱)在VOCs走航应用中的若干知识点》。4.3.监测方案制定和实施在化工园区走航监测中,应制定合理的走航策略,对走航方式、走航路径、走航频率、走航时长等提出建议。各地的走航策略需要因地制宜,在前期精细化的排放清单准备之外,由粗到细,抓大放小也是常见的参考思路,之后的走航网格覆盖率和走航频次也是研究要点。详见《‘网格化’VOC走航策略漫谈》 4.4 VOCs走航过程中常见的问题有哪些?原因以及解决方法?(1)怎么规划走航路线?去哪里测?考虑走航成本、时间等因素,走航监测可以采取从粗到细的方式,首先对目标区域进行多次不同时段的走航监测,获得区域浓度总体分布图。接下来对浓度异常排放区域进行重点监测,排查污染因子、排放规律、污染来源等问题。(2)走航过程中VOCs浓度没有明显变化?走航热点区域内污染物浓度受周围企业或排放源的影响较大,污染物浓度波动明显。在较低浓度区域走航时,仪器需要高灵敏度来支持,能及时捕获较小的污染波动;在污染严重的区域,仪器不应出现“信号饱和“的情况,无法给出具体数值;同时在低、高浓度区域监测中,仪器给出的因子浓度都要具有可信度,这就要求仪器在更宽的量程上具有较好的线性支撑来满足定量的需求。(3)人鼻子闻到味道,仪器却没有响应?异味因子往往含氧、含氮、含硫、含氯等元素,目前单一的离子化质谱仪难以满足同时全部监测的需要,同时异味因子嗅阈值往往很低,这就需要仪器有更低的检出限。VOCUS PTR-TOF提供易于切换的离子试剂模式,对国内40种典型的恶臭异味物质均可以检测。详见《国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览》(4)仪器测到的物种跟厂家排放清单物种对不上走航监测常常会遇到复杂的污染环境,几种甚至几十种污染因子的存在,对仪器的准确分辨能力提出了更高的要求,监测报告因子与企业排放清单出现不吻合的情况也会出现。Vocus 配有PTR离子源的CI-TOF拥有的高质量分辨率(5000 Th/Th)和高相对质量精度(20 ppm以内)可以帮助我们把精确质量在97.045Th处检测到的因子鉴别为氟苯,而不是3-糠醛(97.028 Th)或2-乙基呋喃(97.065 Th)。(5)仪器测到物种的浓度跟清单排放量对不上在对因子准确定性的基础上,浓度多少的问题也很关键。这需要仪器的质控和校准过程符合规范,在现场检测的条件下易于操作,最好是仪器内置校准系统,减少管路拆卸引起的泄露和交叉污染问题。Vocus 配有PTR离子源的CI-TOF已经内置稀释校准系统,软件自动操作,一般可以在5分钟内完成标零和标定整个流程。同时由于质子转移反应基于反应常数和离子传输效率对因子进行定量,对没有标气的因子半定量结果误差一般小于±50%。详见《Vocus PTR-TOF灵敏度校准‘闻一知十’》(6)117组分不能全覆盖用于走航监测的各种型号质谱仪,由于离子化原理方式的限制,无法对117种因子进行同时监测,会遗漏一些重要因子的信息,导致收集资料不完整。VOCUS CI-TOF可以在5秒内无缝从H3O+模式切换至O2+、NO+等模式,来满足对其他因子的监测,保证走航监测中污染物因子信息的全谱收集。5.走航监测案例分享案例一:国外科学家利用搭配有TOFWERKPTR-TOF质谱仪的移动实验室在美国和欧洲的多个城市,系统性的研究了挥发性化学产品与交通源以及市区人口密度之间的相互关系。利用走航监测数据,科学家们清楚的展示了在上千公里尺度上,各城市周边区域内人为VOCs浓度呈显著提升,换而言之,大气污染物的‘城市热岛效应’。详见《PNAS文献:跨区域VOC走航数据揭示大气污染物‘城市热岛效应’》案例二:国内研究人员采用TOFWERK公司生产的Vocus PTR-TOF质谱仪在2020年对苏州市冬季VOCs进行了环线走航和定点观测,探究了苏州市大气VOCs的污染浓度水平、组分特征以及地理分布趋势,并进一步分析了苏州市VOCs污染物的臭氧生成潜势,为苏州市大气VOCs的污染防治工作提出了坚实数据基础和宝贵建议。详见《Vocus PTR-TOF城区大气VOCs走航+定点联合观测案例介绍》案例三:2020年6月上海金山工业区就多家快速质谱厂商联合观测的部分结果进行了平行分析,在对结果详细对比的基础上,以期判断出这三种分析手段在污染物成分更复杂的工业园区内定点或者走航案例的应用潜力和优劣势。其中VocusPTR-TOF不仅对芳香烃有很好的响应,对含氧类(CHOs)和含氮类(CHNs)的VOCs也具有较好的检测效果,详见《秒级响应PTR-TOF质谱法为工业园区预警管控和源解析提供新思路》案例四:制药工业园区内以二氯甲烷为代表的卤代烃是典型的有毒有害大气污染物。PTR-TOF仪器可以改变试剂来产生其他母离子,大多数的卤代烃都可以被O2+母离子高效电离,同时卤代烃在O2+模式下具有较好的检测限,为园区的走航监测提供支持。同时工业园区内以丙烯为代表的低碳烷烃和烯烃的精确测量是现市面上VOCs走航解决方案的一个技术难点。VocusPTR-TOF所特有的高质量分辨率,‘亚’秒级仪器响应速度和ppt级别的检测限是其成为复杂大气基体中准确鉴别并定量分析痕量丙烯的首选技术之一。详见《走航应用中氯代烃检测的若干知识点》、《Vocus PTR-TOF(PTR质谱)对二氯甲烷和其他常见卤代烃的检测实例解读》、《Vocus PTR-TOF(PTR-MS质谱)对工业园区环境大气中丙烯的监测案例详解》案例五:群众的异味投诉,属于重要的民生问题和环境污染问题。传统检测不适用于现场异味污染源排查对时效性的高分析要求。Vocus PTR-TOF对40种典型恶臭异味物质(硫化物、含氮化合物、苯系物、烯烃及含氧有机物等)均可检测。详见《Vocus PTR-TOF(PTR-MS质谱)恶臭因子实时全检测》、《国内40种典型恶臭异味物质VocusPTR-TOF(PTR-MS质谱)检测能力一览》感谢暨南大学袁斌教授对本文的贡献和指导。
  • 中科院发明水中VOCs实时在线质谱监测新技术
    最近,中国科学院合肥物质科学研究院医学物理与技术中心光谱质谱研究室在水中挥发性有机物(VOCs)实时在线监测方面取得进展,发展的喷雾进样——质子转移反应质谱(SI-PTR-MS)技术方法,实现了水中VOCs快速/高灵敏在线检测。该研究工作已发表在美国化学会期刊Analytical Chemistry上。  长期以来,水中VOCs在线监测很难做到既快又灵敏,例如,膜进样或顶空进样质谱,灵敏度高,但响应慢 毛细管进样质谱,响应快,但灵敏度有限。光谱质谱研究室科研人员根据亨利原理,设计制作了一种简便的水喷雾提取(SI)单元,用于水中VOCs的高效萃取,并与自主研制的质子转移反应质谱(PTR-MS)仪器联用,对水中VOCs进行快速/高灵敏在线监测。目前,测量水中苯的检测限达到0.14 微克/升,响应时间55s 并对自来水、湖水、实验室/药厂废液等水样中的苯进行了成功检测。新发展的SI-PTR-MS技术方法,不但为水中有机物自动监测提供了一种新的技术方案,而且可促进PTR-MS技术在水环境质量监测中的应用。  该研究得到了国家自然科学基金等项目的资助,使用的装置和方法已获得国家发明专利授权。
  • Vocus PTR-TOF灵敏度校准‘闻一知十
    Vocus PTR-TOF灵敏度校准‘闻一知十在实际测量中,Vocus PTR-TOF通常会测量到大量的VOCs,其中许多VOCs并没有标准样品。Vocus PTR-TOF方法的一大优点是‘无需全标样,也可定量’。简而言之,只需少数几种VOC标气的测量数据,Vocus PTR-TOF就可以给出其他待测目标物的定量浓度信息。Felipe Lopez-Hilfiker, Liang Zhu, Manuel Hutterli, Luca CappellinTOFWERK, Thun, Switzerland海量VOCs定量分析需要高效率标定PTR-TOF仪器灵敏度基于少数几种VOC标气的测量结果,化学电离质谱法(CI-MS)能定量分析绝大部分待测目标物。这对于配有飞行时间(TOF)质量检测器的CI-MS仪器尤其重要,因为该分析法能够同时测量成百上千的VOCs信号。Vocus PTR-TOF的超高灵敏度大幅增加了仪器可测VOCs的数目和种类,其中不乏很多活性较高或标准样品不易配置或存储的VOCs。另外,因检测到的VOCs数目较大,对其进行一一标定也不现实。因此,物种定量需要一种无需直接校准每种VOCs即可将记录的信号强度转化为浓度信息的方法。基于PTR-MS反应机理,Vocus PTR-TOF对于目标VOC的灵敏度可通过其质子转移反应常数(kPTR)和工作条件下的仪器参数估算得出。该计算得到的灵敏度能用于将仪器记录到的谱图信号强度转换成更有意义的浓度值。求证质子转移反应常数和PTR-TOF灵敏度的线性关系通过测量一系列不同分子量和已知质子转移反应常数的VOCs标样,在确定的工作状态下,可以确定Vocus PTR-TOF灵敏度和各VOCs反应常数(kPTR)的线性相关性(类似样例详见图1)。在没有标样情况下,该线性关系可大致估算某kPTR已知的VOCs的灵敏度。值得注意的是,为了进一步增加计算的精确度,也需考虑质谱仪本身对于不同质荷比离子的传输效率。图1,Vocus PTR-TOF灵敏度和各待测物质子转移反应常数(kPTR)的线性关系。对于kPTR已知的物种,无需标样,Vocus PTR-TOF即可对其定量分析。测量飞行时间质谱仪的离子传输效率如前所述,为更好估算待测物在Vocus PTR-TOF上的响应,待测物的分子量受TOF分析过程中的不同影响也需考虑在内。离子传输效率曲线表征了质谱仪器将不同质荷比离子从分子离子反应区IMR引入到质量检测器的能力。对Vocus PTR-TOF而言,其离子传输效率融合了离子透镜系统的质量带宽,TOF离子提取和MCP器件检测过程中的质量歧视效应等。因仪器中上述部件的操作参数不是固定不变的,所以需定期通过标气测量数据来进行离子传输效率表征和改善。图2展示了一条代表性的离子传输效率曲线,其y轴标识了不同离子从离子源到质量检测器的传输百分比(记录到的信号除以理论值总信号)。值得说明的是,质子转移反应常数对于信号的影响已经从图2的数据中剔除掉,其目的是为了更准确的表征出仪器对应的离子传输曲线。图2,基于一系列标气测量数据的Vocus PTR-TOF离子传输效率曲线。离子透镜的带宽设置为压制谱图上信号较强的试剂离子(H3O+ (19 Th) 和 H2OH3O+ (37 Th))模式,加上TOF检测器对于低质荷比离子较差的占空比,导致了在20到50Th这个区间内相对较低的离子传输效率。在50Th以上的质量区间内,离子传输效率曲线变得比较平缓,直到500Th开始逐渐下降无需标样,直接定量定期测量标气,推导出Vocus PTR-TOF的灵敏度和离子传输效率曲线后,即可估算kPTR已知的待测物在仪器中的灵敏度(Sobs)。如下面的公式所示,Sobs是根据待测物kPTR算出的灵敏度理论值和仪器的离子传输效率曲线Trans[m/Q]相乘得出。待测物VOC的浓度可通过仪器测得的实际信号值(每秒计数,cps)除以估算灵敏度Sobs获得。[VOC]= SignalVOC (cps) / Sobs通过上述方法,Vocus PTR-TOF在定量分析kPTR已知的待测物时的误差可以控制在30%甚至更好。针对某些质子转移反应常数kPTR未知的待测物,我们可以采用平均反应常数kPTR或者基于其分子结构做的kPTR估算值做半定量分析。在精确控制的反应区条件下,Vocus PTR的反应常数接近于动力学碰撞常数。文献报道的kPTR一般集中在2-3.5 x 10-9cm3molecules-1s-1这个较窄区间内。也就说,对kPTR未知的待测物,采用平均kPTR这个方案带来的额外误差相对于其他电离方式较小。总结来说,在PTR电离过程中不产生大量碎片的前提下,kPTR未知的待测物半定量分析的误差一般在正负50%以内。超高灵敏度的Vocus PTR-TOF通常会测量到大量的VOCs,其中许多VOCs并没有标准样品。利用完善的动力学理论和精确控制的反应条件,Vocus PTR-TOF可以做到‘闻一知十’,只需对少量VOC标样进行定期测量,即可对谱图上测得的绝大部分信号进行定量或者半定量分析。参考文献1. Riva, M. Rantala, P. Krechmer, J. E. Peräkylä, O. Zhang, Y. Heikkinen, L. Garmash, O. Yan, C. Kulmala, M. Worsnop, D. and Ehn, M. Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species. Atmos. Meas. Tech. Discuss., 2018, In Review.https://doi.org/10.5194/amt-2018-4072. Sekimoto K Li, S. M Yuan, B Koss, A Coggon, M Warneke, C de Gouw, J. Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties. Int. J. Mass Spec. 2017, 421, 71-94. https://doi.org/10.1016/j.ijms.2017.04.0063. de Gouw, J. Warneke, C. Measurements of volatile organic compounds in the earth’s atmosphere using proton‐transfer‐reaction mass spectrometry. Mass Spec Rev. 2006, 26, 223–257.https://doi.org/10.1002/mas.20119来源:tofwerk
  • 雪迪龙公司推出飞行时间质谱新产品 寻求各方合作
    2015年6月,雪迪龙与英国Kore Technology Limited签署投资意向书,雪迪龙持有KORE公司51%的股权;2015年9月7日,KORE公司完成了股权变更的注册登记手续,本次投资事项全部完成。 Kore公司成立于1991年,是国际上最早专业从事飞行时间质谱仪和相关产品研发、生产、销售的科技公司之一,KORE公司主要面向全世界的高校、科研机构等提供定制的高端飞行时间质谱仪;KORE的飞行时间质谱产品可广泛应用于环境监测、溯源、健康安全、材料研发和食品等行业;在大气环境中对气体污染物的检测,尤其在测量VOCs方面,可实现快速多组份数百种微量污染成份的定量定性分析。 目前,雪迪龙全面负责KORE产品在中国市场的生产、销售与售后服务;雪迪龙公司正在对KORE公司进行全面整合,帮助KORE公司扩大生产规模; 同时,推出MS-200便携式飞行时间质谱仪、PTR-TOFMS质子转移反应飞行时间质谱仪二款质谱产品,寻求各方合作,包括飞行时间质谱产品示范使用、合作应用开发、质谱仪器定制业务以及代理合作等。 合作咨询:联系人:市场部 王先生联系电话:15810369526; 010-80730609;010-80735683(传真)E-mail:Market@chsdl.com单位名称:北京雪迪龙科技股份有限公司(股票代码:002658)单位地址:北京市昌平区回龙观国际信息产业基地3街3号(102206)MS-200 便携式飞行时间质谱仪n 概述 MS-200便携式飞行时间质谱仪用于现场快速检测气态样品中的VOC/SVOC,通过双膜进样系统直接取样,而无需对样品进行分离、预浓缩。 仪器采用独有的聚环式飞行时间质谱分析技术,采用经典的EI离子源,能与现今广泛认证于实验室的NIST质谱数据库无缝对接,结合仪器自带的混合物自动分析软件,可对ppb到%的多种气体组分进行快速定性定量分析。 MS-200操作简便,分析相应速度快,具有高灵敏度及稳定性,内置的电池驱动模块,能维持长时间高频操作(6小时),实现了从实验室到现场的快速监测。 n 工作原理1、进样系统:采用双膜进样系统,通过内置真空泵维持仪器内外压力差,将样品从大气中引入质谱仪的真空区2、质谱检测:采用电子轰击(EI)+飞行时间质谱仪,先将样品电离成离子,然后使离子加速,最后检测样品离子3、信号转化与传输:时间数字转换器(TDC)是MS-200用于定时、控制和数据交换的设备,前置放大器处理检测器产生的信号,供TDC使用4、控制与分析:可将数据传输到电脑上,通过GRAMS/AI软件对质谱仪进行控制,并进行数据分析n 应用领域环保-垃圾填埋场的VOCs排放检测/恶臭检测城市空气质量检测-测定污染物在区域内的空间分布室内VOC检测应急检测-快速明确地鉴别未知样品、污染排放溯源检测环境修复区的VOCs/SVOCs-快速低成本的分析检测,可有效监控修复进程工业卫生与职业安全火灾和犯罪现场调查-比如确认引发火灾的元凶泄漏检测-如加油站、化工园区等废水、土壤-顶空气体分析n 产品特点便携机动 体积小,集成度高,无需外接任何气体钢瓶携行箱式设计,重21kg,可通过车载和手提等方式快速进入现场;全套系统完全集成于箱内,开箱即可进行半连续自动分析交直流两用。在极频繁的分析操作下,质谱仪可靠电池驱动维持正常工作3小时以上,保证现场监测的机动性快速检测1、开机预热速度快(3~5min)2、采样管直接进样,无需连接GC系统,大大节省分析时间3、对ppm级到百分比(%)浓度的样品10s内即可分析出结果,对ppb级的样品通过膜浓缩也能在一分钟内完成3、高的时间分辨率,在应急监测等应用中不会漏掉重要信息性能优越1、仪器调制稳定性好,移动时无需重新校准2、测量线性范围广,可分析从ppb到%级气体组分3、内置真空取样装置,无需单独配置预处理,现场操作简便、灵活4、内置充电电池,可维持6个小时高频测试,真正实现从实验室到现场分析双膜进样系统1、常压下采集样品,简单、稳定的运行方式,非常适合现场使用2、PDMS膜为疏水性材质,对空气中的O2 、N2等基质干扰不敏感3、防尘和其他颗粒,离子源不易受污染4、浓缩效率高,不经样品前处理,检测下限可达几个ppb5、响应时间短,记忆效应低6、半透膜使用寿命长,运行成本聚环式飞行时间质谱分析技术1、并行检测:可以检测进入质谱仪中所有化合物的碎片离子,对于对组分的检测,灵敏度高,2、分析快速,混合物自动分析软件可快速识别各种组分3、快速分析:采样分析速度快,在10s内得到合适的质谱统计分析4、采用独有的聚环式设计,提高了样品电离性能,大幅减小了真空室及检测器组件的体积,使仪器更为便携实用5、高性能的分析器,保证了仪器的高灵敏度和质量分辨率内置超真空1、真空系统永久密封:系统清洁、极少需要维护、内置双泵保证系统超真空(10-7mbar)2、无需外接机械泵:坚实可靠(不受震动影响)、无需初级抽气泵、断电后长时间维持真空状态 n 技术参数检测范围:0~1000amu检出限:5ppb span=""(苯)质量分辨率:250 FWHM@78 amu动态线性范围:6个数量级(优于10%)温度范围:15° C --35° C(环境温度)湿度范围 非凝聚电池运行时间 n分析:分析可连续使用6.6小时(以每5分钟分析一个光谱为基准) n泵运行时间(只运行泵):4天外形尺寸: n高:213 mm 宽:328 mm 长:531 mm n重量:20kg(16kg不包括电池)PTR-TOFMS 质子转移反应飞行时间质谱n 概述 PTR-TOFMS是通过将质子转移离子源和飞行时间质谱结合在一起,能对痕量挥发性有机物(VOCs)实现在线检测的新兴技术,可在数秒内实现PPTV量级的浓度检测,具有响应速度快、无需前处理、灵敏度高和检出限低等优点。 n 仪器优点实时在线监测,无需样品收集和预处理高灵敏度,检出限低至PPTV量级,可检测痕量污染物响应速度快,可在50~100ms内快速甄别污染物高质量分辨率(FMWH 6000 M/?M), 可准确识别化学组分伴热进样系统及钝化处理,可直接分析SVOC无需载气,少耗材、维护成本低坚固耐用,维护量小,可长时间稳定运行,适于现场和野外工作采用独特设计,减少离子损失,所需样品量少,适合微环境监测分析范围广,可用于大气、水和土壤中VOC/SVOC及部分无机气体的检测可广泛应用于环保、石油化工、食品医药、科学研究等领域n 产品特点软化学电离 质子转移是一种“软”化学电离方法,可使中性气体分子(如大气中低浓度的待分析物)进行电离而不会产生大量的分子碎片。与其它电离技术如电子电离(EI) 相比,它不会使分子变成碎片,生成的质谱图更为简单,易于解析。多种可选离子源1、标配离子源:H3O+2、可选离子源:EI(能量可调),NO+,O2+,Ar+,Kr+,Xe+及负离子3、极大扩展了仪器的使用范围及测量精度4、可用于大部分VOC/SVOC以及部分无机气体的检测在线实时监测1、仪器时间分辨率可达100ms,能在最短时间内迅速甄别污染物,极大提高了仪器的时效性2、实时在线检测,可随时查看样品的化学组成以及反应动态过程3、实时连续检测,可精确掌握污染物浓度并更好地进行过程控制性能优越1、独有的离子浓缩器(含RF Funnel技术),极大减少了反应器中的离子损失,使仪器获得高灵敏度的同时,无需采用更高气流量以增加离子流,保证仪器的高性能,并降低成本。2、更高的质量准确性和质量分辨率,能够区分具有相同“名义“质量的物质,即分离精确质量相当接近的两个谱峰。3、采用特有的质量抑制器,最大效率地延长离子检测器的使用寿命,保证仪器长时间的稳定运行。4、按照客户需求,可对仪器进行重新配置,以增加更多功能,如定制进样系统,增加GC或TD解析器以检测爆炸物等。n 系统组成加热进样管线系统1、提供加热进样管线, 适合现场或野外测量。2、提供加热器电源, 可通过软件远程控制。3、气体压力比大气压大许多或气体流量很高时, 部分待测气体会通过仪器出口被引出4、进样系统最高温度可达 200℃,通过软件或仪器专用的加热器控制面板, 对各种进样管线的加热器及 PTR 反应器加热箱提供必要的加热控制。空心阴极辉光放电离子源和离子源漂移区1、辉光放电离子源提供H3O+初级离子束作为标准配置。2、可使用其它气体作为离子源, 得到其它类型的化学电离。3、仪器配有加热水瓶以及被加热水蒸汽的传输管线, 将水蒸汽引入至辉光放电(GD) 离子源处。4、可改变水瓶的温度, 保持水瓶温度高于室温,消除外部温度变化对水蒸汽压力的影响。5、标准配置中提供离子源切换气体管线,也可向客户提供其它气体离子源(Ar+, NO+, O2+, Xe+, Kr+及负离子) 接口。PTR 反应器1、PTR 反应器位于离子源漂移区后面,配置离子浓缩器、加热箱和控制器。2、待分析物分子与软化学离子(比如 H3O+) 在反应器中发生反应。3、新型离子浓缩器可增加离子离开反应器的通量, 从而增加灵敏度, 降低检测限。4、反应器配有专用的加热箱,维持反应器的温度(可至130℃)。5、专用电子机箱可以控制反应器和与反应器相关的组件:辉光放电离子源(阴极和阳极), 离子浓缩器,反应器出口离子能量, 提取进入转移透镜。飞行时间质谱仪1、TOF 质谱仪的质量分辨率超过 6,000 M/?M (FWHM),性能稳定,灵敏度高,扫描速度快、效率高。2、离子检测器由双微通道板检测器组成,前置放大器可提高仪器的检测灵敏度。真空系统1、真空系统有前置抽吸泵、分子涡轮泵、真空阀门和真空腔组成,为分析系统提供稳定的真空环境,保证结果的准确性和分析精度。2、在数据采集期间, 自动测量 PTR 反应器压力,实时查看系统真空变化。高速 TDC (4GHz 时间-数字转化器) 仪器配置的离子计数系统,时间分辨率为0.25ns,具有最小的死时间,数据记录效率高,保证数据的稳定性和重复性。n 技术参数质量范围:1-8,000 m/z质量分辨率:≥ 6000 M/?M (FWHM), 适用于定量分析 最高可达 10,0000 M/?M (FWHM), 适用合于定性分析响应时间:约 50-100ms (反应器里待分析物更新时间)灵敏度:采用 RF Funnel 技术, 苯 150 cps/ppbv检测器与检测下限:采用 B-P Plate 技术, 苯 8pptv@平均1分钟线性范围:5pptv–50ppm脉冲频率:设计为 100 kHz 典型操作频率:20 -30Hz可调流量:可达 1000 sccm (标准立方厘米)初级离子束:可选择H3O+, Ar+, NO+, O2+, Xe+, Kr+(及负离子)质量准确度:1 mamu (内插法),2 mamu (外推法)脉冲频率:设计为 100KHz,通常在 20-30KHz 下操作进样气体流量:典型的气体消耗流量为 60-300 cm3/min (sccm)。必要时可关闭。反应室加热温度:可达130℃进样入口加热器:50-200℃(可调)高速 TDC 4GHz涡旋式无油真空泵电源:220-240V, 约1kW尺寸/重量:61 x 165 x 2000px (宽, 高, 深) / 250kg数据采集系统:在机架上安装台式或笔记本电脑
  • 1.02亿元预算!质谱仪2022年4-6月采购意向盘点
    质谱仪被广泛应用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工、地质学、矿物学、地球化学、空间技术等领域。据不完全统计,至少19个高校院所发布的2022年仪器采购意向中提及质谱仪的采购,质谱仪总采购预算高达1.02亿元。19个高校院所2022年4-6月质谱仪采购不完全统计采购单位采购台(套)数中国科学院大气物理研究所5中国科学院生态环境研究中心4中国科学院上海硅酸盐研究所2中国科学院山西煤炭化学研究所2中国科学院精密测量科学与技术创新研究院2复旦大学2中国科学院新疆理化技术研究所1中国科学院武汉植物园1中国科学院上海有机化学研究所1中国科学院华南植物园1中国科学院广州能源研究所1中国科学院福建物质结构研究所1中国科学院大连化学物理研究所1中国科学院城市环境研究所1中国科学院成都生物研究所1中国科学技术大学1山东大学1华南理工大学1大连理工大学1采购意愿提到的质谱仪采购类型除常规质谱仪外,还包括超高效液相色谱三重四级杆质谱联用仪、超快高通量质谱仪、催化反应中间体实时原位探测飞行时间质谱、大磁场同位素质谱分析系统、三重四极杆质谱仪、大气常压离子高分辨率飞行时间质谱仪、电感耦合等离子体串联质谱仪、电感耦合等离子体质谱仪、电喷雾离子源精确定性质谱仪、高精度气溶胶飞行时间质谱、黑碳气溶胶质谱仪、辉光放电质谱仪、离子色谱-质谱联用仪(IC-MS)、膜进样质谱仪(MIMS)、气体同位素质谱仪、气相色谱-高分辨质谱联用仪、氢氘交换高分辨质谱联用仪、三重四级杆-线性离子阱复合质谱仪、三重四极杆电感耦合等离子体质谱仪、生物组织质谱成像及高通量检测系统、双聚焦扇形场阵列检测器电感耦合等离子质谱仪、瞬态捕捉飞行时间质谱、四极杆串联飞行时间质谱(Q-TOF)、四极杆-轨道阱组合高分辨质谱仪、原位热解-真空紫外单光子/电子轰击双电离源飞行时间质谱系统、长飞行时间质谱仪质谱仪、质子传递反应-飞行时间质谱、质子转移反应-质谱仪。可以看出,质谱仪采购需求凸显精细化特征。2022年4-6月质谱仪采购意向盘点序号采购单位采购项目名称采购品目采购需求概况预算金额(万元)预计采购日期1复旦大学质谱仪A02100407质谱仪详见项目详情3002022年6月2复旦大学电喷雾离子源精确定性质谱仪A02100407质谱仪详见项目详情1132022年4月3中国科学技术大学气体同位素质谱仪A033499其他专用仪器仪表详见项目详情2002022年9月4华南理工大学四极杆串联飞行时间质谱(Q-TOF)A02100407质谱仪详见项目详情3202022年4月5山东大学辉光放电质谱仪物理学的研究和试验开发服务详见项目详情7002022年5月6大连理工大学大连理工大学分析测试中心三重四极杆质谱仪等设备采购A02100407质谱仪,A02100408色谱仪详见项目详情3782022年4月7中国科学院大连化学物理研究所四极杆-轨道阱组合高分辨质谱仪A02100407详见项目详情6002022年5月8中国科学院上海硅酸盐研究所离子色谱-质谱联用仪(IC-MS)A02100408色谱仪详见项目详情1852022年6月9中国科学院上海硅酸盐研究所质子传递反应-飞行时间质谱A02100407质谱仪详见项目详情4502022年5月10中国科学院生态环境研究中心生物组织质谱成像及高通量检测系统A02100407详见项目详情4502022年12月11中国科学院生态环境研究中心三重四极杆电感耦合等离子体质谱仪A02100407详见项目详情1852022年12月12中国科学院生态环境研究中心双聚焦扇形场阵列检测器电感耦合等离子质谱仪A02100407详见项目详情4002022年12月13中国科学院生态环境研究中心超高效液相色谱三重四级杆质谱联用仪A02100407详见项目详情1852022年12月14中国科学院上海有机化学研究所超快高通量质谱仪A02100407质谱仪详见项目详情3752022年6月15中国科学院福建物质结构研究所催化反应中间体实时原位探测飞行时间质谱A02100407质谱仪详见项目详情1452022年5月16中国科学院山西煤炭化学研究所瞬态捕捉飞行时间质谱A02100407质谱仪详见项目详情3502022年6月17中国科学院山西煤炭化学研究所原位热解-真空紫外单光子/电子轰击双电离源飞行时间质谱系统A02100407质谱仪详见项目详情2602022年6月18中国科学院精密测量科学与技术创新研究院氢氘交换高分辨质谱联用仪A02100407质谱仪详见项目详情6502022年5月19中国科学院大气物理研究所大气常压离子高分辨率飞行时间质谱仪A02100407质谱仪详见项目详情2302022年6月20中国科学院大气物理研究所黑碳气溶胶质谱仪A02100408质谱仪详见项目详情4672022年6月21中国科学院大气物理研究所长飞行时间质谱仪A02100408质谱仪详见项目详情4502022年6月22中国科学院大气物理研究所高精度气溶胶飞行时间质谱A02100408质谱仪详见项目详情4672022年6月23中国科学院大气物理研究所质子转移反应-质谱仪A02100407质谱仪详见项目详情3202022年6月24中国科学院武汉植物园大磁场同位素质谱分析系统A02100407质谱仪详见项目详情3502022年5月25中国科学院华南植物园膜进样质谱仪(MIMS)A02100407质谱仪详见项目详情1052022年6月26中国科学院成都生物研究所电感耦合等离子体质谱仪A02100407质谱仪详见项目详情1502022年7月27中国科学院广州能源研究所气相色谱-高分辨质谱联用仪A02100407质谱仪详见项目详情3002022年6月28中国科学院新疆理化技术研究所三重四级杆-线性离子阱复合质谱仪A02100407质谱仪详见项目详情2802022年6月29中国科学院城市环境研究所电感耦合等离子体串联质谱仪A02100407质谱仪详见项目详情1702022年4月30中国科学院精密测量科学与技术创新研究院氢氘交换高分辨质谱联用仪A02100407质谱仪详见项目详情6502022年5月
  • 活动回顾|东西分析参加河南省挥发性有机物监测技术大会
    4月23日,由河南省分析测试协会主办,EWG1990仪器学习网承办的2021年河南省挥发性有机物监测技术大会在河南郑州弘润华夏大酒店华夏堂举办。东西分析携PTR-QMS 3500型质子转移反应质谱参加了此次盛会。 此次会议旨在规范环境监测行为,提高监测数据质量,促进生态环境监测工作的健康发展,吸引了挥发性有机物监测相关领域的研究学者、各地方环境监测机构、环境检测第三方实验室以及高等院所等分析测试机构的分析测试工作者及相关人员几百余人参加,共同交流挥发性有机物监测过程中遇到的相关问题及先进的技术手段。 东西分析展位现场讲座休息期间,在仪器展示区域内,东西分析展台汇聚了多位参观者驻足,观摩仪器、交流技术、分享经验。东西分析此次携带的PTR-QMS 3500型质子转移反应质谱,是环境监测领域大气中VOCs监测的明星产品,检出限达到ppt级。PTR-QMS 3500型质子转移反应质谱低气压微辉光放电离子源,电子密度大,效率高,抗污染易维护;高质量四极杆质谱系统,数据稳定可靠;检测限可达PPtV;快速在线实时分析VOCs;快速简单分析样品,无需样品浓缩处理;可远程数据传输;结构紧凑,可用于车载。案例应用:某工业园区走航监测
  • 新挑战下的质谱发展之路该如何走?——第七届质谱仪器研发及应用热点论坛燃情启程
    仪器信息网讯 2024年7月18日,由中国仪器仪表学会分析仪器分会质谱仪器专家组、哈尔滨工业大学(威海)、广东省麦思科学仪器创新研究院、分析测试百科网主办的“第七届质谱仪器研发及应用热点论坛”在山东省威海市隆重召开。仪器信息网作为支持单位参加会议并对本次会议进行报道。本次论坛以“新挑战下的质谱发展之路”为主题,邀请了多位质谱仪器研发、应用、产业专家共同探讨应该如何去解决质谱仪器“卡脖子”技术问题,推动国家核心关键领域质谱仪器的发展进程。会议现场“质谱仪器研发论坛”始于2018年,每年一届,今年已是第七届。而且,今年的论坛名称也发生了一些变化“质谱仪器研发及应用热点论坛”,从会议报告主题也可以看到,除了各种质谱技术研发进展,临床毒物、微塑料检测、单细胞代谢组学等热点应用的报告也占据了一定数量;确实,需求导向正是仪器研发的出发点。哈尔滨工业大学(威海)校长谭忆秋教授致辞科技部科技经费监管服务中心原主任吴学梯致辞中国仪器仪表学会分析仪器名誉理事长刘长宽致辞中国仪器仪表学会分析仪器理事长/质谱仪器专家组主任委员/中国计量科学研究院方向研究员致辞中国仪器仪表学会分析仪器分会质谱仪器学术组秘书长周志恒主持开幕式大会开幕式由中国仪器仪表学会分析仪器分会质谱仪器学术组秘书长周志恒主持,哈尔滨工业大学(威海)校长谭忆秋教授、科技部科技经费监管服务中心原主任吴学梯、中国仪器仪表学会分析仪器名誉理事长刘长宽、中国仪器仪表学会分析仪器理事长/质谱仪器专家组主任委员/中国计量科学研究院方向研究员致开幕辞。随着经济不断发展,质谱仪因其高特异性、高灵敏度的优势不断得到市场认可,应用领域涉及经济社会各个环节,对其他产业的发展具有巨大的带动作用。虽说,目前中国质谱市场大部分依赖进口,但是,经过时间的积累,近年来国内质谱研发团队、国产质谱企业、质谱研发成果呈现快速增长的趋势。此次论坛上,单细胞代谢组学质谱、颗粒质谱与成像、宽能标等离子体电离质谱、磁质谱、质子转移反应飞行时间质谱、光电离质谱、航天探测载荷的质谱仪器、小型离子阱质谱、化学电离在线飞行时间质谱、离子淌度质谱关键技术、质子转移反应质谱等研发进展集中进行了展示,可以看到,国产质谱多点布局,已初见成果。具体情况见以下大会报告内容:报告题目《标准参考数据(SRD)——数字时代测量标准新范式》报告人:中国计量科学研究院 方向 研究员测量是从感知到认知的起点和关键,测量标准是保障科学数据的溯源性和可信任的依据。方向研究员从测量标准范式的历史演进、以D-SI为基础的数字时代的测量标准、标准参考数据(SRD)新范式三个方面进行了报告,指出科学研究四范式分别是经验科学、理论科学、计算科学和数据科学。其次,提到全球测量体系发生了“不变”的“巨变”,表现在稳定可靠、寰宇度量、数字转型三个方面。另外当前新范式具有四个优点:数据标准替代实物标准、数据标准能无限共享并有着极大范围应用、持续低成本扩大增强、标准数据+数字化+AI革新测量模式。最后,他呼吁质谱研究者共同建立可查找、可访问、可互操作以及可重用的标准参考数据制度体系,充分发挥标准参考数据在数字时代的威力。报告题目《分析仪器行业发展态势分析》报告人:中国仪器仪表学会分析仪器分会 吴爱华 秘书长分析仪器行业近些年吸引了更多感兴趣的人关注,分析近年行业发展态势可以得出我国分析仪器行业发展速度高于全球整体水平,其得益于政府支持、新兴产业发展等主要驱动力,同时资本也更加青睐于分析仪器行业,尤其是质谱、生命科学仪器等。并且可以看出国产仪器正在向高端领域和原始创新方向发展,国有化率有所提升,市场占有率也稳步提升,出口显著增加。然而国外品牌本土化力度的提升也加大了国产品牌竞争压力。最后,她建议分析仪器研发工作者要抓住产业升级换道的机会,开拓新市场,向高端、高质量发展,抓住机会快速打通成果向产业转化的通道,为扩大海外市场做积极准备。报告题目《宽能标等离子体电离质谱技术的研发及其在环境分析中的应用》报告人:浙江大学 潘远江 教授质谱技术的应用目前在海量数据总结归纳不够、未知物快速鉴定以及实验结果的准确预测等方面有着一定局限性,这就需要构建一种高通量智能分析系统去解决这样的应用问题。质谱在多个领域都有着广泛的应用,潘远江教授的团队构建了一种宽能标等离子体离子源,结合数字化能量调控,实现了单一离子源与ESI、APCI、EI等主流离子源相似的电离模式;通过数字化精确调控等离子体功率,实现了软/硬离子化、源内裂解和元素分析。在此基础上,依据该宽能标等离子体的特点,研究了四大类环境化合物的氧化过程,发现了潜在新污染物,揭示了该技术在环境污染物预测筛选中的良好应用前景。报告题目《国产质谱仪器发展之管见——以临床质谱为例》报告人:北京大学 刘虎威 教授在国际形势严峻复杂,进口高端质谱仪受到影响的大环境下,国产质谱仪器客观上迎来了发展机遇。而根据当前国产质谱仪器研发现状,刘虎威教授提出:企业兼并势必行,资本集中大事成;高端仪器须国产,举国之力求生存;创新人才多延揽,工匠精神是灵魂;模仿过后须创新,性能稳定是核心;齐心合力谋发展,志同道合靠规章五条管见。报告中他也指出下一步的发展应该把蛋白质组学、脂质组学、代谢组学等大数据互通,形成证据链,进而与人工智能结合应用于肿瘤、心血管、神经等临床的实际应用研究中;对色谱-质谱在临床应用中面临的挑战,也指明做仪器研发行业,控制成本是关键。报告题目《单细胞代谢物质谱流式分析》报告人:清华大学 张四纯 教授流式细胞仪作为单细胞分析的有力工具,已在细胞生物学和临床研究实验室获得广泛应用,但已有的流式细胞仪不适合单细胞中代谢物直接分析。代谢物作为细胞新陈代谢的终端产物能更值观地反映细胞表型,成为研究肿瘤微环境的关键技术应用,因此迫切需要研制可用于单细胞代谢物高通量检测的分析工具。张四纯教授的团队提出免疫标记质谱流式原理的单细胞代谢物分析方法,实现了高通量检测单细胞中数百种代谢物;还通过各种细胞的代谢物质谱图,成功区分了四种不同类型的肿瘤细胞以及不同亚型;突破了在单细胞水平上的代谢物小分子的高通量分析难点。报告题目《颗粒质谱与成像》报告人:中国科学院化学研究所 聂宗秀 研究员测量起源各异、个体微小的生物粒子的质量及其在特定群体中的分布和变异情况,对于了解它们的结构和特性非常有帮助。而生物颗粒的质量远超现代质谱仪的测量范围,所以针对现代质谱存在的关键科学与技术问题,聂宗秀研究员的团队构建了纳米尺度颗粒质谱装置以及便携式颗粒质谱装置,为微纳尺度的金颗粒、不规则纳米颗粒等进行测量,且应用于病毒颗粒结构分析;构建了高空间分辨的MALDI基质超声喷洒装置,可使得灵敏度提高5-10倍,成像分辨率提高2-4倍,实现了在细胞层次空间分辨率成像技术;结合免标记纳米材料研究了在体内的代谢影响;构建了分离电离平台,获得了基于尿液的疾病快筛快诊。报告题目《磁质谱仪器研制及应用进展》报告人:西北核技术研究所 李志明 研究员依据当前大型无机和同位素磁质谱仪器这一关键的“卡脖子”技术,严重制约相关领域发展的问题,李志明研究员报告中对目前国产磁质谱仪器的研发进展和应用进展做了分享。其团队所研发的双聚焦热表面电离质谱、高分辨辉光放电质谱已经处于产业化阶段,高分辨气体质谱、专用气体质谱处于工程化阶段,还有多款质谱仪器处于预研阶段。他还指出在“设计+材料+工艺”特殊需求下的仪器开发,需要满足更高丰度灵敏度、更高分辨率、更高精密度、更高灵敏度、更低检测限和更轻量化的要求,未来,他们团队将磁质谱仪正向设计与加工能力,结合新型应用需求,去开发更高水平仪器装置,进而推动同位素质谱更高水平发展以及磁质谱仪器和技术创新发展。报告题目《质子转移反应飞行时间质谱仪的研制与应用》报告人:四川大学 段忆翔 教授段忆翔教授的团队自主研发了紫外光电离-飞行时间质谱仪(UVP-TOFMS)、质子转移反应-飞行时间质谱仪(PTR-TOFMS)、行波离子分子反应器-飞行时间质谱仪(TWIMR-TOFMS)以及液相色谱三重四级质谱仪(LC-MS-MS)等一系列具有高灵敏、高分辨以及快响应速度的质谱设备,突破了包括飞行时间质量分析器、行波离子迁移率分离器、行波离子导向器、常压离子源、常压质谱接口、离子漏斗及多级杆离子调制装置等多项技术难点,并广泛应用于癌症早筛、非入侵式医学诊断、现场环境监测及食品安全等领域,形成了具有鲜明国产化特征的质谱仪器研发制造体系。报告题目《光电离质谱技术研究及应用新进展》报告人:中国科学院大连化学物理研究所 花磊 研究员针对低气压惰性气体放电VUV灯的输出光强和发射光子能量受限,导致对光电离截面低和电离能高的样品分子电离能力不足的问题,花磊研究员团队近年来基于VUV灯发展了一系列高灵敏、高覆盖复合光电离技术来提高检测灵敏度、拓宽电离样品范围,研究中探索了这种复合光电离技术的电离机理,研制了满足不同实际应用场景的光电离质谱仪器,并成功应用于非靶向快速筛查、复杂体系目标化合物快速定性和定量分析等方面。报告题目《单细胞代谢组学质谱仪研制及应用》报告人:宁波大学/宁波华仪宁创智能科技有限公司 闻路红 教授单细胞代谢研究是当前生命科学领域的前沿和热点,闻路红教授从单细胞代谢研究的三大挑战出发,即如何从单细胞获得代谢物质、如何将获得的皮升级样本实现质谱分析、如何做到分析全流程自动化操作开始了他的报告。他的团队基于萃取式技术路线,实现了单细胞内源性代谢物质谱分析的全流程自动化,在皮升级样本的质谱仪器技术研究上取得了突破,并应用在膀胱癌等单细胞代谢组学的研究中。报告题目《超高分辨质量分析器的现状及发展》报告人:暨南大学/广东省麦思科学仪器创新研究院 李磊 副研究员当前超高分辨质谱技术以傅里叶变换质谱(FT-MS)和多次反射飞行时间质谱(MR-TOF MS)为主,但是,基于傅里叶变换的商业化超高分辨质谱仪器存在分析速度较慢、常规MR-TOF MS存在离子容量较低的问题。麦思科学仪器创新研究院在超高分辨质谱分析器方面取得一定的进展,联合开发电喷雾解吸电离-多次反射飞行时间超高分辨质谱仪(DESI-MRTOF)、基质辅助激光解吸电离静电离子阱超高分辨质谱仪(MALDI-HHT)和大气压电离多次反射飞行时间质谱仪(API-MRTOF)等超高分辨质谱仪器,实现了国产高端质谱技术的突破。报告题目《谱育质谱-海外市场的突破》报告人:谱育海外事业部 朱嘉民 经理从前期准备工作、寻找主要成功模式和应用-多方位投入市场和地区、市场拓展-参加知名国际大型展会到海外成果案例分享,朱嘉民经理介绍了谱育科技拓展海外市场的经验。下一阶段海外市场突破,谱育科技将从GC、HPLC等基础产品开始介入海外市场提高知名度,投入更多的质谱研发去提高产品与软件的性能、与当地代理商更紧密合作、提升适合当地环境的软件和硬件功能、借助国内企业和政府进入海外市场等维度进行突破。参会代表合影第七届质谱仪器研发及应用热点论坛得到了广东麦思科学仪器、Leybold、VALUE飞越、奥远电源、burkert、PFEIFFER VACUUM、航宇九天、EXDSENS、东文高压等真空泵、高压电源、真空电机等关键零部件供应商的大力支持。会议特别设置小型展览,以便于产品新技术应用的面对面直接交流。此外,在会议正式召开前,主办方还特别组织了多位大咖专家进行了质谱技术及应用培训,包含四极质谱、飞行时间质谱技术以及质谱应用综述等,为提升从业人员的质谱素养贡献一份力量。国家持续重视科学仪器研发,就在今年6月24日,习近平总书记在全国科技大会、国家科学技术奖动大会、两院院士大会上发表讲话时也特别指出,针对科研仪器等瓶颈制约,加大技术研发力度,为确保重要产业链、供应链自主安全可控提供科技支撑。科学仪器的发展影响着科技与经济的发展,仪器研发人肩负着责任感与使命感,首先,深入研究科技创新与产业创新,运用先进的技术和方法,研发高质量的科学仪器,形成高质量的科学仪器产品,服务于科技创新和经济发展。其次,强化企业的创新主体定位,加快科研成果转化,形成真正的生产力。最后,仪器创新,国家层面顶层设计需加大系统布局;关注关键技术、关注系统集成、关注市场需求,敢于研发别人没有的技术,引领国家产业发展。“十五五”即将开始,科学仪器未来如何发展需要我们所有人去思考!
  • 在线质谱检测技术取得最新进展 大力提高有机物鉴别能力
    近期,中国科学院合肥物质科学研究院医学物理与技术中心光谱质谱研究室副研究员沈成银等在有机物在线质谱检测技术研究中取得进展,发展的双极性质子转移反应质谱(DP-PTR-MS)新技术,通过正负离子协同检测,可提高有机物的鉴别能力。该研究工作以Detection of ketones by a novel technology: dipolar proton transfer reaction mass spectrometry (DP-PTR-MS) 为题发表在《美国质谱学会杂志》(Journal of the American Society for Mass Spectrometry,DOI: 10.1007/s13361-017-1638-7)上。  长期以来,以质子转移反应质谱(PTR-MS)为代表的高端在线质谱技术,在环境、生物、医疗健康、公共安全等领域发挥着重要作用,为痕量挥发性有机物(VOC)的快速定量检测提供了高灵敏技术手段。PTR-MS的工作原理是通过反应离子H3O+与被测物VOC之间的质子转移反应,将VOC转化为[VOC+H]+,从而实现VOC的离子化和后续的质谱探测。由于PTR-MS中正的反应离子H3O+与无机物几乎不发生反应,为此,光谱质谱研究室前期提出了质子提取反应质谱(PER-MS)技术,通过制备负的反应离子OH-,实现了有机物和无机物的同时测量。  光谱质谱研究室科研人员此次发展的双极性质子转移反应质谱(DP-PTR-MS)技术,质谱仪具有可切换的PTR-MS和PER-MS两种工作模式,通过正负离子协同检测,增强了有机物识别能力。例如,当检测酮类有机物M时,PTR-MS模式将M转化为正离子[M+H]+(荷质比为m+1),PER-MS模式则将M转化为负离子[M-H]-(荷质比为m-1),通过两种模式下正负离子荷质比这种独特变化规律的相互佐证,待测酮类有机物M的分子量就能被准确地确定为m。新发展的DP-PTR-MS技术不仅能检测有机/无机物,还提高了有机物的鉴别能力。  该项工作申请了发明专利,并得到了国家自然科学基金、国家重点研发计划等项目支持。双极性质子转移反应质谱检测有机物原理示意图
  • 重症早期预警——呼出气用SIFT-MS 实时快速检测
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱第十四讲:脂肪酸气相色谱分析的故事第十五讲:吹口气,知健康——GC-MS检测呼气疾病标记物   呼吸气检测相比其他通常医疗检测的最大优点是无损伤和安全性,由于它在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法对一些病人成为每天控制重要指标的必要测试项目(就像检测血糖和尿液一样)。呼吸气检测有多种方法,表 1列出分析呼出气体的一些方法。表 1 用于分析呼出气体的一些方法  上次我们介绍了GC-MS分析人呼出气体中预示疾病的生物标记物。这里我们介绍用SIFT-MS快速实时分析呼出气体中预示疾病的生物标记物的方法。1. 用选择性离子流动管质谱(SIFT-MS)快速、实时、准确地分析呼吸气体中的疾病标记物  早期的质谱是采用低压电子电离源,用以测定分子量、元素组成以及探究物质的化学结构,后者是利用分子电离后的碎片组成来实现的。近年电离方法的发展是针对直接分析液体或固体样品而设计的,包括快原子轰击(FAB),基质辅助激光吸附/电离(MALDI),和电喷雾电离(ESI)方法。后面2个方法特别适合于分子量大的化合物的鉴定,ESI与液相色谱(HPLC)的结合更为有效。在气体样品电离的方法方面也得到重要的发展,包括化学电离(软电离)的各种变体,多使用正离子电离,以减少初始电离分子碎片的量,大气压电离是化学电离的一个特殊的方法。也开发出用于气体分析在漂移管中从H3O+离子进行质子转移的化学电离方法,叫做质子转移反应质谱(PTR-MS)。  使用电子电离质谱进行大气和呼吸气中微量组分的实时鉴定和定量分析,是一个具有挑战性的任务。因为在离子源中会浸入过多的气体如氮、氧和水蒸气,要解决这些问题,使用多种过滤膜,这些过滤膜只让极性的被测气体进入离子源,而排出大量的空气。但是这些过滤膜仍会阻挡其他一些痕迹量气体(尤其是烃类),所以要针对每种痕迹量气体小心校正过滤膜的穿透性,才能达到准确地定量结果。要不然为了避免不同化合物同时进行电离就只得使用GC-MS进行分析。  如果是能够直接、实时地分析大气中的痕迹量杂质,即解决环境科学,特别是呼吸气体中特殊气体的分析,开发扩大医疗诊断的领域,那就好了。尽管GC-MS可以分析空气和呼气中的10-12(ppb)和10-9(ppt)的痕迹量组分,但是需要收集大容量的样品到冷冻或吸附阱里。  显然,这就不是实时监测了。而且GC不适合监测像氨和甲醛一类小分子量物质。  David Smith等于1976年开发了选择性离子流动管质谱(SIFT-MS),它是一种可以进行定量分析的质谱方法,它开拓了使用选择性前体正离子进行化学电离的方法,此正离子可在一定的短暂反应时间里与空气或呼吸气体中痕迹量气体进行反应。这一技术是把快速流动管技术、化学电离和定量质谱分析很好的结合在一起,用以对一些空气和呼吸气体中痕迹量物质进行精确的定量分析,检测量可低达10-9浓度级别,分析时间只用几秒钟。  SIFT 的构思和发展始于1976年,是研究离子和中性物质反应的标准方法,开始时用于气相离子和中性物质反应的动力学数据,各国进行了大量的实验,积累了大量数据,奠定了离子和中性物质反应的基本概念。2.SIFT-MS 的原理和装置  SIFT-MS 的工作原理如图 1 所示:图 1 SIFT-MS 的工作原理示意图  在离子源中用微波放电或射频离子源来产生正离子,离子进入一个上游管中,其中有一个四极杆滤质器,用以过滤掉无用离子,留下首选的母离子,通常选择H3O+,NO+和O2+为母离子,母离子通过一个文丘里管(一般管径为1–2 mm)进入到反应流动管中,这里样品气用载气氦以一定速进入流动管,载气压力通常为100 Pa,在这里母离子与样品气反应,反应产物离子进入一个下游管,管长一般为30–100 cm,管末端的文丘里管(一般管径为0.3mm)进入到另一个四极杆滤质器对它们进行质量过滤。用电子倍增器检测,对选择出来的目标反应产物离子进行离子计数,进行定量分析。3.SIFT 中的反应速率常数  样品+载气注射到不锈钢流动管(内径通常为4-8 cm,内径以dt表示),用罗茨泵抽动,使管中总流速在40–80 m/s,以vg表示,它可以用载气流速,压力pg,温度Tg (K) 和dt进行精确计算,即:(1)  被加热的离子很快沿着流动管进行扩散,离子沿着流动管的平均速率为Vi这一速率决定着离子与反应气的反应时间 t,Vi要大于Vg,要进行精确测量,理论证明二者的关系为:(2)  反应气进样口进入流动管,其流速为Φ R。简单地处理,t是反应长度l(进样口到下游进样孔之间的距离)和Vi之比,但是l需要包括一个小的“末端校正”ε ,典型情况下ε 为2cm,这是考虑到反应气和载气的一定的混合距离。  为了确定反应的速率系数,需要知道载气中反应气分子的数密度值[A ],可以从载气和反应气的流速得到(3)  kb 是玻尔兹曼常数。  下面用一个例子解释如何确定速率常数的,我们选择H3O+为起始离子与丙酮作用,此反应用于呼吸气的分析,这是一个很简单的反应,H3O+的质子进入丙酮分子中:  在流动管中H3O+的原始数密度随时间而降低,Ni可以用下面的动力学公式描述:   式(5)中右面第1项表示原始离子(母离子)扩散到流动管壁的损失,以扩散系数 Di和Λ 来表征,Λ 表示扩散距离,与流动管的直径有关。第2项表示原始离子由于反应的损失,k 是反应(4)质子转移的速率系数,A是反应物(丙酮)的数密度。实际上原始离子H3O+和产物离子(CH3COCH3?H+)的计数率都可以用下游的质谱系统在丙酮蒸汽几个不同的流速下进行测定得到,在丙酮存在下H3O+的计数率I与没有丙酮时的的计数率I0相关,把公式(5)积分可得到:  k 的绝对值可从logI对[A]作图得到。  速率系数k是分析测定必须有的数据,见后面的叙述。4 .SIFT-MS 分析法  从公式(5)和(6)知道,如果反应的前体离子和反应物A的速率系数知道,当分子A流入载气里是,前体离子的计数率就开始降低,这样就可以测定[A],但是如果一个反应混合物气体同时进入载气里,那么前体离子计数率的降低是所有可反应气体造成的,就不能达到分析混合物的目的。但是,如果每一个反应气体和前体离子反应生成不同的产物离子。那么反应产物的信号就既可以定性又可以定量,所以SIFT-MS分析集中于用下游质谱仪测定前体和反应气体产物离子的计数率,所以它提供一个实时定量分析复杂混合物中的痕迹量气体,比如环境气体和呼吸气体。5 .呼吸气体分析实例  Turner等人采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,每周8:45 到 13:00(午餐前)志愿者取样,对乙醇和乙醛即可用SIFT-MS进行测定,使用H3O+为前体离子,测得乙醇平均浓度为196 ppb。乙醛的平均浓度为24 ppb。测得正常人呼出气中乙醇浓度在0到1663ppb之间,平均值为450ppb,乙醛浓度在0到104ppb之间,平均值为41ppb。环境中乙醇的背景浓度为50ppb左右,但是几乎没有检测到环境中的乙醛。但是在测定前2 h要是吃了甜饮料/食品乙醇的浓度会增加。(Rapid Commun Mass Spectrom,2006,20(1):6l-68 王海东等,现代科学仪器,2013,(4):40-45)(1) 具体方法概述  SIFT-MS有两种不同的运行模式,一种是全扫描模式,即在一定m/z范围内得到通常的质谱图,用于鉴定前体、产物离子和他们相应的计数率,在线计算机立刻计算这些痕迹量气体在呼吸气中的分压,为此要有可鉴定的产物离子,而且它们还要包括在分析所需要的动力学数据库中,动力学数据库包括速率系数和前体离子/痕迹量气体化合物反应的产物离子。对各种类型的化合物(醇类、醛类、酮类、烃类等)和三种前体离子经过SIFT的详细研究,构建了数据库。  另一种是多离子检测模式,在这一模式下,下游分析用质谱仪用很快的切换方式对前体离子和反应产物离子的选择性m/z值进行处理,定量分析水蒸气和痕迹量目标化合物。这一模式可以更为精确地定量分析痕迹量目标化合物。  图 2是使用多离子检测模式,使用H3O+为前体离子的SIFT-MS进行测定,获得乙醇和甲醇浓度在三次呼出气体随时间变化的曲线。本研究是用这一模式测定肺泡空气中的乙醇和乙醛浓度,在测定呼吸气体的间隙同时测定周围空气中的乙醇和乙醛浓度,看它是否影响对呼吸气体中目标化合物的测定。图 2 SIFT-MS 定量分析呼吸气中乙醇和甲醇的浓度随时间的变化图  SIFT-MS 定量分析呼吸气中乙醇,浓度随时间的变化是使用前体离子、前体离子水化物和乙醇特征产物离子及水化物(C2H5OH2+,m/z 47)信号比进行计算,还要知道反应时间和样品及载气的流速。  乙醇可以很快地与所有三种前体离子(H3O+,NO+, O2+)反应,与H3O+是直接进行反应,得到m/z 47的质子化乙醇,如下面的反应式: (7)  此反应(7)是放热反应,决定于碰撞速率。  当含有水汽的呼吸气进入载气时,产物离子很快形成水合离子,含有一个水分子和两个水分子的质子化乙醇其m/z为65(C2H5OH2+?H2O)和83(C2H5OH2+?(H2O)2),他们必须要计算到乙醇的测定当中。乙醛的离子化也类似于乙醇,它们是CH3CHOH2+ m/z 45, CH3CHOH2+?H2O m/z 63,和CH3CHOH2+?(H2O)2 m/z 81,分析时要计算进去(2) 检测30个志愿者呼气结果  采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,表2是在6个月期间测试30个志愿者呼气中乙醇含量的数据。对每一个志愿者每天测定他们的呼出气的乙醇浓度,是3次连续呼吸气的平均值,如图2中的数据,总数为478个平均值,测定了1434次呼气。每个志愿者呼气中的乙醇浓度平均值是为期半年积累的数据。连同测定的标准偏差(SD)数据见表2.按志愿者的年龄从上到下排列,也列出他(她)们的性别和身体质量指数(BMI)。个体之间乙醇浓度的散布很宽,所有志愿者的乙醇浓度在0 到 1663 ppb之间,平均值为196 ppb,SD 为 244 ppb,中间值为112 ppb。表 2 6个月期间测试30个志愿者呼气中乙醇含量的数据  *BMI =身体质量指数(Body Mass Index)(体重除以身高的平方)表 3 6个月期间测试30个志愿者呼气中乙醛含量的数据  30个志愿者呼气中乙醇浓度的散布见图3(a),是所有478次肺泡呼吸气中乙醇的浓度,这一分布接近于对数正态分布,符合预期的呼吸代谢的水平。图 3 30个志愿者6个月内呼吸气中乙醇和乙醛浓度测定的分布图  棒图纵坐标为样品数,a和 d 是针对所有样品,b和 e是志愿者在测试前2 h没有食用含糖食品或饮料的数据,c 和f是志愿者在测试前2 h吃了含糖食品或饮料的数据  根据这一文章作者们的研究指出吃了含糖食品或饮料会增加呼吸气中乙醇的浓度,这是由于蔗糖通过口腔菌群或肠道菌群的作用产生乙醇。他们研究这一现象,是否会显著影响呼吸气中乙醇浓度的测定,所以分别研究了在测定前两小时吃和没吃甜品志愿者的呼吸气中的乙醇浓度。图 3 中的(b)是志愿者在测试2h 前没有吃甜品的292呼吸气样品得到的结果,图 3 中的(c)是志愿者在测试2h 前没有吃甜品的186呼吸气样品得到的结果,考察呼气中乙醇浓度的增加是否实施由于蔗糖通过口腔菌群或肠道菌群的作用所产生乙醇。  以前的研究已经阐述过,环境空气中乙醇背景浓度对呼吸气中乙醇浓度的测定的影响,本研究说明背景乙醇浓度很容易检测出来(环境中的乙醛背景浓度测不出来)。小结 我这里引述的研究是2005年的工作,已经过去10年了,跟进的工作不多,可见还没有被人们认识,也涉及到仪器的昂贵,虽然已经有商品仪器,但是没有普及。看来进一步发展这一方法还需要医学和化学工作者结合,以及仪器的普及。
  • 活动回顾|东西分析亮相“EMIF2021湖北环境监测技术创新论坛”
    活动现场“EMIF2021湖北环境监测技术创新论坛”于2021年5月27日在武汉顺利召开。东西分析携PTR-QMS 3500型质子转移反应质谱参加了这一盛会。 此次会议旨在加强环境监测技术交流,提升环境监测人员技术能力和水平。吸引了来自全省分析测试机构、高等院校、科研院所、企业及仪器制造商等单位三百余人参加。 东西分析李经理做大会报告会上,东西分析李海岩经理带来了一场别开生面的关于PTR-QMS 3500质子转移反应质谱在环境监测领域中的应用报告,将会议推向了高潮。李经理首先讲到东西分析产品线长、种类全,基本能够覆盖环境监测领域所需的包括GC-MS、GC、AAS、AFS、ICP及ICP-MS 等主要分析仪器。同时与大家分享了东西分析在水、大气、土壤等环境监测方面的解决方案。 李经理着重向来宾汇报了东西分析在环境走航监测领域中的分析利器-PTR-QMS 3500质子转移反应质谱。因其产品本身的原理特点,在VOCs领域发挥着重要的作用,尤其是随着《长三角生态绿色一体化发展示范区挥发性有机物走航监测技术规范》6月1日实施,质子转移反应质谱将会受到越来越多的关注,李经理详细讲解了PTR-QMS 3500质子转移反应质谱在VOCs走航监测中的应用案例,受到高度好评。 东西分析展台 在论坛间歇时,分析测试仪器设备展示区内人声鼎沸。东西分析展台吸引了多人前来参观PTR-QMS 3500质子转移反应质谱,同时与工作人员交流探讨环境监测过程中存在的实际问题,很好的达到了加强合作、相互交流、促进环境监测技术提升的目的。 PTR-QMS 3500型质子转移反应质谱东西分析深耕湖北市场多年,有着相当深厚的用户基础,东西分析多款仪器在湖北省正常稳定工作。东西分析更是将每一款新品及时送到湖北用户的手中,回报广大用户对东西分析的认可与信任!
  • 基于TICT零背景荧光的通用型荧光点亮传感设计策略研究获进展
    荧光传感作为一种快速可视化、高特异性、简单便携和高性价比的检测技术,经历了从以实验方法为导向到以分子设计为导向的发展历程。科研人员在构象依赖型暗态发射荧光探针分子设计策略方面投入了大量的努力。其中,通过精确调控分子结构扭转,构建荧光发射禁阻跃迁的扭转分子内电荷转移(TICT),对于消除背景荧光、提升荧光点亮传感性能具有重要意义。然而,如何通过简单外界环境变化以调控荧光探针扭转能力的设计鲜有报道,这严重限制了TICT原理的拓展应用。针对于此,中国科学院新疆理化技术研究所痕量化学物质感知团队创新性地提出了一种背景荧光信号完全消除的新策略:通过化学酸化控制氨基质子化,进而引入激发态分子内质子转移(ESIPT)、空间位阻效应和共轭效应,从热力学与动力学层面极大促进了TICT过程的旋转效率。   为了验证该策略的可行性和通用性,研究人员采用密度泛函理论(DFT)以及含时密度泛函理论(TDDFT),对(2-(2-氨基-4-羧基苯基)-苯并噻唑(邻苯噻唑),o-BT)探针分子及其他9种结构类似分子进行了势能面扫描过渡态计算、电子空穴激发分析以及从头算分子动力学(AIMD)等理论模拟分析。结果表明,质子化o-BT探针激发态质子转移过程的反应势垒在热力学/动力学上具有明显优势;其次,结合激发态分子内氢键增强过程,o-BT探针的ESIPT光异构化过程被显著促进;再次,质子转移发生后质子给体氨基释放出的孤对电子在激发态条件下与苯环发生共轭;最后,质子给体氨基与转移后的H原子之间得以产生较强的空间位阻效应。以上三个效应耦合大大降低了系统能量,增加了电子和空穴在空间上完全分离的TICT构象形成概率,实现了背景荧光的完全消除。借助该策略,实现了直径最小为0.44 μm(~1 pg)的亚硝酸盐颗粒的超灵敏荧光点亮检测。   该研究成果有望为设计开发超灵敏、实时、精准响应的高性能荧光探针提供理论思路和依据。相关成果以“A General Twisted Intramolecular Charge Transfer Triggering Strategy by Protonation for Zero-Background Fluorescent Turn-On Sensing”为题发表在《物理化学通讯》(The Journal of Physical Chemistry Letters)杂志上,博士研究生李继广为第一作者,窦新存研究员和雷达博士为通讯作者,中科院新疆理化所为唯一完成单位。同时,基于该工作的创新性,被杂志选为Supplementary Cover封面论文。该研究工作得到了自治区重点实验室开放课题、国家自然科学基金面上项目、中科院从0到1原始创新项目、新疆维吾尔自治区杰出青年基金等项目的资助。质子化-激发态分子内质子转移(ESIPT)-扭转分子内电荷转移(TICT)策略实现皮克级亚硝酸盐荧光点亮检测示意图
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 中关村材料试验技术联盟 重磅!团体标准《质谱仪器分类与代码》正式发布!
    创新引领,有标可依2024年1月5日,团体标准《质谱仪器分类与代码》(T/CSTM 01082—2024 /T/CAIA/YQ 008—2023(IDT))中文版正式发布!该标准由中关村材料试验技术联盟和中国分析测试协会联合发布,将于2024年4月5日起正式实施。英文版标准于2024年3月5日发布,将于2024年6月5日起开始实施。 标准适用性该标准适用于质谱仪器的分类、编码、命名、统计、管理等;但不适用于氦质谱检漏仪、离子迁移谱。 标准意义质谱仪器是一类非常重要的科学仪器,其结构复杂,技术路线及技术组合多样,而规范的分类标准是数据有效统计和分析基础。《质谱仪器分类与代码》标准发布实施后,可规范质谱行业统计标准,实现行业经济、技术等信息互认与共享,做到数据可汇总、可比较、可分析;为政府、行业协会、社会组织等对质谱行业统计调查提供重要依据和支撑;同时为厂家的仪器名称命名提供规范参考。标准内容 l 质谱仪器分类原则:按照仪器结构和原理对质谱仪器进行分类,具体采用联用技术、离子化技术、质量分析器三个维度划分。l 分类方法:采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。l 具体分类如下:分面一:按照联用技术划分根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳6个类目;各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀3个类目。1) 直接离子化分析;2) 色谱联用划分为:a) 液相色谱包括:—液相色谱;—高效液相色谱;—超高效液相色谱;—多维液相色谱;b) 气相色谱包括:—气相色谱;—全二维气相色谱;c) 离子色谱;d) 超临界流体色谱;e) 薄层色谱;f) 毛细管电泳;3) 常见非色谱联用划分为:a) 热解吸;b) 流式细胞术;c) 激光烧蚀。4) 其他。分面二:按照离子化技术划分根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、光致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。1)轰击离子化包括:a) 电子轰击离子化;b) 快速原子轰击离子化;c) 二次离子化;2) 电喷雾离子化包括:a) 电喷雾离子化;b) 解吸附电喷雾离子化;c) 纳升电喷雾离子化;d) 脉冲直流电喷雾离子化;e) 电喷雾萃取离子化;f) 电喷雾辅助激光解吸离子化;g) 极性反转电喷雾离子化;3) 化学离子化包括:a) 化学离子化;b) 大气压化学离子化;c) 质子转移反应;4) 光致离子化包括:a) 基质辅助激光解吸离子化;b) 单光子离子化;c) 多光子离子化;d) 激光解吸离子化;5) 放电离子化包括:a) 介质阻挡放电离子化;b) 辉光放电离子化;c) 低温等离子体离子化;d) 电晕放电离子化;e) 解吸电晕束离子化;f) 火花放电离子化;g) 电感耦合等离子体离子化;6) 热离子化;7) 场致离子化包括:a) 场解吸离子化;b) 场离子化;8) 其他。分面三:按照质量分析器类型划分根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。1) 四极杆质量分析器;2) 飞行时间质量分析器包括:a) 直线飞行时间质量分析器;b) 单次反射飞行时间质量分析器;c) 多次反射飞行时间质量分析器;3) 离子阱质量分析器包括:a) 二维离子阱质量分析器;b) 三维离子阱质量分析器;4) 磁质量分析器包括:a) 单聚焦质量分析器;b) 双聚焦质量分析器;5) 傅里叶变换质量分析器包括:a) 静电阱质量分析器;b) 离子回旋共振质量分析器;6) 其他。l 质谱仪器代码:分为英文代码和数字代码两种方式;英文代码以质谱仪器主要结构的英文简称组合表示,数字代码以纯数字组合表示。起草单位标准由广东省麦思科学仪器创新研究院牵头编制,广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院共同参与完成。标准起草单位涵盖了国内外质谱厂商、高校和研究机构等22家单位,具有广泛代表性。
  • 质谱分类里程碑!中国分析测试协会《质谱仪器分类与代码》团标发布!
    由中国分析测试协会和中关村材料试验技术联盟发布的团体标准《质谱仪器分类与代码》于于2024年1月5日发布,标准将于4月5日开始实施。  质谱仪器作为质谱技术作为一种高灵敏、高分辨的分析技术,越来越受到关注和重视,其在食品、环境、制药、医疗以及学术研究等行业的应用也日益广泛。而在中国质谱界,对于日渐丰富的质谱仪器品类,如何更好的分类质谱仪器势在必行,于是本标准也在业内专家大力支持下应运而生。  《质谱仪器分类与代码》标准的分类原是按仪器结构和原理对质谱仪器进行分类,具体按照联用技术、离子化技术、质量分析器三个维度划分。分类方法采用分面分类法,包括按照联用技术划分、按照离子化技术划分、按照质量分析器类型划分。  分类方法  采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。  分面一:按照联用技术划分  根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳 6 个类目 各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀 3 个类目。  1) 直接离子化分析   2) 色谱联用划分为:  a) 液相色谱包括:  —液相色谱   —高效液相色谱   —超高效液相色谱   —多维液相色谱   b) 气相色谱包括:  —气相色谱   —全二维气相色谱   c) 离子色谱   d) 超临界流体色谱   e) 薄层色谱   f) 毛细管电泳   3) 常见非色谱联用划分为:  a) 热解吸   b) 流式细胞术   c) 激光烧蚀。  4) 其他。  分面二:按照离子化技术划分  根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。  1)轰击离子化包括:  a) 电子轰击离子化   10T/CAIA/YQ 008—2024/T/CSTM 01082—2024  b) 快速原子轰击离子化   c) 二次离子化   2) 电喷雾离子化包括:  a) 电喷雾离子化   b) 解吸附电喷雾离子化   c) 纳升电喷雾离子化   d) 脉冲直流电喷雾离子化   e) 电喷雾萃取离子化   f) 电喷雾辅助激光解吸离子化   g) 极性反转电喷雾离子化   3) 化学离子化包括:  a) 化学离子化   b) 大气压化学离子化   c) 质子转移反应   4) 光致离子化包括:  a) 基质辅助激光解吸离子化   b) 单光子离子化   c) 多光子离子化   d) 激光解吸离子化   5) 放电离子化包括:  a) 介质阻挡放电离子化   b) 辉光放电离子化   c) 低温等离子体离子化   d) 电晕放电离子化   e) 解吸电晕束离子化   f) 火花放电离子化   g) 电感耦合等离子体离子化   6) 热离子化   7) 场致离子化包括:  a) 场解吸离子化   b) 场离子化   8) 其他。  分面三:按照质量分析器类型划分  根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。  1) 四极杆质量分析器   2) 飞行时间质量分析器包括:  a) 直线飞行时间质量分析器   b) 单次反射飞行时间质量分析器   c) 多次反射飞行时间质量分析器   3) 离子阱质量分析器包括:  11T/CAIA/YQ 008—2024/T/CSTM 01082—2024  a) 二维离子阱质量分析器   b) 三维离子阱质量分析器   4) 磁质量分析器包括:  a) 单聚焦质量分析器   b) 双聚焦质量分析器   5) 傅里叶变换质量分析器包括:  a) 静电阱质量分析器   b) 离子回旋共振质量分析器   6) 其他。  本文件起草单位:广东省麦思科学仪器创新研究院、广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院。本文件主要起草人:朱芷欣、刘丹、周振、黄正旭、罗德耀、周志恒、丁传凡、丁力、黄泽建、陈江韩、徐牛生、俞晓峰、姚继军、闻路红、周向东、程文播、王世立、韩娜、刘召贵、沈学静、张小华、高俊海、景叶松、朱颖新、王海鉴、朱敏、潘晨松、洪义、李磊、陈政阁、黎彦、刘虎威、李志明、沈小攀。附件:TCAIAYQ 008—2024TCSTM 01082—2024《质谱仪器分类与代码》.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制