当前位置: 仪器信息网 > 行业主题 > >

辉光放电处理仪原理

仪器信息网辉光放电处理仪原理专题为您提供2024年最新辉光放电处理仪原理价格报价、厂家品牌的相关信息, 包括辉光放电处理仪原理参数、型号等,不管是国产,还是进口品牌的辉光放电处理仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辉光放电处理仪原理相关的耗材配件、试剂标物,还有辉光放电处理仪原理相关的最新资讯、资料,以及辉光放电处理仪原理相关的解决方案。

辉光放电处理仪原理相关的资讯

  • 辉光放电光谱仪:方便快速的镀层分析手段
    研究镀层特性,有哪些常用的分析技术?  如今,大多数材料不是多层结构,如薄膜光伏电池、LED、硬盘、锂电池电极、镀层玻璃等就是表面经过特殊处理或是为改善材料性能或耐腐蚀能力采用了先进镀层。为了很好地研究和评价这些功能性镀层特性,有多种表面分析工具应运而生,如我们熟知的X射线光电子能谱XPS、二次离子质谱SIMS、扫描电镜SEM、透射电镜TEM、椭圆偏振光谱、俄歇能谱AES等。  为什么辉光放电光谱技术受青睐?  辉光放电光谱仪作为一种新型的表面分析技术,虽然近年来才崭露头角,但已受到了越来越多的关注。与上述表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。  辉光放电光谱仪最初起源于钢铁行业,主要被用于镀锌钢板及钢铁表面钝化膜等的测定,但随着辉光放电光谱技术的逐步完善,仪器的性能也得以提升,可分析的材料越来越广泛。  其性能的提升表现在两方面:一方面随着深度分辨率的不断提升,辉光放电光谱技术已可以逐渐满足薄膜的测试需求。现在,辉光放电光谱仪的深度分辨率可达亚纳米级别,可测试的镀层厚度从几纳米到150微米,某些特殊材料可以达到200微米。  另一方面是辉光源的性能改善,以前辉光放电光谱仪主要用于钢铁行业的测试,测试的镀层样品几乎都是导体,DC直流的辉光源即可满足该类测试,但随着功能性镀层的不断发展,越来越多的非导体、半导体镀层出现,这使得射频辉光源的独特优势不断凸显。射频辉光源既可以测试导体也可以测试非导体样品,无需更换任何部件和测试方法,使用方便。如果需要测试热敏材料或是为抑制元素热扩散则需选用脉冲射频辉光源。脉冲模式下,功率不是持续性的作用到样品上,可以很好地抑制不期望的元素扩散或是造成热敏样品的损坏,确保测试结果的真实准确。  辉光放电光谱的工作原理  辉光放电腔室内充满低压氩气,当施加在放电两极的电压达到一定值,超过激发氩气所需的能量即可形成辉光放电,放电气体离解为正电荷离子和自由电子。在电场的作用下,正电荷离子加速轰击到(阴极)样品表面,产生阴极溅射。在放电区域内,溅射的元素原子与电子相互碰撞被激化而发光。辉光放电源的结构示意图,样品作为辉光放电源的阴极  整个过程是动态的,氩气离子持续轰击样品表面并溅射出样品粒子,样品粒子持续进入等离子体进行激化发光,不断有新的层在被溅射,从而获得镀层元素含量随时间的变化曲线。  辉光放电等离子体有双重作用,一是剥蚀样品表面颗粒 二是激发剥蚀下来的样品颗粒。在空间和时间上分离剥蚀和激发对于辉光放电操作非常重要。剥蚀发生在样品表面,激发发生在等离子体中,这样的设计可以很好地抑制基体效应。  氩气是辉光放电最常用的气体,价格也相对便宜。氩气可以激发除氟元素外所有的元素,如需测试氟元素或是氩元素时需采用氖气作为激发气体。有时也会使用混合气体,如Ar+He非常适合于分析玻璃,Ar+H2可提高硅元素的检出,Ar+O2会应用到某些特殊的领域。  光谱仪的主要功能是通过收集和分光检测来自等离子体的光以实现连续不断监控样品成分的变化。光谱仪的探测器必须能够快速响应,实时高动态的观测所有元素随深度的变化。辉光放电光谱仪中多色仪是仪器的重要组成部分,是实现高动态同步深度剖析的保障。而光栅是光谱仪的核心,光栅的好坏决定了光谱仪的性能,如光谱分辨率、灵敏度、光谱仪工作范围、杂散光抑制等。辉光放电是一种较弱的信号,光通量的大小对仪器的整体性能有至关重要的影响。  如何进行定量分析?  和其他光谱仪一样,通过辉光放电光谱仪做定量分析也需要建立标准曲线。不同的是,辉光放电光谱仪的标准曲线不仅是建立信号强度和元素浓度之间的关系,还会建立时间和镀层深度间的关系。  下图是涂镀在铁合金上的TiN/Ti2N复合镀层材料的元素深度剖析,直接测试所得的信号强度(V)vs时间(s)的数据经过标准曲线计算后可获得浓度vs深度的信息,可清晰的读取各深度元素的浓度。  想建立标准曲线就会涉及到标准样品,传统钢铁领域已经有非常成熟的方法及大量的标准样品可供选择。然而一些先进材料和新物质,很难找到标准样品做常规定量分析。HORIBA研发的辉光放电光谱仪针对这类样品开发了一种定量分析方法,称为Layer Mode,该方法可以使用一个与分析样品相类似的参比样品建立简单的标准曲线,实现对待测样品的半定量分析。  辉光放电光谱的主要应用  除了传统应用领域钢铁行业,辉光放电光谱仪现在主要应用于半导体、太阳能光伏、锂电池、硬盘等的镀层分析。下面就这些新型应用阐述一下辉光放电光谱仪的独特优势。  1. 半导体-LED芯片  如上图所示,LED芯片通常是生长在蓝宝石基底上的多镀层结构,其量子阱活性镀层非常薄(仅有几纳米),而且还包埋在GaN层下。这种结构也增加了分析的难度。典型的表面技术如SIMS和XPS可以非常好表征这个活性镀层,但是在分析过程中要想剥蚀掉上表面的GaN层到达活性镀层需要耗费几个小时,分析速度慢,时效性差。  辉光放电光谱仪的整个分析过程仅需几十秒即可获得LED芯片镀层中各元素随深度的分布曲线,可快速反馈工艺生产过程中遇到的问题。  2、太阳能光伏电池  太阳能电池中各成分的梯度以及界面对于光电转换效率来说至关重要,辉光放电光谱仪可以快速表征这些成分随深度的分布,并通过这些信息优化产品结构,提高效率。分析速度快、操作简单、非常适用于实验室或工厂大量分析样品。  3、锂电池  锂离子电池的正极材料是氧化钴锂,负极是碳。  锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。  同理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。  辉光放电光谱仪可以通过测试正负电极上各种元素随深度的分布来判定其质量及使用寿命等。  辉光放电光谱仪除独立表征样品外,还可以和其他分析手段相结合多方位全面的进行表征。如辉光放电光谱仪可以与XPS、SEM、TEM、拉曼和椭偏等技术共同分析。  总体来说,辉光放电光谱仪是一种非常方便快速的镀层分析手段。它的出现极大地解决了工艺生产中质量监控、条件优化等问题,此外还开拓了新的表征方向。  关于HORIBA 脉冲射频辉光放电光谱仪  HORIBA研发的脉冲射频辉光放电光谱仪是一款用于镀层材料研究、过程加工和控制的理想分析工具。脉冲射频辉光放电光谱仪可对薄/厚膜、导体或非导体提供超快速元素深度剖析,并且对所有的元素都有高的灵敏度。  脉冲射频辉光放电光谱仪结合了脉冲射频供电的辉光放电源和高灵敏度的发射光谱仪。前者具有很高的深度分辨率,可对样品分析区域进行一层层剥蚀 后者可实时监测所有感兴趣元素。  (本文由HORIBA 科学仪器事业部提供)
  • 辉光放电光谱技术受青睐 市场前景可瞻——访HORIBA辉光放电光谱仪应用支持工程师武艳红及汕头大学王江勇教授
    pspan style="font-family: 楷体,楷体_GB2312, SimKai "  1968年,W.R.Grimm(格里姆)推出了辉光放电光源,很快发展为辉光放电光谱(GD-OES)和表面分析技术,用于材料及镀层金属的逐层分析 1978年,出现了第一台商品化仪器 20世纪90年代,GD-OES在表面分析领域上得到迅速发展....../span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  与其它表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。鉴于此,辉光放电光谱仪受到了越来越多专业人士的关注,其应用领域也不仅仅限于最初的钢铁行业,可分析的材料越来越广泛。/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  那么,辉光放电光谱仪目前的技术水平和市场情况怎么样?用户的实际反馈情况如何?为了深入了解辉光放电光谱仪的技术及市场概况,日前仪器信息网编辑特别采访了HORIBA辉光放电光谱仪应用支持工程师武艳红及汕头大学王江勇教授。/span/pp  span style="color: rgb(255, 0, 0) "strong辉光放电光谱仪中国市场需求量逐年提升/strong/span/ppspan style="color: rgb(255, 0, 0) "strongbr//strong/span/pp style="text-align: center "img title="1.jpg" style="width: 177px height: 246px " src="http://img1.17img.cn/17img/images/201708/insimg/750dd2b6-0440-4ffc-8f38-83060d85a331.jpg" width="177" vspace="0" hspace="0" height="246" border="0"//pp style="text-align: center "strongHORIBA辉光放电光谱仪应用支持工程师武艳红/strong/ppstrong  仪器信息网:从行业发展角度分析,辉光放电光谱仪目前的技术水平如何?有哪些新的技术亟待推出或者有哪些技术瓶颈亟待突破?/strong/pp  strong武艳红:/strong目前,辉光放电光谱仪已经是一类成熟的表面分析设备,被广泛应用到各个领域的定性和定量分析中。辉光放电光谱技术是有损分析技术,在分析后会在表面留有一个溅射坑,但溅射坑使得分析更加深入,检出限更好,当然样品不可回收也是它的主要缺点。不过,如果对内部结构感兴趣的话也可以利用这个溅射坑为其他表面分析设备服务,比如样品剥蚀完后还可以用扫描电镜观测袒露出来的内部表面结构,或是与XPS联合使用获得镀层结构、元素、分子等方面的信息。此外,辉光放电光谱仪目前在定量方面仍受限于国际标准样品的种类及数量,无法为新型镀层材料做定量曲线,尤其是新型材料还处于定性分析阶段,或实验室自行制备参比样品进行定量。/pp  strong仪器信息网:您认为辉光放电光谱仪未来的市场需求情况怎么样?/strong/pp  strong王江勇:/strong目前辉光放电光谱仪主要应用于工业界,比如,钢铁及半导体等行业,相信今后随着相关理论工作进一步地跟进与完善,辉光放电光谱仪不仅会拓宽其在工业领域的应用范围,而且也将逐渐被学术界所接受,更多地应用于表面、薄膜、涂层科学研究,所以,可以肯定辉光放电光谱仪未来市场的需求会越来越大。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/9b4addd0-8eee-4b0b-afed-fbb63472c775.jpg"//pp style="text-align: center "strong汕头大学 王江勇教授/strong/pp  strong仪器信息网:为什么会选择购置辉光放电光谱仪?主要是基于哪方面的科研需求?/strong/pp  strong王江勇:/strong实验室选择购置辉光放电光谱仪主要有以下原因:深度分辨率较高,溅射速度快 较其它深度剖析设备价格低 完善现有的深度剖析定量分析理论模型 薄膜相变及功能多层膜成分的表征需求等。/pp  strong仪器信息网:贵实验室采购的辉光放电光谱仪的配置情况如何?目前的使用情况如何?取得了哪些研究成果?/strong/pp  strong王江勇:/strong我们实验室于2016年购置的HORIBA GD-Profiler 2辉光放电光谱仪, 配有47个谱线通道,并配有一个可进行扫描的单色通道,可以说是目前配置最为完备的辉光放电光谱仪,原则上可以测量所有元素的辉光激发光谱。另外,该谱仪还配备了去年开发出来的新附件-微分干涉测厚仪(DIP),可进行溅射坑深度的实时测量。/pp  该仪器目前使用良好,几乎每天都有使用。在成果方面,从理论上定量分析了溅射坑形貌对深度分辨率的影响 实验上,对各种基底材料(包括有机材料)最佳的深度剖析条件进行了探索,以确保高分辨率深度剖析的测量。总体来说,目前已对纳米级的金属-金属、氧化物、功能多层膜等进行了高分辨率的深度剖析测量。/pp  strong仪器信息网:为什么会选择HORIBA的辉光放电光谱仪?/strong/pp  strong王江勇:/strong选择HORIBA的辉光放电光谱仪是基于多方面的考虑:产品技术比较成熟,性价比高,售后团队强大等。/pp  从仪器技术的角度,HORIBA的辉光放电光谱仪的射频光源可以适用于导体、半导体及非导体材料,应用面广,符合实验室多类型材料分析的需求 全自动脉冲分析模式对于玻璃衬底样品、热敏感样品或脆性样品的分析至关重要,可以有效抑制元素在分析过程中的元素层间扩散或样品受热下非期望性变化 深度分辨率高,样品剥蚀坑底部更加平整,有效支撑理论计算和模型建立 此外,HORIBA的辉光放电光谱仪还有多项专利技术为仪器性能改善、实际分析带来益处。/pp  span style="color: rgb(255, 0, 0) "strong多项专利技术 HORIBA辉光放电光谱仪优势明显/strong/span/pp style="text-align: center "img title="3.jpg" style="width: 300px height: 357px " src="http://img1.17img.cn/17img/images/201708/insimg/142d7c83-5317-4315-aeb8-ffdf91597c79.jpg" width="300" vspace="0" hspace="0" height="357" border="0"//pp  strong仪器信息网:HORIBA在辉光放电光谱仪方面的研发历史?目前主推的仪器类型?/strong/ppstrong  武艳红:/strong1984年HORIBA拥有了辉光放电光谱仪产线,从此踏上了辉光放电光谱仪不断改进、创新研发之路。。在过去的三十年间,HORIBA应用了17项专利技术以提高其性能,如高动态检测器、全自动脉冲式射频源、polyscan技术、超快速溅射、微分干涉测厚系统(DIP)等。现在辉光放电光谱仪可以分析含量ppm级以上元素随镀层深度的变化,深度分辨率小于1nm,可测深度200um。目前主推的仪器型号为GD-Profiler 2,最新技术有DIP深度测试附件等。/pp  strong仪器信息网:HORIBA的辉光放电光谱仪器相比同类产品有哪些优势?/strong/ppstrong  武艳红:/strong相对于其它表面分析技术如SIMS、XPS、俄歇、能谱仪等,辉光放电光谱仪分析速度快、操作简单且无需超高真空(UHV),良好的深度分辨率还可为扫描电镜剥蚀制备样品。/pp  在同类竞争产品中,HORIBA的辉光放电光谱仪在光谱分辨率相同的情况下,能减小设备的焦长,可提高仪器的稳定性和光通量 采用两个真空泵维持辉光灯的气氛的稳定性,使其深度分辨率低于1nm HDD高动态检测器的线性动态范围可达10^9,当样品浓度从无到100%变化时不会饱和溢出,且无需手动设置电压 HORIBA作为全球光栅领导者,可根据设备特性改良光栅使其光谱分辨率和光谱响应达到当前最佳水平。/pp  strong仪器信息网:HORIBA辉光放电光谱仪在中国的用户情况?/strong/ppstrong  武艳红:/strongHORIBA辉光放电光谱仪目前主要应用于渗氮渗碳、镀锌钢板、LED芯片、太阳能光伏、金属镀层、半导体器件、彩涂板、微弧氧化陶瓷、表面处理等领域。中国对辉光放电光谱仪的接触历史比较短,客户主要集中于钢铁行业、高校研究所和半导体公司。代表客户如鞍钢、武钢、汕头大学、复旦大学、清华大学、原子能研究所、LED公司等。/pp  strong仪器信息网:针对辉光放电光谱仪,HORIBA在市场方面的推广重点在哪里?/strong/ppstrong  武艳红:/strong从近年来用户的关注可以看出,目前主要的问题还是如何快速的让更多科研院所、半导体公司了解该技术。HORIBA每年都会投入大量的市场费用,用于技术交流会、会议赞助、网络讲堂、线下光谱学堂等,以便越来越多的人能够熟知辉光放电技术,并通过这个技术将自己的研究推向更高。/pp  strongspan style="font-family: 楷体,楷体_GB2312, SimKai "后记:/span/strongspan style="font-family: 楷体,楷体_GB2312, SimKai "今年8月份,由汕头大学等单位协办的“a title="" href="http://www.instrument.com.cn/news/20170821/227131.shtml" target="_blank"2017年全国表面分析科学与技术应用学术会议/a”于8月10日-13日在在汕头大学召开。本届学术会议旨在推动我国表面分析科学及其应用技术的发展,促进国内外表面分析研究领域的专家学者交流,探讨表面分析技术与其它学科的共同发展,进一步拓展表面分析技术的应用领域。参加本届会议的代表约130多人,创历届之最,云集了国内外学术界的专业人士,除了来自国内的代表外,还有来自美国、德国、法国、日本、匈牙利、西班牙、新加坡及南非等的国外代表。/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  大会开幕式由汕头大学王江涌教授主持,会议组织安排的六个大会报告既是各位专家对自己研究成果的精彩总结、也是对国内外近年来表面分析科学及其应用技术的高度概括,对广大年轻人的表面分析科学及其应用技术学习、成长和进一步凝练方向具有重要的指导意义,大会报告更是令大家开拓了新的视野。/span/p
  • 辉光放电光谱、火花源原子发射光谱的新应用
    仪器信息网讯 2014年10月20-21日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 辉光光谱/表面分析/火花源原子发射光谱&rdquo 分会在北京国际会议中心举行。会议现场  辉光放电光谱(GD-OES)由于具有固体样品直接分析、可分析非导体样品、分析速度快、气体消耗量低、分析成本低等优点,近年来,在元素分析中的应用逐渐增多。目前应用的商业化辉光放电光谱仪厂商主要有美国的Leco公司、德国的Spectro公司、法国的Horiba Jobin Yvon公司。报告人:首钢技术研究院徐永林报告题目:辉光放电光谱法在镀锡板检测上的应用  徐永林利用辉光放电光谱仪对镀锡板样品进行逐层剥离,根据样品由表至里的辉光放电积分图谱,分别设定公式积分计算镀锡板镀层厚度及重量、钝化层厚度及重量、基板成分、镀层中有害元素等。通过与传统方法的分析结果比对,说明采用辉光放电光谱法分析这些检测项目具有较佳的准确度及精密度,提高了检测效率,同时达到了镀锡板多个检测项目的同时测定。报告人:首钢技术研究院梁潇报告题目:直流辉光放电光谱法同时测定铸铁中12种元素  梁潇研究了利用辉光放电光谱法同时测定铸铁中的多种元素含量。通过分析激发电压、激发电流、光电倍增管、预燃时间和积分时间等因素对各元素光谱强度和稳定性的影响,以铁为内标建立了同时测定铸铁中碳、硅、锰、磷、硫、镍、铬、钼、铜、钒、硼等元素含量的分析方法。对不同铸铁样品进行准确度和精密度试验,均得到了很好的结果。  火花源原子发射光谱分析法是一项成熟的分析技术,具有操作简便、分析速度快和准确度高的优点。在生产实践中分析金属试样表现出的快速、准确和高精度是其他分析方法无法取代的,因而广泛的应用于钢铁和有色冶金行业炉前快速分析,也是分析各种常见固体金属材料的一种普及的标准分析方法。  在会议中,多位报告人介绍了火花源原子发射光谱的最新应用研究。江苏沙钢集团的陈熙介绍了火花源原子发射光谱快速测定钢中低含量硅 钢研纳克检测技术有限公司宋宏峰介绍了火花源原子发射光谱法分析高锰铬钢 上海宝钢工业技术服务有限公司张叶介绍了火花源发射光谱分析焊丝钢线材试样 宝山钢铁股份有限公司研究院赵涛介绍了火花源原子发射光谱法测定铁基非晶合金中的硅和硼。
  • 新型辉光放电质谱仪(Element GD)演示及讨论会通知
    在春光明媚的三月底,国内第一台新型辉光放电质谱仪(Thermo Scientific Element GD)在短短十天内顺利地完成了安装,调试和初步的培训,交付用户使用。 在金川镍钴研究设计院的领导的大力支持下,我们拟定在六月五号到六号两天借用研究设计院的设施和仪器,向广大关心辉光放电质谱仪的现状和发展的老师演示Thermo Scientific的新型辉光放电质谱仪(Element GD)。届时Element GD的设计者Dr. Rottman 和应用专家Dr. Hinrichs都会到场为大家介绍Element GD的研发,现状和应用,并演示仪器的操作。 金川镍钴研究设计院位于兰州市榆中和平开发区,离兰州市中心车程30分钟左右。欢迎各位老师踊跃参加。(会议交通费,食宿自理) 有意参加的老师请联系:赛默飞世尔科技(上海)有限公司尹松电话:021-68654588(分机2183)传真:021-64281793手机:13816109156Email: song.yin@thermofisher.com 期待着在兰州与各位老师再会。祝好! 赛默飞世尔科技(上海)有限公司
  • 700万!山东大学计划采购辉光放电质谱仪
    项目概况一、项目基本情况项目编号:SDLR-SDU-2022-009(SDJDHF20220253-Z099)项目名称:山东大学辉光放电质谱仪采购项目预算金额:700.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1辉光放电质谱仪 1台详见公告附件 合同履行期限:详见招标文件要求本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业、监狱企业、残疾人福利性单位采购的项目;3.本项目的特定资格要求:无三、获取招标文件时间:2022年10月12日 至 2022年10月18日,每天上午9:00至11:30,下午13:30至17:00。(北京时间,法定节假日除外)地点:济南市历下区经十路12111号中润世纪锋1号楼21层方式:因疫情防控期间人员聚集易产生交叉感染,报名方式采用发送邮件报名,将营业执照副本、法定授权委托书或法定代表人证明、标书费汇款底单,将以上材料扫描为一个PDF文件,发至山东龙融招投标代理有限公司邮箱:sdlongrong@126.com,邮件名称命名为:投标人名称-项目名称,在邮件正文中注明所报公司全称、所报项目名称、项目编号、授权人姓名及联系方式,并电话通知招标代理查收(提交标书费须标明项目编号及公司名称,我公司开户银行:中国民生银行股份有限公司济南明湖支行,开户名:山东龙融招投标代理有限公司第一分公司,银行账号:157102632) 本项目实行资格后审,获取招标文件成功不代表资格后审通过。售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年11月02日 09点00分(北京时间)开标时间:2022年11月02日 09点00分(北京时间)地点:济南市历城区二环东路3966号东环国际广场A座20层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、本项目允许原装进口产品参加投标;2、 在“信用中国”(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)等网站中被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人,不得参加本次政府采购活动;3、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动;4、上传的技术指标附件仅作为参考,最终以招标文件中的技术指标为准。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学     地址:0531-88369797        联系方式:王老师      2.采购代理机构信息名 称:山东龙融招投标代理有限公司            地 址:0531-58562236 17753351990            联系方式:宫小寒 单长芹            3.项目联系方式项目联系人:宫小寒 单长芹电 话:  0531-58562236 17753351990
  • 850万!昆明理工大学双聚焦辉光放电质谱仪设备采购项目
    项目编号:YNGH[2022]-291项目名称:昆明理工大学真空冶金国家工程实验室双聚焦辉光放电质谱仪设备购置(双一流23)预算金额(万元):850最高限价(万元):850采购需求:拟采购双聚焦辉光放电质谱仪1套合同履行期限:合同签订之日起180日历天(供应商在此期限内自报最短交货期)本项目(否)接受联合体投标。
  • 成果:大气常压磁约束微型直流辉光放电质谱离子源
    p style="text-align: justify "  近日,中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室与四川大学开展联合研究,发现在大气常压环境中磁场有效约束离子传播特性,并基于此研发出一种大气常压高效痕量检测磁约束微型质谱离子源。相关研究工作以通讯的形式发表在国际期刊Chemical Communications上。/pp style="text-align: justify "  直流辉光放电微型等离子体源,凭借其放电的稳定性和等离子体的非平衡特性,在化学分析和环境监测等领域有着独特的技术优势和广阔的应用前景。具有高灵敏度、高选择性和快速响应等特点的质谱法,已成为分析化学领域的核心技术之一,在痕量物种定性和定量检测中发挥着巨大作用。长期以来人们一直致力于提高质谱仪的分析性能。常压离子源,作为质谱仪的核心部件,主要作用是将样品解吸和电离,产生气态样品离子。能否有效将样品离子化和把离子化的待测物传输到检测入口,在很大程度上决定了整个质谱仪分析的灵敏度。/pp style="text-align: justify "  在大气环境中,一般通过气流将离子化的待测物输运到质谱仪检测入口。该种传输方式使得很大一部分离子逃逸到环境大气中损失掉,导致传输效率低下。为提高离子传输效率,该研究团队基于常压磁约束离子传播特性,提出一种大气环境中纵向磁场约束离子传输的新方法,研发出一种用于痕量物种检测与分析的大气常压磁约束微型直流辉光放电质谱离子源。该方法关键在于:1)在弱电场中,气流和洛伦兹力共同作用离子,使之做螺旋运动,降低逃逸概率 2)利用离子与环境氮气和氧气等分子的集体碰撞效应,进一步减少约束半径,使得更多的离子传输到检测入口,增加离子传输效率。通过质谱分析,该方法成功地将样品质谱信号强度提高到原来的10倍,检测限可降低到原有的1/10,使得部分有机物待测样品的检测限达到几十PPt的水平。该项工作为化学分析和环境监测等领域提供了更为可靠的检测手段,为低温等离子体的应用拓展了新的研究方向。该工作受到科技部、国家自然科学基金委和中科院“西部青年学者”项目的资助。/pp style="text-align: justify "  近几年来,瞬态光学与光子技术国家重点实验室在等离子体基础研究领域实现了一次又一次原理上的创新和技术上的突破,取得了一系列原创科研成果。研究团队曾首次将“透镜扩束”概念引入低温等离子体领域,提出“电场透镜模型”,构建大气压均匀弥散放电新的基础理论,该项工作以封面和亮点文章发表于国际应用物理类学术期刊JAP (2017)。此外,在低温等离子体领域已连续8篇论文发表于国际学术期刊APL。上述成果为西安光机所等离子体学科的发展奠定了坚实的基础。/pp style="text-align: center "img title="大气常压质谱离子源.webp.jpg" alt="大气常压质谱离子源.webp.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/7631dd7f-9436-45d8-b144-ba3c9e5173cc.jpg"//pp style="text-align: center "  大气常压磁场约束离子运动轨迹及样品阿司匹林溶液质谱检测/pp style="text-align: justify " 文章链接:a href="https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract" target="_blank"https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc05360j#!divAbstract/a/pp style="text-align: justify " /p
  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 上硅所完成GD90辉光放电质谱验收并提供对外测试服务
    pimg title="W020150714386651658960.jpg" src="http://img1.17img.cn/17img/images/201508/uepic/7a52471d-7484-417f-9937-1a291320d621.jpg"//pp北京众星联恒科技有限公司于6月底完成了Autoconcept GD90-RF辉光放电质谱仪在中科院上海硅酸盐研究所的安装调试验收工作,目前该设备已正式投入使用并提供对外测试服务。(a title="上硅所辉光放电质谱对外测试" href="http://sic.cas.cn/xwzx/gdxx/201507/t20150714_4393048.html" target="_blank"点击查看详情/aa title="上硅所辉光放电质谱对外测试" href="http://sic.cas.cn/xwzx/gdxx/201507/t20150714_4393048.html" target="_blank"http://sic.cas.cn/xwzx/gdxx/201507/t20150714_4393048.html/a)/ppbr//p
  • 江西省钨与稀土质检中心利用辉光放电质谱法“一对一”提供优质技术服务
    辉光放电质谱法(GD-MS)被认为是目前唯一具有足够灵敏度和准确度,对固体高纯材料(可达7N)中的杂质元素直接分析的方法。由于辉光放电质谱的优点,尤其是在无机材料中痕量元素的检测方面具有独特的优势,使其成为材料研发和生产领域不可或缺的高端仪器设备。经过对仪器开发和研究,中心技术人员利用GD-MS开展了“一对一”检测技术方法研究,避免了其它检测方法前处理过程繁琐,易在处理过程中带入杂质元素,检出下限局限等不足,快速准确地对样品进行分析,解决了企业和科研院校高纯新材料检测难题。目前,中心已获得GD-MS相关标准的CNAS资质共有16项,包括利用GD-MS对高纯稀土金属、高纯铜、高纯钨、高纯钴等物质中痕量杂质元素含量的分析。
  • 众星联恒中标上海硅酸盐研究所《辉光放电质谱仪》招标项目
    2014年6月,经过努力,北京众星联恒科技有限公司在中国科学院上海硅酸盐研究所辉光放电质谱仪采购项目招标中一举中标。过硬的产品品质,合理的价格,完善的服务体系是我们胜出的理由。 感谢大家对我公司的大力支持,这次中标将又是我公司一个新的起点,我们将会在此起点上,付出更多的努力,提供更好的产品,服务更多的客户!
  • 中关村材料试验技术联盟立项《辉光放电质谱仪校准规范》等25项CSTM标准
    经中国材料与试验标准化委员会(以下简称:CSTM标准化委员会)审查,CSTM标准化委员会批准CSTM标准立项(详情见下表),特此公告。如有单位或个人愿意参与该标准项目的工作,请与项目牵头单位联系。立项公告详情请跳转至CSTM官网查看http://www.cstm.com.cn/channel/details/3-2-CSTMgonggao序号标准名称标准立项号1辉光放电质谱仪校准规范CSTM LX 0000 01319—20232止血材料用高岭土CSTM LX 0312 01320—20233石墨矿浮选柱CSTM LX 0312 01321—20234微晶玻璃生产用垃圾焚烧炉渣技术要求CSTM LX 0324 01322—20235空间材料原子氧、紫外辐照和热循环综合环境模拟试验方法CSTM LX 0404 01323—20236金属材料蠕变性能数据处理方法CSTM LX 5500 01324—20237锅炉热交换器用中温双牌号不锈钢无缝钢管CSTM LX 5500 01325—20238流体输送用中温双牌号不锈钢无缝钢管CSTM LX 5500 01326—20239承压设备用中温双牌号不锈钢钢板和钢带CSTM LX 5500 01327—202310承压设备用中温用双牌号不锈钢锻件CSTM LX 5500 01328—202311承压设备材料圆片氢脆试验方法 第1部分:通用要求CSTM LX 5500 01329.1—202312涂覆材料派瑞林C技术标准CSTM LX 5700 01330—202313航天器用均苯型聚酰亚胺薄膜技术要求CSTM LX 5700 01331—202314水泥生产企业碳排放数据信息化存证规范CSTM LX 9500 01332—202315高温合金 合金贫化层定量检测方法 能谱法和波谱法CSTM LX 9802 01333—202316内氧化深度或晶间腐蚀深度测定 金相法CSTM LX 9802 01334—202317锂电池正极材料 磁性异物含量测定 电感耦合等离子体发射光谱法CSTM LX 9803 01335—202318基于走航在线实时监测的大气重金属污染源解析技术指南CSTM LX 9803 01336—202319生物基塑料中PEF树脂含量的测定 核磁共振波谱法CSTM LX 9803 01337—202320海水电解制氢阳极 法拉第效率测定 在线-气相色谱法CSTM LX 9803 01338—202321碳材料 不同物相的含量测定 X射线粉末衍射法CSTM LX 9803 01339—202322石墨烯膜 导热系数的测定 激光闪射法CSTM LX 9803 01340—202323单晶高温合金 结构取向测试 电子背散射衍射法CSTM LX 9803 01341—202324钛铝合金 铝含量的测定 电感耦合等离子体发射光谱法CSTM LX 9803 01342—202325高温合金 铋含量的测定 电感耦合等离子体质谱法CSTM LX 9803 01343—2023
  • 国家重点研发计划“高分辨辉光放电质谱仪研制与应用”项目启动暨实施方案论证会召开
    5月7日,西安交通大学主持召开国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项“高分辨辉光放电质谱仪研制与应用”项目启动暨实施方案论证会。会议采用线上线下结合的方式进行,科技部中国21世纪议程管理中心张望主管,项目咨询专家钱绍钧院士、陈洪渊院士、王海舟院士、李得天院士,以及特邀专家年夫顺研究员,项目专家组中国核学会李金英研究员,中国质谱学会理事长、中国计量科学研究院院长方向研究员,中科院生物物理研究所韩玉刚研究员,中国科学院大学束继年教授,中国仪器仪表学会分析仪器分会吴爱华秘书长等17位专家参会指导。西安交通大学副校长别朝红、科研院常务副院长黄忠德、电气工程学院副院长郝治国,科研院专项与科技开发处副处长李小虎、综合处副处长王庆琳,项目参与单位北方工业大学、广州禾信仪器股份有限公司、中国科学院上海硅酸盐研究所、钢研纳克检测技术股份有限公司、国合通用测试评价认证股份公司、中国计量科学研究院和西北核技术研究院相关负责人及研究骨干等50余人参加会议。科研院常务副院长黄忠德主持项目启动仪式。西安交通大学副校长别朝红代表学校感谢科技部长期以来对学校发展给予的支持,强调目前我国高端科学仪器受制于人,重大科学仪器的自主研发、国产化替代已十分紧迫,高分辨辉光放电质谱仪是关键材料领域所需的重要仪器设备,学校将全方位支持项目开展、保障项目顺利实施并取得突出成果,同时勉励项目组做好实施方案的论证和执行工作。科技部中国21世纪议程管理中心张望主管针对重点专项相关过程管理规范和流程、项目管理和实施、经费使用、变更事项报备及进展成果报送等提出了建议,希望项目组与各级主管部门高度重视,做好统筹协作,高标准完成项目目标。特邀专家年夫顺研究员希望项目组在加强科学研究的同时,重视仪器产品的成果转化工作,重视科研及技术指标的要求,同时作为总体专家组的成员,将做好项目的咨询服务和管理工作。科研院副处长王庆琳从技术、财务和档案管理三个方面介绍了项目综合绩效评价的管理政策及要求。中国核学会李金英研究员主持项目实施方案论证环节。项目负责人李志明教授对项目总体情况及实施方案进行汇报,主要包括项目概况及目标、项目主要研究内容、项目实施方案及进度安排、项目组织管理制度、项目成果呈现形式等,并向与会专家介绍了团队近期在磁质谱研发方面的进展和系列磁质谱国产化自主可控路线图。西北核技术研究院沈小攀副研究员、北方工业大学陈吉文教授、广州禾信仪器股份有限公司谭国斌高工、中国科学院上海硅酸盐研究所钱荣研究员、钢研纳克检测技术股份有限公司胡净宇教授依次对课题任务分解及实施方案进行了汇报。在听取了项目和课题实施方案汇报后,项目咨询专家陈洪渊院士、王海舟院士和李得天院士指出,该项目面向国家重大需求,聚焦高分辨磁质谱仪器研制的瓶颈问题,时间紧、任务重、难度大,尤其是高分辨双聚焦磁质谱带来的诸多技术挑战,项目组要充分预估项目实施的难度,合理规划时间安排。各课题组需做好任务衔接、紧密围绕项目目标开展工作,注重整机集成调试和工程化能力,加强产业化建设和国际专利标准布局,形成与国外仪器“扳手腕”的硬实力。专家组各位专家分别从不同角度对项目实施方案做了点评,充分肯定了项目关键科学问题定位的准确性、研究目标及方法的创新性与科学性、技术方案的可行性以及任务分工与研究进度安排的合理性,并针对项目技术方案的重难点、成果落地的部署方案、参与单位间协作、知识产权布局等角度提出了一系列具体建议。“高分辨辉光放电质谱仪研制与应用”项目面向国家在半导体、高纯稀土、深空探测晶体、航空航天用高温合金、高纯金属溅射靶材、特种涂层等领域杂质元素检测的重大需求,解决重点领域固体材料中痕量杂质元素准确分析的“卡脖子”问题。旨在研发具有自主知识产权、质量稳定可靠、核心部件国产化的高分辨辉光放电质谱仪,开发相关软件和数据库,开展工程化和产业化推广,在半导体、高纯稀土、高温合金、高纯金属、绝缘体等材料领域中形成应用示范,为先进材料的设计、性能优化、高质量研发与高安全应用提供重要保障,将推动我国仪器科学技术发展,符合国家重大科学技术应用需求,具有里程碑意义。
  • 用户培训班预告——HORIBA射频辉光放电光谱仪(GD-OES)的应用(上海)
    尊敬的用户: 您好!感谢您一直以来对HORIBA的支持和关注。 射频辉光放光谱仪(GD-OES)是一款适用于材料表面分析和镀层界面元素分析的工具,它正被广泛应用于半导体、陶瓷/玻璃、镀膜钢铁、薄膜和粉末等样品的测试。 为了帮助HORIBA各系列GD-OES的用户提高仪器操作水平以及理论水平,以充分发挥仪器的性能,我公司将举办为期三天的GD-OES应用技术培训班。欢迎有培训需要的用户积报名。 主 办:HORIBA Scientific(Jobin Yvon光谱技术)培训时间:2013年11月20 日-22日培训地点:HORIBA Scientific上海应用中心 (上海市天山西路1068号联强国际广场A栋1层D单元,近2号线淞虹路地铁站)培训对象:HORIBA射频辉光放电光谱仪用户主 讲:Celia Olivero(法国应用实验室经理)、余卫华、武艳红(应用工程师)培训安排: 培训费用:1、1600元/人(保修期内可提供2人/次免费培训),请于11月12日前将费用转至HORIBA公司账户并予以确认。2、培训期间,我们将为您免费提供午餐,住宿、差旅等费用需贵单位自理。报名联系:联 系 人:Ms. Shen (沈小姐) 电 话:021-62896060-161 邮 箱:yilei.shen@horiba.com报名截止:2013年11月12日账户信息:公司名称:堀场(中国)贸易有限公司开户行:三菱东京日联银行(中国)有限公司上海分行账号:404029-00000308854(人民币) 关注我们:邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • ASMS研究成果:辉光放电源为元素质谱提供超高分辨率
    p style="text-align: justify " strong 仪器信息网讯/strong 近期,美国克莱姆森大学化学系和法国环境与材料分析物理化学研究所以及西北太平洋国家实验室的研究者发表了其最新的研究成果。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/c1798ad6-602b-4621-bf3d-3104f4475dcd.jpg" title="cover.JPG" alt="cover.JPG" width="600" height="349" border="0" vspace="0" style="width: 600px height: 349px "/br//pp style="text-align: justify "  研究者利用了结合原子和分子电离源的Orbitrap质谱分析仪对元素和有机金属进行质谱分析,且分辨率超过100万。(J. Am. Soc. Mass Spectrom. 2019, DOI: 10.1007/s13361-019-02183-w)/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/06ff3f13-adc2-4c00-a402-daa13467b67d.jpg" title="111111111111111.JPG" alt="111111111111111.JPG"//pp style="text-align: justify "  其研究中使用了被称为strong液体采样-常压辉光放电源的组合装置/strong,并用strong微等离子体进行电离/strong。利用该系统,研究人员能够解决一些一直以来都很难研究的无机化合物。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201904/uepic/7e408ace-3e95-4ea3-925a-a14a1ce37c4e.jpg" title="222222222.jpg" alt="222222222.jpg" width="300" height="400" border="0" vspace="0" style="width: 300px height: 400px "//pp style="text-align: center "组合电离源使用在金属对电极和石英毛细管的液体样品之间形成的微等离子体/ppspan style="text-align: justify "  研究人员首次使用同位素方法解析了一种/spanstrong style="text-align: justify "双金属氨基酸复合物(/strongstrong style="text-align: justify "Hg:Se-cysteine/strongstrong style="text-align: justify "),/strongspan style="text-align: justify "这种复合物被认为与汞的解毒有关。/spanspan style="text-align: justify "研究人员还利用该系统解析了87Rb和87Sr,其质量差异反映了放射性87Rb对稳定同位素87Sr的β衰变,且其比值可应用于地质年代测定研究。/span/pp style="text-align: justify " 详情请点击文献原文:/pp style="line-height: 16px text-align: center "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="https://img1.17img.cn/17img/files/201904/attachment/bcfb3e4f-28aa-493d-8c03-735968527540.pdf" target="_blank" title="10.1007@s13361-019-02183-w.pdf" textvalue="Ultra-High Resolution Elemental/Isotopic Mass Spectrometry" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "strongUltra-High Resolution Elemental/Isotopic Mass Spectrometry/strong/span/a/pp style="text-align: justify "br//p
  • 中山大学1.36亿元采购切片机,透射电镜,辉光放电光谱,电镜制样
    详细信息 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目公开招标公告 广东省-广州市 状态:公告 更新时间: 2023-10-15 招标文件: 附件1 附件2 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目公开招标公告 2023年10月13日 17:36 公告概要: 公告信息: 采购项目名称 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目 品目 货物/设备/仪器仪表/试验仪器及装置/生物、医学样品制备设备,货物/设备/仪器仪表/光学仪器/显微镜 采购单位 中山大学 行政区域 广州市 公告时间 2023年10月13日 17:36 获取招标文件时间 2023年10月14日至2023年10月20日每日上午:9:00 至 12:00 下午:12:00 至 17:30(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 中山大学智能电子采购系统(https://www.zhizhengyun.com) 开标时间 2023年11月03日 09:30 开标地点 在线开标。 预算金额 ¥13580.000000万元(人民币) 联系人及联系方式: 项目联系人 梁群燕/成思/夏芷莹 项目联系电话 020-87651688-162/139 采购单位 中山大学 采购单位地址 广州市新港西路135号 采购单位联系方式 郑老师 020-84115088 代理机构名称 采联国际招标采购集团有限公司 代理机构地址 广州市环市东路472号粤海大厦7、23楼 代理机构联系方式 成思/夏芷莹 020-87651688-162/139 附件: 附件1 中大招(货)[2023]201号_中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目(分项二).pdf 附件2 中大招(货)[2023]201号_中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目(分项一).pdf 项目概况 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目 招标项目的潜在投标人应在中山大学智能电子采购系统(https://www.zhizhengyun.com)获取招标文件,并于2023年11月03日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:中大招(货)[2023]201号/CLF0123GZ09ZC12 项目名称:中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目 预算金额:13580.000000 万元(人民币) 采购需求: 中山大学根据国家招投标法律法规和学校管理要求,拟以公开招标方式采购下列货物及其相关服务。1、招标采购项目内容及数量:分项一:生物制样设备,具体包含高压冷冻仪1台;自动投入冷冻仪1台;冷冻替代仪1台;冷冻超薄切片机1台,镀金镀碳仪1套;辉光放电仪2台;(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。分项二:冷冻电镜系统,具体包含冷冻双束系统1台;200 kV冷冻电镜系统1套;300kV冷冻电子断层成像系统1套;300kV高分辨冷冻电镜系统1套;120kV生物透射电镜系统1套(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。2、项目预算及经费 3.本项目的特定资格要求:(1)具备投标条件的中华人民共和国的法人或其它组织;(2)符合《中华人民共和国政府采购法》第二十二条相关规定;(3)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“失信被执行人”、“重大税收违法失信主体” 、“政府采购严重违法失信名单”;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;(以代理机构于评标当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,同时对信用信息查询记录进行存档。如相关失信记录已失效或查询不到,则必须出具其信用良好的承诺书原件扫描件);(4)本项目不允许联合体投标。不接受中标备选方案。 三、获取招标文件 时间:2023年10月14日 至 2023年10月20日,每天上午9:00至12:00,下午12:00至17:30。(北京时间,法定节假日除外) 地点:中山大学智能电子采购系统(https://www.zhizhengyun.com) 方式:详见“其他补充事宜”。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年11月03日 09点30分(北京时间) 开标时间:2023年11月03日 09点30分(北京时间) 地点:在线开标。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、招标文件获取方式:本项目以电子招投标形式进行,投标人可于中山大学智能电子采购系统(https://www.zhizhengyun.com)、中国政府采购网(http://www.ccgp.gov.cn)及代理机构网站(http://www.chinapsp.cn/)浏览招标公告,确认参与项目的合格投标人应登录中山大学智能电子采购系统,缴纳系统技术服务费400元/包组,在网上获取采购文件及其它招标资料。2、报名方式及时间:2023年10月14日 09:00:00至2023年10月20日 17:30:00;登录中山大学智能电子采购系统,在网上报名获取招标文件及资料,否则不能参与本项目的投标。本项目不需要现场报名确认,若报名期限届满后,获取招标文件的潜在投标人不足三家的,采购人将可能顺延报名期限并予公告。请各投标人留意网上公告,采购人不再另行通知。3、电子投标文件的递交:投标人须凭企业数字证书(GDCA)在提交投标文件截止时间前完成电子投标文件的上传,递交网址:https://www.zhizhengyun.com。无中山大学智能电子采购系统企业数字证书(CA)的投标人需按该平台电子认证的要求,提前办理企业数字证书(GDCA)。如果投标文件于递交投标文件截止时间未能上传完毕,该投标文件将视为无效投标文件。投标截止时间前未完成投标文件传输的,视为撤回投标文件。在递交投标文件截止时间前,投标人可以替换投标文件。4、提交投标文件截止时间、开标时间和地点(1)提交投标文件截止时间和开标时间:2023年11月03日 09:30:00 (北京时间)。(2)投标文件解密时间:2023年11月03日 09:30:00 至 2023年11月03日 10:00:00(如因系统原因无法正常解密,采购人可延长解密时间)。(3)解密完成后及时公布开标结果,投标人可登录中山大学智能电子采购系统查看开标情况。(4)开标地点:在线开标。5、招标公告期限为自发布公告之日起5个工作日, 2023年10月14日 09:00:00 至 2023年10月20日 17:30:00 止。6、本项目的发布、修改、澄清和补充通知将在中山大学智能电子采购系统(https://www.zhizhengyun.com)、中国政府采购网(http://www.ccgp.gov.cn)及代理机构网站(http://www.chinapsp.cn/)发布,敬请各投标人留意,采购人不再另行通知。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中山大学 地址:广州市新港西路135号 联系方式:郑老师 020-84115088 2.采购代理机构信息 名 称:采联国际招标采购集团有限公司 地 址:广州市环市东路472号粤海大厦7、23楼 联系方式:成思/夏芷莹 020-87651688-162/139 3.项目联系方式 项目联系人:梁群燕/成思/夏芷莹 电 话: 020-87651688-162/139 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:切片机,透射电镜,辉光放电光谱,电镜制样 开标时间:2023-11-03 09:30 预算金额:1.36亿元 采购单位:中山大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:采联国际招标采购集团有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目公开招标公告 广东省-广州市 状态:公告 更新时间: 2023-10-15 招标文件: 附件1 附件2 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目公开招标公告 2023年10月13日 17:36 公告概要: 公告信息: 采购项目名称 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目 品目 货物/设备/仪器仪表/试验仪器及装置/生物、医学样品制备设备,货物/设备/仪器仪表/光学仪器/显微镜 采购单位 中山大学 行政区域 广州市 公告时间 2023年10月13日 17:36 获取招标文件时间 2023年10月14日至2023年10月20日每日上午:9:00 至 12:00 下午:12:00 至 17:30(北京时间,法定节假日除外) 招标文件售价 ¥0 获取招标文件的地点 中山大学智能电子采购系统(https://www.zhizhengyun.com) 开标时间 2023年11月03日 09:30 开标地点 在线开标。 预算金额 ¥13580.000000万元(人民币) 联系人及联系方式: 项目联系人 梁群燕/成思/夏芷莹 项目联系电话 020-87651688-162/139 采购单位 中山大学 采购单位地址 广州市新港西路135号 采购单位联系方式 郑老师 020-84115088 代理机构名称 采联国际招标采购集团有限公司 代理机构地址 广州市环市东路472号粤海大厦7、23楼 代理机构联系方式 成思/夏芷莹 020-87651688-162/139 附件: 附件1 中大招(货)[2023]201号_中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目(分项二).pdf 附件2 中大招(货)[2023]201号_中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目(分项一).pdf 项目概况 中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目 招标项目的潜在投标人应在中山大学智能电子采购系统(https://www.zhizhengyun.com)获取招标文件,并于2023年11月03日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:中大招(货)[2023]201号/CLF0123GZ09ZC12 项目名称:中山大学分析测试中心冷冻电镜系统及生物制样设备采购项目 预算金额:13580.000000 万元(人民币) 采购需求: 中山大学根据国家招投标法律法规和学校管理要求,拟以公开招标方式采购下列货物及其相关服务。1、招标采购项目内容及数量:分项一:生物制样设备,具体包含高压冷冻仪1台;自动投入冷冻仪1台;冷冻替代仪1台;冷冻超薄切片机1台,镀金镀碳仪1套;辉光放电仪2台;(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。分项二:冷冻电镜系统,具体包含冷冻双束系统1台;200 kV冷冻电镜系统1套;300kV冷冻电子断层成像系统1套;300kV高分辨冷冻电镜系统1套;120kV生物透射电镜系统1套(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。2、项目预算及经费 3.本项目的特定资格要求:(1)具备投标条件的中华人民共和国的法人或其它组织;(2)符合《中华人民共和国政府采购法》第二十二条相关规定;(3)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“失信被执行人”、“重大税收违法失信主体” 、“政府采购严重违法失信名单”;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;(以代理机构于评标当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,同时对信用信息查询记录进行存档。如相关失信记录已失效或查询不到,则必须出具其信用良好的承诺书原件扫描件);(4)本项目不允许联合体投标。不接受中标备选方案。 三、获取招标文件 时间:2023年10月14日 至 2023年10月20日,每天上午9:00至12:00,下午12:00至17:30。(北京时间,法定节假日除外) 地点:中山大学智能电子采购系统(https://www.zhizhengyun.com) 方式:详见“其他补充事宜”。 售价:¥0.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年11月03日 09点30分(北京时间) 开标时间:2023年11月03日 09点30分(北京时间) 地点:在线开标。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1、招标文件获取方式:本项目以电子招投标形式进行,投标人可于中山大学智能电子采购系统(https://www.zhizhengyun.com)、中国政府采购网(http://www.ccgp.gov.cn)及代理机构网站(http://www.chinapsp.cn/)浏览招标公告,确认参与项目的合格投标人应登录中山大学智能电子采购系统,缴纳系统技术服务费400元/包组,在网上获取采购文件及其它招标资料。2、报名方式及时间:2023年10月14日 09:00:00至2023年10月20日 17:30:00;登录中山大学智能电子采购系统,在网上报名获取招标文件及资料,否则不能参与本项目的投标。本项目不需要现场报名确认,若报名期限届满后,获取招标文件的潜在投标人不足三家的,采购人将可能顺延报名期限并予公告。请各投标人留意网上公告,采购人不再另行通知。3、电子投标文件的递交:投标人须凭企业数字证书(GDCA)在提交投标文件截止时间前完成电子投标文件的上传,递交网址:https://www.zhizhengyun.com。无中山大学智能电子采购系统企业数字证书(CA)的投标人需按该平台电子认证的要求,提前办理企业数字证书(GDCA)。如果投标文件于递交投标文件截止时间未能上传完毕,该投标文件将视为无效投标文件。投标截止时间前未完成投标文件传输的,视为撤回投标文件。在递交投标文件截止时间前,投标人可以替换投标文件。4、提交投标文件截止时间、开标时间和地点(1)提交投标文件截止时间和开标时间:2023年11月03日 09:30:00 (北京时间)。(2)投标文件解密时间:2023年11月03日 09:30:00 至 2023年11月03日 10:00:00(如因系统原因无法正常解密,采购人可延长解密时间)。(3)解密完成后及时公布开标结果,投标人可登录中山大学智能电子采购系统查看开标情况。(4)开标地点:在线开标。5、招标公告期限为自发布公告之日起5个工作日, 2023年10月14日 09:00:00 至 2023年10月20日 17:30:00 止。6、本项目的发布、修改、澄清和补充通知将在中山大学智能电子采购系统(https://www.zhizhengyun.com)、中国政府采购网(http://www.ccgp.gov.cn)及代理机构网站(http://www.chinapsp.cn/)发布,敬请各投标人留意,采购人不再另行通知。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:中山大学 地址:广州市新港西路135号 联系方式:郑老师 020-84115088 2.采购代理机构信息 名 称:采联国际招标采购集团有限公司 地 址:广州市环市东路472号粤海大厦7、23楼 联系方式:成思/夏芷莹 020-87651688-162/139 3.项目联系方式 项目联系人:梁群燕/成思/夏芷莹 电 话: 020-87651688-162/139
  • 众星联恒MSI辉光放电质谱仪成功中标《锦州市产品质量监督检验所国家光伏材料产品质量监督检验中心建设进口专用分析仪器设备招标》
    2014年7月24日,凭借独特的技术优势和过硬的市场能力,北京众星联恒科技有限公司MSI辉光放电质谱仪GD90成功中标《锦州市产品质量监督检验所国家光伏材料产品质量监督检验中心建设进口专用分析仪器设备招标》项目。 再次感谢客户对我们的信任和支持,公司将继续秉承优秀的产品性能、完善的服务体系和合理的价格为客户提供高性价比的高端科研仪器设备,为客户的研究和工作带来更理想的成绩!
  • 2010年北京光谱仪器分析应用学术报告会在京召开
    为了加强光谱仪器分析应用技术交流,使广大分析工作者了解光谱技术进展,及时掌握光谱最新应用,进一步提高我国分析测试技术水平,作为“第八届中国国际科学仪器及实验室装备展览会(CISILE 2010)”重要组成部分之一的“2010年北京光谱仪器分析应用学术报告会”在北京展览馆与展会同期召开,报告会由清华大学孙素琴教授主持,70多位专家学者及分析工作者参加了此次报告会。光谱报告会现场北京矿冶研究总院符斌教授报告题目:原子光谱仪器及分析技术动态 ——从BCEIA2009仪器展览会看原子光谱分析仪器进展  符斌教授谈到,经过近几年的整合发展和科技攻关成果的应用,国产仪器公司及厂家在BCEIA 2009上推出了具有各自特色和专利技术的分析仪器,在评出的14项BCEIA2009金奖项目中,涉及光谱分析仪器方面的有5台,与样品预处理相关的设备5台,这充分反映了国内光谱生产厂家在光谱分析仪器上的实力。  从技术上看,光谱分析的理论已趋近完善,如何提高仪器测定的稳定性和分析性能是光谱分析仪器的发展目标 而拓宽光谱仪器的应用范围所遇到的难度不亚于开发一种新的仪器,在深化产品功能方面仍需要结合现代高新技术的应用。作为商品仪器要适应现代快速检测的需要,必然是向实用化、小型化、普及化方向发展。  近年来,原子光谱技术的进展开始向远紫外领域拓展,同时,标准对光谱仪提出了更高要求,因此,光谱仪必须适应标准化发展的需要。此外,随着便携式直读光谱仪不断提高的测定精度和定量的准确性,便携式XRF光谱仪正在进入各种应用领域,原子吸收光谱仪也出现了手提箱式的不用外接电源和气源的小型仪器。钢铁研究总院测试所余兴工程师报告题目:辉光放电光谱仪的新进展  余兴工程师介绍到,辉光放电光谱是一种基于惰性气体在低压下放电的原理而发展起来的光谱分析技术。近几年来,辉光放电光谱仪在技术上较为完善。目前,首台国产的GDL 750辉光放电光谱仪已于2009年BCEIA展会上强劲登场。  与其他光谱分析方法相比,辉光放电光谱在成分分析方面最为突出的是分析样品时基体效应小,同时具有低能级激发、谱线宽度窄、谱线干扰小和自吸收效应小的特点,能同时分析不同组织结构和基体的样品,建立元素含量范围很宽的校准曲线(可达10个数量级),同时在分析中不易受到其他元素的干扰,在分析高含量元素方面也有突出表现。  在深度分析方面,辉光放电光谱仪具有其他分析仪器所不具备的优越性能,可以在几分钟内分析得到十个微米以内的所有元素沿深度方面连续分布情况,已成为一种表面和逐层分析的重要手段,目前,在纳米级薄膜材料和复杂涂镀层方面取得了一定进展。  随着辉光放电光谱仪的普及应用,辉光放电标准亦相继出台,但总体上还是滞后,今后仍需加大辉光放电光谱国际标准的转化工作,以满足辉光放电光谱仪的应用需求。清华大学孙素琴教授报告题目:中药红外光谱的分析与鉴定 ——中药质量控制的红外光谱方法  孙素琴教授说到,中药标准化是要建立符合中医理论的特有药物标准体系,而非让中药削足适履去迎合西药的标准。现存中药质量标准普遍存在人工鉴别主观性大、指标成分不合理两大问题。中药质量控制不能只针对个别化学成分,必须面向组分整体,需要在不完全清楚全体成分的情况下实现对中药的质量控制。最合理可行的方法是:在现行分析仪器的基础上重新构建数千年实践得出的中药质量评价体系,对中药材、中药饮片以及中药制剂进行快速、简单、无损的检测分析与质量评定,也就是指纹图谱为先为主,指标成分为后为辅。  相对于液相色谱、近红外光谱,红外光谱用于混合物分析具有明显的优势,但因样本成分复杂,谱图重叠严重,造成了混合物红外光谱“成分解析难、样本分辨难及谱图分析难”,孙素琴教授带领研究团队建立了红外光谱宏观指纹的“整体解析法、三级鉴别法、专家识别法”三大方法,成功解决了以上三大难题,快速、简便、直接、无损、全面。  因此,孙素琴教授得出结论:在中药质量控制方面要多种方法综合使用。“红外光谱指导大方向,监控全过程;色谱用于临界样本复核,微量成分控制;质谱、核磁可在深入研究,阐明重要理论方面派上用途。”
  • “光谱仪在能源、电池领域中的应用”在线讲座问题集锦(6)
    锂电池以其特有的性能优势已在便携式电子设备中得到了普遍应用,其中大容量的锂电池还被用于电动汽车,预计未来将成为其主要的动力电源之一。此外,它还可用于人造卫星、航空航天和储能等方面。 11月7日,HORIBA Scientific举办了光谱应用系列在线讲座(6)——“光谱仪在能源、电池领域中的应用”,涉及辉光光谱、拉曼光谱技术。至此,“2014探索In的光谱应用”系列活动圆满结束。本次活动涵盖了如今热门的6大应用领域及7种光谱技术,为参与者提供了一个绝好的学习光谱技术机会。现将本次讲座问题整理后供大家参考。课程一:辉光光谱Q:赵老师:请问可以分析粒径在几百纳米的粉末样品吗?A:辉光放电光谱仪可直接分析的样品呈固体块状/片状,不可以分析粉末样品。当然可以将粉末样品磨碎混合铜粉压片成均匀块体分析。Q:Lucy-SH:辉光放电光谱仪和椭圆偏振光谱仪有什么区别?A:辉光放电光谱仪是有损分析技术且专注于分析镀层元素随深度的分布,可获得镀层元素、界面污染、表面处理、层间扩散、镀层均一性,定量后还可获得镀层元素含量及镀层厚度;椭圆偏振光谱仪是无损分析技术,它专注于分析镀层样品的厚度、光学常数(n,k)、粗糙度、孔隙率、界面信息、组分、结晶度、梯度变化及各向异性等。Q:中南大学-材料院-张老师:磁控溅射后的样品可以做吗?样品要平整到什么程度?A:可以。样品仅需要看上去平整即可进行分析。Q:张老师:请简要介绍一下辉光放电谱仪与SIMS比较的优缺点?A:两种技术都为表面镀层分析技术。辉光放电光谱仪分析速度快(几分钟),可测试元素周期表中所有元素,操作简单、维护方便、价格便宜。SIMS分析速度慢(几个小时),可测试所有元素、同位素,分析化合物组分及分子结构,操作复杂含有超高真空设备、维护成本高、价格昂贵。联合使用可多方位表征样品。Q:哈尔滨工业大学-能源学院-张老师:经Ar粒子轰击过的样片,比如您粒子中的0.3nm的镀膜材料,是否测量完成就被破坏了?A:辉光放电光谱仪是一种有损分析,Ar等离子体的阳离子会持续轰击样品表面,将镀层元素剥蚀,终产生一个溅射坑。课程二:拉曼光谱Q:中科院生态中心-王老师:测量液体拉曼光谱,对装样品的玻璃器皿光面毛面状况有特别讲究吗?A:测量液体样品时根据样品量的多少可以选择不同的容器,当样品量少时,放在毛细管中即可(毛细管壁薄的情况下样品信号会相应更强)。通常使用的玻璃器皿都是光面的。如果液体挥发性不强,没有腐蚀性,也可以滴在硬币表面或者玻璃表面。这时毛面的玻璃由于利于散射,可以得到更强的信号。Q:清华大学-材料系-陈老师:锂电池的充放电中提到拉曼可以检测锂离子的扩散,拉曼也可以检测离子吗?A:可以。通常情况下拉曼光谱是不用于离子检测的。但当离子和其它物质发生作用时,可以通过其它物质信号的改变来反推离子的扩散或浓度情况。例如在锂电池中,通过对石墨D峰的检测可以对锂离子扩散进行相应判断。由于拉曼光谱可以对分子所处的微环境进行表征,在一定的实验设计下,它是可以对离子、pH值、温度等信息进行表征的。关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • BCEIA 2011光谱仪器评议专家谈光谱技术新进展——访中国分析测试协会光谱仪器技术评议组
    2011年10月12-15日,由科技部批准、中国分析测试协会主办的“第十四届北京分析测试学术报告会及展览会(BCEIA 2011)”在北京展览馆隆重举行。BCEIA重要内容之一“仪器评议活动”是由科技部倡导、中国分析测试协会组织、常年召开的一项重要活动。BCEIA是国内外分析仪器厂商在中国展示其最新推出的仪器和技术的窗口,也是“仪器评议活动”的一个重要汇集点。  BCEIA 2011展览会期间,中国分析测试协会光谱仪器技术评议组本着公开、公正、公平的评议原则,客观、系统、有针对性地对用户关注的、市场较大的光谱仪器及部件的创新点、特点或发展前景等进行了评述。  2011年10月14日下午,光谱仪器技术评议组在完成了本次活动之后,众位专家来到了仪器信息网(以下简称:instrument)的网络直播间接受了采访。接受采访的专家有中实国金国际实验室能力验证研究中心郑国经教授、北京矿冶研究总院高介平研究员、北京矿冶研究总院符斌研究员、地科院地质力学所计子华研究员、国家钢铁材料测试中心余兴研究员。  Instrument:本次BCEIA展览会上,国内外分析仪器厂商展出的光谱仪器给各位专家印象最深的是哪些?  郑国经教授:本次BCEIA展览会的规模比上一届大,并且展出仪器的水平也有所提高,出现了很多具有新意、性能较好的仪器。国产仪器厂家参展的规模盛大,很多国产仪器厂家推出了新技术产品,进步明显。  例如,电感耦合等离子体发射光谱仪应用中氩气消耗一直是用户所关注的问题,而PerkinElmer在最新推出的Optima 8x00系列电感耦合等离子体发射光谱仪中采用平板等离子体技术取代了传统的螺旋负载线圈,减少了三分之一的氩气消耗量,并且由于无需冷却,也就不需要使用冷却水,运行成本大大降低。另外,该仪器中还采用了电子雾化器技术,使雾化效率、进样效率获得充分提高,大大地改善了仪器的检出限,扩大了ICP光谱仪器的应用范围。  另一个亮点是安捷伦推出了微波等离子体原子发射光谱仪,使微波等离子体原子发射光谱仪真正商品化。该仪器可直接使用氮气或空气作为工作气体,无需使用易燃或昂贵气体,提高了安全性,大大降低运行成本,还适用于运输不便的边远地区。该款仪器必将在应用上取得比较好的效果。  符斌研究员:我们这次光谱仪器技术评议分别采取了参观新产品、举行座谈会的形式,足足进行了三天,主要是因为此次BCEIA展会参展的厂商多、展出的产品丰富、仪器的水平高。  我认为,这次展会上光谱仪器方面革命性的新技术主要有:微波等离子体原子发射光谱仪、平板等离子体技术的电感耦合等离子体发射光谱仪、火花直读光谱与辉光放电光谱相结合的光谱仪。另外,美国利曼公司推出的直流电弧光谱仪可以固体直接进样,北分瑞利公司也在研究此类技术。  原子吸收光谱已经很成熟了,但也有很多小的改进,例如,岛津公司的原子吸收光谱仪器上安装了震动传感器,当地震以及其它振动超过了设置值,仪器即可停止运行,保证了仪器、人员的安全。  郑国经教授 符斌研究员  Instrument:在中国市场中,进口的ICP占据了巨大部分的份额。国内虽然已经有很多仪器厂家生产ICP光谱仪,但是主要还是集中在顺序扫描性的ICP光谱仪。而令人兴奋是,在本次BCEIA展览会上,四家国产仪器厂商都推出了全谱直读的ICP光谱仪,请计子华研究员为我们介绍一下这方面的情况?  计子华研究员:这次BCEIA展览会上,北京豪威量、聚光科技、纳克公司、天瑞仪器都推出了全谱直读的ICP光谱仪。当然这几款产品各有其优劣性,还有一些需要进一步改进的地方。但我相信,不到半年的时间,这四款仪器中就会有真正商品化的产品推出。  Instrument:请余兴研究员为我们介绍一下辉光放电光谱仪的情况吧?  余兴研究员:辉光放电光谱是一个比较新的技术,在镀层分析方面有比较好的应用。但是从前几次BCEIA展览会的情况来看,因为辉光放电光谱的应用具有一定的局限性,各厂家对辉光放电光谱的重视与宣传力度不够。  而在这次BCEIA展览会上,HORIBA推出了一款3D 金属光谱仪,是基于火花直读光谱仪与传统意义上的辉光放电光谱仪基础上的一台光谱仪。与传统辉光放电光谱仪相比,该款仪器是一台快速分析的仪器,也能够进行镀层分析。该款仪器采用了直流放电的光源,降低了仪器成本,有利于该仪器的市场推广。其检测器采用了CCD,成本降低的同时也牺牲了部分分辨率,分辨率只达到了微米级水平。但对于一般客户来说,该仪器能够满足一定的需求,所以说该仪器还是一款非常好的仪器。  Instrument:请高介平研究员介绍一下原子吸收光谱仪、原子荧光光谱仪的新进展?  高介平研究员:原子吸收光谱基本上已经很成熟了。在火焰原子吸收光谱方面,国产仪器与进口仪器之间相差不多,石墨炉原子吸收光谱方面,国产仪器还稍有差距,需要进一步改进。总体来说,本次BCEIA展览会上,展出的原子吸收光谱的新技术不多,但是“小打小闹”的改进很多。例如,原来灯座更多是水平放置,现在很多家已经将灯座竖立起来。我认为,灯座竖起来更合理,好处更多,现在很多国产原子吸收光谱厂家也采用了这一技术。  至于原子荧光光谱仪技术方面,金索坤公司推出了高温原子荧光技术,将原子荧光原来只能检测11中元素扩展到了现在能够检测20多种元素。北分瑞利公司推出的新产品中改进了进样器,使得测试只需要1毫升的样品即可。还有的仪器用煤气、天然气取代乙炔气,解决了一些偏远地区没有乙炔气的问题。计子华研究员、高介平研究员、余兴研究员  Instrument:各位专家对于国产光谱仪器未来发展有何建议?  郑国经教授:从本次展会展出的光谱仪器来看,发展趋势主要有:虽说光谱仪器已经很成熟了,但从此次展会来看,仪器技术还在不断发展,光谱仪器新产品不再一味追求极限指标,而是向着实用性、绿色、低碳等方向发展。例如,安捷伦推出的微波等离子体原子发射光谱仪可直接使用氮气或空气,无需使用氩气,节约了能源,也符合绿色环保的要求。另外,光谱仪器新产品的定位也转向了解决实际应用的方面,这一点在本次展会上表现的尤其突出。  本次展会上国产仪器厂商展出的规模中增大了,展出的仪器数量也增加了,推出的新仪器技术水平更是提高了很多,这些都说明了国产光谱仪器正向着国际先进水平发展。如,中阶梯光栅和CCD检测器技术一直为国外厂商所独有,国内仪器厂商一直以来没能掌握。而这次展会上,国内几家公司都推出了相关的产品,对于国产仪器发展来说是一个很好的开端。  采访编辑:刘丰秋
  • 应用行家共议冶金化学分析技术——CCATM’2016化学分析报告会
    仪器信息网讯 2016年9月20日-22日,由中国钢研科技集团有限公司和中国金属学会联合举办的第18届国际冶金及材料分析测试学术报告会暨展览会(CCATM’2016)在北京国际会议中心召开。其中的CCATM’2016化学分析报告会在9月21日-22日进行,包含国际大会报告和国内大会报告,并针对不同应用方法设立了固体化学分会场和湿法化学分会场。  在22日举行的CCATM’2016化学分析报告会国内大会报告上,11位技术研发和企业应用专家分享了最新技术成果。CCATM’2016化学分析报告会现场北京有色金属研究总院 李继东 报告题目《辉光质谱在金属材料中分析应用进展与展望》  李继东在报告中介绍说,辉光放电质谱(GDMS)是痕量和超痕量元素分享的极佳工具。根据供电方式不同,GDMS分为三类,其中直流辉光放电质谱的市场占有率最高,能达到90%以上。除了介绍GDMS的计算原理和仪器机构,李继东解释了目前GDMS的分析优势。分析速度快:通常一个固体进样样品全流程分析时间约1h;测定下限低:多数元素测定下限达到1ppb;基体效应小:可采用相对灵敏度因子进行多样品半定量成分分析。该团队在实验室曾采用GDMS分析过30余种金属合金。李继东还通过实例和数据详细介绍了GDMS在有色金属材料分析中的应用。李继东带领团队起草发布了近十项用辉光放电质谱测定有色金属材料的行业标准。李继东最后总结到,辉光放电质谱与光谱一样有很大的应用发展空间,射频和脉冲辉光放电离子源将进一步拓展其应用;目前,标样(特别是低含量标样)缺乏限制了GDMS的应用,发展标样非常重要。宝山钢铁集团中央研究院 何晓蕾 报告题目《全二维气相色谱/飞行时间质谱法分析焦化废水中的多环芳烃及其它有机物》  何晓蕾介绍了团队以焦化厂经过SBR生化处理前后的废水作为研究对象,采用液-液萃取分离方法,结合全二维气相色谱飞行时间色谱分析技术,建立了多环芳烃和其他有机物的检测方法。团队系统的研究了焦化废水SBR生化处理前后,多环芳烃的含量和毒性变化。通过两组大数据的比对,了解了SBR生化处理前后其他有机物的组成变化和分子构成变化,多环芳烃SBR去除率约为40%,高分子量多环芳烃去除率达100%,该研究获悉了废水处理系统的降解规律,为选择最佳的可行性后续废水处理方案提供了依据。中国船舶重工集团公司第七二五研究所(洛阳船舶材料研究所)刘攀 报告题目《Top-down技术和灰色理论评估化学分析测量不确定度》  刘攀介绍了以合理表征质控数据分散性的标准参数表示不确定度的Bottom-up (GUM)方法。该团队的研究通过45套质控数据验证了平均移动极差、稳健标准查、灰色标准差三种方法的一致性。刘攀还提到,检验检测应用也需要大数据深入探索,继续完Top-down技术。醴陵市金利坩埚瓷厂 荣金相 报告题目《多元复合助熔剂在红外碳硫分析仪上的应用技术》  荣金相介绍了复合助剂的种类和选择方法,以及在红外碳硫分析中的最佳分析条件。不同基体材料要正确选择相匹配的复合助剂,该团队研发并商品化了针对不同材料的复合助剂供以提高红外碳硫分析仪的应用效果。宝山钢铁股份有限公司 朱子平 报告题目《电解法测定化学钝化镀锡板表面铬量》  朱子平介绍了团队目前正在研究的电解法测定化学钝化镀锡板表面铬量的课题情况。镀锡板表面铬测定有比色法、电解法、X荧光法、原吸法和ICP法等。该研究团队设计了电化学测量装置。通过该装置,该研究对化学钝化表面铬电解曲线进行了微分曲线,可以准确判断起始点,进而确定化学钝化电解时间。根据化学钝化电解时间和电解法标定系数,可以得到化学钝化表面铬量。该电解法测量速度快、测量精度好。首钢京唐钢铁联合有限责任公司 张红领 报告题目《BH钢熔炼成分碳含量检测过程样品代表性的研究》  张红领介绍了团队在BH钢熔炼成分碳含量检测中的一些经验与数据结果。为保证球拍样检测过程的精确性,在生产检测过程中BH钢的铣床的铣削程序设置为1.2mm。同样的检验条件下,提桶样检测记过精确性略高于球拍样。球拍样与提桶样两种取样方式检测BH钢连铸碳含量无显著差异。国家钢铁材料测试中心 罗岁斌 报告题目《冶金原材料分析中溶液介质及盐分对电感耦合等离子体原子发射光谱(ICP-AES)分析结果的影响探讨》  罗岁斌介绍了影响ICP-AES信号强度的诸多因素。将无机酸引入检测体系会使进入等离子体内的分析物减少,分析信号降低。在基体匹配的基础上采用内标校正,可以校正硫酸加入量微小差异引起的对金属离子的分析误差。钠盐存在时,硫酸介质和盐酸介质下镁的测试结果均降低,基体匹配可以降低其影响,钠盐对分析信号也有明显影响。严格基体匹配较为困难,采取典型试样组成基体匹配可以完成绝大多数分析,具体个别情况可以采用参考物质监控和标准加入法验证。钢研纳克检测技术有限公司 王学华 报告题目《惰性熔融-红外吸收法测定硅钙合金中氧》  王学华在报告中介绍说,硅钙合金中有效相态组分为硅化钙,而不法行为加入CaO等非有效钙充当有效相态组分,损害产品质量。该研究组采用脉冲加热惰性气体熔融-红外吸收法建立了硅钙合金中总氧含量的测定方法。分析结果精度和准确度较好,RSD在1%左右,可满足实际生产要求。目前尚没有硅钙合金中氧含量的测定方法标准,课题组认为十分有必要建立硅钙合金中总氧含量测定方法。钢研纳克检测技术有限公司 李冬玲 报告题目《管线钢堆焊热区域成分统计分布表征及其组织和性能的相关性研究》  李冬玲在报告中介绍了用于堆焊区域成分标志的分析方法,详细解释了LIBSOPA分析方法及其特点。研究组对堆焊区域的成分、组织与显微硬度分布相关性进行了研究。其研究表明:在硬度较高的环状区域,Ti元素出现富集带,这个区域也是板条马氏体聚集的地方,可见该硬化区与Ti元素的偏析分布以及板条状马氏体分布密切相关。基体的组织晶粒细小、维氏硬度较低,焊材区域的晶粒组织粗大,其Si、Ti元素的含量也明显高于基体,导致其硬度高于基体。河钢集团钢研总院 刘洁 报告题目《光谱分析用镍基合金内部控制样品的研制》  刘洁镍分析了目前行业内基合金新材料种类开发越来越多,镍基合金类标准样品在国内非常少,而进口采购价格昂贵 直读光谱、X荧光光谱等仪器对镍基合金标准样的需求很大。在这种情况下,该研究组利用现有仪器设备资源,研制了3种镍基合金内部控制样品。这些控制样均按照相关标准的要求进行冶炼、锻造、加工、均匀性实验、稳定性检验和定值分析,该控制样品在产品质量、仪器校准、测试方法评价等发面发挥了很好的作用,并能够应用与直读光谱、辉光光谱谱仪和荧光光谱仪成分检测校准。钢研纳克检测技术有限公司 宋宏峰 报告题目《镁合金中11种稀土及非稀土元素的全谱测定及干扰校正》  宋宏峰在报告中介绍了该研究组采用电感耦合器件(CCD)的小型化光谱仪器对一定范围内的谱线进行全谱扫描,具有诸多技术优势。采用该方法,研究者系统研究了稀土镁合金中的十余种金属元素的准确度、短期精密度和干扰校正。研究表明:CCD型全谱光谱仪可以简便、快速的解决镁基样品中稀土元素及其它杂质元素的分析检测。该技术具有检出限低、覆盖面广、不受通道及基体限制等优势,还可以根据用户需求进一步拓展待测元素的种类和测定的含量范围。同时,对较低含量的元素也可以实现高精度、高准确度的检测。
  • 原子光谱技术创新多点开花——记第七届全国原子光谱及相关技术学术会议分会场报告
    仪器信息网讯 2023年4月12-13日,第七届全国原子光谱及相关技术学术会议在辽宁省丹东市召开。本届会议由中国仪器仪表学会分析仪器分会原子光谱专业委员会主办,东北大学、环境化学与生态毒理学国家重点实验室、辽东学院、丹东市科学技术协会共同承办,辽宁省分析科学研究院、辽宁省分析测试学会协办。来自84个单位的375名代表参加了次会议。本次会议为期2天,大会报告之外,还设置了原子光谱/质谱的生命分析应用、原子光谱/质谱分析新原理新方法、原子光谱/质谱相关技术及应用三个分会场,邀请了100余位国内外著名专家做专题报告,展示了各自在原子光谱/质谱及相关技术领域中的仪器研制、方法开发、分析应用等最新成果。同时,岛津、珀金埃尔默、德国耶拿、海光仪器、阿美特克、上海仪真、宝德仪器、沈阳禾光、佳合益科技、上海凯来、吉天仪器、拓服工坊、谱育科技等仪器公司也纷纷介绍了最新的仪器技术和应用方案。仪器信息网作为合作媒体参加并报道了此次会议。“全国原子光谱及相关技术学术会议”启动时即将“相关技术”纳入了覆盖范畴,记得黄本立院士曾说到,发起人非常有先见之明的在会议名称中加入了“相关技术”,也由此让原子光谱更加“活”了起来。原子光谱专业委员会主任委员江桂斌院士也曾表示,会议组织初衷就一直倡导学科交叉,积极纳入原子光谱相关技术。原子光谱专业委员会秘书长王秋泉也曾说过,原子光谱/质谱分析是分析化学大家庭中的一员,正在不断地与相关学科融合发展,共同解决目前我们所面临的生命、环境、材料和能源科学中的分析科学问题。基于这样的初衷,“全国原子光谱及相关技术学术会议”从大会报告的邀请到分会场主题的设置上一直重视这方面的内容,此次会议上也特别设置了“原子光谱/质谱相关技术及应用”分会场。从分会场主题设置还可以直观地看出,生命分析是原子光谱/质谱的前沿应用研究热点。生物分子的定量分析是化学测量学的核心问题之一,对疾病早期诊断和相关生物学机制的研究具有重要意义。如,痕量元素在生命体内的迁移和转化过程对生命体的正常生理活动和多种生命过程起到了至关重要的作用,细胞中痕量元素的分析对从分子水平上理解痕量元素在细胞乃至生命体中的作用机制具有重要意义。又或如,目前威胁人类健康的主要疾病之一的“癌症”其早期诊断检测研究具有重要意义,而直接测定血液中极少数特定癌症细胞是一种最直观有效的癌症早期诊断方法。如今大家常常说原子荧光、原子吸收等原子光谱技术已经很成熟,很难有创新了。然而在此次会议的“原子光谱/质谱分析新原理新方法”分会场中,仪器装置研发搭建、试剂研制、新方法开发等相关内容非常多。如,由于环境污染、食品安全、突发应急事件等的频繁发生以及日常监测等领域对现场、实时、在线等分析仪器的需求大幅上涨,所以可用于现场快速检测的小型化仪器成为了原子光谱发展方向之一。此次会议上就有多位专家介绍了其在研制新型便携式、小型化原子光谱仪器方面的最新进展。以下编辑择取一些报告内容以作分享:报告题目:铅氢化物发生机理及原子光谱装置的研制报告人:广西师范大学化学与药学学院 邓必阳邓必阳介绍了其团队的一些研制成果:毛细管电泳-电热原子吸收光谱的接口,并将其用于研究生姜中采用富硒技术以后硒含量随时间的变化;研制了一个适合ICP-MS进样的绿色环保型的压力进样系统,经验证,该压力进样系统具有高雾化效率、低样品用量、RSD 小于1%、零废液排放,绿色环保,不需要开设排废液口,并且已成功应用于人血浆中Cd和Pb的测定;研制了一个低成本、操作简便、高效的单细胞引入装置,细胞引入效率非常高,将该单细胞引入装置连接到ICP-MS,成功测定了单个人红细胞中Cu含量。报告题目:质谱流式细胞仪配套试剂的研究进展 报告人:清华大学 张四纯质谱流式细胞术是新一代流式细胞技术,既保留了荧光流式细胞术的高通量分析特点,又显著提高了对细胞异质性的分辨能力,在生命科学、临床医学等领域具有巨大的应用前景。因为有了抗体上标记金属元素的试剂,通过免疫反应将其标记到细胞表面,从而可以用质谱流式细胞仪进行单细胞研究。由此可见,元素标记抗体试剂是质谱流式细胞分析的核心之一。随着国产科学仪器企业的快速发展,目前已有国产质谱流式细胞仪实现了商品化,但是配套试剂仍有待于解决。张四纯报告中介绍了其牵头承担的国家重点研发计划“质谱流式细胞仪配套试剂研制”项目的设计思路等情况,并提出了质谱流式细胞分析试剂进一步发展的方向。报告题目:纳米半导体光催化还原介导的原子光谱分析报告人:厦门大学 王秋泉原子光谱分析经过数年的不断发展已成为元素分析最常用也最为准确的分析工具。但因传统气动雾化-原子化的进样效率通常小于5%,严重地制约了分析灵敏度的提高。以硼氢化物为代表的氢化物发生和紫外光光催化蒸气发生进样技术的进步极大地改善了进样效率、提高了分析灵敏度,因而备受原子光谱分析化学家的瞩目。在紫外光-纳米半导体光催化蒸气发生进样技术研究领域中,大家关注的问题主要有如何进一步提高紫外光光催化蒸气发生效率和扩大可应用的元素种类、是否可以利用可见光进行光催化、是否可以“在线/原位”光谱检测。王秋泉团队设计制备了新型复合纳米半导体光催化材料(-SiC@N-TiO2 和 GaP@N-TiO2)以实现可见光光催还原;不仅如此,还可实现“原位”原子荧光光谱分析。报告题目:微流控芯片-ICP-MS 单细胞分析报告人:武汉大学 胡斌 由于细胞异质性和多样性的广泛存在,从单细胞水平分析细胞内痕量元素及其形态具有重要的研究意义。电感耦合等离子体质谱(ICP-MS)是强有力的痕量元素检测手段,但是将其直接用于单细胞中痕量元素分析时,存在待测元素含量低、对元素形态不具选择性、样品基质复杂、细胞样品量极少和跳峰信号来自于多个细胞等问题。微流控芯片是优良的细胞操纵平台,将其与 ICP-MS 在线联用可以实现单细胞内痕量元素的测定。胡斌团队构建了液滴芯片/微流体装置、液滴裂分芯片以及负磁泳聚焦芯片等单细胞操纵平台与时间分辨ICP-MS 在线联用,建立了微流控芯片-ICP-MS单细胞痕量元素及形态分析方法,并将其用于单细胞水平的痕量元素及形态分析与纳米粒子的摄取研究。报告题目:无机质谱中那些难以测定的元素 报告人:厦门大学 杭纬高电离电位、低质量数的非金属元素的测定对现有的电感耦合等离子体质谱、辉光放电质谱和二次离子质谱技术形成挑战。针对这一问题,杭纬团队另辟蹊径、使用了激光溅射/电离源的质谱技术,实现了这些难以测定的非金属元素的快速检测。课题组通过惰性气体辅助低真空氛围中进行激光溅射/电离,能够有效抑制多价离子的干扰,离子源中频繁的弹性碰撞可有效减小离子动能分布,可达到较为理想的分析性能。报告题目:激光诱导击穿光谱(LIBS)定量化方法及应用 报告人:清华大学 王哲激光诱导击穿光谱(LIBS)技术具有快速、遥测、多元素同时分析、便于实现在线或原位分析等优势,在煤质分析、钢铁分析、污染物检测和外太空探测等领域都有巨大的应用潜力。但是到目前为止,LIBS 技术尚未实现精确定量化和大规模商业化,其主要瓶颈是信号不确定度过高导致的测量精密度较低和基体效应显著导致的测量准确度较低。王哲团队通过研究等离子体的膨胀和演化规律、等离子体与环境的相互作用、信号采集系统特性等对 LIBS 光谱的影响规律,揭示了 LIBS 信号不确定度产生机理,提出了包括等离子体调制、光谱标准化等一系列精确定量化技术,并在煤质、金属、水泥生料在线分析等领域取得成功应用。 报告题目:适于微等离子体发射光谱分析的样品引入方式与接口报告人:东北大学 于永亮基于微等离子体激发源的小型化发射光谱(OES)系统因其便携、低能耗的特点而成为现场分析重金属污染的潜在工具,开发便捷高效的样品引入方法与接口对于提高其现场分析性能至关重要。作为一种样品引入方法,PVG具有能够扩大元素范围,且干扰少、背景低、不使用强酸和还原剂等优点,不过实际样品的复杂基体干扰,还是会降低PVG的效率。基于此,于永亮团队通过采用具有大比表面积和多孔结构的MoS2-COF复合材料作为双功能载体、减少了共存离子的干扰,通过超声雾化作用加速氢化物发生、使挥发性重金属物质从复杂基质中快速分离等方法大大提高了PVG效率,检出限、灵敏度显著提高。报告题目:大气压辉光放电微等离子体光谱技术研究及其环境应用报告人:中国科学院上海硅酸盐研究所 汪正 大气压微等离子体具有体积小、功耗低、成本低、可在大气压下操作等特点,是一种具有广阔前景的新型原子光谱激发源,有望推动便携式分析仪器的发展及其在环境检测中的应用。汪正团队研制了四种基于大气压微等离子体的原子光谱技术,包括液体阴极辉光放电原子发射光谱(SCGD-OES)、液体阳极辉光放电原子发射光谱(SAGD-OES)、氦气氛常压辉光放电原子发射光谱(He-APGDOES)和熔盐电极辉光放电原子发射光谱(MSE-APGD-OES)。不过,汪正也指出,上述原子光谱技术的元素检测普适性、长期稳定性以及对于复杂基体的耐受能力仍有很大的提升空间;进一步明确微等离子体内部的原子化和激发机理,将有望解决上述问题,是未来微等离子体领域的一个研究重点。报告题目:用于小型化原子发射光谱仪的增强尖端放电激发源研究报告人:四川大学 蒋小明蒋小明团队以尖端放电作为小型化原子发射光谱仪的激发源,针对其(以及其它微等离子体)激发能力相对有限、易受样品中水分与基体影响等问题,进行了若干增强尖端放电激发源的研究:1)通过尖端放电结构的创新设计,比如中空电极、十字交叉电极放电模式,增大放电区域以增强激发能力及效率;2)通过阵列尖端放电串联激发的方式,增强总激发能力以及捕获更多分析物进入放电微等离子体,提高有效激发率;3)通过尖端放电的放电物理化学参数调控,比如将放电气体氛围更换为氩氢火焰,获得火焰与放电的协同工作,增强激发能力;4)通过蒸气进样方式,比如化学蒸气发生、电热蒸发,有效消除样品中水分与基体对尖端放电能量的消耗以及稳定性的影响;同时结合紧凑的集成设计提高小型化原子发射光谱仪的整机分析性能。报告题目:电场流分离系统研制及其应用报告人:中国科学院生态环境研究中心 谭志强研究发现,细颗粒具有一定的生物毒性,能在水生动植物体内累积,而且在食物链中具有传递效应,其生物安全性已引发普遍关注。大量研究证实,细颗粒的生物效应依赖于其尺寸和表面修饰剂。然而,由于分析方法的限制,目前,对低浓度细颗粒的环境行为和生物效应不明确,其中的主要难点是缺乏低浓度细颗粒的分析表征方法。谭志强团队采用中空纤维流场流分离系统与ICP-MS联用系统,建立了不同尺寸银纳米颗粒的分析表征新方法;在此基础上,将循环电场流分离系统与ICP-MS在线联用,建立了相同尺寸、不同修饰剂银纳米颗粒的分析表征新方法,并将该方法用于银纳米颗粒表面环境冠形成过程研究以及环境冠对银纳米颗粒生物效应影响研究。
  • JAAS 25周年学术研讨会 国内外专家共话原子光谱发展
    仪器信息网讯 2010年11月23日,英国皇家化学会期刊JAAS (Journal of Analytical Atomic Spectrometry)在清华大学紫金国际交流中心举办了“JAAS 25周年学术讨论会”。原子光谱领域的专家学者及仪器厂商负责人共100余人参加了此次会议。会议现场   英国皇家化学会出版人Niamh O'Connor博士、JAAS编辑May Copsey博士、英国皇家化学会中国区出版人张大平博士分别致开幕词。Niamh O'Connor博士,May Copsey博士,张大平博士  2010年是JAAS创刊25周年,同时也是ICP-MS第一篇论文发表30周年,JAAS编委和与会专家学者共同回顾了近几十年来原子光谱的发展历程,探讨了ICP-MS和原子吸收光谱的发展趋势及应用领域。JAAS评论编辑 Norbert Jakubowski 博士还将详解了如何提高投稿的成功率。  等离子体质谱的发展、现状及未来  电感耦合等离子体质谱ICP-MS,是20世纪80年代发展起来的新的分析测试技术。作为一种相对先进的离子化形式,它几乎可分析地球上所有元素。与传统无机分析技术相比,ICP- MS技术具有检出限低、干扰小、精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。ICP-MS在环境科学、食品科学、材料科学、生命科学、地球科学、半导体等领域获得了广泛的应用,成为痕量分析与元素形态分析等最有力的分析手段。  (1) 等离子体质谱仪的发展  Nu Instrument公司 John Cantle先生、安捷伦科技 Steven Wkibur 先生  John Cantle先生表示从1983年诞生四级杆ICP-MS以来,现在已有双聚焦扇形磁场高分辨ICP-MS、多接收器等离子体质谱仪、飞行时间等离子体质谱仪等多种类型的ICP-MS。目前世界范围内四级杆ICP-MS的年需求量在400-500台,主要的生产商分布在德国、日本、加拿大、澳大利亚。小型化、自动化、降低价格是仪器未来的发展趋势。  Steven Wkibur 先生介绍说尽管ICP-MS诞生之时有许多优点,但它不可避免的受到以下三个方面的限制:多原子离子及氩气离子化的干扰、基质干扰、动态范围窄。从1994年的HP4500型到2009年最新一代Agilent 7700系列ICP-MS,安捷伦科技ICP-MS的发展史就是不断克服这些缺点的过程。但是目前还有一些元素如:硫、磷、砷及一些卤素,由于强的干扰及比较高的电离能在超痕量水平很难被检测,如何解决这些问题,Steven Wkibur 先生指出寻找新的碰撞反应池、新的离子源、新型质量分析器等也许都是可能的解决方案。  (2) 同位素质谱  赛默飞世尔科技 Meike Hamester先生、JAAS编委 Ashley Townsend教授  Meike Hamester先生指出由于四极杆ICP-MS存在质谱重叠干扰的缺点,扇形场ICP-MS(Sector Field ICP-MS)由于其高分辨率得到了很快发展,它具有高光谱分辨率,低检测限、宽线性动态范围,高同位素比值精度等优点。可用于固体和液体样品元素分析,是进行同位素比率分析的重要工具。  Ashley Townsend教授所在的塔斯马尼亚大学中央科学实验室,是南半球实验室中第一个利用扇形场ICP-MS进行痕量元素以及超痕量元素分析的实验室。Ashley Townsend教授介绍了扇形场ICP-MS在环境中痕量金属分析中的应用。  JAAS编委 Rebeca Santamaria-Fernandez 女士  Rebeca Santamaria-Fernandez 女士介绍说多接收等离子体质谱仪(MC-ICP-MS)是上个世纪90年代早期发展起来的高精密度同位素分析仪器,它是ICP-MS仪器的一个非常重要的进步,使得同位素比值测定精密度有了实质性改善。目前全球30多个国家安装的MC-ICP-MS约有200台。当前从Li到U 40种以上的元素都可使用MC-ICP-MS进行同位素比值测定。并且随着仪器设备的发展,目前许多研究都被认为没有完成,需要进一步的研究。  (3) 激光烧蚀ICP-MS联用技术  JAAS 编委 Takafumi Hirata教授、中国地质大学(武汉) 胡兆初教授  近年来,由于ICP-MS技术面临着复杂样品的分析,致使联用技术发展迅速,激光烧蚀ICP-MS就是其中之一。它使ICP-MS的分析范围从整体分析扩大到微区、表层分析,位置控制精度可达微米级,是进行原位统计分析的极佳工具。  Takafumi Hirata 教授介绍了一种新的激光烧蚀技术,可同时对两个分离的固体样品进行激光烧蚀,将两种样品颗粒在样品池中混合后,再一起通过电离源形成等离子体。这对于地球和生命科学领域的复杂样品分析有着重要的意义。  胡兆初教授在报告中介绍到,中国的高校及科研院所拥有超过40套激光烧蚀ICP-MS,作为一种有效的微分析手段,它可以广泛的应用于地球科学,进行元素的原位分析、同位素比值测定等,并且中国目前在这方面的研究取得了令人振奋的成果。  (4) ICP-MS的新应用  清华大学 张新荣教授  张新荣教授介绍了基于单粒子模型的ICP-MS在生命科学分析中的重要应用。第一、可用于免疫分析,正是由于ICP-MS在同位素分析中的高分辨率及高灵敏度,免疫分析的标记物从放射性同位素标记物发展到现在的稳定同位素标记;第二、可用于DNA杂交分析;第三、可用于细胞中的单元素分析,目前张新荣教授正在研究用单粒子ICP-MS区分正常细胞和癌细胞。  原子发射光谱新进展  JAAS新闻编辑 Steven Ray教授  辉光放电原子发射光谱能够准确快速的测定固体样品中的微量元素。Steven Ray教授介绍了目前辉光放电激发源的一些特别的应用。例如一种新型脉冲辉光放电发射光谱有很高的横向分辨率可用来测定固体表面的元素分布。另外一种新型辉光放电激发源可以连续地直接在液体表面发射等离子体,因而可用于溶液中的微量元素分析。还有一种特殊的氦-辉光放电光源可用作大气压质谱的解吸收/离子化源,实现了无需样品制备直接进行分析。  原子吸收光谱新进展  JAAS 编委 Martin Resano教授、德国耶拿公司 赵泰先生  Martin Resano教授表示,近几年将高分辨连续光源(HR CS)应用于电热原子吸收光谱法(ETAAS) 进一步拓宽了原子吸收光谱的应用范围,实现了对复杂基体的分析检测,尤其是对于一些要求直接分析的样品,如生物样品中的金属元素分析。HR CS-ETAAS具有以下优势:先进的背景校正技术;线性范围宽;可以检测在普通原子吸收光谱上不易被检测的元素。  赵泰先生表示连续光源高分辨原子吸收光谱仪是原子光谱技术的一项重要突破。使用高能高聚焦短弧氙灯作为连续光源,无需再使用和更换元素灯,可以非常灵活地选择所要的谱线,并且具有强大的扣背景能力,测量速度可达到ICP水平,检出限优于普通原子吸收,仪器维护和消耗成本低于普通火焰AAS。  如何使你的科研成果顺利发表  JAAS评论编辑 Norbert Jakubowski 博士  Norbert Jakubowski 博士介绍了英国皇家学会(RSC)及其出版物,并对如何在RSC的出版物上发表文章提出9点建议:(1)选择正确的期刊,研究领域必须与期刊内容相吻合;(2)确保工作的创新性;(3)对工作的创新性、影响作出清楚的说明;(4)阅读并且遵守作者指南,文章结构要符合期刊的要求(包括题目、著作权、摘要、介绍、实验、结果讨论、结论、致谢和参考文献等内容);(5)进行全面深入地文献阅读;(6)使用简单的语言,运用简单的语句;(7)提交论文以前认真校对;(8)推荐审稿人;(9)在稿件中注明所有审稿人的意见。编辑在初审时会看论文是否创新并且推动了科学现有的领域,是否适合该期刊的质量,是否涵盖在该期刊的研究领域以内,是否有相应的读者群等。如果条件都符合,则稿件被接受的可能性就很大了。  会议采用了集中提问环节,并为提问者准备了小礼物。在Nobert Jakubowski博士和Steven Ray教授幽默风趣的主持下,大家都积极的向报告专家提问,现场气氛十分活跃。此外会议期间,JAAS编委们还与中国学者们就中国分析科学发展现状进行了交流。专家答疑中国分析科学发展现状交流现场  最后,Niamh O'Connor博士代表JAAS向清华大学张新荣教授赠送了纪念品,感谢张新荣教授为此次会议的举办所做的工作,并向此次研讨会中作报告的其他专家颁发证书并赠送礼物以作纪念。赠送礼物 合影留念  JAAS 期刊简介:  英国皇家化学会《Journal of Analytical Atomic Spectrometry》于1986创刊,是目前国际公认的原子光谱分析领域中最高水平的学术期刊,影响因子为3.435。主要刊载原子光谱基础理论和元素分析应用的原始创新性研究成果,属于SCI收录的核心刊源。研究范围包括:原子吸收光谱、原子荧光光谱、无机质谱、X-ray光谱、原子发射光谱、仪器联用和样品前处理技术等。
  • 献力双一流建设,岛津与东北大学合办光谱及相关分析技术研讨会
    日前。“光谱及相关分析技术研讨会”在沈阳东北大学国际学术交流中心隆重召开,此次会议是岛津企业管理(中国)有限公司与东北大学合办,这是岛津公司为推进双一流建设开展的地区活动。 大会在王建华副校长的开幕词中拉开序幕,岛津市场部行业组杨桂香经理代表岛津发表致辞。此次会议共40多专家老师和部分学生参加,老师主要来自高校和科研院所,会议内容丰富充实,共有20位专家做了大会报告,报告以光谱技术为主,课题方向生物医学检测分析成为主流,食品、环境、材料等的应用都有涉及,光谱技术研究集中在ICPMS,多为形态分析和微等离子体的应用,也有相关新装置的研究,例如 中国地质大学的朱振利老师发表的常压辉光放电微等离子体元素分析方法,四川大学侯贤灯老师课题组的汞分析-从样品预处理到分析新方法/新装置等;而生物学、蛋白质、细胞的分析越来越成为大家关注的重点,像武汉大学胡斌老师的《细胞内硒和汞的形态分析与硒-汞拮抗》,大连化物所张丽华老师的《蛋白质组分析新方法—从定性定量到相互作用等》,专家们展示的基本都是未发表的研究成果与领先技术。岛津公司市场部的侯艳红经理、覃冰博士、龚沿东研究员分别就岛津ICPMS、分子光谱、和XPS在科学研究中的应用进行了发表。东北大学王建华副校长致开幕词会场传真岛津市场部人员做ICPMS、分子光谱、XPS的应用报告关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 全球首台PP-TOFMS落户于西班牙奥维尔多大学光谱分析实验室
    奥维尔多大学光谱分析实验室的A. Sanz Medel与R.Pereiro教授等材料科学家涉及的研究领域非常广泛,包括太阳能光伏电池、玻璃镀层等。2014年9月,他们在实验室中成功安装了全球首台等离子体分析飞行时间质谱仪(PP-TOFMS),希望通过它来进行基材和镀层的污染及稀土元素分析。 PP-TOFMS是HORIBA Scientific (Jobin Yvon光谱技术) 在 2012年推出的一款产品,它诞生于欧盟项目“EMDPA”,在项目进展过程中,HORIBA Scientific与来自7个国家的材料科学家进行了反复的论证与实验,终由专业的辉光放电质谱(GD-MS)研究团队设计而成。带您认识等离子体分析飞行时间质谱仪(PP-TOFMS) PP-TOFMS是一款集辉光放电和飞行时间质谱优势为一体的新型分析设备,可大地推进镀层样品的分析进程。高分辨率、高灵敏度下,可快速完成深度剖析 PP-TOFMS结合了辉光放电等离子体的溅射速度和时间飞行质谱的快速及高灵敏度,可以实现高分辨率和高灵敏度条件下固体材料的快速化学深度剖析。 擅长分析各类镀层样品,获取元素、分子等信息 PP-TOFMS适用于导体、半导体、非导体各类材料及镀层分析,每30微秒即可获得H到U元素的完整质谱和分子信息,包括同位素。在获得固体样品的元素信息的同时,PP-TOFMS还可以获得同位素及分子的分布信息。在整个分析过程中,样品无需预处理,设备无需超高真空腔,操作简单而快速。主要应用领域: 掺杂分析(半导体、光电子、太阳能光伏、传感器、固态电源) 表面和整体污染鉴定(PVD镀层、摩擦层、电气镀层、光学镀层、磁性镀层) 腐蚀科学和技术(示踪物、标记监测、同位素标记) 界面监测等 应用实例——如何对稀土元素进行深度剖析? PP-TOFMS非常适用于稀土元素的检出,下图为氧化锌薄膜的深度剖析。未使用校准曲线,通过离子束比可直接获得稀土元素Eu和Tb随深度的原子百分比变化。 PP-TOFMS的深度分辨率达1 nm,可有效地将薄镀层中元素随深度的变化表征出来。并可获得任何深度的全质谱。 数据采集分析软件设计得非常人性化,可清晰直观呈现所有数据,以便快速掌控信息。了解更多产品信息关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 2014光谱系列网络讲座(2):HORIBA Scientific荧光新技术与前沿应用
    荧光是物质中的电子吸收光的能量由低能级转变为高能级,再跃迁回低能级时所释放的光。通过对荧光寿命、磷光寿命及光谱研究,可以获得样品的分子结构、分子间距(FRET)、微环境变化、量子产率、各向异性、荧光寿命及荧光寿命成像(FLIM)等信息。荧光技术可以广泛应用于生物、化学、材料科学、环境、制药、食品等领域。讲座内容:1、荧光简介2、荧光原理及技术3、荧光光谱仪组成4、荧光新解决方案5、荧光产品服务与培训支持主讲人:周磊博士(荧光产线技术支持 )开课时间:2014年6月30日 10:00-12:00 (网络教室于9:30开放)报名条件:需注册为仪器信息网用户环境配置:电脑、耳麦(需音频交流的用户请准备麦克风) 报名 (限120人,额满为止)讲座预告:HORIBA拉曼-AFM技术新进展 9月22日 10:00-12:00 报名真空紫外光谱技术和应用 9月25日 10:00-12:00 椭圆偏振及辉光放电光谱技术 9月关注我们邮箱:info-sci.cn@horiba.com新浪官方微博:HORIBA Scientific微信二维码:
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • “微等离子体”原子光谱创新研制热点——第五届全国原子光谱及相关技术学术会议分会场
    p  strong仪器信息网讯/strong 2018年9月20日-23日,由中国仪器仪表学会分析仪器分会原子光谱专业委员会主办,厦门大学承办、华侨大学协办的“第五届全国原子光谱及相关技术学术会议”在 “海上丝绸之路起点”的福建泉州召开。此次会议是我国原子光谱及相关技术领域的一次学术盛会,300多名科技人员与会交流。/pp  9月21日,“第五届全国原子光谱及相关技术学术会议”的第二天,会议分三个分会场进行。其中一个分会场的多个报告内容都聚焦于了原子光谱仪器设备的创新研制。/pp  原子光谱,如AFS、AAS、ICP-OES、ICP-MS等,具有高选择性、高灵敏度成为特点,已经成为评价一家实验室检测能力的标志。不过,由于环境污染、食品安全、突发应急事件等的频繁发生,以及日常监测等领域,对现场、实时、在线等分析仪器的需求大幅上涨。其中可用于现场快速检测的小型化仪器,还具有体积小、功耗低、便携、可野外分析等优点,是节约/环保型社会的必然需求。/pp  仪器小型化是原子光谱发展方向之一。今天的分会场中,众多原子光谱专家介绍了其在研制新型便携式、小型化原子光谱仪器方面的最新进展。让人影响深刻的是,此次报告的内容多围绕着“微等离子体”而展开。/pp  微等离子体是被限制在一个有限的空间范围内(尺度为毫米量级甚至更低)的等离子体,兼具了常规等离子体的一些特性,但由于放电尺寸缩小到毫米量级甚至更低,使得微等离子体通常能够在大气压条件下运行。此外,微等离子体还具有功耗低、室温操作、样品/耗气量小、体积小、结构简单、易于操作、低成本等优点。这些优点使得微等离子体在发展便携式、小型化仪器方面有得天独厚的优势。当然,微等离子体用于原子光谱分析也存在着一定的不足之处,如功耗低则激发能力低,易受样品中水分与基体的影响,可测元素数目有限等。即,微等离子体用于原子光谱分析主要需要解决激发能力和样品引入的问题。/pp  今天报告中涉及的微等离子体主要为尖端放电微等离子体(PD)、辉光放电微等离子体(GD)、介质阻挡微等离子体(DBD)等。作报告的专家学者也主要集中在四川大学侯贤灯、中科院上海硅酸盐研究所汪正、东北大学王建华、中国地质大学(武汉)胡圣虹等团队。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/071ae6b1-eabe-4dc5-89c5-29024e366c43.jpg" title="IMG_8340.jpg" alt="IMG_8340.jpg"//pp style="text-align: center "四川大学教授 侯贤灯/pp style="text-align: center "报告题目:基于尖端放电微等离子体的发射光谱分析/pp  尖端放电微等离子体具有曲率半径小、放电集中、易于驱动、放电性质可调节特点。侯贤灯将光化学蒸汽发生(PVG)、氢化物发生(HG)两种化学蒸汽发生(CVG)进样方式与尖端放电相结合,降低了样品中水分与基体对微等离子体的影响,提高了进样效率、提供额外能量,增强了激发能力。此外,在构建小型化仪器装置时,侯贤灯利用3D打印技术定制、加工了相关部件。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/8a445da8-b9aa-467d-8696-3ecba3a4bf6b.jpg" title="IMG_8480.jpg" alt="IMG_8480.jpg"//pp style="text-align: center "四川大学教授 郑成斌/pp style="text-align: center "报告题目:碳原子发射光谱及其应用/pp  ICP/GD-OES 测碳及含碳化合物一直未能得到很好的推广。近年来,郑成斌发现室温微等离子体(介质阻挡放电或尖端放电等)能够激发挥发性或半挥发性含碳化合物产生碳的原子发射光谱。基于此,郑成斌拓展了微等离子体碳原子发射光谱在环境和材料领域的应用,如,将微等离子体碳原子发射光谱分析装置用作气相色谱检测器 基于微等离子体碳原子发射光谱,建立水中总有机碳分析新方法和新装置 基于碳原子发射光谱,建立了水中溶解氧分析新方法和新装置等。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/c6bc7cb1-4b58-4ba3-ac85-cba06f2a2e1b.jpg" title="IMG_8358.jpg" alt="IMG_8358.jpg"//pp style="text-align: center "中科院上海硅酸盐研究所研究员 汪正/pp style="text-align: center "报告题目:液体阴极辉光放电原子光谱新进展/pp  汪正对液体阴极辉光放电微等离子体(SCGD)光源系统进行改进性设计,即固定一内径为0.8-1.0mm、外径为2.0-2.5mm的空心钛管同时作为SCGD光源系统的放电阳极以及气体样品传输管路,保证了SCGD在气体进样条件下能够保持稳定放电。在此基础上,汪正将将改进后的SCGD光源系统与氢化物发生、光化学蒸汽发生样品引入技术耦合,提高了原子化效率和激发效率,检测灵敏度大幅提升。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/382d7ca0-f571-4412-b3d2-b31026487093.jpg" title="IMG_8588.jpg" alt="IMG_8588.jpg"//pp style="text-align: center "中科院上海硅酸盐研究所 彭晓旭/pp style="text-align: center "报告题目:He 气氛大气压辉光放电原子发射光谱装置的构建及其增敏研究/pp  大气压辉光放电 (APGD)是一种常压环境下,在惰性气氛中两电极之间产生的一种持续稳定的气体放电。为了提高APGD 应用于光谱检测时的激发效率以及信号检测的灵敏度,彭晓旭团队从激发效率提高以及谱线采集方式优化两个方面,对APGD进行了改进性设计与构建。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/3e466914-b10c-4eec-b6b2-44c37bca70b0.jpg" title="IMG_8533.jpg" alt="IMG_8533.jpg"//pp style="text-align: center "东北大学教授 于永亮/pp style="text-align: center "报告题目:基于雾化进样的微等离子体发射光谱在元素分析中的应用/pp  为提升微等离子体OES 系统在溶液直接进样条件下的检测灵敏度,于永亮将微等离子体集成到气动雾化器的喷嘴处,建立了基于雾化进样直接激发检测溶液样品中痕量元素的微型OES 系统。该系统一方面通过增大微等离子体与溶液间的接触面积,充分利用微等离子体的激发能量 另一方面通过在溶液样品中添加增敏剂,促进氢自由基的产生以利于原子化过程,从而极大地改善了待测元素的原子化与激发效率。该系统已能满足常见14 种元素的直接激发测定,检出限在0.8 μg L-1(Cd)-910 μg L-1(Cr)之间。与常规ICP-OES 相比,该系统不但具有较小的体积和较强的多元素分析能力,且样品与载气的消耗量都大幅降低,可满足现场分析的需要。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/6b285926-4bb7-4b7f-ac30-6dc8c42c1fd7.jpg" title="IMG_8498.jpg" alt="IMG_8498.jpg"//pp style="text-align: center "中国地质大学(武汉)教授 朱振利/pp style="text-align: center "报告题目:液体喷雾介质阻挡放电诱导的蒸气发生新技术/pp  因通过改变等离子体反应器的结构,增加等离子体与样品的反应面积能有效提高等离子体蒸气发生的反应效率。2017 年,朱振利发展了一种新颖的液体喷雾介质阻挡放电诱导蒸气发生技术(LSDBD-CVG),并首次实现了铅的蒸气发生。随后,针对传统化学蒸气发生技术在测定镉时存在的蒸气发生效率低、易受干扰等问题,朱振利采用LSDBD-CVG 技术在2%甲醇下实现了镉的高效蒸气发生,利用AFS检测检出限可低至0.01μg L?1,并成功测定了大米中的镉含量。并且,通过对LSDBD-CVG 反应器进行改进,朱振利发展了基于LSDBD-CVG的微量样品中痕量元素硒、银、锑、铅和铋同时检测的新方法。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/2051003b-985e-4825-84d2-7b82fb685bc1.jpg" title="IMG_8573.jpg" alt="IMG_8573.jpg"//pp style="text-align: center "中国地质大学(武汉) 杨春/pp style="text-align: center "报告题目:便携式常压辉光放电发射光谱仪分析方法研究/pp  杨春团队开发的常压辉光放电微等离子体激发源(APGD),较好的解决了现有微等离子体源对氢气耐受力差、灵敏度低等不足,并在此基础上研发了基于APGD 激发源的锂电池供电的便携式发射光谱仪样机,其具有绿色节能、高效检测、灵敏可靠、现场分析等众多优点。利用该便携式仪器样机,杨春团队通过选取不同的进样方法开展了常压辉光放电发射光谱仪分析方法研究以更好地拓展其应用范围。/ppbr//p
  • 北京光谱年会召开 盘点光谱技术新进展
    2010年1月11日,北京理化分析测试技术学会光谱学会在北京天文馆二楼报告厅组织召开了“2009年北京光谱年会”。本届年会共有200余人到场,参会人员主要来自科研院所、大专院校,也有较多质检机构、食品卫生、钢铁等行业的工作人员赴会。2009年北京光谱年会大会现场  两年一度的BCEIA刚刚于2009年11月在北京闭幕,来自国内外的各分析仪器公司在展会上展示了最新产品和技术,所以BCEIA也是分析仪器领域的一次大检阅。本次年会的特点之一是,光谱分析专家们结合BCEIA展出的新产品、新技术,详细盘点了光谱分析仪器及技术的最新进展。钢铁研究总院国家钢铁材料测试中心贾云海研究员、北京化工大学袁洪福教授分别主持上、下午的报告会。贾云海研究员主持报告会  北京光谱学会理事长郑国经教授首先作光谱仪器整个领域的综合评述报告。郑国经教授  郑国经教授在报告中讲到,本届BCEIA最大亮点在于国产仪器的强劲登场。BCEIA2009颁发的14项金奖项目中涉及光谱分析方面的仪器有5项:上海光谱仪器公司的原子吸收分光光度计SP-3880AA,沈阳华光精密仪器公司的原子吸收分光光度计LAB600,北京科创海光仪器公司的全自动双道注射泵原子荧光光度计AFS-9700,北京瑞利分析仪器公司的双光束紫外/可见分光光度计UV-2200,北京聚光世达科技公司的在线近红外分析仪SupNIR-4510,从技术工艺创新程度、技术指标先进程度、市场前景和市场化水平四个方面都有不错的的进步,充分反映了国内厂家在光谱分析仪器上的实力,并且光谱仪器正逐渐向高性能、实用化、小型化方向发展。  分子光谱技术进展  李昌厚研究员作“紫外可见分光光度计最新进展”报告李昌厚研究员  目前最新的紫外可见分光光度计是PerKinElmer公司的Lambda750(s)和Varian公司的Carry6000i。Lambda750(s)是以积分球作标准检测器,在光学、附件方面都有独到之处;Carry6000i采用InCaAs固体检测器,比PbS检测器的灵敏度高10倍。中国最好的紫外可见分光光度计优于国外同类、同档次的仪器,但与国外产品在工艺、附件、软件上还有差距。  紫外可见分光光度计应用最新进展:(1)多组分分析,不经分离直接分析;(2)“高阶张量数据解析方法”问世,主要用于复杂体系成分分析。  清华大学周群教授作“拉曼图像系统与中阶梯光栅拉曼光谱仪器进展”报告周群教授  拉曼光谱相关技术近年来发展也很迅速。拉曼图像系统与显微镜的完美结合,使得拉曼光谱对物质的空间结构分布研究成为可能,已成为化学、材料、生物、地质、文物保护及物证分析等研究领域不可或缺的结构鉴定手段之一。HORIBA Jobin Yvon公司推出的两种新技术:一种是全新的成像技术DuoScan和被称为“难以置信的快速扫描”的SWIFT技术,该技术可以保证快速获得高质量的拉曼图像。  PerKinElmer公司新推出的RamanStation400型拉曼光谱仪可以同时、快速的提供全波段、高分辨光谱,没有任何可移动的部件。中阶梯光栅拉曼光谱仪还被成功应用在联用技术中,如与差示热扫描技术的联用,可以对化合物相变前后的结构进行分析。  北京化工大学袁洪福教授作“便携式分子光谱仪器进展”报告袁洪福教授  由于分子光谱分析具有无损测量、信息丰富和快速等优点非常适合现场质量快速测量。便携式近红外光谱仪应用的最多,其MEMS技术支持的便携式近红外光谱仪具有光明的发展前景,但MEMS芯片本身体积虽然很小,受配备外光路等附属部件体积所限,便携式近红外光谱仪的尺寸还不够理想。  便携式拉曼光谱仪的发展得益于CCD检测器和光纤技术的发展,目前市场出现了很多以光纤光栅阵列检测的便携式拉曼光谱仪,其中便携式傅里叶变换拉曼光谱仪具有光明的发展前景。  北京大学李娜教授作“荧光光谱仪仪器进展”报告李娜教授  在荧光分析方面,目前一些稳态荧光仪采用了单光子计数,提高了对微弱信号的检测能力;同时一些厂商推出了近红外荧光光谱仪,可将检测波长范围拓展到1700nm;一些仪器更具有稳态和寿命测量的双功能。  时间分辨荧光仪技术主要有时间相关单电子计数(TCSPS)技术、频内观测技术、超高速扫描摄像、频率上转换技术以及相调制技术等,高的动态范围和优良的时域线性使得TCSPS成为普遍应用的荧光测量技术。荧光成像中的共聚焦成像技术已经越来越普遍,与荧光寿命测量技术相结合,可以实现荧光寿命成像。  原子光谱进展  有色金属研究总院的郑永章研究员作“BCEIA2009原子吸收光谱仪展出概况”报告郑永章研究员  2009BCEIA上,原子吸收光谱仪器的参展商有20多家,国内厂商为11家,参展商都有一种或多种型号的仪器展出,并且仪器型号有所更新。新产品和新技术主要有:北京瑞利分析仪器公司新推出的便携式WFX-910原子吸收光谱仪,该仪器以锂电池为动力,一只锂电池可持续工作6小时,总重量只有18Kg,是针对环境、食品等样品中As、Cd、Pd等有害元素分析而设计。获得BCEIA2009年度金奖的沈阳华光精密仪器公司的原子吸收分光光度计LAB600,具有紫外可见分光光度计的功能,并且火焰原子化器的燃烧器与电热氢化物原子化器形成一体,方便切换。上海光谱仪器公司开发出同时完成交、直流磁场校正背景技术,这项技术的应用对于提高背景校正的正确性、准确度和精密度,以及特定背景的形态研究都有重要意义。  矿冶研究总院符斌研究员作“便携式XRF光谱仪应用动态”报告符斌研究员  能量色散XRF近年来非常活跃,在有害物质检测、矿物质快速检测、质量控制等方面都有广泛应用。目前生产手持式XRF分析仪的厂商主要有6家,江苏天瑞仪器公司、赛默飞世尔科技-尼通、美国伊诺斯、英国牛津、德国布鲁克、美国斯派克。  目前的手持式XRF分析仪基本上都是能量色散型X射线荧光光谱仪(EDXRF)。激发源主要为小型X射线管,耗能很低,通常仅为40kv/50~80µ A,因此可以用锂电池供电,一般用于便携式XRF的锂电池可连续工作4小时。目前主要的探测器有纯硅探测器Si-PIN、硅锂漂移探测器Si(Li)、硅漂移探测器(SDD),其中SDD的性能极为优异,能量分辨本领和高计数率性能是所有半导体探测器中最好的,是Si-PIN和Si(Li)的换代产品。  清华大学辛仁轩教授作“等离子体光谱仪发展动态”报告辛仁轩教授  ICP光谱仪器的发展正处在相对稳定时期,但在样品分析的实用性方面也出现了许多改进,例如(1)仪器稳定性有明显提高 (2)覆盖的波长范围逐渐扩大 (3)近红外区和真空紫外区检出限有很大改进 (4)高频电源采用自激发器逐渐增加,全固态高频发生器逐渐普及,仪器结构更加紧凑 (5)双向观测,互相取长补短 (6)多谱线拟合扣除光谱干扰、数据自动判别、自动波长选择等软件性能扩大 (7)多种附件可选,扩大了应用范围。  本次BCEIA上,国产ICP光谱仪器批量涌现,并且技术有许多改进。如:北京科创海光仪器公司的SPS8000和WLY100-2,北京瑞利分析仪器公司的WLD-2C,北京纳克公司的Plazma-1000,江苏天瑞仪器公司的FWS-1000等。国产ICP光谱仪的分光系统普遍采用平面光栅、凹面光栅、中阶梯交叉色散光栅这三种类型。仪器在稳定性、局部恒温、高频电源性能方面都有所提高 部分仪器配用了全固体高频电源。  钢铁研究总院国家钢铁材料测试中心余兴研究员作“辉光放电光谱仪新进展”报告余兴研究员  在本次BCEIA上,除了传统的三家辉光放电光谱仪(GD-OES)国外仪器厂商外,国内仪器厂商也首次推出了国产的GD-OES。如:北京纳克分析仪器有限公司推出了首台国产的GDL750型辉光放电光谱仪,该仪器采用先进的辉光放电直流恒流源技术,可进行长时间稳定的样品溅射。HORIBA Jobin Yvon公司开发了一种用于热处理工艺中对场频质量评估、快速分析的辉光放电光谱仪(GD-Profiler HTP)。  清华大学孙素琴教授作“分子光谱仪器进展及复杂体系的分子光谱分析”、国家钢铁材料测试中心陈吉文研究员作“激光原位统计分布分析技术”报告。孙素琴教授陈吉文研究员  本光谱年会吸引了众多仪器厂商的参与,不但设置了仪器展台,还分别做了技术报告。  厂商报告如下:阿美特克公司的刘孟刚工程师:SPECTRO ARCOS ICP紫外区域分析及应用美国利曼公司王飞工程师:Prodigy DC ARC直流电弧光谱仪---固体材料及高纯金属分析的最佳选择HORIBA公司的吴明祥工程师:实行“全谱分析”的HORIBA Jobin Yvon ICP/OES最新进展岛津公司的安国玉工程师:诱导光栅法测定纳米粒径珀金埃尔默公司王国强工程师:红外显微化学图像的应用最新进展岛津公司的李大为工程师:光谱仪器在太阳能产业中应用
  • 金秋10月,跟随HORIBA专家玩转拉曼、荧光等众多光谱技术——福建师范大学 |10月25~26日
    继吉林大学站圆满结束后,光谱学院线下光谱系列课程:2016 光谱学堂——走进校园活动第三站将于10月25~26日来到福建师范大学,届时将会有多位资深工程师与大家分享数十种主流光谱技术的原理、应用等知识。系统的光学知识,热门的应用尽在光谱学堂!课程安排天课程系列1:光谱基础知识● 光谱学堂简介● 轻松学:光栅基础知识● 光学光谱基础知识● 真空紫外光学光谱课程系列2:分子光谱 ● 拉曼光谱基础及应用● 如何实现纳米拉曼光谱● 荧光光谱基础及应用第二天课程系列3:元素分析● 电感耦合等离子体技术基础及应用● X射线荧光基础及应用● 碳硫氧氮氢分析课程系列4:薄膜分析及其它 ● 椭圆偏振光谱基础及应用● 辉光放电光谱基础及应用● 粒度分析简介● 等离子体共振成像光谱基础及应用强烈推荐如下人员参加此课程● 材料、物理、化学、生命科学、光电等专业的学生● 科研单位研究人员、光谱仪使用者● 工业研发人员等课程详情时间:10月25-26日地址:福建师范大学费用:10月8日前付款● 标准价:300元/人● 套餐价(3人及以上):280元/人10月17日前付款● 标准价:360元 /人● 套餐价(3人及以上):330元 /人含:《光谱系列入门知识合集》(价值300元)、午餐、茶歇报 名https://jinshuju.net/f/LWohgD(复制至浏览器报名) 联系人● 沈女士● 021-62896060-161● yilei.shen@horiba.com历届光谱学堂部分反馈Comments﹀
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制